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ABSTRACT

SHAPE MODELS BASED ON ELLIPTIC PDES, ASSOCIATED ENERGIES,
AND THEIR APPLICATIONS IN 2D AND 3D

Gençtav, Aslı

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Sibel Tarı

Co-Supervisor : Prof. Dr. Tolga Can

September 2018, 80 pages

By using an elliptic PDE or its modifications, we develop implicit shape represen-

tations and demonstrate their two- and three-dimensional applications. In the first

part of the thesis, we present a novel shape characterization field that provides a local

measure of roundness at each shape point. The field is computed by comparing the

solution of the elliptic PDE on the shape domain and the solution of the same PDE on

the reference disk. We demonstrate its potential via illustrative applications including

global shape characterization, context-dependent categorization, and shape partition-

ing. In the second part, we solve the elliptic PDE multiple times varying either the

diffusion parameter or the right hand side function and construct high-dimensional

feature space. We then apply low-dimensional reduction to assign a distinctness

value to each shape point. We use the obtained distinctness values for non-structural

representation of two-dimensional shapes and saliency measurement of surfaces of

three-dimensional shapes. In the third and the final part, we use the elliptic PDE

modifications for bringing a pair of 3D shapes into comparable topology.
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Shape Roundness
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ÖZ

ELİPTİK KISMİ DİFERANSİYEL DENKLEM TABANLI ŞEKİL
MODELLERİ, İLGİLİ ENERJİLER VE BUNLARIN 2 VE 3 BOYUTTAKİ

UYGULAMALARI

Gençtav, Aslı

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Sibel Tarı

Ortak Tez Yöneticisi : Prof. Dr. Tolga Can

Eylül 2018 , 80 sayfa

Bu tezde bir eliptik kısmi diferansiyel denklem veya modifikasyonları kullanılarak

örtülü şekil temsilleri geliştirilmekte ve iki ve üç boyutlu uygulamaları gösterilmek-

tedir. İlk bölümde her şekil noktası için yerel bir yuvarlaklık ölçümü sağlayan öz-

gün bir şekil temsili sunulmaktadır. Bu temsilin hesabı için eliptik kısmi diferansiyel

denklemin şekil üzerindeki çözümü ile yine aynı denklemin bir referans disk üzerin-

deki çözümü karşılaştırılmaktadır. Temsilin potansiyeli şeklin bütünsel karakterizas-

yonu, bağlama bağlı kategorizasyon ve şekil bölütleme gibi örnek uygulamalar ile

gösterilmektedir. İkinci bölümde, ya difüzyon parametresi ya da sağ taraf fonksiyonu

değiştirilerek eliptik diferansiyel denklem birçok kez çözülmekte ve yüksek boyutlu

öznitelik uzayı oluşturulmaktadır. Sonrasında her bir şekil noktasına bir özgünlük

değeri atamak üzere düşük boyuta indirgeme uygulanmaktadır. Elde edilen özgün-

lük değerleri iki boyutlu şekillerin yapısal olmayan temsili ve üç boyutlu şekillerin

yüzeylerinin dikkati çekme ölçümü için kullanılmaktadır. Üçüncü ve son bölümde,

bir çift 3B şekli karşılaştırılabilir topolojiye getirmek için eliptik kısmi diferansiyel
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denklem modifikasyonlarından yararlanılmaktadır.

Anahtar Kelimeler: Eliptik Kısmi Diferansiyel Denklemler, Örtülü Şekil Temsilleri,

Şekil Karakterizasyonu, Şekil Yuvarlaklığı
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CHAPTER 1

INTRODUCTION

Analyzing shapes of objects has been of great importance in many areas such as

medicine, materials science, industrial processes, computer vision, object recogni-

tion, 3D printing and computer graphics. In [30], it is stated that computational tools

for the analysis of cell shape are increasingly necessary. In [32], an image processing

computer procedure is proposed for the characterization of the shape of the graphite

particles in ductile cast iron since the mechanical performances of the ductile cast iron

depend on the difference of the shape of the graphite particles from a perfect sphere.

In [3], two new measures are presented for the characterization of pharmaceutical

micro particles using image analysis techniques with the aim of characterization and

monitoring of pharmaceutical pelleting processes. Shape analysis plays an important

role in computer vision systems involving object recognition since the shape is the

only attribute which enables recognizing an object without its other attributes such as

color or texture. In [44], a perceptual model for determining 3D printing orientations

is proposed where the considered metrics, namely, area of support, visual saliency,

preferred viewpoint, and smoothness preservation, involve shape analysis. Finding

correspondence between a pair of 3D models via analyzing their shapes is a pre-

requisite for several computer graphics applications such as morphing, interpolation,

attribute transfer.

Analysis of shapes highly depends on their representation. One class is composed

of landmark-based representations utilizing landmark or interest points that can be

easily identified and compared across individual shapes. Unfortunately, these repre-

sentations are not suitable for every shape since unequivocal and stereotyped land-

mark points can not be afforded by all shapes. There are boundary-based represen-

1



Figure 1.1: Maximal inscribed circle (green) and minimal circumscribing circle (red)

for three different shapes.

tations which model the shape boundary in terms of points, splines or parameter-

ized curves. However, they fail to capture two-dimensional shape features such as

necks and protrusions. Another class of representation includes skeleton-based rep-

resentations which model the shape interior via local symmetry axis called skeleton.

These representations have been proven to be useful for modeling the shape struc-

ture. However, their extraction and matching are challenging tasks. Finally, there are

implicit representations or fields which map the shape interior to the real line R and

contain high-level information resulting from short-range and long-range interactions

between the shape points. One example in this class is Euclidean Distance Transform

(EDT) of the shape which assigns each point to its distance to the nearest boundary

point. The level curves of the EDT emulate motion of the shape boundary in such

a way that each point on it moves with a unit speed in the direction of the inward

normal. The EDT implicitly codes the shape structure but it is not straightforward

to extract this information. Another example for the implicit representations is the

part-coding field [38] which provides a hierarchical partitioning of the shape domain

into meaningful parts by incorporating local and global shape information.

In this thesis, we promote implicit representations which provide richer information.

Consider the case of measuring shape roundness. One way is to extract and utilize

global shape properties such as the maximal inscribed circle or the minimal circum-

scribing circle of the shape (see Figure 1.1) to reach a single global measure of round-

ness. For example, it can be defined as the size ratio between the maximal inscribed

circle and the shape or the size ratio between the shape and the minimal circumscrib-

ing circle. In this thesis, we follow an alternative approach where we construct an

implicit representation by measuring roundness at each shape point locally. In Chap-
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Figure 1.2: Discrepancy for the shapes in Figure 1.1 (top) and their partitioning ac-

cording to discrepancy sign (bottom).

ter 2, we present a novel field called discrepancy which measures deviation of local

configuration of each shape point from a reference disk. In Figure 1.2 (top), we show

discrepancy for three different shapes. For a perfect disk, discrepancy is uniformly

zero and hence distribution of the field values is the impulse function with 0 entropy.

As the shape diverges from a disk, discrepancy attains the highest positive values on

central regions and the lowest negative values on periphery which leads to an increase

in the entropy. Discrepancy is a rich representation providing natural binary partition-

ing of the shape domain into central and peripheral regions via simple thresholding

(see Figure 1.2 (bottom)). As presented in § 3.1 of Chapter 3, entropy of positive and

negative discrepancy values provides a global characterization for body roundness

and peripheral thickness uniformity.

1.1 General Framework of Thesis

The methodologies and derivations presented in this thesis are based on the following

elliptic Partial Differential Equation (PDE) and its modified versions.

Let the shape S be an open connected bounded set with boundary ∂S.

(∆− a2) v = 0 subject to v
∣∣∣∣
∂S

= 1 (1.1)

where ∆ is the Laplace operator, ∂2

∂x2
+ ∂2

∂y2
in 2D and ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
in 3D, and a

is a scalar parameter. This PDE has been successfully employed in shape analysis in
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approximating curvature dependent shape evolution and skeleton computation [40].

The solution of (1.1) minimizes the following energy which can be proven using

calculus of variations, namely, Euler-Lagrange equation.

arg min
v

∫
S

(
|∇v|2 + a2 v2

)
ds subject to v

∣∣∣∣
∂S

= 1 (1.2)

The parameter a determines smoothness of the level curves of the solution field, v,

inversely. Here smoothness is not used in the smoothness of the function in the math-

ematical sense, i.e., in the sense of differentiability class of the function. Instead, it is

used in the sense that the level curves are getting less detailed and rounder. Of course,

the total derivative or some differential property along the level curve (e.g. curvature)

is decreasing. This usage (which is also related to low pass filtering or denoising) is

common in shape and image analysis.

In Chapter 4, we consider (1− v) instead of v whose associated energy is

arg min
v

∫
S

(
|∇(1− v)|2 + a2 (1− v)2

)
ds subject to (1− v)

∣∣∣∣
∂S

= 1 (1.3)

which is equivalent to

arg min
v

∫
S

(
|∇v|2 + a2 (1− v)2

)
ds subject to v

∣∣∣∣
∂S

= 0. (1.4)

Notice that the minimizer of (1.4) is a smooth approximation of the characteristic

function which is 1 on the shape domain and 0 elsewhere. The minimizer of (1.4) can

be obtained via solving the following PDE.

(∆− a2) v = −a2 subject to v
∣∣∣∣
∂S

= 0 (1.5)

In Chapter 4, we solve the following PDE by scaling the right hand side of (1.5),

which only scales range of the values leaving geometry of the level curves intact.

(∆− a2) v = −1 subject to v
∣∣∣∣
∂S

= 0 (1.6)

In Chapters 5 and 6, we consider the following energy

arg min
v

∫
S

(
|∇v|2 + a2 (v − f)2

)
ds subject to v

∣∣∣∣
∂S

= 0 (1.7)
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and obtain its minimizer via solving the following PDE

(∆− a2) v = −f subject to v
∣∣∣∣
∂S

= 0. (1.8)

This way, we obtain a smooth approximation of an external function f that we choose.

The details for numerical implementation of the PDEs (1.1), (1.6), and (1.8) are given

in Appendix A.1.

1.2 Contributions

Our main focus in this thesis to devise implicit shape representations incorporating lo-

cal and global shape information and utilize them for the problems related to analysis

of 2D and 3D shapes. In particular, this thesis makes the following contributions:

• A novel shape characterization field measuring deviation of local configuration

of each shape point from a reference disk is presented. The new field called dis-

crepancy is computed indirectly by comparing the solution of an elliptic PDE

on the shape domain and the solution of the same PDE on the reference disk.

The potential of discrepancy is demonstrated via three different applications

which are global characterization of the body roundness and periphery thick-

ness uniformity, context-dependent categorization, and binary shape domain

labeling.

• A non-structural shape representation that is robust to transformations such as

translation, rotation, scaling and motion of limbs or independent motion of parts

called articulations is presented. The pairwise shape similarity measure com-

puted using the proposed representation is used to cluster a set of 2D shapes. A

performance comparable to state of the art methods is achieved without model-

ing the shape structure in the form of graphs or trees.

• A non-local saliency measure defined on surfaces of 3D shapes is presented.

Local to global shape information is integrated by the measure during both

high-dimensional feature computation and low-dimensional reduction via Ro-

bust Principal Component Analysis (RPCA).
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• A previous method [16] for equating topologies of 3D shapes for the purpose

of finding their correspondence is improved.

1.3 Thesis Organization

In Chapters 2 and 3, we present discrepancy and three applications of it, respectively.

In both of Chapters 4 and 5, we employ high-dimensional feature extraction and low-

dimensional reduction via RPCA. In Chapter 4, we present a non-structural shape

representation for articulated shapes. In Chapter 5, we present a non-local measure of

mesh saliency. In Chapter 6, we present a method for bringing a pair of 3D shapes into

comparable topology. Finally, in Chapter 7, we provide summary and conclusion.
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CHAPTER 2

DISCREPANCY - LOCAL/GLOBAL SHAPE CHARACTERIZATION WITH

A ROUNDNESS BIAS

In this chapter, we present a novel shape characterization tool called discrepancy

which measures deviation of local configuration of each shape point from a reference

disk. Discrepancy is a local property biased by the global shape as it is computed

locally at each shape point and the radius of the reference disk is determined globally

as the radius of the maximal inscribed circle of the shape. Discrepancy is computed

indirectly by comparing the solution of the PDE (1.1) on the shape domain and the

solution of the same PDE on the reference disk. For each point of the shape domain,

the corresponding point in the reference disk is determined based on the distance to

the nearest boundary.

The chapter is organized as follows. In § 2.1, we present the motivation behind the

proposed shape characterization tool along with its intuitive idea. In § 2.2, a brief

review of the related work is given. In § 2.3, the details of discrepancy are provided.

2.1 Motivation and Intuitive Idea

In the field of shape characterization, in one end of the spectrum are the structural de-

scriptors in the form of part hierarchy trees or skeleton graphs extracted from distance

transforms. They have been successfully employed in characterizing shapes with well

defined part hierarchy with semantically meaningful parts, e.g. a horse shape. In the

other end of the spectrum are the global descriptors such as moments and specialized

descriptors derived from moments, which may be better suited for shape collections

that lack certain analytical hierarchy and as well as strong semantic meaning for either
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(a) (b) (c)

Figure 2.1: The imaginary reference disk at three distinct shape points marked via

cyan dot in (a)-(c).

within the collection or within a particular member of the collection.

In this chapter, we present an alternative characterization equally suitable for shapes

of both types. In the presented scheme, a shape is modeled via a field defined on

the entire shape domain where the field value is calculated locally using a reference

shape and a global parameter. Specifically, the reference shape is a disk and the

global parameter is the radius of the disk. The intuitive idea is to measure (at each

shape location) the deviation of the local configuration from the reference shape. We

call this field as discrepancy. If the shape is a perfect disk, discrepancy is uniformly

zero.

Disk shape frequently appears as a reference in shape characterization applications

since it has a simple form with fundamental properties such as compactness, convex-

ity, isotropy, uniformity of distance from boundary to center, uniformity of boundary

curvature and etc. Different from the global shape measures that assign a single

scalar value to a given shape, discrepancy provides richer information where it attains

a value at each point of the shape domain. When necessary global measures can be

calculated using the field values.

The novel feature of our proposed scheme is that we calculate deviation from the

reference disk indirectly using the solution of (1.1) computed for both the shape and

the reference disk.

The intuitive idea is explained in Figure 2.1. Consider a disk with a triangular protru-

sion on top. In Figure 2.1 (a)-(c), the cyan dot shows a domain point. In each case,

an imaginary circle (red) which is tangent to the nearest boundary point and with the
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radius A equal to the radius of the maximal inscribed disk is drawn.

The first location, cyan dot shown in (a), is away from the triangular protrusion, its

local circle coincides with the maximal inscribed circle. The second location, cyan

dot shown in (b), is still inside the disk but in the upper half closer to the protrusion.

The third location, cyan dot shown in (c), is in the protruding region. The cyan line

segment measures the distance d between the point and its nearest boundary point.

Notice that A − d is the distance from the disk center to the cyan dot’s location.

Discrepancy at each shape point is computed as the difference between the value of

the solution of (1.1), and the value that the solution of (1.1) would take on a disk point

located at the radial distance A− d. That is discrepancy is a local property biased by

the global shape.

2.2 Related Work

In [45], a global measure of circularity is derived using a geometric moment invariant

of a disk shape and it is utilized in image processing tasks from medical, industrial

and astronomical applications. As any ellipse can be obtained by applying an affine

transform to a disk, an ellipticity measure is presented in [31] using an affine mo-

ment invariant of a disk shape where a highest possible ellipticity is assigned to all

the ellipses, including circles. In [2], a family of ellipticity measures which distin-

guishes among ellipses of different aspect ratios is defined and applied to the galaxy

classification problem. A generalization of moment based circularity and ellipticity

measures is presented in [28] so that they can be applied to higher dimensional data.

A probabilistic approach is followed in [20] to obtain a circularity measure which is

not affected by discrete resolution, region overlaps or noisy/partial boundary.

2.3 Discrepancy

Let the shape S be an open connected bounded set with boundary ∂S. Let v : S →
R be a mapping governed by the PDE (1.1). The solution to (1.1) can be easily

calculated with numerical methods. A sample v function is depicted in Figure 2.2 (a).
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Due to the selected uniform inhomogeneous boundary condition, v attains the highest

value 1 at ∂S and decays towards the interior regions.

Now let us consider the same equation on Ω, an open disk of radius A, with boundary

∂Ω. The solution can be obtained either numerically or analytically. Due to rotational

symmetry of Ω and the uniform boundary condition in (1.1), the solution v depends

only on the radial distance and can be expressed as v(r, θ) = I0(ar)/I0(aA). Here, r

and θ correspond to polar coordinates and I0 denotes the zeroth order modified Bessel

function of the first kind. The details can be found in [17].

Now, let S be a shape with the maximal inscribed circle of radiusA. Let us denote the

solution of (1.1) for S as vS , and vΩ to denote the solution for the disk of appropriate

radius. If the shape S happens to be a disk, then we can speak of vΩ − vS which is

zero up to a numerical accuracy. Suppose the disk is perturbed via a small triangular

appendage (previously shown in Figure 2.1). Imagine the maximal inscribed circle in

S∪∂S. Except for its small fragment, it will coincide with ∂S. On the small fragment,

the solution vS will be smaller than 1, decaying further towards the fragment center.

Now, one can imagine a new disk with a non-uniform boundary condition. Inside

this new disk, because the propagated values from the boundary are lower than 1 at

certain angles (direction of the triangular appendage), the realized solution becomes

lower than vΩ under the assumption of uniform boundary condition.

As S deviates more and more from disk, discrepancy will diverge more and more

from the zero. The question is how to calculate discrepancy for points in S that do

not coincide with the points in Ω. That is we need an ability to produce an estimate of

vΩ at those domain points falling out of the imaginary inscribed circle. Toward this

end, we may utilize for each point p, its minimal distance d(p) to ∂S and consider vΩ

at the radial distance A−d(p). This is equivalent to imagining a local scenario where

the point is at radial position A − d(p) in polar coordinates centered at the center of

a putative circle of radius A passing through the nearest boundary point of p. Notice

that 0 ≤ d(p) ≤ A for all p ∈ S. Let vS→Ω denote vΩ extended to entire S, then

vS→Ω(p) = vΩ at the radial distance (A− d(p)) (2.1)
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(a) (b) (c)

Figure 2.2: Illustration for the disk with an appendage. (a) vS (b) Discrepancy. (c)

vS→Ω which is vΩ extended to the shape domain S.

Consequently, discrepancy is

D(p) = vS→Ω(p)− vS(p) (2.2)

If p happens to be on an appendage considerably narrower as compared to thickest

part, such as the case in Figure 2.1 (c), vS→Ω(p) will be lower than vS(p). This is

because vS(p) depends on the values propagated from the shape boundary (mainly

the boundary of the appendage) whereas vS→Ω(p) depends on the values propagated

from the boundary of the imaginary circle associated with the point. As the point is

closer to the shape boundary compared to the boundary of its associated imaginary

circle, vS(p) is higher than vS→Ω(p). In contrast, in the innermost parts, as discussed

before, vS→Ω(p) will be higher than vS(p).

If the shape is a disk with an appendage or protrusion, then it is expected that discrep-

ancy on the appendage or protrusion will be negative whereas on an inscribed central

disk positive. An illustration on the disk with an appendage is in Figure 2.2.

We note that −1 < D(p) < 1 for all p ∈ S since 0 < vS→Ω(p) < 1 and 0 < vS(p) <

1 for all p ∈ S.

2.3.1 Illustrative Results

In Figure 2.3, illustrative discrepancy examples for 5 shapes from MPEG-7 dataset [21]

are depicted. The highest positive values are attained on central regions whereas the

lowest negative values on appendages, protrusions and boundary detail. For the three
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Figure 2.3: The highest positive values are attained in central regions whereas the

lowest negative on the appendages, protrusions and boundary detail. The bottom row

depicts the first three shapes only. As seen in the color-bar, the range of discrepancy

for the three disks is quite low.

Figure 2.4: Discrepancy for two rods of varying length.

disks, discrepancy values are very close to zero. The case of disks are redisplayed

at the bottom row where the dynamic range of the display is adjusted for improved

visibility. Observe that placing regular circular bumps (middle) is less disturbing than

irregular notching (right). The anisotropy of discrepancy in the later case is a conse-

quence of non-uniform notching. The brighter central region of discrepancy extends

towards the two deepest notches at approximately 120◦ and −30◦.

For an arbitrary shape, discrepancy takes both positive and negative values. However,

for a perfect rod obtained by rolling a disk, all values are positive (see Figure 2.4).

The maximum value of discrepancy increases as the rod length increases.
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2.3.2 Entropy

For a perfect disk, discrepancy is uniformly zero, hence, discrepancy histogram is a

scaled impulse. Consequently, the entropy is zero. If we add some noise, the entropy

increases. Even for a noisy disk, the interior region with small positive discrepancy

is significantly larger than the exterior region with negative discrepancy. If we add a

smaller round piece on top of the disk (e.g. the handle of a pocket watch), the exterior

region grows in size significantly contributing to an increase in the entropy. If, how-

ever, we make a hole in the handle to change the round handle to a ring of uniform

thickness, two noteworthy effects are observed. First, the exterior region gets smaller.

Second, the negative discrepancy distribution over the exterior region becomes more

uniform. Note that discrepancy is a function of distance to boundary. Hence, discrep-

ancy distribution over the ring of constant thickness has a lower variance compared

to that over a disk of the same radius. Hence, the entropy decreases. If we consider

putting together two disks of the same size, then both the size of exterior region and

the overall entropy will decrease as compared to the size of the exterior region and

the overall entropy obtained when the disks are of different size. The entropy in the

interior region, however, may increase. This is because the interior region, depending

on the neck thickness, may become more like a dumbbell rather than a disk.

2.3.3 Implementation Details

The distance transform is computed using the available Matlab command, which is

an implementation of the method in [27]. A is obtained as the maximum value of the

distance transform.

The only parameter, a, is inversely related to the diffusion (smoothing radius). Hence,

we take it on the order of the shape radius, i.e., we set it to 1/A. As the diffusion level

increases, the range of discrepancy decreases. Nevertheless, after level A, the over-

all pattern stabilizes. Hence, increasing diffusion level further becomes unnecessary.

The illustrations in Figure 2.5 and Figure 2.6 also offer an experimental justification

for fixing the value A as the diffusion level. In Figure 2.5, we present statistics of

discrepancy computed at six different choices of a for the input shapes shown in (d).
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Variation of the input shapes is due to the lower disk, which gradually increases in

size and approaches to the upper disk. Notice that the reference shape (the maxi-

mal inscribed disk) remains the same for all input shapes. The maximum (positive)

value of discrepancy, which results from the fact that the upper disk is a discretization

of the reference shape, approaches to 0 as the diffusion level (1/a) increases. The

minimum (negative) value of discrepancy, which is due to the difference between the

lower disk and the reference shape, shows a smoother change as the diffusion level in-

creases. Notice that the minimum value of discrepancy first decreases then increases,

which means that the lower disk is considered as a noise until it becomes compa-

rable to the reference shape. Discrepancy entropy computed using the default bin

size 0.001 shows compatible behavior for the different choices of a except 1/(0.2A)

and 1/(0.1A) corresponding to very small diffusion levels. As evident in Figure 2.6,

increasing the level from A to A2 does not bring further change to the pattern.

14



(a) (b)

(c)

(d)

Figure 2.5: (a)-(c) Statistics of discrepancy at 6 different choices of a: 1/(A),

1/(0.9A), 1/(0.8A), 1/(0.3A), 1/(0.2A), and 1/(0.1A). (d) Input shapes asso-

ciated with x-axis.

Figure 2.6: Discrepancy for increasing values of a. From left to right, a = 1/(0.1A),

a = 1/(0.5A), a = 1/A, and a = 1/A2.

15



(a) (b)

Figure 2.7: (a) Discrepancy. (b) Signed distance with respect to maximal inscribed

circle(s).

2.3.4 Signed Distance with Respect to Maximal Inscribed Circle(s) versus Dis-

crepancy

Discrepancy behaves quite different than a signed distance field where the distances

are calculated with respect maximal inscribed circle(s). The signed distance takes

positive/negative values inside/outside maximal inscribed circle(s) where we linearly

normalize the distances to have the maximum value of 1. The most obvious defi-

ciency of any construction with reference to maximal inscribed circle(s) is the lack

of representational stability. For example, consider a combination of two disks as in

Figure 2.7. In the first case, the disks have the same radius hence there are two maxi-

mal inscribed circles. In the second case, the radius of the lower disk is reduced just

by 1 pixel, which is approximately 1 − 2%. We see that the signed distance shows

an abrupt change against a small difference whereas the discrepancy field exhibits a

robust behavior.
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CHAPTER 3

APPLICATIONS OF DISCREPANCY

In this chapter, we present three applications of discrepancy presented in the previous

chapter. In § 3.1, we illustrate that the distribution entropy can be used for global char-

acterization of the body roundness and periphery thickness uniformity. In § 3.2, we

demonstrate the potential of discrepancy histogram as a feature in context-dependent

categorization and sub-categorization tasks. In § 3.3, we show that discrepancy pro-

vides a natural binary partitioning of the shape domain.

3.1 Application-1: Entropy-based Ordering

In the experiments, entropy values are calculated separately over the positive and the

negative discrepancy values, and then the shapes are ordered with respect to increas-

ing mean entropy. The probability distribution of discrepancy values is obtained by

constructing their histogram with a constant bin size and normalizing the histogram

sum to 1. We compute discrepancy histogram by dividing the range [−1, 1], which

contains all possible values of discrepancy, into bins of equal size, and counting the

number of shape pixels falling inside each bin. Default bin size is set 0.001.

In Figure 3.1, we present the entropy based ordering of the shapes from the beetle

and the device-2 categories of MPEG7 dataset [21]. Considering the beetle shapes,

the entropy decreases with respect to roundness of the body and uniformity of the

peripheral limbs. Considering the device-2 shapes, the entropy increases as the central

region shrinks and the branch thickness becomes comparable to the central region

thickness, which means divergence from a disk. Considering both of the orderings,

we see that the shapes in the same sub-category are in consecutive order in spite of
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Figure 3.1: Entropy order.

(a) Discrepancy

(b) Discrepancy (bin size 0.01)

(c) Signed Distance

(d) Signed Distance (bin size 0.01)

Figure 3.2: Entropy order.

the variations due to rotation, scaling, antenna/leg crops, boundary noise addition,

and branch bending.

In Figure 3.2, we present the entropy ordering of sample shapes using discrepancy

and the signed distance (see § 2.3.4) where sensitivity to the bin size is illustrated by

employing a different selection (0.01). First, consider the ordering in Figure 3.2 (a)

for which discrepancy is used with the default bin size. As expected, the entropy is

smaller for the first seven shapes, which are composed of three versions of a disk

(a plain one, one with circular bumps, and one with boundary notching) and four

pairwise combinations of disks with the same or slightly different radius weakly con-
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nected or fused. Adding peripheral parts to a circular shape increases the entropy as

in the case of the apple, the pocket, and the octopus. The entropy increases when

the octopus has an elliptic body rather than a circular one. The half circle is far from

being round and the entropy further increases when it is notched. The entropy is high

for the pocket and the bat shapes both of which have details of varying thickness.

We observe that the entropy ordering is robust to the change of the bin size when

discrepancy is employed (see Figure 3.2 (a)-(b)). Flips occur between consecutive

shapes but the essential ordering is preserved. For example, the first seven shapes

composed of disks keep preceding the other shapes, the shapes formed via attaching

peripheral parts to a circular body keep succeeding the disks, and etc. Now, consider

the ordering in Figure 3.2 (c) obtained using the signed distance. The representa-

tional instability of the signed distance is observed in the ordering as the pairwise

combinations of disks with slightly different radius are far from the combination with

the identical disks. In Figure 3.2 (c)-(d), we see that there are significant differences

between the two orderings and hence the entropy ordering is sensitive to the bin size

when the signed distance is employed. For example, the detailed pocket precedes the

three disks in the first ordering whereas it succeeds them in the second one or the

octopus shapes precede one of the disks in the first ordering whereas they succeed all

of the disks in the second one.

3.2 Application-2: Grouping

Both the range and the distribution of discrepancy depend on the complex way the

shape deviates from a disk. In particular, we expect that discrepancy distribution to

be a good property and the difference between a pair of distributions to be a good

measure of dissimilarity.

We perform illustrative context-dependent grouping experiments using discrepancy

histogram as the only shape property to calculate pairwise distances. Since the pur-

pose of our experiments is to give a proof of concept, we employ only a single prop-

erty (histogram) and use the L1 distance between two histograms as pairwise shape

dissimilarity measure.
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In order to define the pair-wise histogram distance, we first construct normalized

discrepancy histograms as described in § 3.1 and we then compute the sum of the

absolute value of the bin-wise differences.

Let the number of shapes in the collection be n. We represent each shape using

an n-vector of which components denote pairwise histogram distances between the

respective shape and all the n shapes in the collection. To observe grouping effect,

we map all n n-dimensional feature vectors to a plane. For this purpose we use t-

Distributed Stochastic Neighbor Embedding (t-SNE) [41] which aims to model each

object by a two- or three-dimensional point in such a way that similar objects are

modeled by nearby points whereas dissimilar objects are modeled by distant points.

Each of the n shapes can then be visualized as a point in the plane.

We conduct two distinct groups of experiments. In the first, the input set is composed

of the shapes from a single category. That is we focus on fine-grained categorization.

In the second, we explore the robustness of discrepancy histogram with respect to

visual transformations including extreme articulations. We focus on context depen-

dent category characterization, starting with a small number of categories and then

gradually increasing the number.

In the grouping experiments, we consider smoothed versions of discrepancy as well

as its non-smoothed version. The smoothing is performed at two different levels via

diffusion of discrepancy with homogeneous Neumann boundary condition where the

diffusion time is chosen as (0.5A) and (0.5A)1/2. This is equivalent to convolving

discrepancy with the Gaussian of standard deviation σ = O(A1/2) and σ = O(A1/4).

Shapes from a single category. We performed two experiments using respectively

the device-2 and the beetle categories of the MPEG-7 data set [21]. Each of the two

categories contains 20 instances.

The results are presented in Figures 3.3 and 3.4, respectively. The device-2 category

contains plain, chiral and noisy versions of the some basic shapes, naturally forming

several equivalence classes serving as fine-grained sub-categories. Likewise, the bee-

tle category contains instances obtained via scaling, rotation, boundary noise addition

or antenna/leg crops. To emphasize these sub-categories, we highlight the respective
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(a)

(b) (c)

Figure 3.3: Grouping of the device-2 shapes using discrepancy histogram. Discrep-

ancy is smoothed at different levels. In the last result, no smoothing is applied.

instances using the same color. Note that scale normalization is employed for better

visualization of the grouping results. True scales of the shapes, however, are pre-

served during the experiments. In Figure 3.4 (d), we exemplify the transformations

by presenting sample shapes in their true scales.

Observe that discrepancy (whether it is smoothed or not) is robust to these transfor-

mations since the shapes highlighted with the same color are positioned very close to

each other. Considering the groupings in Figure 3.3, we see that the shape set is di-

vided into two coarse groups: the shapes with a larger center and short protrusions are

on one side whereas the shapes with a smaller center and long prevailing branches are

on the other. Considering the groupings in Figure 3.4, we see that the beetle shapes
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(a)

(b) (c)

(d)

Figure 3.4: (a)-(c) Grouping of the beetle shapes using discrepancy histogram. Dis-

crepancy is smoothed at different levels. In the last result, no smoothing is applied.

(d) Sample shapes in their true scales.
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are grouped according to the form of their body which is highly elongated for the

shapes on one corner whereas it is composed of more circular regions for the shapes

on the other side. We obtain similar grouping results when no smoothing is applied

(shown in (c)) or discrepancy is smoothed with the Gaussian of standard deviation

σ = O(A1/2) (shown in (a)) or σ = O(A1/4) (shown in (b)).

Multi category context dependent grouping. We perform a sequence of grouping

experiments using the shapes shown in Figure 3.5. There are 7 categories each with

20 instances, taken from the dataset in [10]. Notice that there are significant variations

between the shapes of the same category in terms of their scale and position of their

articulations.

First, we consider the first 60 shapes in the elephant, the hand and the human cate-

gories. We obtain a grouping result in which the three categories are clearly separated

from each other (see Figure 3.6 (a)). We observe that the distinctness between the cat-

egories is captured by discrepancy histogram despite the variation of the shapes with

respect to their scale and articulations. In Table 3.1, we present the extrema of dis-

crepancy. Observe that the maximum discrepancy decreases as the central region be-

comes rounder. For example, among the three categories, the maximum discrepancy

is smaller for the hand shapes which have a circular palm in contrast to the elongated

body of the human and the elephant shapes. Also, observe that the absolute value

of the minimum discrepancy decreases as the limb to body thickness ratio becomes

smaller. These observations are consistent with our expectation since the limiting

case would be a disk shape (a perfect circle with no limbs) for which discrepancy is

0.

Next, we add 40 more shapes from the cat and the face categories extending the set to

include 5 categories with the total of 100 shapes. Considering the body and limbs, the

cat shapes can be regarded as similar to the elephant shapes. Considering the lack of

protrusions, the face category appears significantly separate from the remaining four.

The grouping result shown in Figure 3.6 (b) is consistent with our expectation since

the cat shapes are clustered close to the elephant shapes and the face shapes form a

new group far from the other clusters. If we include the horse category in the shape

set, we see that the horse shapes are grouped in the vicinity of the elephants and the
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Table 3.1: The range of discrepancy smoothed with the Gaussian of standard devia-

tion σ = O(A1/2) for 8 different shape categories.

max discrepancy min discrepancy

mean ± std mean ± std

human 0.101± 0.010 −0.037± 0.001

hand 0.066± 0.008 −0.033± 0.002

elephant 0.110± 0.012 −0.033± 0.003

cat 0.114± 0.014 −0.032± 0.002

face 0.086± 0.006 −0.015± 0.002

ray 0.052± 0.014 −0.021± 0.002

chopper 0.084± 0.007 −0.030± 0.003

horse 0.102± 0.008 −0.035± 0.004

cats. Accordingly, in Table 3.1, we observe that discrepancy has a similar range for

the cat, the elephant and the horse categories and its extrema are closer to 0 for the

face category.

Finally, we extend the experimental set with the chopper and the ray shapes. The

result is presented in Figure 3.6 (c). First, observe that the chopper shapes are clus-

tered as a separate group in the middle of the other groupings as the chopper category

shows both similarities and differences to the other categories. For example, consid-

ering the chopper and the face categories, their positive sets are similar (see Table 3.1)

but, unlike the face shapes, the chopper shapes have several protrusions. Likewise,

considering the chopper and the elephant categories, they are composed of peripheral

parts connected to a central body but their parts are not compatible in terms of their

number, size and thickness.
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Figure 3.5: Shapes from 7 categories each with 20 instances.

(a) (b) (c)

Figure 3.6: Groupings using discrepancy histogram. (Top) Discrepancy is smoothed

with the Gaussian of standard deviation σ = O(A1/2). (Bottom) No smoothing is

applied. (a) The elephant, the hand and the human shapes. (b) The cat and the face

shapes are added. (c) The ray and the chopper shapes are added.
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(a) (b) (c) (d) (e)

Figure 3.7: (a) Discrepancy. (b) Thresholding at zero. (c) Thresholding at mean

value. (d)-(e) Dilating the respective yellow zones.

3.3 Application-3: Partitioning

As discrepancy attains positive and negative values where the positives are cumulated

on the central region, we may consider splitting the shape domain into two subsets

according to discrepancy sign. Another alternative is to use the mean value as a

threshold. We have performed partitioning experiments using both alternatives on an

extensive shape set and obtained a partitioning result equivalent to those in [38, 39,

18] in a much easier and faster way since one of the functions is calculated via table

look up.

In Figure 3.7, partitioning feature of discrepancy is illustrated on two sample shapes.

The first one is a giraffe shape with semantically meaningful parts consisting of the

body, four legs, tail and head together with neck. The second one is an umbrella

shape which can be partitioned into the handle, canopy and four bumps along the

canopy edge. We present discrepancy for both shapes in Figure 3.7 (a). By thresh-

olding discrepancy according to its sign, we obtain the partitioning results shown in

Figure 3.7 (b) which are consistent with our expectation. When we choose the mean

discrepancy value as the threshold, central yellow zones shrink (see Figure 3.7 (c)). In

Figure 3.7 (d)-(e), we dilate the respective yellow zones given in Figure 3.7 (b)-(c). In
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Figure 3.8: Sample partitionings via discrepancy. The mean value is used as thresh-

old. The set composed of larger values is dilated.

this way, the central regions touch the shape boundary and the remaining peripheral

regions are further divided (see Figure 3.7 (c) and (e)).

In Figure 3.8, we present sample partitionings via discrepancy. We dilate the set

composed of the shape points at which discrepancy is higher than the mean value.

Observe how the central regions are captured by the yellow zones and the peripheral

parts are obtained via the green sections. Also, we see that the partitioning results are

consistent among the shapes from the same category.

In Figure 3.9 (a), we present partitioning of the shape boundary for a set of shapes

according to the sign of discrepancy. We smooth discrepancy slightly (see Fig-

ure 3.9 (b)) in order to filter the noise resulting from the discretization especially near

the shape boundary. Observe that the parts of the shapes corresponding to protrusions,

appendages and boundary detail are successfully segmented by simple thresholding

as discrepancy does most of the trick. Also, note that the regions surrounded by green

contours represent the shape features which are distinctive with respect to the refer-

ence shape, a disk with a radius equal to the maximum shape thickness where the

thickness at each shape point depends on the distance to the nearest boundary point.

First consider the disk shape with regular circular bumps. We see that the boundary

detail, the circular bumps, is easily differentiated from the main disk shape. Next

consider the four device-2 shapes whose branches are similarly segmented in spite

of their variation due to bending, boundary noise and thickness change. Now con-

27



(a)

(b)

Figure 3.9: Partitioning of the shape boundary for a set of shapes according to the

sign of discrepancy. (a) No smoothing. (b) Smoothing with the Gaussian of standard

deviation σ = O(A1/4).

sider the beetle shapes first of which seems to be more elongated compared to the

second one. The head, tail and six legs are separated from the body for both shapes

as illustrated by the corresponding green contour fragments. Finally consider the bird

shapes which are segmented into the same semantically meaningful parts despite the

variation between their bodies in terms of their elongation.
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CHAPTER 4

A NON-STRUCTURAL REPRESENTATION SCHEME FOR

ARTICULATED SHAPES

In this chapter, we present a non-structural shape representation that is robust to trans-

formations such as translation, rotation, scaling and motion of limbs or independent

motion of parts called articulations. Our representation involves constructing mul-

tiple high-dimensional feature spaces in which the shape points are represented and

determining distinctness of the shape points in each space separately via Robust Prin-

cipal Component Analysis (RPCA). In order to associate each shape point with a

high-dimensional feature vector, we solve the PDE (1.6) for varying values of the pa-

rameter a. Multiple feature spaces are obtained by using different sets of values for

the parameter a.

The chapter is organized as follows. In § 4.1, we present the motivation behind the

proposed representation. In § 4.2, we present our representation scheme and the

corresponding shape similarity measure. In § 4.3, we present our clustering results in

comparison with the state of the art methods.

4.1 Motivation

Articulated shapes can be successfully represented by structural representations which

are organized in the form of graphs of shape components such as skeleton (medial

axis) fragments. However, it is challenging to build and compare structural represen-

tations. For example, in order to obtain a clean and consistent representation, skeleton

extraction is frequently assisted by pruning which involves several heuristics. More-

over, measuring similarity of shapes through their structural representations requires
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finding a correspondence between a pair of graphs, which is an intricate process en-

tailing advanced algorithms.

In this chapter, we present a representation scheme for articulated shapes which in-

volves neither building a graph of shape components nor matching a pair of graphs.

The proposed representation is used to measure pairwise shape similarity according

to which we cluster a set of shapes. The clustering results obtained on three artic-

ulated shape datasets show that our method performs comparable to state of the art

methods which utilize component graphs or trees, even though we are not explicitly

modeling component relations.

4.2 The Method

Our representation scheme relies on first constructing multiple high-dimensional fea-

ture spaces in which shape points (pixels in 2D discrete setting) are represented and

then, determining distinctness of the shape points in each space separately via RPCA.

The distinctness values deduced from each feature space are utilized for two main

purposes. First, their spatial distribution on the 2D shape domain is used to partition

the shape into a set of regions. Second, each region is described by the normalized

probability distribution of the corresponding distinctness values. The dissimilarity

between a pair of shapes via each feature space is defined as the cost of the optimal

assignment between their regions. Notice that we do not build any graphs to model

the shape structure and the optimal assignment problem does not involve matching a

pair of graphs. The final shape dissimilarity is computed by combining the dissimi-

larities deduced from multiple feature spaces.

Below, we present the details of our representation scheme.

4.2.1 Construction of a High-dimensional Feature Space

Given a 2D shape, we compute a stack of fields by solving the PDE (1.6) for vary-

ing values of the parameter a. Each distance field, which is 0 on the boundary and

increases towards the center of the shape, is normalized by dividing to its maximum
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Figure 4.1: Computation of 30-dimensional feature vector at each shape point.

value. We form a feature vector at each shape point by sticking together values of the

normalized fields.

By varying a, we obtain a collection of features each encoding a different degree

of local interaction between the shape points and their surroundings. We vary 1/a

between 0.033 × ρ? and ρ? with the constant step size 0.033 × ρ?, which makes

30-dimensional feature vector at each shape point, where ρ? represents the extent of

the maximum interaction between the shape points and their surroundings. In order

to represent different shapes in a common feature space, we determine ρ? for each

shape individually as a measurement of the same global shape property.

In Figure 4.1, we summarize the computation of 30-dimensional feature vector at

each shape point.
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Figure 4.2: R and G correspond to the thickness of the shape body (red) and the

maximum distance between the shape extremities (blue), respectively.

4.2.2 Determining Multiple High-dimensional Feature Spaces

We utilize two different shape measurements which are related with thickness of the

shape body and the maximum distance between the shape extremities. The first mea-

surement R is computed as the maximum value of the shape’s distance transform

which gives the distance of each shape point from the nearest boundary. The second

measurement G is computed as the maximum value of the pairwise geodesic dis-

tances between the boundary points where the geodesic distance between a pair of

points depends on the shortest path connecting them through the shape domain. As

shown in Figure 4.2, R and G provide characteristic shape information which can be

used to define the extent of the local interactions between the shape points during the

feature space construction. We construct six different feature spaces for which ρ? is

selected as multiples of R or G, namely, 2R, 3R, 4R, (2/3)G, (2/4)G and (2/5)G.

4.2.3 Computing Distinctness of Shape Pixels via Each Feature Space

We organize the feature vectors in the form of a matrix D ∈ Rm×30 where each row

represents the feature vector computed for a shape pixel and m is the total number

of shape pixels. The matrix D is decomposed into a low-rank matrix L and a sparse

matrix S via RPCA, which seeks to solve the following convex optimization problem:

min
L, S ∈Rm×30

||L||∗ + λ ||S||1 such that L+ S = D (4.1)

where ||.||∗ denotes the sum of the singular values of the matrix, ||.||1 is the sum of

the absolute values of all matrix entries, and λ is the weight of penalizing denseness

of the sparse matrix S.
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Figure 4.3: Computation of distinctness of the shape pixels.

Various algorithms are proposed to solve the optimization problem in (4.1). We use

the inexact augmented Lagrange multipliers method for RPCA [23], which is efficient

and highly accurate. We choose λ = 1/
√
m as suggested by the available implemen-

tation of [23].

The correlation between the feature vectors hence the shape pixels is encoded by the

matrix L whereas their discrimination is contained in the matrix S. Thus, we define

the distinctness of each shape pixel as the norm of the corresponding vector in the

matrix S. In Figure 4.3, we summarize computation of the distinctness values.

The shape pixels whose feature components vary more are found to be more distinct.

The shape articulations are associated with larger distinctness since they are thinner

compared to the shape body and the constant value coming from the shape boundary

is propagated faster in these regions during the feature computation.

4.2.4 Partitioning Shapes into a Set of Regions via Each Feature Space

We utilize the afore-mentioned property of the distinctness values in order to partition

shapes into a set of regions. We first divide the shape domain into two disjoint sets

by thresholding at the mean distinctness value. We further partition each set into
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multiple regions by dilating the two sets one after another in descending distinctness

order. In this way, we remove the connections between different regions of each set.

Radius of the structuring element used for dilating each pixel is determined using the

distance of the pixel from the nearest boundary.

4.2.5 Measuring Pairwise Shape Dissimilarity via Each Feature Space

We describe each shape region by the normalized probability distribution of the dis-

tinctness values of its constituent pixels where the normalization is performed by

making the probability sum equal to the ratio of the region area to the total shape

area. In order to estimate the probability distribution, we simply utilize the histogram

of the distinctness values with a constant bin size 0.01. The dissimilarity between a

pair of shapes is defined as the cost of the optimal assignment between their regions.

We use Hungarian matching for solving the optimal assignment problem. We do not

assume any relation between the regions of each shape. Hungarian matching aims to

find a one-to-one correspondence between the regions of the two shapes leaving some

regions unmatched. The cost of assigning two regions is simply taken as the sum of

the absolute value of the difference between their normalized probability distribu-

tions. The cost of leaving a region unmatched is taken as the sum of its normalized

probability distribution, which is equal to the ratio of its area.

4.2.6 Combining Pairwise Shape Dissimilarities Deduced from Multiple Fea-

ture Spaces

In order to define the final dissimilarity of a pair of shapes, we compute a weighted

average of the dissimilarities deduced from the six feature spaces. The weight is 1/4

for each of the dissimilarities via the feature spaces constructed using R whereas it is

1/12 for each of the dissimilarities via the feature spaces constructed using G. The

non-uniform weighting is due to that R is more reliable than G since the shape body

is a more stable structure compared to the articulations.
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Figure 4.4: Distinctness values (color coded) and the corresponding partitioning re-

sults (gray vs. black) for three shapes via the feature spaces constructed for ρ? = 3R

(top row) and ρ? = (2/4)G (bottom row).

4.3 Experimental Results

As shown in Figure 4.4, the distribution of distinctness values vary considering repre-

sentations of different shapes via the same feature space or representations of a single

shape via different feature spaces. Grouping of the distinctness values on the shape

domain provides partitioning of the shape into meaningful regions such as the shape

body (gray) and the articulations (black) via simple operations.

In order to observe the clustering effect implied by the proposed dissimilarity mea-

sure, we utilize t-Distributed Stochastic Neighbor Embedding (t-SNE) [41] which

aims to map objects into a plane based on their pairwise dissimilarities. In Figure 4.5,

we show the t-SNE mapping result for 56shapes [5] dataset which consist of 14 shape

categories each with 4 shapes where the within category variations are due to trans-

formations such as rotation, scaling and deformations of articulations. We see that

the shapes from the same category cluster together and the shapes from the similar

categories (e.g. horse and cat shapes) are close to each other.

We compare our clustering results with state of the art methods using Normalized Mu-

tual Information (NMI). NMI measures the degree of agreement between the ground-

truth category partition and the obtained clustering partition by utilizing the entropy

measure.

Let nji denote the number of shapes in cluster i and category j, ni denote the number
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Figure 4.5: t-SNE mapping of the shapes from 56shapes dataset using the proposed

dissimilarity measure.

of shapes in cluster i, and nj denote the number of shapes in category j. Then NMI

can be computed as follows:

2
∑I

i=1

∑J
j=1

(
nji/N

)
log

(
(nji/N)

(ni/N) (nj/N)

)
−
∑I

i=1 (ni/N) log (ni/N)−
∑J

j=1 (nj/N) log (nj/N)
(4.2)

where I is the number of clusters, J is the number of categories and N is the total

number of shapes.

A high value of NMI indicates that the obtained clustering matches well with the

ground-truth category partition. In order to compute NMI of our clustering result,

we need to assign a cluster id to each shape. Given the t-SNE mapping of a dataset

obtained using our proposed dissimilarity measure, we apply affinity propagation [15]

to partition the dataset into a number of clusters (which is chosen equal to the number

of categories in the dataset).

In Table 4.1, we present NMIs of our proposed method and other state of the art

methods on 56shapes [5], 180shapes [4] and 1000shapes [10] datasets. 180shapes

dataset consist of 30 categories each with 6 shapes. 1000shapes dataset consist of 50

categories each with 20 shapes. CSD [35] employs hierarchical clustering in which a

common shape structure is constructed each time two clusters are merged into a single

cluster where building a common shape structure requires matching skeleton graphs.
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Table 4.1: The clustering performance comparison using NMI.

56shapes 180shapes 1000shapes Average

CSD 0.9734 0.9694 0.8096 0.9175

IDSC+Ncuts 0.5660 0.5423 0.5433 0.5505

Shape context+spectral 0.9418 0.9264 0.9676 0.9453

Skeleton path+spectral 0.9426 0.9746 0.9154 0.9442

Proposed method 1.0000 0.9651 0.9177 0.9609

The method (skeleton path+spectral) presented in the work [8] combines the skeleton

path distance [9] with spectral clustering. The performance of these two skeleton-

based methods decreases for 1000shapes dataset which contains unarticulated shape

categories such as face category. For 1000shapes dataset, the highest performance is

obtained via the method (shape context+spectral) in [8] which uses shape context de-

scriptor [11]. As the shape context descriptor is not robust to deformation of shape ar-

ticulations, the performance decreases for highly articulated 56shapes and 180shapes

datasets. Inner distance shape context (IDSC) descriptor [24] is an articulation in-

variant alternative to the shape context descriptor. In the work [35], the performance

of IDSC combined with normalized cuts algorithm is reported for the three datasets.

Overall, we accurately cluster the shapes from 56shapes dataset and our proposed

method has the highest NMI average over the three datasets. We observe that with-

out constructing and matching graphs of shape components, our method performs

comparable to the structural methods.
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CHAPTER 5

A NON-LOCAL MEASURE FOR MESH SALIENCY

In this chapter, we present a non-local measure of saliency defined on the surface of a

3D shape represented as a mesh. The framework that we follow is similar to the one

presented in the previous chapter. We represent the mesh points in a high-dimensional

feature space and determine their discrimination by applying Robust Principal Com-

ponent Analysis (RPCA). However, instead of utilizing the PDE (1.6) for varying

values of the parameter a, we construct a high-dimensional feature space by solving

the PDE (1.8) for varying right hand side functions f where a is fixed to a sufficiently

small value.

The chapter is organized as follows. In § 5.1, we present the motivation behind the

mesh saliency measure. In § 5.2, we present the method for computing it. In § 5.3,

we give illustrative results obtained via the proposed saliency measure.

5.1 Motivation

A perception scientist, Attneave, observed that the set of points that best represent a

shape is taken from the regions where the bounding contour is most different from

a straight line [6]. Furthermore, using random shapes created by linking points, he

found a linear relationship between judged complexity and the logarithm of the num-

ber of points [7]. This link has been exploited by many computational methods ad-

dressing a variety of tasks including contour partitioning. Later studies such as [43]

also confirmed Attneave’s hypothesis [6] that curvature extrema are salient points, but

while also showing that the perceptual saliency of a point along the contour is deter-

mined by more factors than just local absolute curvature and the contour perception
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Figure 5.1: For illustration purposes, we used a planar domain consisting of pixels

and showed a sequence of feature values at each pixel. At the top row, level curves of

the fields composed of the feature values are presented.

is strongly influenced by non-local factors.

In this chapter, we present a saliency measure (in the form of one-parameter family of

functions defined over the shape surface) that depend on both local and non-local fac-

tors. Instead of contours that bound regions, we focus on surfaces that bound volumes.

As compared to classical computational problems of saliency of positions in images

or contours, with numerous computational realizations over the course of nearly six

decades, saliency of positions on a bounding surface is relatively less explored.

5.2 The Method

The method consists of forming a high dimensional representation, and then reducing

it via RPCA. Local to global integration is achieved gradually in two steps. First, dur-

ing the construction of the high dimensional feature space (§ 5.2.1). Second, during

low dimensional reduction (§ 5.2.2).

We assume the data is a set of voxels on a regular grid, forming the interior of a

domain in the three-dimensional space.

5.2.1 Feature Space

Using a domain labelling formulation from our recent work on hierarchical domain

decomposition [18], we construct multiple labels ∈ [−1, 1] for each interior voxel of a
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given domain. In Figure 5.1, for illustration purpose, sample labels on a 2D planar do-

main are depicted. The labels assigned to the pixels at each step of the sequence form

a smooth field over the shape domain. At the top row, level curves of the fields are

presented. At the first/last step, the labels are composed of positive/negative values,

respectively. At the intermediate steps, the labels are negative on the shape periphery

and positive on the central shape region. Level curves of the fields provide hierarchi-

cal partitioning of the shape domain. The goal of the original work in [18] is to find

the right selection of label assignments that yields proper hierarchical partitioning of

the domain. Hence, eventually one specific setting is selected while all the other are

discarded. In the case of Figure 5.1, that is somewhere between the eighth and ninth.

In contrast, in the presented work, all possible label assignments are kept so that each

voxel is characterized by multiple label values. Since our interest is on the mesh of the

bounding surface, a value transfer from the interior voxels is required. This is done

by assigning each boundary mesh element the value of the nearest interior voxel.

Before giving the details of the labelling process and arguing why it is appropriate in

the present setting, let us demonstrate the coding capability of the suggested feature.

For demonstration, we select 16 sample points with differing local and global charac-

teristics on the armadillo surface (see Figure 5.2 (left)). These include points repre-

senting regions of various local curvature and volumetric thickness, distributed over

the surface to characterize the global structure. At each sample point, we compute

21 label values and divide them to their maximum absolute value so that their range

is fixed to [−1, 1]. As the sample points can be differentiated according to how the

corresponding labels change in the range [−1, 1], the piecewise linear curve formed

by linking the consecutive labels is called as the signature of the sample points. In

the following three paragraphs, we discuss that the 21-dimensional feature values are

capable of differentiating local and global characteristics of the boundary surface.

Firstly, features at regions with locally small thickness (including curvature maxima)

such as ears, fingers, nose and tail (red points) exhibit sharp decay in the early stages

of the signature, whereas we observe smoother decay at regions with locally larger

thickness such as the torso.

Secondly, the effect of global structure is observed comparing signatures of the points
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Figure 5.2: For various points on armadillo surface, plots of feature vectors at selected

locations on the mesh. The correspondence between the points and their plots is color

coded.

selected over the surface of the arm and leg. Notice how structurally corresponding

points on these parts (purple, green, pink and red points) have similar signatures re-

flecting their relative proximity to the shape center (torso), despite the fact that local

thickness of the forearm is larger than the upper arm in contrast to the thickness con-

figuration observed in the parts of the leg.

Thirdly, the pink and green points within the proximity of the left knee exemplify

how the feature finds the balance in encoding the local and global characteristics. We

note that the green point is located on the knee cap which slightly protrudes from

the leg whereas the pink point represents a smooth part of the knee. The feature

successfully distinguishes these points with different local characteristics despite their

similar position with respect to the global structure.

The intuitive idea of the labelling process is to construct a field inside the volume

such that its value at a voxel depends on both long range and short range interactions

among domain elements, i.e. voxels. For computational convenience and ease of

implementation, the following three-step procedure is used. At the first step, each

voxel is assigned its distance to the nearest boundary point. This gives the classical

distance transform, which codes long range interactions among opposing boundary

elements. The second step is a thresholding step, which makes a hypothetical central

peripheral split of the domain. At this step, after the distances are normalized to

(0, 1] range, voxels whose normalized distances are smaller than a control parameter
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Figure 5.3: The initial binary labels (top row) are relaxed via local averaging to obtain

the final labels (bottom row).

∈ [0, 1] are assigned −1, whereas the others are assigned +1. The set of values used

for the control parameter is determined by sampling the range [0, 1] with the constant

step size 0.05, which makes 21 different threshold values.

Initial binary labels are depicted in Figure 5.3 top row where the control parameter

increases from left to right and the binary labels−1 and +1 are shown using dark-blue

and dark-red colors, respectively. The positive voxel set is a kind of soft barrier for

the contour information. It can be thought as an indirect way of changing the speed of

final relaxation. At each level i, the final labels Φi are obtained from the initial labels

fi via the PDE (∆− 1/|Ω|2) Φi = −fi subject to Φi = 0 on the shape boundary

∂Ω where |Ω| corresponds to the number of nodes in the shape domain Ω. Notice

that this PDE is the same PDE in (1.8) when a = 1/|Ω|. As can be deduced from

the associated energy (1.7), the finals labels Φi represent smoothed form of the initial

labels fi. We normalize each Φi by dividing its values to the maximum absolute value

of all Φi. Note that as the control parameter approaches to 0 or 1, the positive or the

negative set covers the entire domain, hence, no barrier effect is introduced during the

relaxation step.

The relevant point is that the final labels are the result of mixed complex interactions

among domain elements, whether long range or short range. Furthermore, each case

reflects a particular bias on the partitioning structure as indicated during the thresh-

olding step where a control parameter bounded by the domain thickness is defined.

The control parameter determines the effect of non-locality. The labels are defined

for interior voxels where the value on the boundary is fixed at 0. Hence, a value trans-

fer is performed by assigning each boundary mesh element the label of the nearest
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interior voxel.

Next step is to re-organize this high dimensional information represented via labels in

a way to yield a local to global measure of saliency as detailed in § 5.2.2. Eventually,

our goal is to distinguish the surface points that represent observations that are less

frequent, and as such considered salient with respect to the global configuration.

5.2.2 Reduction via Robust Principal Component Analysis

The process starts with forming a matrix D ∈ Rm×21 of which columns denote the

feature values at each of m mesh locations. This is followed by an additive decom-

position of D into a low-rank matrix L ∈ Rm×21 and a sparse matrix S ∈ Rm×21 via

RPCA where the sparseness of S is determined by the parameter λ. See § 4.2.3 for

RPCA details.

The low rank component L is expected to encode correlations among the mesh points

via their feature values whereas the sparse component S is expected to encode their

discriminations as it contains the residuals stemming from less frequent feature con-

figurations.

In order to assess the saliency of a mesh element, we simply compute the norm of the

corresponding row vector in the matrix S.

By varying the sparseness parameter λ, we obtain different measures of saliency at

each location.

5.3 Results and Discussion

In the experiments, as a proof of concept, we find it sufficient to divide the possi-

ble range (the domain width) to 20 equal intervals, hence compute 21 possible label

assignments. This number can be increased or made to reflect the domain size.

In Figure 5.4, we present saliency results obtained for armadillo model for increasing

values of the parameter λ (= 1/m, 1/m0.625 and 1/m0.5). Salient regions are depicted

with red tones whereas blue tones indicate non-salient regions.
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Figure 5.4: Saliency results obtained for armadillo model using λ = 1/m, λ =

1/m0.625 and λ = 1/m0.5, respectively, where m is the number of surface points.

Salient regions are depicted with red tones whereas blue tones indicate non-salient

regions.

The parameter λ adjusts the sparseness of the matrix S and hence affects the local-

ization of the salient regions in the input surface. As the sparsity increases, salient

points on the surface gets more and more localized and almost come to an agreement

with the local curvature maxima.

For a small value of λ (= 1/m), we obtain a denser matrix S emphasizing the saliency

of the global structures, i.e. shape parts. As illustrated in Figure 5.4 (left), the arms,

legs, ears, tail and mouth of armadillo are found as salient.

For the larger values of λ (= 1/m0.625 and 1/m0.5), we observe that salient regions

become gradually more localized. Consider Figure 5.4 (right) with the saliency result

for the largest chosen λ (= 1/m0.5). We obtain a saliency measure which captures

the local curvature maxima of armadillo model such as the finger tips, the nose, the

edges of the ears and the tail tip.

Selecting λ between the smallest and the largest chosen value produces more than

in-between results. For example, regions that are close to the central blob are empha-

sized (see the chest of armadillo in Figure 5.4 (middle)).

More illustrative saliency results are presented in Figure 5.5. For the smallest chosen

λ, shape parts are found as salient such as the head, legs and tail of the horse, the legs

and antennas of the ant, the wings and nose of the airplane, the smaller one of the

merged cubes and the hollowed front part of the larger cube, the fingers of the hand
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Figure 5.5: Input surfaces are shown in the first row, and saliency results obtained

using λ = 1/m, λ = 1/m0.625 and λ = 1/m0.5 are presented in the remaining rows,

respectively. Warmer colors represent salient regions.

and, lastly, the wings, nose and tail of the bird (see the second row in Figure 5.5). For

the largest chosen λ, the local curvature maxima (such as the tips of the protrusions

and the corners of the cubes) and the thinnest structures (such as the bottom part of

the horse legs and the rear wings of the airplane) are emphasized (see the fourth row

in Figure 5.5). When λ is between the smallest and the largest chosen value, regions

close to central blobs are found as salient such as the palm of the hand and the body

of the bird (see the third row in Figure 5.5).
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Figure 5.6: Saliency result obtained for the armadillo model via the method in [22].

Warmer colors represent salient regions.

In Figure 5.6, we present the saliency result obtained for the armadillo model via the

method in [22] which measures the difference of regions from their surroundings with

respect to their mean curvature. As it is computed via the difference of a local feature

in a local neighborhood, the obtained saliency measure is a local one emphasizing

curvature extrema.

5.3.1 Grouping Mesh Vertices Using Multiple Saliency Measures

We obtain multiple saliency measures by varying λ parameter of RPCA. For observ-

ing grouping of mesh vertices via these multiple measures, we first construct m×m
distance matrix where pairwise distance of the vertices is computed as Euclidean

distance between their saliency values. We utilize rows of the distance matrix as m-

dimensional feature vectors representing m mesh vertices. We then apply dimension-

ality reduction, specifically t-SNE, for mapping each vertex to a single value. t-SNE

maps similar features to nearby points and dissimilar features to far away points and

hence the values obtained via t-SNE provide grouping of the mesh vertices. In Fig-

ure 5.7, we present the values assigned to the surface points of the armadillo model

via t-SNE mapping using the three saliency measures shown in Figure 5.4. We see

that regions of the surface associated with a similar saliency over different choices of

λ parameter are grouped together. Notice that how regions with a small bump such

as knees and breasts are differentiated from their surroundings.
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Figure 5.7: Grouping of mesh vertices using the multiple saliency measures shown in

Figure 5.4.
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CHAPTER 6

EQUATING SHAPE TOPOLOGIES UNDER TOPOLOGICAL NOISE

In this chapter, we present a method that brings a pair of 3D shapes into compara-

ble topology via their adaptive deflation. The deflations are controlled by a pair of

transformations defined in the whole shape domain. The first transformation whose

iso-surfaces provide shape simplifying deflations is the minimizer of the energy (1.7)

where f is selected as the Euclidean Distance Transform (EDT) of the shape and a is

chosen as a sufficiently small value. The second transformation providing a central

structure for stopping deflations is obtained as the minimizer of a modification of the

same energy (1.7).

The chapter is organized as follows. In § 6.1, we present the motivation and related

work for handling topological differences between 3D shapes. In § 6.2, we present

our topology equating strategy. In § 6.3-6.4, we present the experimental results.

6.1 Motivation and Related Work

Advancement of visual data acquisition technology enabled easy acquisition of 3D

shapes in the form of surface meshes enclosing solid objects. These meshes are used

in many computer vision and graphics applications, many of which require establish-

ing meaningful correspondences that pair up semantically equivalent points on two

surfaces. The process of pairing up is called matching. For a matching result to be

of practical value, the matched points should be semantically equivalent where the

semantic equivalence needs to be inferred from the geometrical and topological prop-

erties. Typically, however, geometrical and topological information is corrupted by

noise, which may get added either during acquisition or model formation.
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Figure 6.1: A pair of 3D shapes from MIT samba sequence [42]. Model on the right

has hands connected to the belly.

The methods that address the problem of matching under topological noise can be

classified into two groups: model-based and model-free. The techniques in the first

group require a prior shape model. The topological complications are resolved by

aligning the prior model with each one of the shapes [42]. A disadvantage of model-

based techniques is that they require good prior models which may not always be

available. In such situations, a model-free approach may be the only option.

One model-free technique is to register a pair of 3D shapes via their spectral embed-

ding, after eigenvector re-ordering [26]. Despite the effort spent on re-ordering, the

matching is tolerant only to moderate noise. The most common strategy in model-

free techniques is to replace topology-sensitive distances with robust ones [33, 14,

1, 34, 29]. Note that a measure of dissimilarity (distance) is required if one wants

to find the similar pairs. The usual distance is the geodesic distance (which depends

on the shortest path between a pair of points). Naturally, the choice of the distance

affects the quality of the matching. For example, the geodesic distance is robust only

to certain class of deformations, yet sensitive to topological changes. Diffusion based

distances corresponding to an average of all the paths between the pair of points are

less sensitive, hence, commonly employed in the literature [33, 14, 1, 34, 29]. The

diffusion distances, however, are sensitive to the choice of the scope of averaging,

i.e. the scale parameter. Therefore, in some works [34, 29], diffusion distances at

multiple scales are employed to achieve robustness to topological changes.

In this chapter, we focus on a particular type of topological noise: One that is un-

avoidable even if the physical capabilities of the acquisition system is of very high
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quality, e.g. an arm touching the body during a motion capture session (Figure 6.1).

Our approach is to adaptively deflate the pair of shapes for the purpose of bringing

the pair of shapes to be matched to a comparable topology before the search for the

correspondences. Once the pair of shapes is brought to a topologically comparable

form, the matching is performed between topologically comparable forms and then

the found correspondences are transferred to the correspondences between the origi-

nal pair of input shapes. Previously, Genctav et al. [16] inflated and deflated surface

meshes with the help of a smooth indicator function proposed in Tari et al. [40]. In

this chapter, we present a new and more systematic topology equating process by

employing two volumetric transformations, each of which is an approximation of the

EDT subject to competing regularities. This pair of transformations enables us to

implement the deflation process more systematically, to robustly handle scale nor-

malization, and to define a stopping condition. We denote the transformations by ρ0

and ρ1 where the superscripts 0 and 1 indicate the values of a binary parameter used

in their computation via a common model presented in the next section.

6.2 Adaptive Deflations via ρ0 and ρ1

The transformation ρ0 is merely a smooth approximation of the EDT. It facilitates the

generation of a collection of iso-surfaces that represent adaptive shape simplifying

deflations of the shape boundary parameterized by a deflation level ` ∈ [0, 1]; the

larger the ` the more is the deflation hence the simplification. The deflations are

adaptive: At any fixed level ` ∈ [0, 1], the amount of deflation at a point p of the

deflating surface depends on the surface features that are implicitly coded through the

values of ρ0 in an ε−neighborhood of p. We discretize ` by sampling its range [0, 1]

at a fixed length δ = 0.004.

Deflations are merely selected iso-surfaces of ρ0. In order to make sure that the

process of deflating stops at an appropriate level so that the set of deflations is of

practical value, i.e., the process does not yield trivial surfaces for any ` ∈ [0, 1],

we construct a barrier structure. The barrier structure is used to automatically stop

topology equating adaptive deflations. The details of the construction process which

makes use of ρ1 and the EDT will be given in a later subsection.
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Once we have a collection of iso-surfaces for each of the shapes, we follow the same

steps as in Genctav et al. [16] in order to choose the pair of iso-surfaces that is

to be considered as topologically comparable forms of the input shapes. First, we

determine the levels at which the iso-surfaces from both shapes have comparable

topology. We quantify topology of the iso-surfaces in terms of their genus number

that intuitively counts the number of handles of a given object. In order to compute

genus number of the iso-surfaces, we employ the Euler formula which is applica-

ble to closed and connected manifold meshes. Suitably, the extracted iso-surfaces

are always composed of closed meshes since the corresponding transformation ρ0

is smooth and continuous. However, the iso-surfaces can have more than one mesh

component and each component may contain non-manifold vertices or edges. Thus,

we consider the largest mesh component in terms of vertex count and apply the Euler

formula after checking its manifoldness. Second, we take the smallest one among

the genus numbers shared between pairs of iso-surfaces. The iso-surfaces are more

similar to input shapes at preceding levels so we choose the first pair of iso-surfaces

corresponding to the selected genus as the topologically comparable forms of the

input shapes.

6.2.1 Computing ρβ

We now explain how ρ0 and ρ1 are computed via a common formulation. Let Ω ⊂ R3

denote the volume enclosed by the surface mesh of the shape. Further let ∂Ω denote

the boundary of Ω. The two regularized approximations to the EDT, namely ρ0 and

ρ1, are obtained as the minimizers of the energy given in (6.1), where the binary

valued parameter β ∈ {0, 1} is set to 0 and 1, respectively.

arg min
ρβ

∫
Ω

(
Ed(ρ

β) + Es(ρ
β) + βEa(ρ

β)
)

dω subject to ρβ = 0 on ∂Ω

Ed(ρ
β) =

1

O(|Ω|)
(ρβ − EDTΩ)

2

Es(ρ
β) =

∣∣∇ρβ∣∣2
Ea(ρ

β) =
1

O(|Ω|)
(∫

Ω

ρβ dω
)2

(6.1)
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Observe that Ed decreases as ρβ gets closer to the EDT, Es decreases as ρβ becomes

smoother and Ea decreases as the global average of ρβ approaches 0. Notice that the

energy associated with ρ0 is the same as (1.7) where f = EDTΩ and a = 1/O(|Ω|).

The difference between the volumetric transformation ρ0 and the smooth distance

function used in the preliminary work [16] is the following. ρ0 minimizes the energy

(1.7) whereas the former one minimizes the energy (1.2). Roughly speaking, ρ0 is a

smoothing of the EDT whereas the former one is a smoothing of the characteristic

function which is 1 on the shape and 0 elsewhere. This minor distinction is indeed

important in terms of obtaining a simplified adaptive level separation. In the following

subsections, we show that the topology equating process takes less number of steps

when we use ρ0 to extract shape deflations.

The second volumetric transformation, ρ1, is based on the 2D region segmentation

field model from [38, 37]. ρ1 is a smooth function that takes both positive and negative

values so that the absolute value of its global average is minimized. ρ1 is positive at

the inner shape regions where the EDT is high, whereas it is negative at the outer

shape regions where the EDT is low. The zero-crossing of ρ1 provides a partitioning

of the shape into central and the remaining outer regions. In our work, we utilize ρ1 to

perform the scale normalization between the input pair of shapes as well as to extract

a suitable stopping condition via what we refer as the barrier structure.

6.2.2 Barrier Structure

The volumetric transformation ρ1 has two phases – negative (outside) and positive

(inside). The phase boundary given by the zero-crossing of ρ1 separates the entire

volume (enclosed by a surface) into two disjoint sets, one of which captures the cen-

tral structure as illustrated in Figure 6.2 (a). We dilate this central structure so that it

touches the shape boundary and obtain the barrier structure, a coarse shape without

appendages (see Figure 6.2 (b)). In order to extract the iso-surface that represents

the maximum deflation allowed (the iso-surface at ` = 1), we use ρ0
? which is the

maximum value of ρ0 inside the shape volume and outside the barrier structure. Ac-

cordingly, the iso-surface at an intermediate level ` is extracted using the value `×ρ0
?.

In this way, we consider meaningful deflations preserving the essential shape struc-
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(a) (b)

Figure 6.2: (a) Central structures (b) Barrier structures for the shapes in Figure 6.1.

Figure 6.3: The second shape in Figure 6.1 and iso-surfaces of the corresponding ρ0

at ` = 0.044 and ` = 0.052.

ture. Notice that the deflations cannot fully enclose the barrier structure since the

deflations are inside the shape boundary whereas the barrier structure touches the

boundary. Instead of stopping the deflations according to their intersection with the

barrier structure which needs to be computed for each of them, we simply consider

the iso-surface of ρ0 with the value ρ0
? as the maximum deflation.

6.2.3 An Illustration

In Figure 6.3, we present a shape from MIT samba sequence [42] (which is the second

shape in Figure 6.1) along with the iso-surfaces of the corresponding ρ0 at ` = 0.044

and ` = 0.052. Note that hands of the shape are touching the belly and the wrists dis-
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appear first in the deflated forms of the shape boundary because they are the thinnest

parts of the shape. At ` = 0.052, both of the arms are separated from the belly while

the essential shape structure is preserved.

In Table 6.1, we present summary of the notions used throughout the text. In Fig-

ure 6.4, we illustrate the topology equating process.

Table 6.1: Summary of the notions used throughout the text.

Shape volume Ω′ ⊂ R3

Negative phase {x |x ∈ Ω′ and ρ1(x) < 0}

Positive phase {x |x ∈ Ω′ and ρ1(x) > 0}

Zero-crossing

(Phase boundary)

{x |x ∈ Ω′ and ρ1(x) = 0}

Barrier structure Dilation of the positive phase so that it touches

the shape boundary

ρ0
? max({ρ0(x) |x ∈ Ω′ and x /∈ Barrier structure})

Deflation at level ` where

` ∈ [0, 1]

{x |x ∈ Ω′ and ρ0(x) = `× ρ0
?}

Maximum deflation Deflation at level ` = 1
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Figure 6.4: Topology equating process involves extracting a collection of deflations

for each shape and choosing a level at which the deflations have comparable topology.

For this example, the selected level is 0.052 at which the genus number becomes the

same for the deflations of both shapes.

6.2.4 Comparison to Preliminary Work [16]

We compare ρ0 with the smooth function used in Genctav et al. [16] in terms of

the number of deflation steps needed for obtaining topologically comparable forms

of the input shapes. We use a set of 99 topologically different pairs of shapes from

SHREC11 robustness benchmark [13]. The deflation at step k is obtained as the

iso-surface of the corresponding function at level 0.004 × k where each function is

normalized to have the maximum value of 1. The average number of deflation steps is

around 2±7.7 using ρ0 whereas it is around 6±14.3 using the function in Genctav et

al. [16]. We find that the topology equating process takes less number of steps when

we use ρ0 to extract shape deflations.

The advantage of restricting the collection of deflations via the barrier structure can

be illustrated via the following example. Consider a pair of cat models each with links

between different shape regions as well as a hole in the main body close to the hip

section. The links are removed in early stages of the deflation process whereas the

hole is retained until very late stages. Accordingly, the genus number becomes 1 after
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Figure 6.5: (Left) Barrier structure for a cat shape with topological noise. (Middle)

Deflation selected by our proposed topology equating strategy which uses the barrier

structure. (Right) Deflation selected by Genctav et al. [16].

Figure 6.6: A pair of shapes from i3DPost Multi-view Human Action dataset [19]

where 3D models are reconstructed using [36].

a few steps but it reduces to 0 when the deflation process breaks apart the hole mean-

ing that the essential structures such as the head, legs and tail are already removed.

By utilizing the barrier structure in Figure 6.5 (left), our proposed topology equating

strategy stops the deflation process before the removal of the hole and, hence, utilizes

the pair of deflations with genus number 1 at the first smallest level (see Figure 6.5

(middle)). In Genctav et al. [16], the collection of deflations is not restricted so it

includes all the deflations until the whole shape vanishes. Accordingly, the selected

pair of deflations with the smallest genus number becomes the core regions of the

shapes with genus number 0 after the removal of the holes (see Figure 6.5 (right)).

We use the central structure for scale normalization. It gives more reliable normaliza-

tion as compared to geodesic distances which may be misleading in the case of topo-

logical deformations. For example, consider a pair of human shapes one of which has

arms fully touching the body (see Figure 6.6). In this case, the respective maximum

geodesic distances for the two shapes are not semantically equivalent. For the left
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shape, it is from hand to foot. For the right shape, it is from head to foot. Hence

normalization with respect to maximum geodesic distance is not appropriate.

6.3 Experimental Evaluation

In order to evaluate our proposed method that brings a pair of shapes into topologi-

cally comparable form via deflating the shape boundary, we use it in a matching task.

We transfer the mapping computed between the selected pair of deflations to the input

shapes by finding the vertices closest to the matched points of the deflations.

We experiment with the following datasets: the samba sequence from MIT [42],

SHREC10 correspondence [12] and SHREC11 robustness [13] benchmarks and the

flashkick sequence [36] from University of Surrey.

The samba sequence contains sequences of dancing woman captured using a multi-

camera system. Topological differences arise when the arms touch the body during

motion. We illustrate our method on a topologically different shape pair from the

sequence.

SHREC10 correspondence benchmark includes three objects. Each object comes

with a base shape model and five additional forms obtained via isometric deformation

of the base shape further deformed by adding topological noise of increasing strength.

In our experiments, we match each base shape to the remaining five.

SHREC11 robustness benchmark contains twelve different shape models. For each

model, there is one base shape, one isometric shape and five shapes with increasing

degree of topological noise. We use a subset for which the ground truth correspon-

dence is available.

The flashkick sequence of a dancing man contains 3D shapes (meshes) captured using

multi-camera systems. Topological differences arise when the limbs of the dancer

touch each other or the body during motion. We consider three different shape pairs

from this sequence in order to illustrate the limitation of our approach.

We follow the same experimental steps in Genctav et al. [16]: We visually compare
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matching results and quantify matching error or goodness via several measures. The

matching error denoted by D̃grd is a normalized deviation from the ground truth cor-

respondence. The lower the D̃grd, the better the match. Given a mapping f obtained

between sample points of two shapes, the deviation from the ground truth correspon-

dence g is computed as average of the geodesic distances between the points f(si) and

g(si) on the second shape where si denotes ith sample point of the first shape. The

normalization is performed by dividing the deviation to the sampling radius. D̃grd ≤ 1

holds for the optimal mapping since it means that the deviation from the ground truth

correspondence is within the sampling radius. We report several statistics on D̃grd.

Also, as a discrete measure of goodness, we count the number of matching results for

which D̃grd is less than 1. The larger this count, the more successful is the matching

approach. The matching results are also compared with biharmonic-based mapping

in which shapes are matched without deflation using biharmonic distance [25]. Note

that biharmonic distance is a diffusion-based distance measure which is robust to

small topological noise.

6.4 Results and Discussion

6.4.1 Samba Sequence

For the pair in Figure 6.1 the matching result is visually presented in Figure 6.7 (a).

The input meshes represent the visual hull of the two shapes obtained by a simple

voxel carving algorithm. The models have different topologies as arms of the second

shape touch the body. Our approach utilizes topologically similar representations of

the input shapes and provides a mapping between the deflated forms of the input

models which are the iso-surfaces at ` = 0.052. The topological similarity between

the deflations enables the correct mapping for which D̃grd is 0.85. For comparison, the

biharmonic distance based mapping without deflation is given in Figure 6.7 (b) where

the right arm of the first model is matched to the head of the second one increasing

D̃grd to 2.82.

59



(a) (b)

Figure 6.7: (a) Mapping between iso-surfaces at ` = 0.052 (first) and its transfer to

the input shapes (second). (b) Biharmonic-based mapping.

6.4.2 SHREC10

We search a match between each base shape and each of its five deformations con-

taining topological noise. The topological noise is caused by the edge links between

different parts of the shapes. We examine the performance of the proposed approach

in comparison with the biharmonic-based mapping while the noise strength increases.

In Table 6.2, we present average of D̃grd over the obtained results where the high-

est topology noise strength is different for the pairs considered at each row. The

biharmonic-based mapping diverges from being optimal when the noise strength is

greater than three. Our proposed approach is robust to the topological noise as all

of the mappings are very close to the optimal and it performs the best for all of the

experiments. In Figure 6.8, we show the matching result obtained by our method for

two human shapes where the model of the sitting man has topological noise of degree

five caused by the edge links between the hands and the legs.
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Table 6.2: Performance of the proposed approach in comparison with the

biharmonic-based mapping using SHREC10 correspondence benchmark. The results

represent average of D̃grd over the mappings. The highest topology noise strength is

different for the pairs considered at each row.

max noise strength biharmonic proposed

1 1.67 1.11

2 1.69 1.12

3 1.70 1.12

4 2.22 1.12

5 2.53 1.12

Figure 6.8: Mapping obtained by our method for two shapes from SHREC10 corre-

spondence benchmark where model of the sitting man has topological noise of degree

five.
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6.4.3 SHREC11

We use the shape models 0002, 0004, 0005, 0007, 0008, 0012 and 0014 for which the

ground truth correspondence is available. We use the isometric shape and five shapes

with topology noise from each model. We also use the base shape from the models

0002 and 0007. In Figure 6.9, we present D̃grd for the mappings obtained using the

proposed approach and the biharmonic-based mapping. The input pairs are the shapes

from each model where at least one of them has topological distortion. Note that we

do not present D̃grd for some of the mappings where the symmetric flip problem

arises. The number of pairs with the symmetric flip problem is 3 for the proposed

method and 12 for the biharmonic mapping. As shown in Figure 6.9 and summarized

in Table 6.3, our approach successfully handles the topology noise as almost all of

our mappings are optimal (D̃grd ≤ 1). Excluding the mappings with symmetric flip,

average of D̃grd over all results, avg(D̃grd), is very small for our method compared

to the biharmonic-based mapping (see Table 6.3). In Figure 6.10, we present the

mappings obtained by the proposed approach for three pairs of shapes.

Finally, we present a visual comparison of our approach with the method [26] which

performed the best in the topology noise category of SHREC10 correspondence bench-

mark. We run the method [26] on a pair of horse shapes from SHREC11 robustness

benchmark using its code available on the web. One of the horse shapes has the

topological noise as its back legs are linked to each other. Figure 6.11 shows that

our approach successfully handles the topology noise whereas [26] fails to solve the

correspondence problem under the given topology noise.
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Figure 6.9: Normalized average ground truth error D̃grd for the mappings between

topologically different pairs of shapes from SHREC11 robustness benchmark. The

errors in blue color are obtained using biharmonic-based mapping. The errors in red

color shows the performance of the proposed approach. D̃grd is not presented for

some of the mappings where the symmetric flip problem arises.

Table 6.3: Summary of the results in Figure 6.9. Performance of the proposed ap-

proach in comparison with the biharmonic-based mapping using SHREC11 robust-

ness benchmark.

biharmonic proposed

# of D̃grd ≤ 1 31 89

avg(D̃grd) 3.45 0.18

stddev(D̃grd) 4.08 0.34

min(D̃grd) 0.01 0

max(D̃grd) 14.32 1.21
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Figure 6.10: Mappings obtained by the proposed approach for three pairs of shapes

from SHREC11 robustness benchmark.

Figure 6.11: For a pair of shapes from SHREC11 robustness benchmark (Left) Map-

ping result obtained by the proposed approach (Right) Dense mapping result obtained

by the method [26].
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Figure 6.12: Mappings obtained by the proposed approach for three different pairs

of shapes from the flashkick sequence [36].

6.4.4 Flashkick Sequence

In Figure 6.12, we present the mappings obtained using our approach between three

different pairs of shapes from the flashkick sequence [36]. For the pair on the top

left, our approach performs well since the topological noise is caused by localized

touches i.e. foot-to-foot and hand-to-leg connection in the first and the second shape,

respectively. The pair on the top right represents an input case where our approach

starts to fail where the legs in the first shape are merged along their bottom half. The

degradation of the matching result, which is especially around the legs, is due to that

the topological difference is resolved when the thinner leg is split by the deflations.

For the pair at the bottom, our approach results in an incorrect mapping since the

corresponding topological difference, which is due to full merge of the legs in the

first shape, cannot be removed via deflating the shape boundary.
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CHAPTER 7

SUMMARY AND CONCLUSION

In this thesis, using an elliptic PDE or its modifications, we developed several shape

fields each providing a different shape characterization.

First, we compared two solutions of the elliptic PDE, one solved on the shape domain

and the other one solved on a reference disk. This way, we indirectly measured the

deviation of the local configuration of each shape point from the reference disk. We

called the shape field composed of these local deviation measures as discrepancy. We

showed that discrepancy provides a rich shape representation. We used its entropy for

global shape characterization, its probability distribution as a descriptor for context-

dependent categorization, and its sign for binary shape domain labeling.

Second, we solved the elliptic PDE multiple times by varying either the diffusion

parameter or the right hand side function and constructed high-dimensional feature

representation of the shape points. By applying a data analysis tool on the constructed

feature space, we determined the distinctness of each shape point. The distinctness

values obtained by varying the diffusion parameter are used for representing 2D ar-

ticulated shapes. We partitioned the shape into a set of regions via the spatial distri-

bution of the distinctness and represented each region by the normalized distinctness

histogram. Using such a representation that does not involve modeling relations of

shape components, we obtained a clustering performance comparable to structural

methods. The distinctness values obtained by varying the right hand side function

are used as a measure of saliency over the surfaces of 3D shapes. By varying the

parameter of the data analysis tool, we obtained multiple saliency measures each

emphasizing different shape structures. For the smallest value of the parameter, the

global shape structures are found to be salient. As the parameter increases, we ob-
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tained a saliency measure that has a larger value only on the local structures. The

multiple saliency measures can be used for further shape processing. As an example,

we grouped the surface points by combining the multiple saliency measures.

Third, we considered modifications of the elliptic PDE and obtained a pair of shape

fields. The first field provided adaptive deflations of the shape surface and the second

field provided a central barrier structure for stopping the adaptive deflations. Using

these two fields, we developed a topology equating process for a pair of 3D shapes.
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APPENDIX A

EK A

A.1 Numerical Implementation of the PDEs (1.1), (1.6), and (1.8)

To compute the numerical solution on the arbitrary shape domain, we discretize the

PDEs on a standard grid via finite-difference method. The discretization yields a

linear system of equations with sparse and symmetric positive definite system matrix.

There is a plethora of direct and iterative alternatives to solve this system. We used a

direct solver based on Cholesky factorization.

The discretization of (1.1) in 2D/3D leads to a linear system of equations in which

each pixel/voxel is related with its neighbors as follows:

vx+1,y + vx−1,y + vx,y+1 + vx,y−1 − (4 + a2) vx,y = 0

vx+1,y,z + vx−1,y,z + vx,y+1,z + vx,y−1,z + vx,y,z+1 + vx,y,z−1 − (6 + a2) vx,y,z = 0
(A.1)

where the value of v is taken as 1 for the pixels/voxels outside the shape domain.

The discretization of (1.6) in 2D/3D:

vx+1,y + vx−1,y + vx,y+1 + vx,y−1 − (4 + a2) vx,y = −1

vx+1,y,z + vx−1,y,z + vx,y+1,z + vx,y−1,z + vx,y,z+1 + vx,y,z−1 − (6 + a2) vx,y,z = −1
(A.2)

where the value of v is taken as 0 for the pixels/voxels outside the shape domain.

The discretization of (1.8) in 2D/3D:

vx+1,y + vx−1,y + vx,y+1 + vx,y−1 − (4 + a2) vx,y = −fx,y

vx+1,y,z + vx−1,y,z + vx,y+1,z + vx,y−1,z + vx,y,z+1 + vx,y,z−1 − (6 + a2) vx,y,z = −fx,y,z
(A.3)

where the value of v is taken as 0 for the pixels/voxels outside the shape domain.
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