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ABSTRACT 

 

AN INTELLIGENT BIM-BASED AUTOMATED PROGRESS 
MONITORING SYSTEM USING SELF-NAVIGATING ROBOTS FOR 

DATA ACQUISITION 
 
 
 

Hassan, Muhammad Usman  
Ph.D., Department of Civil Engineering 

Supervisor: Asst. Prof. Aslı Akçamete Güngör 
 

 
December 2018, 189 pages 

 

Construction managers require a continuous flow of timely and accurate site status 

information that is acquired efficiently for successful project delivery. Current 

methods of data acquisition from the site are error-prone, laborious, and unable to 

provide timely information to project stakeholders for effective decision making. In 

this research, we developed a methodology for extraction of data points using BIM, 

acquisition of progress data using self-navigating robots, estimation of progress 

information using computer vision algorithms, followed by calculation and 

visualization of cost metrics. All these steps are performed without any human input 

in an automated manner to create a robust and efficient mechanism that is both 

accurate and cost-effective. 

The developed methodology is named Context-Aware Progress Monitoring System 

(CAPMS) which consists of five distinct phases. In the first phase; as-built spatial and 

semantic information from BIM is extracted to calculate data points for element level 

data acquisition using the imaging sensor. Using this extracted element data, an 

algorithm creates an element-wise activity list for the formation of a 4D model. The 

second phase involves acquiring images using a BIM-based data acquisition device, 

which is verified by a robot, that navigates inside the structures and reaches elements 

to photograph them. The robot acquires images of building element and transmits them 



 

 
 

vi 

to the server for progress estimation from image data. In the third phase, a context-

aware method is developed to estimate element status using computer vision 

algorithms. Contextual information obtained from schedule adds robustness to the 

developed methodology by reducing false positives. The states of the elements are 

used to estimate progress status and update cost-based progress metrics which we 

visualize on a dashboard in the fifth and final phase. The developed system has been 

validated by using the images obtained on two different construction sites with a robot 

and processing those images to determine accurate progress status in an automated 

manner.  

 

Keywords: Automated Progress Monitoring, Robotic Construction Monitoring, BIM, 

Computer Vision 
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       ÖZ…. 

 

VERİ TOPLAMAK İÇİN OTONOM YÖNGÜDÜMLÜ ROBOT KULLANAN 
YAPI BİLGİ MODELLEMESİ TABANLI AKILLI BİR OTOMATİK 

İLERLEME TAKİP SİSTEMİ 
 
 
 

Hassan, Muhammad Usman  
Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Dr. Öğr. Üyesi Aslı Akçamete Güngör 
  
 

Aralık 2018, 189 sayfa 

 
İnşaat yöneticileri, başarılı proje teslimi için verimli bir şekilde elde edilen zamanında 

ve doğru saha durumu bilgisinin, sürekli akışına ihtiyaç duymaktadırlar. Sahadan veri 

toplamak için kullanılan mevcut yöntemler, hataya açık ve zahmetlidir; ve bu 

yöntemler, etkin karar vermek için proje paydaşlarına zamanında bilgi 

sağlayamamaktadır. Bu çalışmada, Yapı Bilgi Modellemesi (YBM) kullanılarak veri 

noktalarının çıkarılması, otonom yöngüdümlü robotlar kullanılarak ilerleme 

verilerinin elde edilmesi, bilgisayarlı görü algoritmaları kullanılarak ilerleme 

bilgilerinin tahmin edilmesi ve ardından maliyet ölçümlerinin hesaplanması ve 

görselleştirilmesini içeren bir metodoloji geliştirdik. Tüm bu adımlar, hem doğru hem 

de uygun maliyetli sağlam ve verimli bir mekanizma oluşturmak için otomatik olarak 

herhangi bir insan girdisi olmadan gerçekleştirilmektedir. 

Geliştirilen metodoloji, beş ayrı aşamadan oluşan Bağlam Bilinçli İlerleme Takip 

Sistemi (BBİTS-CAPMS) olarak adlandırılmıştır. İlk aşamada; YBM'deki nihai 

uzaysal ve semantik bilgiler, görüntüleme sensörü kullanılarak eleman düzeyinde veri 

toplamak için kullanılacak veri noktalarını hesaplamak üzere çekilir. Geliştirilen 

algoritma, çekilen bu veriyi kullanarak 4D modelinin oluşturulması için eleman-bazlı 

bir aktivite listesi oluşturur. İkinci aşama, yapıların içinde dolaşan ve onları 

fotoğraflamak için elemanlara ulaşan, bir robot tarafından doğrulanan, YBM-tabanlı 
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bir veri toplama cihazı kullanarak görüntülerin elde edilmesini içermektedir. Bu 

aşamada, robot, yapı elemanının görüntülerini almakta ve görüntü verisinden ilerleme 

tahmini için bunları sunucuya iletmektedir. Üçüncü aşamada, bilgisayarlı görü 

algoritmalarını kullanarak eleman durumunu tahmin etmek için bağlam-bilinçli bir 

yöntem geliştirilmiştir. İş programından elde edilen bağlamsal bilgiler, yanlış 

pozitifliği azaltarak geliştirdiğimiz metodolojiye sağlamlık katmaktadır. YBM 

elemanlarının hali, ilerleme durumunu tahmin etmek ve bir kontrol panelinde 

görselleştirdiğimiz maliyet tabanlı ilerleme ölçümlerini güncellemek için 

kullanılmaktadır. Geliştirilen sistem, bir robot ile iki farklı şantiyeden elde edilen 

görüntüleri kullanarak ve doğru ilerleme durumunu otomatik bir şekilde belirlemek 

için bu görüntüleri işleyerek geçerlenmiştir. 

 
Anahtar Kelimeler: Otomatik İlerleme Takibi, Robotik Yapım İzleme, Yapı Bilgi 

Modellemesi, Bilgisayarlı Görü 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

ix 

 

 

 

 

 

 

 

 

 

Brig Khalid Hassan SI(M) 

& 

Nadeem Hassan (1970 - 2018) 

 

 

 

 

 

 

 

 

 

 



 

 
 
x 

 

ACKNOWLEDGMENTS 

 

I am extremely grateful to my supervisor for her time, patience, guidance, effort and 

mentoring. She taught how to plan and organize a research from the beginning till the 

end. I am especially grateful for the time spent on improving my writings which has 

greatly helped me improved my written skills. I am grateful to my thesis committee 

members Prof. Dr. Talat Birgönül, Prof. Dr. Rifat Sönmez, Prof. Dr. Gökhan Arslan, 

and Asst. Prof. Dr. Selen Pehlivan for their time, comments and guidance. I want to 

thank my teachers from NUST especially Dr. Jamal Thaheem, Awais Jamil Ch. and 

Col Irfan for their grooming that helped me through this Ph.D. 

I am grateful to my father Brig Khalid Hassan for his prayer and mentoring, it was his 

strong wish to see me finish my Ph.D. and it is one of the reasons I took up higher 

education; to my mother for her continuous support and motivation that made me pass 

through all the difficult stages; to my wife Sara for her standing steadfastly with me 

and my kids Ammar and Nuray for their unconditional love; to my brother Faheem, 

and my partner in Yapıdestek Can Yücel for providing with the resources when I 

needed them the most. In the end I thank my research friends Murat Altun and Onur 

Dogan for all the intellectual help that they have provided. 

 

 

 

 

 

 

 

 



 

 
 

xi 

 

TABLE OF CONTENTS 

 
ABSTRACT ................................................................................................................. v 

ÖZ…. ......................................................................................................................... vii 

ACKNOWLEDGMENTS ........................................................................................... x 

TABLE OF CONTENTS ............................................................................................ xi 

LIST OF TABLES ..................................................................................................... xv 

LIST OF FIGURES .................................................................................................. xvi 

ABBREVIATIONS ................................................................................................. xxii 

CHAPTERS 

1. PROBLEM DEFINITION ................................................................................... 1 

1.1. Error-prone .................................................................................................... 2 

1.2. Timely (Real-time) ........................................................................................ 4 

1.3. Time Consuming (Laborious) ....................................................................... 5 

1.4. Flow of the Document ................................................................................... 8 

2. BACKGROUND STUDY & RESEARCH OBJECTIVES ................................. 9 

2.1. Data Acquisition Technologies ................................................................... 10 

2.1.1. Sensor Network .................................................................................... 10 

2.1.2. Laser Scanning ..................................................................................... 11 

2.1.3. Multimedia ........................................................................................... 12 

2.2. Information Retrieval .................................................................................. 14 

2.2.1. Object Recognition and Material Classification .................................. 16 

2.2.2. Context-Based Recognition ................................................................. 17 

2.2.3. Machine Learning ................................................................................ 19 

2.3. Progress Estimation ..................................................................................... 20 

2.3.1. As-Planned 4D BIM ............................................................................. 20 

2.3.2. As-Built vs. As-Planned Comparison .................................................. 21 

2.3.3. Images based Progress Monitoring Solution ....................................... 22 



 

 
 

xii 

2.4. Data Visualization and Dashboard .............................................................. 23 

2.5. Gaps in research .......................................................................................... 26 

2.6. Research questions ...................................................................................... 29 

2.7. Objectives, Scope, and Contribution of Research ....................................... 31 

2.8. Proposed Solution: Context-Aware Automated Construction Progress 
Monitoring System................................................................................................. 32 

2.9. Conclusion ................................................................................................... 37 

3. ELEMENT-WISE AUTOMATED ACTIVITY AND POINT OF INTEREST 

(POI) EXTRACTION (EAPE) .................................................................................. 39 

3.1. Introduction ................................................................................................. 39 

3.2. Methodology of EAPE ................................................................................ 40 

3.3. BIM-based POI List Creation ..................................................................... 44 

3.4. BIM-based Activity List and Schedule Creation ........................................ 50 

3.5. Daily POI Extraction ................................................................................... 52 

3.6. Validation on BIM of two different construction projects .......................... 54 

3.7. Conclusion ................................................................................................... 56 

4. BIM BASED DATA ACQUISITION PLATFORM ......................................... 59 

4.1. The need for Robots in Construction .......................................................... 59 

4.2. Review of Robots in Construction .............................................................. 61 

4.3. Method for BIM-based data acquisition...................................................... 63 

4.4. Navigation to POI and Imaging .................................................................. 65 

4.4.1. Chassis and Drive Train ....................................................................... 67 

4.4.2. Imaging Sensor Distance and Tilt ........................................................ 68 

4.5. Image Tagging and Transmission ............................................................... 72 

4.6. Image Storage at Server .............................................................................. 72 

4.7. Experiment for Validation of Navigation Algorithm .................................. 73 

4.7.1. Creation of BIM and Extraction of POI Information........................... 73 

4.7.2. Experiment Results and Discussion ..................................................... 76 

4.8. Validation of Imaging on Site using BAAP ................................................ 79 

4.9. Conclusion ................................................................................................... 85 

5. SCHEDULE BASED CONTEXT AWARE ELEMENT RECOGNITION 

(SCAER) .................................................................................................................... 87 



 

 
 

xiii 

5.1. Introduction and Background Information .................................................. 87 

5.1.1. Contextual Information ........................................................................ 88 

5.1.2. Color Space .......................................................................................... 91 

5.2. Proposed Methodology ................................................................................ 95 

5.3. Learning Material Signatures ...................................................................... 96 

5.3.1. K-Means Clustering ............................................................................. 98 

5.3.2. Material Tagging .................................................................................. 99 

5.4. Identification of Materials within Image ................................................... 103 

5.5. Prediction of Element State ....................................................................... 106 

5.5.1. Context Awareness based on the Logic of Scheduling ...................... 106 

5.5.2. Prediction based on Probability of Presence ...................................... 108 

5.6. Parameter Tuning ...................................................................................... 109 

5.6.1. K Clusters ........................................................................................... 109 

5.6.2. Threshold ........................................................................................... 110 

5.6.3. Color Space ........................................................................................ 111 

5.7. SCAER Validation Using Site Images ...................................................... 113 

5.7.1. Evaluation Metrics ............................................................................. 114 

5.7.2. Sampling ............................................................................................ 115 

5.7.3. Material Recognition from Site Images ............................................. 118 

5.7.4. False Positive and Confusion ............................................................. 125 

5.7.5. Element State Prediction Recall ......................................................... 127 

5.8. Conclusion ................................................................................................. 128 

6. PROGRESS SIMULATION AND VISUALIZATION .................................. 131 

6.1. Framework for Progress Visualization using Dashboard in CAPMS ....... 131 

6.2. Simulated structure and activities tracking................................................ 135 

6.2.1. Day 1: Rebar Installation, Imaging and Analysis .............................. 138 

6.2.2. Day 2: Formwork Installation, Imaging, and Analysis ...................... 141 

6.2.3. Day 7: Removal of Formwork, Imaging, and Analysis ..................... 143 

6.2.4. Day 9: Masonry Work Completion, Imaging, and Analysis .............. 145 

6.2.5. Day 11: Final Site Status and Dashboard ........................................... 147 

6.3. Discussion on Cost Metrics ....................................................................... 149 

6.4. Conclusion ................................................................................................. 150 



 

 
 

xiv 

7. CONCLUSION ................................................................................................ 151 

7.1. Review of Developed Methodologies ....................................................... 152 

7.2. Case for Robot as Employees.................................................................... 154 

7.3. Contribution to Field of Knowledge ......................................................... 156 

7.4. Drawbacks of Context-Aware Progress Monitoring System .................... 157 

7.5. Site Requirements ..................................................................................... 158 

7.6. Future Work .............................................................................................. 159 

REFERENCES ........................................................................................................ 165 

APPENDICES 

A. SIMULATED STRUCTURE SCHEDULE.............................................. 183 

CURRICULUM VITAE .......................................................................................... 189 

 

 

 

 

 

 

  



 

 
 

xv 

 

LIST OF TABLES 

TABLES 

Table 1 Comparison of MLS and TLS accuracies and point cloud densities [39]. ... 12 

Table 2 Rating criteria for progress monitoring system by Kopsida et al. [14]. ........ 26 

Table 3 Performance evaluation of progress monitoring systems derived from Kopsida 

et al. [14]. ................................................................................................................... 27 

Table 4 Custom Activity Code List (CACL). ............................................................ 36 

Table 5 Example Categories with their Revit IDs. .................................................... 42 

Table 6 POI Detected from BIM ................................................................................ 50 

Table 7 Partial sample output for POI extraction....................................................... 50 

Table 8 Activity ID Breakdown ................................................................................. 51 

Table 9 Sample extracted activity list for BIM elements. .......................................... 52 

Table 10 Sample extracted daily POI list. .................................................................. 54 

Table 11 POI Extracted from ESDB and CHB BIM. ................................................ 56 

Table 12 Robot components and characteristics. ....................................................... 66 

Table 13 Camera tilt and EOI distance for imaging. ................................................. 69 

Table 14 Material and numeric material identifier list............................................. 101 

Table 15 Column-wise statistical metric of 𝐶𝐴𝐷𝑖 Matrix. ...................................... 105 

Table 16 Column-wise statistical measures for 𝐶𝐴𝐷1 Matrix. ................................ 106 

Table 17 Decision Table. ......................................................................................... 114 

Table 18 Activity monitoring list for ESDB. ........................................................... 117 

Table 19 POI list extracted from virtual structure BIM. .......................................... 137 

Table 20 Comparison with other research on progress monitoring. ........................ 157 

 

 

 

  



 

 
 

xvi 

 

LIST OF FIGURES 

FIGURES 

Figure 1 A typical pile of daily construction progress report, (b) Sample daily progress 

report with incomplete information filled in by site supervisor [13]. .......................... 3 

Figure 2 Process of site data collection in a large construction company [2]. ............. 7 

Figure 3 Labor productivity of construction industry vs manufacturing industry [28].

...................................................................................................................................... 8 

Figure 4 Components and flow of automated progress measurement mechanism. ... 10 

Figure 5 ROBIN All-in-one Vehicle, Backpack, and UAV LiDAR System [36]. .... 11 

Figure 6 A point cloud containing millions of points of an under construction structure 

[48]. ............................................................................................................................ 15 

Figure 7 Semantic labeling on geometric primitives [79]. ........................................ 19 

Figure 8 Color-coded progress status information using augmented reality [110]. .. 24 

Figure 9 Multi-system construction dashboard proposed by Kuo et al. [114]........... 25 

Figure 10 Research questions from problem definition schema. ............................... 31 

Figure 11 Construction Information Loop [121]. ...................................................... 33 

Figure 12 Vision for Context Aware Automated Progress Monitoring System 

(CAPMS). .................................................................................................................. 34 

Figure 13 Server Client Architecture of CAPMS. ..................................................... 35 

Figure 14 Revit Element Classification System [126]. .............................................. 41 

Figure 15 Process flow for EAPE. ............................................................................. 43 

Figure 16 Process Flow for Activity List and POI Creation. ..................................... 44 

Figure 17 Sample POIs for varying categories. ......................................................... 45 

Figure 18 POI extraction process flow. ..................................................................... 45 

Figure 19 Dynamo visual programming interface [128]. .......................................... 46 

Figure 20 Dynamo code for level-wise POI extraction from BIM. ........................... 47 

Figure 21 Function for POI extraction from each level. ............................................ 48 

Figure 22 Validation of (a) extracted POIs for wall elements and (b) 3D model used 

for the test. ................................................................................................................. 49 

Figure 23 Category and Related Activity List ........................................................... 51 



 

 
 

xvii 

Figure 24 Daily POI extraction by image acquisition platform using Pull request. .. 53 

Figure 25 (a) Rendering of Educational Science Department Building and (b) Revit 

3D Model for Classroom Hall Building (Courtesy of METU). ................................. 55 

Figure 26 S-curve applied to construction transformation from conventional to 

automation [132] where building component manufacturing (BCM), large-scale  

refabrication (LRP), single task construction robots (STCR), robot-oriented design 

(ROD), automated robotic on-site factories (A/ROF), and automated deconstruction 

(AD). .......................................................................................................................... 61 

Figure 27 (a) SAM100 world's first commercially available robot [137], (b) Tybot 

robot for rebar tying [138].......................................................................................... 63 

Figure 28 (a) Effibot will follow workers carrying heavy items [139], (b) Built robotics 

dozer to carry out works automatically [140]. ........................................................... 63 

Figure 29 Boston dynamics robot for monitoring [136]. ........................................... 63 

Figure 30 Process flow within BAAP framework. .................................................... 65 

Figure 31 BAAP in different forms (a) Terrestrial robot (b) Drone (c) Helmet mounted 

camera. ....................................................................................................................... 65 

Figure 32 Robot Views from Different Angles.......................................................... 67 

Figure 33 Robot Chassis and Components. ............................................................... 67 

Figure 34 Robot camera orientation and scene representation. ................................. 69 

Figure 35 Camera-tilt at (a) 0°, (b) 180°,  (c) 30°, and (d) 140° to capture the EOI. 70 

Figure 36 Imaging of elements above the robot with very low Ɵ < 20°. ................... 71 

Figure 37 Imaging of element in front of robot. camera Point forward. 40° < Ɵ < 90°.

 .................................................................................................................................... 71 

Figure 38 Imaging of elements below the robot with Ɵ > 90°. ................................. 71 

Figure 39 Images tagged with POI, Activity ID, angle and distance of acquisition. . 72 

Figure 40 (a) Image storage according to POI at server end, (b) Image storage within 

according to activities. ............................................................................................... 73 

Figure 41 3D model of navigation test site created on Autodesk Revit. ................... 74 

Figure 42 Extracted POI locations for robot navigation validation. .......................... 74 

Figure 43 Navigation vector calculation from POI coordinates. ............................... 75 

Figure 44 Error at POI 1............................................................................................. 76 



 

 
 

xviii 

Figure 45 Error at POI 2. ........................................................................................... 77 

Figure 46 Error at POI 3. ........................................................................................... 77 

Figure 47 Combined plot of error at POI 1, POI2, and POI3. ................................... 78 

Figure 48 Box and whisker plot for percentage error w.r.t length. ............................ 79 

Figure 49 Process flow for conduct of field test. ....................................................... 80 

Figure 50 Number of pictures taken of subject materials taken at given tilt and distance 

values. ........................................................................................................................ 81 

Figure 51 Poor Image Examples (a)-(b) Acquired at 30% misses EOI and captures 

roof slab, (c)-(d) Images acquired at 90% captures clutter on the floor next to wall. 82 

Figure 52 (a) Poor quality pictures w.r.t angles and distances, (b) recall for images at 

angle-distance combination. ...................................................................................... 83 

Figure 53 Images acquired with all tilt angles. .......................................................... 84 

Figure 54 Material wise recall for image with good tilt angles. ................................ 85 

Figure 55 Markov chain transition probabilities and transition matrix [148]. ........... 89 

Figure 56 Transition state diagram for various element states .................................. 91 

Figure 57 RGB color space. ....................................................................................... 93 

Figure 58 Hue Saturation Value (HSV) color space [154]. ....................................... 94 

Figure 59 CIE L*a*b color space model [155]. ......................................................... 94 

Figure 60 Process flow for Schedule-based Context-aware Element Recognition 

(SCAER) .................................................................................................................... 95 

Figure 61 Flowchart of the learning algorithm .......................................................... 97 

Figure 62 Training image for a demonstration of the learning algorithm. ................ 98 

Figure 63 Result of K-means clustering on test image: (a) Cluster 0, (b) Cluster 1, (c) 

Cluster 2, (d) Cluster 3. ............................................................................................ 100 

Figure 64 Process flow for material prediction in acquired image .......................... 103 

Figure 65:  Image acquired for prediction of material using prediction algorithm. 104 

Figure 66 False positives affecting results vs false positives not affecting results. . 107 

Figure 67 Critical vs noncritical false positives represented on BIM elements. ..... 107 

Figure 68 Element state prediction process. ............................................................ 109 

Figure 69 K value vs. % recall error chart. .............................................................. 110 

Figure 73 % Recall error variation with change in min distance threshold. ............ 111 



 

 
 

xix 

Figure 74 % Prediction error for different values of mean. ..................................... 111 

Figure 75 Color model combination for feature vector. .......................................... 112 

Figure 76 Percent error for different color space combinations. ............................. 112 

Figure 77 Images of under construction (a) Educational Science Department Building, 

(b) Classroom Hall Building. ................................................................................... 113 

Figure 78 Test locations marked according to activity on floor. ............................. 115 

Figure 79 Sample size for (a) Category (b) Expected State; where, DR: Door, MW: 

Masonry Work, CN: Concrete, FW: Formwork, RF: Reinforcement. .................... 118 

Figure 80 (a) Concrete column images using robot at 45 degrees (b) Extracted column 

from the image. ........................................................................................................ 119 

Figure 81 Correctly detected concrete from column POIs....................................... 119 

Figure 82 (a) Image with formwork (FW) with (b) extracted formwork from the image.

 .................................................................................................................................. 120 

Figure 83 Correctly detected formwork POI. .......................................................... 121 

Figure 84 (a) Image with masonry and concrete (b) Extracted masonry from the image.

 .................................................................................................................................. 122 

Figure 85 Correctly detected concrete from masonry POIs. .................................... 122 

Figure 86 (a) Image with reinforcement (b) Extracted reinforcement from image. 123 

Figure 87 Correctly detected POI for reinforcement. .............................................. 123 

Figure 88 (a) Image with formwork (b) Extracted formwork from the image. ....... 124 

Figure 89 Correctly detected door in frames acquired for each POI. ...................... 124 

Figure 90. False positive of CN with all other materials for different minimum 

threshold values. ....................................................................................................... 125 

Figure 91 False positives of FW with all other materials for different minimum 

threshold values. ....................................................................................................... 126 

Figure 92 False positive MW with all other materials for different minimum threshold 

values........................................................................................................................ 126 

Figure 93 False positives of RF with other materials for different minimum threshold 

values........................................................................................................................ 127 

Figure 94 Percent recall for materials in the project. ............................................... 128 

Figure 95 Project management dashboard. .............................................................. 132 



 

 
 

xx 

Figure 96 Schedule update from POI and dashboard update. .................................. 133 

Figure 97 Cinfo dashboard with (a) updated Gantt chart tracking, (b) Day of last 

activity, (c) S-curve (d) KPI (e) Cost Metrics (f) Progress bar (g) Daily monitoring 

list. ............................................................................................................................ 135 

Figure 98 Floor plan for the virtual structure. .......................................................... 136 

Figure 99 No of elements from each category in the simulated structure. .............. 138 

Figure 100 Schedule summary of the virtual structure. ........................................... 138 

Figure 101 Activities completed at the end the first day of construction. ............... 139 

Figure 102 SCAER output for Day 1 of inspection. ................................................ 139 

Figure 103 Dashboard view after completion of rebar installation work. ............... 140 

Figure 70 Site status at the end of Day 2 of construction. ....................................... 141 

Figure 71 SCAER Output for Day 2 of inspection. ................................................. 141 

Figure 72 Dashboard view after completion of formwork installation work. ......... 142 

Figure 104 Virtual site view at the end of Day 7 of construction. ........................... 143 

Figure 105 SCAER output at the end of Day 7 of inspection. ................................. 143 

Figure 106 Dashboard view after completion of concrete work. ............................. 144 

Figure 107 Rendered Site status at the end of Day 9 of construction. ..................... 145 

Figure 108 SCAER output at the end of Day 9 of inspection. ................................. 145 

Figure 109 Dashboard view after completion of masonry work. ............................ 146 

Figure 110 Activities completed at the end of Day 11 of construction. .................. 147 

Figure 111. SCAER output at the end of Day 11 of inspection. .............................. 147 

Figure 112 Dashboard at project completion. .......................................................... 148 

Figure 113 Estimated vs. Actual progress metrics comparison. .............................. 149 

Figure 114 POI error and KPI error comparison. .................................................... 150 

Figure 115 Robot can negotiate unsafe routes. ........................................................ 155 

Figure 116 Cluttered site creates robot navigation difficulties. ............................... 158 

Figure 117 Reinforcement image processed to attain rebar diameter [108]. ........... 160 

Figure 118 (a)-(b) SCAER for detection of MEP in masonry images. .................... 161 

Figure 119 (a)-(b) Boom loader detected (c)-(d) crane detected by K-means clustering 

in SCAER................................................................................................................. 161 

Figure 120 Loaded truck image with extracted (b) Truck (c) Loaded Formwork. .. 162 



 

 
 

xxi 

Figure 121 (a) Insulation stockpile image with extracted (b) XPS stockpile (b) Glass 

wool stockpile. ......................................................................................................... 162 

 

  



 

 
 

xxii 

 

ABBREVIATIONS 

 

API Application Programming Interface 

AR Augmented Reality 

BAAP BIM based Image Acquisition Platform 

CACL Custom Activity Codes List 
CCD Charged Couple Device Sensor 

CHB Classroom Hall Building 

CN Concrete Work 

DR Door 

EAPE Element-wise Activity and POI Extraction 

EOI Element of Interest 

ESDB Education Science Department Building 

FW Formwork 

GPS Global Positioning System 

HD High Definition 

HSV Hue Saturation Intensity 

LAN Local Area Network 

MLS Mobile Laser Scanner 

MW Masonry Work 

𝑃௉|஼ Probability of Planned state given Confirmed state 

RFID Radio Frequency ID 

SfM Structure for Motion 

PL Plaster 

RF Reinforcement 

RGB Red Green Blue 

TLS Terrestrial Laser Scanner 

UWB Ultra-Wide Band 

WD Window 

WSN Wireless Sensor Network 



 

 
 
1 

  

 

CHAPTER 1 

 

1. PROBLEM DEFINITION 

 

 

The construction industry is immensely complicated by nature since project execution, 

consisting of several phases, requires a diverse array of specialized services and 

involves numerous participants [1]. The dynamic nature of building and infrastructure 

projects coupled with its ad-hoc work organization makes communication and smooth 

flow of information between stakeholders a more significant challenge. The 

construction projects are temporary in natures and therefore unsuitable for adaptation 

of standard industrial monitoring solutions. Construction project organization itself is 

usually formed as ad-hoc groupings, that do not evolve into the formation of long-

term relationships beyond the scope of the project [2] making data communication and 

dissemination a more significant challenge in comparison with manufacturing or retail 

industry. The construction industry is unlike manufacturing or service sector, which 

operate in a static environment with teams that work with one another for long periods, 

creating working relationships that allow smooth flow of information across different 

levels of management. Construction companies complete their projects in a relatively 

short duration of time, with the teams that are explicitly created for the project and 

dissolved as soon as the project reaches its conclusion. Management of construction 

projects is, therefore, an arduous task compounded by communication and human 

interaction related complexities. The common practice of data acquisition in 

construction information management is based on manual and monotonous data 

acquisition, immethodical analysis and complicated reports [3].  This inefficient 

approach toward information management is one of the reasons why construction 

projects are very often late [4] and exceed their budgets thus failing to achieve their 

objectives.  
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Construction projects need a smooth flow of information for construction management 

system to perform efficiently.  The data originating from construction sites can be 

related to finance, quality and progress domains [5]. Financial data includes Quantity 

Takeoff (QTO) rates, reimbursements, contractor payments, taxes, procurement 

details, and different cost-related information. Quality records contain test results, 

specifications, checklists, Key Performance Indicators (KPI), noncompliance lists and 

audit results. Progress data typically identifies work carried out on construction sites. 

It contains information ascertaining where, when and how work is being performed 

including deviations and delays. Progress monitoring is considered to be the most 

complex task due to several interdependencies of activities [6], and thus the highest 

challenge a project manager has to encounter.  Timely collection of site progress data, 

its interpretation, and communication in an efficient manner is a critical factor in the 

success of a project [7] and therefore a significant concern for construction companies. 

Ideally, a progress monitoring measurement system should be measurable, consistent, 

timely, understandable, verifiable, cost-effective and suitable for decision making [8].  

 

1.1. Error-prone 

Traditionally data collection on the progress of construction projects done using 

manual or visual inspections is infrequent, error-prone [9], time-consuming, [10] 

inconsistent and produces a large amount of paperwork [11] (see Figure 1). A survey 

[12] had shown that more than 63% of site operatives do not keep a record of exactly 

when work took place. In the same study, more than 62% of workers did not keep a 

record of linkage between activities that showed the impact of delay on overall 

project’s performance. Sometimes site staff lacks experience in proper site 

information handling, being unaware of the importance of keeping accurate 

information. It is also observed that site operatives are not even concerned with the 

value of activity linkages and the effect of delay in one critical activity over the whole 

project [12].  
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Figure 1 A typical pile of daily construction progress report, (b) Sample daily 
progress report with incomplete information filled in by site supervisor [13]. 

 

Site records contain errors related to their accessibility, legibility, continuity, and 

consistency [12]. Accessibility issues relate to the excessive amount of time required 

to extract information from site records due to the large volume of data. Legibility is 

related to the difficulty to read due to poor handwriting, incorrect terminologies and 

Incomplete information provided by inspector 
with no further detail. 
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poor command over technical jargons. Continuity problems are related to missing 

records which may be lost or not taken in the first place and consistency is the problem 

when multiple records do not match or follow a sequence. Monitoring cannot be done 

on hard to reach areas, and photographic evidence cannot be attained thus the 

completeness of acquired data is negatively impacted. The site information may, 

therefore, lack details necessary to extract relevant information about the progress 

from the dairies since the worker did not record it in the first place. Site records can 

be misleading at sometimes giving information that a manager can interpret into a 

work performed at a particular location while it has not completed or vice versa. Some 

researchers [14] have assumed that current practices do not correctly represent data 

understandably coming from the site. 

 

Accurate as-built information plays a vital role in performance analysis, corrective 

action planning and later operation and maintenance of projects. As-built progress data 

provides a measure of progress attained and can be compared with the as-planned 

schedule to determine deviations and delays. It enables site management to take a 

proactive decision and reduce cost overrun as well as delays that can be caused by 

deviations from schedule. The accuracy of data is the key since managers make 

decisions on data provided to them, erroneous data will lead to poor choices. Project 

managers have to spend a lot of time dealing with inaccurate and out of date 

information, which is an output of old-school methods of information acquisition, 

transmission, processing, and dispersal that doesn’t belong to the 21st century. 

 

1.2. Timely (Real-time) 

Attaining accurate and timely knowledge of the status of a construction project is a 

challenging problem faced by project management and job site personnel [15]. There 

is no real mechanism to bring as-built information to project stakeholders in real time 

[16]. A time-space gap between the site and office consequently  delays the data. 

Duration of activities is typically in days while site teams provide progress reports on 
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the weekly or monthly basis [2], that handicaps project manager’s ability to monitor 

schedule, cost and KPI reducing his capability to manage uncertainty [17] inherent to 

construction projects. 

Project managers require a robust system that provides information in a timely and 

comprehensive manner so that they can make decisions quickly and efficiently [18]. 

An effective method to filter and extract information from a large amount of data, 

pouring in from the site through different mediums, is required to ensure knowledge 

of site operation is available as and when a manager is taking decisions. Actual and 

potential progress deviations are costly but preventable [19], the longer it takes to 

detect a defect, the more expensive and difficult it becomes to fix that defect while 

avoiding compromise of project objectives. Today’s construction methods are not 

providing data at the frequency that guarantees timely corrective actions. Therefore, it 

is not surprising that construction projects are very often late [4] and exceed their 

budgets. The lack of adequate information and a shortage of record is one of the 

reasons behind the delayed identification of progress impeding issues. Time taken to 

determine deviation from the schedule and to undertake countermeasures on site is 

proportional to mitigation cost. Thereby real-time information will enable appropriate 

countermeasures that will reduce monetary loss [20] caused by delays, reworks, 

claims, and disputes. Construction giants are investing on state of the art Management 

Information Systems (MIS) and Enterprise Resource Planning (ERP)  systems to assist 

project management teams, however, the utility of such a system is subject to timely 

acquisition of timely information.  

 

1.3. Time Consuming (Laborious) 

The efficient data acquisition process is utmost necessary for successful project 

delivery, but the current practice does not provide an elaborate mechanism to attain 

site data articulately [13].  Current information acquisition and processing techniques 

are not only time consuming and labor-intensive but are also compromising the 

performance of project leadership team. This inefficiency across project teams is, in 
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large measure, due to laborious processes involved in as-built data collection and 

analysis. Data acquisition for construction progress monitoring is labor-intensive work 

and requires the extraction of data from drawings and databases [21], involving many 

calculations that take away precious man-hours from intellectual work to mundane, 

repetitive tasks. Standard practice for field engineers and superintendents is to walk 

around the site, take notes and site pictures to document progress which is a fatiguing, 

time consuming and dangerous process on a live construction site. The site inspections 

result in the creation of a large volume of site records which contain thousands of 

drawings and notes taken by numerous operatives with a wide array of experience, 

knowledge and skill level. A survey of Management Information System (MIS) 

showed that the need for data entry is impeding the success of the whole system [22].  

A study [23] of five large construction companies has concluded that companies are 

storing thousands of images without any standard retrieving mechanism making image 

search and retrieval cumbersome, thereby diminishing the utility of complete imaging 

exercise. A field engineer must filter, sort and annotate images, therefore, evaluating 

images according to their context and contents remains manual which is both time-

consuming and full of errors. Figure 2 [2] shows a portion of a process model for a 

study done on a company with sophisticated information management system where 

the author observed that significant part of data collection is manual (e.g., activity 

reporting, person hour record, etc.). The information fed into the computer using 

manually attained data reduces the overall efficiency of the system, defeating the 

whole purpose of digitization. Workers spend their energy for manual collection of 

data, and submit it to the management team, who extract information from different 

forms of data relayed to them. Various studies have taken place on information 

retrieval from images; however, to use this information, image has to be detected first. 

Management time is much more valuable in monetary terms when compared with site 

staff. A manager manhour can cost anywhere between three to ten times what a 

company would pay to its field staff depending upon the geographic location of the 

project, as the disparity between blue collar and white collar earning is much more in 

the east as compared to the west.  Project managers are spending considerable amount 
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of time dealing with delayed, missing, inaccurate, and inconsistent information. 

McCullouch (1997) noted that managers spend, on average, 30–50% of their time to 

record and analyze site data due to manual nature of monitoring and controlling 

methods and thus, they are distracted from other vital tasks [14]. Project management 

teams are spending 77% of their time in meetings on descriptive and explanative tasks 

and only 12% and 11% of the time is spent on evaluative and predictive tasks 

respectively [24]. Managers getting well organized, ready to use data directly from the 

site will save costly manhours, prevent mental fatigue that decrements intellectual 

capabilities and provides time for brainstorming resulting in well-thought decisions 

that would have long-lasting consequences on project deliverables. 

 

 

Figure 2 Process of site data collection in a large construction company [2]. 

 

Data is costly to acquire, costlier to convert into information and even costlier to 

transform into a digital format that can be manipulated using computer software [2]. 

A significant portion of this cost is direct workforce cost paid per hour of work done 

on data. The complexity and vast size of data generated from construction sites [25] 

make information management on construction sites all the more difficult [26]. The 

construction industry is losing too many man-hours on non-value adding tasks thus 

showing a continuous decline in productivity while the productivity index of all farm 
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industry has increased considerably [27] as can be seen in Figure 3.  

 

 

Figure 3 Labor productivity of construction industry vs manufacturing industry [28]. 

 

1.4. Flow of the Document 

This document explains methodologies that form the developed automated progress 

monitoring system, followed by a simulation of the proposed system on a virtual 

structure. Chapter 2 discusses various components of automated progress monitoring 

system namely data acquisition, information retrieval, progress estimation, BIM and 

data visualization. Chapter 3 presents an algorithm developed to extract location for 

image acquisition from BIM through an Element-Wise Activity and Point of Interest 

Extraction methodology.  Chapter 4; presents an automated data acquisition platform 

and a robot developed as its realization. Chapter 5 presents the computer vision 

algorithm to get element state from images taken on the site by developing a Schedule 

Based Context-Aware Element Recognition (SCAER) Algorithm. Chapter 6 discusses 

simulation of a Context-Aware Progress Monitoring System (CAPMS) on a virtual 

structure and progress metrics update using outputs from automated methodologies 

followed by a conclusion. 
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CHAPTER 2 

 

2. BACKGROUND STUDY & RESEARCH OBJECTIVES 
 

 

Embedded intelligence is not a new concept in building community and with the 

advent of cheap sensors and computing resources to handle big data, it has gained 

immense popularity [29]. Information technology plays a pivotal role in ensuring 

projects’ success by providing project managers tools that increase their efficiency and 

assist them in making decisions. After formulation of comprehensive BIM, building 

data can be incorporated with other information system data to streamline tasks. With 

the advent of new software packages, data processing has become facile but still 

involves a large amount of human intervention making such applications time 

consuming and less feasible for task monitoring. The data technologies that fit in the 

roles of the collecting, organizing, and analysis of as-built data are classified according 

to Omar et al. [8] as those that collect as-built data like geospatial method or those 

organizing acquired data and analysis of as-built data. An automated progress 

monitoring system would comprise of the steps shown in Figure 4 where data 

acquisition systems that refer to geospatial sensing technologies and information 

retrieval involves data processing operations to extract information, progress 

estimation that is an out of a comparison between as-built and as-planned data and 

visualization of results.  This chapter discusses research on each step of progress 

monitoring shown in Figure 4, with focus on computer vision. 
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Figure 4 Components and flow of automated progress measurement mechanism. 

 

2.1. Data Acquisition Technologies 

The advent of low-cost data acquisition technologies will enable accurate and efficient 

automated progress status determination. Companies around the world are adopting 

advanced, cutting-edge tools that may be web services, voice-based tools or handheld 

computing devices to boost productivity. Automated progress measurement relies on 

data collected through various devices. These devices can either be fixed or mobile. 

Digital cameras, laser scanners, handheld computers, and voice acquisition systems 

are mostly mobile or fixed with a rotation mechanism.  

 

2.1.1. Sensor Network 

Wireless sensor networks (WSN) are mostly fixed, consisting of spatially distributed 

sensors, monitoring physical and environmental conditions. WSN consists of a base 

station and nodes with a gateway that connects nodes to the wired world, creating an 

embedded acquisition and relay framework. Geospatial tools include barcode readers, 

Geographical Positioning Systems (GPS) and Radio-Frequency Identification (RFID), 

UWB Tags and Geographical Information System (GIS) [2]. They are mostly used for 

augmenting management [30], resource tracking [31][2] or for inspections to retrieve 

onsite data [32]. Sensors are low in cost and can be easily tagged, however, they may 

require special power and mounting equipment. GIS[33] has demonstrated that 

sensing technologies can automate construction progress monitoring. Attempts have 

been made to provide mobile devices to workers to support faster and reliable data 
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collection, [34] however, providing mobile devices to site workers is not a feasible 

option considering the risk of theft and damage as well as extra equipment a worker 

has to carry. 

 

2.1.2. Laser Scanning 

Since the beginning of 21st-century research has been focused on the development of 

3D data collection and modeling techniques with particular attention to geometric 

aspects for which Laser Distance and Ranging (LIDAR) has been handy. Laser 

scanners are either Airborne Laser Scanners (ALS), Terrestrial Laser Scanner (TLS), 

or Mobile Laser scanners. ALS can provide geo-reference point clouds by laser 

measurement from an aircraft and orientation of this measurement between reflecting 

objects and sensor using differential GPS technology. TLS is fixed at a position and 

measures time of flight (ToF) of a laser beam generated by laser scanner to reflect 

from an object and reach the detector present in the scanner. TLS can measure the 

distance of a point in the proximity of a sensor with millimeter accuracy at a rate of 

one million points per second, to create a dense point cloud. MLS (see Figure 5) is a 

modification of ALS as it has a laser scanner, GPS, Inertial Motion Unit (IMU) but it 

is mounted on  ground-based vehicle’s cart or human being at times [35].  

 

 

Figure 5 ROBIN All-in-one Vehicle, Backpack, and UAV LiDAR System [36]. 

Laser scanners produce accurate point clouds but fail to provide a semantic 

understanding of the scene. Majority of laser scanners are expensive, bulky and power-

hungry requiring special operator training and at times placement of targets to work 
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place. The absence of semantic information and a large amount of data produced by 

laser scanners make a computationally expensive setup that would make it impossible 

to provide data in real-time without lag. MLS are lighter in weight and don’t require 

setup, centering and leveling at every station. MLS provides quicker results but 

compromises on point cloud density and absolute accuracy (see Table 1). It can, 

therefore, be safely said that MLS is a complimenting current surveying technique 

rather than replacing them [37]. TLS is still a key player in the laser scanning industry 

due to its comparatively lower cost, durability, and ease of use. As mentioned, MLS 

cost way above TLS but are useful when a large area has to be covered making static 

devices impractical due to many sensor station setups involved [38]. 

  

Table 1 Comparison of MLS and TLS accuracies and point cloud densities [39]. 

 MLS (backpack)  MLS (Vehicle) TLS 

Accuracy (Absolute) 30mm 20mm <10mm 

Accuracy (Relative) 3-5 mm 3-5 mm 3-5mm 

Point Density 60,000 pts/m at 

2m 

6,000 pts/m2 at 

2m 

250,000 pts/m2 at 

2m 

2.1.3. Multimedia 

Multimedia includes digital images, videos and audio recordings collected to confirm 

activity completion that has been in vogue since the 1990s to assist in delay analysis. 

Multimedia tools allow visualization of information and red flagging of problem areas 

[40]. Imaging comprising of both still and video capture is a promising form of as-

built data. In recent years, Digital Imaging has evolved from monochrome to Ultra 

HD, from photosensitive films to charge coupled device (CCD), and their application 

in civil engineering has increased significantly. With the advent of high definition low-

cost cameras, imaging has become an economical and speedy source of accurate data 

acquisition from the site. Over the last decade, cameras have become cheap with 

increased data storage capacity and also have built-in Bluetooth and data connectivity.  
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Photography has become a rich medium of data acquisition on site because of its 

ability to collect semantically rich information quickly and economically.  Site images 

are acquired for documentary purposes [41]. Every construction site has cameras and 

keeps an archive of pictures as evidence of progress, identification of deviation from 

design and dispute resolution attained according to specifications. Images have 

evolved into a significant and irreplaceable part of project documentation, thus 

justifying the ever-growing rate of imaging information acquisition in the AEC/FM 

industry [23]. Images are used for settling on-site disputes, training of workers, root 

cause analysis of incidents and as a marketing tool to show the quality of work. 

Imaging can be either still or video, which is essentially a number of frames acquired 

by image per second. Videos contain data obtained at higher frequency thereby 

holding a considerable amount of information while consuming large amounts of 

storage space. Video transmission over Wi-Fi and Bluetooth is time-consuming, and 

live stream software have built-in lag depriving the user of real-time information. 

Image stitching is a data efficient process to attain and combining images in a manner 

that is not as memory consuming. Image stitching is the process of modifying and 

blending image in a manner so that photographs align seamlessly [42]. It has been 

used in the construction industry mainly to visualize anomalies [43][44] such as cracks 

or creation of panoramas from images [45]. The volume of images stored on a site 

database is increasing rapidly, and it is becoming increasingly difficult to browse and 

extract images manually for utilization in construction project management tasks [46]. 

 

The current state of the art methods for automated progress monitoring is relying on 

data acquisition technologies which include sensing, laser scanning, and imaging to 

attain site information and generate 3D point clouds. In comparison, laser scanners 

produce more accurate point clouds than their alternative digital cameras, but scanners 

fail to provide a semantic understanding of the scene. Cameras, on the other hand, are 

lower in cost and contain color data that can be used in a variety of ways to ascertain 

site information. It can be inferred that if there are no occlusions, i.e., Line of Sight to 

the element is without any obstruction; site image processing is more effective and 

viable for construction progress monitoring. To benefit from the advantage of both 
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laser scanning and 2D imaging system, 3D laser scans were merged with digital 

images to estimate quantities and amount of work [47]. However, this method involves 

manual selection of common points between images and laser scans, requiring a 

significant amount of manual processing.  

 

2.2. Information Retrieval 

Data acquisition devices provide data that may be in the form of change in voltage or 

current in case of analog sensors, point clouds in case of laser scanners, and RGB 

images when cameras are used. Enhanced Information Technology (IT) devices are 

great tools for continual improvements on site, which resulted in increased 

productivity and better project management. However, they require initial 

expenditures, training, software, O&M which may limit their use on site. Until or 

unless investment made on enhanced IT tools has a high return on investment, 

contractors, who are already repulsive towards technology, will never adopt them. 

The point clouds (see Figure 6 [48]) generated by laser scanners already have 3D 

information and don’t require  a lot of further processing for comparison of as-planned 

with spatial as-built data. However, point clouds are not object-oriented but rather a 

set of scattered points. The processing of point cloud to attain object level information 

is a computationally expensive process. The point cloud can also be generated from 

site pictures using Photogrammetry [49], which though computationally expensive, is 

the process of attaining structural and shape characteristic of an object in the form of 

3D point cloud [50]. The 3D point cloud can be created using video streams [51],  

building façade modeling [52], distinctive features [53] and Structure from Motions 

(SfM) coupled with Multi-View Stereo (MVS) images [54]. 3D reconstruction and 

modeling provide a reconstructed 3D scene for a particular day. However, they cannot 

restore the context and content of the photo [55].  
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Figure 6 A point cloud containing millions of points of an under construction structure 
[48]. 

 

Progress information requires additional semantic information such as construction 

materials and their interconnectivity for structural and architectural elements, beyond 

geometric coordinates of the respective elements, which can be derived from 

appearance-based 2D imagery.  Construction images, unlike laser scan point cloud, 

contain color, a source of rich and useful as-built information, has been focus of 

research to grasp their context and content for information retrieval purposes using 

image processing and computer vision techniques [46]. The term image and video 

processing include tasks to restore, enhance, filter, modify and extract information 

from images using signal processing techniques [26] — several image processing 

techniques that are used to describe images in mathematical terms to provide a 

numerical representation of the items within an image for identification based on 

similarity. Computer vision uses statistical methods to extract visual information using 

geometry and machine learning concepts. It requires an understanding of cameras and 

processes involved in the formation of images on a sensor to gain inference from pixel 

level information in multiple images using probabilistic techniques to infer shape and 

recognize objects.  
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Computer vision studies can be divided into three main categories [50]: three 

dimensional (3D) reconstruction, individual photo analysis, and as-built model 

generation. These techniques are based on the fact that images can be represented as a 

three-dimensional pixel matrix with each pixel in the image as one element in the 

matrix. Various mathematical concepts derived from algebra, statistics, and geometry 

like Mean, Median, Filtering, Fourier, and Wavelets transform. The visual appearance 

of a material depends upon illumination conditions, geometric structure, and the 

reflectance properties, that can be exploited using mathematical concepts to extract 

object characteristics. Several studies have been conducted on automatic information 

retrieval from images. Computer vision has found various applications in construction 

performance measurement for construction project management [9], [56]–[59], using  

object recognition and material detection, [23], [60]–[62], resource and equipment 

tracking, [63], [64], occupational health and safety monitoring [65]  and project 

visualization [66]. In damage detection domain computer vision algorithms are used 

for  surface defects and crack detection, [67], and pothole detection [68]. 

 

2.2.1. Object Recognition and Material Classification 

There is a need for extraction of semantic information from images, and it has opened 

two main research avenues in the field of computer vision, namely object recognition 

and material recognition [69]. Object recognition relies on material invariant features 

and overlooks features that are material specific thus focusing solely on geometrical 

characteristics of an object. The visual characteristic of an object is, to a certain degree, 

dependent upon its constituent materials. Different classes of objects can be made of 

different materials, or different materials may be present in one instance of an object. 

There have been many advances in the subject of object recognition that include shape 

context [70], histogram oriented gradients (HOG) [71] and label transfer [72] that may 

not apply to material recognition. Most of these methods ignore material information 

while focusing on material invariant features [72].  

Material classification is an essential aspect of the automated progress monitoring 

system or for the creation of semantically rich 3D models. Therefore, developing a 
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system that ascertains material information from images is an essential aspect of visual 

recognition [70]. Automated material classification (also called Recognition in 

computer vision literature) not only provides appearance based information for 

progress monitoring purposes, but it also assists in segmentation for geometric 

modeling purposes. The author of this research also conducted a study [73] on the use 

of terrestrial laser scanning to identify common construction materials based on their 

reflectance properties. The experiments showed that each material has unique 

reflectance characteristics when defect-free areas are scanned. Reflectance 

characteristics were found to be independent of illumination conditions though 

dependent on moisture content. The RGB values signatures were also evaluated and 

compared with reflectance signatures. Reflectance signatures were observed to be a 

robust identification criterion. 

 

Color as a parameter for material identification has been suggested by Kim et al. [74] 

for the identification of concrete and by Son et al. [75] for the classification of 

construction equipment. However, using color for the classification of different types 

of materials using the same algorithm has not been done in research. Color values have 

been used for Content-Based Image Recognition (CBIR) [26] by Dimitrov [69] to 

increase the robustness of their algorithm.  Neto and Arditi [76] used Red, Green, and 

Blue (RGB) color space for identification of structural components of bridges, while 

Dimitrov [76] used HSV color space to increase the robustness of his algorithm. Color 

based image filtering process was used by Son and Kim [77] to extract structural 

components from images for comparison with the 3D model. 

 

2.2.2. Context-Based Recognition 

Certain objects or materials on a construction site can have a similar texture and color 

to other objects with a lower probability of presence. It is difficult to differentiate 

between planar surfaces with very similar color and texture like a wall versus side of 

a bookshelf in a laser scan point cloud. Contextual information is useful in solving 

such problems which can either come from within the image, or it can be derived from 
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non-image sources, where the latter comprises of geographical information of the 

image and the time at which the image is obtained [78]. In laser scanning point clouds, 

researchers have leveraged spatial relationships between objects to filter out 

ambiguous results. This approach generates a knowledge database containing a 

semantic label of geometric primitives (see Figure 7) which are used for the validation 

of recognized object [79]. Semantic Nets [80] are used for specific relationship 

between entities, e.g., walls and doors are always orthogonal to each other and doors 

are present inside walls. If a floor is recognized, then the valid orthogonal entities are 

walls and doors, and there is no chance of ceiling being orthogonal to floor thus 

reducing the search space for making the algorithm efficient. This approach of using 

geometric primitives to identify objects is also called Reverse Engineering [81]. A 

stepwise detection has been suggested by Pu and Vosselman [82] that detects 

recognizable objects and using characteristic features like size, shape, orientation, and 

relationship detects objects that are difficult to identify in the first stage without prior 

information.  

 

Prior knowledge is also used to reduce the search space by utilizing knowledge of a 

specific facility [83] which can be attained directly from BIM floor as well as 

knowledge of construction sequencing. Context-based recognition is concept of using 

sensed data in its natural representation for object recognition purposes, by using 

expected or as-planned world to create an as-built point cloud [82]. The range point 

cloud is calculated from 3D CAD in laser scanner coordinate reference, and for each 

as-built range point, a point is calculated in the virtual world. The object that calculated 

point constitutes in the virtual world can be the inferred as that object in the as-built 

point cloud for the scanned point. 
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Figure 7 Semantic labeling on geometric primitives [79]. 

 

2.2.3. Machine Learning 

Object recognition and material classification strategies are usually coupled with 

machine learning techniques for training and testing purposes. Pattern recognition is a 

process of recognizing patterns based on specific characteristics of a material using 

machine learning algorithms. It is a mature field in image processing, however, its 

application in civil engineering is recent [84]. Image recognition algorithms are 

dependent on machine learning algorithms to provide robust results. Machine learning 

algorithms have been used in image processing domain for handwritten digit 

recognition [85], process monitoring and early fault detection [86] and object 

recognition for the robot using laser range finders [87].  In the civil engineering field, 

we use machine learning algorithms for material based image retrieval [26], structural 

components detection [88] and crack [89][90] and surface defect detection [90]. 

Support Vector Machines (SVM) was used by Zhu and Birlikas [62] for concrete 

detection in construction site images. Son et al. [74] created a combination of color 

space and machine learning algorithm in two non-RGB color spaces for optimal 

results. Popular features like filter response, have been coupled with Multi-Layer 

Perceptron (MLP), Radial Basis Function and Support Vector Machine (SVM), which 

have shown promising results but have not performed very well with images collected 

from construction sites.  



 

 
 

20 

2.3. Progress Estimation 

Automated progress monitoring has recently been the focus of research community, 

and several studies have been conducted on progress monitoring by comparison of as-

built and as-planned data. A significant chunk of this research has been the 

measurement of physical quantities of different materials like earth cut and fill, 

masonry and structural erection using spatial sensing technologies. Intuitively 

progress can be assessed by comparison of as-built with as-planned models based on 

geometrical characteristics of their respective elements.  As-built data is attained 

through various geospatial sensing methods while the Building Information Model 

(BIM) has provided as-planned information in a concise and extractable database. In 

the following section, BIM will be discussed as a source of as-planned data for 

progress monitoring and performance measurement. 

 

2.3.1. As-Planned 4D BIM 

BIM provides a framework for collaboration in a multidisciplinary environment that 

brings together all stakeholders of Architecture, Engineering, and Construction (AEC) 

industries allowing retrieval of 3D model characteristics by users during the project 

life cycle [91], [92]. BIM has found use in the design and preconstruction stages of a 

project as well as construction stages though to a lesser extent. BIM allows design 

integration, prototyping, simulation, cost estimation, retrieval and maintenance of 

building data [93]. In operation and construction stage, the role of BIM has been 

restricted to a static repository [91], [94]  thus under utilizing its capabilities. BIM 

came with a promise of introducing information technology to the construction 

industry by revolutionizing information flow. The construction industry is still lacking 

behind in technology adaption, and BIM is still in its infancy [95].  The reason being 

additional manhours are required to develop BIM and contractors in the construction 

stage don’t have the budget or the expertise [94] to take such an initiative. 

 

BIM is a 3D model that can be converted to a 4D model by incorporating schedule 
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and nD model by combining many design details required at each project stage. 4D 

BIM is a powerful tool to communicate construction plans and milestones [41]  which 

are useful in tracking and monitoring of construction projects [96]. A 4D BIM contains 

various views and locations that replicate as-built views of a planned project which 

should be similar in appearance to as-constructed photos of time in a project. 4D BIM 

assists in grasping the content and contexts of a picture when matched with a 

viewpoint in the model using photo registration techniques like the one suggested by 

Park et al. [50]. Photo registration may not be required to match a photo with a 

viewpoint in 4D BIM incase photo is attained at pre-determined location and view. 

 

4D BIM is a useful technology combining 3D elements along with their corresponding 

activities to assist construction management teams by effective visualization of a range 

of management levels (i.e., project, task, and operational level) [54]. 4D BIM can 

leverage progress monitoring algorithms by reducing the expected materials space 

based on real expectations at a particular location.  There are two significant areas of 

improvement namely, advanced construction progress monitoring and efficient 

schedule data preparation. Research studies have been done on development and 

update of 4D models that include the use of RFID technology for high rise steel 

building construction [32] or use of unordered photographs for 4D as-built model 

development [18]. The laser has also been suggested for the 4D model update by 

Turkan et al. [58] to update site information using a feedback loop automatically. 

 

2.3.2. As-Built vs. As-Planned Comparison 

The general strategy for progress monitoring is to register and compare the 

information attained from scans and images to as planned BIM in a common 

coordinate system. Registration of 3D is done by careful selection of a set of features 

between 3D reconstructed models to be matched with 4D BIM, making the process 

difficult to automate because of the robustness issue. 3D registration of laser scanning 

point clouds with BIM can be used to check the quality of data as well as perform 

automated monitoring. The registration can be performed manually[97] or in a quasi-
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automated manner [98]. 3D registration is followed by object recognition and 

comparison of as-planned with an as-built model in a common frame of reference. The 

deviation of as-built from the as-planned model will give a measure of progress on 

site; the deviation can be either caused by delay, incorrect placement, or early 

completion of activities. Real-time assessment and documentation of construction 

activities and 3D models created by laser scanners were investigated by Cheok et al. 

[48]. While Jaselskis et al. [99] used laser scanning as an accurate mean for effective 

progress monitoring on transportation projects, Turkan et al. [58], [100] and Bosche 

et al. [101] focused on recognition of 3D elements for project performance 

measurement, an information which could also be useful for progress monitoring. 

These methodologies involving laser scanning provide sufficient enough information 

to create BIM [83], but in order to create a semantically rich model containing 

additional object-oriented information that may come from sensors or cameras. An 

integrated system using enhanced IT technologies involving laser scanning, images, 

RFID, and barcodes was proposed by El-Omar and Moselhi [102] for data acquisition 

from construction sites for monitoring purposes. 

 

2.3.3. Images based Progress Monitoring Solution 

Research effort on use of the photograph for site management goes way back to 1989 

[103] where time-lapse pictures were used for productivity enhancement. Manual 

image based real-time progress review systems including Photo-Net II   was developed 

by Abeid and Arditi [104] that links site time-lapse images to the critical path. Lueng 

et al. [105] proposed an online collaboration tool that consists of IP cameras and can 

be used to monitor construction by stakeholders while corroborating vital decisions. 

 

Rebolj and Podbreznik [78] first published the concept of automated construction 

progress monitoring using image processing in 2005 [106], giving bright prospects for 

the future of research in the construction industry. Afterward, image processing-based 

progress monitoring has been the focus of research, and several image-based 

approaches have been proposed for construction progress measurement. Wu et al. 
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[107] proposes one such approach to estimate site progress from construction site 

digital images based on object recognition using image processing and 3D CAD. 

Golparvar et al. [18] used unordered daily site photo logs for progress measurement 

on the construction site by the construction of a sparse 3D schedule and comparing it 

visually with planned data. Son and Kim [77] suggested a technique for automated 3D  

structural component registration and modeling where the researchers divided 

monitoring into image acquisition, progress identification, and 4D model update steps 

which are valid for any image processing-based monitoring system. Abudayyeh [108] 

introduced a system comprising of a microphone and video camera to record events 

related to activity progress. Other approaches suggested in the literature use fixed 

cameras installed on high rise structures, and video and audio stream from smartphone 

cameras [109].  

 

2.4. Data Visualization and Dashboard 

Besides efficient data acquisition and timely analysis, an efficient progress 

visualization system is also essential [6]. Augmented reality and data dashboard are 

effective for progress visualization. While augmented reality provides very efficient 

virtual walkthrough (see Figure 8) and visual cues for site progress estimation, they 

suffer from AR registration errors and heavy computation. Dashboard provides 

performance metrics as a bird eye view of progress in a computationally efficient 

manner.   
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Figure 8 Color-coded progress status information using augmented reality [110]. 

 

Jaselkis et al. [111] provided a concept for remote project control utilizing audio visual 

equipment for data acquisition, thereby providing a framework for simultaneous 

monitoring of multiple projects. Leung et al. [112] proposed a web-based 

collaboration platform for site stakeholders to monitor construction and quality using 

data acquired through IP cameras. Tele-engineering techniques were used to attain site 

information and project data on large screen in auditoriums to give project insight to 

participants and get their feedback [5]. This provides an opportunity to attain expert 

opinion based on visualization of data acquired remotely when subject area specialists 

are not available locally. 

 

Data dashboard is an information management tool [113] to track, analyze, and display 

KPIs and data points to monitor construction progress. Dashboard has various 

algorithms running in the background to acquire information in real-time to display 

information in the form of tables, gauges, and charts. Dashboard provides a central 

location for efficient data monitoring and performance evaluation of the project 

reducing long line of communication full of delays that challenges business execution.  

Dashboard provides quick analysis and informational analysis unlike advanced 

business intelligence tools; dashboards focus on birds eye view of project 
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performance. Construction dashboard [5], similar to those in Figure 9, is proposed to 

enable information visualization using temporal, hierarchical, relational and spatial 

information views.  

 

Figure 9 Multi-system construction dashboard proposed by Kuo et al. [114]. 

 

Dashboards perform information extraction and emphasizing function thereby fully 

exploiting its information capabilities and maximize construction performance.   

Dashboard provides high dimensional information in construction projects; they can 

be either strategic, analytical, or operational [113]. Operational dashboard is used to 

report business processes that frequently change and to track KPIs. Operational 

dashboards are used to monitor progress towards a target and are observed multiple 

times in a day. Strategic dashboards update at a less frequent interval as compared to 

operational dashboards and are used by top executives. Analytical dashboards are used 

for analysis of large chunks of data to investigate trends to forecast future progress, 

determine trends and discover insights. Analytical dashboards help stake holders 

establish their goals while operational dashboard assists in gauging daily progress by 

KPIs. 
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2.5. Gaps in research 

Several data acquisition, information retrieval, and progress monitoring methods have 

been discussed above. The effectiveness of various acquisition methodologies can be 

judged by their utility, time efficiency, accuracy, automation level, and training 

requirements [6]. Table 2 shows the performance evaluation score sheet for criteria 

discussed for evaluation of progress monitoring systems utility; i.e., the suitability of 

the system on different applications like indoor, outdoor, architectural or structural 

monitoring. Time efficiency is the amount of setup time as well as the time required 

to extract useful information from the methodology. Accuracy governs the reliability 

of the system, the precision of the results and repeatability. The level of automation is 

the amount of user input and training is the competence level of personnel on site to 

deploy such a system.   

Table 2 Rating criteria for progress monitoring system by Kopsida et al. [14]. 

. Good Performance Mediocre Performance Poor Performance 

Information Semantic and Spatial Spatial Limited aspect 
Time 

Efficiency 
Real-time information <1h >1h 

Accuracy Precision in all steps Precision in some steps Error in all steps 

Automation Every step is automated 
Only some processes are 

automated 
None 

Training None Easy to Learn Specialized Personnel 

Cost <3,000 3,000-10,000 >10,000 

 

Table 3 shows a comparison of various automated progress monitoring technologies 

discussed in this chapter with an ideal solution. Laser scanners are very accurate but 

are extremely expensive as well, and manual human input is required during 

registration and modeling. Laser scanners are also proprietary equipment with every 

manufacturer providing its black box software with little room for customization 

according to the user. When terrestrial laser scanners are used, the sensor setup and 

scan time per station is equal to or greater than ten minutes, which is a lot considering 

the number of stations required to scan a site. MLS is very expensive and beyond the 

reach of common building contractors. 3D reconstruction using images doesn’t have 
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the same accuracy as a laser scan and requires experienced user to function properly. 

Part of camera-based image reconstruction has not been fully automated, therefore, 

reducing its utility in a fully automated system. Static image-based systems are 

compromised by occlusions which will appear as the site progresses. The camera 

needs to be moved from time to time diminishing its utility and decreasing automation. 

Sensor network needs infrastructure investment to work despite their nominal cost of 

purchase. An experienced electrical technician is required on site to perform fixed 

sensor installation; however, handheld sensors don’t need installation, but they do 

need a person to carry around. The data acquired from sensors don’t give spatial 

information and lack semantics; it can work for a specific task and have very limited 

application. A perfect system will have full automation, low cost, no human training 

requirement and should have broad application.  

Table 3 Performance evaluation of progress monitoring systems derived from 
Kopsida et al. [14]. 

 Sensors 
Networks 

Laser 
Scanners 

Static 
Vision 
System 

Vision Based 
Reconstruction 

Ideal Case 

Information 
Environmental 
Variables only 

Spatial only Semantic 
Semantic and 

Spatial 
Spatial and 
Semantic 

Time 
Efficiency 

Instant data 
Time 

Consuming 
Scans 

Time 
spent in 

acquisition 

Time required 
for 

reconstruction 

Real Time 
Data 

Accuracy Subjective Accurate 
Accurate 

for Simple 
tasks 

Accuracy 
dependent on 

various factors 
Accurate 

Automation 
Level 

Automated 
information 
acquisition 

Manual 
Registration 

and 
Modelling 

Requirement 

Automated 
acquisition 

and 
processing 

Partially 
Automated with 

manual 
automation 

Fully 
automated 

Training 
Requirement 

Trained 
personnel for 
installation 

Trained 
personnel 

None 
Trained 

personnel for 
reconstruction 

None 

Cost 
High initial 

cost of 
installation 

Very costly 
Consumer 
Hardware 

Consumer 
Hardware 

Commercial 
open source 

hardware 
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Gaps in literature were observed during the review which include the following  

 

Indoor Localization; Most of the current practices are applicable on outdoor locations 

and use of technologies like GPS. Indoor progress measurement has been researched 

to a lesser extent because of the inability of fixed cameras to image indoor elements 

as Line of Sight will be affected and vision of camera will be blocked by newly 

constructed elements 

 

Automated Data Acquisition; Over the past few years, research has focused on 

addressing current limitations through aligning the resulting 3D point cloud models 

with 4D BIM for progress measurement [16] and estimation of the pose of a camera 

within the BIM. Still, the user must manually upload images as the schedule is not 

automatically updated and a vast array of images is not computationally economical.  

 

Image Localization and Tagging; Progress monitoring techniques whether they are 

automated or manual require images containing element level information in metadata 

for storage and quick retrieval. To the best of author’s knowledge, no research exists 

on attaining images that are tagged to BIM elements and activity IDs without manual 

input by the camera operator. 

 

As-built Verification; is a gap in image processing and modeling techniques. The 

project plan should be updated to reflect the progress of the project and ascertain delay 

in activities. 

 

Validation on Site: Very limited studies have been validated on real site. Image 

processing algorithm works well in controlled environments but tends to give poor 

results when additional environmental variables are introduced.  
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2.6. Research questions 

The high rate of defect, cost overrun and inefficiency as well ineffectiveness of 

strategic management initiatives suggests that conventional construction with the 

current level of technology adaption has reached the peak performance limit [115]. 

Improving site efficiency by use of technology is the focus of many studies after 

considering the way technology has revolutionized the manufacturing industry. The 

solution to these defects is Construction Automation (CA). New technologies are 

inferior in the beginning but improve with time to help achieve a higher level of 

performance overtime.  

 

Automation is the way forward to attain accurate data promptly and efficiently, but 

there are specific challenges in applying automation techniques to the construction 

industry, which are different from challenges faced in other sectors like 

manufacturing. The need for automated data collection has been discussed widely [8]. 

Researchers in this field have observed that photo analysis along with other 

technology-oriented efficiency measures to improve project scheduling, monitoring 

and decision making processes can result in 5-6% reduction in overall project cost 

[116]. Different authors have suggested data acquisition technologies like (Radio 

Frequency ID (RFID) [117], Ultra Wide Band (UWB) [118], Global Positioning 

System (GPS) [119], Wireless Sensor Network (WSN) [120], Computer Vision [59] 

and Terrestrial Laser Scanning [73]. The technologies that can facilitate the acquisition 

of data, processing and visualization of the results have not yet been implemented to 

reduce the workload of project management teams. 

 

In some cases research has been technology driven aiming to find a useful application 

of technology in construction instead of searching for technological solutions of 

construction problems [2]. Construction products are delivered in dynamic ‘project’ 

delivery mechanism, and typically construction sites are not hospitable to automation 

techniques. Automation is more suitable for a process rather than a project 
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environment. Since, in process-based delivery mechanisms (e.g., manufacturing), the 

tasks are repetitive which aim to produce the very same product over and over again. 

The element of variation is non-existent in processes while in a project environment 

the product and delivery mechanism, as well as specification change in every iteration, 

thus making automation a difficult target to achieve. An additional requirement like 

installation, configuration, integration, commissioning, and resource training may 

make it difficult to attain short benefits thus making Return of Investment (ROI). 

Construction project does not go long enough to allow for full-scale integration of 

automation systems and concludes before the system starts giving its reward in the 

form of cost and manpower saving.  The inertia to change and dynamic setup is one 

of the reasons why the construction industry is primitive and slow in adapting to new 

practices and innovative technologies.  

 

Construction industries inability to fully exploit advances in automated information 

acquisition is impeding construction industry from taking full benefit of advancement 

in technology. Building Information Modeling (BIM) provides visualization, 

integration, and simulation related benefits that have great value in the design stage; 

however, in the construction stage, its benefits have not been fully exploited. This 

research will aim to achieve automation using BIM in a manner that doesn’t put an 

extra administrative burden on site management. In doing so, the research will answer 

the following questions that are necessary for an efficient, timely and accurate progress 

management system with Figure 10 showing relationship between problems and 

research questions: 

a. How can data points, for acquisition of images that are tagged to building 

elements, be determined for accurate and automated progress monitoring? 

b. How can real-time and accurate construction site data be attained 

autonomously from the site? 

c. How can accurate element level status be determined in an automated manner 

from site images without any human input? How accurately cost-based 
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progress metrics based on acquired material state information can be obtained 

from site images? 

 

 

 

 

 

 

  

Figure 10 Research questions from problem definition schema. 

 

2.7. Objectives, Scope, and Contribution of Research  

The focus of this research is to develop and validate the performance of a fully 

automated system for progress monitoring by obtaining data from construction sites 

in near real-time using autonomous systems. The proposed system should require 

minimal or no human input and should not be disruptive to site activities. Accurate 

and expeditious provision of data to management will adjudge the performance of the 

proposed method. The objectives of this research are as follows,  

 Develop a fully automated context-aware progress monitoring mechanism for 

structural and architectural works on building construction sites. 

a. Automatically extract coordinates for element image acquisition from 

BIM. 

b. Acquire site images using an autonomous device. 

c. Extract progress status from acquired images. 

d. Calculate performance metrics from acquired progress status. 

 Validate the performance of the system and report its performance metrics. 

 

The scope of this research is limited to shell and core building’s opaque architectural 

and structural elements. The performance of developed methods is evaluated on 

Laborious Delayed Error Prone 

a. Image acquisition points for 
accurate and automated data 
acquisition 

b. Real-time and accurate 
automated data acquisition. 

c. Accurate element state 
determination, progress metric 
calculation and visualization. 
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building components that are omnipresent on building structures irrespective of their 

potential utilization, making this methodology valid for a vast array of construction 

projects. Imaging being utilized to determine progress and activities that can be 

visually monitored by the human eye are within the scope of this research. Internal or 

hidden changes in the state that a schedule adjudges as an activity is not evaluated. 

 

2.8. Proposed Solution: Context-Aware Automated Construction Progress 

Monitoring System 

A Context-Aware Automated Construction Progress Monitoring System (CAPMS) is 

proposed in order to address concerns related to inefficiency in construction progress 

monitoring due to manual methods. The goal of an automated system is to acquire 

data, convert it into information and deliver it to project leadership team in a timely 

manner [106]. Objective is to attain data in real-time that is not affected by human 

factors and is accurate and precise. The developed system focuses on main 

components of construction information loop (see Figure 11) that encompasses 

planning, construction progress, and reporting to stakeholders. Our purpose is to 

develop a system that is void of human involvement and provides timely information 

on construction progress to management team. The flow of information is a repetitive 

process throughout the lifecycle of the project. This cyclic process presents an 

opportunity for automation which is more effective for repetitive processes as 

compared to intellectual ones.  
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Figure 11 Construction Information Loop [121]. 

The developed system should cause minimum disruption on site with minimum cost 

of implementation and result into overall cost saving. Workers should be able to 

perform their tasks without any interruptions or delays. The sites should require 

minimum additional components that would add to the cost of construction or 

additional infrastructure that may require wiring, provision of DC power installed by 

spending extra man-hours since these will be non-value adding activities. There should 

be minimum training requirements for the worker and site management teams for 

implementation and integration of CAPMS.(see Figure 12) which comprises of 4D 

BIM containing element coordinates and the activities that are related to that element 

in a schedule.  A daily monitoring list is extracted from 4D BIM activities that are 

expected to be completed till the day of inspection. The monitoring list containing the 

name of the activity and the coordinate of Point of Interest (POI) is sent to robot using 

post request over Wi-Fi. The robot traverses to the POI and takes images at different 

camera orientations controlled by onboard camera and servo motor. The images are 

then communicated to the server where they are processed using Schedule-based 

Context-Aware Element Recognition (SCAER) algorithm to determine the current 

state of the element.  



 

 
 

 

 

 

Figure 12 Vision for Context Aware Automated Progress Monitoring System (CAPMS).
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A client-server architecture is proposed for CAPMS as shown in Figure 13, which is 

prevailing nowadays and is being used on various applications on daily basis [122]. 

Images are taken at the client end and transmitted to server for further processing and 

extraction of progress information. The client in the case of this research is an 

autonomous data navigation device that navigates construction sites and acquires 

images of building elements to detain their state at a particular time, the details of 

which are discussed in Chapter 5, BIM based Data Acquisition Platform.  

 

BIM

Robot Drivetrain

Image 
Processing

Client

POI
Material

Color
Geometry Robot Drivetrain

Image 
Processing

Client

Server

Schedule
Sensor Locations

 

Figure 13 Server Client Architecture of CAPMS. 

 

The server side may be remotely connected to the site over the internet or it can also 

be present on site connected via Local Area Network (LAN). The server will act as 

storage for all information including pictures and as a processing unit for CAPMS. 

Server, whether remote or local, will be at a fixed location connected to the router that 

provides access to the thin clients. The server will contain a comprehensive 4D 

Building Information Model (4D-BIM), comprising of a three-dimensional semantic 

model and an up-to-date as planned schedule along with computer vision and web 

server protocols.  

 

SCAER uses material signatures and contextual information to process image obtained 

by the robot to determine whether the actual state of element matches the expected 

state of the element.  Activity is completed if expected state matches the current state 
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and not completed if expected and current states don’t match which translates into 

progress achieved for the former case and lack of progress for the latter case. Once the 

status of activities is ascertained at all POIs, the schedule is updated with completed 

activities which can be reviewed by project management team. 

Since imaging is being utilized to determine monitoring activity, only activities that 

are visible to a human eye can be monitored. Internal or hidden changes in the state of 

an element that can be characterized as an activity, can be monitored using Context-

Aware Progress Monitoring System (CAPMS). The Custom Activity Code List 

(CACL) containing activities monitored as part of CAPMS are shown in Table 4. 

Table 4 Custom Activity Code List (CACL). 

Relevant Activity Code Materials 

Masonry Work MW LWC Blocks, Masonry 

Door Installation DR Doors 

Plastering Work PL Gypsum, Cement 

Installation of Formwork FW DOKA Formwork 

Reinforced Concrete Work CN Cement Concrete 

Laying of Rebar’s RF Deformed Rebar’s 

 

Hardware, as well as algorithms, was developed during this study to achieve the 

objectives above. The main research outputs are ‘Context-Aware Progress Monitoring 

and Visualization System (CAPMS)’ whose ancillary components developed during 

this research are as follows: 

a. Element-wise Automated Activity and POI Extraction algorithm (EAPE). 

b. BIM-based Data Acquisition Platform (BAAP). 

c. Schedule based Context-Aware Element-state Recognition algorithm 

(SCAER). 

d. Construction Information Visualization (CInfo). 
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2.9. Conclusion 

Project managers require a robust system that provides information in timely and 

comprehensive manner so that they can make decisions quickly and easily [18]. 

Progress monitoring system should be effective and efficient, accurately converting 

as-built progress data from construction works into information [123]. Real-time 

reporting may become very useful in ensuring adherence to project’s scope, time and 

budget-related constraints. Adopting automated progress monitoring technologies will 

assist project stakeholders by facilitating more accurate schedule forensics, delay 

analysis, and corrective action planning [8]. Real-time data acquisition is wholly 

beneficial when collected without human interference.  

 

Studies have contributed to the retrieval of as-built information from site photos and 

as-built BIM models. However, the content and context of individual photos were not 

covered in these studies. The image location was manually acquired using fixed 

cameras installed at pre-determined points throughout the site subject to occlusions 

and unable to cover all site elements. Photos must be aligned manually and compared 

to 3D/4D models, involving manual interventions to determine viewpoints, camera 

settings and selecting a set of overlapping features.  Furthermore, no attempt was made 

to provide information to clients in near real-time, which represents a missed 

opportunity, and this research aims to cover these gaps. This study tends to overcome 

these limitations by employing a mobile robot-based camera which takes element-wise 

images and processes them to attain activity-wise progress information for each 

element in an automated manner. 
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CHAPTER 3 

 

3. ELEMENT-WISE AUTOMATED ACTIVITY AND POINT OF INTEREST 
(POI) EXTRACTION (EAPE) 

 

 

A context-aware algorithm requires tagging of the image with building element 

information for identification of progress.  In this chapter, the formulation of a 

methodology to extract data points, from BIM, for robot navigation and image 

acquisition purposes is discussed followed by verification on As-planned BIM created 

for an actual construction site. A process is also suggested to create an activity list for 

BIM elements which will reduce the amount of time and effort required for the 

creation of 4D BIM. This chapter discusses the algorithm developed for extraction of 

the so-called Points of Interest (POI) and Activities from BIM elements using a python 

script followed by verification on multiple BIMs obtained from two different 

construction sites.  

 

3.1. Introduction 

A large amount of data is exchanged during the construction phase between project 

stakeholders [93]. However, this data is hard to retrieve and reuse. Thousands of 

photos are taken on site during the construction phase as evidence of work performed 

on a mid-size construction project with the number expanding vastly with the project 

scale. These images contain information that may be valuable to construction and 

contract managers during and after completion of the project for interim payments and 

dispute resolution. Utilization of data stored in images can lead to 5-6% saving in 

overall project costs through early detection of the problem followed by prompt 

corrective action [116]. However, we can only achieve these benefits, if images are 

acquired and stored systematically making their instant retrieval from databases a 

possibility. A framework is required to tag site pictures with corresponding BIM 
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element IDs and activity IDs at the time of acquisition. Image tagging will assist in the 

instant retrieval of images when queried by the element ID or activity ID, bringing 

great value to project stakeholders for scheduling, tracking, and decision-making 

purposes.  

Automated daily progress measurement is based on the schedule and the spatial 

information that we can extract from the BIM, for site activities. However, a 

considerable amount of detailed work is necessary for effective utilization of the 4D 

model. Activities are of significance in any monitoring process, and it is essential that 

the relationship between elements and their corresponding tasks is consistent. The 

schedule should be consistent in the level of detail hence either a single task should 

not encompass multiple 3D elements in one to one relation between activity and 

element or a one to many relationships between element and activities should be 

present across the 4D model. Too little detail may result in the critical component 

being overlooked thereby providing information that may not be enough to determine 

project performance. 4D schedule creation from BIM elements while maintaining 

consistency is a cumbersome process which is time-consuming and defeats the 

purpose of the automation by the inclusion of one monotonous step. It was, therefore, 

necessary to develop a schedule with the consistent element-activity relationship 

without making it a costly and arduous task, thereby, maintaining the cost efficiency 

of a fully automated progress monitoring system.  

 

3.2. Methodology of EAPE 

A 4D model provides additional consolidated information by combining both spatial 

and temporal aspects of a construction project and graphically representing the 

relationship between space and time [124]. It offers an opportunity to derive planned 

state of an element and compare it with the current state of that element to ascertain 

delays in progress. This comparison can be made at a macro (project) level or micro 

(element) level by the requirement of project management. 
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BIM is an as-planned 3D geometric model of a structure which combines with the as-

planned schedule creating a 4D model [125]. 4D Building Information Model (4D 

BIM) forms the basis for extraction of data and its conversion into information using 

both spatial and temporal aspects of a project plan [121]. BIM being a database of 

object-oriented geometric and semantic information, can be queried using a Python 

script to extract desired data related to elements and their semantics.  4D BIM consists 

of parametric building elements which are classified into categories of families and 

types by Revit as shown in Figure 14. 

 

 

Figure 14 Revit Element Classification System [126]. 

 

In Figure 14; a Category is a group of elements in a model or a document which 

includes walls, beams, columns, doors, etc. Revit category IDs for example elements 

are shown in Table 5. Element or Instance is the building block of BIM which is the 

actual item placed in a project and has specific location along with a unique ID and 

we can identify them separately from every other element in BIM. The unique ID is 

an integer and Revit doesn’t repeat ID throughout the model, but the software may be 

replicate IDs across different models. The unique ID is used to identify and 

differentiate an element from another.  
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Table 5 Example Categories with their Revit IDs. 

Category Category ID 

Columns -2000100 

Walls -2000011 

Doors -2000023 

Floors -2000032 

 

A Building Information Model (BIM) being a rich source of information, provides a 

very suitable basis for automated progress monitoring [127]. BIM provides a digital 

representation of 3D elements of all structural components along with semantic 

descriptions [125]. BIM contains unique element IDs and category ID that can be used 

to identify elements to extract information about different components of BIM. 

Additional material specific details and material color signatures can be added as 

parameters to each element as has been done during this research. EAPE is an acronym 

for  Element-wise Activity and Point of Interest Extraction which was developed to 

attain the activity list and navigation coordinates for image acquisition. Figure 15 

depicts EAPE methodology that includes BIM as the source of element information to 

create a list of activities which is then fed to a planning software to attain a schedule. 

Once we create  the schedule, the daily navigation list, referred here as daily 

monitoring list, is extracted by the remote client using a pull request. 
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Figure 15 Process flow for EAPE. 

 

The material related information embedded in elements along with geometric details 

can be extracted using a Python script, which includes elements ID, coordinates, level, 

and category (see Figure 16). The element coordinates fed into another python script 

to attain image navigation points which are at a distance of one to two meters from the 

element. The activity IDs and activity names are assigned to elements and fed into a 

planning software to create a schedule following principles of construction planning. 

The schedule and POI information is used for robot navigation which will be discussed 

in Chapter 5; BIM based Data Acquisition Platform.  
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Figure 16 Process Flow for Activity List and POI Creation. 

 

3.3. BIM-based POI List Creation 

The Element ID will refer to the image acquisition point, where the imaging sensor 

will be placed to picture the element. It will be named as Point of Interest (POI) in the 

scope of this research, defining the point in the building coordinate system where 

imaging will take place. An imaging sensor will navigate to POIs and assess progress 

at the element adjacent to that POI. Figure 17 shows example POIs for the wall, door, 

and window elements where the robot will stop and take images which will be 

subsequently processed using computer vision algorithms to determine the progress. 

The high level process flow for extraction of POI is shown in Figure 18.   
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Figure 17 Sample POIs for varying categories. 

 

Figure 18 POI extraction process flow. 

 

POIs are in front of every separate element (see Figure 17) to determine if the activity 

related to that element has been completed or not. To ensure comprehensive 

monitoring, POIs are extracted using a python script according to process flow 

adhering to the following rules: 

a. Wall elements should be divided into portions based on work packages. 

b. Discontinuity and openings should have a picture. 

c. Every different task on the element should be photographed (e.g., 

Brickwork, Plaster, Paint for masonry walls). 

d. Every element related to every task should be monitored. 

Autodesk Dynamo tool was used to extract POI for each architectural and structural 

element using visual programming interface and Python scripts. Autodesk Dynamo is 

a visual programming tool that provides access to Revit API (Application 

Programming Interface) by manipulating graphic elements called nodes as shown in 

Figure 19. Each node performs a specific task and has input as well as output. The 

output from one node is connected to the next as an input using wires. Dynamo is a 

good tool for repetitive tasks and extraction of data from building elements. Once 
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dynamo code is created it can be run on different models to extract the desired 

information. 

 

Figure 19 Dynamo visual programming interface [128]. 

 

Steps involved in the extraction of POI from BIM for each level separately, is shown 

in Figure 20. POIs are two-dimensional coordinates with the level number instead of 

the third dimension for ease of reference and extraction. Floor level which is a constant 

for all POI across the same level is later concatenated, using process shown in Figure 

21, into an exhaustive list containing all POI in the structure sorted according to their 

respective levels. POI calculation starts with the extraction of all elements present 

within a structure, followed by extraction of their spatial coordinates within the 

building frame of reference. The image acquisition points or the POI is located two 

meters from the element, which is used as the maximum possible distance of image 

acquisition from building elements in this research. Any distance greater than two 

meters cannot be used for image acquisitions since alleyways in the structure don’t 

have a width greater than three meters. The extracted POIs are stored in a database 

along with the relevant element description and tasks that involve the respective 

element. To validate correct placement of the POIs, wall elements in the model and 

respective POIs for those wall elements are extracted and plotted on MATLAB® as 

shown in Figure 22. 



 

 
 

 

Figure 20 Dynamo code for level-wise POI extraction from BIM. 
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Figure 21 Function for POI extraction from each level.
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Figure 22 Validation of (a) extracted POIs for wall elements and (b) 3D model 

used for the test. 

As seen in  Figure 22, all POIs are correctly placed adjacent to the walls which are an 

expected result of the algorithm. Table 6 lists the number of POIs extracted for walls, 

doors, and windows from the BIM of the example building floor. Table 7 shows a 

partially extracted POI List containing category name, category ID, element name and 

two-dimensional spatial coordinates along the level. Algorithm did not miss any 

(b) 

(a) 
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elements during POI extraction and neither did it extract false POI. However, currently 

the algorithm can only create one POI for one building element and does not create 

multiple POIs for a big component (e.g., a long wall) in case multiple monitoring 

locations are necessary. Similarly, the algorithm only finds the coordinates on the 

north face and east face of the elements, hence some POIs are found to be out of the 

building for indoor elements. These will be fixed in the POI generation algorithm in 

the future. 

 

Table 6 POI Detected from BIM 

Element POI Detected 

Walls 18 

Doors 16 

Windows 16 

 

Table 7 Partial sample output for POI extraction. 

Lvl ID Cat ID Category Name X Y  
L1 328468 -2000100 Columns 130x30 Concrete Column -5955.39 -417.497 
L1 328561 -2000100 Columns 130x30 Concrete Column -5455.39 -417.497 
L1 328801 -2000100 Columns 130x30 Concrete Column -4455.39 -417.497 
L1 328864 -2000100 Columns 130x30 Concrete Column -3955.39 -417.497 
L3 438442 -2000023 Doors Single Door 75x220 -5376.95 -883.278 
L3 439283 -2000023 Doors Single Door 75x220 -456.948 15.22195 
L3 465165 -2000023 Doors Single Door 300x110 -600.394 -413.029 
L1 337278 -2000011 Walls 20 mm Masonry -2205.39 1108.186 
L1 337444 -2000011 Walls 20 mm Masonry -2705.39 1108.186 

 

3.4. BIM-based Activity List and Schedule Creation 

An Activity ID format is established for the sake of uniformity and to determine the 

planned state (p(X)) of an element. The activity ID consists of 4 parts as shown in 

Table 8. 
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Table 8 Activity ID Breakdown 

L1 330 FW 4322 

Level Category 

Identifier 

Activity 

Code 

Element 

Identifier 

 

In Table 8 Category Identifier comes from last three digits of Revit Category ID (see 

Table 8) and Element Identifiers are the last four digits of unique element IDs 

extracted from Revit. The Custom Activity Codes List (CACL) (e.g., FW, CN, RF) 

are used to create activity IDs. We based the method on the principle that elements 

from the same category will go through the same activities during the execution of the 

project as shown in Figure 23. In the course of this research only reinforced concrete 

and masonry wall building elements within column and wall categories are considered.  

 

Figure 23 Category and Related Activity List 

A Python script (see Figure 20) was written and executed on Autodesk Dynamo code 

to extract element-wise spatial and semantic information for each level (see Figure 21) 

separately. The information is consolidated in a CSV file, similar to the sample list 

shown in Table 9. The activity list is augmented with predecessor information and fed 

to Microsoft Project to create a work schedule. The code initially extracts elements’ 

information, their coordinates, their category ID and unique BIM IDs for elements at 

each level separately and concatenates them together into one array. Extracting level-
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wise information helps in eliminating the need to extract z coordinate and perform 

processing in three-dimensional domains. Instead, all processing is done for each floor 

separately considering a two-dimensional plane.  

Table 9 Sample extracted activity list for BIM elements. 

Lvl ID Code Act ID Activity Description 
L1 328468 FW L1-100FW8468 Installation of Formwork for 130x30 Concrete Column 
L1 328561 FW L1-100FW8561 Installation of Formwork for 130x30 Concrete Column 
L1 328801 FW L1-100FW8801 Installation of Formwork for 130x30 Concrete Column 
L1 349212 DR L1-023DR9212 Installation of Single Door 300x110 
L1 349247 DR L1-023DR9247 Installation of Single Door 300x110 
L1 387581 MW L1-011MW7581 Masonry work for 20 mm Masonry 
L1 389846 MW L1-011MW9846 Masonry work for 20 mm Masonry 
L1 389927 MW L1-011MW9927 Masonry work for 20 mm Masonry 

 

The activity list is fed into a planning software like Primavera or MS Project and inter 

element activity relationships are defined according to principles of construction 

planning to obtain a work schedule. 

  

3.5. Daily POI Extraction  

Daily POI extraction is the only recurring process in this methodology, where image 

acquisition platform will extract list of activities that were scheduled to be completed 

on the last working day. Figure 24 shows the process for extraction of the so-called 

Daily Monitoring List (see Table 10) containing the POI, Task ID, activity description, 

and Cartesian coordinates of the POI where image acquisition will take place.  
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Figure 24 Daily POI extraction by image acquisition platform using Pull request. 

The method, shown in Figure 24, extracts Daily POI list from web server by using 

PHP Pull request before the beginning of daily image acquisition by the imaging 

device that we refer as the client. The client sends the pull request to server IP already 

stored in the client. The web server extracts daily activities list by filtering planned 

finish date corresponding to the last working day, which contains the BIM element ID 

that is used to look up element POI coordinates from POI list. The daily POI list 

containing the activity information and POI coordinates is acquired by the client for 

navigation to the respective element, image acquisition of the element, and archival of 

the stored image. Table 10 is a sample daily POI list extracted by robot based on 

activities planned to be completed on the last working day. Where POIs are unique 

element IDs from BIM, task ID contains the level and activity information that will be 

useful in activity extraction, and POI coordinates are used for robot navigation 

purpose.  
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Table 10 Sample extracted daily POI list. 

POI "Task ID"  Activity  X  Y 

328468 L1-100FW8468 Installation of Formwork for 130x30 Concrete -5955.39 -417.497 

328561 L1-100FW8561 Installation of Formwork for 130x30 Concrete -5455.39 -417.497 

328801 L1-100FW8801 Installation of Formwork for 130x30 Concrete -4455.39 -417.497 

328864 L1-100FW8864 Installation of Formwork for 130x30 Concrete -3955.39 -417.497 

328939 L1-100FW8939 Installation of Formwork for 130x30 Concrete -3455.39 -417.497 

329014 L1-100FW9014 Installation of Formwork for 130x30 Concrete -2955.39 -417.497 

438442 L3-023DR8442 Installation of Single Door 75x220 -5376.95 -883.278 

439283 L3-023DR9283 Installation of Single Door 75x220 -456.948 15.22195 

465165 L3-023DR5165 Installation of Single Door 300x110 -600.394 -413.029 

337278 L1-011MW7278 Masonry work for 20 mm Masonry -2205.39 1108.186 

337444 L1-011MW7444 Masonry work for 20 mm Masonry -2705.39 1108.186 
 

3.6. Validation on BIM of two different construction projects 

EAPE was conducted on two under construction structures in Middle East Technical 

University (METU), Ankara, for whom 3D models were obtained or created. One of 

them was Educational Science Department Building (ESDB) which is a multi-story 

framed concrete structure in L-shaped layout consisting of two separate sections, a 

steel bridge and a top overhang floor as shown in Figure 25 (a). Revit Model was 

created by utilizing the information obtained through interviews with site management 

and from CAD drawings. The second structure for the case study was a central 

classroom hall building (CHB) which is a more complicated structure since it contains 

classrooms as well as large auditoriums with overhangs. The structure has 2 x 250 

people and 2 x 150 people auditoriums along with 19 classrooms of different sizes. 

The structure has elements belonging to column, wall and door categories. The 

architect provides the BIM for CHB building.  
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Figure 25 (a) Rendering of Educational Science Department Building and (b) Revit 

3D Model for Classroom Hall Building (Courtesy of METU). 

Low level schedule was not provided by the contractor of either projects, and 

therefore, a schedule was created using EAPE with one to one relationship between 

BIM element and activity in an efficient manner without investing excessive man-

hours in manually connecting each element with an activity. The prepared schedule 

was discussed with site management team and agreed with the timeline that the 

contractor was pursuing. Table 11 shows POIs extracted from ESDB and CHB BIM 

enlisting elements in CACL. CHB is an unsymmetrical structure with multiple 

auditoriums having walls modeled as columns in level 1, therefore the higher number 

of columns is observed in ground floor. CHB didn’t have any windows modeled in 

BIM and storefronts are modeled as walls in Autodesk Revit, which is the reason 

behind zero windows. The algorithm has to be improved further to cater for multiple 

(a) 

(b) 
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levels within one floor and also to ensure that no POI overlaps with a building element.  

Table 11 POI Extracted from ESDB and CHB BIM. 

 Category/Floor L1 L2 L3 Total 

ESDB 

Columns 52 48 51 151 
Doors 32 32 36 100 
Walls 33 24 34 91 
Windows 29 43 27 99 

CHB 

Columns 273 82 120 475 
Doors 14 19 18 51 
Walls 59 64 104 227 
Windows 0 0 0 0 

 

3.7. Conclusion 

EAPE is a preparatory algorithm to attain readiness for automated progress monitoring 

through creation of calculation of navigation points and creation of activity list that 

add time dimension to BIM. 4D BIM creation is a manual and time consuming process 

that could render an automated progress monitoring less attractive due to the 

involvement of a laborious step. EAPE makes it easier to create a schedule by 

extraction of activity list which can be converted into a schedule by providing 

dependencies. The methodology is more applicable to models with similar repetitive 

elements belonging to similar families of a category. The activity list for concrete 

columns will remain the same irrespective of the size of the column but would change 

if the material of columns changes from concrete to steel. Schedule still has to be 

created by given dependencies, but scheduling is performed on all sites, whether BIM 

is present or not.  

 

Image acquisition points provide coordinates for placement of camera to attain site 

images and are referred as Point of Interest (POI). The robot uses these locations as 

navigation points for calculation of navigation vectors for the robot to traverse and 

acquire images. The client extracts daily-POIs (d-POIs) which correspond to the 

activities performed on the last working day, for the robot to navigate. The robot 

transmits images to the server where progress is determined using computer vision 

algorithms. The imaging points can be either navigable or non-navigable, and further 
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study should be done to improve data acquisition points to ensure all points remain 

navigable by autonomous devices.  

 

This method is, therefore, a precursor to schedule based element recognition and 

progress measurement discussed in the following chapters. POI provides geographical 

context and element tag to the images which narrow down the list of expected 

materials in a particular image. This information can be used to improve the accuracy 

of element state detection algorithm as discussed in Chapter 5. The next chapter 

explains BIM-based data Acquisition Platform (BAAP) which a robot that uses POIs 

obtained through EAPE to navigate and acquire images. 
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CHAPTER 4 

  

4. BIM BASED DATA ACQUISITION PLATFORM 

 

 

A fully automated progress monitoring system requires a human-free image 

acquisition mechanism to ensure complete automation. A robotic platform that 

navigates around the structure and acquires images of elements for progress 

monitoring purposes is discussed in this chapter including a review of robots in the 

construction industry and details of the developed robot. The images taken by the robot 

on a construction site were reviewed and discussed in the final part of this chapter. 

  

4.1. The need for Robots in Construction 

It is estimated that more than fifty percent of a country’s gross investment is in built-

environment signifying the importance of construction to a country’s economy. 

Therefore, the construction industry needs efficiency that only is achieved by using 

sophisticated technology. In highly developed nations there is shortage of human 

capital, and young generations have lost interest in construction [28], the lack of 

human capital can be supplemented by nonlinear advances in machine technology and 

productivity. In the manufacturing sector, the concepts of Industry 4.0 [129] and 

Cognitive factory 4.0 [130] have emerged. Advances autonomous, and distributed but 

networked robots can collaborate to produce products in a sustained manner promising 

higher productivity and increased safety.  

Successfully integrating site machinery and processes using real-time site 

meteorology will enable data utilization for process automation and concurrent project 

planning [131]. Robots are very good at performing monotonous tasks, and their 

productivity does not suffer from tiredness and fatigue. Robots can traverse dangerous 

places, move under scaffoldings and form works without hindering progress. They can 
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also go to confined spaces, underwater, and into sewage pits without any risk. Site 

inspection is a non-value adding task that requires the highly qualified worker to 

traverse site which is risky and costly.  BIM provides semantic information combined 

with geometric data that can enable robot navigation and operation utilizing 

advancement in machine learning techniques. Automated real-time acquisition can be 

achieved using fixed sensors, cameras and scanners which need relocation and 

expensive infrastructure as well as human resources. The construction site is also 

scarce of resources and committing workers to non-value adding activities is 

unacceptable to site management especially when work is being accelerated. A mobile 

platform doesn’t suffer from occlusions or require extensive infrastructure to operate, 

and with autonomous navigation cost, it is effective to operate. A robotic platform can 

autonomously provide human-error free real-time data freeing up important human 

resources for intellectual work.  

Bock[132] has suggested that construction has reached its peak productivity with 

current technology and has mentioned that construction has to transform from 

conventional to automated methods to attain higher efficiency levels. Figure 26 shows 

Foster S-curve [133] applied to technology adoption in construction mentioning 

technologies leading the construction automation transformation. Overtime robotic 

technology is progressing, becoming ubiquitous, and becoming part of daily human 

life in service, manufacturing, and retail industry. 
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Figure 26 S-curve applied to construction transformation from conventional to 
automation [132] where building component manufacturing (BCM), large-scale  

refabrication (LRP), single task construction robots (STCR), robot-oriented design 
(ROD), automated robotic on-site factories (A/ROF), and automated deconstruction 

(AD). 

 

4.2. Review of Robots in Construction 

Robot-oriented design, robotic industrialization, construction robots, site automation, 

and ambient robots are five aspects of future construction automation solution 

involving robotics [132]. Robots and humans can work together in two types of 

interactions, one is teleoperation where robots are achieving a certain task for humans 

by obeying their commands. The second type of interaction has a robot working in an 

autonomous manner where human will only interfere if anything goes wrong [115]. 

An autonomous robot with very limited to no human interaction can attain maximum 

saving in term of cost and man-hours.  

 

Today, large numbers of Architecture/Engineering/Construction and Facility 

Management (AEC/ FM) firms and relevant service companies use robotic platforms 

to visually monitor construction and operation of buildings, bridges and other types of 

civil infrastructure systems. Space agencies are seeking to build infrastructures 
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without any human interference; and construction industry is looking toward robots 

[134] to provide improved efficiency, quality, and safety as well as the flexibility to 

implement improved architectural designs. Robots are more suited for construction 

operations because construction is inherently dangerous and repetitive work. Robotics 

offers to eliminate stagnancy in productivity levels of the construction industry due to 

their ability to reduce costs, shorten lead-times and improved worker safety [135].  

 

Robot has started making inroads into construction sector with robot developed to 

perform masonry works (Figure 27(a)), rebar works (Figure 27 (b)), earth moving 

operations  (Figure 28(b)), load carrying (Figure 28(a)),  piling, frame erection, wall 

assembly, floor finishing works, painting, fire retardant spray, finishing works and 

supervision (see Figure 29). Spot is a robot created by Boston Dynamics® that is a 

quadruped and can roam around site efficiently while acquiring images.  Robotic arms 

are the most prevalent among construction robots. Robotic arms (Figure 27 (a)-(b)) 

are used in the manufacturing industry for decades as stationary platforms, however, 

the mobile version of robotic arms are developed for better suitability in the 

construction industry. Little detail is available with regard to techniques used by the 

robot for progress monitoring, however, it has been deployed on a construction site in 

Japan [136]. Robotic arms perform various operations like rebar tying, masonry work 

and 3D printing of structures. These robots can contribute to safety thus improving the 

condition of construction site notorious for high accident and fatality rate. Robotic 

arms can be programmed to create a complex form that was not possible before the 

advent of this technology in the construction sector.  
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Figure 27 (a) SAM100 world's first commercially available robot [137], (b) Tybot 
robot for rebar tying [138]. 

 

Figure 28 (a) Effibot will follow workers carrying heavy items [139], (b) Built 
robotics dozer to carry out works automatically [140]. 

 

Figure 29 Boston dynamics robot for monitoring [136]. 

4.3. Method for BIM-based data acquisition 

Construction image acquisition is an essential aspect for image processing-based 

(a) (b) 

(a) (b) 
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progress monitoring techniques. Image processing results vary based on the quality of 

image attained from the construction site. Therefore, careful camera placement and 

image data management would determine the success of image processing algorithms. 

A fixed camera cannot be a viable solution for construction site data acquisition since 

site teams have to move the camera from time to time to counteract occlusions. The 

solution to this issue is a camera based on a mobile platform, which can also be 

referred as a client, traversing the site and acquiring images.  

 

In this study, a thin client model is used, and the majority of processing is performed 

by the server to avoid extraordinary processing at the server, which would, in turn, 

preserve its battery and avoid latency issues. Thin clients are especially useful when 

user mobility is involved, and the total cost of ownership is kept to be minimum [141]. 

Multiple clients can be added to the system if their price remains low. Majority of 

processing at a central location provides greater flexibility of addition of new modules 

or integration with other imaging sources like security cameras, drones and handheld 

or helmet-based cameras which currently is not in the scope of this research but can 

be added later in future studies. 

The BIM-based data Acquisition Platform (BAAP) is developed to attain images at 

specific predefined element at a particular time and transmit it to server for further 

processing (as seen in Figure 30). BAAP can be a robot, drone or human mounted 

camera (see Figure 31). A terrestrial robot mounted with the camera is the realization 

of BAAP which is utilized instead of a drone proposed by previous researchers for site 

image acquisition [142]. Terrestrial robots are preferred as they are not prone to 

crashing, hence safer and more efficient for indoor use.  
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Figure 30 Process flow within BAAP framework. 

 

Figure 31 BAAP in different forms (a) Terrestrial robot (b) Drone (c) Helmet mounted 
camera. 

 

4.4. Navigation to POI and Imaging 

The robot is a prime component of the CAPMS. The main parts of the robot are shown 

in Table 12 and the robot fabricated for the scope of this research is shown in Figure 

32. The robot has an onboard Raspberry Pi 3 with 1.2 GHz processor and 1 GB RAM, 

to perform client operations and process images. Client queries the database and gets 

d-POIs according to the process mentioned in the previous sections and navigates to 

them automatically. 
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Table 12 Robot components and characteristics. 

Component Description 

Processor Raspberry Pi 3B+ (1.4GHz 64-bit quad-core processor, dual-

band wireless LAN) 

Drive Train 120 RPM, 6 volt encoder motors 

Camera 8 Megapixel with pan and tilt motor 

Gyroscope MPU6050 MEMS accelerometer, and MEMS gyro 

Power 

Supply 

12V Li-ion for the drivetrain, 5v Li-ion for processor 
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Figure 32 Robot Views from Different Angles. 

4.4.1. Chassis and Drive Train 

The robot consists of a tracked chassis for greater traction and correct wheel count 

measurement from optical motor encoders. 120 RPM low power consumption encoder 

motors are controlled by the microcontroller through H-bridge circuitry. The robot 

performs differential turns, measured by the onboard gyroscope. Gyroscope measures 

angular velocity which is integrated over time (dt) to obtain angular displacement. The 

microcontroller continuously measures angular displacement using rotary encoders 

installed on motor shafts, and once the robot has turned to the desired angle, the 

microcontroller stops the turn and instructs the robot to move in the direction of the 

turn. Magnetometers are also used for turn measurement. However, the magnetic 

sensor may not work efficiently due to the presence of steel and other ferromagnetic 

materials on site.  

 

 

Figure 33 Robot Chassis and Components. 
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The client instructs the onboard microprocessor to move towards the POI which in 

turn moves the motors and counts revolutions using an interrupt-based mechanism 

until distance till POI is covered. The client also commands the microcontroller to 

perform turns, take images, and then process those images.  

4.4.2. Imaging Sensor Distance and Tilt 

Materials reflect specific wavelengths of light and absorb the rest. The camera sensors 

capture light wave in visible spectrum reflected from the object. A digital camera 

contains a charge coupled device (CCD) comprising of photosensitive diodes which 

produce an electric charge on pixels present on it whenever light is incident upon them. 

The CCD is divided into many light-sensitive areas known as pixels. The higher the 

luminosity of light, higher is the amount of charge accumulated on the pixel. The 

charge is transported to an array and digitized to build up an image. Visible spectrum 

lies between 400-700 nm. The wavelength of Red, Green and Blue colors is 

standardized at 700 nm, 546.1 nm, and 435.8 nm respectively. The wavelength 

intensities are distributed between the spectral band by Grassman's law based on a set 

of rules to define Red, Blue, and Green for a full visible spectrum [143]. The CCD 

sensor itself cannot differentiate between colors; therefore, color filters are utilized to 

determine the amount of incident color [144].  

 

Robot reaches POI location marked in Revit model and an on board ultrasonic sensor 

ensures correct distance from Elements of Interest (EOI) using onboard ultrasonic 

sensor which has an accuracy of +/- 3mm and can measure up to 250cm. Image 

acquired on the sensor depends upon light reflected from EOI incident on the camera 

sensor, the energy carried by which is a function of illumination, distance of EOI from 

sensor and angle of tilt of sensor with respect to EOI. According to Kim et al. [54], a 

camera for image acquisition from the site should be equipped with pan, tilt, zoom 

(PTZ) movement function and should efficiently transfer data over wired and wireless 

internet connections. The Pan and Tilt function coupled together allows image 

acquisition at different tilts in a customized manner. The robot in this study is mounted 

with a servo motor couple controlling pan and tilt mechanism determining the tilt of 
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camera with respect to ground surface and an ultrasonic measurement sensor to 

calculate the distance from EOI.  Figure 34 shows schematic of camera orientation 

where angle a is tilt and its orientation along with the distance from EOI, which 

governs the percentage representative pixels of EOI and noise in the image, making 

SCAER algorithm unable to detect EOI. Distance affects the scene and reduces the 

percentage of pixels representing the EOI in the image and adds additional elements 

which act as noise. Camera tilt and distance values are shown in Table 13. 

 

Figure 34 Robot camera orientation and scene representation. 

Table 13 Camera tilt and EOI distance for imaging. 

Parameter (Symbol) Values 

Distance from EOI (s) 50 cm, 100 cm, 200 cm 

Camera tilt (Ɵ) 30°, 45°, 60°, 90° 

 

Any distance greater than 2m is not considered since corridors and alleys do not have 

width greater than 3m. Any distance less than 50cm is not considered since it would 

be too close to take a reasonable image and, if only one material is present in an image, 

white balancing algorithms do not work. Three distance parameters of distance d 

shown are evaluated for different values of tilt in Figure 35. 
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Figure 35 Camera-tilt at (a) 0°, (b) 180°,  (c) 30°, and (d) 140° to capture the EOI. 

 

The tilt mechanism allows the camera to take image of objects above, below and in 

front of the robot. Figure 36 shows image of roof slab formwork acquired from a lower 

level. Figure 37 shows imaging performed at 90 degrees when camera is looking 

directly in front and image of a vertical element like the one shown in figures is 

acquired. Figure 38 shows image from camera when it is tilted downward and image 

of floor slab is acquired. The figure shows rebar installation for a roof slab. The 

movement of robot camera allows imaging of wide array of elements that can be used 

in future development of this research.  
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Figure 36 Imaging of elements above the robot with very low Ɵ < 20°. 

 

 

Figure 37 Imaging of element in front of robot. camera Point forward. 40° < Ɵ < 90°. 

 

 

Figure 38 Imaging of elements below the robot with Ɵ > 90°. 
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4.5. Image Tagging and Transmission 

Once Image is acquired, it is tagged for ease of retrieval for automated processing or 

manual review purposes. The image tag or name contains the level, activity ID, angle 

and distance of sensor from image when it was acquired. Figure 39 shows screenshot 

of images stored with POI, activity, and sensor related information in the image tags. 

The python script in BAAP extracts the activity and POI information from daily 

monitoring list while tilt angle comes from BAAP. Once the image is taken, it is then 

sent to the server using push request, where further image processing and storage takes 

place.  

 

Figure 39 Images tagged with POI, Activity ID, angle and distance of acquisition. 

 

4.6. Image Storage at Server 

BAAP acquires images and pushes it to the server, where a file watcher is waiting for 

an image transmitted over a Wi-Fi. Once the image reaches the server, its filename is 

read using python script, which retrieves its POI, activity and sensor related 

information. The server acts as a repository containing images sorted according to 

their respective POIs as seen in Figure 40 (a). Each POI folder contains all images 

acquired at that particular POI for every planned activity present in the schedule.  
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Figure 40 (a) Image storage according to POI at server end, (b) Image storage within 
according to activities. 

 

POI-wise data storage makes its retrieval very easy,  for instance when images of 

activities on a certain element are being sought for further processing and evaluation. 

POI folders containing site image with activity IDs in filename provides a pictorial 

view of various stages of progress at a particular element. This methodology provides 

an intuitive platform for visual and automated monitoring.  

 

4.7. Experiment for Validation of Navigation Algorithm  

4.7.1. Creation of BIM and Extraction of POI Information 

Validation of robot navigation was performed in the corridor of METU civil 

engineering METU civil engineering department K1 Building corridor. Partial BIM 

of corridor was created on Autodesk Revit (see Figure 41) with actual dimension taken 

from the structure. The corridor has five separate spaces connected to one corridor 

through panel doors. Roof is not shown in the model for visualization purpose. It is 

assumed that the structure is being constructed and robot will navigate the site to 

acquire images of progress. POI and activity list is obtained using EAPE which was 

further processed to create a schedule.  
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Figure 41 3D model of navigation test site created on Autodesk Revit. 

 

Three elements are sampled for robot navigation that include two doors and two walls. 

Figure 42 shows sample points for robot navigation which involves three colinear 

points and one right turn. The robot starts from Initial Navigation Point (INP), whose 

coordinates are known to robot, and navigates to each POI by calculating position 

vector between its current location and target location. The schedule is made in a 

manner that ensures sample POI activities are completed on the same working day to 

ensure monitoring in one run of robot.  

 

Figure 42 Extracted POI locations for robot navigation validation. 
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The robot extract coordinates from server using Php pull request and calculates 

position vector for POI 1 by subtracting coordinates of its current location which was 

POI 0. The robot navigates to POI 1, takes images and moves to POI 2 using vector 

calculated between consecutive POIs. EAPE provides two-dimensional coordinates 

for each level and the navigation vector calculated in the form of rectangular 

coordinates is shown in Eq. (1) and represented in vector form in Figure 43.  

𝑥ே𝚤̂ + 𝑦ே𝚥̂ = (𝑥ଶ𝚤̂ + 𝑦ଶ𝚥̂) − (𝑥ଵ𝚤̂ + 𝑦ଵ𝚥̂) (1) 

 

Figure 43 Navigation vector calculation from POI coordinates. 

 
The robot also follows the path along the rectangular component of navigation vector 

between two POIs. The reason being most conventional structures shell and core 

structures are rectangular and symmetrical due to structural and construction related 

reasons. A robot moving along the rectangular components instead of the shortest 

distance between two points is less likely to encounter obstacles esspecially during 

construction phase. However, in real life scenario, a more robust algorithm that 

depends upon predetermination of expected obstacles needs to be developed for 

uninterrupted navigation. The site also has to be kept clear of clutter and walkways 

should be designated for safe movement of worker on site. The same walkways can 

be used by robot for navigation. 
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4.7.2. Experiment Results and Discussion 

Robot performed ten navigation runs intiated from INP and terminated at POI 3, taking 

instruction from BIM through server via a pull request. Two types of navigation runs 

were performed: Continous run is uninterrputed through all POIs replicating proposed 

site setup. Controlled run is performed with correction of robot position at every POI 

to ensure that cummulative errors are not reflected at each POI rather individual error 

for each vector is attained seperately. Figure 44 to Figure 46 shows continous and 

corrected error at POI 1 to POI 3. As seen in this figure the error is greater in transvere 

direction and less along the direction of movement of robot for POI 1 and POI 2. The 

lateral errror is caused due to uneven speed of drive wheels and change in relative 

speed of rotation which causes the robot to move in direction of slower wheel. The 

error along the direction of movement is caused by incorrect counter of interrupt due 

to slippage of both wheels which has been made less likely due to the use of track 

instead of wheeled system. POI3 involves a right turn, which results in rotation of axis 

of movement by 90° and trasverse axis of movement becomes lateral axis of 

movement while the lateral axis become transverse axis. This causes error to appear 

in both axes unlike other POIs where error was more pronounced in  transverse 

direction (as seen in Figure 47).  

 

 

Figure 44 Error at POI 1. 
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Figure 45 Error at POI 2. 

 

 

Figure 46 Error at POI 3. 
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Figure 47 Combined plot of error at POI 1, POI2, and POI3. 

 

Figure 48 shows box and whisker plot for error with respect to magnitude of 

navigation vector. It can be seen from the figure that error stays below 0.04% for POIs 

where no turning is involved and below 0.1% for cases where the turn was involved. 

It can be inferred that error would be increased as distance increases and after distance 

exceeds a certain threshold, the Elements of Interest might go out of frame, esspecially 

when they are narrow like door and columns. Walls are of greater length than doors 

and columns and the drift or error in robot beyond several meters is not possible unless 

the robot has to move through long corridors. There is certainly a requirement for 

intermediate calibration points that will determine robot position and remove error that 

may have occured during movement or turning. Calibration can be done by placing 

markers like QR codes that can be read by robot camera and decoded to determine the 

exact positon of the robot. The robot can then recalculate the navigation vectors and 

continue with accurate movement. The biggest problem would occur if the robot 

misses one turn or movement due to any hardware error, in that case the error will be 

excessive, which should be kept in mind during further development of this system. 
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Figure 48 Box and whisker plot for percentage error w.r.t length. 

 

4.8. Validation of Imaging on Site using BAAP 

In order to test SCAER, a process was developed for the robot at selected POIs with 

pre-determined angles, distances, POI and activity ID in the image name for future 

reference (see Figure 49). The image was sent by robot (client) to the server using PHP 

post-request, where image was stored in a folder with POI name.  
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Figure 49 Process flow for conduct of field test. 

 

A frame is characterized by the POI which provides it a unique identity. SCAER is 

then applied on image for clustering and subsequent detection based on Euclidean 

distance from samples in the database. A list of materials 𝐷 detected for all images is 

created containing POI (Pi), Angle (Θ), Distance (𝑆) and material 𝑑 is obtained. An 

actual material list 𝑅 (see Eq. (2) and Eq.. (3)) is created for materials which are 

‘actually’ present in each frame characterized by Angle, Distance and POI 

information.  

 



 

 
 

81 

𝐷 = {𝑑௉ଵ,௵ଵ,ௌଵ, 𝑑௉ଵ,௵ଶ,ௌଵ, … … … , 𝑑௉ே,௵ସ,ௌଷ} (2) 

𝑅 = {𝑟௉ଵ,௵ଵ,ௌଵ, 𝑟௉ଵ,௵ଶ,ௌଵ, … … … , 𝑟௉ே,௵ସ,ௌଷ} (3) 

Images were taken on four different camera tilts capturing both top and bottom edges 

of EOI, which are assumed to be vertical in all cases. Any tilt angle outside this range 

would not capture EOI except in the cases of slabs and roof slabs which are not 

considered in the scope of this research. Overall 9 pictures of each element are 

supposed to be acquired but total number of pictures of each category (see Figure 50) 

may vary from element to element based on lack of space or presence of clutter 

between the camera and the element.  

 

 

Figure 50 Number of pictures taken of subject materials taken at given tilt and 

distance values. 

Before application of SCAER, pictures were manually observed to determine the ratio 

of pixels that represent Element of Interest (EOI) versus those that do not represent 

EOI. Figure 51 shows various defects in image obtained from site that included 

occlusion from clutter and temporary works like scaffolding, ladder, tools, and glare 
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that may affect white balancing and darken the picture.  Quality of image is therefore 

based on a percentage of EOI pixels in the complete image, the presence of foreign 

elements causing occlusion by blocking the view of the EOI, and incident light on a 

camera sensor that affects illumination and darkens the EOI.   

 

 

Figure 51 Poor Image Examples (a)-(b) Acquired at 30% misses EOI and captures 

roof slab, (c)-(d) Images acquired at 90% captures clutter on the floor next to wall. 

 

Images are hence classified on the criteria of quality as mentioned above. The result 

of classification shown in Figure 52 (a) depicts the correction between tilt and distance 

with image classification based on its visual quality. It is observed that almost 80% of 

poor quality pictures are with the imaging sensor tilted at 30° and 90°. The minimum 

Recall for tilt angles imaging at 30° is less than those observed in all other angles. It 

has also been observed that recall for imaging at 200 cm distance shows lower recall 

as compared to other distances. However, the presence of poor quality pictures is quite 
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significant and can affect recall and false positives as the number of images increases 

when every element of a project being is imaged.   

 

 

 

Figure 52 (a) Poor quality pictures w.r.t angles and distances, (b) recall for images at 

angle-distance combination. 
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The reason for a poor quality picture at very high tilts (low angle of tilt) makes the 

camera point towards the top of the EOI capturing a large portion of the roof slab while 

reducing the percent pixels comprising the EOI. Imaging sensor positioned vertically 

with 90° tilt, captures a major part of floor slab while reducing the ratio of EOI to 

irrelevant elements. The reduced number of EOI pixels, when the camera is too flat or 

too obtuse, reduces the probability of image identification. The % recall (shown in  

Figure 53) is for an image acquired at the extreme angles which have lower minimum 

values as compared to mid tilt. There is considerable improvement in the recall if 

images captured at 30° and 90° tilts are not considered in material detection. 

 

Images taken with 60° tilt (see Figure 54) have better recall than those acquired with 

45° tilt since image plane is flatter with former compared to latter. 90° would have 

been the best choice of tilt if the focal axis of the camera wasn’t very close to the 

ground and robot, like in the case of a robot developed for this research. Mounting 

camera at a greater height causes stability problems in the robot and was not attempted 

during this research.  

 

 

Figure 53 Images acquired with all tilt angles. 
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Figure 54 Material wise recall for image with good tilt angles. 

 

Although the recall percentage may appear less in comparison with algorithms which 

have given results greater than 90% in some cases, detection of the image is just part 

of the solution which is augmented by contextual information attained from the 

schedule and POI resulting in almost perfect results which will be discussed in later 

section. 

4.9. Conclusion 

BAAP is the embodiment of robotic construction monitoring, which can take the form 

of a drone or terrestrial robot as well as a worker. The image acquisition, storage, and 

retrieval system provides a much-required archival system for the construction site 

that is very useful for future referencing. BAAP provides an efficient, low cost and 

accurate platform for BIM-based imaging. The images obtained are tagged at the 

source and transmitted to the server and processed for SCAER for progress 

determination. The robot developed as a realization of BAAP was able to attain POIs 

from BIM and navigate to site with an error less than 4% in the direction of motion of 

the robot and less than 10% in the direction perpendicular to the direction of its motion. 

The robot with the current setup needs intermediate calibration points to remove error 

that may accumulate during motion. The error in the perpendicular direction is greater 

than the direction of motion due to the variation of wheel speed and slippage. The 
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setup involved the use of prototyping electronics and very low cost circuitry which 

may not be able to give a very high quality output. Development of the robot by using 

professional grade electronics may further improve robot accuracy. A verification of 

image acquisition and tagging was done on actual construction site as presented in the 

next chapter, and the algorithm was able to attain images, tag them and transmit to a 

server in a seamless manner which in itself is a useful function for site operatives.  
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CHAPTER 5 

 

5. SCHEDULE BASED CONTEXT AWARE ELEMENT RECOGNITION 
(SCAER) 

 

 

Automatic analysis of digital images is an active research field where computer vision, 

automated progress monitoring, and material identification converge. Computer 

vision has been part of various civil engineering studies like pothole detection [68], 

worker detection [145], equipment action recognition [63] and performance 

monitoring [146], [147], etc. The basic problem in computer vision techniques is 

occlusion due to which progress can only be measured on an element in the closest 

structural frame of the camera [8]. This issue has been resolved with the use of the 

robot-mounted camera, which can move around occlusion and take a close image of 

building components. 

 

5.1. Introduction and Background Information 

Context-aware Automated Construction Progress Monitoring System (CAPMS) 

provides a framework to acquire data, convert that into progress information and 

deliver it to project leadership team promptly which is the goal for an automated 

progress monitoring system [106]. Imaging is a contactless way of acquiring data on 

site and requires no investment in infrastructure or worker training. It is, therefore, a 

preferred means of data acquisition for the automated progress monitoring system. 

CAPMS uses imaging to attain real-time site progress data accurately, that is not 

affected by human factors and does not cause disruption on site. 

Automated progress monitoring system relies on material recognition to ascertain the 

status of various elements on site. The material recognition can be done using 

computer vision techniques which apply mathematical principles on images to extract 
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information contained in them. Imaging is a semantically rich data source that can be 

acquired using equipment whose cost has decreased considerably in recent decades. 

The computer vision algorithms requires contextual information in the form of R, G, 

B values (color) of architectural and structural elements which are stored in BIM along 

with other element properties. Information extracted from images can be further 

processed to ascertain element status information. 

 

5.1.1. Contextual Information 

Material identification from images of construction site elements is related to but 

differs from material classification in computer vision problems. In computer vision, 

most methods assume the absence of a strong prior for material recognition thus 

computer vision algorithm should be able to handle a certain degree of randomness in 

expected results [55]. In contrast, material identification on model-based construction 

automation methods can take advantage of contextual information [58] in the form of 

expected elements and materials. Restated, contextual information can either come 

from within an image, or it can be derived from non-image sources such as 

geographical information or time of capture. Geographical information comes from 

Cartesian coordinates in building the frame of reference for indoor pictures and GPS 

coordinates for outdoor pictures, while the time of capture comes from the image EXIF 

data.  

 

Mathematically contextual data can be linked to current data using Markov process, 

which is a random process where the future state depends upon the present state only 

and has no knowledge of any of the previous states. It consists of a set of transitions, 

adhering to probability distributions that satisfy Markov property. Markov chains are 

quite useful in real-world applications [113]. They are relatively simple and are meant 

to statistically model random processes applied in different domains from speech 

recognition to text generation to financial modeling. Markov property is very valid for 

construction-related applications since any activity performed on site is dependent 

upon the previous activity only and is not dependent on the activity performed before 
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the previous activity, specifically in shell and core construction on building sites.  

 

A state is a set of values that the chain is allowed to take which, in our case, can be 

characterized by a possible set of materials that can be present at a particular point. 

Since the presence of a state is dependent upon the previous state and independent of 

all other previous states, the memoryless property, also known as Markov property, 

can be applied.  Markov chain (Figure 55) is probabilistic automation [100] and 

depends upon the probability distributions of transition from one state to another 

which can be represented by a Transition Matrix as shown in Eq.  (8). 

 

 

Figure 55 Markov chain transition probabilities and transition matrix [148]. 

𝑃 =  ൥

𝑝ଵଵ 𝑝ଶଵ 𝑝ଷଵ

𝑝ଵଶ 𝑝ଶଶ 𝑝ଷଶ

𝑝ଵଷ 𝑝ଶଷ 𝑝ଷଷ

൩ (4) 

State Space is a set of possible set of events that can occur. The state space for current 

research takes a finite number of distinct values and is time-homogeneous. The 

transition operator is defined by matrix P, and each entry is given by Eq. (5).  
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𝑝௜,௝ = 𝑝(𝑋(௧ାଵ) = 𝑗|𝑋(௧) = 𝑖) (5) 

Where in Eq. (5), the chain is currently in i-th state and transition operator assigns a 

probability to move to the j-th sate by entries of i-th row of P. The scope of this 

research is limited to structural and architectural elements of the reinforced concrete 

shell and core structures. In CAPMS, the state of an element will define the completion 

of an activity. The list of activities completed and elements whose presence in the 

image frames proves the completion of that particular activity in CACL, the states for 

each element will be based on the last activity completed at that element and state 

space can be given by Eq. (6).  

 

The transition for the Element States in CAPMS: We will consider the state of an 

element (X) to be defined by a stochastic process [141] where n in Eq. (6) is the 

inspection number on a particular element.   

{𝑋(௡), 𝑛 = 0,1,2,3, … } (6) 

Where the state of the element can be defined by a finite set of element states given 

by Eq. (6). Each state representing the last completed activity on that particular 

element, considering there is one to one relationship between activities and elements 

in 4D BIM. Eq. (7) shows the finite set of states at a particular element which can be 

represented as Eq. (8). 

 

𝑆 = {𝑅𝐹, 𝐹𝑊, 𝐶𝑁, 𝑀𝑊, 𝑃𝐿, 𝐷𝑅} (7) 

𝑋(଴) = 𝑅𝐹,  𝑋(ଵ) = 𝐹𝑊, 𝑋(ଶ) = 𝐶𝑁, … (8) 

A state transition diagram for states represented in state space M is shown in Figure 

56 and matrix representation is in Eq. (9). Whenever an activity is being monitored, 

there are two distinct possibilities whether an activity has been completed or whether 

the element is still in the previous state. All states cannot transition between each other 

due to logical constraints; e.g., CN cannot be followed by RF without formwork. The 

memoryless property is also retained since CN will follow formwork whether 
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reinforcement was installed or not. The transition probabilities will be discussed in a 

later section and would be dependent upon the results of the image processing. 

 

 

   

Figure 56 Transition state diagram for various element states 

𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑝ோி|ோி 0 0 0 0 0

𝑝ிௐ|ோி 𝑝ிௐ|ிௐ 𝑝஼ே|ிௐ 0 0 0

0 𝑝஼ே|ிௐ 𝑝஼ே|஼ே 0 0 0

0 0 𝑝௉௅|஼ே 𝑝௉௅|௉௅ 𝑝௉௅|ெௐ 0

0 0 0 0 𝑝ெௐ|ெௐ 0

0 0 0 𝑝஽ோ|௉௅ 0 𝑝஽ோ|஽ோ = 1.0⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (9) 

5.1.2. Color Space 

Color is defined as the reaction of the brain to a specific stimulus. Therefore color is 

not an intrinsic property of an object, rather the perception of energy emitted by or 

reflected from the object [149]. Spectral power distribution is the physical property of 

light that is relevant to color vision, which specifies the amount of power it contains 

at each wavelength in visible spectrum [150]. Color is an essential feature used for 

distinguishing different materials. Although all computer vision-based algorithms do 

𝑃ூ
஼ே|஼ே 
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not rely solely on color information, other features such as edges, shapes, and textures 

are also useful. Color processing is, however, advantageous because of its simplicity, 

robustness, power and efficiency related benefits [151]. The color of a particular pixel 

can be observed as a stochastic event within the n-dimensional space defined by the 

color space used.  

 

A color space or color model is a method used to visualize and specify color. Color 

for humans is defined by its attributes of hue, brightness, and saturation but for a 

monitor, it is the right combination of red, green, and blue lights needed to match a 

color [152]. In color printers, colors are produced based on reflectance and absorbance 

of cyan, magenta, yellow and black inks on paper. Color gamut is the area enclosed 

by a color space in three dimensions where three coordinates will specify the location 

of color in that particular color space. Color gamut also defines the range of colors in 

a color space. Each color will have different coordinates for each color space. There 

are various color models proposed in literature including RGB, 

XYZ, L*a*b*, L*u*v*, HSV, HLS, YCrCb, YUV, I1I2I3, and TSL [153]. A color 

space may be device dependent and device independent, e.g., specifying the same 

RGB coordinates on two different computer monitors may produce contrasting results. 

RGB, HSV, and LAB color spaces will be used for the scope of this research which is 

explained in the subsequent text with the reason for their selection.   

 

Red Blue Green (RGB) is an additive color system based on trichromatic theory. The 

Red, Green, and Blue features denote the energy carried by light waves incident on 

the image sensor of wavelengths corresponding to red, green, and blue colors 

according to spectral bands based on Grassman’s Law. The RGB color model has been 

illustrated by a Cartesian model with each color represented on each orthogonal axis 

(as seen in Figure 57). Every single point in the RGB subspace can define a particular 

color (see Figure 57. RGB is easy to implement and is very common, as it is being 

used in every display system, e.g., computer screens, television, videos, etc. Color 

filters present in a digital camera allow a very narrow spectral bandwidth 

corresponding to red, blue and green wavelengths of the visible spectrum to pass 
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through. Once red, blue, and green wavelength intensities are obtained, they can be 

combined using RGB color model to represent true color visible to the human eye; 

therefore, the RGB bands can be directly separated from any image without any pixel-

wise post-processing operation.  

 

Figure 57 RGB color space. 

Hue Saturation Value (HSV) color space is obtained as a linear transformation of RGB 

and, therefore, is device dependent. This color space (see. Figure 58) is extremely 

intuitive, and color can be specified by desired hue and adjustment of saturation and 

intensity values, where Hue is the color motion of the color model and is expressed in 

a number from 0 to 360, each defining a separate color. The hue of different shades of 

red will remain the same, and the only difference will be the amount of saturation. 

Saturation is the amount of grey, the color with 0 saturation means it is completely 

grey while a color with one saturation means it is a primary color. The Intensity 

component describes brightness that varies from black at 0 to brightest revealing 

complete color at 100.  
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Figure 58 Hue Saturation Value (HSV) color space [154]. 

 

CIE L*a*b has been defined by Commission Internationale de l'Eclairage (French: 

International Commission on Illumination - standardization body) system of 

classification of colors and is based on Human Visual System (HVS) [152]. LAB is a 

CIE based color space (see. Figure 59) that is nearly linear with color perception [152] 

and is as close to color perception as is possible. Being based on human vision, it is 

device independent, however, quite unintuitive. CIE L*a*b color space is used due to 

its device independency and closeness to human perception. 

 

 

Figure 59 CIE L*a*b color space model [155]. 
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L* depicts lightness which can vary from dark to white, a* denotes the point between 

red and green axis where that color lies, and b* depicts the point between yellow and 

blue color that a certain pixel lies, effectively denoting whether the color is near to red 

or green on a* axis and yellow or blue on b* axis. The L*a*b color scale gamut 

encompasses entire visible spectrum, unlike RGB and HSV color models which 

encompass a subset for visible spectrum [153]. 

5.2. Proposed Methodology 

SCAER (see. Figure 60) is the backbone of CAPMS by converting data acquired by 

BAAP into information. It is a server end process that acquires images from BAAP, 

which is acts as a thin client. BAAP navigates to BIM elements and captures their 

images. 4D BIM is stored in the server, containing ‘Element’ coordinates and their 

respective tasks in an updated schedule. BAAP traverses to the POI and takes images 

at different camera orientations controlled by the onboard camera and servo motor. 

The images sent to the server, are processed using SCAER to determine e(X).  

 

Figure 60 Process flow for Schedule-based Context-aware Element Recognition 
(SCAER) 
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Activity completion is confirmed if estimated state e(X) matches the planned state p(X) 

and unconfirmed if e(X) and p(X) don’t match, which translates into progress achieved 

for the former case and delay for the latter case. Once the statuses of activities at all 

POIs are ascertained, an updated schedule with confirmed activity completions is 

generated for review by the project management team. Since imaging is being utilized 

for monitoring activity, only activities that are visible to the human eye are validated. 

Internal or hidden changes in the state of an element are characterized as activities that 

cannot be detected as progress using CAPMS. Generic tasks included in the scope of 

this research are present in CACL.  

 

5.3. Learning Material Signatures 

In order to train the algorithm to identify materials, a two-step approach is undertaken. 

The first step involves division of the image into its constituent materials based on 

their color differences using K-means clustering followed by tagging of cluster centers 

visually as shown in flow chart in Figure 61. 
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Figure 61 Flowchart of the learning algorithm 
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A training set of data is acquired from a materials database. Figure 62 is an image from 

the learning database to demonstrate the learning algorithm. The obtained image can 

be from an actual installation that will be replicated in a newer structure or an image 

taken at the factory or provided by the manufacturer.  

 

 

Figure 62 Training image for a demonstration of the learning algorithm. 

5.3.1. K-Means Clustering 

K-means clustering [156] is an unsupervised learning algorithm which is used when 

unlabeled data is present, such as the 2-dimensional image color of whose pixels are 

not known. The algorithm works in an iterative manner where each data (pixel in the 

case of this research) is assigned to a cluster K based on the similarity of features. This 

divides the data pixels into a data set organically [157]. K-means clustering algorithm 

for material segmentation has a feature vector given as: 

𝑥(௝) = [𝐿, 𝑎∗, 𝑏∗, 𝐻, 𝑆, 𝑉, 𝐵, 𝐺, 𝑅 ] (10) 

Where 𝑥(௝) denotes the feature vector for the pixel at position j in the 2D image, 

L for lightness, and a and b for the color-opponent dimensions. H is hue, S is 

saturation and V is brightness from HSV color model. R is red, G is green and B is 

blue reflectance intensity levels in the RGB color model.  
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K-means clustering has two steps, the first being data assignment, where each pixel is 

assigned to nearest cluster centroid based on squared Euclidean distance. Using K-

means clustering algorithm, a matrix containing cluster centers given in Eq. (11) is 

obtained.   

𝐶𝑙௞ = ൦

𝑐𝑙ଵଵି௞

𝑐𝑙ଶଵି௞
𝑐𝑙௜௝`ି௞

𝑐𝑙ଵଽି௞

𝑐𝑙ଵଽି௞

⋮ ⋱ ⋮
𝑐𝑙௄ଵି௞ ⋯ 𝑐𝑙௄ଽି௞

൪ (11) 

In the above Equation 𝑐𝑙௜௝`ି௞ donates feature j, and cluster center i for image k from 

learning dataset. Eq. (11) shows clustering centers of K=4 clustering performed on 

training dataset image in  Figure 62  using 9 dimension feature vector mentioned in 

Eq. (10).  The image corresponding to the clusters in Eq. (12) are shown in  

 

Figure 63.  

 

(12) 

5.3.2. Material Tagging 

The result of K-means clustering performed on test image T in Figure 62 is shown in  

 

Figure 63. Once images are clustered, they are displayed on the screen for the user to 

identify material corresponding to each cluster. 

L A B H S V B G R
39.52    127.27  129.26  43.97    21.59    39.87    37.21    39.17    38.68    

137.52  126.12  129.30  67.84    15.12    131.39  126.72  130.05  126.74  
207.93  126.56  131.00  38.75    9.07      203.64  196.92  203.17  202.12  
41.31    132.85  137.75  14.02    128.55  51.80    26.12    37.44    51.75    

𝐶𝑙் =
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Figure 63 Result of K-means clustering on test image: (a) Cluster 0, (b) Cluster 1, (c) 

Cluster 2, (d) Cluster 3. 

 

A list is prepared for materials which are part of the scope of this study and each 

material is given a numeric identifier as shown in Table 14. Numeric identifiers make 

it easy to tag materials and help in sorting and further prediction study. Common 

architectural and structural materials visible on shell and core structures are used. It is 

intended to select materials of varying colors to see robustness of the algorithm. Since 

the algorithm works using color information, different materials with similar colors 

will be considered as same by the algorithm. In order to offset this weakness, context 

information is used which will be discussed in following sections.  
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Table 14 Material and numeric material identifier list. 

Numeric Mat ID Material Description 

1 Door Painted Green 

2 Door Painted Grey 

3 Door with Wood Finish 

4 Blue Painted Wall 

5 White Painted Wall 

6 Red Brick 

7 Terrazzo Tile 

8 Concrete 

9 LWC Block Masonry 

11 Unidentified 

12 Formwork 

13 Reinforcement 

14 Safety Barricades 

15 Construction Eqpt 

 

The code developed for the creation of the database of cluster centers gets the material 

ID from the user for each clustered image and creates a database entry containing the 

material ID and its respective cluster center. The generic form of material cluster 

centers matrix with tagged material IDs from learning dataset is shown in Eq. (13).   

𝐶𝑙௞𝑀𝑎𝑡𝐼𝐷 =

𝑐ଵ

𝑐௜

𝑚ଵ

𝑚 ௜

⋮ ⋮
𝑐௄ 𝑚௄

൦

𝑐𝑙ଵଵି௞

𝑐𝑙ଶଵି௞
⋯

𝑐𝑙ଵଽି௞

𝑐𝑙ଵଽି௞

⋮ ⋱ ⋮
𝑐𝑙௄ଵି௞ ⋯ 𝑐𝑙௄ଽି௞

൪ (13) 

 

where in Eq. (13), 𝑐௜ is the cluster number i which has been manually identified to 

belong to the material 𝑚௜ with each cluster center represented by a nine dimensional 

feature vector such as 𝑐𝑙ଵଵି௞ … 𝑐𝑙ଵଽି௞. Material tagging performed on test image 

shown in Figure 62 is represented in matrix form as shown in Eq. (14).  

 

(14) 

Cluster Mat L A B H S V B G R
0 2 39.52   127.27 129.26 43.97   21.59   39.87   37.21   39.17   38.68   
1 4 137.52 126.12 129.30 67.84   15.12   131.39 126.72 130.05 126.74 
2 5 207.93 126.56 131.00 38.75   9.07     203.64 196.92 203.17 202.12 
3 7 41.31   132.85 137.75 14.02   128.55 51.80   26.12   37.44   51.75   

𝐶𝑙்𝑀𝑎𝑡𝐼𝐷 =
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The learning process shown in Figure 61 is repeated for all images in learning data set, 

and a database of cluster centers is created. This database contains cluster centers of 

all materials that are present in test images to encompass the materials in the scope of 

this research. Eq. (15) shows material centers obtained from a learning dataset of 10 

images. Multiple centers are obtained for each image and are stored separately in the 

database during learning.  

 

 

(15) 

Mat L A B H S V B G R
1 8.61      127.83  129.01  39.52    62.97    10.87    8.33      9.86      9.85      
1 39.02    128.12  128.69  5.69      9.61      39.14    37.53    38.39    39.07    
1 14.56    125.91  128.95  73.41    79.98    19.03    16.42    18.87    14.03    
1 5.47      126.09  129.01  72.99    166.71  9.28      6.09      9.02      3.48      
1 10.90    127.17  129.46  55.98    96.57    14.02    10.57    13.28    11.71    
1 7.72      126.70  129.47  64.57    132.97  11.52    7.64      10.96    7.63      
1 6.48      126.48  129.56  57.79    136.73  10.20    6.31      9.77      6.54      
2 47.24    129.00  125.96  119.93  22.24    49.02    48.67    45.54    45.63    
2 19.38    127.66  129.08  32.27    28.10    23.21    20.90    22.49    22.34    
2 39.52    127.27  129.26  43.97    21.59    39.87    37.21    39.17    38.68    
2 40.48    127.86  128.85  18.72    12.43    40.35    38.44    39.60    39.91    
2 65.39    128.81  126.44  124.44  15.58    64.03    63.72    60.89    61.12    
2 37.82    127.45  127.64  96.47    19.95    38.97    38.34    37.84    36.36    
3 123.98  134.17  143.83  14.14    87.26    135.37  89.17    111.16  135.37  
3 123.95  133.41  141.60  13.87    76.92    132.96  92.95    111.73  132.96  
4 151.43  127.39  129.75  40.69    7.91      143.88  139.66  143.15  142.76  
4 117.86  126.62  128.87  60.74    9.24      110.74  107.91  110.21  107.75  
4 119.03  125.95  113.45  106.38  81.22    134.88  134.84  112.92  91.78    
4 118.67  126.19  113.91  106.33  78.17    133.73  133.70  112.36  92.60    
4 137.52  126.12  129.30  67.84    15.12    131.39  126.72  130.05  126.74  
5 129.14  128.63  128.45  66.39    6.97      122.54  119.93  120.24  122.13  
5 194.24  127.49  128.65  48.57    3.92      188.63  186.31  188.07  187.25  
5 152.14  127.84  129.15  27.13    8.37      145.52  141.48  143.58  144.15  
5 207.93  126.56  131.00  38.75    9.07      203.64  196.92  203.17  202.12  
5 82.64    125.18  131.21  53.40    28.10    78.91    71.61    77.86    74.06    
5 186.44  127.93  132.35  21.58    15.57    182.66  171.57  179.11  182.60  
5 110.63  126.02  130.36  52.09    20.00    105.66  98.97    103.68  101.04  
5 173.23  127.75  129.57  31.16    10.34    168.21  162.54  165.46  166.21  
5 111.75  128.38  129.81  42.44    15.83    106.35  101.12  103.71  105.92  
5 92.60    127.79  129.73  47.84    17.17    87.69    82.91    85.64    86.55    
5 191.72  128.43  132.83  20.71    17.90    189.56  176.34  184.40  189.53  
5 184.24  125.34  129.95  95.77    11.13    179.98  173.78  178.64  173.43  
5 153.78  127.88  128.30  55.35    6.54      147.07  144.70  145.38  145.35  
5 206.43  127.85  130.83  22.79    8.84      202.81  195.85  200.75  202.69  
5 180.76  126.74  129.37  47.08    6.61      174.33  170.46  174.00  172.24  

𝐶𝑙ଵ⋯ே𝑀𝑎𝑡𝐼𝐷 =
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5.4. Identification of Materials within Image 

The robot upon reaching the POI rotates the camera towards the element of interest 

and takes an image. The image is then processed according to the process flow shown 

in Figure 64 based on the type of the activity that has taken place at that specific POI 

to determine the progress.  

 

Figure 64 Process flow for material prediction in acquired image 

 

In order to determine progress at a particular POI, the presence of material is 

determined using computer vision. Presence of a particular material corresponding to 

the activity that was planned to be performed on the last working day determines 

whether that activity has been completed or not. An acquired image to test the 

prediction algorithm is shown in Figure 65. 
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Figure 65:  Image acquired for prediction of material using prediction algorithm. 

 

The image is clustered, and cluster centers are obtained using K-means clustering 

algorithm explained in Figure 64 in details. Once clustering is completed, a matrix 

similar to that shown in Eq. (11) containing cluster centers is obtained. Euclidean 

distances (𝐷஼ಲభ஼ெ೔భ
) (see Eq. (16)) of cluster centers k (𝐶஺௞) of acquired image from 

database material centers (𝐶𝑀௜ଵ..௜ே) of material i  having N samples obtained and 

tagged during learning process is acquired and stored in matrix form. A series of 

matrices, giving distances of m number of database material centers from acquired 

image cluster centers are denoted by 𝐶஺𝐷௜..௠. Each 𝐶஺𝐷௫ matrix will have distance 

centers with one material only and therefore for m number of materials there will be 

m matrices.  

𝐶஺𝐷௜ =

⎣
⎢
⎢
⎡
𝐷஼ಲభ஼ெ೔భ

𝐷஼ಲభ஼ெ೔మ

⋯
𝐷஼ಲ಼஼ெ೔భ

𝐷஼ಲ಼஼ெ೔మ

⋮ ⋱ ⋮
𝐷஼ಲభ஼ெ೔ಿ

⋯ 𝐷஼ಲ಼஼ெ೔ಿ⎦
⎥
⎥
⎤

 
           

(16) 
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The cluster center distance matrix from material 1 for the test image (Figure 65) is 

shown in Eq. (17). 

 

(17) 

Once 𝐶஺𝐷௜ matrices are obtained, the column wise statistical measures, namely min, 

mean, median, and max of each column of the subject matrix is obtained in a tabular 

form as given in Table 15.  

Table 15 Column-wise statistical metric of 𝐶஺𝐷௜ Matrix. 

min {𝐷஼ಲభ஼ெ೔భ
, … , 𝐷஼ಲభ஼ெ೔ಿ

} mean {𝐷஼ಲభ஼ெ೔భ
, … , 𝐷஼ಲభ஼ெ೔ಿ

 max {𝐷஼ಲభ஼ெ೔భ
, … , 𝐷஼ಲభ஼ெ೔ಿ

} 

⋮ ⋱ ⋮ 

min {𝐷஼ಲభ஼ெ೔భ
, … , 𝐷஼ಲభ஼ெ೔ಿ

} ⋯ max {𝐷஼ಲభ஼ெ೔భ
, … , 𝐷஼ಲభ஼ெ೔ಿ

} 

 

The column-wise statistical material measure of 𝐶஺𝐷ଵ for the image in Figure 65 is 

given in Table 17 where thresholding is applied to determine whether any of clusters 

in 𝐶஺ belongs to material 1. The thresholds for classification of materials are given in 

Eq. (18). 

min൛𝐷஼ಲೖ஼ெ೔భ
, … , 𝐷஼ಲభ஼ெ೔ಿ

ൟ < 16 ⋀ mean൛𝐷஼ಲೖ஼ெ೔భ
, … , 𝐷஼ಲభ஼ெ೔ಿ

ൟ < 120 ⟹  𝐶஺௞ ∈  𝑀௜ (18) 

260.07 88 78 405
197.02 40.96 155.49 338.55
247.94 92.49 63.81 393.38
304.31 163.94 31.98 439.31
262.73 101.92 43.25 405.93
283.08 132.87 9.16 422.38
287.36 135.69 1.93 425.96

𝐶஺ଵ 𝐶஺ଶ 𝐶஺ଷ 𝐶஺ସ

𝐶஺𝐷ଵ =
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Table 16 Column-wise statistical measures for 𝐶஺𝐷ଵ Matrix. 

 

The thresholds for min and mean distance determined presence of material in a 

particular frame. It is observed in Table 16 that material three has the least values for 

minimum distance and mean distance, therefore it can be inferred that material three 

among all materials to those present in the acquired image. Using the criteria of 

minimum distance, it can be inferred that 𝐶஺ଷ ∈  𝑀ଷ. The thresholds and their tuning 

to obtain optimum values are discussed in later section.  

 

5.5. Prediction of Element State 

5.5.1. Context Awareness based on the Logic of Scheduling 

In material classification related studies based on content-based image retrieval [26] 

or material recognition algorithms [158], false positives are an indication of 

performance gap in the algorithm which is not the case for SCAER. False positives do 

not have an impact on the overall performance of the algorithm until or unless material 

of preceding or the following activity is falsely detected instead of relevant material 

depicting a particular state at a specific POI. Figure 66 shows false positives that affect 

the performance of the algorithm by falsely depicting progress at POIs when there is 

no progress. As seen in Figure 67, if formwork is falsely detected in images that were 

containing reinforcement, progress will be falsely predicted while there will be none. 

This is the case of false detection of material denoting the previous state, and this will 

result in the false conclusion that POI is behind schedule. Progress is falsely detected 

when expected state from current POI activity is detected instead of relevant material 

that is associated with preceding state.  

Cluster Min Mean Max

197.02 263.22 304.31

40.96 107.98 163.94

1.93 54.80 155.49

338.55 404.36 439.31

𝐶஺ଵ

𝐶஺ଶ

𝐶஺ଷ

𝐶஺ସ
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Figure 66 False positives affecting results vs false positives not affecting results. 

 

Figure 67 Critical vs noncritical false positives represented on BIM elements. 
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5.5.2. Prediction based on Probability of Presence 

The process flow for prediction server level operations is shown in Figure 68, where 

a file watcher is waiting for an image to arrive from an acquisition device over Wi-Fi 

via PHP post request. PHP is a script language and interpreter which is freely available 

and used primarily on Linux Web servers, used for all communications between client 

and server. As soon as the image reaches the server, it contains the activity ID and POI 

information. The server code saves the images in the relevant POI folder with the 

activity ID, POI name, and other important image information such as the file name. 

The computer vision algorithm then gets into action, to determine the most probable 

current state of the element being evaluated. If the expected state matches the planned 

state of the element, the activity is deemed to be completed, and the same is marked 

in the schedule CSV.  

The image-based probability of a particular state to occur at a particular instant is the 

ratio of a number of frames where planned material is detected to the total number of 

framed acquired as seen in Eq. (19). If the probability of a planned state is high, i.e, 

greater than 0.5, activity is deemed to be completed and activity is deemed to be 

delayed if the image based probability is less than 0.5 as shown in Eq. (20). 

 

𝑃௉|஼ =
𝑁𝑜. 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
 (19) 

𝑃௉|஼ > 0.5 ⟹ 𝑋௧ϵ 𝑝 ∧  𝑃௉|஼ > 0.5 ⟹ 𝑋௧  ∉ 𝑝 (20) 

 

Where 𝑃௉|஼ is the probability of Planned State (𝑃) given Confirmed State (𝐶) while 

𝑃஼|஼ is the probability of C which remains the same and doesn’t change.  X represents 

the state of the element at time t.  

 



 

 
 

109 

 

Figure 68 Element state prediction process. 

 

The change in state is marked on schedule CSV file as a completed activity which is 

then fed into a planning software to visualize planned vs actual progress or recompute 

schedule using critical path method.  As discussed in the previous section, the number 

of false positives will not affect the performance of the algorithm until or unless it 

confuses with the state of the preceding activity. This can help in keeping more liberal 

thresholds thus increasing overall recall. It has been observed that in all cases except 

the reinforcement, relevant materials were detected in more than fifty percent of the 

frames.  

 

5.6. Parameter Tuning 

5.6.1. K Clusters 

A number of clusters have been decided earlier and are based on efficiency and 

optimum output. Increasing number of clusters beyond the elbow point (optimum) 

doesn’t yield sufficiently better results. There is no method of determining the exact 

value of K, however, in the case of this research, it has been observed that all images 
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contain 4 or less than four colors. The distance between cluster centers is decreased if 

K=4 is used for an image containing three colors and the same color is observed in 

multiple clusters. As observed in Figure 69, using 4 clusters for K-means clustering 

yields the best results with minimum number of clusters. 

 

Figure 69 K value vs. % recall error chart. 

5.6.2. Threshold 

Thresholds are critical in determining the success of an algorithm. When they are too 

conservative false negatives will be in excess due to the inability of the algorithm to 

detect materials that are existing in the image. Contrary to this, making threshold too 

liberal would result in excessive false positives where materials absent in image will 

be falsely inferred by the algorithm as present.  

Min Distance Threshold; variation in error with different min thresholds is shown in 

Figure 70. It can be inferred from the chart that minimum error value between 15 and 

18 will yield optimum results. The input vector is nine-dimensional which would 

result in high Euclidean distances even for centers that are relatively close to each 

other, thus reducing threshold beyond optimum increases false positives. Variation 

from cluster centers is expected in cases when one clustered image may have traces of 

multiple materials. 
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Figure 70 % Recall error variation with change in min distance threshold. 

Mean Value Threshold; is the secondary threshold to ensure that an outlier with low 

minimum value but high remaining cluster center distances aren’t inferred as a positive 

material presence in a picture. The effect of multiple threshold values on error is shown 

in Figure 71. 

 

Figure 71 % Prediction error for different values of mean. 

 

5.6.3. Color Space 

As discussed in the previous section, L, a*, b*, H, S, V and R, G, B color models are 

used within the scope of this research. Different combinations of color models were 
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tried to see their effect on error. A total of 4 possible combinations of color spaces are 

possible which are shown in Figure 72. Four complete learning and prediction 

algorithms were performed using the color model feature vectors with combinations 

and the resulting errors are reported in Figure 73. Similar errors with LABHSV and 

HSVRGB feature vector combination were observed while maximum error was 

observed in LABRGB combination. 9 feature vector space with LABHSVRGB space 

showed minimum error during development of algorithm. 

 

 

Figure 72 Color model combination for feature vector. 

 

 

Figure 73 Percent error for different color space combinations. 
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This chapter summarized the computer vision algorithm that forms the core of 

SCAES. The image has been segmented using K-means clustering followed by 

presence of material determination based on Euclidean distance from samples in the 

database using a minimum threshold criterion. Different color spaces were tested, and 

the results were compared. It has been observed that using the LAB, HSV, RGB 

combined space gives the optimum results. 

 

5.7. SCAER Validation Using Site Images 

A pilot implementation of SCAER was conducted on two under construction 

structures in Middle East Technical University (METU), Ankara, which were in 

different stages of construction. The Educational Science Department Building 

(ESDB) already mentioned in EAPE chapter is a multi-story concrete structure 

shown in  

Figure 74. The structure is in initial stages of construction, and only mat foundation 

along with underground tanks have been poured till the time that the access to the site 

was granted. Formwork (FW), Concrete Work (CW), and Reinforcement (RF) state 

detection cases have been evaluated in this structure.  

 

Figure 74 Images of under construction (a) Educational Science Department 
Building, (b) Classroom Hall Building. 

 
The second structure for the case study was central classroom hall building (CHB) 

which contains class rooms as well as large auditoriums with overhangs. The structure 

has a wider variety of walls such as light weight cement, red brick, and panel walls. 

The structure has concrete pouring activities as well as masonry work activities being 

(a) (b) 
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performed at the time of grant of access. The site is a three-story structure with an area 

of approximately 5000 m2. The structure was already in its advanced stages of 

completion when access was granted and most of the concrete work had already been 

completed. MW, CW, and DR installation states at different points have been 

evaluated at CHB site.   

 

5.7.1. Evaluation Metrics 

The accuracy of material identification using SCAER was measured by evaluating 

detected and actual materials in each frame to determine which category of decision 

table does the resulting detection belongs. Frame is appearing in the list of ‘Detected 

Materials’ but absent from the list of ‘Relevant Materials’, is classified as False 

Positive, while frames where material m is not detected but is present in ‘Relevant 

Materials’ list for that frame is determined as False Negative. Decision table, given in 

Table 17 determines the performance of an algorithm based on Precision and Recall, 

as seen in Eq. (21). Suppose we have an F number of frames, 𝑇௠  be the number of 

relevant frames where material 𝑚 is presented; 𝑑௠  is number of relevant frames where 

material 𝑚  has been detected by SCAER; 𝑁௠ is the total number of frames where 

material 𝑚 is detected. 

Table 17 Decision Table. 

 Detected Not Detected Total 

Relevant 
𝑑௠ 

(True Positive) 

𝑇௠ − 𝑑௠ 

(False Negative) 
𝑇௠ 

Irrelevant 
𝑁௠ − 𝑑௠ 

(False Positive) 

(𝐹 − 𝑁௠) − (𝑇௠ − 𝑑௠) 

(True Negative) 
𝐹 − 𝑇௠ 

Total 𝑁௠ (𝐹 − 𝑁௠)  

 

Performance characterization of SCAER uses performance characteristics (Eq. (21)) 

developed in last three decades for probabilistic text retrieval [159] which has also 

been used in content-based image retrieval [26]. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑑௠

𝑇௠
, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑑௠

𝑁௠
 (21) 

 

5.7.2. Sampling 

The POI is containing materials in CACL that were selected for verification of 

SCAER. Sample locations were marked on BIM that was created in Revit using 

Keynotes, which is a parameter to tag the elements with standard CSI keynotes or 

custom keynotes. Custom keynotes were used to create a POI-wise list of activity IDs. 

Each sample POI was then tagged with activity ID (see Figure 75) to annotate the 

expected state at the POI which will be determined. A complete list of activities that 

were monitored at ESDB for verification of CAPMS and a summary of the type of 

activities that were monitored on each floor is shown in  Table 18. 

 

Figure 75 Test locations marked according to activity on floor. 

Elements were selected to ensure validation of SCAER on elements of varying sizes 

that are located across the site at different levels. An attempt was made to bring 

diversity to sampling and while avoiding repetition of similar types of elements which 
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may share spatial location, dimensions or materials from the same stockpile. CHB was 

at its finishing stage with the majority of concrete work completed and brick masonry 

work in progress. Concrete columns, being omnipresent, had a maximum number of 

samples (see Figure 76(a)), followed by non-structural elements that included masonry 

walls and doors. The purpose of the case study was to determine the performance of 

the code in ascertaining expected state of the EOI. Figure 76 (b) contains concrete 

columns forming the framing of the structure along with walls that were monitored for 

testing. 



 

 
 

                                                    Table 18 Activity monitoring list for ESDB. 
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Lvl Activity ID POI Description Category Family Act Type Ser
L1 L1-100CN9239 329239 Concrete Work and Removal of Formwork 130x30 Concrete Column Columns 130x30 Concrete Column CN 1
L1 L3-100CN7918 427918 Concrete Work and Removal of Formwork 130x30 Concrete Column Columns 130x30 Concrete Column CN 2
L1 L3-100FW7922 427922 Installation of Formwork for 70x40 Concrete Column Columns 70x40 Concrete Column FW 3
L1 L3-100FW7923 427923 Installation of Formwork for 70x40 Concrete Column Columns 70x40 Concrete Column FW 4
L3 L1-100FW9196 329196 Installation of Formwork for 130x30 Concrete Column Columns 130x30 Concrete Column FW 5
L3 L3-100FW7924 427924 Installation of Formwork for 70x40 Concrete Column Columns 70x40 Concrete Column FW 6
L3 L3-100FW7925 427925 Installation of Formwork for 70x40 Concrete Column Columns 70x40 Concrete Column FW 7
L3 L3-100FW7926 427926 Installation of Formwork for 70x40 Concrete Column Columns 70x40 Concrete Column FW 8
L3 L3-100FW7927 427927 Installation of Formwork for 70x40 Concrete Column Columns 70x40 Concrete Column FW 9
L3 L3-100RF1124 411124 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 10
L3 L3-100RF7910 427910 Rebar Placement for 130x30 Concrete Column Columns 130x30 Concrete Column RF 11
L3 L3-100RF7911 427911 Rebar Placement for 130x30 Concrete Column Columns 130x30 Concrete Column RF 12
L3 L3-100RF7912 427912 Rebar Placement for 130x30 Concrete Column Columns 130x30 Concrete Column RF 13
L3 L3-100RF7913 427913 Rebar Placement for 130x30 Concrete Column Columns 130x30 Concrete Column RF 14
L3 L3-100RF7914 427914 Rebar Placement for 130x30 Concrete Column Columns 130x30 Concrete Column RF 15
L3 L3-100RF7922 427922 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 16
L3 L3-100RF7923 427923 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 17
L3 L3-100RF7924 427924 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 18
L3 L3-100RF7925 427925 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 19
L3 L3-100RF7926 427926 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 20
L3 L3-100RF7928 427928 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 21
L3 L3-100RF7929 427929 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 22
L3 L3-100RF7930 427930 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 23
L3 L3-100RF7931 427931 Rebar Placement for 70x40 Concrete Column Columns 70x40 Concrete Column RF 24
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Figure 76 Sample size for (a) Category (b) Expected State; where, DR: Door, MW: 

Masonry Work, CN: Concrete, FW: Formwork, RF: Reinforcement. 

The frequency of visits to the site is based on the expected change in the state of 

activity and frequency of visit is not fixed which can be either on consecutive days or 

weeks depending upon the duration between activities and expected change in state. 

Image acquisition device or the so-called BAAP can move on site only on timings of 

break between construction operations to have a pervasive and non-invasive 

monitoring mechanism. Also, during working hours, movement of robot and materials 

will affect BAAP navigation and compromise its safety. The timings of the day for 

data collection should also be considered as it can affect lighting, humidity, 

temperature, and exterior elements facing the sun, i.e., North, South, and West.  

 

5.7.3. Material Recognition from Site Images 

In this section, recall for the Expected States of samples are discussed separately along 

with the reason behind recall values. The threshold for minimum distance value of 

materials in database cluster to the cluster center from acquired  images at POI is kept 

at 26 for all expected state detections in this section. 

  

Concrete Work (CN), which most of the structure comprises of, can be safely classified 

0

5

10

15

20

25

30

DR MW CN FW RF

S
am

pl
e 

S
iz

e

Expected State



 

 
 

119 

as the primary material both structurally and visually. Regular pre-mix concrete is 

used without any color additives. Columns and shear walls are photographed to 

determine their performance using vision based algorithm. Figure 77 shows cluster 

containing concrete column element extracted from an image obtained from the site. 

The algorithm has been very successful with concrete and has been able to detect 

concrete in more than 80% of the cases. Concrete was detected in at least 50% of the 

images obtained at each POI as seen in Figure 78.  Glare had a negative effect on 

detection, and all POIs with 50% true negatives had sun rays directly incident on the 

imaging sensor. In the majority of cases, there were no glare issues, and 100% of such 

pictures had the concrete element correctly detected.  

 

 

Figure 77 (a) Concrete column images using robot at 45 degrees (b) Extracted 
column from the image. 

 

Figure 78 Correctly detected concrete from column POIs. 
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Concrete elements are solid, usually rectangular with dimensions greater than 50 cm, 

because of slenderness related constraints.  Due to the size of the concrete elements, 

they usually encompass a large number of pixels and are not affected by minor 

occlusions.  

 

Formwork (FW) being the prior requirement to concrete work is an important task that 

will be used to validate the vision algorithm. Images are taken after installation of 

formwork (see Figure 79) to see if the algorithm detects the presence of formwork or 

not. Doka formwork is installed on the test structure which consists of vertical wooden 

beams which are yellow in color and horizontal steel beams which are red. The 

plywood component that forms the concrete surface is dark brown and will not be 

considered in learning and validation of the algorithm.  

 

 

Figure 79 (a) Image with formwork (FW) with (b) extracted formwork from the 
image. 

Figure 80 shows POI-wise recall on the image of formwork. It is observed that 

formwork showed recall greater than 90% in all instances. The reason being that 

formworks are bright in color contrasting with their background or any element on 

site. Formworks are reusable and weathered unless formwork is being used for the 

first time, the faded color may fail SCAER to detect formwork. Nevertheless, in all 

the cases, the algorithm was able to detect FW in 50% or more of the acquired frames. 

(a) (b) 
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Figure 80 Correctly detected formwork POI. 

Masonry Walls (MW) in ESDB and CHB sites were of lightweight concrete, red brick, 

and modular pre-fabricated panels. Walls are constructed after column and slab work 

has finished and all formwork has been removed from the interior. Walls are also a 

very visible component and, therefore, selected for the validation study.  Figure 81 

shows masonry extracted from the image acquired from the site.  Although the 

Lightweight concrete is similar to column concrete, however, contrast in color and 

presence of only two materials in the frame allowed clear extraction of masonry work. 

Figure 82 shows recall from masonry work images where it is observed that wall 

element had recall greater than 90%. All frames on all elements are detected except 

one POI, where only in 60% of frames the algorithm was able to detect masonry using 

SCAER.   
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Figure 81 (a) Image with masonry and concrete (b) Extracted masonry from the image. 

 

Figure 82 Correctly detected concrete from masonry POIs. 

Walls like concrete are large elements occupying the complete frame captured by the 

imaging sensor. They are monochromatic and homogeneous except mortar joint, 

which was of the same color as the wall block in the case of a project under 

consideration because of LWC blocks that were used. Wall elements lacking any 

discontinuities were not affected by background elements.  

 

Reinforcement image obtained from the site is shown in Figure 83(a) and extracted 

reinforcement cluster is shown in Figure 83 (b). They are very thin elements, don’t 

occupy a large number of pixels and, if the distance from Element increases, the width 

of reinforcement may encompass less than one pixel making them hard to detect. 
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Figure 84 shows POI-wise recall of reinforcement from images taken at respective 

POIs. It is observed that reinforcements have a low recall as compared to all other 

materials. Reinforcement members are thin and affected by background elements that 

are completely visible causing a reduction in recall.   

 

 

Figure 83 (a) Image with reinforcement (b) Extracted reinforcement from image. 

 

Figure 84 Correctly detected POI for reinforcement. 

In two instances, SCAER was not able to detect reinforcement in even 50% of frames 

obtained at those particular POIs. The reason being their thin structure and rust that 

forms quickly especially in the open environment, as they are kept open on most sites. 

They are cut, bent and later fixed keeping them in contact with dust and dirt creating 

a coating that may change the appearance of reinforcement further reducing the 

probability of detection. Reinforcements are always installed in the open and outdoor 

0%

20%

40%

60%

80%

100%

120%

33
10

54
42

79
22

42
79

23
32

43
95

32
89

95
32

89
97

32
89

99
41

11
24

42
79

10
42

79
11

42
79

12
42

79
13

42
79

14
42

79
28

42
79

24
42

79
25

42
79

26
42

79
15

42
79

40
42

79
41

42
79

43
42

82
02

42
82

03
42

82
07

P
er

ce
nt

ag
e 

Fr
am

e

RF POI(s)

Not Detected Detected

(a) (b) 



 

 
 

124 

imaging is affected by glare problem especially when imaging in done on a very sunny 

day or if the focal axis of the camera points toward the sun. 

 

Doors (DR) installation is performed in later stages of construction and is determined 

using color information. Doors can be made up of glass, wood or steel, with paint 

applied either on-site or at factory. The structures had a long time before door 

installation could start and therefore validation of SCAER on doors was performed in 

another structure that was already constructed and in-use. The doors are similar to 

those expected on site, mostly consisting of single or double leaf painted doors giving 

classrooms access to corridors. Figure 85 shows the door image attained from site and 

door cluster extracted from it. As seen in Figure 86, Doors have a recall greater than 

90% due to their homogeneity and monochromatic nature.  

 

 

Figure 85 (a) Image with formwork (b) Extracted formwork from the image. 

 

Figure 86 Correctly detected door in frames acquired for each POI. 
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Doors are again large elements that occupy 50% of the pixels on the frame, and the 

clusters are well packed due to the homogenous nature. No discontinuities are present, 

and therefore no background noise is observed. Since all doors imaged during the 

scope of this research are installed indoors, glare is not an issue. Doors provide better 

result as compared to other homogeneous elements like concrete columns since the 

color of doors contrasts with its surroundings.  

 

5.7.4. False Positive and Confusion 

False detection of materials in images that are not present, is also called confusion of 

one material with the other. Figure 87 shows the confusion of concrete work, which is 

preceded by formwork and followed by plastering and painting. The architecture of 

structure in consideration followed a brutalist approach. Therefore, there was no 

activity following concrete work.  

 

 

Figure 87. False positive of CN with all other materials for different minimum 
threshold values. 

 

Figure 88 shows the confusion of formwork with other materials, being the only 

directly connected activity on the same POI, is the point of concern and it was 

observed that formwork was not confused with concrete for minimum value threshold 
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of 24 or less. The color difference and the decision to use the stiffeners for developing 

material signatures for FW completely removed confusion for concrete.  

 

 

Figure 88 False positives of FW with all other materials for different minimum 
threshold values. 

Figure 89 shows the confusion of Masonry with other materials. There is no preceding 

activity for masonry wall locations. Although it has a high degree of confusion with 

concrete due to its cement-based constituents, it does not affect the performance of 

SCAER. Masonry work will be followed by painting and plaster work, but these 

activities could not be monitored since they did not occur during the window of site 

access granted by the project management. 

 

Figure 89 False positive MW with all other materials for different minimum threshold 
values. 
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Figure 90 shows confusion for Reinforcement (RF). RF precedes FW and followed by 

CN, and it can be observed for threshold values of less than 26. FW has no confusion 

with concrete but a limited confusion with RF. RF consists of thin members; the 

presence of background noise affects reinforcement and tends to confuse it with 

formwork especially when threshold value increases.   

 

Figure 90 False positives of RF with other materials for different minimum threshold 
values. 

 

5.7.5. Element State Prediction Recall 

As discussed in the previous section, the number of false positives will not affect the 

performance of the algorithm until or unless it confuses with state of preceding 

activity. This can help in keeping more liberal thresholds thus increasing overall recall. 

It has also been observed that in all cases except reinforcement, 50% or more frames 

were detecting the relevant material. Hence it can be considered as a threshold for 

determination of Element state at POI. Following this rule CN, MW, and FW were 

correctly detected as current state for all relevant POIs (See Figure 91). RF is the only 

expected state that has a recall of less than 100% which is caused by its form, presence 

of dust/rust, background noise and presence in the open environment being subject to 

glare. 
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Figure 91 Percent recall for materials in the project. 

 

This result is a considerable improvement over CBIR [26], [55], and 4D photo-log   

[160] based images detection since none of those cases will be able to give 100% recall 

for any element. It has only been possible due to the use of context-aware schedule 

based algorithm that reduces search space to only a couple of materials that may 

represent the preceding state or the expected state. Acquisition of multiple images at 

every POI also reduces the probability of a false detection since one or more images 

are affected by environment or hardware related issues. 

 

5.8. Conclusion 

SCAER uses contextual information to attain accurate element state information that 

is used for progress measurement. The contextual information is attained from the 

schedule and provides robust results as compared to other image-based progress 

monitoring techniques that rely solely on computer vision algorithms. The algorithm 

was able to detect concrete, formwork, masonry, and door with accuracy greater than 

95%. However accuracy for detection of rebar was less than 90% because of 

background noise and thin structure of elements.  Although individual frame wise 

accuracy goes down to 80% due to the presence of images with lighting and glare, use 
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of multiple images and contextual information improves the accuracy of the proposed 

methodology to 100% for some cases like masonry, doors, and formwork. Pattern 

information can also be used to further improve the accuracy of SCAER. 

Construction imaging can be done in varying site conditions in the presence of clutter 

with an element in different conditions due to dust. Therefore computer vision 

algorithms does not always give desired results. SCAER covers this gap and provides 

robust information for fully automated progress determination. Image acquisition is 

an important aspect of SCAER which is done using BAAP, which has been discussed 

in the previous chapter.  
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CHAPTER 6 

 

6. PROGRESS SIMULATION AND VISUALIZATION 
 

 

An End to End implementation of CAPMS is performed on a simulated structure to 

validate its performance using actual site image and estimated cost performance. This 

chapter verifies all processes in CAPMS by implementing them on an imaginary 

structure. 

6.1. Framework for Progress Visualization using Dashboard in CAPMS 

A well-devised dashboard is an effective tool for project control. A real-time control 

allows the management team to make small changes that may add-up to make a 

tangible effect on a project’s performance. The approach to building the dashboard is 

to use common questions that the project management team needs to answer. A 

construction manager would require to answer the following questions: 

1. Is my project on schedule? What is the budget cost of work scheduled? 

2. Is my project on-budget? What are the budgeted cost and actual cost of work 

performed? 

3. How far behind or ahead is the project from schedule and budget? 

4. What percentage of the project is complete? What is the rate of progress 

throughout the project? 

The answers to questions one and two is Budgeted Cost of Work Scheduled (BCWS), 

Budgeted Cost of Work Performed (BCWP) and Actual Cost of Work Performed 

(ACWP) measures (see Figure 92 (a)) while CI and SI measures (see Figure 92(c)) 

will answer question three. The S-curve and progress measures (see Figure 92(b)) will 

provide the rate of progress and percent progress respectively. The SI and CI are 

attained using the relation given in Eq. (22)). 
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𝑆𝐼் =
𝐵𝑊𝐶𝑃்

𝐵𝐶𝑊𝑆்
;      𝐶𝐼் =

𝐵𝑊𝐶𝑃்

𝐴𝐶𝑊𝑃்
 (22) 

 

Where, 𝐵𝑊𝐶𝑃் is Budgeted Cost of Work Performed at time T, 𝐵𝐶𝑊𝑆் is Budgeted 

Cost of Work Scheduled at time T, 𝐴𝐶𝑊𝑃் is Actual Cost of Work Performed at time 

T. 

 

 

Figure 92 Project management dashboard. 

 

Dashboards provide great advantage over traditional paper-based monitoring 

techniques, however, to get full benefit the data should be attained systematically and 

should be reliable. Figure 93 shows data acquisition and processing methodology for 
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dashboard update using 4D BIM. BAAP attains daily monitoring list from 4D BIM 

based on activities completed on the last working day, navigates to the site and attains 

images of BIM elements which are processed using SCAER where the previously 

confirmed state is compared with the scheduled state to determine its actual state. The 

cost which is stored in BIM as a parameter for each element is queried to determine 

BCWP. The BCWS is attained from the baseline schedule and is updated whether any 

progress has or has not been achieved while ACWP is attained from the company cash 

flow and accounts. If the progress is confirmed, ACWP, BCWP and BCWS is updated 

using cost information queried from BIM. These metrics are then used to calculate CI, 

SI and Percentage Progress using Eq. (22) for visualization of the measures and charts 

in the dashboard (see Eq. (23)).  

 

 

Figure 93 Schedule update from POI and dashboard update.  
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠் =
𝐵𝐶𝑊𝑃்

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡
 (23) 

 

The cost metrics are visualized on a dashboard (see Figure 94) for birds eye view of 

progress and instant update to the management team without any extensive 

calculation. The proposed dashboard has a summary schedule which is a direct output 

from the planning software, providing the percentage completion of summary 

activities and milestones (see Figure 94 (a)). The S-Curve provides the rate of progress 

throughout the project (see Figure 94 (b)) showing how progress varied through 

different stages of construction and whether the rate is slowing down for the 

management team to take corrective action. Dial gauges for cost-based metrics that 

include BCWP, BCWS, ACWP (see Figure 94 (d)) and the performance parameters 

as CI and SI (see Figure 94 (c)). The percentage progress bar shows the progress 

completion as a ratio of BCWS and Total Cost of Work Calculated during the creation 

of baseline schedule SI (see Figure 94 (e)). The ID of last activities performed and 

checked by BAAP are also enlisted for information of project stakeholders (see Figure 

94 (f)). The dashboard is not only useful for the management team and assists them in 

making a timely decision, but it is also useful to stakeholders in a remote location and 

interested in determining the state of the project through an independent source. 
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Figure 94 Cinfo dashboard with (a) updated Gantt chart tracking, (b) Day of last 
activity, (c) S-curve (d) KPI (e) Cost Metrics (f) Progress bar (g) Daily monitoring 

list. 

 

6.2. Simulated structure and activities tracking 

End to End (E2E) validation of the proposed automated progress monitoring system, 

CAPMS, was performed on a virtual structure through various stages of its simulated 

progress. Simulation is kept as realistic as possible by using images of actual elements 

taken from the construction site at various stages of progress. Figure 95 shows the 

floor plan for the under-construction virtual structure whose progress is being updated 

using images attained from the site. The structure consists of columns, masonry walls, 

and doors. The number of activities performed on the structure is shown in Figure 96.  
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Figure 95 Floor plan for the virtual structure. 

 

BIM was created on Autodesk Revit, and activity list along with POI list (see Table 

19) was extracted using EAPE methodology. Number of POIs extracted for elements 

belonging to each category is shown in Figure 96. Activity list was used to create a 

construction schedule on a planning software with the activity relationships defined 

according to principles of construction planning. Figure 97 shows a summary of the 

schedule while the detailed schedule is shown in Appendix A.  

 

 

 

 

 

 

 

(a) 
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Table 19 POI list extracted from virtual structure BIM. 

Lvl POI Cat ID Category Family X Y 

L0 277717 -2001330 Structural Columns 24 x 30 -8424.83 11388.55 
L0 277727 -2001330 Structural Columns 24 x 30 -8424.83 -1958.12 
L0 277741 -2001330 Structural Columns 24 x 30 -940.711 -1958.12 
L0 277750 -2001330 Structural Columns 24 x 30 -940.711 11388.55 
L0 277759 -2001330 Structural Columns 24 x 30 5483.158 11388.55 
L0 277768 -2001330 Structural Columns 24 x 30 5483.158 -1958.12 
L0 277777 -2001330 Structural Columns 24 x 30 12094.13 -1958.12 
L0 277786 -2001330 Structural Columns 24 x 30 12094.13 11388.55 
L0 277795 -2001330 Structural Columns 24 x 30 12094.13 4839.95 
L0 277804 -2001330 Structural Columns 24 x 30 5483.158 4839.95 
L0 277813 -2001330 Structural Columns 24 x 30 -940.711 4839.95 
L0 277822 -2001330 Structural Columns 24 x 30 -8424.83 4839.95 
L0 277831 -2001330 Structural Columns 24 x 30 17520.11 11388.55 
L0 277849 -2001330 Structural Columns 24 x 30 17520.11 -1958.12 
L0 277872 -2001330 Structural Columns 24 x 30 17520.11 8332.538 
L0 277881 -2001330 Structural Columns 24 x 30 17520.11 1659.2 
L1 277919 -2000011 Walls Generic - 8" 2271.224 11388.55 
L1 277993 -2000011 Walls Generic - 8" 8788.643 11388.55 
L1 278078 -2000011 Walls Generic - 8" 14807.12 11388.55 
L1 278186 -2000011 Walls Generic - 8" 14807.12 -1958.12 
L1 278258 -2000011 Walls Generic - 8" 8788.643 -1958.12 
L1 278318 -2000011 Walls Generic - 8" 2271.224 -1958.12 
L1 278605 -2000011 Walls Generic - 8" 18520.11 -1149.46 
L1 278762 -2000011 Walls Generic - 8" 18520.11 3995.869 
L1 278808 -2000011 Walls Generic - 8" 18520.11 8860.546 
L1 279399 -2000011 Walls Generic - 8" -4674.51 -1958.12 
L1 279464 -2000011 Walls Generic - 8" -7424.83 440.9127 
L1 279518 -2000011 Walls Generic - 8" -7424.83 7114.252 
L1 279574 -2000011 Walls Generic - 8" -4682.77 11388.55 
L1 278884 -2000023 Doors 36" x 84" 17520.11 -149.462 
L1 278943 -2000023 Doors 36" x 84" 17520.11 9860.546 
L1 281018 -2000023 Doors 68" x 80" -8424.83 9093.153 

L1 281164 -2000023 Doors 68" x 80" -8424.83 -1815.12 
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Figure 96 No of elements from each category in the simulated structure. 

 

Figure 97 Schedule summary of the virtual structure. 

All images that were acquired on ESDB construction site are of elements similar in 

size to those assumed during creation of simulated structure BIM. The realization of 

BAAP which is the robot discussed in BAAP chapter was taken to the site to take 

images of the actual elements in a state that matches the simulated states, according to 

a daily monitoring list.  

 

6.2.1. Day 1: Rebar Installation, Imaging and Analysis 

 

At the end of Day 1, all rebar fixing is planned to be completed on a total of sixteen 

columns as shown in Revit representation in Figure 98.  The images attained from the 

site using BAAP are transmitted to the server using PHP and processed using SCAER 

with results shown in Figure 99. SCAER detected rebar in more than fifty percent of 

frames for all POIs except one, predicting the presence of rebars on those POIs. All 

activities planned to be completed at the end of the first day of construction are 

complete, therefore, the BCWP is equal to BCWS. The actual cost of work scheduled 
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is estimated to be 10% greater than budgeted cost because of unforeseen expenditures.  

 

Figure 98 Activities completed at the end the first day of construction. 

 

Figure 99 SCAER output for Day 1 of inspection. 

 

Figure 100 shows dashboard at the end of Day 1, when the placement of reinforcement 

at all columns has been completed. Rebar is made up of thin members and therefore 

difficult to detect and has a higher error rate.
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Figure 100 Dashboard view after completion of rebar installation work.
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6.2.2. Day 2: Formwork Installation, Imaging, and Analysis 

 

The activities completed at the end of Day 2 are the installation of formwork as shown 

in Revit representation in Figure 101. The images of formwork attained from 

construction site are transmitted to the server and processed using SCAER whose 

result is shown in Figure 102. SCAER was able to detect all formwork in all images 

correctly. Figure 103 shows the dashboard for a project manager, displaying cost and 

schedule metrics. At the completion of formwork, the project manager can see 29% 

completion of work and BCWS, BCWP, and ACWP values. The SI is not equal to one 

due to the failure of SCAER to detect rebar’s installation on Day 1, the effect of which 

will be seen throughout the project. 

 

Figure 101 Site status at the end of Day 2 of construction. 

 

 

Figure 102 SCAER Output for Day 2 of inspection. 

0%

20%

40%

60%

80%

100%

120%

27
77

17
27

77
27

27
77

41
27

77
50

27
77

59
27

77
68

27
77

77
27

77
86

27
77

95
27

78
04

27
78

13
27

78
22

27
78

31
27

78
49

27
78

72
27

78
81

P
er

ce
nt

ag
e 

Fr
am

e

FW POI(s)

Not Detected Detected



 

 
 

142 
 

 

Figure 103 Dashboard view after completion of formwork installation work.
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6.2.3. Day 7: Removal of Formwork, Imaging, and Analysis 

 

The activities completed at the end of Day 7 are the removal of formwork after 

concrete work has been completed, as shown in Revit representation in Figure 104. 

The images of concrete columns are again attained using the robot and transmitted to 

the server for processing with SCAER as the results are shown in Figure 105. SCAER 

was able to detect correct element state at all POIs except one. Figure 106 shows the 

dashboard for a project manager on the completion of concrete work. The project 

manager can see 66% completion of work and progress metrics calculated from cost 

values. Although all columns were supposed to be completed, SCAER was unable to 

detect one concrete column.  

 

Figure 104 Virtual site view at the end of Day 7 of construction. 

 

 

Figure 105 SCAER output at the end of Day 7 of inspection. 
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Figure 106 Dashboard view after completion of concrete work.
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6.2.4. Day 9: Masonry Work Completion, Imaging, and Analysis 

The activities completed at the end of Day 9 are masonry work as shown in Figure 

107. The robot is taken to site and images of lightweight concrete block walls are 

acquired, transmitted to the server and processed using SCAER with results shown in 

Figure 108.  As seen, SCAER can detect all walls in the images and update dashboard 

shown in Figure 109. As seen in dashboard 98% of progress is complete, and CI, SI, 

BCWS, BCWP, and ACWP are updated. Masonry work has a higher recall as 

compared to other elements, but since this activity is during later stages of 

construction, the error from previous SCAER implementation is carried forward. 

  

 

Figure 107 Rendered Site status at the end of Day 9 of construction. 

 

Figure 108 SCAER output at the end of Day 9 of inspection. 
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Figure 109 Dashboard view after completion of masonry work. 
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6.2.5. Day 11: Final Site Status and Dashboard 

 

The activities completed at the end of Day 11 are the final activities  and include 

installation of doors as shown in Figure 110.  Images of doors are acquired from a 

finished structure since doors were not present on the construction site during 

acquisition. The images acquired using the robot, transmitted to the server and 

processed using SCAER with results shown in Figure 111.  As seen, SCAER can 

detect all doors in the images and updates dashboard shown in Figure 112. As seen in 

the dashboard, 100% of progress is showing completion of all work.  Although all 

activities were completed, SI is still not 100% because of the failure of SCAER to 

preform recall. Doors being distinct in color have high recall, and therefore all were 

detected.  

 

Figure 110 Activities completed at the end of Day 11 of construction. 

 

Figure 111. SCAER output at the end of Day 11 of inspection. 
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Figure 112 Dashboard at project completion. 
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6.3. Discussion on Cost Metrics 

The error in schedule metrics is dependent upon the cost of elements; the higher the 

cost, the greater is the error. Figure 113 shows the comparison of estimated and actual 

cost metrics. The higher rate of error is observed in RF as compared to other element 

states when metrics are calculated for individual states.  

 

Figure 113 Estimated vs. Actual progress metrics comparison. 

Error at the initial stage will be carried through the project while the error in later 

activities will only give erroneous results at the later stage of the project. Therefore, 

when cumulative progress metrics are calculated, error in earlier detection continues  

throughout the project even though following activities like doors have 100% recall 

(see Figure 114) if seen in isolation.   
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Figure 114 POI error and KPI error comparison. 

 

6.4. Conclusion 

 

All steps involved in CAPMS were performed on a simulated structure and progress 

information is visualized on a dashboard. Once the activity is confirmed by image 

processing operations, the client updates the schedule file by updating activity status 

and sends the file to the server using PHP push request. The server will store the record 

of the updated schedule which will be used along with cost information to provide 

progress KPIs in the form of Schedule Performance Index (SPI), Cost Performance 

Index (CPI), Schedule Index (SI), and Cost Index (CI). These parameters can be used 

to update the dashboard of real-time progress information to be used for project 

management.  

 

The dashboard for a project manager that includes operational and analytical data; i.e., 

CI, SI and cost metrics at the end of the first day is generated according to the 

inspections performed in the morning of the second day before workers start their 

work. The rebar fixing according to cost information stored in the schedule is the 

actual cost of work performed while the company account provides ACWP. The 

metrics provide necessary information to project managers and help them asses the 

state of the project at a glance. The management is better equipped to take timely and 

pre-emptive decisions that will help to attain project objectives. 

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%
101%

RF FW CN MW DR

A
cc

ur
ac

y

Element State

Progress Metric Error POI Error



 

 
 

151 

 

CHAPTER 7 

 

7. CONCLUSION 
 

 

Integration of site data with building information databases will assist in the 

automation of machines and processes [131]. A fully automated system providing real-

time data to project management will assist in timely corrective action before delays 

start affecting project objectives. If data is not provided on time and corrective actions 

are not taken promptly, delay mitigation costs would exceed exponentially resulting 

in cost overruns and subsequent failure of the project. The objective of the automated 

monitoring system was to attain data from the site and convert it into information that 

could be used by project management. The data in the case of this research was images 

and information is the progress state that is updated into the schedule.  The developed 

system was able to attain images from the site at tilts that were able to acquire images 

with minimum probability of the presence of occlusions and foreign elements. The 

acquired frame is then clustered, and presence of expected material is determined 

based on cluster center distances from material signatures stored in the database. The 

presence of expected material determines completion of activity at a particular POI 

which is then updated as per schedule as a completed activity.  

 

In interviews and discussions with project management teams, it was ascertained that 

the frequency of updating the schedule is three months. Hence for a project like 

Classroom Hall Building (CHB), only 3-4 updates were conducted throughout the 

project, which is not sufficient for early detection of the delays. Any delay occurring 

on site will take up to three months to reach the knowledge of management and any 

counter measures taken by them will also be delayed by the same amount of time. If 

critical activities were delayed and the client was informed after that much of delay, 

the project objectives will be permanently compromised with no chance of redressal 



 

 
 

152 

except that the remaining schedule will crash with the expenditure of massive amounts 

of money. In current age when money is in short supply and companies want to save 

as much as possible on projects without compromising on quality, delays of this nature 

cannot be allowed in the construction industry. The contractor will be getting activity-

wise reports for work in progress which, along with cost, gives the total cash flow on 

daily or activity wise basis, giving the contractor ample time to arrange funds. The 

schedule metrics in the form of ACWP, BCWP, SI, or CI will give a bird’s eye view 

of project performance; their regular update will be helpful for portfolio management 

with the top management not required to indulge in unnecessary minor details to get 

the true view of the site.  

 

While developing an automated monitoring system, a site photo acquisition and the 

archival system have been developed. Sites usually have large servers where photos 

are archived, and retrieval of relevant images is not always an easy task. An element-

wise image archive with date and activity information will have great value in claim 

and contract management, as well as manual progress monitoring. It is useful for 

technology repulsive managers, who do not want to implement automated progress 

monitoring system end to end (E2E). They can still make use of modules that create 

an automated progress monitoring system. 

 

7.1. Review of Developed Methodologies 

The suggested CAPMS is an amalgamation of three distinct processes namely EAPE, 

BAAP, and SCAER each of which is explained and validated using site experiments.  

EAPE is a precursor to CAPMS which attains navigation points for image acquisition. 

It enables the acquisition of site images along with BIM element tags. It also helps to 

determine site activities that result in the creation of 4D BIM, which is used to be a 

manual and time-consuming process that could make implementation of an automated 

progress monitoring unviable. The creation of schedule becomes easier when the 
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activity list containing element information is attained from BIM, and only 

dependencies have to be provided. The methodology is relevant to structures with 

repeating elements of the same materials having the same type of activities that would 

be performed on them. A more conclusive element-wise activity is required if the 

structure contains elements of varying materials and types.  

 

Point of Interest (POI) are coordinates on the BIM frame of reference where images 

are acquired for progress monitoring purposes, enabling acquisition of images that 

contain element ID in its name. Robots navigate to POIs on a daily basis by extracting 

POI list from the database to acquire an image of an element that will be processed 

using computer vision algorithms to determine the progress. The imaging Points 

extracted by EAPE may be non-navigable due to the presence of adjoining elements 

or absence of approach path. The algorithm should be improved to ensure that all POIs 

are navigable. The element-wise activity list should also be expanded to increase the 

coverage to multiple family types within major categories. 

 

SCAER processes images obtained at Points determined by EAPE, using contextual 

information embedded within image metadata to attain accurate element state 

information. The algorithm provides robust results as compared to other image-based 

progress monitoring techniques that rely solely on computer vision techniques without 

utilizing the spatial and temporal context of the image. The algorithm was able to 

detect concrete, formwork, masonry, and door with accuracy greater than 95%. 

However accuracy for detection of rebar was less than 90% because of background 

noise and thin structure of the elements.  Although individual frame wise accuracy 

goes down to 80% due to the presence of images with lighting and glare, use of 

multiple images and contextual information improves the accuracy of the proposed 

methodology to 100% for some cases like masonry, doors, and formwork. Pattern 

information can also be used to further improve the accuracy of SCAER. 
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BAAP is a novel data acquisition technology that uses BIM for navigation to a data 

point and attains site data using sensors mounted on it.  A robot is developed based on 

the BAAP framework to determine its viability in the construction industry. A 

methodology is proposed for acquisition, storage and retrieval of images providing a 

much needed site image archiving system using an autonomous platform. Robot 

attains navigation points from BIM, reaches them, acquires images and transmits them 

to the server. The navigation algorithm was validated in a corridor where the robot 

was able to navigate to predetermined points with less than 4% error in direction of 

motion. A verification of image acquisition and transmission algorithm was also 

validated on an actual construction site and it was observed that extreme tilt angles 

result in low quality images. A higher quality robot with commercial grade electronics 

will have higher accuracy. 

 

A simulated structure was created to test end to end implementation of CAPMS 

including visualization on the dashboard. The images were obtained on building 

components from an actual construction site, processed using SCAER to update 

schedule. The building elements cost information is processed using SCAER output 

to determine progress metrics like SI, CI, which are visualized on a dashboard. It is 

observed that accurate cost based metric is attained using CAPMS which can be 

visualized on the dashboard to provide quick progress summary. 

 

7.2. Case for Robot as Employees 

Use of robots in the construction industry for progress monitoring can be a huge cost 

saver. Cost of a worker is going up with new human resource regulations that tend to 

raise the cost of man hour and add legal complications for the employers. Worker need 

holidays, sick leaves, rest during work and psychological motivation. The productivity 

of a worker will also vary from time to time based on his mood, the weather and his 

overall wellbeing, the quality of food he is being served and the amount of sleep he is 

getting as well as his family and personal life. Worker meeting an accident puts severe 
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legal burden on the employer, tarnishes his reputation and subjects him to severe 

penalties along with compensations that he has to dish out. This will have a domino 

effect resulting in rise in insurance costs and decrease in motivation and productivity. 

The robot does not suffer from any of these disadvantages since it does not need rest 

and holidays, and if it meets an accident, the only cost will be the cost of replacement 

until or unless the robot causes damage to a human being during its crash. The robot 

can negotiate risky terrains and go on unstable pathways (see Figure 115). The robots 

are very good at communication with each other and are immensely easy to train. Once 

the training algorithm has to be developed, all the remaining robots can be trained and 

rolled out in a matter of minutes if not in seconds. The robot does not suffer from 

intellectual differences as in the case of humans whose training may take months or 

even more. Information provided by the robot is also free from adulteration and 

personal biases since robots do not have ethical problems and have nothing to gain or 

lose from reporting problems in schedule adherence. The project management suffers 

repercussions if it is not able to deliver on time and its project is suffering delays, so 

it may take actions to project a rosy picture of progress to its higher management or 

stakeholders which may not match with the actual site conditions. This may have 

strategic implications while working in security sensitive and environmentally harsh 

conditions.  

 

Figure 115 Robot can negotiate unsafe routes. 
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The total amount of money spent on development of the robot for this research is US 

$500 which is around a minimum monthly wage of a worker in Turkey during this 

research. Supervisors are usually paid much more than the minimum wage of a worker 

and their additional cost includes insurances and taxes. The cost of managing a robot 

for supervision instead of a human supervisor is many folds, but it should be accepted 

that research has not reached a point where this can be applied on sites as further work 

has to be done in developing protocols and making the sites robot-friendly. 

 

7.3. Contribution to Field of Knowledge 

Adopting automated progress monitoring technologies will assist project stakeholders 

by facilitating more accurate schedule forensics, delay analysis, and corrective action 

planning [8]. The purpose of this research is to develop a cost-effective and accurate 

mechanism for identification of building elements using computer vision algorithms 

assisted by robots. The system should require minimal or no human input and should 

not have any effect on-site activities which include no extra work for project 

management or workers.  

 

Some research has been undertaken on image-based progress monitoring using images 

[16], [55], [161], [56] and other technologies [8], however, a fully comprehensive 

automated progress monitoring mechanism that can be  implemented to the site has 

been lacking in such research studies as seen in Table 20. Robots are suggested but 

mostly for repetitive and mechanical tasks but not in context-aware intelligent role for 

data acquisition. This system can be further developed in controlling robots 

performing construction activities paving the way towards a construction site with no 

human presence bringing immense safety, productivity, and quality-related benefits.  

 

 



 

 
 

157 

Table 20 Comparison with other research on progress monitoring. 

Research 

Major 
Elements 
in Scope 

5D BIM 
 

Automated 
Data 

Acquisition 

Automated 
Schedule 
Update 

Image Content 
Determination 

Progress 
Metrics 

Visualization 

This 
Research 

      

Brilakis  et 
al. 2015 [26] 

      

Han et al. 
2015 [60] 

      

Park et al. 
2018 [162] 

      

Hamledari et 
al.  2017 [61] 

      

Han et al. 
2015 [19] 

      

 

7.4. Drawbacks of Context-Aware Progress Monitoring System 

As mentioned earlier, construction sites are not yet suitable for automation and 

technology implementation. Clutter (as seen in Figure 116) should not be present on 

site because of OHS-related concerns. However, construction sites are full of clutter 

which makes robot navigation difficult. Elements on site that cannot be classified as 

clutter but can be placed by the contractor for various project management related 

reasons like a pathway for movement of hand trolley over stairs, an electrical socket 

for grinders and drill, etc. will also hamper the movement of the robot. The robot will 

keep on running into clutter and encounter objects which it is not programmed to avoid 

thus being unable to reach POI. The robot, being small in size, can be crushed 

underneath worker’s foot or be kicked around by mischievous workers. Unguarded 

edges, pot holes, and floor openings are present in structure but not on BIM which will 

compromise the safety of the robot.  Workers can also be present in images while 

robots are attaining site data continuously and the contractor may or may not want to 

share such images raising privacy concerns or legal issues. If the robot is stolen, the 

data inside can be retrieved and may also end up falling in wrong hands which can 

cause complicated legal and criminal issues for a contractor.  
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SCAER is affected mostly by glare since light incident on the imaging sensor affects 

white balancing making the image very dark and difficult to detect. The algorithm 

shows that recall is greater than 90% for solid homogenous elements like concrete and 

walls but decreases for non-homogeneous members like formwork to less than 50%. 

It is less than 50% for reinforcements which comprises of thin member and with many 

discontinuities within the frame causing background noise and false detections. 

 

 

Figure 116 Cluttered site creates robot navigation difficulties. 

 

The biggest issue with the system is exceptional handling due to errors caused by false 

positives and false negatives. If they are reported by a robot, they can cause 

unnecessary alarm and result in wastage of management’s time defeating the whole 

purpose of the system. Special consideration should be given to handling these false 

alarms, and additional checks should be employed to ensure that reporting to 

management remains error free. 

 

7.5. Site Requirements 

In order to ensure free movement of robot following rules should be followed: 
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a. Pathways should always be kept clear which is also important from the OHS 

perspective since clutter creates fall hazard and material loss which any 

management would like to prevent.    

b. Installation of temporary structures, e.g., supports, struts, and braces for 

formwork should not be placed at points that are within imaging range from 

elements. 

c. BIM should block the location of openings to prevent the robot from falling 

through. 

d. Sites should be vacated during lunch breaks for image capturing, but this may 

be a constraint where work is being carried out round the clock.  

 

7.6. Future Work 

The system has the potential for further development and expansion into quality 

assurance, health and safety, productivity measurement and all other domains where 

images can be used to ascertain information. The author conducted research [163] on 

use of images to determine rebar diameter and spacing (see. Figure 117) by performing 

processing in both 2D and 3D domains. The same research can be performed on 

multiple images acquired by SCAER to further enhance attained information.  The 

research also has the potential to expand into MEP domain (see Figure 118), as was 

observed during clustering operations in SCAER. Hence the scope of application can 

be further expanded into building categories that were not validated in the scope of 

this thesis.  During image acquisition for validation, images of the tower crane were 

also acquired, and it was observed that clustering approach worked on tower cranes 

very efficiently (see Figure 119), confirming the possibility of application beyond 

structural domain. SCAER can be used for inventory management to determine which 

material has arrived on trucks (see Figure 120) as well as different materials in 

stockpiles based on the package colors (see Figure 121). Safety barricades in images 

can be identified to see if edges are guarded against falls. Barricades have fixed 

location on edges, once marked on BIM model can be detected using SCAER. 

Confirmation of safety compliance by a worker can be based on detection of safety 
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vests, climbing belts, and other safety Equipment on images during site work. 

Noncompliance of safety protocols can be used to measure safety score and enable 

project managers to enforce safety regulations before an incident occurs. Images on 

elements can be checked for cracks and textures which can be used for quality 

assurance and confirmation of compliance to specifications. Plenty of work has been 

done on quality assurance on the basis of images. The number of workers at the 

location during the conduct of an activity can provide number of man-hours spent per 

activity which will provide productivity measure of the project. Presence of worker 

can be detected on the basis of life vests. If High Visibility (HV) jackets have a unique 

symbol identifying the worker, then productivity can be measured for different types 

of teams and compared with each other. If the HV vest has a QR code or a symbol that 

can differentiate one worker from the other, then the images taken by the robot can be 

used as a substitute for marking attendance.  

 

 

Figure 117 Reinforcement image processed to attain rebar diameter [108]. 

 

(b) (a) 
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Figure 118 (a)-(b) SCAER for detection of MEP in masonry images. 

 

As mentioned earlier, while creating the automated progress monitoring system, an 

automated imaging system has been formulated, which will have great value in claim 

management. Any claim can easily and quickly be verified by extracting images and 

reviewing the information. This process can be manual like most of the companies do 

and, with some computer vision algorithms, it can also be automated. 

 

Figure 119 (a)-(b) Boom loader detected (c)-(d) crane detected by K-means 
clustering in SCAER. 

(b) (a) 
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Figure 120 Loaded truck image with extracted (b) Truck (c) Loaded Formwork. 

 

 

Figure 121 (a) Insulation stockpile image with extracted (b) XPS stockpile (b) Glass 
wool stockpile. 
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A camera mounted on a drone or helmet can attain images and subsequently apply 

SCAER on them to determine completion of an activity. The location of the element 

has to be determined which can be done by using shoe mounted accelerometers or 

displacement sensors in case of drones. Drones may create safety issues inside the site 

which may need some special countermeasures. An additional laser scanner, thermal 

camera or stereo camera can be mounted on the robot to obtain 3D images, reflection 

values, and infrared maps to measure dimensions with pinpoint accuracy. Thermal 

cameras can measure temperature in a contactless manner that can give an idea about 

the maturity of concrete or provide information about hotspots. Additional sensors can 

also be used for Augmented Reality (AR) based creation of walk through by super 

positioning of planned and attained progress using computer vision techniques. Plenty 

of research exists on AR and its use in construction. RFID sensors mounted on the 

robot can help in determining movement of materials for inventory management 

purposes or embedded within materials which can help to attain data regarding hidden 

elements which were not photographed earlier. Robot-mounted with screen and 

speaker can relay information to workers and pass on instructions from the 

management team. A touch screen or voice recognition module can make 

communication two ways and enable workers to make queries regarding their work or 

see additional information, recent changes and provide feedback, most of which can 

be processed by onboard computer without taking time of site management team, 

freeing them for more intellectual work. A drill, probe or a sampler installed on the 

robot can take onsite samples which can be tested by the robot by simple optical means 

or carried to the laboratory for further testing. The robot will have access to laboratory 

records and can provide it to site workers when required, in case some anomaly is 

detected by workers in material and where more clarity is required. Hence a mini Mars 

rover type concept is applied here; the domain would change from a planet to site. 

 

A robot undertaking human jobs has great social and political implications. While 

companies save millions of dollars through automation, humans may become jobless 

and unable to feed their families. The robot will not be buying from the market thus 

reducing the number of consumers and disturbing the very foundation of a capitalist 
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economy. Despite all these repercussions for the human society brought about by 

automation, this is what is in store for humanity which has to fight its way out for 

survival and to safeguard its interests in the future. 
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