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ABSTRACT

OPTIMAL CONTROL IN FLUID FLOW PROBLEMS WITH POD
APPLICATIONS TO FEM SOLUTIONS

Evcin, Cansu

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Omiir Ugur

September 2018, pages

This study investigates the numerical solutions of optimal control problems con-
strained by the partial differential equations (PDEs) of laminar fluid flows and heat
transfer with the model order reduction (MOR). This is achieved by the three objec-
tives of the thesis: obtaining accurate solutions, controlling the dynamics of the fluid
and reducing the computational cost.

Fluids exposed to an external magnetic field and the heat transfer are governed by
the magnetohydrodynamics (MHD) and energy equations. Considering an advanced
physical systems with a temperature dependent viscosity such as chemical reactors,
their control has significant importance and becomes one of the major subject of
this thesis. Furthermore, power-law fluid flow, which describes the dynamics for
non-Newtonian fluids such as polymer solutions, is considered as an optimal control
problem for the characterization of these fluids as shear-thinning or shear-thickening.

Simulations of solutions of the fluid flows and heat transfer equations are carried
out by the finite element method (FEM). First of all, FEM solution of the Navier-
Stokes (N-S) equations with an exact solution is obtained for the validation of the
method using quadratic-linear elements for the velocity-pressure formulation. On the
other hand, considering the coupled non-linearity of the MHD flow and heat transfer
equations with temperature dependent viscosity, quadratic elements are used for both
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velocity and temperature. Moreover, for the power-law fluid flows, due to the fact that
equations are decoupled and the temperature equation is linear, quadratic elements for
the velocity and the linear elements for the temperature are considered.

Solutions of the optimal control problems are attained by employing the adjoint
method within the discretize-then-optimize approach. While the control of N-S equa-
tions are studied with a distributed force function, control of the MHD flow and
power-law fluid flow is attained by using the problem parameters as control variables.

Computational cost and data storage problems arise with implementation of the opti-
mal control strategies. Thus, computing resources are optimized by performing MOR
using the proper orthogonal decomposition (POD) method to obtain a reduced order
model (ROM). The system dynamics is transferred by POD bases using the sample
solutions (snapshots) for various values of the parameters. Setting up a user-friendly
framework for the development of the ROM is also provided to help reduce the dis-
cretization procedure of the system of equations.

Consequently, the dynamics of the fluid flows and heat transfer are well identified
by applying FEM and their control are successfully achieved by the optimal control
using the parameters of the problems as control variables. Besides, providing a user-
friendly framework, computational costs are minimized.

Keywords: optimal control, finite element method, proper orthogonal decomposition,
magnetohydrodynamics

viii



0z

SONLU ELEMANLAR COZUMLERINE OZ DiK AYRISIM UYGULANMASI
iLE AKISKAN AKISI PROBLEMLERINDE EN {YILEMELI KONTROL

Evcin, Cansu

Doktora, Bilimsel Hesaplama Boliimii

Tez Yoneticisi  : Prof. Dr. Omiir Ugur

Eyliil 2018, [I55]sayfa

Bu calismada, diizgiin akiskan akis1 ve 1s1 transferinin kismi diferansiyel denklemleri
ile kisitlanmig en iyilemeli kontrol problemlerinin niimerik ¢dziimleri model indir-
geme yontemi ile aragtirilmaktadir. Bu, tezin ii¢ hedefi ile elde edilmektedir: dogru
coziimler elde etmek, akiskanin dinamiklerini kontrol etmek ve hesaplama maliyetini
diistirmek.

Harici bir manyetik alana maruz kalan akigkanlar ve 1s1 transferi manyetohidrodina-
mik ve enerji denklemleri tarafindan yonetilmektedir. Kimyasal reaktorler gibi sicak-
liga bagl viskoziteye sahip gelismis bir fiziksel sistem goz Oniine alindiginda, bun-
larin kontrolii biiylik onem tasimaktadir ve bu tezin ana konusu haline gelmektedir.
Dahasi, polimer c¢ozeltileri gibi Newtonian olmayan akigskanlarin dinamiklerini ta-
nimlayan kuvvet-kanunu akigkan akigi, bu akigkanlarin kesme ile incelen veya kesme
ile kalinlagan olarak ikiye ayrilan karakterizasyonu icin bir en iyilemeli kontrol prob-
lemi olarak ele alinmaktadir.

Akiskan akislar1 ve 1s1 transfer denklemlerinin ¢oziimlerinin simiilasyonlart sonlu
elemanlar yontemi ile gerceklestirilmektedir. Ilk olarak, tam ¢oziimleri olan Navier-
Stokes denklemlerinin sonlu elemanlar ¢6ziimii metodun dogrulanmasi i¢in hiz-basing
formiilasyonunda ikinci dereceden-dogrusal elemanlar kullanilarak elde edilmekte-
dir. Ote yandan, sicakliga bagh viskozite ile manyetohidrodinamik akis ve 1s1 trans-
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fer denklemlerinin birlestirilmis dogrusal olmayanligir gbz oniine alindiginda, ikinci
dereceden elemanlar hem hiz hem de sicaklik i¢in kullanilmaktadir. Dahasi, kuvvet-
kanunu akiglar1 i¢in denklemler ayrik olup sicaklik denklemi dogrusal oldugundan,
hiz i¢in ikinci dereceden elemanlar ve sicaklik i¢in dogrusal elemanlar ele alinmakta-
dir.

En iyilemeli kontrol problemlerinin ¢oziimlerine, ayriklastir-sonra-en iyile yaklagimi
ile adjoint metodu kullanilarak ulasilmaktadir. N-S denklemlerinin kontrolii dagitil-
mis bir kuvvet fonksiyonu ile ¢alisilirken, kontrol degiskenleri olarak problem para-
metreleri kullanilarak manyetohidrodinamik akisin ve kuvvet-kanunu akigkan akisi-
nin kontrolii saglanmaktadir.

En iyilemeli kontrol stratejilerinin uygulanmasi ile hesaplama maliyeti ve veri de-
polama problemleri ortaya ¢cikmaktadir. Bu nedenle, hesaplama kaynaklari, 6z dik
ayrisim yontemini kullanarak model indirgeme ile optimize edilmektedir. Sistem di-
namikleri, parametrelerin ¢esitli degerleri i¢in alinan ¢éziimleri kullanarak 6z dik ay-
risim bazlari ile aktarilmaktadir. Derecesi indirgenmis modeldeki denklem sistemle-
rinin ayriklagtirma prosediiriinii ortadan kaldirmak icin bu modelin gelistirilmesinde
kullanici dostu bir ¢ercevenin olusturulmasi saglanmaktadir.

Sonug olarak, akigkan akiglar1 ve 1s1 transferinin dinamikleri sonlu elemanlar yon-
temi uygulanarak hesaplanmaktadir ve kontrolleri, problem parametrelerinin kontrol
degiskenleri olarak kullanilmasiyla en iyilemeli kontrol uygulanarak basarili olarak
saglanmaktadir. Kullanici dostu bir ¢erceve saglayarak, hesaplama maliyetleri en aza
indirgenmektedir.

Anahtar Kelimeler: en iyilemeli kontrol, sonlu elemanlar yontemi, 6z dik ayrigim,
manyetohidrodinamik



To my son, Teoman
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CHAPTER 1

INTRODUCTION

Computational fluid dynamics (CFD) has become a powerful tool serving as a sub-
branch of fluid mechanics that uses scientific computing and data analysis to under-
stand the physical characteristics of fluid flows. It has been introduced as a new third
approach being equal partner with the theoretical and experimental approaches in the
development of fluid dynamics. The arrival of the high performance computers and
newly developed algorithms enables CFD to analyze and predict the results of theory
and experiment by doing so-called ‘numerical experiments’. In this manner, CFD
has appeared an attractive branch providing numerical experiments conducted by a
computer program which has more favorable conditions in the implementation. For
instance, unlike a wind-tunnel experiment, a code for a computer program can be car-
ried in your disks and can be accessible remotely by people far away from it. Even it
can simulate the extreme cases where real experiments are difficult or impossible to
perform. Thus, CFD is an appealing research tool for science and engineering as well

as applied mathematics.

CFD is based on providing solutions to the problems governed by the fundamental
equations of fluid dynamics which are, in general, the triple of the following princi-
ples: conservation of mass, Newton’s second law, and conservation of energy. They

give rise to the continuity, momentum and energy equations, respectively.

Moreover, they represent the ‘complete Navier-Stokes equations’ for the solution of
a viscous flow where the thermal conduction and transport phenomena of viscosity
are considered. If these principles are combined with the presence of a magnetic field

and electrically conducting fluid, which brings the laws of electromagnetic, then the



subject is extended to the study of Magnetohydrodynamics (MHD). It is concerned
with the interaction of magnetic fields and conducting fluids. Considering their vital
importance in industry, in addition to the Navier-Stokes equations, these are primary

interest of this thesis.

The equations corresponding to the fundamental principles of fluid dynamics are re-
placed by the integrals or partial derivatives. However, closed form solutions may not
be available in general or may be difficult to evaluate. In such cases, CFD emerges as
an efficient tool using numerical methods to express them as a discrete algebraic sys-
tem of equations. Among many numerical approaches, finite difference, finite volume
and finite element methods are mostly used and well-known by the CFD community.

They provide solutions to the above problems at discrete points in space and/or time.

Because of their simplicity in the implementation, finite difference methods (FDMs)
are the first and widely used approach in literature. FDMs obtain the discrete system
of equations using the Taylor series expansions of the derivatives around the grid
points in the domain. However, due to the need for a structured grid, FDMs are not

directly applicable for complex geometries.

On the other hand, finite volume methods (FVMs) offer a discretization of the integral
form of the equations. In FVMs, the discretization is carried out directly in the phys-
ical space, which is divided into a number of control volumes. However, an irregular

mesh computation of fluxes leads to a huge amount of effort.

In finite element methods (FEMs), the weighted residual is used to integrate the partial
differential equations over an element by multiplying the weight functions, so-called
the shape functions. As an advantage, its application to any geometric shape does not

cause an extra cost.

However, all well-interpreted results are achievable with a price of large comput-
ing sources and long computation time, which is the main obstacle of the CFD. As
a result, many toolbox, packages and computing platforms have been developed to
present efficient tools in terms of both accuracy and cost. Yet, the advance in high
level technology in science demands for a more modest and enhanced programming

environment everyday.



One of the major topics in CFD is the control of the fluid flow and the determination
of the physical characteristic of the fluid. Besides obtaining numerical approxima-
tions to the fluid variables such as velocity, temperature and viscosity, it is also vital
to drive the fluid to a predefined/desired state or to determine the physical parameters
of the fluid for a desired state. So, the problem is designed as an optimization prob-
lem where the constraint equations are formed from the dynamics of the fluid. This is
called a partial differential equation (PDE)-constrained optimal control problem and
it has to be treated by the optimization tools. Furthermore, the solution to an optimal
control problem can be reached iteratively by solving the constraint equations at each
optimization step until the optimality conditions meet. But, this process requires re-
peated evaluations of the equations and increases the computational cost enormously.
For example, the dimension of the systems to be solved in order to obtain a high-
fidelity finite element method (FEM) solution of a flow problem may be hundred of
thousands or even more and this reveals the possible costs in an optimization problem

with the PDE constraints.

The key progress on the reduction of the costs in optimization algorithms has been
obtained by the advancement of ‘model order reduction’ (MOR), which still is a hot
topic in fluid dynamics and control problems. In this manner, MOR provides an al-
ternative way to find both sufficient and low-dimensional approximations by using
detailed information about the dynamics of the problem. The well-known technique
used in this concept is proper orthogonal decomposition (POD) method. The main
idea is to collect sample solutions which are obtained from the fine-scaled approx-
imations via any numerical method such as FDMs, FEMs; and use them to get an
overall view about the system. POD saves these solutions to the so called ‘snapshot
matrix’ to which a singular value decomposition (SVD) is applied. So, the left singu-
lar vectors corresponding to the significant singular values constitutes the POD basis,
which are only a few. Later on, the problem is projected to a low-dimensional space

generated by the POD basis.

Despite the expense of obtaining fine-scaled solutions, which are named as offline
work and performed only once, POD provides high profits in computational cost and
time for the problems where repeated evaluations of the system’s equations are re-

quired. Thus, it becomes promising to use POD for the solution of the optimal control



problems for the fluid flows.

Inspired from the discussion above, this thesis deals with the optimal control problems
in fluid flows and their reduced order modeling for the FEM solutions with the POD
method.

Rest of the thesis is organized as follows.

In Chapter [2] we introduce the optimal control problems considered in this thesis.
Starting with the main stone of the fluid dynamics problems, Navier-Stokes (N-S)
equations are presented as coupling of the momentum and the continuity equations.
Then, problems are extended with the energy and Maxwell equations as Magnetohy-
drodynamics (MHD) flow considering a temperature dependent viscosity. Next, the
MHD equations are reformulated for the power-law fluids flow, where the underly-
ing fluid can exhibit Newtonian and non-Newtonian characteristic. Transformations
of the equations for a cross section of a rectangular duct and into non-dimensional

forms are given.

Furthermore in Chapter [2] optimal control problem is modeled for the N-S equations
by the control of distributed source force. On the other hand, control of the MHD flow
and heat transfer and also the power-law fluid flows are designed for the control by the
physical parameters of the systems in order to regain the desired states or determine

the characteristics of the fluid flow.

In Chapter[3] the FEM solutions of the problems introduced in Chapter[?]are analyzed.
The variational formulations and the fully discrete non-linear system of equations
are derived. Following the ‘discretize-then-linearize’ approach, Newton’s method is
applied to the solutions of the nonlinear problems. While the numerical solutions of
the N-S equations are compared with the exact solution, the validity of the results
for the MHD flow and power-law fluid flows are tested with the computation of the
critical quantities, which reflect the capability of the method for obtaining solutions,
such as the fanning friction factor and the Nusselt number. Also, midline velocity,
contours and isolines of the solutions are depicted for various values of the problem

parameters.

In Chapter[4] the solution of the optimal control of the fluid flow problems are studied



for control with a distributed force function and control with the physical parameter of
the problem. Firstly, a gradient-based optimization algorithm, L-BFGS, is introduced.
Then, pursuing a ‘discretize-then-optimize’ approach, problems are projected to the
FEM spaces to obtain finite dimensional approximations. Furthermore, first-order
optimality conditions are derived in the fully discrete setting and adjoint equations
are formulated. Using the selected optimization algorithm, optimal states are attained

for different simulations of the desired states.

In Chapter [5] the MOR idea is introduced with the POD method by using the SVD
of the snapshot matrix. After giving the underlying algorithm, reduced order models
are constructed with the ‘reduce-then-discretize’ approach for the control of steady

parametrized problems.

In Chapter [0} a summary of the applications in this thesis and their numerical results

are presented and possible future work and extensions are discussed.






CHAPTER 2

OPTIMAL CONTROL PROBLEMS CONSTRAINED BY
INCOMPRESSIBLE FLUID FLOWS AND HEAT TRANSFER

This chapter presents equations of the fundamental principles of fluid dynamics and
related optimal control problems. In the following, we begin with introducing these
equations and then continue with forming the control problems. Firstly, coupling of
the continuity and momentum equations are introduced in order to form the Navier-
Stokes equations. Then, the momentum equation is coupled with the energy equation
under the effect of an external magnetic field, which yields the MHD equations and
heat transfer problem with a temperature dependent viscosity. Finally, momentum
and energy equations are coupled in such a way that the fluid may exhibit Newtonian

and non-Newtonian behavior according to the values of the parameter in the viscos-

ity.

2.1 Navier-Stokes Equations

Many physical phenomena of science and engineering are described with the help of
the well-known Navier-Stokes equations. They serve as a core design tool for various
areas such as the simulation of air-conditioning, compressors, flow ducts and airplane.
Mainly, they are originated by the mass conservation and Newton’s second law, which
yield to the continuity and momentum equations. For a model of an infinitesimally

small element fixed in a space, the continuity equation of a viscous flow takes the
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following form [5]]

dp o
T + V- (pv) =0, (2.1)

where p is the flow density and ¢ is the fluid velocity in vector form.

On the other hand, the mathematical formulation of Newton’s second law has to con-
sider the forces acting on the fluid; they are the body forces (gravitation, electromag-
netic) and the surface forces (pressure, normal and shear stresses). Body forces are
represented by the vector, p f = (pfz, pfy), assuming a two dimensional domain.
Conventionally, for the surface forces from the viscosity, 7;; denotes a stress in the
J direction exerted on a plane perpendicular to the ¢ axis. Hence, 7;; represents the
normal stress for each coordinate axis; and the shear stress, which is related to the
time rate of change of the shearing deformation of the fluid element, is represented
by 7;;, ¢ # j. The fact that the shear stresses can be used to classify the fluid as
Newtonian or non-Newtonian, which was first stated by Isaac Newton, gives the vital
importance of their presence in the dynamical system. So, if the shear stress has a
linear relationship with the gradient of the velocity then the fluid is called Newtonian,
otherwise non-Newtonian. Therefore, the momentum equations are obtained as the

following system of equations

a(pvl) >N 8p aTx:c aTyx
Jd(pv2) . Op 0Ty = 0Ty
ZAPTE) . = = 2.

where p is the pressure and vy, vy are the components of the velocity v.

The Newtonian fluids are considered following the Stokes hypothesis; and normal

and shear stresses are replaced with the forms given by

2 8’[)1
__Zz D) 4+ 2 —= 2.4
2 . ov
Tyy = —5n(V - 0) + 2%—;, (2.5)
ov ov
Toy = Tyx = [ {8_351 + a—;] ; (2.6)

where 1 is the dynamic viscosity. For instance, substituting the (2.4)—(2.6)) into the
right hand side of (2.2) leads to

d(pv1) L
—g TV lpnt) = o —gpums —qu oy 2




then, rearranging and using the property V - ¥ = 0 give

8(,01)1) —_— 821]1 821)1
5 +V (pvlv)—u(aIQ + o )

Meanwhile, for an incompressible flow, the momentum and continuity equations re-

duce to

ov -
p(a—z—l—(ﬁ-V)U) = —Vp+ puAv+ pf, (2.7)

V.u

0. (2.8)

In order to obtain a non-dimensional form of the Navier-Stokes equations for an in-

compressible fluid with a constant viscosity, the dimensionless quantities,

/ x / Yy _} v / 3 / p

l lv vca (l/vc)v p vgpa ( )
are introduced, where [ denotes a characteristic length and v, denotes a characteristic
velocity. Substituting these quantities into (2.7)—(2.8)) results in the dimensionless

form of the N-S equations for a time-dependent, incompressible, viscous fluid flow:

i -
%_7; +(7-V) i = Vo v 4 (2.10)

Vo =0, (2.11)

where v is the reciprocal of the Reynolds number Re so that

L w
Re  pu.l

V= .
Reynolds number is a dimensionless quantity that identifies the tendency of the fluid
as laminar or turbulent. Values of Re < 2000 generally produces laminar regimes,
and we will be interested in this case. Specifically, the main focus in this thesis will
be to consider steady flows; thus the term for time derivative is dropped and also the
prime notation is omitted from the variables for simplicity. Consequently, the N-S
equations of a two-dimensional, steady, incompressible, viscous fluids are given in

the vector form:

VAT + (7- V)T + Vp
V -

f, (2.12)
0. (2.13)

<
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Of course, the steady N-S equations are supplemented with the essential boundary
condition for the velocity as ¥ = vp with a specified vector function vp on the
boundary of the domain, say €2. Since there is no boundary condition defined for

the pressure, its unique solution can be achieved by imposing a constraint such as

JopdQ=0.

Instead of working in the vector form of the N-S equations, it is also possible to obtain
a stream function-vorticity formulation where the pressure term is removed from the
system. However, in this case the vorticity function fails to have a boundary condi-
tion; and the boundary values of the vorticity are calculated by using the derivative of
the boundary conditions of stream function. Nevertheless, each case requires a spe-
cial treatment of the boundary conditions and the choice between them can be made
according to the demand of the underlying problem. In this respect, pressure is pre-

served and the N-S equations are preferred to work within the vector form as given in

(2.12)—(2.13) in this section of the thesis.

Having mathematical formulation for the velocity and pressure of a fluid flow enables
to determine the motion and behavior of the flow for different physical conditions.
This information is of great importance in the design of many technological equip-
ments where there is a fluid flow. Moreover, it might be necessary to specify the
required forces to evolve the flow into a desired profile. At this point, the optimal

control strategies enter the scene and optimization algorithms begin to play.

A control problem can be designed for the fluid flow to regain the velocity vector field
for a desired flow behavior by applying, for instance, a distributed force function as
the control. In this case, the N-S equations corresponding to the physical principles
are participated as the constraints of the control process. Meanwhile, an objective
functional having a velocity tracking profile is added to minimize the difference be-
tween the optimal and desired states. Furthermore, having a control function may
need a cost and this may be introduced as the norm of the control function. Therefore
a cost functional may be given as
J(@, 1) =2 /(U— 07 (0 - Ty) dQ+ 2 [ @@ do,
2 Ja 2 Ja

where «,, and o, are the regularization parameters of the velocity v and the control

function u, respectively.
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Consequently, the PDE-constrained optimal control problem for the distributed con-

trol of the N-S equations is formulated as follows:

minimize J(¥, %) = % /(17 — )1 (T — Ty) d2 + % a i d§ (2.14)
w Q Q

subjectto — VAT + (T-V)T+Vp=f+d in Q (2.15)

V-v=0 in (2.16)

v=0 on 0. (2.17)

Throughout the thesis, we shall investigate the solution of this problem by solving
PDEs and the controlling the flow. Thus, numerical solutions are obtained by the FEM
and the control problem is examined by the adjoint method. Since there have been
many studies conducted before on the subject, a short literature survey is provided in

the following.

Solutions of the Navier-Stokes equations have been studied extensively in literature
since it serves as the fundamental tools of the fluid flow. The finite difference solu-
tions have been introduced by Chorin in [[16] for the time-dependent case by solv-
ing the velocity and pressure iteratively, which is also named as Chorin’s projec-
tion method. Taylor and Hood in [91] have presented velocity-pressure and stream
function-vorticity formulations using the finite element discretization technique, as
founders of the Taylor-Hood finite element pairs. The existence and the uniqueness
results and the regularity of solutions has been investigated by Temam in [92]], Gi-
rault and Raviart in [32] and Thomasset in [93]] using the finite element method. An
upwind finite element scheme for the convective part of the N-S equations has been
introduced by Heinrich in [46]. The discontinuous Galerkin approach has been used
by Baumann and Oden [[10]. Elman[23] has applied the preconditioning for the steady
state case with low viscosity. On the other hand, the detailed finite volume analysis
is provided by Jasak in [S3]. A higher order approximation by the finite volume is
given by Pereira et al. in [[75]].

Besides the numerical solutions, the optimal control of the N-S equations have also
attracted many researchers. Abergel and Temam [[1] have given the proof of an ex-
istence of solutions to control problems for various physical situations, such as dis-
tributed control, boundary control in a channel; and they have provided basic numer-

ical algorithms, such as steepest descent and conjugate gradient methods. Ghattas
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and Bark have investigated the optimal control of the stationary N-S equations in two
and three dimensions by developing large scale optimization methods such as quasi—
Newton and sequential quadratic programming in [31]]. Considering an augmented
Lagrangian method, optimality conditions are established for the control problems
on the N-S equations by Desai and Ito in [21]. Further studies are provided by Gun-
zburger, Hou and Svobodny in [38},40], by Malek and Roubicek in [69], by Heinken-
schloss in [45] and by Kunisch in [S7]. A comprehensive overview on control of N-S

equations is given in [39} 86].

2.2 MHD Flows and Heat Transfer with Temperature Dependent Viscosity and
Hall effect

As is clear from the previous section, the evolution of the fluid flow is based on the
N-S equations. However, if applications with fluid flow are enlarged to the phys-
ical systems such as chemical reactor, cooling modules or heat exchangers for an
electrically conducting fluid then it becomes necessary to take into account the mag-
netic effects as well as the heat transfer. This brings out the readjustment of the N-S
equations with the addition of new terms, and hence, one needs to consider the third

principle of the fluid dynamics: conservation of energy.

In order to implement such improvements, the model problem is investigated for a
steady flow of a viscous, incompressible, electrically conducting fluid in a long chan-
nel of rectangular cross-section together with heat transfer: This is generally referred
to the problem of MHD flow and heat transfer. The configuration of the problem is
shown in Figure[2.1] where a uniform magnetic field of intensity By is applied with an
angle to the duct which is perpendicular to the axis of the channel (z-axis). Herewith,
we assume a constant pressure gradient —% applied in the z-direction and the in-
duced magnetic field is neglected due to the assumption of small magnetic Reynolds
number. Moreover, both the flow and the temperature are assumed to be steady and
fully developed along the channel. Besides, the viscosity of the fluid is considered to
vary exponentially with the temperature; however, the Joule and viscous dissipations

are not neglected. Due to the strong effect of magnetic force, the Hall effect is nec-

essarily taken into account as well. As a result, the flow is only in the channel axis

12



Figure 2.1: Physical Configuration of the MHD Problem.

direction with the velocity, ¥/ = wk, which varies in the duct, that is, w = w(x,y) for

(x,y) € Q=1[0,a] x [0,0].

According to the problem definition given above, the equations of the flow are ob-
tained by adding the electromagnetic Lorentz force Jx B, asin [22], to the governing

N-S equations so that (2.7]) with a variable viscosity turns into

p<%+(ﬁ-V)U> — —Vp+ V- (uVi)+J x B, (2.18)

where B = (B,, By, 0) with By = (B + B2)"/? is the magnetic field perpendicular
to the channel axis lying on the duct plane, and J is the current density. Also, the
effect of a variable viscosity is included to enhance the heat transfer; the viscosity p

is chosen such that it varies exponentially with temperature in the form
= poe ), (2.19)

as given in [[7, 18, 81] where i is the coefficient of viscosity at temperature 7' = 7,
and b is a constant. Although the common expression for the temperature dependent
viscosity in engineering literature is the Arrhenius equation [43], the choice of such
a dynamic viscosity in is considered to weaken the convection dominance of
the flow due to the high temperature. Moreover, the physical properties of the system
is flourished by the addition of the impact of the Hall current. Since it can affect the
magnetic force term by altering the magnitude and the direction of the current density,

the Ohm’s law is included with the Hall effect having form [22]]

-

J=0(tx B—B(Jx B)), (2.20)
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in which ¢ is the electrical conductivity of the fluid and [ is the Hall factor. Solving

(2.20) for J yields to
— W\
14+ m? Y%

Jx B =
where m = 0B, is the Hall parameter; hence, J x B has only the z component to
be added to (2.18). Consequently, for the steady fluid motion in z-direction, the terms

multiplied by the flow density parameter p vanish; hence, the N-S equations reduce

to [81]] )
0 ow 0 Ow Op oBy
% (,UI%) + a—y <M8—y> & 11 mzw =0. (2.21)

We also assume a no-slip wall condition for the velocity that

w=0 on 9.

On the other hand, the law of conservation of energy is taken into consideration in a

general form based on the temperature as

T
pCp (aa_t + - VT) = kV*T 4+ ¢", (2.22)

where p, c,, k, and ¢" are the density, the specific heat capacity, the thermal con-
ductivity of the fluid and heat source, respectively. Assuming a steady problem and
a velocity vector which has only the z component defines a energy equation with

viscous and Joule dissipation in the following form

(5) (%)

where the second and the third terms on the right hand side of the equality represent

UBg 9
2.23
1+ m2” (2.23)

aT
pcpwa— = kV*T +

z

the viscous and Joule dissipations, respectively. Furthermore, having a hydrodynam-
ically and thermally developed flow, the H1 thermal boundary condition, which as-
sumes constant heat flux axially and constant wall temperature peripherally, replaces

orT
the term — by the following equation

0z
or _ dr,
0z dz’
for which the temperature equation is supplied with the boundary conditionas 7" = T,
on the duct walls. This condition is preferable in many applications such as resistance

heating and heat exchanger [70].
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In order to simplify the equations and to reduce the number of parameters, the non-

dimensional quantities are introduced as follows

x/_z /_Q W = HoWw T — k(T_Tw) —_ﬂ
—a7 y _CL7 __@a27 _pCCL) a2&7 M_,Uz()’
dz p=m dz

where a is the characteristic length (i.e., major side of the rectangular cavity). Having
left the prime notation in the new quantities, the dimensionless momentum and energy

equations on the domain €2 = [0, 1] x [0, b/a]| become

0 Oow 0 Oow Ha®
- [ —— P /] —— — —1 2.24
Ox (“ax)+ay (“8y> +1+m2w (2.24)
and ) ,
Oow Oow Ha’Br w
2T + Brj — — — W= 2.2
vresn|(5) ¢ (5) | et e
where
1
W =+ / wd, p=e 5T (2.26)
Q

and L = b/a is the aspect ratio; m, B, Br and Ha are the resulting dimensionless pa-
rameters: Hall parameter, viscosity parameter, Brinkman number, and the Hartmann

number, respectively. These are defined as

d
bopCpw a® L — o oB2a?
m=o0pB;, B=—7 = Br=—2% —  and Ha’=-""—.
k kpcy S wnm, o

Regarding the physically significant parameters of the problem, the dynamics of the
system can be altered by changing these specific constants. A reasonable way to take
advantage of this fact is to use these parameters in order to manipulate the behavior
of the flow or determine the properties of a given state of the flow. This is achieved
by defining an optimal control problem by using the problem parameters as control
variables. Hereby, the control problem is designed for the flow and the temperature
equations (2.24)—(2.23) for regaining the problem parameters for a desired flow be-

havior.

Therefore, an objective function(al) is defined to track the difference between the
optimal and desired fluid velocity as well as temperature, and possibly, the magnitude
of the control variables as well. Such a cost function is

7]

J(w, T, u) :7/§2(w—wd)2dﬂ+%/Q(T—TdfdeL%/ﬂHquQ,
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where the regularization parameters a,, ap, and oy, (respectively for the cost of
achieving desired velocity wy, temperature 74, and the control variable vector u) may
be regarded as penalty parameters. They may vary based on the effects of the control
parameters as well as the accuracy required to achieve the desired state; and further,

they also affect the number of iterations of the underlying optimization algorithm.

Consequently, the PDE-constrained optimal control problem of MHD flow and heat

transfer with temperature dependent viscosity reads as follows:

minimize J(w,7,u) = dw / (w — wg)?dQ + ar (T — T,)*d
uel 2 Q 2 QO
+ﬂ/ )| d2 2.27)
2 Jao
0 ow 0 ow Ha?
‘ Zp=m ) = (p=2) = -1 in 0 2.2
subject to o (u(%c) + oy (u Gy) + i mzw in (2.28)
dw\ dw\ Ha?Br w
°T +Brjg | | — — ——w'=— in Q (2.29
VT By (8x) +<8y> 1+m2w Win n (2.29)
w=0, T=0 on OS2 (2.30)

The admissible set of controls is defined as the set of parameters of the problem,
U = {Ha,m,Br, B}. In the course of this study, this problem will be one of the
main contributions of the thesis in terms of obtaining solutions by the FEM, applying
optimization by using the physical parameters of the system and also constructing a

ROM. A short overview on the literature is provided below.

Some researchers have studied the magnetic effects on the flow and heat transfer of
electrically conducting fluids in rectangular ducts by using numerical methods. Turk
and Tezer-Sezgin [97]] have given a solution of natural convection flow in square en-
closures under magnetic field using the finite element method (FEM). Akgiin and
Tezer [4] have solved natural convection MHD flow equations in a cavity by using
both the dual reciprocity boundary element method (DRBEM) and the differential
quadrature method (DQM) comparing the solutions from the two methods. DRBEM
solution of MHD flow with magnetic induction and heat transfer has been shown in
[74]]. A finite difference (FD) solution has been provided for MHD flow free convec-
tion flow in a vertical rectangular duct considering the effects of Ohmic heating and
viscous dissipation by Umavathi et al. [98]]. Kishan and Shekar [56]] have showed the
combined effects of viscous and Ohmic dissipations on MHD flow by using the FEM.
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When the viscosity of the fluid is temperature dependent, a significant heat transfer
enhancement is achieved even neglecting the Hall effect, viscous and Joule dissipa-
tions. Under strong external magnetic field the Hall current is important and has an
effect on the current density due to the influence of the electromagnetic force. At-
tia [7, 18] has employed FD solutions to transient MHD flow with heat transfer for
dusty fluid with temperature dependent viscosity. The effects of variable viscosity
and the magnetic field on the flow and heat transfer of both the fluid and dust parti-
cles are shown between parallel plates. The problem of MHD flow and heat transfer
with variable viscosity for Newtonian fluids in a rectangular duct with the Hall effect
has been investigated using finite difference method (FDM) by Ahmed and Attia [81].
Ahmed [80] has investigated numerically with FDM also the effect of Hall current on
MHD flow and heat transfer for Bingham fluids in a rectangular duct. The solution to
transient MHD flow and heat transfer of a dusty fluid between parallel plates has been
given by Tiirk and Tezer-Sezgin [96] using Chebyshev spectral collocation when the

fluid possesses time-dependent viscosity.

Many researchers have also studied and derived theoretical results on control prob-
lems in fluid mechanics. The boundary control of an electrically conducting fluid has
been studied by Hou and Meir [48] using Lagrange multiplier technique for instance.
Ito and Ravindran [51]] have used the thermal convection on part of the boundary and
provided a first-order necessary optimality condition for control of cavity and channel
type flows. An analysis and discretization of an optimal control problem of tracking
the velocity and the magnetic fields of viscous, incompressible, electrically conduct-
ing fluid for the time-periodic MHD equations has been studied by Gunzburger and
Trencha [41]. Griesse and Kunisch [34] have considered the control mechanisms by
external and injected currents and magnetic fields and provided optimality conditions
for a stationary MHD system in a velocity-current formulation. A comprehensive
study on the boundary control of the incompressible MHD equations has been con-
ducted by Bornia [12], where a new boundary control approach is proposed based
on lifting functions of the boundary condition. Optimal control problem of non-
isothermal viscous fluid with a temperature dependent viscosity has been solved by
Cox and Lee [[19]] using FEM for the state and adjoint equations and within the frame-

work of the optimize-then-discretize approach. Recently, Ren et al. [77] have worked
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on the control problem in 1D MHD flow by a discretize-then-optimize approach using

SQP optimization algorithm.

The idea of controlling the dynamics by using parameters of the problem have been
also considered in some studies in the literature. Kunisch and Sachs [58]] have in-
troduced the reduced SQP methods with BFGS update for parameter identification
problems. An augmented Lagrangian method for the estimation of parameters in el-
liptic systems has been used by Ito et al.[49]]. Ito and Kunisch [S0] have also studied
the augmented Lagrangian-SQP methods in parameter estimation problems. An ap-
plication of the optimal control as a parameter identification problem to hyperthermia
has been introduced by Ganzler et al. [28]. Tonn et al. [94] have studied optimal
control of parameter dependent convection-diffusion problems. Parameter estima-
tion via derivative-based optimization has been applied to fluid-structure interaction
problems by Richter and Wick [78]]. Stoll et al.[87] have used a Lagrange-Newton
scheme to identify parameters of a reaction-diffusion type model in pattern forma-
tion. Optimal experimental design has been applied to Bingham fluids for parameter
identification by Logashenko et al.[65]. Garvie and Trencha[29] have considered
the Gierer-Meinhardt reaction diffusion system for identification of space-time dis-
tributed parameters. A trust-region Gauss—Newton approach has been proposed for
the parameter identification of the Cahn—Hilliard-Chemotaxis system by Kahle and
Lam [54].

2.3 Power-Law Fluid Flow and Heat Transfer

The viscosity of a fluid is defined as the ratio of the shear stress and the shear rate, or
informally a fluid’s resistance to flow. Previously, assuming a Newtonian fluid, vis-
cosity is a linear function of the shear rate: it is assumed to be constant in Section [2.1]
and it varies exponentially with the temperature in Section 2.2 Although they may
correspond to many physical phenomena, it is also important to consider a viscosity
which is a non-linear function of the shear rate since it represents the non-Newtonian
fluids. They are employed in many applications from industry to biotechnology such

as polymer solutions [13] and biofluids [42].
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Among various viscosity models of non-Newtonian fluids such as Powell-Eyring [73],
Cross or Carreau [3], the power-law model is mostly preferred for which the apparent
viscosity p assumes the form

p=K~"1 (2.31)
as in [11, 88]], where K is the consistency index of the model, ~ is the shear rate
and n is the flow index. Particularly, subclasses are identified according to the value
of n. If n is greater than one then the model represents dilatant fluids having shear-
thickening behavior, for example, suspensions of starch and potassium silicate. On
the other hand, if n is less than one, then the model introduces pseudoplastic fluids
having shear-thinning behavior like solution of polymers. Thus, n plays a crucial role
in the determination of the dynamics of the flow, which brings out the idea of the
control by the parameters. As a result, the control problem of the power-law fluid

flow and heat transfer becomes one of the primary interests of this thesis.

In the following, we consider the laminar, fully developed, steady MHD flow and heat
transfer for an incompressible, electrically conducting non-Newtonian fluid within a
power-law model in a cross section of a rectangular duct. The flow is only in the
channel axis direction with the velocity, 7 = wk, so that w = w(z, y) for (z,y) € Q =
[0,a] x [0,b]. The configuration of the problem is again as depicted in Figure
however, the channel has a rectangular shape. Physical problem assumes similar
conditions of Section |2.2fsuch as having an external magnetic field B = (B, By, 0)
with By = (B2 4 B2)"/? and a constant pressure gradient _d_]; applied in the z-
direction. However, Hall effect is not considered here; hence the term resulted from

the Lorenz force turns into
J x B =oB2w(z,y)k

and the apparent viscosity p of the power—law fluid assumes the form [44]

n—1

2 2
=i ((2) - (2)) e

where n represents the flow index. Under these specifications, following the similar

procedure in Section[2.2|the Navier-Stokes equations integrated with the Lorenz force

and Ohm’s law reduce to

0 ow 0 ow Op 2
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where o is the electrical conductivity of the fluid. The no-slip wall condition is valid

for the velocity on the whole boundary.

On the other side, similarly, the energy equation with viscous and Joule dissipation is

given for the temperature 7' [[80]]:

oT k(‘??T 02T . 0_w2+ Ow
P, =P\ a2 T oy ) T |\ ar By

Here, the temperature equation is accompanied with the H2 thermal boundary condi-

+oBjw (2.34)

tion, which considers a constant heat flux, allowing the heat transfer through the walls

oTr
where the flux ¢” is constant. Thus, the term — in the energy equation (3.17) can be

0z
dTm . .
represented as — 5 2 where 7, is the mean fluid temperature defined by
z z
1
L Wm JQ

and w,, is the average velocity:

1
W = E/Qw dS). (2.36)

In order to express the equations in non-dimensional form, the dimensionless vari-

ables those which are different from the previous problem are introduced as follows:

and

- MIL]W
N Terii

To summarize, the non-dimensional momentum and energy equations with dimen-
sionless velocity w and temperature 7' (leaving the prime notation in the new quanti-

ties) on the domain €2 = [0, 1] x [0, b/a] become

9 ( 0w\ 9 [ dw\ ,
o (u%) + 3 (“aT,) — —1 4 Ha’w (2.37)

(5) (%)
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+ Ha®Brw? = - (2.38)
Wm

V2T + Brji




where the viscosity of the power-law fluid is given as

= (V&) (&)

The dimensionless boundary conditions are also given as

n—1

w=0 on 0f
and
orT T B or T ‘ _ 4
Oy l(zb/a) Oz l(1y) T Oy l@o) Oz loy) ’

. . oT

where we consider to have four heated walls; that is, FIY = 1 on the walls. The result-
n

ing dimensionless parameters Br and Ha are the Brinkman number and the Hartmann

number, respectively; these are

q Boa\/g i B 1 ( a )l/n dp (n+1)/n
a = an r=—\— _—
N " \K dz ’

where 1, 1s the reference viscosity of the power-law fluid.

Although the idea of designing a control problem for parameter dependent fluid flow
and heat transfer equations is well-interpreted in Section[2.2] the same idea has gained
more importance for the power-law fluid flow since it enables to make a classification
of the non-Newtonian fluids as shear-thinning or shear-thickening. Also, the deter-
mination of an optimal value for the desired state of the flow has a sound structure to
drive the fluid viscosity to a required form. Therefore, the control problem is designed
for the flow and the temperature equations (2.37)—(2.38)) by using the problem param-
eters as control variables for regaining a desired flow behavior as in the Section

with the same cost functional in (2.27]).

As aresult, the PDE-constrained optimal control problem of power-law fluid flow and
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heat transfer is formulated as follows:

minimize J(w,7,u) = du / (w — wg)?dQ + ar (T — T,)*d
ueld 2 Q 2 QO
+%/ [ul)? d62 (2.39)
2 Jo
0 0 0 0
subject to e (u%) + 8_y (ua—z) = —1+4+Ha’w in Q (2.40)
2 2
4
7 1B | (22) + () | 4 HaBr? = 29 i @ an
ox oy Win
w=0 on 0f) (2.42)
orT oT oT oT
el - = =1, — = — = —1. 2.43
0y lz1)  Oxlay) Oy l@z,0) Oz l0y) (243)

The admissible set of controls is defined as the set of parameters of the problem,
U = {Ha,n}. The numerical solution of these flows is of great importance and has
attracted many researchers. Hartnett and Kostic [44] have reported a comprehensive
review of the flow and heat transfer for non-Newtonian fluids in a rectangular duct.
The finite element solution of the laminar flow of power law fluid has been studied
by Syrjala [89, 90]. A few researchers have introduced the presence of the external
magnetic field on non-Newtonian fluids and heat transfer. In this respect, the finite
difference solution of laminar flow and heat transfer of a viscous incompressible elec-

trically conducting power law fluid flows has been provided by Ahmed [80].

The characterization and controlling of complex fluids are the main concerns of indus-
try and engineering. Statistical models to investigate the physical characteristics of
such fluids and optimal environmental setting for desired flows require large amount
of data to examine. However, optimal control approach to such problems provides
a more systematic way by coupling of a finite element model with an optimization
framework to identify the best set of parameters. Thus, the determination of physical
properties of the fluid by optimal control algorithms is of great importance. However,
the studies in the optimal control of non-Newtonian fluids from the theoretical point
of view are very few. Some researchers have studied the existence, uniqueness and

optimality conditions of the distributed controls of such fluids [6, 35, 85, [100].

On the other hand, the studies from the numerical point of view have started with

Gavrus and Massoni [30] by minimizing an objective function in the least-squares
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sense using FEM for the identification of the parameters. Then, Kunisch and Mar-
duel [S7] have studied the optimal control of the viscoelastic fluid to find the optimal
temperature on the boundary of the domain. The estimation of the physical parame-
ters by solving an inverse problem using conjugate gradient and finite volume meth-
ods has been investigated by Park and Hong [72]]. The optimal control in blood flow
with shear thinning viscosity has been conducted by Guerra and Tiago [37] using
the discretize-then-optimize (DO) approach within the data assimilation technique.

Recently, they have also extended their results for 3D geometries in [36].
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CHAPTER 3

FEM SOLUTION OF FLUID FLOW PROBLEMS

This chapter presents the finite element method (FEM) analysis of two-dimensional
flows of laminar, incompressible viscous Newtonian and non-Newtonian fluids. As
being the origin of FEM, the foundation of the method of weighted residuals is in-
troduced first and then the basic steps of the FEM are presented. Starting with the
derivation of the variational formulation, solutions of the problems are projected into
the finite-dimensional spaces (so-called finite element spaces) by the Galerkin-type
projection. That is, equations of the problem are multiplied by test functions which
are same with the basis functions of the finite element spaces. Next, the Green for-
mula is used to weaken the second-order derivatives to obtain the so-called weak
formulation of the problem. Consequently, the discretized system of equations are

obtained for the finite dimensional approximations.

3.1 Introduction

The method of weighted residuals [25] aims to find an approximate solution (trial
solution) Z for the solution z of a boundary value problem; such a problem can be

given in a compact form as
C(z(Z)) =0, Z=(a'2%...,2") € QCR" (3.1)

Basically, Z is expanded in a set of trial functions, {¢;}¥,, in the form

iR E= 2t (3.2)

=1
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where the ¢; satisfy the homogeneous Dirichlet boundary conditions so that ¢; = 0
on the boundary for every ¢« = 1,2,..., N. This trial solution is then used in the

boundary value problem (3.1)) and the residual R is defined by
R(2(7)) = C(2(7)). (3.3)

The principal idea is to force the residual to vanish in an average sense so that the

weighted integrals of the residual are set to zero:

<1/}j7 R> :07 (34)

where 1, are the weight functions for j = 1,2,..., N and the inner product (u, v)

on the space of square integrable functions over domain 2 is defined by

(u, U>Q:/ude.
Q

Combining (3.3) and (3.4) results in

N
<w]-, C (Z zz-oz-) > =0 (3.5)
=1

which is to be solved for z; to obtain the approximate solution in (3.2).

The choice of the weighting functions determines the type of the method of weighted
residuals. For example, collocation method is derived when the weighting functions

are chosen as the displaced Dirac delta function

which corresponds to that

/ijR dQY = R(2(%;)).

Therefore, the residual becomes zero at the specified collocation points ;. Further-
more, the Galerkin method, which this thesis is interested in, is developed if the
weighting functions are chosen to be the trial functions, ¢; = ;. Particularly, in
the FEM, the domain is partitioned into elements (triangles, tetrahedrons, etc.) and
the trial functions (for example, Lagrange type elements: piecewise polynomials) are

defined on each element.
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Basically, a typical construction of piecewise linear polynomials [62] on a mesh C =
{K}, where K is a triangle of a domain 2 C R?, requires the space of all continuous

piecewise linear polynomials (), given by
Qn={q€C(®) | qlx € PL(K), K € K},

where h denotes the local mesh size, defined as the length of the longest edge on K,

Py (K) is the space of linear functions on K defined by
PiK)={g=co+az+cyl|(z,y) € KCR* c,c,c €R}.
A function ¢ in ()}, can be determined uniquely by its nodal values
{q (fj ) j=1

and conversely, for each set of nodal values there is a unique function ¢ in ), with the

given nodal values: the degrees of freedom. Hence, a basis {¢; }é\;l C @y, is defined

such that
L 1=y,
0;(T;) =
0, i#J
fori,5 = 1,..., N. According to this construction of basis functions, their supports

share a small set of triangles and this enables to have a sparse matrix equation in
system (3.5). Although the structure is more complicated than matrices obtained by
the finite differences, it becomes more advantageous for arbitrary complicated bound-
aries and provides systematic rules for the developments of numerical schemes. For
the implementations in this thesis, uniform meshes are considered and an illustrative
example is given in Figure FEM basis functions are chosen linear or quadratic
with respect to the type of the problems: linear or non-linear. A piecewise linear ba-
sis function is depicted in Figure and nodes of the linear and quadratic basis

functions are shown in Figure [3.2]

One of the computational efficiency of the FEM is the procedure for the treatment of
the integrals in (3.5]). These integrals are evaluated firstly on each element (triangle)
then an efficient summation of the element-wise matrices into the global matrix, the
so-called ‘assembling’, is conducted. Due to the structure of the basis functions and
the need for an automated framework for the integral evaluations, numerical quadra-
ture rules become highly appealing. In the finite element literature, Gaussian quadra-

ture is preferred mostly among all quadratures because it requires fewer function
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(a) A uniform mesh (b) Linear basis function ¢ on a node ;

Figure 3.1: Uniform mesh and linear basis on a square duct.

AA

Linear basis Quadratic basis
Figure 3.2: FEM nodes for linear and quadratic basis functions on a triangle.

evaluations for a given order of accuracy. Basic cases such as first and second order
Gaussian quadrature nodes and weights for the integral of a function g on a standard

triangle in © C R? can be given as follows:

Ist-order : //g(f)df
K

2nd-order : / / §(7)dif = é[g(l/G, 1/6) + 9(2/3,1/6) + ¢(1/6,2/3)],

59(1/3,1/3),

where ¥ = (z,y) and K is the standard triangle defined by the vertexes (0, 0), (1,0),
and (0, 1).

In the following, the analysis of the Navier-Stokes equations, which consist of the mo-
mentum and continuity equations, is introduced in Section[3.2] Section [3.3| presents
the analysis for the MHD flow and heat transfer equations with temperature depen-
dent viscosity and Hall effect. The analysis is conducted for the power-law fluid flow
and heat transfer equations where the momentum and energy equations are combined
with a flow dependent viscosity in Section[3.4] The FEM approximations in this chap-

ter constitute a basis for the solution of the optimal control problems in Chapter 4] and
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the model order reduction applications in Chapter [5

3.2 FEM Applications to the Navier-Stokes Equations

The FEM approximation of the Navier-Stokes equations are formulated for steady,
laminar flow of an incompressible fluid in a domain 2 C R? in terms of velocity and

pressure which are introduced in Section as
—VAT+ (T-V)T+Vp=f in €, (3.6)

V-o=0 in (3.7)

where the homogeneous Dirichlet type boundary condition ¥ = 0 on the boundary

0f1 is considered for the velocity.

The first attempt to derive a finite element method is to reconstruct the system of
equations (3.6)—(3.7) in the weak form. The Sobolev spaces used in this context are
standard; for a general domain €, with the inner product (u, v), = [, uv d§2 and
[ull p2(q) = v/ {u, u), we define

Hl(Q) = {U | ||U||L2(Q) + ||V'U||L2(Q) < OO}

Hy(Q) ={v|ve H(Q)andv =00n00N}.
Multiplying (3.6) and (3.7) by the test functions (7,q) € (H3(Q))? x L*(Q2) and

integrating over the domain (2, respectively, the Green formula corresponds to that

—V/M-wcm:—y/ (VU-ﬁ)szS+v/VU:Vu7dQ,
Q 0N Q

where . = (n1,n2) is the unit normal vector pointing out of J¢2 and

ov; awz
/W Vi dQ) = Z/ax] o,

2,7=1

Accordingly, we have

V/VU:vwdQ—/ (uw-ﬁ)wds+/(U-V)v-wdﬂ—/p(v-ﬁ) dQ
Q [2)9] Q

Q
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and from (3.7)),
/(V-U)qu:O.
Q

Thus, the variational formulation of the problem (3.6)—(3.7) yields: find (¢,p) €
(H}(Q))? x LZ(€) such that

u/VU:VzﬁdQ+/(ﬁ-V)ﬁ-wdQ—/p(V-w)dQ—/f-u?z(),

Q Q Q Q
/(v-qusz:o
Q

for @ € (H}(Q))? and g € L3(92), where introduction of the trilinear form is neces-

sary; namely,

2
81}2-
V)T = il
(0-V)U-w Zu]axj s
7,7=1
so that
2 ov;
(T-V)T -0 = Zvja—zwz
i,j=1 i

Next, the finite dimensional approximations for the governing equations are intro-
duced by employing quadratic and linear finite elements for velocity and pressure,
respectively. Let K, be a triangulation of (2 with size > 0 and let V}, o and )}, be
the space of quadratic and linear polynomials on K, and V}, o0 C Hg (), Qn C L3(92),

e L) = {q c L*(Q) | /Qq dQ = o} :

Replacing Hj () with Vo and L3(2) with @, in the variational formulation, the

following finite element formulation is obtained: find (7, p) € V}7 x @ such that
(VVT, Vb g + (T V)T, @) — (p, V-0 )g — <f, w>ﬂ =0, (38
V.-7,q)g=0 (39
. hd B'U
for @ € V;2; and ¢ € Q. Therefore, letting {qﬁ,}

functions respectively for th,o and (), it is obtained that

and {1;,},” ,, being the basis
1

1=

ﬁv BP
17% ZV]¢] and p ~ Zplwl’
j=1 =1
where v; and p; are the components of the vectors v and p.
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Accordingly, the vector f = (f;) for the finite element approximation of f 1s intro-

duced so that
Bu
F> pd win fi= [ F-Gian
i=1 Q
and the matrices M = (1/;;) , K = (K;) and D = (D;;;) with entries
My = [ &G0,
Q
K =v / Vo, : Ve dQ,
0
Dikz—/wk (V-6) a0
Q
forl1 <i¢,5<pB,and1 <k <j,.

The matrix N(v) is defined with entries

Buv
M%=ZA@@W@@&:&M§& (3.10)
r=1

in order to manage the nonlinear term in (3.8)). The algebraic matrix-vector form of
the discrete non-linear problem reads as
K+ N(v) D| |v Mf
v) = . (3.11)
DT 0| |p 0
However, no boundary condition is specified for the pressure. Instead, the condition
on p is given as fQ pdS2 = 0, which can be imposed by introducing a new variable,

so-called Lagrange multiplier, such that

/pddQ—l—/chQ:O, c,d e R.
Q Q

Here, c is the unknown Lagrange multiplier represented in a real finite element space
R, having only one degree of freedom and d is the corresponding test function from
the same finite element space. Thus, the non-linear system in (3.11)) turns into the

following system

K+N(v) D o] [v] [mf
DT o r'| [p|=1]0|, (3.12)
0 r 0 C 0



where r = = [, d i, dQ for 1 < k < f3,. To be clear, the dimensional structure
of the block matrices in (3.12) is

Bo X By Pux By Pux 1l |8, x1 By x 1
Bp X Bu Bp X Bu Pux 1| |Bpx1| = |0 x1]|,
1xp, 1xp, 1x1 1x1 1x1

which has (8, + 5, + 1) x (8, + 5, + 1) dimension. Shortly, the problem in (3.12)

reads:
solve C(z)=0 for z=(v,p,c)’, (3.13)
where
Ci(z) K+Nv) D 0] |v Mf
C(z) = |Cy(z)| = DT o | |[p|l-|0]|=0 (3.14)

Considering a Galerkin type discretization (projection) of a PDE, Newton’s system
for the solution of non-linear equations can be equally well interpreted either as a
discretization of the linearized operator or as a linearization of the discrete non-linear
system [101]. Thus, a discretize-then-linearize approach is followed to handle the

non-linear problem. This can be summarized briefly as
J(2) (2" = 2") = —C(2"), (3.15)

where J (z*) is the Jacobian with the entries

0C;
5. ()

Since the contribution to Jacobian from the linear parts is trivial, the non-linearity

Ti(2") =

arising from only the convective term is examined in detail

ﬁv

Z/’Ur@' ngbj G dQY for i=1,...,5,

so that

N a'l)l Z/Ur r Ul¢l ¢7, aQ
+;/Qm<q§,~vm$j-@ 00.
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This contribution can be also written as
I ni(v) = N(v) + N*(v),

where J ny1(v) denotes the Jacobian corresponding to the non-linear term, which
depends only on v. The components of N(v) are given in (3.10) and the components

of N*(v) are defined as

Bo
N*(v)ij = Z/ij Ny by 1<y < BudD.
r=1

Thus, each Newton iteration becomes

K+NWH)+N*(vF) D 0] |[vFtl—vF Mf K+Nx*) D o] |vF
DT 0 I.T pk:+1 _ pk — 0 _ DT 0 I.T pk'
0 r 0] [cFtl—c* 0 0 r 0] |[c*

Using the fact that N(v*)v® = N*(v¥)vk, the simplified system of equations is

obtained as follows

K+ NWH) +N*(v¥) D 0] [vF! Mf + N*(vF)vF
DT 0 I'T pk+1 — 0 ,
0 r 0| |cF! 0

which is to be solved iteratively until the absolute and relative errors between two

consecutive solutions are less than the given tolerance.

3.3 FEM Applications to MHD Flows and Heat Transfer with Temperature
Dependent Viscosity

The FEM approximations of the MHD flow and heat transfer equations in terms of

the velocity magnitude and the temperature introduced in Section [2.2}

0 [_ow 0 [_oOw Ha?
7 (752) + 35 (73 ) =1+ T 1o

(5) (&)

are examined in a square duct with no-slip and zero-temperature walls, where w,,

and
Ha2B
ast =2 3.17)

V2T + Brji
+ B 1+ m? W,

is defined as w,,, = % fQ wdS, L being the aspect ratio. It is also assumed that the
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—BT where B is the viscosity

flow has a temperature dependent viscosity, i = ¢
parameter. In order to derive a finite element method, the dimensionless system of
equations (3.16)—(3.17) is reformulated in the weak form. Multiplying (3.16) and
by the test functions (v,q) € H}(Q)? and integrating over the domain €, it is

obtained that

_ _ R Ha?
/gquw-Vde—/é)Q(MVw-n)vdS—/ﬂ(1—1+m2w)de:O

and

2 2
/VT'quQ— (VT%)qu—/Br/] (8_w) + (6_w) q dS2
Q 09 Q Oz y

Ha’B
—/( ar>ﬁmm+ L gdo=o0.
Q

14+ m? Q Wm

Here, 7 = (n1, ny) is the unit normal vector pointing out of 0€2. Integrating by parts,
the variational formulation of the problem (B.16)—(3.17) yields: find (w,T) € HJ(2)?
such that

Ha?
(pVw, Vo) —<1— w,v> =0, veHN), (3.18)
Q 1_|_m2 0 0
0w\ ? 0w 2 Ha’Br
<VT,VQ>Q—<BW [(&) +(8_y) ] ,Q> —(1+m2)<“’2>Q>Q
Q
+<£ﬂq> _0, geH(Q). (.19
Wm, Q

Now, the finite-dimensional approximations for the governing equations are intro-
duced by employing quadratic finite elements for both variables, velocity and tem-
perature. Let K}, be a triangulation of (2 with size &4 > 0 and let V}, o and ()5, o be the
space of quadratic polynomials on K, such that V;, o C H}(Q) and Qo C H(Q).
Replacing H&(Q) with V}, o and @}, in the variational formulation, the following

finite element problem is attained: find (w,7T) € V} 0 X Qo such that

H2
<,qu,Vv>Q—<1—1+am2w,v> =0, ve Vo (3.20)

or.son- (w3 + ()] ), - (22

w
+<—,q> =0, q€Qno (3.2
Q




Therefore, letting {¢; }7, and {1, }*, being the bases for V}, o and Qj, o, respectively,

we have
Buw Br
W = ij(bj and T = Zﬂwl’
j=1 =1
where w; and 7} are the components of the vectors w and T', respectively. Accord-

ingly, the approximations are introduced in the following forms:

— ~ Z e BTy,

w2%i:wj2'¢j7
j=1
a_wngw(gﬁ) and a—~zw ¢
ax p 7 7)x a J J
O 2 Buw
(%) %Zw?(gbj)z, and ( ) ZW ;
j=1
0w\ w\? & 2
(%> +(a_y) Nj;wj [(65)a + (61),)

Furthermore, entries of the vector d = (d;) and the matrices M = (M;;) and S =
(Sk1) are

di:/cbidQ, 1< < B,
Q
=/<z>j<z>idﬂ 1<i,j< B,
Q

St = / VoV d2 1< k1< Br
Q

In order to manage the non-linear terms, the matrices K(7"), D(w,T'), N(w) and

P(w) are proposed with the following entries

Br
:Ze—BTr / U V6V, S,
D(w, T)y; = Ze*BTT ) [ o (%+%) by 9,

N(w)kj = /ijqbﬂbk dQ,
L fQ (Z =1 Wl@)
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where 1 < 1,5 < (,,and 1 < k < (7. The algebraic form of the discrete problem
reads:
aM 0| |w N K(T)w—d o,
0 S| |T oN(w) = BrD(w, T)w + P(w)w

where constants ¢; and ¢, are defined as

Ha? Ha’Br
Tl m? B
Then discrete non-linear system of equations can be reformulated for finding z =

(w, T') such that

C1

oM 0| |w K(T)w—-d
C(z) = + =0. (3.22)
0 S| |T oN(w)w — BrD(w, Tw + P(w)w
Because of the same reasoning given in Section [3.2] a discretize-then-linearize ap-

proach is followed. The Newton formula for the mixed problem given in (3.13) is

used with the Jacobian

oM 0 K(T) (ZEO,,

J(z) = + or : (3.23)
=) 0 S G(z) —Br%w
where
_ [ON(w) o |9D(w,T) 0P (w)
G(z) = i + N(w)} Br [—aw w+D(w,T)|+ 50 w+P(w).

Due to the local convergence of Newton’s method, an appropriate initial guess is
obtained by solving the problem with zero initials for both velocity and temperature,
which corresponds to a constant viscosity and accordingly a linear problem. Then the

resulting approximation is used as an initial guess for Newton’s method.

Below are some important physical constants and notations used in the sequel. The

product of the friction factor f and the Reynolds number Re is given as

R 2172
€= ——F—77—
(14 L)%w,
and the average Nusselt number Nu is
L2
Nu=———""—"-+"+
YT oy oen,

where

1
T, = T wT dQ

Wm Q
is the mean fluid temperature and L is the aspect ratio.
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3.4 FEM Applications to Power-Law Fluid Flow and Heat Transfer

The solutions of the power-law fluid flow and heat transfer equations are investigated
by the FEM for the velocity magnitude and the temperature, previously introduced in

Section[2.3] as follows:

0 ow 0 Ow
— | fpi=— |+ = [ fim | = —1 + Ha? 3.24
O (u(?I)Jr@y (uay) H 24
and
w\? 0w\ 4
V2T + Bz | (S2) + (£2) | + Ha?Brw? = — (3.25)
ox oy Win
with the boundary conditions
w=0 on 00
and
aT T B ar T _ 1
oy l@b/a)y  Oxl(y) T Oy l@o)  Orloy)
where

n—1

_ dw\” N dw\”

H= ox dy
As a first attempt for deriving finite element equations, the weak form of the dimen-
sionless system of equations (3.24)—(3.25) is reconstructed. Multiplying (3.24)) and

(3.25)) by the test functions v and ¢, respectively, and integrating over the domain (2,
it is obtained that

/pr-Vde—/ (pr-fz)vdS—f—/(—1+Ha2w)de:0,
Q o0 Q

and

2 2
/VT-quQ—/ (VT-ﬁ)qu—/Bru <8_w> +(8_w) q dS2
Q LY Q 0z 0y

4
—/ (HaQBr) w?qd) + / —wq a2 =0,
Q

Q Wm

where 1 = (ny, n9) is the unit normal vector pointing out of 0f). Hence, the varia-

tional formulation of the problem (3.24)—(3.23) yields: find (w,T) € H} () x H'(Q)
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such that

(iVw, Vu)g+ (—1+Ha*w,v), =0, ve Hi(Q), (3.26)

(VT, Va)g = (1, 0)on ~ <Br“[( ) < >] >

—(HaQBr)<w2,q>Q+<i—w,q> =0, q€ HY(Q). (3.27)
Q

Here, the Neumann boundary condition of the temperature is weakly imposed. Next,
the finite-dimensional approximations for the governing equations are introduced by
employing the quadratic and linear finite elements for velocity and temperature, re-
spectively. Let C;, be a triangulation of €2 with size h > 0 and let V}, o and @)}, be the
space of quadratic and linear polynomials on K, and V}, o0 C H}(Q2), Qi C HY(Q).
Replacing H} () with f3,-dimensional V}, o and H*(§2) with Sr-dimensional @y, in
the variational formulation, respectively, we obtain the following finite element for-

mulation: find (w,T") € V}, o X @), such that
(AVw, Vv)g + ( —1 4+ Ha’w, v>Q:0, v € Vio(Q),
dw 2 . o 2
Ox dy 4 0

- (HB) () + (22 0) =0 ge Qi)
Q

m

(VT', Vg)q—(1,q)aq — <Bru

Within this formulation, given the bases {¢;}7, and {y;}°", for Vj,o and Qj,, re-

spectively, we can express w and 7" as

Bw BT
w=)Y wi¢; and T =) Tuh,
j=1 =1

where w; and 7; are the components of the vectors w and T. The similar approxima-
tions in Section @ are not repeated here; however, it should be noted that the basis
functions ¢; and ), are quadratic and linear, respectively, in this problem. Accord-

ingly, the approximation of the variable viscosity is introduced as

i [(‘3—“’) v (g—;)] T (BZ 216+ <¢j>y]) N

Besides, the vector e = (e;) and the the entries of the non-linear stiffness matrix
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K (w) are proposed as

ey = Y dS, 1<k<pBr,
e

2

Buw
K(w)i; :/Q (Zwi [(fr)e + (¢k)y]) ViV, dSd.

Due to the form of (3.24), the velocity solution can be obtained separately from the
temperature since it is not coupled with (3.25)). Thus, the algebraic form of the dis-

crete problem for the velocity reads:
K(w)w + Ha?Mw = d;
and the resulting non-linear system of equations can then be represented as
F(w) = K(w)w + Ha?Mw — d = 0.

This can be solved using Newton’s method by following a discretize-then-linearize
approach. Same as before, we solve a linear problem considering a constant viscos-
ity to obtain a proper suitable initial guess. The Newton formula given in (3.15)) is
implemented with the Jacobian

_OF_ 0K(w)
C dw Ow

J(w) w + K(w) + Ha’M

of the non-linear velocity equation. Accordingly, with the known velocity profile,

temperature equation folds into a linear one:
ST =f+e,

or, equivalently,

G(T)=ST — (f +e) =0,

where the vector f = ( f;) has the components

2 2
ka/QBrM [(Z—Z) - (g—;) ] o dQ+/Q(HazBT) w? Yy dQ—/Qi—w% dg,

for 1 < k < fBr. Although equations are solved in a decoupled way, the discrete

problem can be reformulated as a system of equations in the form of C(z) = 0, where
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z = (w,T) to be used as the discretized PDE constraints in the control problem as

follows:

Below are some important physical constants and notations to be used in the sequel.
The term fRe defines the product of the fanning friction factor f and the Reynolds

number Re [89]],
(2L)"
(1+ L)rt+iwn’
which depends also on the flow index parameter 7 in this case, unlike the case before.

fRe =

Likewise, the average Nusselt number is defined to be
2L
(1+ L)(T,,, —Tn)’
where 7T,,, is the mean fluid temperature given in (2.35) and 7, is
ro_ 2 [
™ 1+4+LJ,

Nu =

1 L

T(x,0) dx + 5/ T(0,y) dy.
0

3.5 Numerical Results

In this section, FEM solutions to steady, two-dimensional, laminar flow problems of
incompressible Newtonian and non-Newtonian fluids in a square duct are presented.
Firstly, simulations are performed for a benchmark problem, Navier-Stokes equa-
tions, with an exact solution given in Section [3.5.1] to ensure the efficiency of ap-
proaches in this study. Secondly, in Section the solution of the MHD flow and
heat transfer equations with temperature dependent viscosity is presented. The MHD
flow contains the viscous and Joule dissipations; and the Hall effect is taken into con-
sideration as well. The coupled non-linear equations are solved by Newton’s method
using quadratic elements. Finally, the solution of the power-law fluid flow and heat
transfer, where the fluid may become non-Newtonian according to the value of the
flow index, is presented in Section [3.5.3] Since the non-linear momentum equation
does not depend on the temperature in this problem, its solution is obtained by the
Newton method using quadratic elements, and thereby, the resulting velocity magni-
tude is used for the solution of the linear temperature equation with the help of linear

elements.
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Besides, the linear system of equations in each iteration is solved, particularly, by
standard LU decomposition. Computer simulations are executed on a platform with
Intel Core 17-4770 processor and 15.6 GB RAM using Python programming language
with a computing platform FEniCS [66] for solving PDEs. Python codes used for all
simulations in this thesis are basically sampled in Appendix[A.2]

3.5.1 Navier-Stokes Equation with Exact Solutions

The Navier-Stokes equations which consist of the momentum and the continuity
equation are solved by Newton’s method using a mixed FEM. The velocity and the
pressure are obtained on a unit square [0, 1] x [0, 1] for an incompressible flow. In
order to ensure the stability and convergence, Ladyzhenskaja-Babuska-Brezzi (LBB)
condition [[76]], or also known as compatibility condition, is satisfied by choosing the
Taylor—Hood element pair (P2-P1) for the velocity and the pressure, respectively. In
order to verify the accuracy of the FEM procedure, a test problem is studied with the

following functions

. sin?(7x) sin(7y) cos(my)
v = exp(—0.5v
P ) — sin?(7y) sin(7z) cos(mx)

p = exp(—0.5v) cos(mx) sin(my)

from which the homogeneous Dirichlet type boundary condition of the velocity is
obtained and the force function f is derived by substitution this exact solution into
(3.6). The convergence of solutions is tested for decreasing maximum cell diameter
(hmax) as given in Table The results in Table (3.1|show that the difference between
the exact and FEM solution is decreasing as h decreases, which validates the accuracy
of the method. The convergence rates for the FEM solutions of the velocity and the
pressure are also attained at optimal orders, namely, they are three and two for P2 and
P1 elements, respectively. Numerical solutions for various values of v are depicted in
Figure [3.3] where we consider a uniform mesh consisting of 1089 vertices and 2048
triangular elements with 8450 and 1089 nodes respectively for quadratic and linear

finite element spaces for velocity and pressure.
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Table 3.1: L? Errors and convergence rates for v = 0.1

Rmax v rate Vg rate P rate
7.0710 x 10~% | 7.1345 x 1072 - 7.1994 x 1072 - 1.2367 x 10! -
3.5355 x 101 | 1.1739 x 1072 | 2.6035 | 1.1532 x 102 | 2.6423 | 2.8548 x 1072 | 2.1151
1.7678 x 107! | 1.2644 x 1073 | 3.2148 | 1.2597 x 103 | 3.1945 | 6.3510 x 103 | 2.1683
8.8388 x 1072 | 1.4741 x 10~* | 3.1006 | 1.4727 x 10~* | 3.0965 | 1.5421 x 10~ | 2.0421
4.4194 x 1072 | 1.8055 x 107 | 3.0293 | 1.8051 x 107> | 3.0283 | 3.8288 x 10~ | 2.0100
2.2097 x 1072 | 2.2451 x 1075 | 3.0075 | 2.2450 x 1075 | 3.0073 | 9.5557 x 10~° | 2.0025
1.1049 x 1072 | 2.8028 x 10~7 | 3.0019 | 2.8028 x 10~7 | 3.0018 | 2.3879 x 10~° | 2.0006

3.5.2 The MHD Flows and Heat Transfer with Temperature Dependent Vis-
cosity and Hall Effect

The MHD flow equations containing viscous and Joule dissipations in which the Hall
effect is taken into account are solved together with the energy equation by using a
mixed FEM. The pipe axis velocity and the temperature are obtained in the square
cross-section of the pipe [0, 1] x [0, 1] for the hydrodynamically and thermally fully
developed flow. At each simulation, Newton’s method for the solution of the coupled
non-linear equations (3.16)—(3.17) is initialized by solving the problem for a constant
viscosity with zero initials for both velocity and temperature. Considering the small
velocity magnitude in the problem, Newton’s iterations are performed until not only
the the absolute error becomes below 107!Y but also the relative error falls below

107°.

A quadratic finite element method on a uniform mesh, consisting of 2601 vertices
and 5000 triangular elements, is used with the 10201 nodes for each subspace of the
mixed finite element space. The number of unknowns is pre-determined according
to the mesh dependence convergence test results given in Figure providing an
accuracy about 1075, The time costs for the finite element solutions are tested for

increasing degrees of freedom (Dofs) and depicted Figure [3.4(b)]

The following results are obtained for various values of the Hartmann number, 0 <
Ha < 10; viscosity parameter, B = 0, 1, 2; Brinkman number Br = 0, 1; and the Hall

parameter, m = 0, 3, 8.

Figure[3.5]shows the velocity behavior for increasing values of Ha. It can be seen that

as Ha increases the velocity magnitude drops, verifying the well-known flattening
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Figure 3.4: Error and CPU time analysis of FEM solutions with increasing number
of degrees of freedom (Dofs) for Ha = 1.0, m = 1.0, Br=1.0, B = 1.0.
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Figure 3.5: Velocity contours for m = 0, Br = 0, B = 1 and for increasing values of
Ha.

tendency of the MHD flow or the damping effect of external magnetic field with
increasing intensity [22]]. Same behavior for the velocity is also observed when the
viscosity parameter B is increased, since the viscosity of the fluid is incremented due

to the exponential variation of — BT (see Figure [3.6)).

One can deduce that increasing the Hall parameter m increases the magnitude of the
axis velocity w: Figure[3.7and Figure [3.8|show such an increase for Br = 0 and for

Br = 1, respectively. This is due to the fact that an increase in the Hall parameter

reduces the effective conductivity 1 : of the fluid and decreases the damping

2
effect of the magnetic force. As can benzeen from the temperature equation (2.19)),
nonzero values of the Brinkman number Br introduce the non-linear terms of the axis
velocity due to the constant variation d7,,/dz. Thus, the inclusion of these effects
with Br = 1 slightly increases the velocity magnitude for all values of m, shown as

max w = 0.04715 in Figure [3.7)and max w = 0.04718 in Figure[3.8|for m = 0.
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Figure 3.7: Velocity contours for Ha = 3, Br = 0, B = 1 and for increasing values
of m.
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Figure 3.8: Velocity contours for Ha = 3, Br = 1, B = 1 and for increasing values
of m.
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Figure 3.9: Velocity profiles along the midline of the square duct.

Figure depicts the variation of midline velocity w(x, 0.5) for increasing B and
Ha values when m = 0 and Br = 0. It is clearly seen that the increase in Ha or
B drops the midline velocity magnitude as it was observed in the whole contour
behaviors of w in Figure This increase of B decreases w for all values of m;
and the influence of B on w is more seen for larger values of m. Figure [3.9(b) and
Figure show again the midline velocity w(x, 0.5) for increasing B and m when
Ha = 3 and Br = 1 while increasing Ha and m when B = Br = 1. In both cases, the

increase of m overwhelms the drop of the velocity with the increase in Ha or B.
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Figure 3.11: Isolines for Ha = 3, Br = 0, B = 1 and for increasing values of m.

Meanwhile, the temperature attains negative values inside the cavity, dropping to zero
on the insulated walls. As Ha increases temperature increases through the center of
the cavity, since the fluid tends to be stagnate at the center. This can be seen from
equal temperature contours (isolines) in Figure [3.10| for various values of Ha. In-
creasing m decreases isoline values due to the reduction in the effective conductivity,
which reduces the Joule dissipation when both Br = 0 and Br = 1 in Figure(3.11]and
Figure [3.12] When the viscosity parameter B increases, temperature increases as a
result of increasing the viscosity; and consequently, the viscous dissipation increases
as depicted in Figure Furthermore, in Figure [3.14] and Figure a slight
increase is observed in temperature for all values of m when Br = 0 is changed to

Br = 1 as is in the pipe-axis velocity.

Table [3.2) and Table [3.6] show the effects of both viscosity parameter B and Hartman
number Ha on fRe and the average Nusselt number Nu when m = 0 and Br =
0. Both fRe and Nu increase as B increases; and also, as Ha increases due to the

increase in viscous dissipation and strong magnetic field, respectively.
On the other hand, Table [3.4] and Table [3.5]demonstrate the effect of increase in m on
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Table 3.2: The effect of the viscosity parameter B and Ha on Nu (m = 0, Br = 0).
B/Ha| 0.0 1.0 2.0 3.0 4.0 5.0
0.0 |3.6079 3.6232 3.6678 3.7375 3.8269 3.9297
1.0 | 3.7582 3.7665 3.7932 3.8411 3.9095 3.9946
2.0 |3.9042 39042 3.9149 3.9427 3.9915 4.0597

Table 3.3: The effect of the viscosity parameter B and Ha on fRe (m = 0, Br = 0)
B /Ha 0.0 1.0 2.0 3.0 4.0 5.0
0.0 14.2270 149150 16.9646 20.3368 24.9783 30.8325
1.0 14.6620 15.3442 17.3773 20.7253 25.3387 31.1643
2.0 15.0748 157531 17.7747 21.1042 25.6944 31.4952

Nu and fRe, respectively, for increasing values of Hartmann number when Br = 0
and B = 1. As m increases, fRe decreases; Nusselt number Nu also decreases due

to the reduction in the effective conductivity, which reduces the Joule dissipation.

While Ahmed and Attia [81] investigated this problem by using finite difference
method for solving temperature and velocity equations iteratively, here in this the-
sis, finite element solutions are provided, which are more reliable and fast, within a
mixed formulation of the velocity and temperature equations. Furthermore, the phys-
ical quantities such as fRe and Nu obtained in the thesis show similar behaviors with
the ones given in [81]. Also, although their numerical results are limited to some
range of parameters such as 0 < Ha < 3, the results are extended to 0 < Ha < 10.
However, even for larger Hartman values solutions by FEM are easily attainable; they
are not reported here due to small velocity magnitude. Therefore, this thesis extends
the results of [81] in terms of both the underlying method and the ranges of the con-

sidered parameters besides the accuracy obtained.

Table 3.4: The effect of the Hall parameter m and Ha on Nu (Br =0, B = 1)
m/Ha| 0.0 1.0 2.0 3.0 4.0 5.0
0.0 3.7582 3.7665 3.7932 3.8411 3.9095 3.9946
3.0 3.7582 3.7590 3.7615 3.7656 3.7716 3.7796
5.0 3.7582 3.7585 3.7594 3.7610 3.7633 3.7662
8.0 3.7582 3.7583 3.7587 3.7593 3.7602 3.7613
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Table 3.5: The effect of the Hall parameter m and Ha on fRe (Br =0, B = 1)
m / Ha 0.0 1.0 2.0 3.0 4.0 5.0
0.0 14.6620 15.3642 17.3773 20.7253 25.3387 31.1643
3.0 14.6620 14.7303 14.9351 15.2760 15.7524 16.3632
5.0 14.6620 14.6883 14.7611 14.8984 15.0821 15.3180
8.0 14.6620 14.6725 14.7040 14.7566 14.8301 14.9246

3.5.3 Power-Law Fluid Flow and Heat Transfer

In this part of the section, solutions of the power-law fluid flow and heat transfer equa-
tions are obtained numerically by using FEM. Different from the previous method-
ology, velocity and energy equations are treated in a decoupled form. At each sim-
ulation, Newton’s method for the solution of the non-linear momentum equation is
initialized with a constant viscosity. Then, substituting this velocity, the temperature
is found by solving the linear equation. Same as before, the pipe axis velocity and
the temperature are obtained in the square cross-section [0, 1] x [0, 1] of the pipe and

stooping tolerance is 1071? for absolute error and 10~ for the relative error.

In this problem, considering the non-linearity in the momentum equation and the
linearity in the energy equation, P2-P1 (quadratic-linear) finite element pair is used
for the velocity and temperature. A uniform mesh, consisting 4225 vertices and 8192
triangular elements, is used with 16641 and 4225 nodes for quadratic and linear finite
element spaces, respectively. These are determined according to the mesh dependence
convergence test results given in Figure [3.16(a)|in order to provide an accuracy about
107%. Since the number of degrees of freedom is different for each finite element
space, tests for the convergence and time costs are conducted for the maximum cell
diameter (h), which is same for both spaces. Accordingly, the time costs for the finite
element solutions are depicted in Figure[3.16(b)] The results are obtained for various
values of the Hartmann number (0 < Ha < 10), Brinkman number (0 < Br < 2),
and the flow index (3 < n < 2).

Figure shows the velocity behavior for increasing values of the Hartmann num-
ber Ha for a fixed value of n = 0.5. As Ha increases boundary layers are formed:
flow concentrates near the walls and the fluid becomes stagnant at the center of the

duct. Flow behavior is also simulated for increasing values of Ha when n = 1.5 and
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Figure 3.16: Error and CPU time of FEM solutions for Ha = 1.0, n = 1.5, Br = 1.0.

n = 2.0; see Figure[3.18]and Figure [3.19] respectively.

As the flow index n increases, in Figure[3.18] boundary layer formation occurs when
Ha is increased, but for much smaller Ha when compared with the formation when
n = 0.5. For Ha > 30 the duct is almost stagnant except a thin boundary layer with
very small velocity magnitude there (n = 1.5). The increase in n causes an increase
in the magnitude of the velocity; however, this is lost when Ha is also increased as it

can be seen in Figure [3.19]for n = 2.0.

Meanwhile, Figure depicts the variation of the midline velocity w(x,0.5) for
increasing values of Ha for each fixed n. It is clear that as Ha increases the velocity
magnitude drops for all values of n, verifying the well-known flattening tendency of
the MHD flow in Figure [3.20l On the contrary, an increase in the flow index n results

in an increase in the velocity and consequently, a peak at the center x = 0.5 occurs.

Furthermore, in Figure 3.21} velocity drop continues with an increase in Ha for all
values of n. However, increase in the velocity is compensated by an increase in n for
values of Ha > 30 and n > 1. The reason is that MHD equations become reaction

dominated and this fact diminishes the effect of variable viscosity coefficient.

We also present the effects of the flow index and the Hartmann number on fRe in
Table It is clearly seen that as Ha increases fRe increases for any values of n;
however, the change of fRe is very small for n = 0.5. One can also deduce that as n
decreases, fRe decreases for any values of Ha because of the fact that the viscosity

decreases faster than the increase in the wall shear rate.
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Table 3.6: The effect of the parameter n and Ha on fRe

n/Ha 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

0.5 5.7214 5.7775 5.9394 6.1909 6.5126 6.8866 7.9672 9.1623
1.0 | 142270  14.9150 16.9646 20.3368 249783 30.8324 50.4572 76.8114
1.5 | 34.8609  37.8540 47.7100 66.8303 98.4061  145.5560 349.5695 711.2614
2.0 | 85.1464 95.0650  131.5440 217.5824  393.7651  709.7827  2522.4330  6846.6395
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Figure 3.20: Midline velocity profiles for Ha < 10.

On the other hand, temperature attains positive values on the walls where we have
assumed constant heat flux. As Ha increases temperature increases through the center
of the cavity; this can be seen from the temperature contours (isolines) in Figure [3.22]

for Br = 1.0. Increasing n also increases the values on the isolines as presented in

Figure[3.23|for n = 1.5.

0 .

Br = 1 on the duct walls yields
n

symmetrical temperature isolines about the central lines z = 0.5 and y = 0.5. Heat

circulates through the corner symmetrically with increasing values. Temperature vari-

ation can be visualized better when the vertical walls are changed to the insulated

gﬁ = (0. This time heat reaches positive maximum values on the
upper and bottom walls symmetrically with respect to y = 0.5 line. Furthermore, if
one of the walls, for instance x = 1, has the constant heat flux condition % =1
and the rest of the walls are insulated, then isolines become perpendicular to these
insulated walls and temperature achieves its maximum near x = 1. These conditions

as well as the behaviors of the isolines are depicted in Figure [3.24]
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Figure 3.21: Midline velocity profiles for Ha = 30, 50, 100.

Meanwhile, another physical quantity Nu, which represents the dynamic on the tem-
perature is investigated. Figure[3.25|presents the variation of the Nusselt number Nu
with the Hartmann number Ha for Br = 0 and Br = 2. It indicates that as the flow in-
dex increases the average Nusselt number decreases for small values of Ha (Ha < 3).
On the other hand, the effect is reversed for larger values of Ha (Ha 2> 5) so that

increasing n increases Nu. For Ha such that 3 < Ha < 5 a transition is observed.

In Tables and [3.9] respectively for n = 0.5, n = 1.0, and n = 1.5, it is also
observed that the effect of Brinkman number Br on Nu is non-uniform. The increment
in the Brinkman number Br decreases the value of Nu for n = 0.5 for all values of
Ha; however, for n = 1.0 and n = 1.5 it increases the values of Nu for Ha > 3 and
Ha > 1, respectively. It should also be noted that the effect of Br on Nu is almost

invisible, when compared to the effects of other parameters on Nu.

Inspiring the work of Ahmed in [80], where he employed finite difference method for
the numerical solution of this problem, solutions are enlarged with the finite element

method in this study. In addition, the parameter ranges of the flow index as well as
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Table 3.7: The effect of the parameter Br and Ha on Nu (when n = 0.5)

Br/Ha | 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0
0.0 3.3023 3.3060 3.3166 3.3329 3.3533 3.3765 3.4401 3.5054
1.0 3.3009 3.3047 3.3154 3.3319 3.3525 3.3759 3.4398 3.5053
2.0 3.2995 3.3033 3.3143 3.3309 3.3517 3.3752 3.4395 3.5052

Table 3.8: The effect of the parameter Br and Ha on Nu (when n = 1.0)

Br/Ha| 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0
0.0 3.0880 3.1006 3.1370 3.1941 3.2673 3.3515 3.5824 3.8080
1.0 3.0839 3.0972 3.1353 3.1939 3.2680 3.3527 3.5837 3.8090
2.0 3.0799 3.0939 3.1336 3.1937 3.2687 3.3538 3.5850 3.8100

Table 3.9: The effect of the parameter Br and Ha on Nu (when n = 1.5)

Br/Ha | 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0
0.0 3.0067 3.0239 3.0786 3.1766 3.3177 3.4894 3.9320 4.2905
1.0 3.0013 3.0204 3.0788 3.1794 3.3214 3.4929 3.9343 4.2919
2.0 29960 3.0169 3.0789 3.1822 3.3250 3.4964 3.9365 4.2933
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the Hartman number are expanded to larger intervals with respect to the ones in [80].
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CHAPTER 4

OPTIMAL CONTROL IN FLUID FLOW PROBLEMS

In this chapter optimal control problems for two-dimensional flows of laminar, in-
compressible viscous Newtonian and non-Newtonian fluids are introduced. The aim
of this part in the thesis is to contribute the application of powerful methods from
mathematical optimization to the control of fluid flow problems. For this purpose
methods under investigation are introduced firstly. Then, applications to the N-S
equations, MHD flow and heat transfer equations and also the power-law fluid flows

are presented.

4.1 Introduction to Optimal Control with PDE Constraints

Optimal control problems are formulated for many purposes in science and engineer-
ing such as tracking a velocity field, designing an aircraft or reduction of turbulence.
Defining a cost functional for tracking the difference between the current state and the
desired state, an optimization problem is constructed. Controlling idea is achieved by
minimizing or maximizing the cost functional based on the needs of the underlying
systems. The constraints arising from the dynamics of these systems can be governed
by the ordinary differential equations (ODEs), PDEs or some other types. In this

study, we consider the control of fluid flow problems constrained by the PDEs.

In general, the PDE-constrained optimization problem can be stated as

minimize J(z, u) 4.1)

subject to C'(z,u) = 0 on €, (4.2)
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where J is the cost functional, C' is the set of partial differential equations, z is the
state and w is the control variable. There might be additional constraints on the control
and the state variables. Here, u can be embedded in a boundary condition, or be a
source term or a parameter appearing in the PDE. The functional J and the constraint
PDE operator are assumed to be Fréchet differentiable, which is a generalization of

differentiability for functions from R" to Banach spaces:

Definition 1. Let g : B C B, — B, be an operator with Banach spaces B,, B, and
B # 0 open. g is called Fréchet differentiable if for all x € B there exist a bounded
linear operator ¢'(x) : B, — B, such that:

lg(x +h) —g(x) = g'(x)h]l g,

im = 0.
1All 5, —0 1Al 5,

g is continuously Fréchet differentiable if the function x — ¢'(x) is continuous.

Also, the state equation in (4.2)) is assumed to have a unique solution z and C',(z, u)
is invertible for all u € U where U is a Banach space. Then, a solution operator z(u)
can be defined as u — z(u), which is continuously differentiable. Thus, embedding

the PDE constraints into the cost functional in (4.T]) gives rise to
J(u) == J(z(u),u), 4.3)

which is generally referred to as the reduced cost functional. A more detailed infor-
mation about the mathematical foundations of the control theory is provided in [47]]

and [95]].

The solution process of an optimization problem begins with invoking the first deriva-
tive of the cost functional to derive the optimality conditions that have to be satisfied.
These ensure that the numerically obtained controls are optimal. In this respect the

derivative of .J is derived as follows

(T, s), . = (@), s )y, + (o) a), $)pe

so that



where we refer to [47] for the definition of an adjoint operator and dual space. How-

ever, z'(u) cannot be obtained directly. Instead, (4.2)) is used to obtain the following

relation

Cu(z(u), )2 (u) + Cu(z(u),u) = 0,
which yields to

() = ~C((u),w) " Cu(=(u), u),
and

Rather calculating inverse in the last equation, a new variable, so-called the adjoint

variable is defined as
A== (Calz(w),w) ™) T(2(u), ),
which can be solved by the adjoint equation
C.(z(u),u) A = —J,(2(u), u). (4.4)

This yields:
J'(u) = J,(2(u),u) + Cy(2(u), u) A(u). 4.5)

Therefore, the adjoint approach computes the derivative .J’ (u) by solving the adjoint

equation.

This approach can also be constructed on a Lagrangian formulation: let the Lagrange

function £ : Z x U x Y* — R be such that
L(z,u,A) = J(z,u) + (A, C(2,u) )y y (4.6)

for A € Y*, where Z,Y* = H'(Q) and U = L*(Q2). Then, substituting z = z(u) into
(4.6) yields to

L(z(u),u, A) = J(z2(w),u) + (A, C(z,u) )y y 4.7)
and the corresponding optimization problem becomes an unconstrained one:

minimize £(z, u, A).
u
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For the optimality, the derivatives of £ with respect to z, u and )\ are expected to

vanish. Thus, the derivation of them are obtained as follows

<£Z(27U7A>7 d>Z*,Z = <JZ(Z7U)7 d>Z*,Z + <A7 CZ<Z7u)d>Y*,Y
= (J(2u) + C.(z,u)"' A, d) 4. 4

so that
L.(z,u,N) = J.(z,u) + C.(z,u)"A.
By imposing £, = 0, the adjoint equation (4.4) is obtained
C.(z,u)*A = —J,(z,u).
Similarly, £,(z,u, A) is derived:

<[’u(z>u?A)7 6>U*,U = <Ju(2au)’ e>U*,U + <A’ CU(Zuu)€>Y*,Y
= (Ju(z,u) + Cu(z,u)" A, e)U*’U

so that
Lo(z,u,N) = Ju(2z,u) + Cyu(z,u)*A,
which represents the same equation in (4.5)).

Both approaches are well applicable and generate the same adjoint equations to be
solved in the optimization. Picking up an optimization algorithm, problem is solved
after the discretization of the PDE constraints and the adjoint equations. In the
literature, this procedure is called as optimize-then-discretize, where all derivatives
are attained in the PDE-level and then discretization is performed to get a finite-
dimensional problem. This procedure can improve the numerical accuracy when
independent discretization schemes are necessary for the primal and adjoint prob-
lem. However, manual derivation of the continuous adjoint system can be tough for
complex PDEs and this leads to additional complexity for the implementation [27].
Instead, first the state equation can be discretized then the adjoint equation can be de-
rived from the discrete first-order optimality conditions. This is called as discretize-
then-optimize. Once the forward model has been discretized, the procedure to obtain

the corresponding adjoint model becomes conventional in discretize-then-optimize
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approach. It is also attractive in practice since discrete adjoints can be generated with
low effort using automatic differentiation, which we followed in this thesis. Readers

can also refer to [27] for more information and pros-and-cons of the two approaches.

After all, whichever approach is chosen, an optimization algorithm has to be selected;

below we present the general steps in a gradient-based optimization algorithm.

4.2 Optimization Algorithm

For the implementations in this thesis a gradient-based algorithm is used. It is a type
of quasi-Newton method with a limited memory usage, called as L-BFGS (Limited-
Memory Broyden-Fletcher-Goldfarb-Shanno) method, which is introduced by Liu
and Nocedal in [|64].

In the quasi-Newton type methods only the gradient of the cost function is required.
Unlike Newton’s method, the second derivative is not addressed, thus they become
more efficient computational tools. The most popular one is the BFGS method whose
derivation starts with forming a quadratic model of the cost function at the iterate wy:

for the reduced cost functional .J in (&.3) we have

_ N 1
Je(p) = qr(p) = Jr. + VI p+ épTBm

where By is an n X n symmetric positive definite matrix so that if p = 0 then

Qk(O) =J, and V(]k(O) = ij

This quadratic model is minimized for the search direction py by imposing Vg (px) =

0 so that

k= —B; 'V,
and new iterate becomes

Uk41 = Uk + YDk

This update is very close to the line search Newton method except that the exact

Hessian is replaced with the approximate By.
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Updating of the approximate Hessian 5 has many versions in the literature [71/]. An
alternative is to update the inverse of By, denoted by Hj, so that the search direction
can be computed by a matrix-vector multiplication. The inverse Hessian approxima-

tion Hj, can be updated by the following formula:

Hior = (I — prsiyi ) He (I — pryesy ) + prsesi (4.8)

- - 1 .

where sy = upi1 — up, Yp = VJpy1 — VJp and pp = ——. The use of this
Y. Sk

approximation, so-called the BFGS update, can be invoked in an optimization as
presented in Algorithm As mentioned in Algorithm |1} a step length v has to
be determined from a line search, where sufficient decrease and curvature conditions

are satisfied. They are called as Wolfe conditions and stated as

J (g, + vepr) < J(ug) + dﬂ/kVJkTpk,
VJ (ug +pr) pr > 2V I py,

with 0 < d; < dy < 1.

Algorithm 1 BFGS Method
1: procedure BFGS(j, g, Hy, €)

2: k+1

5 while ijkH > e do

4: Compute search direction p;, = —H, ijk;

5: Set w1 + Vxpr Where v is computed from a line search procedure to

satisfy the Wolfe condition;

6: Define s, = ugy1 — ug and y = ijﬂ — ij;
7: Compute Hy; by @.8));

8: k+ k+1;

9: end while

10: end procedure

Although the convergence rate of this algorithm is super-linear, that is slower than
Newton’s method, its cost per iteration is much smaller due to the absence of the
second order derivatives. Yet, one drawback is the requirement for a storage of the

inverse Hessian approximation Hy. Fortunately, this is overcome by a memory saving
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strategy, yielding the so-called limited-memory BFGS method (L-BFGS) [64]. In this
version of BFGS method, H,VJ, is computed by carrying out a sequence of vector
summations and inner products by storing a certain number, say m, of the vector pairs
(si,y;). By the computation of the new iterate, the new pair {s, yx} of the current
step is substituted into the set of pairs {s;, y; }, which includes information from the m
most recent iterations, and the oldest vector pair is removed from the set. Therefore,
the storage requirement for fully dense approximations of Hj is resolved by saving

only a few vectors.

In order to give a more detailed description, the BFGS update formulas are rewritten

in the following form:

Hyr = VT HiVi + prsesy, (4.9)
where
1 T
Pk = T and Vk =71 - PrYkSy - (410)
Ui Sk

If the update formula (4.9)) is recursively substituted into itself, then it yields to the

following formula
Hi,= (V' Viur) Hy
+ phem (Vily - Vi) Sk=mSt—m (Viemt1 -+ Vie1)
$ o (Vi) ScmnsTs (Vo= Vi)
+ -+ pkflsquf_l-

This expression enables us to perform a recursive computation of H;V.J,,, which can
be simply stated by the case of two-loop recursion in Algorithm [4]in Appendix [A.1]
The full version of the limited-memory BFGS method is summarized in Algorithm 2]

In the following, first, the optimal control of the Navier-Stokes equations is studied
using a distributed control function based on a Lagrangian view. Second, control of
the MHD flow and heat transfer with variable viscosity and Hall effect is investigated
by considering the parameters of the problem as control variables. Third, the optimal
control of the power-law fluid flow and heat transfer is examined by determining the
optimal parameters of the problem. Optimization structure is constructed directly
based on the reduced cost functional for the last two problems in order to exemplify

both approaches introduced in Section
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Algorithm 2 L-BFGS method
1: procedure L—BFGS(j, Ug, M)

2: k <+ 0;

3: repeat

4 Choose H};

5: Compute p < —H, ijk from Algorithm

6: Compute ugy1 < up + Yepr Where 7, is chosen to satisfy the Wolfe
condition;

7: if £ > m then

8: Discard the vector pair [Sg_,, Yx—m| from storage;

9: end if

10: Compute and save s; < up+1 — up and y; = ij+1 — ij;

11 k< k+1;

12: until convergence

13: end procedure

4.3 Distributed Control of Navier-Stokes Equations with Exact Solution

The optimal control problem of the Navier-Stokes equations is investigated by invok-
ing a control function distributed over whole domain, which is introduced in Sec-

tion as follows

minimize J (7, @) = % /Q (@ — 5)7(F — 5y) dQ + % /Q Tad) @11
subjectto — VAT + (T-V)T+Vp=f+d inQ (4.12)
V-7=0 inQ (4.13)

v=0 on . (4.14)

As stated in Section optimization is to be performed by the DO approach. Thus,
the procedure begins with finding finite-dimensional approximation of the problem.

Since we implement approximations to velocity ¥ and pressure p by using FEM with
Bo Bp
17% ZV]¢] and p ~ Zplwl’
j=1 =1

where 3, and 3, denote the number of basis functions in finite element spaces of

velocity and temperature; and the control function « is also approximated within the
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same setting
Bu
i=1
So that adding the term corresponding to the control function to the discrete non-

linear system of N-S equations in (3.12)) yields to

K+N(v) D 0] |v M(f 4 u)
DT 0 | |p| = 0 . (4.15)
0 r 0 C 0

Then, constraint equation (3.13)) turns into C(z, u) = 0. In order to get the discretized
form of the control problem, we substitute the finite element approximations into the
cost function J = J(¥, p, @) in (4.11)). Hence, the discretized optimal control problem
takes the form

minimize J(z,u)
u

subjectto  C(z,u) = 0,
where J is the discrete objective function computed as
J(z,u) = %(v —vy)'M(v —vy) + %uTl\/Iu.

Now, the procedure based on a Lagrange function, introduced in Section 4.1} is go-
ing to be used in the discrete concept. Thus, discretized Lagrange function in the

derivation of first-order optimality condition is formulated as follows
L(z, A, u) = J(z,u) + ATC(z,n),

where A = (A, 1, e) is the discrete adjoint variable corresponding to primal variable
z = (v,p,c). As stated earlier, the first-order optimality condition requires that the
partial derivatives of the Lagrangian function are zero at the optimality. That is, the

formulations in Section .| are stated once again but now for the discrete case:

0L(z,A,u) _
— o =Clzu) =0, (4.16)
0L(z,A,u)  0J(z,u) [(0C(z,u)\",
o 0a T\ o )70 I
0L Aw) _0)(zw) (9CEw\", . (4.18)
ou ou du
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which are satisfied at an optimal point (z*, A, u*).

First, from (4.16) the constraint equation of the problem is obtained, which is already
have to be satisfied. Second, from (4.17) the adjoint equation

C.(z,u)'A = —J,(z,u),

leads to a linear system of equations

K'+N'(v) D 0| |A —a,M(v — vq)
D7 0 7| |n| = 0 (4.19)
0 r 0] |e 0

that is to be solved for A. Third, from (4.18) the equation for the control function is

derived,

Cu(z,u)"A = —J,,

which, in turn, gives

(=M)A = —a,Mu,

or equivalently,

M(X — a,u) = 0.

The discrete formulation of the derivative of reduced cost functional in (@.3)) is ob-
tained by (4.18). Therein, the optimization is conducted for the equation (4.18]), by
using the L-BFGS algorithm given in Section 4.2l This procedure requires solutions
of the state and adjoint equations iteratively. In other words, at each optimization
step, a new control candidate u,, is generated, so that this new u, is used to obtain a

new z; and correspondingly a new Ay.

4.4 Parameter Control of MHD Flows with Temperature Dependent Viscosity

This section is devoted to the problem of controlling the MHD flows and heat transfer
equations with temperature dependent viscosity and Hall effect by using the parame-

ters of problem as control variables. The mathematical statement is formulated as in

70



Section 2.2|for 4 = {Ha, m, Br, B},

minimize J(w,7,u) = %/ (W — wa)*dQ + %/ (T — Ty)*d
Q

ucld Q
Oy 2
AL (4.20)
2 Jo
0 Oow 0 Oow Ha?
bjectto — | i— —g— ] =-1 in 2 4.21
Ow\ > 0w\ > Ha’Br w
T +Brj | | — — 2= " inQ 422
VT + Brp <8zr) +<0y> T o in (4.22)
w=0, T=0 onof. (4.23)

Again, pursuing the similar structure with the DO approach, implementation is started
with the discretization of the problem. Having implemented a finite element approx-
imation to the velocity w, the temperature 7' and the control variable u, their dis-
cretized forms are substituted to the cost functional J = J(w, T’,u) in order to get the

discretized form J in (4.20). Hence, the discretized optimal control problem takes the

form
inimi 4.24
minimize J(z,u) (4.24)
subjectto  C(z,u) = 0, (4.25)

where z = (w, T), and J is the discrete objective function computed as
al, (o4 Ay
J(z, 1) = (W — wa) 'M(w —wa) + TT(T = Ta) ' M(T - Tg) + [ul® |€,

where |(2| represents the area of the domain in two-dimensional space. Here, it is
assumed that C and J are continuously differentiable, and for all control u the state
equation C(z,u) = 0 has a unique solution z = z(u), and the derivative C,(z, u) is
invertible. By the implicit function theorem, u +— z(u) is continuously differentiable,

and hence, the cost function can be considered as
j(u) = J(z(u),u), (4.26)

where the PDE constraints are embedded to this cost function. Generally, such form

J (u) is referred to as discrete reduced cost function.

Again, the first-order optimality conditions are derived as in Section [4.1] but for the

discretized problem. This implies that the discrete form of the adjoint equation in
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(#@.4) becomes

C.(z(u),u)*A = —=J,(z(u),u), (4.27)

which is to be solved for A = (X, 7). Hence, it is substituted into the discrete form

of @.5)) is obtained as

J'(u) =J.(z,u) + C,(z,u)"A. (4.28)

Consequently, C,(z(u), u) has to be computed for the discretized non-linear system

of equations of PDEs in (4.21)) and (4.22)) with (4.23)) as follows

eM 0| [K(T) KT

C,(z(u),u) = 0 S G(z) —BrDy(w, T)w

G(z) = ¢ al;f:‘”w + N(w)} —Br {%w +D(w,T) +agf:))w+P(w).

Then, the adjoint system to be solved becomes

C,(z(u) ) || = — wag_;di . (4.29)
T - 4d

Having derived the system (4.29), the adjoint-based reduced gradient equation in
(4.28) is used to find the optimal parameter(s) by the L-BFGS algorithm, described
in Section 4.2

4.5 Parameter Control of Power-Law Fluid Flow and Heat Transfer

Now, we will investigate the problem of controlling the power-law fluid flow and heat

transfer equations considering the parameters as control variables. The formulation
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in Section [2.3|for / = {Ha, n} reads:

minimize J(w,T,u) = du / (w — wg)*dQ + ar (T — T,)*d
uel 2 Q 2 QO
4 %/ [u/|? 40 (4.30)
2 Jao
0 0 0 0
subject to I (ua—;}) + 8_3/ (ua—z) = —1+Ha’w inQ (4.31)
2 2
4
V2T + Brji (a—“’) + (8—“’) +Ha’Brw? = -2 inQ  (4.32)
ox dy Win
w=0 onodf2 (4.33)
oT oT oT orT
9 e ) e —— 434
0y l(ap/a)y O l(1,y) Oy l@0) Oz loy) (4.34)

Using the DO approach, firstly, the discretized form J of the cost function in (4.30)
is obtained by substituting the discrete solutions into J(w,7T,u). As a result, the

discretized control problem is stated as

minimize J(z,u)
ueld

subjectto  C(z,u) =0,
where z = (w, T), and J is the discrete objective function constructed as
J(z,) = 4w —wi) Ma(w — wi) + S(T = T Mr(T—Ty)  (435)

iy
+5 lul® Q. (4.36)

Here, M, and M are mass matrices of the quadratic and linear finite element spaces

for w and 7', respectively. The adjoint equation has to be formulated as

CZ(Z(U), U_)A = —JZ(Z(LI), u)7 (437)
where
F, OF (w) 0
Cleu=| "= ..
e o s

Hence, the adjoint problem in for A = (X, n) becomes

A oM, (w —
C., (z(u). )’ _ e (w— wy) |
n OCTMT(T — Td)
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which has to be solved at each optimization step for the gradient of the reduced cost

function:

= A" Cy(z(u),u) + Ju(z(u),u) = 0. (4.38)

The optimization algorithm is, used here, again L-BFGS algorithm, described in Sec-

tion4.2]

4.6 Numerical Results

This section presents solutions to the optimal control of steady, two-dimensional, lam-
inar flow problems of incompressible, Newtonian and non-Newtonian fluids. First
simulations are conducted for the distributed control of Navier-Stokes equations with
an exact solution to confirm the performance of control approaches in this study.
Second, numerical tests are performed for the parameter control of the MHD flow
and heat transfer with temperature dependent viscosity. Third, simulations are im-
plemented for the control of power-law fluid flow and heat transfer with parameter

control.

Controls are studied as single and as well as pairwise parameters for both problems.
The numerical results with parameter control indicate the efficiency of the controlling
idea not only for regaining the flow and temperature profiles but also the characteri-
zation of them, specifically for the classification as Newtonian or non-Newtonian of

a power-law fluid.

Computer simulations of the optimal control problem are executed using dolfin-adjoint
[24] which is implemented in Python and works with FEniCS platform. dolfin-adjoint
provides algorithmic differentiation routines acting on the discrete equation of the pri-
mal problem to derive the discrete adjoint equations. The gradients obtained are used
in the optimization process of the L-BFGS algorithm. Starting with an initial estimate
the optimization loop to calculate new estimates for optimal solution is repeated until
the norm of the gradient of the reduced cost function J is less than the value of a

tolerance 10719,
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Table 4.1: Distributed control for regaining the desired states given below with the
uncontrolled initial state of v = 1.0

va | 0" —oflle vy — vllLs J Tit
0.1 2.2452 x 1073 2.2452 x 1073 1.512 x 107* 11
0.05 | 2.2401 x 10~3 2.2401 x 1072 1.731 x 10~* 12
0.01 | 2.5297 x 1072 2.5297 x 1072 1.921 x 10~* 12
0.005 | 2.5427 x 1073 2.5427 x 1073 1.946 x 10~* 13
0.001 | 2.5557 x 1073 2.5557 x 1073 1.966 x 10~* 13

106

107}

108}

1010

10-11 n n . . . . . .

0 2 4 6 8 10 12 14 16 18
Nofe

Figure 4.1: Norm of the gradient values versus number of function evaluations (Nofe)

during optimization.
4.6.1 Control for Navier-Stokes Equations

Control of the steady Navier-Stokes flow in @.11)-(@.14)) is simulated by using an
additional source function as a distributed control. The uncontrolled initial state of
the velocity is produced by simulating the flow for » = 1.0 with the given exact
solution in Section [3.5.1] The aim is to find the required force function to move the
velocity profile to the desired velocity, which has various values as given in Table
It also indicates that the number of iterations is increasing for smaller initial values of

v as the difference between the desired and initial states increases.

Test results indicate that the optimization algorithm is successful for attaining the
desired profiles even if the desired states are chosen far from the initial ones, where the
regularization parameters are chosen as (a,, ) = (103, 1073), which are successful
in the penalization of corresponding variables. In order to see the convergence of the
optimization to the optimal states, the norm of the gradient values versus number of

function evaluations during the optimization are presented in Figure
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Figure 4.2 is depicted for monitoring the difference between the uncontrolled initial
states and desired states corresponding to vy = 0.005, and also the closeness of the
controlled and desired profiles. Profiles are also presented in Figure [4.3] as vector

fields.

4.6.2 Control for MHD Flow and Heat Transfer with Temperature Dependent
Viscosity and Hall Effect

The MHD flow is constructed as an optimal control problem by using the parameters
of the system as the control variables. These parameters include Hartmann number,
Brinkman number, viscosity parameter and Hall parameter. The control of each of
these parameters has a significant importance in achieving the desired state of hydro-
dynamically and thermally fully developed flow and the fluid temperature in the duct.
For example, the control of Hartmann number determines how strong the magnetic
field should be applied for reaching a desired velocity profile, and hence, isolines in

the duct.

Since the magnitude of the velocity is small, regularization parameters are chosen
large enough in this respect to prevent the objective function from being close to zero

because of the cancellation without converging to optimal state.

First, the Hartmann number Ha is introduced as the control variable u, since its con-
trol provides information about the optimal electromagnetic force to reach a desired
flow. As illustrated in Figure and Figure the increase in Hartmann number
has more significant effect on the velocity than on the temperature of the flow in the
duct. In order to reach the desired states for both velocity wy and temperature 7y, the
regularization parameters are chosen as o, = 103, ap = 10°, ay, = 107°. Here, the
desired states wq and 7T are (pre-)computed FEM solutions (as in Section[3.5.2)) given
the parameters in Table 4.2] particularly the values of Ha,y. At optimality, the states
Wopt> Lopt» and the optimal control variable Ha,, in Table indicate that the choice
of regularization parameters is not only sufficient to control the states, but it also en-
sures that the optimal Ha, is close to the Hartmann number Hay of the desired flow
even if the initial Ha” is chosen far away from Ha,y in BFGS algorithm. It is also

noted that the total number of iterations required in the optimization is remarkably
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control uq control ug
Figure 4.2: Uncontrolled (1, = 1.0), desired (v; = 0.005) and controlled velocity
profiles and control profile.
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uncontrolled state vy = 1.0.
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Table 4.2: Control with Hartman number Ha, m = 1, Br =1, B = 1, a,, = 103,
ar = 10°, ay, = 1072, Ha® = 0.1.

Hag | Haop  Jwop — walloo [ Top — Talloo 7 Tit
1.0 | 1.0125 44417 x 10° 2.6390 x 105 6.059 x 10 ¢ 3
3.0 | 3.0353 2.6263 x 10~*  2.0360 x 105 9.816 x 10> 4
5.0 | 5.0374 2.6120 x 10~* 3.3324 x 105 3.500 x 10~* 4
10.0 | 9.9696 8.7007 x 10~ 3.7205 x 10~ 1.214 x 10~% 3

Table 4.3: Control with Hall parameter m, Ha = 1, Br = 1, B = 1, o, = 103,
ar =10° a,, = 0.0, m® = 10.0

md MMopt HWOpt - wdHoo HTopt - Td“oo J Tit
1.0 | 0.9693 5.4917 x 107 3.2632 x 107 8997 x 10" 5
3.0 129521 1.0771 x 10™® 6.2470 x 10°7 3.170 x 10=® 3
5.0 49379 3.4532 x 107 1.9957 x 10~ 3.206 x 107 3
8.0 | 8.0076 1.0692 x 107 6.1708 x 107 1.943 x 1071* 3

few, denoted by Tit.

Second, the Hall parameter m is introduced as the control variable u because it is
also significant to gain information about, for instance, the material from which the
conductor should be made of. The increase of the Hall parameter has an effect that
is contrary to the effect of Ha, but the magnitude of the effect on the velocity is
larger than that on the temperature, again. Thus, regularization parameters o, cvp are
selected the same as in the case of Ha; however, «, is taken zero so that optimal m
is obtained close to the Hall parameter of the desired state. At optimality, Table 4.3]
shows that the state of the flow is perfectly controlled. In fact, no matter what value of
oy, 1s given, the optimization algorithm converges and the desired state of the flow are
achieved. However, due to the significance of the penalization effect of «,,, no matter

how small, at the optimal solution, m, may not be close to myg; this is illustrated in

Table 4.4]

Table 4.4: Control with Hall parameter m, Ha = 1, Br = 1, B = 1, o, = 103,
ar =10° «a,, = 107°, m® = 10.0

Mg | Mopt HWOPt — Wal|oo HTopt — Tl oo J Tit
1.0 | 0.9581 7.5264 x 107 4.4729 x 1075 5543 x 1076 5
3.0 | 22898 2.2016 x 107* 1.2791 x 107° 3.184 x 10 6
5.0 2.6081 3.2969 x 107* 1.9103 x 10™° 4.758 x 10™®> 7
8.0 | 2.7242 3.8048 x 107* 2.2024 x 107° 5.549 x 107° 5
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Table 4.5: Control with Brinkman number Br, Hao = 1, m =1, B = 1, oo, = 10°,
ar = 103, ag, = 1075, Br’ = 0.0

Brq | Bropy lwopt — Walloo | Topt — Tl oo J Tit

1.0 | 0.9870 7.0049 x 10~7 1.6050 x 10™®> 4.935 x 1076 3

2.0 [ 1.9742 1.3999 x 107 3.2051 x 10™®> 1974 x 1075 4

3.0 [ 29615 2.0984 x 1076 4.8004 x 10™° 4.442 x 10™®> 4

Table 4.6: Control with B,Ha=1,m =1,Br=1, a, = 103, oy = 103, ag = 1072,
B°=0.0

B | By Joop—wile Wop—Tale 7 T

1.0 | 0.9980 6.1371 x 107% 7.6739 x 1076 4.990 x 1076 4

2.0 | 1.9951 1.3414 x 107° 1.6993 x 10™® 1.995 x 10~ 6

3.0 29911 2.1835 x 107 2.7997 x 10™® 4.487 x 10™°> 7

Third, the Brinkman number Br is used as the control variable u. Being one of the
important parameters, it specifies the speed of the conduction of the heat produced by
the viscous dissipation. Since its presence in the system of PDEs mostly dominates
the temperature, the regularization parameters are chosen as o, = 10°, ap = 103,
ap; = 107°; and this selection is again rather sufficient to reach the desired states

within a few iterations shown in Table

Fourth, the control of the viscosity parameter B is considered. The control of the
viscosity provides another essential information of the fluid so that flow can be ma-
nipulated by changing its viscosity to reach a desired flow behavior. The different test
values of regularization terms show that 3 has almost the similar dominance on both
velocity and temperature, thus they are selected as o, = 103, ap = 103, ap = 1072,
As shown in Table [4.6] the algorithm is successful to control the states of the flow for

various values of Bj.

In the light of the above discussions and the results obtained for the control problem
using only one significant parameter of the MHD flow, the optimal control parameters
are studied, now in this case, pairwisely so that the velocity and isolines are controlled

at the desired states.

To begin with, pairwise control is performed by Ha and B, that is, u = (Ha, B). As
it is clear from Figure [3.5] Figure [3.10] Figure [3.6] and Figure [3.13] these parame-

ters highly effect the velocity and isolines. In any case, the control of the problem
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Figure 4.4: Norm of the gradient versus the number of evaluations of the cost function
(Nofe) for the control with single parameter.

Table 4.7: Control with Hartmann number Ha and B, m = 1, Br = 1, a, = 103,
ar = 10°, aa,p) = 1075, (Ha’, B®) = (0.1,0.0)

Had Bd Haopt Bopt ||w0pt — wd||oo ”Topt — TdHoo J Tlt

1.0 0.0 09494 0.0654 3.9802 x 107° 2.6174 x 107* 5.702 x 107¢ 12
1.0 1.0 1.0201 0.9888 3.7112 x 107° 3.8666 x 107° 1.105 x 107> 12
3.0 2.013.0804 1.9691 4.9921 x 10~* 7.4232 x 107° 1.188 x 10~* 10
50 1.0]5.0446 09103 2.0662 x 10~* 1.6474 x 107* 3.550 x 10~* 10

is achieved, shown in Table and even, the optimal values of (Ha, B) are close
to those of the desired states. Another pairwise control is conducted by taking the
control variable as u = (Br, B). At optimality, the controlled parameters are again
close enough to the ones of the desired states, even they do not have to be close, along

with successfully controlling the desired velocity profiles and isolines. See Table 4.8]

The pairwise control is also considered with u = (m, Br). However, the effects of
these parameters on the change of the magnitude of velocity and temperature are too

small as indicated in Section [3.5.2] Fortunately, as is shown in Table 4.9] the optimal
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Table 4.8: Control with Brinkman number Br and B, m = 1, Ha = 1, o, = 103,

ar = 10%, aqp,,p) = 1075, (Br”, BY) = (0.0, 0.0)

Brq By | Broy By llwopt — Walloo | Topt — Tl oo J Tit
1.0 1.0 | 09784 1.0045 1.4931 x 107> 1.5024 x 1075 9.914 x 107 10
2.0 1.0 19493 1.0134 4.3470 x 107> 3.1279 x 1075 2.456 x 10~° 10
1.0 2009865 1.9991 1.1013 x 1076 1.8125 x 10™® 2.492 x 10~° 11
2.0 2.0|1.9547 2.0087 2.7642 x 107° 3.1640 x 1075 3.963 x 10~° 11
Table 4.9: Control with the Hall parameter m and Br, B = 1, Ha = 1, o, = 10°,
ar = 103, O(m,Br) = 1075, (m°, BrY) = (10.0,0.0)
mg  Brg | mop Bropt  ||wopt — walloo | Topt — Lal|oo J Tit
1.0 1.0 | 1.6959 0.2678 8.2345 x 10™* 9.4556 x 10~* 2.354 x 107°> 13
1.0 2.0 |1.5727 1.1708 7.1134 x 107* 1.0789 x 10~% 2.997 x 10~°> 14
3.0 1.0 | 1.7736 0.3098 5.5295 x 10~* 8.2053 x 10~* 2.717 x 107°> 14
3.0 2.0 |1.6818 1.2376 6.3009 x 10~* 9.0018 x 10~* 3.554 x 1075 13

states of the flow is successfully recovered; but the optimal solution u = (1, Brop)
differs from the parameters my and Bry used to describe the desired velocity profiles

and isolines.

Although using pairwise controls requires relatively more number of iterations than
the single ones as expected, the most costly one may be considered as the case when
the pair u = (m, B) is used. Indeed, this is due to their counter-effects on the velocity
and temperature: see Figure Figure Figure[3.11]and Figure As aresult,
the total number of iterations is reported up to 22 given in Table[.10] Although at op-
timality u = (1, Bopt) are relatively far from the parameters my and By used in the
desired velocity and isolines, the major aim of the implementation of the controlling

idea is successfully achieved by attaining the desired profiles.

Gradient values, which are the crucial quantities in the first-order optimality condi-
tions, are given in Figure .4 and Figure 4.5] These figures also confirm the conver-

gence to the optimal controls of corresponding simulations.

4.6.3 Control for Power-Law Fluid Flow and Heat Transfer

In the sequel, the power-law fluid flow and heat transfer is investigated as a control

problem considering the problem parameters, such as Hartmann number and the flow
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Table 4.10: Control with the Hall parameter m and B, Br = 1, Ha = 1, o, = 103,
ap = 103, Q(m,B) = 1075, (m°, BY) = (10.0,0.0)

mq Bd Meopt Bopt ||wopt - wd”oo ||Topt - Td”oo J Tit
1.0 1.0 | 15012 0.8148 1.2745 x 10™* 7.6907 x 10™* 3.034 x 10~* 16
30 1.0 14884 0.6167 4.6715x 107 1.4806 x 103 3.180 x 107> 22
1.0 2.0 1.2871 1.7006 1.2463 x 103 1.0617 x 1072 2.976 x 10~* 22
3.0 2.0 1.3442 1.5438 4.4036 x 107 1.6208 x 1073 4.075 x 1072 22

index n as control variables. Apart from the discussion on the parameter control given
in the previous problem, idea of optimal control has more crucial effect on power-law
fluid flow. Having the flow index n as control variable, it is not only possible to derive
the flow to the desired state but it is also possible to identify the flow type: Newtonian
or non-Newtonian. Moreover, it enables the classification of the non-Newtonian fluid

as shear-thinning or shear-thickening as well.

Firstly, the control variable u is introduced as the flow index n. Here, the desired
states wy and Tj are (pre-)computed FEM solutions given the parameters in Ta-
ble particularly the values of n, are given for the forward problem. In order
to reach the desired states for both velocity wy and temperature 7}, corresponding
regularization parameters (o, ar, ;) in (@.35) have to be chosen. The effect of
n 1s more significant on the velocity magnitude than on the temperature; therefore,
the corresponding regularization parameter to regain the desired velocity has to be
more pronounced. This is achieved when the regularization parameters are chosen as

(a, ar, ay,) = (10°,10°,107°), for instance.

At optimality, the states wop, Topi, and the optimal control variable 7y in Table
indicate that the choice of the regularization parameters is sufficiently suitable so that
it successfully controls the states and even ensures that the optimal ny is close to ng

of the desired flow.

Secondly, the control variable u is introduced as the Hartmann number Ha, whose
control enables to find the optimal electromagnetic force in order to yield a desired
fluid flow. As demonstrated in Figure [3.22] and Figure [3.23] heat transfer is too
slow with respect to the increment of Ha compared to the change in the magnitude
of the velocity. Thus, the regularization parameters are chosen as («,,, ar, ay,) =

(103,10°,1075) to impose a large penalization effect on the velocity. As reported in

84



Table 4.11: Control with n, Ha = 1.0, Br = 1.0, oo, = 10°, ap = 10°, v, = 1075,

and ng = 0.5
na | ooy — @alloo ot — Tall J Tit
0.6 | 0.5999 3.6768 x 1075 2.0850 x 107 5.520 x 10™* 6
0.8 | 0.7998 1.4206 x 107> 4.6814 x 107 6.370 x 1073 5
1.0 | 0.9997 2.7075 x 107° 6.3191 x 107% 1.933 x 1072 7
1.2 |1 1.1997 4.0722 x 1075 7.4407 x 1075 3.823 x 1072 7
1.5 | 1.4994 6.0865 x 1075 8.5349 x 1075 7.365 x 1072 5
1.8 | 1.7991 7.9540 x 1075 9.1834 x 107% 1.130 x 10°! 8
2.0 [ 1.9989 9.0956 x 1075 9.4505 x 107 1.398 x 10~! 10

Table 4.12: Control with Ha, n = 1.5, Br = 1.0, o, =

103, ap = 10°, gy = 1075,

and Hay = 0.1
Ha; | Hagy  ||wopt — Wallo | Zopt — Tl oo J Tit
1.0 | 0.9994 9.6677 x 1079 2.4025 x 107% 9931 x10°¢% 3
3.0 | 29982 4.5044 x 107> 2.0047 x 10™° 2.245 x 107* 5
5.0 | 49956 6.1726 x 107> 6.1227 x 107> 4.845 x 107* 5
8.0 | 79824 6.9147 x 107> 1.3982 x 10™* 6.027 x 10~* 7
10.0 | 9.9491 1.0267 x 10~* 2.5725 x 10™* 7.026 x 10~* 6

Table the desired states of the flow are achieved and the optimal Ha,y, is found

close to Ha, even if the initial Ha, is chosen far away from Ha,.

Thirdly, rather than using only one significant parameter, we also seek the optimal
control parameters in pairs: a pairwise control is performed by 7 and Ha, u = (n, Ha),
whose effects counteract on the dynamics of the system. Different scenarios are stud-
ied as given in Tables @ for various n and Ha values. In all cases, the controlled
optimal states are perfectly matched with the desired states; even the optimal values of
Uopt = (Nopt, Hagpt) are close to those of the desired states uy = (n4, Ha;). However,
the cost of achieving optimal control parameters is paid with an increasing number of

iterations (Tit) in the optimization (see Table d.13).

Verification of the controls are provided by the history of the norm of the gradient
values versus the number of function evaluations depicted in Figure 4.6 for each of

the simulations.
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Table 4.13: Control with n and Ha, Br = 1.0, o, = 10°, ar = 10°, oy, = 1072,
a, = 107°,Hay = 0.1 and ny = 0.5

Had

Ng

nopt

lcvopt — walloo

[ Topt — Tl oo

J

Tit

1.0

0.6
0.8
1.0
1.2
1.5
1.8
2.0

0.5988
0.8032
1.0057
1.2078
1.5107
1.8134
2.0151

6.1196 x 107°
1.8956 x 10~°
3.8514 x 107
5.6036 x 10~°
7.8726 x 107°
9.8521 x 107
1.1227 x 10~*

2.6280 x 107°
6.2564 x 107°
8.8894 x 107°
1.0274 x 10~*
1.3050 x 10~*
1.5060 x 10~*
1.6105 x 10~*

5.043 x 1074
6.016 x 1073
1.837 x 102
3.646 x 1072
7.039 x 102
1.081 x 107!
1.338 x 107!

53
47
43
40
38
33
30

3.0

0.6
0.8
1.0
1.2
1.5
1.8
2.0

0.5974
0.8022
1.0039
1.2046
1.5050
1.8049
2.0047

1.1670 x 10~°
1.2439 x 107°
2.6034 x 107°
3.8319 x 10~°
6.4596 x 10~°
9.2681 x 10~°
1.1115 x 10~*

7.0598 x 107°
5.4969 x 10~°
9.7203 x 107°
1.2127 x 10~*
1.3772 x 10~*
1.4171 x 10~*
1.4040 x 10~*

1.896 x 10~*
2.423 x 107°
7.040 x 1073
1.315 x 1072
2.339 x 1072
3.338 x 1072
3.941 x 1072

45
36
36
40
42
39
32

5.0

0.6
0.8
1.0
1.2
L.5
1.8
2.0

0.5949
0.8005
1.0016
1.2018
1.5017
1.8016
2.0017

2.0484 x 107°
4.0751 x 1076
1.2639 x 107°
2.0973 x 107°
3.0269 x 107°
2.9640 x 107°
2.3644 x 107°
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1.7541 x 10~*
2.1532 x 107°
6.9971 x 107°
8.7427 x 107°
9.2425 x 107°
8.6835 x 107°
7.8796 x 107°

1.245 x 10~
5.901 x 1074
1.590 x 1073
2.670 x 1073
3.879 x 1073
4.385 x 1073
4.421 x 1073

51
45
37
40
36
32
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Figure 4.6: Norm of the gradient versus the number of evaluations of the cost function
(Nofe): (a) when n is the control parameter and Ha = 1; (b) when Ha is the control
parameter and n. = 1.5; (c) when both n and Ha are control parameters. For all cases

Br = 1.
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CHAPTER 5

MODEL ORDER REDUCTION OF OPTIMAL CONTROL
PROBLEMS IN FLUID FLOWS

This chapter presents the model order reduction of finite element solutions for the
optimal control problems of two-dimensional incompressible viscous Newtonian and
non-Newtonian fluid flows. The main goal of this chapter is to contribute to the con-
trol of fluid flow problems by the application of the proper orthogonal decomposition
(POD) method with a Galerkin projection based on a continuous formulation. Thus,
the model reduction technique to be used in the sequel is introduced, firstly. Then,

reduced models for the control problems, given in Chapter 4] are investigated.

5.1 Introduction

Numerical solutions of the PDE-constrained optimal control problems require the re-
peated evaluations of high-fidelity solutions of the state and adjoint equations. These
fine-scaled solutions are attained from the discretization of the PDE constraints by
some numerical schemes such as finite difference, finite volume or finite elements.
They require long computational times due to the large size of the resulting algebraic
systems. For example, typical finite element simulations may appeal for hundred of
thousands of degrees of freedom. Moreover, computational cost grows extensively
within the simulation of the solution at several instants of time of a transient PDE or
several values of parameter of a parametrized PDE or combination of both. In order
to decrease the cost of such simulations, reduced order modeling has been devised as

an efficient way of reducing required computational resources. This approach relies
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on the assumption that the characteristics of the system can be described by a small
number of dominant modes (global functions) which encode the information of the

system in detail.

One of the most powerful and probably the mostly used reduced modeling technique
is the proper orthogonal decomposition (POD), which is also named as Karhunen-
Loeve expansion or principal component analysis. POD produces a global basis by
using the samples of system’s trajectories, the so-called ‘snapshots’ which take pic-
tures of the underlying system’s dynamics. These snapshots can be collected from
the sample instants of time, parameters or both depending on the problem. However,
the possibility of exhibiting linear dependency of the snapshots requires an orthog-
onalization procedure. This is achieved by applying a singular value decomposition
(SVD) and selecting left singular vectors corresponding to the leading singular values
as POD basis functions. Then, this ‘intelligent basis’ is used to establish an approx-
imate solution by applying a projection. Due to this projection, high-dimensional
system of equations are replaced with a very low-dimensional one, which enables the
repetitive evaluation of the solution of reduced PDEs with a relatively small compu-

tational cost.

The discretization stage of the model order reduction is an important subject in terms
of obtaining ROM. Usually, studies follow the discretize-then-reduce approach, where
the full order model (FOM) is discretized first then the Galerkin-projection is per-
formed on the discrete setting. In contrast, it is also possible to carry out projection
in continuous formulation, in other words, projection is attained on the weak form
of the problem using the POD basis first, then the discretization is followed. This
approach can be called as the reduce-then-discretize. Although both approaches lead
to the same reduced order model (ROM), the latter provides a user-friendly setting

for the implementation in the automated framework used in this thesis.

When the PDE solver environment works on the variational form of the PDEs, de-
velopment of the ROM in the weak form is also applicable and does not require the
user-defined discretization of the FOM. Hence, the automated optimization frame-
work (dolfin-adjoint), which uses algorithmic differentiation to derive adjoint mod-

els, also becomes adaptable to work with the ROM without requiring any extra cost

90



of user’s discretization. Consequently, the reduced optimal control problem can be
represented in a continuous environment and solved automatically. By this approach,
a user-friendly solution of the reduced optimal control problem is proposed. Even if it
does not provide a computational efficiency or advantages over the former approach,

it proposes a simpler and more trivial way of construction for the ROM.

The literature of the MOR with POD for reducing computing resources are summa-

rized as follows.

The idea of low dimensional approximations for coherent structures of turbulent flows
have been introduced by Lumley [67,68]. Lumley has stated that the velocity correla-
tions can be orthogonally decomposed and called as the proper orthogonal expansion.
It has been also called as the Karhunen-Loeve expansion by Fukunaga [26] in pat-
tern recognition or the principal component analysis by Nasir [2] in statistics. Later,
Sirovich has also discussed the methodology in detail for supporting its usefulness
in a series of studies [82, 83} 84]. The subject has attracted the attention of many
scientists and illustrative results have been proposed. The analysis of a large eddy
simulation of axisymmetric jet flow by the snapshots has conducted by Kirby [55].
Christensen et al [17] has used the POD based on snapshots generated from a finite-
difference algorithm for the axisymmetric Navier-Stokes equations. More recently,
error estimates for Galerkin POD methods for linear and certain non-linear parabolic
systems have been proved by Kunisch and Volkwein [59,160]. The have also proposed
a strategy for the application of POD on the optimality systems, so-called OS-POD
in [61]]. Specifically, applications of MOR on problems of fluid dynamics have been

reviewed in [63]].

In terms of the parameter dependent systems, a reduced basis method has been pro-
posed by Ito and Ravindran [52]] for simulation and control of viscous flows. Chris-
tensen et al. [[18]] have derived the residual functions to measure the quality of the
reduced systems by allowing to weight the snapshots according to the effects of the
parameters. Reduced basis approximation for affinely parametrized elliptic PDEs
haven been studied by Rozza et al. [/9]. Certified rapid solution for real-time pa-
rameter estimation has been given by Grepl et al. [33]. Dede has given the posteriori

error estimates for parametrized linear-quadratic optimal control problems in [20].
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Moreover, Chappele et al. have addressed the issue of parameter variations in POD

approximations of time-dependent problems in [[14]].

Since the POD does not fully reduce the dimension of the problems having non-
linearities, some other variants of applications for the POD are developed such as em-
pirical interpolation method (EIM) [9] or the discrete empirical interpolation method
(DEIM) [15]. These methods determine some interpolation points on the domain,
where the dynamics of the system is mostly carried, either before the projection (EIM)
or after the projection (DEIM). After all, they have to deal with the grid points of the

domain for the evaluation of the interpolation.

However, in this study, since we do not aim to work on the discrete settings of the
problems, the main concern is to implement the POD method in a user-friendly set-
ting. We will discuss the main steps of POD as well as its properties and applications

later in the next section.

5.2 Proper Orthogonal Decomposition (POD)

In this section, the detailed procedure of the POD based model reduction is presented
by focusing on the general form of the steady parametrized PDEs with the parameter
vector v € D C RP which describes the physical properties of the system. Thus, the

system of equations given in (3.1) takes the following form

C(z(Z,v)=0, Z7€QCR", veDCRP. (5.1)

Main stages of the POD application consist of the collection of snapshots, genera-
tion of the POD basis and the projection. Collection of snapshots is composed from
the high-fidelity FEM solutions of (5.1)) obtained in Chapter [3] and constitutes the
snapshot matrix with columns representing solutions for several values of the param-
eter(s). In order to motivate second stage, some basic definitions are introduced for

clarification.

Let Z = [z,...,2,] be a real valued § x u dimensional snapshot matrix of rank e,
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where each column represents coefficients in the FEM approximations so that

B
Zizzzf%withzf:(%,cﬁk% Zi:(zzk>'

k=1

The inner product for the space of square integrable functions leads to the definition

of a weighted inner product for FEM approximations as follows:

(25 2j) 2y = /sz zj dQ2

() )

_ 5T

:<Zivzj>wa

where W = (W},) is the weight matrix with components Wy, = fQ G100 dS2 Tep-
resenting the symmetric positive definite mass matrix of the corresponding finite
element basis functions. Then, considering the matrix Z = W1'/2Z, the Singular
Value Decomposition (SVD) of Z guarantees the existence of real numbers o; >
oy > -+ > 0. > 0 and orthogonal matrices ¥ € R?*# with columns {©;}"_, and

IT € R** with columns {7;}/_, such that

T = D O
Y'ZI1 = = ¥ e R,
0 0
where D = diag(oy,...,0.) € R°*“. Moreover, the set of vectors {v;}{_, and

{7;}¢_, are left and right singular vectors of Z corresponding to its non-zero singular

values and they are also eigenvectors of ZZ” and Z”Z, respectively, satisfying
Zﬁ'l = 0,0; and ZT’I_)l = 0;T;

fori =1,...,e. So that, the reduced SVD of Z is given as

Z = YD(II°)7,

where Y = (v;)¢_, and II" = (m;)¢_,. Alternatively, it can also be written as

Z = Y°B¢ with B® = D(IT")Y € R®** so that the column space of Z can be
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represented in terms of X°. Moreover, orthogonality of Y indicates that

ZB Z( RS

:i(ir kj>r Z<Tz,zj>w

1=1 k=

Knowing z; = W2z, and Y; = W/2Y,, the following relation is obtained

Zj = Z<Zj7 Tz>WTza
i=1

which asserts that the high-fidelity solutions collected as the columns z; of the matrix
Z can be written as linear combination of the left singular vectors of the matrix Z.
This result states the importance of SVD as an orthogonal basis selection and can be

summarized in the following theorem.

Theorem 1 (Theorem 1.3.2 [99]). Let Z € RP** be a given matrix with rank e <
min{ 3, u}, W be a symmetric, positive definite matrix, Z = W'*Z andl € {1, ... e}.
Further, let Z = Y SII be the singular value decomposition of Z, where ¥ =
[01,...,05) € RFII = [m,...,7,] € RP* are orthogonal matrices and the

matrix 2 has the form

Y ZII = = X c R
0 0
Then the solution to
1 ~ ~ . .
(Pw mg)éRﬁZZH zj, U; WHRB st (U, 0;)=0; for 1<i,j<I
""" i=1 j=1
is given by the vectors v; = W20, i =1,..., 1. Moreover,

argmax(Piy) Z o} = Zﬁ

The detailed proof can be found in [99].

94



In the light of above theorem, it becomes clear that the vectors {v;};_, for v €
{1,..., u} are named as POD basis of rank ~y. Also, the theorem reveals the optimal-
ity of this basis in the mean among all rank v approximations to the columns of Z.

For the choice of v following remark becomes crucial.

Remark 1. The determination of the size of the reduced basis is also crucial part in

POD. This selection is performed according to an energy criterion given as

epop(y) = Lo
POD Z?:l i .

Hence, v is chosen to be the minimum integer satisfying

epop (V) > Etal,

for a given tolerance, 0 < €;,; < 1.

The procedure for the generation of the POD basis is summarized in Algorithm

which constitutes the second stage of the process of reducing model order.

Algorithm 3 POD basis of rank e with a weighted inner product
1: procedure POD({z;}/_, C R?, W € RP*F)
2: SetZ = [zy,...,2,) € RO,
3: Determine Z = W27 ;

4: Compute singular value decomposition [ Y, X, IT| = svd(Z);

5 Setv; = W12Y ; c RPand7; = X2 fori = 1,...,¢;

6: Compute the energy criterion €(e) pop = %Zi—i: ;

7: return POD basis {v; }{_,, eigenvalues {7;}5_, and ratio £(e) pop.

8: end procedure

Finally, at the last stage, the solution of the PDE system is projected in a low-
dimensional space spanned by the set of POD basis functions. Recalling the Galerkin
projection, method of weighted residual form in (3.5]) is reproduced by the POD basis

{v;})_; to find the reduced solution vector z = (%;):

,
<uj e (Z Zivl-) > =0, (5.2)
=1

which results in the reduced system of equations.
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In the next section, Section [5.3] reduced order modeling is applied for the FEM solu-
tions of the distributed control of Navier-Stokes equations using POD method. Then,
the same approach is used for the FEM solutions of the parameter control of the MHD
flow and the heat transfer equations with temperature-dependent viscosity and also
power-law fluid flow in Section [5.4] and in Section [5.5] respectively. Results of the
numerical simulations and analyses are presented in Section [5.6] for the comparison

of FOM and ROM solutions of three problems.

5.3 Reduced Model for Distributed Control of Navier-Stokes Equations

The reduced model of the FEM solutions of the Navier-Stokes equations is established
as a steady parametrized PDEs in terms of both velocity and pressure variables. Hav-
ing obtained the high-fidelity solutions in Section[3.2] POD bases are generated by the
help of Algorithm [3] Then, projection onto the low-dimensional space is conducted

for the control problem as wells as the PDEs.

Let {EJ 72, and {6, /7, be the POD basis functions for the velocity and pressure

functions so that

Sy

T Tp

~ Z{’ij and p~ Zﬁlel, (5.3)
j=1 =1

where v; and p; are the components of the vectors v and p. It is also noted that the

function f and « have to be approximated in the reduced space, which is spanned by

the POD basis. These approximations can be written as follows:
F=Y"f¢  with fj:/f-g}dQ, (5.4)
Q

and

Then, following the idea of Galerkin, test functions (5, p) are chosen the same as

the POD basis functions and the weak formulation of the equations in (4.12))—(@.14))

96



becomes

—<f,§>g—<{z,§ _0, (5.5)
<V-{7, p>9:o, (5.6)

where the boundary integrals vanish. This is due to the fact that POD basis generated

from the solutions vanishing on the boundary.

Thus, substitution of the reduced approximations in (5.3)) and (5.4) into the equations

(5.3) and (5.6)) leads to
Yv . . T . Tv . N
<VVZ{’]'§]', V§Z> + < (Z{/‘]é} : V) Zi}jgju £z>
j=1 Q j=1 J=1 Q
Yp . v L
I=1 Q J=1 Q
Tv .
<V.Zc—j§j, 0k> =0
J=1 Q

for any integers ¢ and j in {1,2,...,7,} and k and [ in {1,2,...,7,}. In order to
obtain the reduced algebraic form of the problem, introducing the components of
the reduced matrices and the vectors is necessary: Let M = (Ml) K = (IN(ij),

D = (D;;), and N(¥) denote the reduced matrices whose entries are
iy = [ &-&an,
Q
0

Dikz—/gek(v-gj) dQ,
N(v)ij = g/ﬂ(a«é V) - &

foriand jin {1,2,...,v,} and k and [ in {1,2,...,7,}. In fact, these matrices can
also be derived from the discretized full order model in the discretize-then-reduce
approach via the use of

M =TY"MTY,,
where columns of the matrix Y, are the POD basis vectors of the velocity and M is

the corresponding mass matrix of the full order model.
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Nevertheless, the algebraic form of the discrete reduced non-linear problem reads:

K+N(¥) D| |v M(f + @
N _ (Ml (57
DT O [P 0
which stands for the reduced formulation of (3.11)). The treatment for the boundary
evaluation of the pressure follows the idea in Section and POD basis generation is

maintained for the Lagrange multiplier c as well. Thus, the reduced non-linear system

in (5.7)) turns into

<4
<
.
+
£

K+N(®) D 0
0

T (5.8)

r

T
|
o

0 r 0

o
@)

where 7, = fQ d 0y d€) for 1 < k < +, are the components of r, and d is the POD

basis for the Lagrange multiplier. Hence, the reduced problem simply becomes:
solve C(z,1)=0 for z=(v,p,¢)’, (5.9)

where C(z, 01) is the reduced discrete non-linear system of N-S equations. Solution
of is carried out using Newton’s method and this procedure may be named as

reduce-then-discretize-then-linearize.

Meanwhile, the reduced objective function formulated with the POD basis leads to

the discrete form
R(s = Qv o - \TNT (o Qy o pr
J%(z,0) = ?(v —vq) M(V —vy) + - U Mu
so that the reduced discretized optimal control problem takes the form
minimize J%(z, 1)

subjectto  C(z,u) = 0.

Furthermore, the same procedure with the FOM is carried out for the ROM of control

problem as well and the discrete adjoint equations are derived as follows

C;(z(1), w)A = —J(z(u), ), (5.10)
where
K'+NT(¥) D 0] |X —a,M(V — )
DT 0 | |n| = 0 , (5.11)
0 ool |e

98



has to be solved for the reduced adjoint variable A= (5\, 7N, €). Herewith, the opti-
mization algorithm, L-BFGS, given in Section [4.2]is carried out again, but now for a

very low-dimensional system of equations.

5.4 Reduced Model for Parameter Control of MHD Flow and Heat Transfer

with Temperature Dependent Viscosity

Here in this section we analyze the reduced order modeling of the FEM solutions
of the MHD flow and heat transfer with temperature dependent viscosity as a steady
parametrized PDEs. Pursuing Algorithm [3| and using the fine-scaled solutions ob-
tained in Section [3.3] POD bases of the velocity and temperature variables are con-
structed. Then, control problem as well as the PDE constraints are projected to the

space spanned by these POD basis functions.

The ROM approximation Z = (&, T') of the solution (w, T') can be written as

w Yr
=) @& and T=>) T, (5.12)

=1

Mq

J

Il
—

where {{;};2, and {0}, are the POD basis functions for w and 7', respectively.
Reduced variational formulation is found by writing the forms in (3.18)-(3.19) by

using the POD basis functions as test functions, namely ¥ and p; this yields

I Ha? _
<MVW,V19>Q—<1—mw,ﬁ>Q_O, (5.13)
<VT \Y > — { Bri 8—@ 2+ (9_&) ’
) P Q ILL ax ay ,p )
Ha’Br \ , _, o
_(1+m2)<w ’p>Q+<Eap>QO, (514)

where /1 is the reduced variable viscosity, and
~ ,YT ~
p=e BT x E e Plig,.
=1

Since it is temperature dependent viscosity, it is approximated by the POD basis of

temperature.
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It is notable that POD basis generated from the snapshots having homogeneous Dirich-
let boundary condition vanishes on the boundary; and hence, the boundary integrals

become zero as in the FOM model by FEM basis.

Substituting the low-dimensional approximations in (5.12)) into the equations (5.13)-

(5.14)) results in

Yo Ha? &
<ﬁ2®jV§j,V§¢> —<1—1+m22@j§j,§'> =0,
Q Q

j=1 j=1

T Yo Yoo
<Zﬁw%v%>‘<&ﬁK:)ﬂ@>(§Fﬂ@H,&>
=1 0 o e .
2 2 2 Yo
_(1H—T—Br2)<<2@j5j> >9k> +<;Z@j§ja9k> =0
" j=1 o Wm 3 o

foriand jin {1,2,...,7,}and kand [ in {1,2,...,vr}. Before giving the reduced

form of the discrete algebraic problem, components of the reduced vector and matri-

ces, namely, d= (cL-), M = (]\;[Zj) and S = (Skl) are introduced as follows:
= [gdo 1<izo,
Q
Q
S = / VONVO, dQ 1<k, 1< ~p.
Q

Furthermore, the non-linear terms K (T), D(@, T), N(&) and P(&) have the entries
defined by

T B
= 26_BTT / QTVf]V& ds?,
- 9¢ &
BT,
Ze wj/ (8; 8y)6kdﬂ

N((:J)k] - /Q@Jfﬁk dQ,

L J, 505 A2
P(@); = NG :
’ % fQ (27:1 wlgl) df2
foriand jin {1,2,...,v,}and kin {1,2,... v}

Alternatively, projection can be performed on the discretized FOM by the substitution

of the discrete approximation formulas,

w=Y,o and T =7Y;T, (5.15)
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where Y, and Y7 are the POD basis matrices having columns as basis coefficients
of the velocity and the temperature, respectively. Therefore, the algebraic form of the
discrete problem in reduced form is then formulated as

_ |+ =0.

oM 0| |@ K(T)o —d
0 S| |T N(@)@ — BrD(@, T)@ + P(&)@
As a result, the reduced problem given by discrete non-linear system of equations
reads:

solve C(z)=0 for z=(@,T). (5.16)

Pursuing the structure in Section reduce-then-discretize-then-linearize approach
is used by applying the Newton method. Apart from the previous application of MOR
on the control problem of Navier-Stokes equations, where the control is a vector field
function, the current MHD problem considers the control as a constant variable. Thus,

the control does not need to be approximated in the low-dimensional space.

Having reduced the constraint PDEs, dimension reduction is also applied to the ob-
jective function of the optimal control problem. Hence, substituting the POD approx-

imations into (4.20)) leads to the following discrete reduced cost function:
aw

IR (z,0) = (@ — @0) "M@ — @a) + %(T ~ T M(T — Ty)

au
+5 lul® 1. (5.17)

Therefore, the problem in (4.24)— (4.25)) turns into the discrete constrained optimiza-

tion problem

minimize J%(z,u) (5.18)
ueld
subject to  C(z,u) = 0. (5.19)

Similarly, the discrete adjoint equations of the reduced model can be written in the

form

Ci(z(),u)A = —JE(z(u), ), (5.20)

where
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with

G(z) = o [algf)am@)]_]s [M D) [+ @) g @),

Q.v

which is to be solved for the reduced adjoint A = (X, 7).

Finally, the reduced optimal control is achieved by the implementation of the opti-

mization algorithm given in Section d.2]

5.5 Reduced Model for Parameter Control of Power-Law Fluid Flow and Heat

Transfer

This section of the thesis constructs the reduced order model for the power-law fluid
flow and heat transfer equations which constitute a steady parametrized problem. As
in Section [5.4] POD bases of the velocity and temperature variables are generated
by following Algorithm [3] and using high-fidelity solutions obtained in Section [3.4]
Afterwards, reduced control problem and reduced constraint equations are obtained

by projection to the low-dimensional space spanned by the POD basis functions.

Similarly, the reduced approximation z = (&, T') of the solution (w, T") can be formed
as
-
Z ;& and T = ZTlel, (5.21)
=1 I=1
where {{;};2, and {0}, are the POD basis functions for w and 7', respectively.
By choosing the test functions, namely ¥ and p, as POD basis functions, reduced

variational forms are derived for the forms in (3.26)—(3.27)) as follows:

(AV@, Vi), + (—1+Ha’0, 9 ), =0, (5.22)
VT,V 1 B | (2 (%Y
< , p>Q—<,p>ag— il {5 ) * ) |7 )
—(HaQBr)<c~u2,p>Q+<%—a},p> =0, (5.23)
Wm Q

where /i is the reduced variable viscosity, and

. [(%)2 ’ (?}%)1 N ~ (il 5 (&5)e + (€j)y]> N

102



Now, since it is a velocity dependent viscosity, its approximation is obtained by the

POD basis functions of the velocity.

The low-dimensional approximations in(5.21]) are substituted into the equations(5.22))—

(5.23); this yields

j=1 j=1

YT Yw Y
<2Tlv9l, v9k> — (1, Ok )y — <Br,a [(Z@V@) : (Z@V@)] : 9k>
=1 Q j j=1 Q
Yoo
HaQBr < <Zw]£]> y > +<~i2@j£j, 9k> =0
Q “m = Q

foriand jin{1,2,...,7,}and k and [ in {1,2,...,vr}. We refer to Section [5.4| for

Yw Yw
<ﬁza}jv€j>v€i> +<—1+H322@j§j7€i> =0,
0 0

components of the reduced vectors and matrices except the vector € = (é;) and the

entries of the reduced non-linear stiffness matrix K(&}), which are given as

€k :/ 0y, dS,
oN

The reduced form of the discrete algebraic problem can also be obtained by the pro-
jection in the discretized FOM by defining discrete approximations given in (5.15) so
that the discrete form of the ROM is derived as

C(z) = }E“(Jf) = K(&EJFHfQM&_d —0
G(T) ST — (F +8)

for z = (@, T), where the vector f = (f;) has the components

~\ 2 ~\ 2
o= / Bri | (22) + (22) | 6, a0+ / (HaBr) &2 6, dQ — / =2 g, dQ,
Q ox oy Q QW

for 1 < k < ~7. Then, solution procedure in the FOM is followed by the ROM as

well, again in a decoupled way.

After obtaining the discretized reduced constraint equations, reduced cost function

J%(z,u) is formulated as in (5.17) for controlling the power-law fluid flow as well.
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Thus, the reduced control problem has the same structure in (5.18]),
minimize J%(Z, u)
ucld

subjectto  C(z,u) = 0.

Accordingly, the reduced adjoint equation has to be formulated as

C;(Z(u), wA = —J(Z(u), u), (5.24)
where i
_ ];-,2 OF (@) 0
Ciaww = | ="
(T)
G; 0 oT

Thus, the reduced adjoint problem in (5.24) for A = (X, 7}) becomes

&),y || = — | Mal® m @t

7 arMz(T — Ty)
which is to be solved for the reduced adjoint A = (X, 7).

After all, solution of the reduced optimal control problem is attained by the perform-
ing the optimization algorithm given in Section[4.2] In the next part, the simulation
results for the reduced modeling of the FEM solutions of the control problems inves-

tigated so far are presented.

5.6 Numerical Results

This section presents numerical results obtained via the ROM solutions of the control
problem of steady, parametrized, two-dimensional and laminar flow of incompress-
ible Newtonian and non-Newtonian fluids applying the method of POD. Firstly, nu-
merical results of the MOR application to the FEM solutions of the Navier-Stokes
equations are presented in Section [5.6.1] Next, results of the analyses of the reduced
models for the control of MHD flow and heat transfer with temperature dependent
viscosity and for the power-law fluid flows are given in Section [5.6.2] and in Sec-
tion[5.6.3] respectively. As being steady parametrized problems, POD bases of three
problems are generated over the snapshots obtained for various values of the prob-

lem parameters. Singular values and as well as the resulting POD bases are depicted.
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Simulations performed for the FOM in Section [4.6] are implemented for the ROM
under the same conditions and stopping criteria. Comparisons between the FOM and

the ROM are also provided to see the effectiveness of the MOR.

5.6.1 POD Application to Navier-Stokes Equations

The reduced modeling of the distributed control of the Navier-Stokes equations is
implemented with the POD application. Simulations are performed for the parameter

v € [1/300, 1], that is, snapshots are saved for several values of v,

_ 1 1 1 1 1
s() =11, 15,35, 35 160+ 300 ) -

where s(-) denotes the set of values of the given parameter. Hence, card(s(v)) =
31 shows the number of FEM solutions in the snapshot matrices. Singular values
obtained for the POD generation are shown in Figure where the sharp decrease
can be seen clearly. The energy of the system can be well approximated with the first
two singular values and its corresponding left singular vectors included in the POD

basis. POD basis of the velocity as vector fields are depicted in Figure[5.2] Since the
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Figure 5.1: Singular values of velocity and pressure.

leading singular values are expected to be responsible for the leading basis elements
in the approximation, first POD basis function reflects the main characteristic of the
velocity. As expected, second basis provides a bit more detailed information about the

dynamics. Other remaining singular values do not contribute significant improvement
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on the characterization of the problem. More descriptive figures are given by contours

of the basis functions of velocity components in Figure [5.3]

E2.307e+00
17301
£1.1534

£0.57665
8.307e-19

E4‘5739+00
—3.4295

First POD basis function of velocity Second POD basis function of velocity
Figure 5.2: POD basis functions of velocity vector field.

In Figure [5.4] POD basis functions for pressure are also shown indicating that first
basis function can almost catch the overall dynamics alone. Noting the first singular
values of pressure, it can be inferred that the second basis function corresponding to
the singular value o = 1.7396 x 10~° carries very small information about the dynam-
ics of the pressure. Meanwhile, contours corresponding to the POD basis functions

of pressure given in Figure [5.5] provide more interpretive data about this basis.

In Table 5.1] CPU times are given for FOM and ROM solutions in order to interpret
the efficiency of the POD, where the speed-up with the POD is calculated according

to the ratio
CPU time for FOM
CPU time for ROM"

The results in Table [5.1] also show that as v decreases computing time increases.

Speed-up =

However, this cost is minimized by the ROM with POD indicated by the given speed-

up values.

Test controls are conducted for regaining desired velocity profiles corresponding to v
values, v; = 0.1,0.05,0.01, 0.005, 0.001, given in Table[5.2] It is clear that ROM is
capable of finding optimal states with relatively small number of iterations compared

to the FOM results given in Table @.T] of Chapter [4]
For a comprehensive understanding of the test results, the case for the desired state
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Figure 5.3: Contours of POD basis functions of velocity vector components.

when v = v; = 0.005 is analyzed in detail. The contours of the components of the
controlled velocity in ROM are presented in Figure[5.6|which depicts almost the same
results with Figure @ in the FOM. Moreover, observations are maintained with the
required control field and its components given in Figure [5.7] and Figure [5.8] which

demonstrate that the optimal control in ROM is achieved with the same optimal states

and control function given in Figure and Figure §.3(d)}

5.6.2 POD Application to Control of MHD Flow and Heat Transfer with Tem-

perature Dependent Viscosity

In this section, the control problem of MHD flow and heat transfer with temperature

dependent viscosity is subjected to the model reduction with POD application. Con-
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Figure 5.5: Contours of POD basis functions of pressure.

sidering the equations in (3.16)—(3.17) as steady parametrized PDEs, the high-fidelity
solutions obtained in Section [3.5.2] are replicated for various values of the parameters
for the generation of the snapshots. Comparisons for the optimal control as well as

the FEM solutions are provided.

Snapshot matrices of velocity and temperature are sampled based on the solutions for

the following values of the parameters:

s(Ha) = {0,1,...,10},
s(Br) = {0,1,2},
s(B) = {0,1,2},
s(m) = {0,1}.
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Table 5.1: FOM-ROM Errors and CPU times for the solutions of N-S equations and

speed-up with POD

v L2 -Error v1 L?-Error vo L2-Error p CPU-FOM CPU-ROM Speed-up
1.0 2.9499 x 10~¢  2.9521 x 10~6  2.5867 x 10~3 2.4228 3.2201 x 101 7.52
0.05 | 5.0746 x 106  5.0169 x 10~6  1.4015 x 10~3 2.3523 2.1646 x 10~ 1 10.86
0.01 | 1.0266 x 10=°  1.0142 x 10~°  4.7506 x 10~° 3.1392 3.4542 x 10~1 9.09

0.005 | 1.8720 x 10~° 1.9718 x 10~°>  8.0802 x 105 3.1532 2.5522 x 10~1 12.35
0.001 | 9.7841 x 10~° 9.7345 x 107>  2.1895 x 10— 5.6834 1.7702 x 101 32.10

Table 5.2: Distributed control for regaining the desired states given below with the

uncontrolled initial state of ¥ = 1.0 in ROM

va | 0" —oflle vy = vdllLs J Tit
0.1 2.0121 x 1073 2.0120 x 1073 1.502 x 10~* 2
0.05 | 2.1526 x 1072 2.1526 x 1072 1.719 x 10~* 2
0.01 | 2.2676 x 1072 2.2676 x 1072 1.907 x 1074 2
0.005 | 2.2822 x 1073 2.2822 x 1073 1.932 x 10~* 2
0.001 | 2.2938 x 1073 2.2938 x 1073 1.952 x 10~* 2

The cartesian product
s(Ha,Br, B,m) = s(Ha) x s(Br) x s(B) x s(m),

which corresponds to the set of values for the parameters in the snapshot matrices.

Thus,

card(s(Ha, Br, B,m)) = card(s(Ha)) x card(s(Br)) x card(s(B)) x card(s(m))
=11 x3x3x2=198

shows the number of solutions that are generated for the snapshot matrices. It is
noticeable that the sample values of the Hall parameter m is less than the others. This
is because of the fact that m and Ha dominate the same terms in the system, thus it is

not necessary to extend the samples in both parameters.

The SVD is applied to the velocity and temperature snapshots separately and the
corresponding singular values are given in the Figure[5.9] Therein, it reports the first
80 singular values to see the rapid decay and stagnation for both functions. The first
5 singular values are presented to see clearly how many singular values are sufficient
for satisfying the energy criterion for velocity and temperature. Moreover, since the
singular values of the temperature decreasing more rapidly than the velocity, POD
algorithm (see Algorithm [3)) generates four basis functions for the velocity and three

basis functions for the temperature for a given tolerance of the energy criterion.
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Figure 5.6: Reduced controlled velocity

Reduced control 4 Reduced control uo
Figure 5.7: Components of the reduced control.

The four POD basis functions of the velocity are given in Figure[5.10] As expected,
first basis function reflects the main behavior about the velocity. The more the number
of basis increases the more they include the detailed information for the velocity.
Also, the contours of the velocity POD basis functions are reported in Figure [5.11]to

see the behavior clearly.

Next, the three POD basis functions for temperature and the corresponding isolines
are presented in Figure [5.12] and in Figure [5.13] respectively. Similar behavior as
in the case for the velocity is obtained for the temperature as well. That is, by the
increase in the number of basis functions, POD basis starts to include more detailed

information of the solution.
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Figure 5.9: Singular values of velocity and temperature.

Error plots of the reduced order model with the increasing number of basis functions
are given in Figure [5.14] which indicates that the POD reduced model can approxi-
mate the solution even if small number of basis functions are used. Similar results
supporting the accuracy of the reduced order solution are obtained for all values of
the parameters in the snapshot matrix. In addition, the efficiency of the application
of ROM with POD is verified in Table [5.3 which provides the CPU times and the
speed-ups of the solutions for various values of the parameters of the problem. More-
over, the largest speed-up is obtained for the case when the viscosity parameter B is
large, B = 2.0, which is the coefficient of the exponential non-linearity. However,
the overall speed-up for the MHD problem compared to the N-S equations is small;
but this is due to the high non-linearity of the problem.
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Figure 5.10: POD basis functions of velocity.

Numerical simulations performed for the FOM of the optimal control problem are
reconducted for the ROM in order to make comparison. Same regularization param-
eters are chosen as in the FOM. The ROM solutions satisfactorily reconstruct the
high-fidelity solutions for the control problem by using a small number of basis func-

tions.

Among all the results corresponding to the reduced control problem, most important
ones are reported. For example, the total number of iterations (Tit), the optimal pa-
rameter values and the cost function value are exactly the same as the full order model
for one single parameter control. The differences occur only in ||y — Wal/oo and
| Topt — Tulo- This is surely expected due to the projection error inherently included
from the beginning of the optimization. Moreover, results given for ||@ep — @al|~o and

| Topt — Tal|o state the convergence of the optimization algorithm up to a given toler-
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Figure 5.11: Contours of POD basis functions of velocity.

ance to the reduced desired state. Hence, it will not be appropriate to compare these
values with full order model since they have desired states having different accuracy
(representation). Below, results are summarized in two parts: single and pairwise

control.

Using a single control, first, simulations for the ROM of the control problem with
the Hartmann number as the control variable are summarized in Table [5.4] Optimal
values indicate that the POD basis exactly reflects the dynamics of the problem and
solutions attain optimal states at the desired (designed) values of the parameters. Sec-
ond, reduced model is tested for the control with the Brinkman number in Table [5.5]
and they are all compatible with the FOM results obtained in Table 4.5 Third, similar
satisfactory results are obtained for the ROM of the control problem with the viscos-

ity parameter B as the control in Table[5.6] Final simulation of the single parameter
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control is implemented for the Hall parameter m, which is sensitive to the value of
the corresponding regularization parameter. Thus, tests are conducted twice, one for
a,, = 0 and the other for a,, = 107° in Table and in Table |5.8] These results
are very close to the ones in Table d.3] and Table [4.4] respectively, which shows that

solutions of the ROM have also same sensitivities as in the FOM.

Simulations are also performed for the pairwise control of the parameters. First, the
pairwise control in ROM is executed for the control problem with Hartmann number
and viscosity parameter as the control variables. The results are shown in Table[5.9]
and verify that optimal states are significantly close to desired states. The difference
between the optimal values of the FOM in Table 4.7] and ROM in Table [5.9] just
appears at least after the third decimal digit. For instance, in order to obtain the

desired state for the case in which Ha = 1.0 and B = 0.0, optimal state in ROM
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Figure 5.13: Isolines of POD basis functions of temperature.

is attained at Ha = 0.9491 and B = 0.0658 while the optimality is achieved Ha =
0.9494 and B = 0.0654 in FOM.

Second, pairing of Brinkman number and the viscosity parameter is reported in Ta-
ble[5.10] The optimal values of ROM are almost exactly same as the FOM given in
Table [4.8]

Third, optimal control in ROM is examined with the pairwise control of Hall pa-
rameter and Brinkman number as the control variables; and results are reported in
Table [5.11} Although optimal values start to change after the second decimal digit,
the desired states are achieved at the optimal states. It is worth noting that although
Hall parameter values m for m > 1 are not covered in the snapshot set, the generated

POD bases are capable to reflect the solutions for those as well.
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Figure 5.14: POD Errors of Velocity and Temperature corresponding to the solution
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Table 5.3: FOM-ROM Errors and CPU times for solutions of the MHD equations and

15

20

heat transfer with temperature dependent viscosity and speed-up with POD

(Ha, m, Br, B) lw — & 12 T — T2 CPU-FOM CPU-ROM Speed-up
(1.0,1.0,1.0,1.0) | 1.6218 x 1076  9.0379 x 1076  2.4506 x 10~1  8.6063 x 102 2.84
(3.0,1.0,1.0,1.0) | 1.1036 x 1076  8.6997 x 10=7  2.2383 x 10~1  8.6133 x 102 2.61
(5.0,1.0,1.0,1.0) | 9.0775 x 10~7  8.4900 x 10~6  2.1916 x 10~  7.0967 x 10~2 2.97
(10.0,1.0,1.0,1.0) | 1.2821 x 1076 4.6399 x 1079  1.6395 x 10!  6.6184 x 1072 2.43
(1.0,3.0,1.0,1.0) | 1.7540 x 10~6  1.0209 x 10~° 2.4358 x 10~  8.8826 x 102 2.74
(1.0,5.0,1.0,1.0) | 1.7761 x 106  1.0395 x 10~° 2.4415 x 10~  8.8721 x 102 2.75
(1.0,8.0,1.0,1.0) | 1.7846 x 1076  1.0465 x 107%  2.4381 x 10~1  8.9996 x 102 2.70
(1.0,1.0,2.0,1.0) | 2.0096 x 106  5.7881 x 1076  2.4495 x 10~1  8.5833 x 102 2.85
(1.0,1.0,1.0,2.0) | 2.5921 x 10~6  5.5032 x 1076  3.2410 x 10~  9.9516 x 102 3.25

Fourth, control in the ROM is implemented with the Hall parameter and the viscosity
parameter; and the results are summarized in Table[5.12] Since these parameters have
opposite effects on the fluid, optimization becomes more challenging, especially in
the ROM. So, desired states are successfully achieved at the optimal values, which
are differ only after the first decimal digit from the optimal values attained by the
FOM. However, it does not imply a failure in ROM, since the opposite effects of the

parameters just leads to another optimal state to meet for the desired state.

To sum up, the results obtained for the pairwise control in ROM are identical to
the FOM’s in a general perspective. First of all, some optimal parameter values are
attained with the differences between FOM and ROM at fourth or fifth digit. However,
this does not effect the total number of iterations in the cases when controlling using
Ha and B, or Br and 5. On the other hand, in the case of controlling with m and Br,
first test case requires 12 Tit instead of 13; similarly, in the case of controlling m and

B, first test case requires 21 Tit instead of 16.
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Table 5.4: Control with Hartman number Ha, m = 1, Br =1, B = 1, a,, = 103,
ar =10°% ag, = 107°, Ha’ = 0.1
Hag | Hagy  [|@opt — @alloo | Topt — Talfo J Tit
1.0 | 1.0125 4.4411 x 10™° 2.5290 x 107% 6.059 x 1076
3.0 | 3.0353 2.6265 x 107* 1.9812 x 10~® 9.816 x 107°
5.0 | 5.0374 2.6137 x 107* 3.2947 x 10~® 3.500 x 10~*
10.0 | 9.9696 8.6965 x 1075 3.7786 x 107° 1.214 x 1073

W B~ B~ W

Table 5.5: Control with Brinkman number Br, » = 1, Ha =1, B = 1, o, = 10°,
ar = 103, ag, = 107, Br® = 0.0

Bry | Brgy |@opt — @alloo | Topt — Tl oo J Tit

1.0 [ 09870 7.1252 x 10~7 1.5914 x 10™®> 4.935 x 107% 3

2.0 | 1.9743 1.4240 x 1076 3.1781 x 10™® 1.974 x 10™®> 4

3.0 | 29615 2.1345 x 107% 4.7602 x 1075 4.442 x 107° 4

5.6.3 POD Application to Control of Power-Law Fluid Flow and Heat Transfer

In this part, the MOR with POD method is applied to the control problem of power-
law fluid flow and heat transfer. The snapshots are generated for the fine-scaled so-
lutions of the equations in (3.24)—(3.25) given in Section [3.5.3] The results for the
FOM and the ROM are compared regarding CPU times and accuracy.

Sample solutions of the velocity and temperature are collected for the snapshot ma-

trices for various values of the parameters:

s(Ha) = {1,...,5},
s(n) ={0.5,0.6,...,2.0},
s(Br) = {1, 2}

so that the set of values for the parameters to form snapshot matrices are constructed

by the following cartesian product:
s(Ha, n, Br) = s(Ha) x s(n) x s(Br).

Table 5.6: Control with B,Ha=1,m =1,Br=1, a, = 103, oy = 10%, ag = 107?,
B =0.0
By BOPt Hd}ovt — (Z’dHoo HTOPt — TdHoo J Tit
1.0 [ 0.9980 6.1231 x 107% 7.5840 x 10~6 4.990 x 1076
2.0 | 1.9951 1.3428 x 10™° 1.6815 x 10™® 1.995 x 107°
3.0 129911 2.1916 x 107° 2.7733 x 10™® 4.487 x 107°

~N N B~
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Table 5.7: Control with Hall parameter m, Ha = 1, Br = 1, B = 1, o, = 103,
ar =10° «,, = 0.0, m° = 10.0

Table 5.8: Control with Hall parameter m, Ha = 1, Br= 1, B = 1, «

ma | Mopt [|opt = @alloo ([ Topt = Tafloo J Tit
1.0 [ 0.9693 5.4910 x 107° 3.1272 x 10°° 8.997x 1077 5
3.0 | 29521 10770 x 1075 59757 x 1077 3.170 x 107 3
5.0 | 49379 3.4527 x 1076 1.9082x 1077 3.206 x 107 3
8.0 | 8.0076 1.0690 x 10~7 5.8996 x 1079 1.943 x 10710 3

ar =10° «,, = 107%, m® = 10.0

Ma | Mopt ||opt = @alloo ([ Topt = Tafloo J Tit
1.0 | 0.9581 7.5255 x 107 4.2866 x 10°° 5.543 x 1076 5
3.0 | 2.2898 2.2013 x 107*  1.2236 x 1075 3.184 x 1075 6
5.0 [ 2.6081 3.2965 x 10~ 1.8270 x 1075 4.758 x 1075 7
8.0 | 2.7242 3.8043 x 107% 2.1063 x 1077 5549 x 107> 5

103,

Table 5.9: Control with Hartmann number Ha and B, m = 1, Br = 1, a, = 103,
ar = 10°, ama ) = 1075, (Ha’, B®) = (0.1,0.0)

Hag, Ba | Hagpe  Bopt  ||@opt — @alloe | Topt — Tulloo J Tit
1.0 0.0 | 09491 0.0658 3.8818 x 1077 2.6019 x 10~% 5.700 x 10~¢ 12
1.0 1.0 | 1.0201 0.9887 3.7135x 1075 3.8663 x 107°> 1.105 x 107° 12
3.0 2.0 | 3.0804 19693 4.9949 x 10~ 7.3384 x 1075 1.188 x 10~* 10
50 1.0 | 5.0445 09119 2.0677 x 10~* 1.5976 x 10~% 3.550 x 10~% 10

Table 5.10: Control with Brinkman number Br and B, m =

ar = 103, ag.p = 107, (Br, BY) = (0.0,0.0)

1,Ha= 1, a, = 103,

Bry Bg | Bropw  Bopt  [|@opt — @alloo || Topt — Talloo J Tit
1.0 1.0 | 09784 1.0045 1.4933 x 1075 1.4960 x 10~° 9.914 x 10=6 10
20 1.0 19493 1.0134 4.3465 x 107° 3.1019 x 107° 2.456 x 10~° 10
1.0 2.0 | 09865 1.9991 1.0906 x 1076 1.7890 x 1075 2.492 x 10~° 11
20 20| 19547 20087 2.7740 x 10~° 3.1628 x 1075 3.963 x 10~° 11
Table 5.11: Control with the Hall parameter m and Br, B = 1, Ha =1, o, =
ar = 10°% ag,py = 1075, (m°, Br’) = (10.0,0.0)
ma Bra | Moy Bropw  [|@opt — @alleo [ Topt — Titlloo J Tit
1.0 1.0 | 1.6986 02699 8.2493 x 10~* 9.3333 x 10~* 2.363 x 10~°> 12
1.0 2.0 | 15757 1.1733 7.1337 x 10~% 1.0648 x 1073 3.009 x 107° 14
30 1.0 | 1.7754 03111 5.5214 x 10~* 8.1828 x 10~* 2722 x 10~° 14
30 20 | 1.6834 12389 6.2940 x 107* 8.9842 x 107* 3.559 x 10~°> 13

Table 5.12: Control with the Hall parameter m and B, Br =

ar = 103, agn.p) = 1075, (m®, B®) = (10.0,0.0)

102,

I,Ha= 1, o, = 103,

My

By

Mopt

B opt

|0pt — @all oo

| Top — Tal oo

J

Tit

1.0
3.0
1.0
3.0

1.0
1.0
2.0
2.0

1.4309
1.4851
1.2854
1.3414

0.7838
0.6152
1.6996
1.5423

1.2961 x 1073
4.6409 x 1074
1.2474 x 1073
4.4070 x 1074
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Accordingly, the number of solutions is determined as

card(s(Ha,n,Br)) = card(s(Ha)) x card(s(n)) x card(s(Br))
=5Hx 16 x 2 = 160.

Considering the effect of the parameters on the dynamics of the problem, the number
of sample values of the flow index parameter n is chosen larger than the other pa-
rameters. The other significant parameter Ha is also considered on the interval [1, 5]

regarding the previous simulations on the problem.

As the main part of the POD method, SVD is applied to the snapshot matrices of the
velocity and temperature. As a result, Figure [5.15]interprets the first 120 singular val-
ues decaying for both functions. Further, the first 8 singular values are shown closely
here to clarify the sufficient number of singular values satisfying the energy criterion.
Accordingly, POD algorithm (see Algorithm [3)) determines six basis functions for
the velocity and four basis functions for the temperature for a given tolerance of the
energy criterion.

e—e Singular Values of Velocity e—e Singular Values of Velocity
10 *—= Singular Values of Temperature +— Singular Values of Temperature

10°

1011

1013

1015

107
0

First 120 singular values First 8 singular values
Figure 5.15: Singular values of velocity and temperature.

The POD basis functions of the velocity are depicted in Figure[5.16] where the similar
expected behavior is observed as in the POD basis functions of the previous problems.
First basis functions govern the fundamental part of the system’s dynamics and the
remaining basis functions assist to reflect the detailed information about the system.
The more quantitative information about the POD basis of the velocity is also given

in Figure by the contours.
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Table 5.13: FOM-ROM Errors and CPU times for solutions of the power-law fluid
flow and heat transfer and speed-up with POD

(Ha, n, Br) lw— @l L2 |T — T L CPU-FOM CPU-ROM  Speed-up
(1.0,0.8,1.0) | 8.0021 x 1076  7.5868 x 107> 9.6441 x 10~!  3.6147 x 107! 2.66
(3.0,0.8,1.0) | 2.7490 x 1076  1.4703 x 1075  9.6647 x 107!  3.5914 x 107! 2.69
(5.0,0.8,1.0) | 9.0134 x 1076 1.3042 x 10~* 8.3896 x 107!  3.6117 x 107! 2.32
(1.0,1.2,1.0) | 8.3909 x 1076  5.1176 x 107> 7.2048 x 10~1  3.7084 x 10! 1.94
(3.0,1.2,1.0) | 8.9679 x 1076  1.0644 x 10~* 7.8558 x 10~1  3.6716 x 107! 2.14
(5.0,1.2,1.0) | 5.7618 x 1076 2.2080 x 10~* 7.8447 x 107!  3.6939 x 107! 2.12
(1.0,1.8,1.0) | 4.2095 x 1076 2.1822 x 10=%  1.0997 x 10°  5.7737 x 10! 1.90
(3.0,1.8,1.0) | 9.3888 x 1076  1.8972 x 10~*  1.0840 x 10°  5.0642 x 107! 2.14
(5.0,1.8,1.0) | 1.8120 x 1075  1.7314 x 10=*  1.0808 x 10°  4.3894 x 10! 2.46

Next, POD basis functions of the temperature and the isolines are interpreted in Fig-
ure [5.18and in Figure [5.19] respectively. Similarly, POD basis reflects more detailed

information by the increase in the number of basis functions.

Figure [5.20| plots the projection errors by the increasing number of POD basis func-
tions for velocity and temperature. As it can be seen clearly from this graph, the
increase in the number of POD basis functions decreases the error up to a certain
number of basis functions. That is, whereas the error of the velocity becomes con-
stant after 17 basis functions, the error of the temperature do not decrease after 11
basis functions. This result also clarifies the reason why the required number of basis
functions for the velocity is greater than the number of basis functions for the temper-
ature determined by the same tolerance for the energy criterion. Moreover, Table[5.13|
reports the errors and CPU times for various cases of the parameters to demonstrate
the accuracy and efficiency attained by the POD method. However, when compared
to the results of the problem with temperature dependent viscosity given in Table[5.3]
required computational times increase for both FOM and ROM due to highly non-

linear structure of the power-law model.

The performance of the ROM is investigated by the simulation of the optimal con-
trol problem for various cases. The conditions of the numerical implementation are
arranged in the same manner of the FOM for an ideal comparison. Thus, the same
regularization parameters and stopping criteria are considered. The ROM with a low

dimension is able to approximate the solutions of the FOM sufficiently.

In the following, most significant results of the reduced optimal control problem are
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Table 5.14: Control with n, Ha = 1.0, Br = 1.0, oo, = 10°, ap = 10°, v, = 1075,
and ng = 0.5
na | g [Gop — @alleo 1o — Tallo J T
0.6 0.6 1.7354 x 107 9.9681 x 1071 4.577 x 107
0.8 0.8 23388 x 107 7.5598 x 10710 1.950 x 10~°
1.0 1.0 3.2764 x 1072 7.3168 x 1071 3.665 x 107
1.2 1.2 45396 x 1072 7.7922 x 10710 5.285 x 1075
1.5] 1.5 53226 x 1072 6.8661 x 10719 7.428 x 105
1.8 ] 1.8 1.0568 x 1078 1.1043 x 102 9.273 x 107
20| 2.0 1.3444 x 107% 1.2527 x 107 1.038 x 10~*

[C BN B NS RS Y e

summarized. First of all, it is noted that the total number of iterations (Tit) in the
optimization of ROM are very close FOM’s; the difference in Tit is at most 3 and 4
for single and pairwise controls, respectively. Moreover, the optimal states attained
in the ROM are closer the desired states of the ROM with respect to the results in the
FOM. These are clearly observed in the Table[5.14] Table[S.15|and Table[5.16] with the
values ||Copt — @alloo and || Topt — Til| oo Of the velocity and temperature, respectively.
This also indicates the convergence of the optimization in the ROM satisfactorily.
Further, the values of the cost functional .J attained at the optimal states of the ROM
are smaller than the FOM’s, which also assures the efficiency of the underlying POD
basis. Below, the detailed analysis of the reduced control problems are given for both

single and pairwise controls.

First, simulations of the ROM are conducted for the single parameter control with the
flow index n as given in Table [5.14] Although the aim of the control is to achieve
the desired states of the velocity and temperature, the optimal parameter values are
also attained exactly at the same parameter values of the desired states in the ROM,
which is a different result than the one obtained for the FOM in Table [4.11] Second,
the Hartmann number is used to control the ROM as summarized in Table As
in the previous case, in addition to being close the desired states, optimal parameter
values are closer to the parameter values of the desired states with respect to the values

obtained for the FOM in Table 4.12]

Third, control in the ROM is simulated with pairwise control of the parameters Ha
and n. Besides reaching the desired states successfully, the optimal parameter values

given in Table are close to the parameters of the desired states similar to the
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Table 5.15: Control with Ha, n = 1.5, Br = 1.0, o, = 103, ap = 10°, oy, = 1075,
and Hay = 0.1
Ha; | Hagy  [|@opt — @allo | Topt — Talloo J Tit
1.0 | 0.9998 2.8809 x 107% 7.1494 x 10~" 5.300 x 1076
3.0 | 29998 5.4765 x 107% 2.4386 x 107 6.803 x 107°
5.0 | 49990 1.3708 x 107° 1.4147 x 1075 2.734 x 10~*
8.0 | 7.9886 4.5965 x 1075 1.0293 x 10~* 8.162 x 10~*
10.0 | 9.9564 9.1193 x 107° 2.5134 x 10™* 1.204 x 1073

AN O Lt L W

results obtained for the FOM in Table [4.13] except the first simulation. The most
apparent difference is observed for the case in which the desired states are generated
for Ha = 1.0 and n = 0.6. However, the optimal states are obtained sufficiently

closed to the desired states.

To conclude, the POD bases generated for the three problems in this thesis are not
only capable of inheriting the dynamics of the problem but they can also be used to
identify the characteristics of the problems in the optimal control. Moreover, the low-
dimensional systems obtained by these bases reduce the cost of computational time

in the optimization algorithm.
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Table 5.16: Control with n and Ha, Br = 1.0, o, = 10°, ar = 10°, oy, = 1072,
a, = 107°, Hayg = 0.1 and ny = 0.5

Had

g

nopt

Ha,p,

|0pt — @al|oo

| Top — Tl oo

J

Tit

1.0

0.6
0.8
1.0
1.2
1.5
1.8
2.0

0.5973
0.7994
0.9997
1.1999
1.4999
1.7999
1.9999

0.7689
0.9826
0.9960
0.9985
0.9994
0.9996
0.9997

1.2019 x 10~°
3.6069 x 1076
1.7844 x 1076
1.1316 x 1076
7.3910 x 1077
5.8852 x 1077
5.4209 x 1077

7.2518 x 107°
1.1797 x 107°
4.0165 x 1076
1.9730 x 10°°
1.0955 x 10°°
7.9352 x 1077
6.9688 x 107

8.283 x 107
2.375 x 107°
4.071 x 107°
5.675 x 107°
7.800 x 107°
9.633 x 107°
1.074 x 10~*

52
45
39
39
38
32
30

3.0

0.6
0.8
1.0
1.2
L.5
1.8
2.0

0.5964
0.7992
0.9997
1.1999
1.4999
1.8000
2.0000

2.8928
2.9914
2.9984
2.9995
2.9999
3.0000
3.0000

1.5120 x 10~°
4.3351 x 1076
1.8717 x 1076
9.8641 x 107
4.7879 x 1077
3.0722 x 1077
2.7835 x 1077

1.1119 x 10~*
1.8373 x 107°
6.4208 x 1076
3.0299 x 1076
1.3101 x 106
7.1170 x 1077
5.1798 x 107

4.570 x 107
5.347 x 1075
6.035 x 107
6.587 x 107°
7.195 x 107°
7.653 x 107°
7.930 x 107°

48
36
37
43
42
39
38

5.0

0.6
0.8
1.0
1.2
1.5
1.8
2.0

0.5949
0.7991
0.9997
1.1999
1.5000
1.8000
2.0000

4.8874
4.9920
4.9988
4.9997
4.9999
5.0000
5.0000

1.9584 x 10~°
4.9366 x 1076
1.8002 x 10~
8.3467 x 1077
5.0940 x 107
3.4405 x 1077
2.6720 x 1077
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1.9185 x 10~*
3.5157 x 107°
1.1502 x 107°
4.8658 x 1076
1.8675 x 1076
1.0440 x 1076
8.8031 x 1077

1.251 x 10~*
1.294 x 10~*
1.333 x 10~*
1.395 x 10~*
1.585 x 1074
1.945 x 1074
2.276 x 1074

53
46
36
40
36
30
30
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Figure 5.16: POD basis functions of velocity.
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Figure 5.17: Contours of POD basis functions of velocity.
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Figure 5.18: POD basis functions of temperature.
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CHAPTER 6

CONCLUSION

In this study, numerical solutions of the optimal control problems constrained by the
governing PDEs for laminar, steady flows of incompressible viscous fluids are pre-
sented. By the implementation of the model order reduction with the proper orthogo-

nal decomposition method, solutions are obtained with the reduced order models.

The problems under investigation are the Navier-Stokes equations, MHD flow and
heat transfer equations with temperature dependent viscosity, and power-law fluid
flows. As being the fundamental tool for interpreting the flow behavior, N-S equa-
tions constitute the basis for applications on fluid flows. Moreover, consideration
of MHD flow and heat transfer with temperature dependent viscosity as well as the
non-Newtonian fluids enables to explain advanced physical phenomena. However,
the high non-linearity in these equations poses new challenges in terms of providing
solutions and controls. Thus, this study implements numerical methods and apply

optimization for the optimal control of these problems.

Specifically, the considered problems are treated from the three aspects: numerical
solutions by FEM, optimal control solutions by the adjoint method following the
discretize-then-optimize approach, and the reduced order modeling solutions by the

POD method with the projection on a continuous form.

While the efficiency of the methods are proved by studying the steady state N-S equa-
tions, where the exact solution is available, implementations for the other two prob-
lems, where the closed form solutions are not available, are carried out. These studies

constitute the extensions of the literature and may be regarded as the main contribu-
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tions of the thesis.

First, N-S equations are considered in a velocity-pressure formulation with the mixed
finite element method using the Taylor-Hood elements in order to ensure the stability
and convergence. Meanwhile, the control problem is designed for a force function
distributed over the whole domain. The efficiency of the methods are validated for

various values of the parameter v within the exact solution.

Second, the FEM solutions of MHD flow and heat transfer equations with temperature
dependent viscosity and also the case for the power-law fluids are obtained extending
the results in literature, where other easy to implement numerical methods such as

finite difference have been used.

Third, the main contribution of the thesis is attained by investigating the optimal
control for these problems by using the parameters as the control variables. This
approach has not been considered before in the literature for such problems and is
addressed here for the first time. Furthermore, the control is not only applied for a
single parameter but also for pairwise parameters of the underlying systems. Attained
controls are successful in achieving the desired states and as well as characterization
of the fluids in the case of the power-law fluids. Particularly, since the non-Newtonian
fluids are classified as shear-thinning or shear-thickening according to the flow index
parameter, the determination of the optimal values of the parameters for a given state

is of great importance when the power-law fluids are considered.

Fourth, the computational costs due to the repeated evaluation of the constraint and
adjoint equations in the optimal control problems are reduced by the model order
reduction. Particularly in this study, POD method is used to obtain a set of basis
functions with a low-dimension by using the snapshots taken over the various values
of the parameters. The resulting POD basis functions are capable to reflect the dy-
namics of the fluids for all parameter values covered by the snapshots. Furthermore,
these basis functions also enable to obtain controls with pairwise parameters, which

is a more challenging optimization problem.

Besides those mentioned above, in this thesis, computer programming of the model

order reduction is performed with the projection on a continuous level using a com-

130



bined automated framework, which is also applicable directly to the optimal control
problems by supplying a user-friendly approach of the implementation of the POD in

reduced control problems.

To sum up, the outcomes of this study provide a new understanding of the fluid dy-
namics problems in terms of the optimal control applications and offer a user-friendly
computing approach for achieving reduced order models in order to fast computation

of the solutions.

Studies can be extended to the time-dependent dynamical systems where the model
order reduction has to be conducted on the snapshots having the time information as
well. Also, in terms of the physical applications, consideration of the more complex
geometries and boundary conditions are also of vital importance. Moreover, controls
can be supplied on the boundary of the domain for the heat transfer problems. There-
fore, the next step to move this study forward is to work on the boundary controls on
the more complex geometries and time-dependent systems for optimal control of the

fluid dynamics problems in real-world, industrial applications.
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APPENDIX A

ALGORITHMS, COMPUTER CODES AND OPTIMALITY
CONDITIONS

A.1 L-BFGS two loop recursion

Algorithm 4 L-BFGS two-loop recursion

1: procedure L—BFGSZLOOP(j, m, S Y™ pit)

2: S = Sk—1s- -y Shems Y5 = Yk—1, - Yh—m a0 pI" = pr_1,. .., Pr—m
3: T ij;

4: fori=k—1,k—2,...,k—mdo

5 Vi < pisi T
6: =T — Vil
7: end for

8  d<+ Hpr

9: fori=k—m,k—m+1,...,k—1do

10: B piyi d;
11: d%d—ksl(%—ﬁ),
12: end for

13: Stop with H,V.J = d

14: end procedure

A.2 Python Codes
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T L Y T S T

mesh = UnitSquareMesh (nx, ny)

V_element = VectorElement ('CG’, triangle, 2)
Q_element = FiniteElement ('CG’, triangle, 1)
R_element = FiniteElement ('R’, triangle, 0)

W_element = MixedElement ([V_element,Q_element,R_element])
w = FunctionSpace (mesh, W_element)

v, q, d = TestFunctions (W)

w = Function (W)

Yy, P, C = split (w)

Listing A.1: Mesh, elements and function spaces of the Navier-Stokes equations

def main () :
F = nuxinner (grad(y),grad(v)) ~dx\

+ inner (dot (y, nabla_grad(y)),v) »dx\
= gxdiv (y) xdx\
— pxdiv (v) xdx\

crgrdx\

prd+dx\

— inner (f,v) xdx

+
+

solve (F==0, w, bc)

Listing A.2: Variational formulation of the Navier-Stokes equations

A.3 First-order optimality conditions for the control of the MHD Flow and

heat transfer equations with variable viscosity

For deriving the first order optimality conditions in case when optimize-then-discretize
approach is used, we introduce the Lagrange multiplier A = (), n) and construct the

Lagrange function as

L(w,T,u,\,n) =J(w(u),T(a))+ (AVw, V), — < 1- H—aw, A >Q

Ow\ ow\?
+_<‘7TU ‘7U>Q - Brﬂ (Ei;) + <E%;) , N .

Ha?Br ) w o
_ <—1+m2)<w ,77>Q+<E,n>g, A=(\7y) € H(Q)?.
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J = Functional( 0.5 % alphav * inner(y - yd, y - yd) * dx \
+ 0.5 % alphau *» inner(u, u) =*dx )

rf = ReducedFunctional (J, Control (u))

u_opt = minimize (rf, options = {"gtol": 1le-10, "ftol": 1le-10})

Listing A.3: Optimization of the Navier-Stokes equations

yPHI, k_y = load_PODbasis (yPhi,V)
PPHI, k_p = load_PODbasis (pPhi, Q)
cPHI, k_c = load_PODbasis (cPhi,R)

VectorElement

Rv_element "R’", triangle, 0, dim=k_y)

@
(
Rg_element = VectorElement ('R’, triangle, 0, dim=k_p)
Rr_element = VectorElement ('R’, triangle, 0, dim=k_c)
Rw_element = MixedElement ([Rv_element,Rqg_element,Rr_element])
Rw = FunctionSpace (mesh, Rw_element)

Rv = FunctionSpace (mesh, Rv_element)

vdofs,gdofs,ddofs = TestFunctions (Rw)

wdofs Function (Rw)

ydofs,pdofs,cdofs = split (wdofs)

yr = sum([ydofs[i]*yPHI[i] for i in range(k_vy)])
pr = sum([pdofs[i]*pPHI[i] for i in range(k_p)])
cr = sum([cdofs[i]*cPHI[i] for i in range(k_c)])
vr = sum([vdofs[i]*yPHI[i] for i in range(k_y)])
gr = sum([gdofs[i]+*pPHI[i] for i in range(k_p)])
dr = sum([ddofs[i]*cPHI[i] for i in range(k_c)])

Listing A.4: Elements and function spaces for the ROM of the Navier-Stokes equa-

tions

In order to satisfy the first-order necessary optimality conditions, the derivatives of £

with respect to w and 7" have to vanish at the optimal solution; that is,

H2
_thw7)\>
Q

L,(w, T,u, \,n)h, =J,(h, iVhy, VA
(TN s =L (0) + (A, V) + (T

14+ m?

+<h”'wm§(hw>m“,n> = (A1)
w Q

m

—2(Brip (Vw-Vhy), n)q —2 (@> (hes Mg

for h, € H'(Q), and
ET(W, T, u, )\, n)hT :JT(hT) — BhT <[va s V)\ >Q + < (VhT s Vn >Q
2 2
— B{ Brj (a_w> + (8—“) cnhr ) =0 (A2)

ox oy o

143



= - . I N R SR

L Y O N

def main () :

Fr = nuxinner (grad(yr),grad(vr)) =dx\
+ inner (dot (yr, nabla_grad(yr)),vr) xdx\
- gr+div (yr) xdx\
- pr+div (vr) ~dx\
+ crxgr+dx\
+ prxdr*dx\
— inner (fr,vr) »dx

solve (Fr==0, wdofs)

Listing A.5: Variational formulation of the Navier-Stokes equations

udofs = Function (Rv,name="Control")

ur = sum([udofs[i]*yPHI[i] for i in range(k_y)]1)

J = Functional (0.5 % alphav = inner(yr - ydes, yr - ydes) = dx(mesh)
+ 0.5 % alpha % inner (ur, ur) »* dx(mesh))

rf = ReducedFunctional (J, Control (udofs))

u_opt = minimize(rf, options = {"gtol": le-10, "ftol": 1le-10})

Listing A.6: Optimization with the ROM of the Navier-Stokes equations

for hy € H'(Q). Hence, (A1) and (A.2) determine the adjoint problem to be in the

form

0 oA\ 0 o\ Ha? Ha’Br
B i) I A — 2BifiVw - Vij — 2
<'u8x> oy <’u8y) * 1+ m? VeV T+m2 !
NWm — Whim

+ T = —Oéw(w — wd)

0w\ (0w o [ 0w\ 0 [ 0w
-—Z&U—FlgBI}L (E;;{) + (Ei;) ﬁ—%lgzig <L053;>‘¥E%;(?Lzﬁ;> A ———%IT(YK—]E)

A=0 and n=0 on 9.

Optimality condition on the derivative with respect to the control vector u should be
considered similarly. If, for instance, u = Ha is assumed to be the control variable,

then
Ly(w, Tyu,\;n) =0

is simplified into

2Haw ) 2HaBr , n oJ 0
— —_—w — = ).
1+m?2’ "/ T+mz” " o OHa
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mesh = RectangleMesh (Point (0.0,0.0), Point(a,b), nx, ny)
CG’", triangle, 2)
"CG’, triangle, 2)

(
V_element = FiniteElement ('
(
W_element = MixedElement ([V_element,V_element])
(
(
(
(W

P_element = FiniteElement

P = FunctionSpace (mesh, P_element)
W = FunctionSpace (mesh, W_element)
\Y% = FunctionSpace (mesh, V_element)
a,r = TestFunctions (W)

u = Function (W)

w, theta = split(u)

Listing A.7: Mesh, elements and function spaces of the MHD flow and heat transfer

with temperature dependent viscosity

def main () :

Fl = inner (-mu (B, theta) rgrad (w) , grad (q) ) xdx\
- Ha*Ha/ (1+m*m) *wrgxdx\
+ onexgxdx

F2 = inner (grad(theta),grad(r)) =dx\
+ (b/a)/ (w_m(w)) *wrr+dx (mesh) \
- Br+mu (B, theta) *inner (grad (w) , grad (w) ) »r+dx\
— HaxHa*Br/ (l+mxm) *wxwxr*dx

F = F1+F2

solve (F==0, u, bc)

Listing A.8: Variational formulation of the MHD flow and heat transfer with temper-

ature dependent viscosity

def w_m(w) :

return assemble (wxdx)
def mu (B, theta):

return exp (-Bxtheta)

Listing A.9: Nonlinear terms of the MHD flow and heat transfer with temperature

dependent viscosity

J = Functional( 0.5 * alfaw » (w — w.d ) * (w — w_d ) % dx(mesh)\
+ 0.5 % alfatheta* (theta - theta_d) * (theta - theta_d) * dx(mesh)\
+ 0.5 % alfau  Ha » Ha * dx(mesh))

rf ReducedFunctional (J, Control (Ha))

par_opt = minimize(rf,options = {"gtol": 1le-10, "ftol": 1e-10})

Listing A.10: Optimization of the MHD flow and heat transfer with temperature de-

pendent viscosity
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wr
thetar
vr

qr

wPHI, k_w

thetaPHI, k_theta = load_PODbasis (thetaPhi,V)

mesh = RectangleMesh (Point (0.0,0.0), Point(a,b), nx, ny)
Rw_element = VectorElement ('R’, triangle, 0, dim=k_w)
Rtheta_element = VectorElement ('R’, triangle, 0, dim=k_theta)
Ru_element = MixedElement ([Rw_element, Rtheta_element])

Ru = FunctionSpace (mesh, Ru_element)

vdofs,gdofs = TestFunctions (Ru)

udofs = Function (Ru)

wdofs,thetadofs = split (udofs)

= load_PODbasis (wPhi, V)

sum([wdofs[i]*wPHI[i] for i in range(k_w)])
([thetadofs[i]*thetaPHI[i] for i in range (k_theta)])

sum([vdofs[i]wPHI[i] for i in range(k_w)])
([gdofs[i]+thetaPHI[i] for i in range(k_theta)])

sum

sum

Listing A.11: Elements and function spaces for ROM of the MHD flow and heat

transfer with temperature dependent viscosity

def main () :

Frl = inner (-mu (B, thetar) rgrad (wr) ,grad (vr) ) xdx\
— HaxHa/ (1+m*m) *wrxvr*dx\
+ onexvr*dx

Fr2 = inner (grad(thetar),grad(qr)) »dx\
+ (b/a)/ (w_m(wr))»wrgqr+dx (mesh) \
- Br+mu (B, thetar) »inner (grad(wr),grad (wr) ) »grxdx\
- Ha*Ha*Br/ (l+m+m) *wrxwr+qr+dx

Fr = Frl+Fr2

solve (Fr==0, udofs)

Listing A.12: Reduced variational formulation of the MHD flow and heat transfer

with temperature dependent viscosity

rf
par_opt

J = Functional( 0.5 % alfaw * ( wr — wr_d ) * ( wr — wr_d ) * dx(mesh)\
+ 0.5 % alfathetax (thetar - thetar_d) * (thetar - thetar_d) *dx (mesh) \
+ 0.5 * alfau » Ha * Ha *dx(mesh))

ReducedFunctional (J, Control (Ha))
minimize (rf,options = {"gtol": 1le-10, "ftol": le-10})

Listing A.13: Optimization with the ROM of the MHD flow and heat transfer with

temperature dependent viscosity
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mesh = RectangleMesh (Point (0.0,0.0), Point(a,b), nx, ny)

V_element = FiniteElement ('CG’, triangle, 2)

Q_element = FiniteElement ('P’, triangle, 1)

Q_element,R_element])

(

(

(
R_element = FiniteElement ('R’, triangle, 0)

W_element = MixedElement ([

(

(

(

v = FunctionSpace (mesh, V_element)

Q = FunctionSpace (mesh, Q_element)

R = FunctionSpace (mesh, R_element)

W = FunctionSpace (mesh,W_element)

normal = FacetNormal (mesh)

boundary_markers = FacetFunction(’size_t’, mesh)
ds = Measure(’ds’, domain=mesh, subdomain_data=boundary_markers)
a = TestFunction (V)

w = Function (V)

gl, di = TestFunctions (W)

th = TrialFunction (W)

theta, c = split(t)

Listing A.14: Mesh, elements and function spaces of the power-law fluid flow and

heat transfer

def main () :

Fl = inner (-mu(w, (n-1.0)/2.0) xgrad (w) ,grad(q)) ~dx\
- HaxHaxwxqgxdx\
+ onexgxdx

solve (F2==0,w, bc)

F2 = inner (grad(theta),grad(gl)) »dx\
+ (4.0% (b/a) /w_m(w)) *wxgl dx\
- Br*mu(w, (n+1.0)/2.0) »gl dx\
- Ha+Ha+Brxwxw+rgl+dx\
- onexglxds\
+ cxglxdx\
+ dlxthetaxdx

a2, L2 = lhs(F2), rhs(F2)

th = Function (W)

solve (a2==L2, th)

theta,c = th.split ()

Listing A.15: Variational formulation of the power-law fluid flow and heat transfer

def w_m(w) :
return assemble (wxdx)
def mu(w,n):
return (inner (grad(w),grad(w))) ~*n

Listing A.16: Nonlinear terms of the power-law fluid flow and heat transfer
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J = Functional( 0.5 % alfaw * (w — w.d ) * (w — w_d ) %= dx(mesh)\
+ 0.5 % alfatheta* (theta - theta_d) * (theta - theta_d) * dx(mesh)\
+ 0.5 * alfau » n * n = dx(mesh))

rf = ReducedFunctional (J, Control (n))

par_opt = minimize(rf,options = {"gtol": 1le-10, "ftol": 1le-10})
Listing A.17: Optimization of the power-law fluid flow and heat transfer

vPHI, k_v = load_PODbasis (vPhi, V)

thetaPHI, k_theta = load_PODbasis (thetaPhi, Q)

cPHI, k_c = load_PODbasis (cPhi, R)

vr =
qr =
thetar =
gtr =
dr =
cr =

Rv_element
Rtheta_element = VectorElement ('R’, triangle, 0, dim=k_theta)
Rc_element
Rw_element

sum
sum
sum
sum
sum

sum

= VectorElement ('R’, triangle, 0, dim=k_v)

= VectorElement ('R’, triangle, 0, dim=k_c)
= MixedElement ([Rtheta_element,Rc_element])

Rv = FunctionSpace (mesh, Rv_element)
Rtheta = FunctionSpace (mesh, Rtheta_element)
Rc = FunctionSpace (mesh, Rc_element)

Rw = FunctionSpace (mesh, Rw_element)
vdofs = Function (Rv)

gdofs = TestFunction (Rv)

gtdofs, ddofs = TestFunctions (Rw)

wdofs = TrialFunction (Rw)

thetadofs,cdofs = split (wdofs)

([vdofs[i]xvPHI[1i] for i in range(k_v)])
([gdofs[i]+»vPHI[1] for i in range(k_v)])
([thetadofs[i]*thetaPHI[i] for i in range (k_theta)])
([gtdofs[i]+thetaPHI[i] for i in range (k_theta)])
([ddofs[i]xcPHI[i] for i in range(k_c)])
([cdofs[i]xcPHI[i] for i in range(k_c)])

Listing A.18: Elements and function spaces for ROM of the power-law fluid flow and

heat transfer
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def main () :

Frl = inner (-mu(vr, (n-1.0)/2.0)+grad(vr),grad(gr)) ~dx\
- HaxHa*vrxgrxdx\

+ onexgrxdx

bc = None
solve (Frl1==0,vdofs, bc)
vr = sum([vdofs[i]*VvPHI[i] for i in range(k_v)])

Fr2 = inner (grad(thetar),grad(gtr)) «dx\
+ (4.0x(b/a) /w_m(vr))*»vrxgtrxdx\
- Br*mu(vr, (n+1.0)/2.0) xgtrxdx\
— HaxHa*Brxvr*vr+qtr dx\
- onexgtrxds\
+ crrgtrxdx\
+ drxthetarxdx

a2, L2 = lhs(F2), rhs(F2)

wdofs = Function (Rw)

solve (a2==L2, wdofs)

thetadofs,cdofs = wdofs.split ()

Listing A.19: Reduced variational formulation of the power-law fluid flow and heat

transfer

rf

= Functional( 0.5 % alfaw * ( wr — wr_d ) * ( wr — wr_d ) * dx(mesh)\

+ 0.5 % alfathetax (thetar - thetar_d)* (thetar - thetar_d) *dx (mesh) \
+ 0.5 % alfau » n * n *dx(mesh))
= ReducedFunctional (J,Control (n))

par_opt = minimize(rf,options = {"gtol": 1le-10, "ftol": 1le-10})

Listing A.20: Optimization with the ROM of the power-law fluid flow and heat trans-

fer
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from dolfin import =«
import numpy as np
def pod_basis (percentage,Mass, U, snapshots) :
""" pod_basis generates the pod basis of a given snapshots set.

Parameters

percentage : percentage of the information content in POD bases.

Mass : Mass matrix of the related function (u).

U : function space of the related function (u).
snapshots : it is .npy object which has the snapshots.
Returns

k : number of selected pod basis

Phi : coefficient matrix of the pod basis.

PHI : function matrix of the pod basis.

Svel : singular values of the snapshot matrix.

wn

snaps = snapshots

massL = np.linalg.cholesky (Mass)

massLT = massL.T

snaps_tilde = np.dot (massLT, snaps)

Uvel, Svel, Vhvel = np.linalg.svd(snaps_tilde)
sum_full = sum(Svel[:]*x%x2)

sum_partial = 0.0

information = 0.0

while information<(percentage/100) :
sum_partial +=Svell[k]x*x2

k += 1

information = sum_partial/sum_full
print k, "number of POD basis is selected."
Ulvel = Uvel[:,0:k]
massLT_inv = np.linalg.inv (massLT)
Phi = np.dot (massLT_inv, Ulvel)
PHI = []

for i in range (k) :
ph = Function (U)
ph_array = ph.vector() .array()
ph_array[:] = Phif[:,1i]
ph.vector () [:]= ph_array
PHI.append (ph)

return k, Phi, PHI, Svel

Listing A.21: Generation of the POD basis
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def load_PODbasis (Phi,U):

PHI = []

k = Phi.shape[l]

for i in range (k) :
ph = Function (U)
ph_array = ph.vector () .array ()
ph_arrayl:] = Phi[:,1]
ph.vector () [:] = ph_array

PHI.append (ph)
return PHI, k

Listing A.22: Assignment of the POD basis
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