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ABSTRACT

AUTOMATED IMAGE PROCESSING FOR SCRATCH DETECTION ON
SPECULAR SURFACES

Okbay, Volkan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

September, 151 pages

In industry, problems due to human error, mechanical flaws and transportation may

occur; besides, they need to be detected in fast and efficient ways. In order to elim-

inate failure of human inspection, automated systems come in action, usually image

processing involved. This thesis work, targets one common mass production problem

on specular surfaces, i.e. scratch detection. To achieve this, we have implemented

two different prototypes. The low-cost system is based on basic line detection, and

the mid-end system depends on learning based detection.

Both systems are implemented on embedded platforms and performance comparisons

are done. Detailed analysis is carried out on computational cost and detection per-

formance. This real-world episode is done on a mechanical prototype in laboratory

environment.
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ÖZ

METALİK YANSIMALI YÜZEYLERDE OTOMATİK ÇİZİK TESPİTİ İÇİN
GÖRÜNTÜ İŞLEME SİSTEMİ

Okbay, Volkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Eylül 2018 , 151 sayfa

Endüstriyel alanda, insan, mekanizma veya ulaştırma kaynaklı oluşabilecek bazı prob-

lemlerin hızlı ve verimli şekilde tespit edilmesi önem kazanmıştır. Bu tespit sırasında

yine insan faktörünü aradan çıkarmak için genellikle görüntü işleme içeren otomatik

sistemler kullanılmaktadır. Bizim tez çalışmamızda ise, yansımalı yüzeylerde görülen

bu tip bir seri üretim problemine yoğunlaşıldı. Bu tez çalışması ana hatlarıyla iki adet

metod sunmaktadır. Özele inmek gerekirse, basit çizgisel objeleri tespit eden düşük

maliyetli bir sistem ve orta seviye kartlarda kullanılabilecek bir makine öğrenmesi te-

melli algoritma. Bu çalışmada, ayrıca literatürdeki bazı yöntemlerin performanslarına

değinilmiştir.

Esas amaç verilen özel problemi düşük maliyet ile çözmektir, bu nedenle yöntem-

lerde basit düşünceler ve donanımı daha az yoracak gerçeklemeler tercih edilmiştir.

Yapılan işler arasında savunulan yaklaşımların bilgisayar destekli modelleri de yer

almaktadır. Bu şekilde yapılan karşılaştırmalardan sonra, iş odağı gerçek dünyada

farklı donanımlara aktarmaya kaymıştır. Bu fiziksel aşama laboratuvarda oluşturulan

bir mekanik prototip yardımı ile tamamlanmıştır.
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due to her constant support, faith in me and total patience towards me.

Secondly, owing to his support on prototyping and not leaving us alone on factory vis-
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CHAPTER 1

INTRODUCTION

Due to increase in demand for production, automation is getting more important,

gradually. Fabrication should be faster, more efficient and flawless if producer desires

to meet demands. In order to be fast enough, machine force is a necessity compared

to human force. Machines are likely to finish a job in shorter time and with less errors,

in comparison with a human who does very same task. Also, human is prone to drop

in performance, while machines are durable and the energy comes from electricity,

essentially. Human workers have needs and require strict regulations to work with. In

maintenance cost, machines are usually cheaper. A significant advantage of human

workers is multitasking and, in fact, being able to accomplish a wide selection of

tasks. There is no machine produced yet to match diversity of abilities of a human

being. In this manner, academics and robot industry come in action to solve specific

problems of customers as quickly and efficiently as possible.

Production consist of different steps. Those steps may vary from a sector to another

sector. Depending on the customer requirements, product type, time and environmen-

tal circumstances, issues to be solved also vary. Manufacturing is the resulting step,

indeed the realization of design steps. Quality of resulting product is what the cus-

tomer cares about. Consequently, during actual manufacturing whole process should

be careful to prevent errors. Those errors may originate from resources as well. Nev-

ertheless, majority of errors occur in manufacturing steps. In fact, resource production

can be seen as another manufacturing. Mainly, a manufacturing job comprises trans-

port, flow on industrial line, rotation, cutting, chemical processes such as polishing,

painting, bonding and so on. The steps with movement involved, are much more in-

clined to produce an error. One common output of errors is surface defect. During
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production process, raw material take shape based on the needs. While forming the

products degradation may occur on the surfaces. Surfaces can differ from a plain

metal panel to a rough fabric, or polished bend wooden plaque. Surface defects are

encountered mostly after mechanic operations involving movement, where a major

example is cutting [23]. Surface defects take name regarding their shapes and mate-

rial they are on: dents, bumps, scratches, cracks, stains, discolorations, notches, holes

are some examples. Surface inspection is a group methods to examine and detect such

defects. Further information on surface inspection and techniques used to realize in

literature can be found in Section 2.1. Current literature on surface inspection mainly

dominated by the industry. Factories prefer to purchase expensive tools to inspect and

test surface materials flowing production line, as it become a hot topic with the begin-

ning of Industry 4.0 trend. There are many important companies that concentrate on

such machines. Cognex, Vitronic, Ametek are some examples, and those companies

produce robust systems with a multidirectional GUI [24] [25] [26]. Some firms pro-

duce inspection systems powered by conventional but expensive cameras [27], in the

same way others use advantage of laser technologies [28]. In the end, the production

costs brings about high sale prices from [29] starting around some thousand dollars.

In some online retail sites, machines starting from approximately 1000 USD to at

most 30000 USD [30] are encountered. The capabilities, types of defects they spot,

robustness, quickness, size and user interfaces differ.

1.1 Scope

The scope of thesis is to detect and locate the scratches on metal specular surfaces

considering the requirements given by Arçelik. This work is mainly planned to be

used for detection of scratches in the production line of Arçelik Dishwasher Plant. It

is going to be a alternative system for current visual inspection, performed by workers

(Figure 1.1). The customer requirements that have to be met in the thesis are to a)

work in real-time, b) span 1 meter distance in approximately 20 seconds (corresponds

to at least spanning 5 cm area at 1 FPS), c) scan continuous metal coils (namely, hot-

rolled steel strips) that are around 100 m long and d) detect vertical line defects.

The performance measure is defined by how successful the system can detect scratches
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(a) Rolling industrial line (b) An early image acquired by Pi Camera

Figure 1.1: Some pictures from factories

on the metal sheet and locations of those. By answering given needs, it will already

solve problems such as "existence of scratches" and "number of scratches".

After comparing techniques given in literature, this thesis work presented one low-

cost simple solution with basic hardware (Section 4.4) and one medium-cost (still

less costly then large scale industrial systems, see Section 4.5) robust solution with a

cutting-edge learning based approach. Proposing an industrial system with its algo-

rithm and hardware included, aiming simplicity, is a new study in this area.

During whole process Windows 10, Ubuntu 16.04, Raspberry Pi 3 and Nvidia Jetson

TX2 platforms are utilized. On the other hand, some knowledge on software lan-

guages and frameworks like Python, OpenCV, MATLAB, TensorFlow and Unix was

required.

1.2 Outline

The document of this thesis study can be examined in the following chapters. After

giving an insight about problem, explaining importance of inspection in industry and

defining scope in this very first Chapter 1, document moves onto literature review. So,

in Chapter 2, current academic works regarding the problem, are presented. There is
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also some work mentioned about similar tasks, but directly related to our problem.

The main phenomenon, i.e. reflection is explained in sufficient detail. Next Chap-

ter 3 is about setup specification, why the hardware used is selected, features of the

given hardware and cameras. There is also some important background information

on universal camera properties. In the main Chapter 4, data set is presented with

performance measurement tools used. Section 4.4 begins with image acquisition de-

tails of Hough Transform based method and concludes with actual implementation

steps with visuals included. Section 4.5, includes the same sequence for the second

hardware method, which is Deep Learning based. Section 4.5.3 and 4.4.3 are about

MATLAB and TensorFlow modeling of selected algorithms, followed by discussion

on them. The document is concluded with Chapter 5, which gives observations and

idea on future possible work.
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CHAPTER 2

LITERATURE REVIEW

This section covers the current studies in the literature, related to artifact detection.

The aim here is to briefly explain what kind of approaches are used before. The details

about light source and illumination configurations given in literature is discussed.

2.1 Related Work

The objective of the inspection job can be detection of scratches, dents, bumps, corro-

sion, fractures, contamination, non-homogeneous finish/paint or discontinuities. The

reason of the flaw is completely specific to the situation. Usage errors, transportation

or imperfections that occur during cutting, stacking and welding are common. There

are several approaches of inspection regarding problem type [31]:

• Visual inspection

• Microscopy

• Machine based inspection

• Liquid/dye penetration

• Magnetic particle inspection

• Eddy current testing

• X-ray/radio graphic inspection

• Ultrasound inspection
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Before focusing on a computer aided solution, one should understand what industrial

inspection is and how it was developed through years. Those examination methods

are mainly divided into two categories: destructive and non-destructive. Naturally,

NDE type is preferable in order not to interfere with the physical or chemical feature

of the product. In the first times, it was completely sufficient to control products by

visual inspection. This may be applied to any type of defect, as long as controller is

qualified. An important downside is that naked eye visual inspection suffers from lim-

its regarding sensibility of defects [32] . This fact brings about the need of machines

for examination, aside from their speed advantage. Below in the Figure 2.1,it is pre-

senting average wavelength span can be sensed by human eye and that by two camera

types. Vidicon camera was a common image acquisition tool in early times. Televi-

sion standards are underlying principle in that low-cost camera. CCD, on the other

hand, are solid state devices including a sensor matrix inside [33]. Charge-coupling

is a one method of voltage extraction [34].

6



Figure 2.1: Spectral response of human eye, VidiCon and CCD [6]

All in all, human subject inspection is not preferable in many cases due to the facts,

yielding subjective results, not being reliable, maintenance cost (salary of qualified

inspector), slowness, depending on the vision task, can be not sensible by human (see

Figure 2.1) and the truth that repetitive task can be harmful for human subject. Then,

it is advantageous to implement a machine based inspection system focuses on the

linear type defects such as cracks, scratches.

2.1.1 Reflection and Illumination

Reflection is the main physical phenomenon of this problem. In general reflection,

is the change in the direction of a physical wave at the point two different media

conjoin. The wave may differ in different environment, water, sound, light or seismic.
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However, physical explanation of reflection is similar for different cases.

For our case, reflection of light will be examined. Mainly, it is divided to two nature,

namely specular and diffuse reflections [52]. A mirror exhibits the common sense

reflection type that is specular, regular or mirror-like reflection. In this case, glass

is coated with a smooth metal surface behind. The basic law of reflection says that

incident light reflects from the mirror-like surfaces with the exact same angle, as

shown in Figure 2.3a.

If every point incident from an image reflects perfectly on a mirror-like surface, the

result would be the exact copy of that image reflected on a screen, if exists. The

polished metal surfaces, as in our case, produces such mirror images.

Figure 2.2: Close-up scratch visual on a metal sheet sample

But, the scratches, in contrast with majority of surface area, appear white under cer-

tain illumination angle (see also Figure 2.7). This phenomenon is shown in Fig. 2.2b,

as well, which is taken using a macro lens. Actually, the reason for white scratches

is another reflection type, diffuse reflection. In this type, instead of regular ordered

reflections (Fig. 2.3a), there observed untidy reflections scattering around due to

roughness of the surface (Fig. 2.3b). This is really small Lambertian Surface that

appears matte, in other words has no specular characteristic.
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(a) Diffuse and Specular Ref. (b) Diffuse Ref. on Rough Surface

Figure 2.3: Presentation of diffuse reflection [9]

In literature, the illumination techniques are also studied. Figure 2.4 shows some

of popular configurations. This configuration totally depends on setup, material and

problem to be solved. The importance of those configurations is clearly shown in

Figure 2.5 with only three examples. Diffuse illumination reduces glare and provides

even illumination, can be obtained with fluorescent bulbs. A ring light is mounted

directly to lens and reduces shadowing. It provides uniform illumination when used

at proper distances. In polarized light case, illumination is directed that makes use of

polarized light to remove specularities and hot spots. This can improve the mirror-

effect, but also erase scratches, as well (Fig. 2.9). The choice should be problem

specific. Some methods requires extra instruments such as polarizers, ring lights,

beam splitters [8].
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Figure 2.4: Some configurations for illumination techniques [7]
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(a) Diffuse Illumination

(b) Ring Light

(c) Polarized Light

Figure 2.5: Importance of light configurations [8]
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In literature and industry closely related to our problem, there are some common

configuration for lighting. For example, in one the earlier studies [50], it is pointed

out that camera should view the sample obliquely (Figure 2.6a), the fashion followed

in this project as well. Another paper suggested a sliding light tunnel and a camera

looking down from top (Fig. 2.6b). As metal product flows constantly in our case,

a stable tunnel should be equivalent solution. This one has a more closely covered

configuration which is not preferred by our customer, owing to that fact we did not

go that path.

(a) Oblique Viewing with TV Camera [50] (b) Light Tunnel with CCD Camera [51]

Figure 2.6: Some lighting configurations from scratch detection literature

Among all those case mentioned above, we would choose directed bright field, also

known as direct illumination, due to beam area phenomenon (see Sec. 2.2). Light

source leaves a beam trace in the both sides, revealing scratches on this area. In fact,

in the final product, it is aimed to create a matrix of lights, so that camera could span

all the surface (see switching circuit part in Section 4.1). This application resembles

to light tunnel suggested in [51].

2.1.2 Artifact Extraction

Crack detection is a popular subject in different fields of work. It may be detec-

tion of cracks in concrete pipes [35] in which it was proposed to use three special

12



statistical filters. There is another crack detector embedded on a mobile robot to in-

spect tunnel concrete using Dijkstra Method [36]. In literature crack segmentation are

also by morphological operations (A.1.3) aided with Laplacian of Gaussian to mark

unqualified solar cells [37]. Those custom methods are usually compared with each

other and also some traditional feature extractors like Canny’s Edge Detector (A.1.1),

Otsu Threshold Method (A.1.2) and popular filters. In this field, there is also another

work that is appealing; namely, proposing Gabor Filter to inspect bricks moving on a

production line. This problem is closer to ours as it includes a real-time production

line. Also Gabor Filter is not prone to fluctuations and mainly enhances crack-like

structures which have elongated features [38].

Scratch detection is the main work of field of this thesis work. Although, scratches

are one of the most common type of surface degradation, the literature on scratch

detection is rather limited. Like any other application, this area is also open for de-

velopment with emerge of new technologies daily.

Scratch can be created by human error, transportation, mechanics (e.g. cutting, bend-

ing), radiation, water and air flow [39]. As is our case, metal surfaces are polished to

make it durable and look shiny. For this, the most common method is chemical me-

chanical polishing. In such procedure aluminium is the main component. Scratches

occur due to the solid abrasive in particular alumina [40]. There is also the known

issue of micro-scratches, that is completely another field, occur due to usually chemi-

cal processes. The microscopy comes in action for the solution on polymer, Titanium

and Aluminium coated surfaces.For the analysis purposes image processing can be

used as well as laser, microwave based systems [41] [42] [43] [44]. Line detection

can be done by feature matching [45]. For linear artifact detection for given problem,

Gabor filtering is commonly used with high accuracy of 90% [46]. Instead, we have

decided to use another common method for line detection on specular surfaces [47],

edge detection supported with Hough Transform for its computation efficiency. Re-

cent studies show that [48] [49], artificial neural networks are also successful (both

studies are accurate around 98%) on this specific task of surface inspection. More-

over, ANN methods provide robustness.

After detecting that scratch is present, length, width, depth etc. are other features to
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analyze. In the scope of this work, we will focus on orientation and location, only.

Rest is easier and usually goes parallel with the needs of the customer and surface

type, which are not robust.

In conclusion, there are many ways to define features; in our case, mainly linear

features. Following feature extraction, there also should be a object detection or seg-

mentation method to spot linear objects. The second part may be tracing, transform

or a type of filtering. Whole process probably will include pre- and post-processing

to enhance performance in terms of speed and accuracy. At this point, based on hy-

potheses, some methods will be modeled (see Section 4.5.3, 4.4.3) for performance

measuring and eventually hardware implementation will be done.

2.2 Beam Area Definition and Light Source

In Figure 2.7, the mirror like behavior of the metal sheet is shown. This is view of a

small sample sent by Arçelik. The image acquired from the actual industrial line (Fig.

1.1b) also gives an idea on how hard it is to visually inspect scratches. During ex-

periments, it was noticed that light reflected on the metal sheet always create a beam

of light going both sides (left and right). Furthermore, in this beam area scratches

become fairly visible compared to other lighting configuration. Then, we decided use

that beam area phenomenon, which only appears at direct illumination. This illumi-

nated area is owing to the direction of polishing during metal sheet production. So, it

was validated by Arçelik engineers that beam always will be in the given orientation.

Illumination is one of the most important aspect in such visual automation project.

As a last piece of setup, types of light sources and also configuration of those were

studied. At very first glance, when a metal sheet is examined under light, the scratches

we are looking for appeared at certain angles, at which metal sheet is held. It was

realized that light source itself appears to be so bright in the image, covering any

detail on that area (see Figure 2.7). However, the light beam on the both side that

falls on the metal surface reveals the details, especially scratches that emits diffuse

reflection (see Section 2.1.1).
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(a) A view of sample sent from factory (b) Exact same view with lights reflected

Figure 2.7: The specular surface under lights on and off

Due to this, what is needed was a broad light source that will produce a broad light

beam area. Among those, it was logical to go for fluorescent or white colors, because

we were planning to work with gray scaled images and white light is likely to reveal

more contrast around details. There is slight difference between color temperature

as seen in Figure 2.8. Here, warm white has less than 3000K, while cool white has
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around 6000K color temperature, then it was decided to continue with the latter.

Figure 2.8: Two same size light sources with cool white (a) and warm white (b) color

temperatures

After trying small (3 Watts, 4 cm edged square) to medium (6 Watts, 9 cm edged

square) square LED panels with different colors, we settled with medium sized 6W

cool white LED panel as experiment light source. LED panels has the advantage of

uniform illumination, that is desirable for a controlled experiment.

In industrial applications and photography, there is a broad selection of lighting con-

figurations, in Fig. 2.4. Several popular ones are indicated online [8] and can be easily

examined. There are setups such as back-lighting, structured lighting, dark-field, dif-

fuse illumination etc. which are out of scope. What we use is direct illumination, but

among other choices ring light and polarizer filters draw attention. Although, there

were trials with filters (Fig. 2.9), this was not considered necessary enough. Still,

some details are revealed on the light source image area, defects in beam area do not

change. Illumination and configuration is a part that is open to variety of solutions

(see Future Work Section 5.2).
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Figure 2.9: Same scene under linearly polarized and non-polarized conditions
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CHAPTER 3

CAMERA SPECIFICATIONS, BACKGROUND MATERIAL AND

HARDWARE

This chapter focuses on detailed information on background information on used

hardware. To start with, the camera parameters used are described in detail. Fi-

nally, hardware systems are examined in detail in terms of capabilities and numerical

figures.

3.1 Universal Camera Properties

Since the proposed system is based on visual inspection, the camera parameters play

an important role in hardware implementation. The aim was to acquire the best image

from the camera: fast, conforming to our problem and with enough quality, so that it

was a must to study following properties of camera technology. Even though, there

are many more important features of a camera that can be adjusted by user, those

,which are related to the problem and can be altered by camera interfaces provided to

us, are included in the following subsections. These parameters affected our design

and required adjustments are done on the following background knowledge of each.

3.1.1 ISO

ISO, in fact, is a standardization of light sensitivity. Lower values imply less sensi-

tivity meaning less noise, smooth image but in need of better light conditions. High

ISO values exposes more noise, but is able give bright details under even low light

conditions. The typical values are in between 100 and 1600. Those values are the
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arithmetic measure of an older sensitivity metric, ASA [53].

3.1.2 White Balance

White Balance, (alternatively, Color, Gray, Neutral Balance) is a photography term

about color intensities. Usually adjustments to WB, affects color gains which are

used for color conversion during post-process in camera modules. The warmness

or coldness can be tuned by photographer by this way to manipulate the feeling of

viewers. The white balance of a picture is expressed by Kelvin degrees, similar to the

case of external light [54].

There are some mainstream color standards and studies to conform to those accepted

standards [55]. To maintain color constancy, there are methods called chromatic

adaptation algorithms. The task they fulfill is in fact what is know as auto-white

balance, that is a common function in modern DSLR and mobile phone cameras.

Such conversions are made with color conversion matrices (Eqn. 3.1).


R

G

B

 =


255
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w
0 0

0 255
G′

w
0

0 0 255
B′

w

 ∗

R′

G′

B′

 (3.1)

3.1.3 Contrast

Contrast gives the difference in luminance in relation with average luminance. In

general, its formula can be simplified as

Luminance difference

Average luminance

This definition can be represented as RMS contrast [56], given by Eqn. 3.2.

√√√√ 1

MN

N−1∑
i=0

M−1∑
j=0

(Iij − I ′)2 (3.2)

This definition does not depend on the spatial distribution of intensity, but on the
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average of pixel values. Iij is the intensity of a pixel of an image with size of M ×N ,

while I ′ is average intensity of all pixels in the image.

3.1.4 Exposure Time

Normally, in DSLR cameras, shutter speed (or exposure time) simply implies how

fast aperture will close after start of a capture. Long exposure time would result in

blurry image effects. However as it will be declared in Section 3.3.1, mobile phone

cameras have rolling shutter technologies, instead. To briefly explain it, consider a

sensor array of 3x3 [5]:

In Table 3.1, every sensor cell starts with zero value and frame buffer is empty. Scene

is always fully illuminated and cells under light increment the sensor values by 1.

The idea is to reset each horizontal line, consecutively. Then, starting from the first

line copying the contents of sensor row into frame row after given exposure time.

In this particular example, exposure time is 2 cycles. The first row resets at instant

(b) and get captured at instant (d). Please note that if exposure time was 1 cycle, we

would end up with a frame buffer with all ones. In other words, shorter exposure time

(faster shutter speed) lowers brightness of the image.

3.1.5 Exposure

Exposure is the total light amount per unit sensor area within exposure time. In other

words, it is calculated by aperture, shutter speed and environmental illumination, so

there is no direct parameter to control exposure, but indirect ones. Photographers

sometimes use exposure and exposure time terms interchangeably. Long exposure

may carry the meaning of a shot with long time before shutter closes. The unit EV

(i.e. exposure value) is calculated by cameras f-number (aperture, camera opening

through which light goes in) and shutter speed. EV, when multiplied with scene
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Table 3.1: A simple example of rolling shutter and exposure time of 2 cycles

Sensor Elements Frame # 1

0 0 0

0 0 0

0 0 0

Sensor Elements Frame # 1

0 0 0

1 1 1

1 1 1

(a) (b)

Sensor Elements Frame # 1

1 1 1

0 0 0

2 2 2

Sensor Elements Frame # 1

2 2 2

1 1 1

0 0 0

→ 2 2 2

(c) (d)

Sensor Elements Frame # 1

0 0 0

2 2 2

1 1 1

→
2 2 2

2 2 2

Sensor Elements Frame # 1

1 1 1

0 0 0

2 2 2 →

2 2 2

2 2 2

2 2 2

(e) (f)

illuminance, again gives exposure [57].

Exposure = Sensor Unit P lane Illuminance×Exposure T ime [lux.sec] (3.3)

There is also concept of exposure compensation, which is a kind of an fine tuning

forming a feedback for under/over exposed images to become optimally exposed [58].

Most cameras have settings of ± 3EV, corresponding to 1/3 of f-stops (aperture).
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3.1.6 Dynamic Range

In signal processing, dynamic range defines the limitation of a certain quantity, in

our case intensity of a pixel or luminance. This is an adjustable capability of many

cameras. A higher dynamic range should result in better detail visibility in dark and

bright area. Devices with HDR, usually have high contrast ratios, as well [59]. A

good example is given on how important is adjusting dynamic range of a device [10].

3.1.7 Sharpness

Sharpness is the combination of resolution and acutance. The latter can be defined

as the edge contrast of an image (Fig. 3.1). Perceived sharpness can be stated by the

following formula

Sharpness =
4Intensity
4Position

That implies that high resolution images yield less sharpness, while high acutance

images will perceived sharper. But, it should be noted that SNR degrades in the same

proportion with edge contrast gets greater.
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Figure 3.1: Depiction of acutance [11]

3.2 Hardware Specifications

As algorithms take shape and hardware requirements become clear, it was needed to

decide on the real-world platform to work with. Nowadays, single board computers

such as popular ones RaspberryPi, Arduino, OrangePi, BeagleBone, JETSON, Lat-

tePanda and ODROID. Those cards differs in price, CPU, memory amount, intented

field of work and popularity [60] [61].

In this context, decision among too many choices was hard, but first filtering was to

eliminate those which are not suitable for traditional image processing or machine

learning tasks. Those tasks of our scope requires higher parallel processing, memory

and possibly a GPU. It was wiser to select two different systems for each task. There

are some effort to minimize neural networks or make them suitable to run on CPUs,

though [62]. All in all, it seemed more advantageous to implement image and learning

jobs on platforms that are intended realize a particular job.

Final step was to make a eventual selection before purchase. At this point, the re-

quirements are over viewed so that:
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• Real-time capability should be enough to handle around 3-10 FPS

• Price should be low, as main objective is to propose a low-cost system

• Broad community support, being able to run popular frameworks would be

helpful

• System should be easily reachable in our region

Considering above mentioned items, it was decided continue with Raspberry Pi 3 for

traditional image processing based system proposal (see Section 4.4). Even though,

there were serious rivals such as ODROID in terms of performance, Raspberry’s sup-

port for frameworks, diversity of community took it forward. Aside from very low-

cost system, Nvidia JETSON was the most suitable platform for parallel processing

and machine learning solutions [63]. Another consideration was about camera mod-

ules, their usability, accessibility and of course, again, cost.

In order to give an insight on why JETSON was seperately chosen for machine learn-

ing task, examine Figures 3.2, 3.3 and 3.4.

Figure 3.2: NVidia GTX1080Ti performances displayed in log scale. [12]
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Figure 3.3: NVidia JETSON TX1 performances displayed in log scale. [12]

Figure 3.4: RaspberryPi 3 performances displayed in log scale. [12]

Comparing the graphs 3.2 and 3.3, JETSON shows a high performance on DeepDe-

tect Open Source Deep Learning server. Those include some mainstream deep net-
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works varying from large ones (such as VGG) to smaller ones (such as MobileNet).

In Figure 3.4, study shows that Raspberry Pi 3 would achieve a real-time detection

around 1 FPS, which is not enough for solution of the given problem. Still, a simpler

network may be embedded to Raspberry platform (see Section 5.2).

3.2.1 Raspberry Pi 3

Raspberry Pi is an single-board computer, that aims at facilitation of simpler robotic

tasks and to make children get used to robotics. It is designed and produced by

Raspberry Pi Foundation. Most of the fabrication takes place in Wales, plus in Japan

and China [64].

Figure 3.5: Raspberry Pi 3 Model B ports and connectors [13]

Raspberry is a standalone computer, meaning it can be used by hooking up peripherals

(mouse, keyboard and HDMI monitor) directly. As seen in Fig. 3.5, there are 4 USB

ports, GPIO pins, HDMI connector, Ethernet port and CSI camera connector. In Table

3.2, given all technical features that Raspberry Pi 3 and first Raspberry Pi have. Wifi

and Bluetooth modules are embedded for Model 3 B. The board is able to handle

1080p H.264 codec at 60 FPS by software decoding [13].
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Table 3.2: Raspberry Pi 3 Model B and Raspberry Pi Model A technical specs [1] [2]

Raspberry Pi 3 Model B Raspberry Pi Model B

Introduction Date 29.02.2016 29.02.2012

SoC BCM2837 BCM2835

CPU Quad Cortex A53 @ 1.2GHz ARM1176 @ 700MHz

Instruction Set ARMv8-A (64-bit) ARMv6Z (32-bit)

GPU 400MHz VideoCore IV 250MHz VideoCore

RAM 1GB SDRAM 256MB SDRAM

Storage micro-SD SD, MMC

Ethernet 10/100 MBit/s 10/100 MBit/s

Wireless 802.11n / Bluetooth 4.0 -

Video Output HDMI / Composite HDMI / Composite

Audio Output HDMI / Headphone HDMI / Headphone

Pins (Total) 40 26

Price $35 $35

The Raspberry card is usually used with an SD card in which installed Raspbian

operating system. Although, there are many more Unix-like, Windows based OS

distributions compatible with the device. It has a very helpful community page and

open download source at its official page [2].

In early stages of the project, only Raspberry Pi Model B was provided, so initial

test are done on that system. MATLAB has a special tool for Raspberry that can

enables user to reach board through network and code via MATLAB interface. After

Model 3 B has arrived, we preferred either to connect peripherals directly to the board

or working through network via SSH (network protocol that provides accessing to

terminal of remote device).

3.2.2 Nvidia JETSON TX2

Nvidia Jetson TX2 is a device intended for running parallel-processing application. It

is equipped with Nvidia GPU with PASCAL architecture containing a high number of
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CUDA cores. PASCAL architecture can be found in all recent cards of this company

after April 2016. It is manifactured by 14 to 16 nanometers processes [65]. Jetson

series all come with Nvidia Tegra CPU. Each architecture is designed regarding ar-

tificial intelligence, computer vision, security and robotics [66]. The main driver of

Jetson designs is power-efficiency per parallel processing.

Figure 3.6: JETSON TX2 Board (left) and development kit (right) [14]

Jetson TX2, which is the latest version of credit size supercomputer, is also available

with its hardware development kit 3.6. This includes USB, HDMI, PCI-E, Ethernet,

SD, SATA, UART, I2C and SPI interfaces with proper power distribution to units.
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Table 3.3: Nvidia Jetson TX2 technical specs [3]

Jetson TX2

GPU NVIDIA PascalTM, 256 CUDA cores

CPU HMP Dual Denver 2/2 MB L2 + Quad ARM R© A57/2 MB L2

Video 4K x 2K 60 Hz Encode (HEVC) 4K x 2K 60 Hz Decode (12-Bit Support)

Memory 8 GB 128 bit LPDDR4 59.7 GB/s

Display 2x DSI, 2x DP 1.2 / HDMI 2.0 / eDP 1.4

CSI Up to 6 Cameras (2 Lane) CSI2 D-PHY 1.2 (2.5 Gbps/Lane)

PCIE Gen 2 | 1x4 + 1x1 OR 2x1 + 1x2

Storage 32 GB eMMC, SDIO, SATA

Misc CAN, UART, SPI, I2C, I2S, GPIOs, USB 2.0

Network 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth

Dimension 50 mm x 87 mm (400-Pin Connector)

Price $399

Jetson platform has a strong community support. In the same way, it operates with a

Linux distribution, able to run popular frameworks such as Tensorflow, cuDNN and

OpenCV, that is a huge advantage. It is usual to start with SDK called JetPack.

Jetson TX developer kits add following enhancements [3]:

• USB 3.0 Type A

• USB 2.0 Micro AB (Supports Recovery and Host Mode)

• HDMI

• PCI-E (x4)

• Gigabit Ethernet

• Camera Module

• Full-size SD

• Sata Data and Power
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• GPIOs, I2C, I2S, SPI

• TTL UART with Flow Control

• Display Expansion Header

For last words, it is a good idea to point out power requirements of Jetson’s. There are

two new power operations modes which are introduced with TX2. MAX-Q provides

maximum efficiency, MAX-P mode promises maximum performance (Table 3.4).

Table 3.4: Dual power modes of Jetson TX2 [4]

Power Consumption Note

MAX-Q 7.5 W Up to 2 x the energy efficiency of TX1

MAX-P 15 W Up to 2 x the performance of TX1

3.3 Camera Specifications

In the following section, a small detail on the camera specification for each system

will be given. Both systems have a common choice of camera on their own. Jet-

son TX2 development kit comes with that choice, while Raspberry Camera Module

should be acquired separately for a fair price.

3.3.1 Raspberry Pi Camera Module

The camera module used in this thesis work is Raspberry Pi Camera Module v2.1,

to be more precise. It is a low cost grade device with a price around 25 USD. This

module is equivalent to more basic mobile phone cameras rather than professional

DSLR cameras. The heart of the module, IMX219 sensor, is produced by Sony. The

sensor is a 8-megapixel on with CMOS technology. Module is capable of taking

1080p30 and 720p60 footages, also still images [15]. As seen in Figure 3.7, module
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is hooked to CSI port of the board via an 15-pin flex ribbon cable. Focus is fixed from

reaching by software, to change it a pliers-like tool has to be used firmly.

Figure 3.7: The Raspberry Pi Camera Module attached to a Raspberry Pi Board [15]

There are a lot of examples on how to use the camera in multimedia applications

such as time-lapse, slow-motion; but, alternative camera options lack of information

on the Internet. What we have used for interface was a third-party Python library

(namely, picamera see Section 4.4.2.1), there was not sufficient information either on

the official Raspberryi Pi Camera page [15] or library document page.

Sensor IMX219PQ, manufactured by Sony, has some innovative achievements, but

also it is suspected that some of these feature affected our object analysis results.

One of these features is Lens Shading Correction Function [67]. Although there is

no quite detail on the official sensor page, it is function that corrects shades with

four independent colors. Anything automatically done is a suspect for the temporal

aliasing problem which is introduced in Section 4.4.2.3.
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Rolling shutter is the essential principle behind image capture of this camera [5].

In fact, not the whole sensor matrix captures signals at the same time instant, in

contrast with global shutter. So CMOS sensor horizontally or vertically scan the

signals, but a single image is not formed by a single time instance scan. In this

manner, camera production cost is lower and also shutter never fully closes (as in a

DSLR camera); as a result, camera is more sensitive to changes [68].

The hardware units are explained in highly detailed text that can be considered for

further reading [5]. In this page, how every step works is defined and what is the

architecture is shown.

Lastly, camera functions through MMAL API. MMAL stands for Broadcom’s C li-

brary to access video core. This interface has 3 port access, that are still port, video

port and preview port. The functions of these will be explained in implementation in

Section 4.4.

3.3.2 NVidia JETSON Camera Module

It is full of information online how Raspberry Pi Camera Module works, moreover its

sensor and software API. Conversely, it is rather hard to get information about Jetson

TX2 Development Kit Camera Module (Fig. 3.8). Still, there given specifications and

user guides on the camera module.

The specifications of the Jetson Camera can be itemized as:

• 5 Megapixels

• Fixed focus

• MIPI CSI connection

The module is equipped with an Omnivision OV5693 Bayer Sensor [69], which pro-

vides 5-megapixel low noise frames in high FPS. The stand-alone price of such a cam-

era module is again 25USD (we acquired Jetson TX2 Development Kit for 600USD,

comes with camera module already). Actually, those two cameras are very alike

in terms of price pier and performance. Raspberry Pi camera module seems to be
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Figure 3.8: Jetson TX2 DevKit Camera Module attached to main board [4]

slightly better than Jetson’s, at first glance. But, image processing and transmission

power of Jetson is much higher, providing mid-end hardware better capabilities for

real-time applications.

3.3.3 Other Cameras

In fact, in such implementation involving a flowing line of product, line-scan cameras

are the most popular devices to capture images. They consist of CCD sensor arrays

[33] which are linearly aligned each connected to a MUX chip. The camera quailty

and speed rate depends on the MUX and CCD tecnologies. The serial analog signal

incoming from MUXes are proccessed by a microproccessor to acquire digital data

to be processed by a computer [70]. Also, other matrix form CCD cameras could be

used as in literature [36], but both types are extremely costly compared our low-cost

solution. The prices begins from approximately 300USD on online retail websites.

Regarding deep learning solution, high resolution images are not necessary, in fact

a burden for neural networks. Low resolution images are preferable. And line-scan
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logic does not fit convolutional network logic, as well. Consequently, it was decided

to go with simpler mobile phone grade camera, which are fairly inexpensive.

3.4 Computer Specifications

In this short section, some important specifications and platform information on the

computer used for modeling is given. MATLAB modeling is utilized on Windows 10

platform, while TensorFlow framework with Python is used on Ubuntu 16.04 version.

Both platforms are installed to a laptop computer with the following system attributes:

CPU Intel Core i7 4710MQ @ 2.50GHz

GPU Nvidia GeForce GTX 980M 8GB GDDR5

GPU2 Intel HD Graphics 4600

Memory 2x8GB DDR3 @ 1800MHz

OS Windows 10 64-bit

OS2 Ubuntu 16.04 64-bit
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CHAPTER 4

SIMULATION AND IMPLEMENTATION DETAILS WITH RESULTS

After literature search, it was needed to decide on proposal methods, based on the per-

formances. To set an anchor and to visualize expected final hardware results, a soft-

ware model for each methods to be implemented on hardware. This is an important

step as realization on hardware directly is lot more time-consuming and inefficient

for performance comparison.

An important note is that the basis problem is finding linear objects in the image,

which is a rather simple problem for object detection and feature extraction literature.

So, we needed to scan and filter related work based on robustness, speed, viability,

innovation and relation with our specific task. Here, in this chapter we will first model

two of those selected methods and compare results in terms of success on the data set

with timing. Then, two selected methods will be implemented on hardware in the

later sections. Both will be examined in terms of timing and accuracy performance

with popular metrics.

At this point, we decided to go from two different routes. One, is a simple way

of detection of linear objects in an image, rather less hardware exhausting, namely

Hough Transform based pure image processing (Sec. 4.4). The second method (Sec.

4.5) would be, in contrast, lot more complex in terms of number of operations, but

resulting in a robust, fast and accurate system. In this point, feature extractors are

studied, however, we decided to set a Convolutional Neural Network to be specially

trained for our specific task.

In first sections of this part introduce the details on common performance evaluation

methods, metrics and data environment. The chapter also gives details and visuals
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of experimental setup units. Mechanical frame was provided by METU Mechanical

Engineering Department.

4.1 Setup Specifications

The dimensions and formation of the setup are determined after hardware choices are

finalized. Please see Section 3.2 for type of hardware chosen and dimensions of them.

All the laboratory setup frames are designed and manufactured by Mechanical Engi-

neering Department, Middle East Technical University. The processes were led by

Assist. Prof. Dr. Ulaş Yaman. The skeleton is realized with sigma profile bars, which

are highly versatile, as a result, appropriate for research and development project such

as ours.

(a) Small Setup (b) Raspberry Box

Figure 4.1: Early setup for 22.5 cm x 32 cm metal samples

In Figures 4.1, early version of setup is shown. It consist of a small industrial line

representation for the former samples which are provided to us. These were 22.5 cm

to 32 cm in average. This early setup had also a small box to protect Raspberry Pi with

all proper holes are located for input output ports. The camera had an adjustable 1-

DOF knob. For simulation and demonstration purposes, a simple DC powered motor

is attached to rotary, so line could flow and movement was imitated.
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Figure 4.2: The latter setup for larger metal sheet samples (69.5 cm x 79.5 cm)

Figure 4.2 is a photo of final laboratory setup, which can handle larger metal sheet(69.5

cm x 79.5 cm) simulations. The Raspberry Pi box and camera holder stayed the same,

frames are added above the industrial line to carry Raspberry box and the new 1-DOF

holder of light source. Moreover, DC motor is updated to be able to run heavier

weight. The light source was carried by a flexible phone/tablet holder in the first

setup. In Figure 4.3a, another angle is presented to show later setup. The metal sheet

flows in the direction shown with red arrow. Camera (Raspberry Pi or Jetson) sees

the beam area (also in Fig. 4.3b) between two red lines. The ROI image falls into a

dark background, due to black cardboard attached to the light source. The details of

light source selection and illumination configuration is given in Section 2.2.

Switch Circuit is a relay circuit that enables a digital signal to control AC power

to reach light source. This was needed in the final product (as stated earlier in this

section) to create a matrix of light sources. By doing so, it will be possible to span all

metal surface, as light source itself appears very bright in images and hides details in

that particular area.
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(a) Units of Setup (b) Camera Point of View

Figure 4.3: Explanation of later setup and visualization of beam area

The aim was to control AC power distribution to light sources by Raspberry Pi (or

Jetson) GPIO pins. In that manner, following simple circuit is prepared, which is

called Emitter Follower Relay Switch Circuit in electronic literature [71] (Fig. 4.4).
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Figure 4.4: Schematic of emitter collector relay switch circuit

Relay is the main component of the circuit. It channels signal at COM port (in this

case, plus of electric plug is connected) to NO (normally open) pin whenever coil is

energized; otherwise it channels COM to NC (normally closed) pin. Coil power is

controlled by basic transistor switch logic, in which base is supplied with sufficient

positive voltage to let current flow through collector to emitter. In our case, base

voltage comes from Raspberry Pi (or Jetson) GPIO through a resistor to limit current.

When transistor is open, 12 volts VCC (collector voltage) reaches positive of relay

coil. Real prototype is homemade and shown in Figure 4.5.
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(a) Plug, light source cables, (b) Relay, transistor

diode, GPIO cable(red)

Figure 4.5: Relay switching circuit prototype

There is also a diode functions as a reverse current protector. This common diode is

called flywheel diode in this case. The reverse current occurs due to fact that relay

powers up by a coil, and it creates a current to release the stored energy. This reverse

current may be high enough to kill switches or transistors [71].

4.2 Data Sets

In this thesis work, there are 3 data sets were generated in total and 1 is downloaded

from the Internet(Fig. 4.6). Two of those earlier data sets are disposed due to unsta-

bility between sample images or confusing objects in the view, though. Of course,

real-time hardware applications are not suitable for data set experiments. Modeling

sections (Sec. 4.5.3, 4.4.3) is the main scope for data set use to compare methods in

a common ground.

42



(a) Dataset 1 (Hard dataset) (b) Dataset 2 (NEU dataset)

Figure 4.6: Samples from data sets

One of the data set is acquired from literature (Fig. 4.6b). The authors have created

a 1800 image data set for 6 types of surface defects [72]. They implemented this set

in their article work [73]. In this defect data base, there are only 300 of 200 × 200

pixels scratch images with ground truth provided as rectangles. This data set created

in Northeastern University, will be referred as NEU Dataset from this point forward.

The problem with this set is that images are taken partly using microscopy. So the

scratches appears thick compared to our intended system, but this set is also included

in testing proposed methods. Ground truths are marked as white bounding boxes, see

Figure 4.7b.

The second data set is prepared in our laboratory. Raspberry Pi Camera Module v2.1

was used for that purpose. All the camera settings are stated in Sec. 4.4.2.1 (see

Table 4.2) and general camera hardware specifications can be found in Sec. 3.3.1.

Likewise, ground truth for this study is also prepared as rectangles (Fig. 4.7a). The

samples were provided by Arçelik Dishwasher Plant:

Small Metal Sheets 8 pieces (each app. 22.5× 32cm)

Large Metal Sheets 3 pieces (each app. 69.5× 79.5cm)

There are 500 sample images in Hard Dataset (Dataset 1). To acquire that many

images, all large metal sheets are put on flowing product line in laboratory. Approxi-

mately 50 frames are captured for a slow flowing case (app. 0.5 cm/sec), then sheets
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are rotated 180 degrees for another 50 frames. In addition, for each metal sheet, a

faster experiment is done to acquire more blurry images. There were initially 600

image samples taken, but 100 of them were eliminated, because they had incorrect

sights of mechanical parts. After acquiring images on Raspberry Pi, the rectangles

are drawn by hand one by one with the help of integrated MATLAB Sample Labeler

Tool.

The dataset is acquired by a basic function block written for this purpose. Whenever

the hardware button is activated, Raspberry Pi creates a new folder, named by time

information. A sequence of 100 images are stored in there, an LED informs user that

procedure in finished. The reason this dataset is called hard set is the fact that images

are taken under low light condition and scratches are proportionally thinner, in com-

parison with other datasets. Consequently, they became harder to spot, but closer to

the final system in our mind.

(a) Dataset 1 (Hard set) (b) Dataset 2 (NEU set)

Figure 4.7: Ground truth for input images given in Fig. 4.6a and b, respectively

Other datasets were given up because images were not with enough quality. The

motion blurring was a huge problem for moving cases, which is eliminated in hard

dataset after studying Raspberry Pi camera profoundly. Also, light source was smaller

(3W) and changed to 6W alternative in hard dataset. In fact, in the earliest dataset, the

scratches are close up shot and appear very clear. The problem was the holder cables

around and the angle of the light source, of which edges sometimes could be mixed

with real linear objects. Those problems are solved in hard dataset, by installing a
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black cardboard behind the lamp and rotating the LED panel by 45◦ ,so that its sides

would not cause vertical lines in the edge maps.

Finally, Hard Dataset including 400 training, 108 test images and NEU set including

200 training, 100 test images are prepared, as explained above.

4.3 Semantic Segmentation Quality Metrics

A pixel-wise segmentation of an image requires some common ground evaluation for

comparison of performance on how accurately the method can detect different classes.

For this purpose, there are some global metrics defined by pixel count calculations. In

this study, we will consider some of the standard, however, there are still new metrics

are emerging depending on needs. For example, this paper proposes a new image

segmentation metric based on class boundaries [74].

Besides those digitized methods, there are also approaches for regression problems,

which are problems with probabilistic results not binaries.

For pixel-wise logic operations, some most popular ones are shortly described be-

low. Further information on expansion to those may be found in [75]. In order to

compute following metrics, there we need a ground truth and a resulting matrix (or

an image) from our algorithm, in binary form. As we have only one class of objects

(scratches), we can talk about binary types. More classes would bring about complex

confusion matrices, that is formed by true positive, true negative, false positive and

false negative entries.

True positive (hit) pixels represents correct hits of segmentation of the given class.

In other words, this is the count of pixels that is mark in ground truth matrix and

output matrix of method to be evaluated.

True negative (correct rejection) is in the reverse side, being correct prediction of

non-object pixels. This gives the count of background pixels in ground truth, that are

not object pixels in the resulting matrix, either.
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Moving onto the erroneous parameters, false positive (Type I Error) pixels are esti-

mated as objects in the resulting image, actually they are not.

In the same way, the pixels that are predicted as background after algorithm calcula-

tion and originally belong to an object are called false negative pixels (Type II Error).

Depending on those basic definitions, there are some further parameters coined in this

context. Some of globally used advance parameters are:

• Sensitivity

• Specificity

• Confusion matrices

• Precision

• Miss-rate

• Accuracy

• F1 score

• Markedness

• Informedness

• Matthews correlation

etc.

Sensitivity

This parametric measure is also called recall, true positive rate or probability of de-

tection in some fields. This is the most popular ratio with specificity and given by

following equation (Eqn. 4.1. It expresses proportion of correct hits in all object

pixel predictions. A high sensitivity can be equal to correct hits on objects but with a

poor precise localization.

Sensitivity =
True Positive

True Positive+ False Negative
(4.1)
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Specificity

This one has also alternative names like true negative rate or selectivity. Its simple

mathematical formula is in the equation below (Eqn. 4.2). As specificity goes higher,

it means that in all background image, correct background prediction is done.

Specificity =
True Negative

True Negative+ False Positive
(4.2)

Accuracy

Accuracy is another metric widely used in performance measures of image segmenters.

This has basic logic behind, that is all correct predictions in whole image, given by

Eqn. 4.3.

Accuracy =
TN + TP

TP + TN + FP + FN
(4.3)

Cross Entropy Loss

Cross Entropy Loss differs from the metrics above by that it suits for regression prob-

lems, that results with probabilities in contrast to discrete outputs. One of this kind of

metric is needed, because deep learning network model returns soft prediction results

for each class (one class in our case) and feeding back soft values results in better

optimization.

For this task, some famous regression metrics like mean squared error (MSE, L2)

or mean absolute error (MAE, L1) could be preferred. But, for image segmentation

tasks there are other loss functions implemented usually. Cross entropy loss is one

kind, Huber, Hinge and Dice loss are the other examples. It is given by function

definition in Equation 4.4 [76].

Dloss(S, L) = −
C∑
i

LilogSi −
C∑
i

(1− Li)log(1− Si) (4.4)
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In Eqn. 4.4, S represents soft output of neural network and L comes from the class

membership from ground truth. The left summation represents correct hit on a pixel

belonging to a class, meanwhile, right side is for background predictions. The number

of classes C on the summation is 1 for our case, so formula can be simplified further.

Please note that, from this point on, cross entropy loss will referred as loss and only

will be used for mid-end learning based model.

10-fold Cross Correlation

To obtain stable and correct results of segmentation metrics, there are some common

validation methods. The idea behind those is training a model with different clusters

of train and test data sets, and covering all data set to reduce biased results. Leave-

p-out cross-validation and k-fold cross-validation are most popular iteration of those

method [16]. 10-fold validation was chosen in this study, due to its fair evaluation

performance [77].

First, all data set is shuffled and this order is fixed for all models and also Hough

Transform based method, to be equivalent for all performance measures. Then, data

set is divided into 10 parts (each having 100 samples) and models are trained with

remaining 400 samples in each case. An example for 4-fold validation is depicted

in Figure 4.8. After all iterations (k=10, for our case), the average is taken for each

semantic metric.
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Figure 4.8: Demonstration of data set separation for 4-fold cross-validation [16]

4.4 Low-Cost System

4.4.1 Principles of the Low-Cost System

The main artifact extractor of the following implementation is called Hough Trans-

form (App. A.2), which is a rather old (1962) method to identify linear features in an

image efficiently [78]. There are also pre-processing tools used to enable successful

feature extraction, for which explanations could be found in Appendix part A.

Here is the pseudo-code showing how main function works in the embedded system:
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Algorithm 1 Algorithm for Low-Cost Method

Library Definitions

procedure MAIN

LED Pin Definition

procedure WITH CAMERA SETUP(sensor_mode, resolution, framerate)

CameraAttributes← CorrespondingV alues

Sleep : 2sec

for frame in CaptureMethod(format,MMAL_port) do

< Time Tick 4

< Time Tick 1

Main Algorithm . (see flowchart Fig. 4.9)

< Time Tick 2

Result Showing . Optional

< Time Tick 3

end for

end procedure

end procedure

Embedded code (written in Python), starts with including necessary libraries such as

OpenCV 3 and PiCamera 1.13. In the main function LED pins are defined used for

warning when a scratch is spotted. The special function with ensures that camera

object is created and deleted after operation is done. It is important to release the

camera in order not to cause collision. Camera attributes are assigned as mentioned

in Sec. 4.4.2.1. At this point, camera module need some time (2 seconds) to settle

some attributes.

Finally, a continuous capturing loop starts consist of main method (Fig. 4.9), time

ticks (for performance measurements) and optional print of resulting image.
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Here is the flow of the main processing algorithm (Fig. 4.9):

Figure 4.9: Main method of low-cost system algorithm

4.4.2 Implementation of Low-Cost System

In this section, an overview of the proposed low-cost system will be given. This

system consist of a mechanic frame, a light source (more can be added if needed)

and a RaspberryPi 3 small computer that is upgraded with a Camera Module v2.1.

Resulting system is expected to be successful with an acceptable hit rate, portable,

inexpensive and fast enough to be considered as real-time.
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Algorithm is written in Python 3.4 language using Picamera 1.13 Library and in

OpenCV 3.4.1 framework. It takes some time to prepare the required working plat-

form on Raspberry Pi for such a task, OpenCV and PiCamera libraries are really

useful in the end, if successfully build in the device. Also, Python language was cho-

sen over C++, because it is much easier to develop a research project like this while

coding neatly and short. But it suffers from 30% speed drop compared to C++, so

that changing language in the final product could be a future consideration 5.2.

4.4.2.1 Image Acquisition

Even though, there is built-in library of Unix terminal for camera control, a Python

script is always easier for changing attributes and modeling capture methods on Rasp-

berry Pi. For this purpose, a third-party library named picamera was used, and it was

the only proper choice covering all the features Raspberry Pi Camera Module has. It

is also more convenient to use a Python library, as the main algorithm runs in OpenCv

Python. The picamera library is constantly growing and still matchless in terms of fa-

cilities.

The class picamera.PiCamera is the main class of image capture library. This library

provides Raspberry Pi camera (both version 1 & 2) to be controlled by a Python in-

terface. Camera is initialized with inserted parameters to the constructor function.

Some of the camera properties can be altered after, even during real-time loops. On

the other hand, some properties are capture operation related, such properties should

be handled during capture function calls. All in all, camera object construction, pa-

rameter adjustments and capturing are 3 main steps.

Camera initialization requires some of the properties to be selected properly. Unless

the user is willing to continue with default values; then, sensor mode, resolution,

frame rate and clock mode must be indicated while construction phase. Setting those

in the beginning is a time saver.

In this section, all necessary properties and capture functions will be discussed. All

information is gathered from the official document page of PiCamera library [5]. An

important note, camera must be released by close method (alternatively with with
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structure of Python).

After setting up Python and picamera environment, camera module is attached prop-

erly as shown in Figure 4.10 and also camera is enabled by GUI or raspi-config com-

mand.

Figure 4.10: Proper connection to CSI port with correct direction

Camera Class Parameters

This part includes adjustable camera settings with explanations and some examples

of resulting affects. Section below may perceived as unnecessary, but in fact a long

time was dedicated understanding how those parameters effected the raw image we

acquire. Parameters were kept changing as algorithms developed, all in all it almost

took half of the time spent for experiments. The motivation was the fact that even the

best line detection algorithm would fail, if images acquired were not appropriate.
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Here below, important camera options of RaspberryPi Camera Module v2.1 (Sec.

3.3.1) are given. Background information was given in Section 3.1:

Sensor Mode is a special parameter of Raspberry Pi camera. This attribute indi-

cates the mode of sensor output directly flowing to GPU. The Table 4.1 presents all

possible sensor modes for V2.1 module.

Table 4.1: List of sensor modes for V2.1 Raspberry Pi camera [5]

# Resolution Aspect Ratio Framerates Video Image FoV Binning

1 1920x1080 16:9 1/10 <= fps <= 30 x Partial None

2 3280x2464 4:3 1/10 <= fps <= 15 x x Full None

3 3280x2464 4:3 1/10 <= fps <= 15 x x Full None

4 1640x1232 4:3 1/10 <= fps <= 40 x Full 2x2

5 1640x922 16:9 1/10 <= fps <= 40 x Full 2x2

6 1280x720 16:9 40 < fps <= 90 x Partial 2x2

7 640x480 4:3 40 < fps <= 90 x Partial 2x2

In this Table 4.1, every mode has a sensor resolution and FPS determined. But still,

user can enter a resolution with FPS manually, then a ISP chip would try to resize

image to fit forced resolution within hardware limitations. Any of these sensor mode

can produce video port frames, but only max resolution (3280x2464) cases are able

produce an image port quality output. Depending on given sensor mode and resolu-

tion, ISP will try to interpolate or down-sampling. In addition, inserted FPS value

will be force in possible ways, it was specified apart. Some sensor mode has impact

on FoV, that may be an undesirable result.

In summary, we work on sensor mode # 5, because it gives full span in horizontal

axis (crop in vertical is not important for our case) and quality is satisfying enough to

observe linear details. But, resolution is forced to 640x480 in order to capture frames

as quick as possible without losing required amount of detail quality. FPS is set to

value of 40 to force the device to its limits.
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AWB Mode stands for Auto-White Balance Mode. Adjusts two valued white bal-

ance gains of the camera. This can be done manually by setting this ‘off’ and inserting

awb_ gains. In any case, AWB may be affected by still_stats and/or drc_strength pa-

rameters.

This parameter was chosen as flourescent, because of the color of the light we work

under. AWB mode does not cause significant differences, though. Yet, it was not

enough controllable, if AWB was in its default mode auto. Please, refer to Section

3.1.2 for further information.

Brightness is a parameter that adjusts total white value of the image. Increase in

brightness will bring about a luminous view, whites to get whiter and dark details

to get visible. In our application, this has no important effect on scratch detection;

however, with brightness value of +50 (default 0 in [-100,100]) was selected to com-

pensate dark image caused by low shutter speed. The example in Figure 4.11 shows

effect of brightness, it was 0 (default value), image would be completely black. But

in the figure, light source is vaguely seen.

Figure 4.11: Effect of brightness (values = 5, 50)
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Contrast is another essential attribute that can be encountered in every image re-

lated application. It can take values in [-100,100] interval, 0 being the default. We

preferred to keep it that way as higher contrast give better details with much more

noise, while lower contrast has no meaning in our application. Please refer to related

Section 3.1.3. In the Figure 4.12, there given comparison of default contrast and con-

trast value of 50 images. Details get more explicit, but image becomes noisy and

bright visible area gets smaller.

Figure 4.12: Effect of contrast (values = 50, 0)

DRC Strength stands for dynamic range control strength. When set, this parameter

causes device to run algorithm of dynamic range, which strives to brighten dark area,

conversely make shiny parts less luminous. As a result, all the detail in extreme

intensity parts get visible. As for our application, a high DRC would make sense, so

that it would adjusted to high setting. Although, the direct impact was not visible.

Please refer to related Section 3.1.6. As a note, we implement an adaptive histogram

equalization method which aims the same effect as high dynamic range. Alternating

DRC results in overriding AWB gains, too. But there is no clear information on how

much it affects on the gains.
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Exposure Mode , with the co-operation of ISO parameter, controls digital and ana-

log gains of the camera regarding how responsive sensors will be to the light. As

expected exposure mode has impacts on ISO and shutter speed. As usual, the options

for this mode have names of common scenery such as night, sports, fireworks. Not

experiencing a significant effect (as we manually force shutter speed and ISO in par-

allel), we have set backlight to exposure mode. As in AWB case, we wanted this to be

a fixed value other than auto (default). Please refer to related Section 3.1.5 for further

information.

Exposure Compensation is explained in Section 3.1.5, too. The changes in this

parameter was not observable, so we set +25 to get brighter images theoretically.

Image Denoise is another special ISP chip parameter which takes boolean values.

Setting this to True gives a small amount of denoise in acquired frame.

Image Effect is yet another parameter of Raspberry Pi camera. This is in fact in-

tended for artistic application like solarization, negative images, watercolor and pastel

effects. Several modes has their own secondary parameters. For this, we again de-

cided on denoise, which has no significant change in practice, yet a clever choice in

theory.

Meter Mode is a tool for evaluation of correct exposure. The alternative in this

mode selects a ROI on the image for exposure calculations, then to get optimal expo-

sure, shutter speed and aperture are adjusted automatically. As we manually set those

parameters, meter mode has little impact in the images we have. But, still as shown in

Figure 4.13, matrix (divides plane into grids), backlit (30% central region for expo-

sure measurement) and average (20% central region for exposure measurement) are

proper choices. The option spot concentrates on a small region in the center (10%)

and gets easily deceived, because normally there is bright light source is located in

the middle of an image.
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Figure 4.13: Effect of metering mode (values = spot, backlit)

ISO is an important parameter in such application where luminance plays a big

role. In the favor of theory, as ISO goes high sensors get more sensible to light and

details are observable a lot. But, as a downside, noise is amplified. In contrast, a low

ISO results in low noise which is more helpful in our illumination level (Fig. 4.14).

Background information concerning ISO is in Section 3.1.1.
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(a) ISO 800 (b) ISO 200

(c) ISO 100

Figure 4.14: Effect of ISO (values = 800, 200 and 100)

Saturation is a parameter determines how colors are intensifies in an image. This

has no value in our gray scale application and left as 0 (default).

Sharpness is also an essential parameter of visual devices. It was explained briefly

in Section 3.1.7. For scratch detection purposes, even though SNR degrades, we

needed to have maximum sharpness of 100 to obtain sharp edges around linear objects

(Fig. 4.15).
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Figure 4.15: Effect of sharpness (values = 0, 100)

Shutter Speed of Raspberry Pi camera is not a totally accurate terminology. As

stated before (Sec. 3.3.1), there is no actual shutter closing in this device, but there

is rolling shutter. This technique is well explained in 3.1.4. In practice, faster shutter

speed requires more illumination, but creates less motion blur. The values are in

microseconds, zero value depicting auto shutter speed mode.

We decided to go down as possible as we could in microseconds. Because, high shut-

ter speed eliminated motion blur completely. Before, due to blurring it was impossible

to catch scratches from metal sheet moving on the line. After some experimenting, we

fixed this parameter to 2500 microseconds. Going lower causing a lot darker images

and failed in low light conditions (Fig. 4.16).
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Figure 4.16: Effect of shutter speed on moving image (values = auto(slow),

1000(fastest) and 2500)

Still Stats is an attribute concerning image port application, while in our case it

is video port. To explain it anyway, it will determine if current frame or previous

frame is used to calculate scene statistics, e.g. exposure. When True, statistics are

calculated from the captured image and time between star up and capture is reduced.

As a disadvantage, capture time increases. This dummy parameter is set to False.

Video Denoise is similar to image denoise parameter, but in this case video port

frames are denoised by ISP chipset. Naturally, this attribute is switched to True.
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Video Stabilization is a special Raspberry Pi camera function that aims to reduce

horizontal and vertical motion blur. This is must choice for our case and set as True.

Table 4.2: Camera attribute values set manually (for low-cost method and data set)

Attribute Value

Resolution 640× 480

Frame Rate 40 FPS

Sensor Mode #5

AWB fluorescent

Brightness 50 ∈ [−100, 100]
Contrast 0 ∈ [−100, 100]

Exposure Compensation 25 ∈ [−25, 25]
Exposure Mode backlight

Image Denoise True

Image Effect denoise

Meter Mode backlit

ISO 100

DRC high

Saturation 0 ∈ [−100, 100]
Sharpness 100 ∈ [−100, 100]

Shutter Speed 2500msec

Still Stats False

Video Denoise True

Video Stabilization True

Capture Methods

These functions, basically, capture an image frame or several frames, either to be

stored in a dynamic array or to be written to a proper file. This differentiation is

indicated by the very first argument, namely output argument indicated in capture
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function call. If it is a string or a variable with write method, then captured frames are

written to a file. Otherwise, buffer protocol is initiated and image is stored dynam-

ically. Physically, camera constantly captures images for gain and exposure control,

but when command is send for capturing, sensed image array would not be discarded.

It will be transferred to ISP unit, instead.

In this context, it should be pointed out that there is a software layer of PiCamera

library called MMAL. This layer makes an interface with GPU firmware and con-

trols ports of the camera module. These ports are, namely, still port, preview port

and video port. Preview port, as the name suggests, is used for previewing and not

qualified enough for processing jobs. The still port, on the other hand, serves the best

quality. Please remember that, only best two resolution sensor modes can use still

port, i.e. image mode (see Table 4.1). The problem with this port is that, the cap-

tured image, to be transferred to ISP unit is in 3280 × 2646 resolution. This cannot

be downgraded to low resolution that we want to work with. Alternatively, another

software resizing should be added to the algorithm. All in all, whole calculation time

increases unnecessarily, even though we have better quality images due to strong

noise reduction of still port.

The port we used is video port. This port is activated by choosing use_video_port

parameter True. This port obviously causes FPS to be greater compared to that of

still port. But, noise reduction is somewhat lesser, and frames captured are tend to

be grainy and noise compared to still port images. This port allow us to work with

low resolutions faster. In low-cost system, the real-time FPS was a more delicate

issue, then we decided to go with this port, as total time (calculation and capture time

together) is 3 times as it was for still port.

Finally, the capture function itself was to be selected among three choices: capture,

capture_continuous and capture_sequence. The first is suitable for snapshots, mean-

ing single still image acquisition, while the third is for a number of images to be cap-

tured consecutively. Function we use is the second choice, that constantly captures

images in a non-blocking way, so that there is no time spend for camera wake-up.

Capture functions requires some input arguments. We save frames into special Pi-

Camera buffers (PiYUVArray in this case). Video port is activated with related pa-
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rameter mentioned above.

The arrays, transferred to software buffer, consist of raw image data, in other words,

there is no compression due to image format change. Moreover, the codec used is

YUV, in this case. The default is three color channel BGR mode, though. The reason

is timing , simple time measurements are given in Table 4.3. Those timings include

only image capturing and image demonstration on screen. Still, there is an extra step

in BGR case, which is conversion to gray scale that is the format we work with. For

YUV case, the first channel has already single channel luminance information. In

short, YUV gives faster result and seems more reasonable.

Table 4.3: Time measurements for previewing BGR and YUV raw images

YUV BGR

Image Show Time (on screen) 0.009 sec 0.007 sec

Total Time 0.09 sec 0.10 sec

Please note that, for data set acquisition, the images were needed to be saved into hard

drive in 3-channel bitmap file format.

4.4.2.2 Algorithm and Hardware Results

In this part, implementation details of the low-cost system directed to problem (Chp.

1) will be presented on Raspberry Pi 3 hardware (Sec. 3.2.1) supported with method

provided in Sec. 4.4.1.

It should be noted that using raspi-config command total memory dedicated for graph-

ical interface was doubled and made 256MB.

After capturing a frame successfully, we need to convert it into gray scale immedi-

ately, as color information would not be used. For YUV format capturing, this is

merely picking the first channel which has luminance data (Fig. 4.17a-b).
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(a) BGR Raw Image (b) Only Y Channel

(c) Thresholded and Dilated Image

Figure 4.17: Raw image capture and detection of beam area

Then, we skip to beam area detection. As mentioned before, we use the phenomenon

that scratches appear in the beam area clearly. To spot this area, we have to locate

light source in the image first. The light source has an evident feature, being the

largest bright object. To get the help of that, whole image is thresholded with lower

limit of 215 (in [0, 255]). This number is found experimentally. The perimeter of
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light source is covered with black paper, so the closed system here lets us to use such

a fixed number. Alternatively, an Otsu Threshold (App. A.1.2) could be used here

with a fixed coefficient. The mask acquired is dilated slightly to close small holes

(Fig. 4.17c). In the final step, the contour with the largest area is found owing the

an OpenCV built-in function. This function returns coordinates of the bounding box

around the largest area, which is the light source, if camera directly illuminated by

it. Then, the gray image is cropped according to that bounding box, but original

dimension in horizontal axis is preserved.

The very next steps are pre-processing steps in order to transmit an image to Hough

Transform, consisting vague linear features. This starts with equalizing the histogram

of the cropped gray frame. Please note that, this image has only one channel of data,

which is intensity. Histogram equalization (see App. A.1.4, conventionally tries to

match histogram graph of an image to a uniform one. This means that whole image

is normalized in this case. Additionally, by experiments and theory, an adaptive his-

togram equalization is a better choice. In this manner, CLAHE method is preferred,

that slides a window around the image and treat every part of image differently. Adap-

tive word suggest that sliding window is uniquely calculates histogram everywhere.

It is also contrast limited, so user can define a contrast limit in order not to amplify

noise in small fragments of image (App. A.1.4. In short, there are two parameters of

CLAHE, tile size and contrast limit (or clip limit).
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(a) No Histeq (b) Uniform Histeq (c) CLAHE(2, 8) (d) CLAHE(3, 8)

Figure 4.18: Difference in Histogram Equalization Methods

In Figure 4.18, an original cropped image is given with a uniform conventional his-

togram equalization under. The last two are CLAHE images with alternative contrast

limits. The suggested global parameters for CLAHE are 8 × 8 tile size and 3 to 4

contrast limit [92]. Figure 4.18c shows CLAHE with 8 pixels tile edge and 2 clip

limit. Figure 4.18d shows CLAHE again with 8 pixels tile edge, but 3.5 clip limit.

As the demonstration suggests, adaptive equalization gives better results, and as clip

limit goes up details get stronger but noise is amplified in the same proportion. We

preferred 3 contrast limit in our application, but in variations of the code this param-
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eter can be changed to 2 or 4. On the other hand, bigger tiles give rise to significant

increase in calculation time and undesirable results. In the end, we continued with

8× 8 sliding windows.



0.0017 0.0026 0.0017

0.0169 0.0268 0.0169

0.0675 0.1069 0.0675

0.1069 0.1693 0.1069

0.0675 0.1069 0.0675

0.0169 0.0268 0.0169

0.0017 0.0026 0.0017


(4.5)

After histogram adjustments, filtering is to be applied, but Edge Detectors are highly

unprotected against noise in the images. So, a blurring technique has to be applied at

this point, which would be Gaussian Blurring in our case. The lines we seek for are

vertical lines, so a Gaussian kernel in a vertical rectangle form is applied with size

7 × 3 (Matrix 4.5). As a result, in vertical axis, noise are reduced more, but vertical

details are not critically effected. A bigger Gaussian may give better results in terms

of SNR, but it can also remove thin horizontal details of the lines and this operation

would be much slower. This parameter may still be changed in variations. The sigma

parameter of Gaussian function was calculated automatically according to the kernel

size, which is not a significant argument. Please, refer to Appendix A.1.5 for further

details. Necessity of blurring is clearly shown in Figure 4.19.
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Figure 4.19: Canny Edge Filter results with and without Gaussian blur (7×3 kernel)

To that blurred image, now an edge detector may be applied. The edge filter chosen

was Canny Edge Detector ,because it applies a low-pass filter to eliminate speckle

noise and is able to catch weak edges connected to stronger ones (App. A.1.1). A

resulting image of Canny filter is already shown in the Figure 4.19a, with the help of

parameters 1and35, thresholds of weak and strong edges, consecutively. Note that,

even the strong threshold indicated is a small one. It is due the fact that scratches

are sometimes hard to spot by edge filters, caused by reflectivity. In addition, Canny

Filter kernel is 3×3 in our case. No small detail should be lost. Variation may include

a Canny filter with different parameters, a Sobel filter for vertical details instead or

both filters in the same implementation.

As we chose rather low Canny thresholds, it was needed to filter noise related edges.

At this step morphological operations come in action. This part, in fact, was com-

pletely experimental. The main intention was to eliminate noise related details that

has no vertical thickness, but a few pixel long horizontal lines. The resulting image

(Fig. 4.20) shows clearly, only vertical components are reserved after applying an im-

age opening algorithm with a 3×1 kernel. This part is always open to improvements.
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Image opening, closing, dilation and erosion may be used, combined and added up

under different environmental conditions with varying kernels both in shape and size

(App. A.1.3).

Figure 4.20: Applying image opening with 3× 1 kernel

In the final image so far, the vertical linear features are fairly visible. Now, it is time

to apply the main method Hough Transform to locate potential line objects. Applying

conventional Hough Transform (Sec. A.2), all the linear features are obtained. Here,

rho resolution 1 pixel, while theta resolution is π
180

. From Hough space matrix, line

nominees over threshold of h
4

are picked, h being the height of the cropped image.

In other words lines with the length of one fourth of the current image are consid-

ered. As a final filter, line objects with non-vertical angles are eliminated. Only lines

with upright angles within a 40 degrees cluster remains to prevent false results in

the vertical axis. The Figure 4.21 shows the linear results drawn on the image as an

overlay.
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Figure 4.21: A resulting image with its input image

After this point forward, still, some more improvements may be realized in the needs

of customer or application. For example, not being happy with the visualization of

the results, we instead drew rectangles. Additionally, while doing so, the lines with

center points close to each other, are merged. In the resulting configuration, there is

not many rectangles overlaying each other in a confusing way. Here below in Figures

4.22, there are some examples of input metal sheets and results of low-cost system:
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(a) Resulting Image 1 (b) Resulting Image 2

(c) Resulting Image 3 (d) Resulting Image 4

(e) Resulting Image 5 (f) Resulting Image 6
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(g) Resulting Image 7

Figure 4.22: Low-cost method hardware implementation final results of the main

method

Examining the results in Figures 4.22, intuitively it can be said that low-cost solution

on Raspberry Pi 3 with its camera module seems to accomplish the task sufficiently,

considering its cheap price. To be more precise, Fig. 4.22a is the one example of

which earlier steps are shown in this section. This case is chosen as the main example,

because it involves some different types of scratches together. As clearly observed in

Fig. 4.21a, there is a several times broken line (1st from right) and a line overlapping

light source (4th from right, in the middle). Those two types are the most difficult

to locate, in fact. The other three scratches are detected easily. Please note that,

insignificantly seen scratches are also found in the resulting examples. The example

Fig. 4.22f involves a scratch like line on the right hand side, which is actually the

border of the metal sample. Yet, that edge appeared white and considered as a linear

object. The whole method is discussed in Sec. 4.4.2.4 in terms of performance and

timing.

4.4.2.3 Temporal Aliasing Problem

The problem originates from video noise. Probably, shot noise [93] or film grain [94]

is main responsible for false results. Those noise types majorly specified by sensor

quality, furthermore, we acquire high sharpness, high shutter speed (less brightness)
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and low resolution frames, which causes noisy results. Even though it is adaptive,

histogram equalization always amplifies certain amount of noise. I also suspect from

rolling shutter technology of the camera module (Sec. 3.3.1).

To define the problem, when there is a still metal sheet on the line, the still video may

produce frames so differ that distorts the result. Consequently, it gets hard to adjust

parameters for a consistent solution, because noise fluctuates a lot. An example is

shown in Figure 4.23. The resulting image goes between given outcomes, without a

pattern. The broken line overlapping light source is detected without succession.

Figure 4.23: Temporal Aliasing Problem

The first and definite solution would be changing the camera, but we aim to solve it

low-cost as a rule of thumb. Still, a better quality sensor should solve the root prob-

lem. In terms of software, it can be solved with a trick. This would be recognizing a

scratch, only if we encounter the same scratch in the same location in 3 frames in 5

consecutive frames. Those number can be changed by experiment, but the main logic

is create a temporal filter in a way.

4.4.2.4 Conclusion

This section is dedicated to final words on low-cost method results. All in all, the sys-

tem costs around $ 60, which is a really inexpensive solution for such task. Although,

it is the only way to test a hardware implementation to visually check if it can find

scratches in desirable number of successful cases. At this point, the requirements of

customer is involved and an inspection expert may be needed. Still, according to our

observations, the system is correct for around 90% of the cases.
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During this work, we produced in total of three variations of the method. The first

one is the main approach, which is explained and illustrated with examples in this

whole section. The second one still works with Canny filtering, but programmed by

different parameters. The last one has Sobel filtering which more primitive compared

to its counterpart. Sobel filters only emphasizes features in one direction, which may

seen enough, however without low pass filtering and weak edge detection function.

Yet, necessary details for all variations are given in the Table 4.4. The main method

is optimum regarding noise and true positive rate. The second, is more stable but

sometimes fails to find broken lines. The third is fairly aggressive with high true

positive and false positive results.

Table 4.4: Implemented parameters of low-cost system algorithm variations

Main Method Variation 1 Variation 2

Beam Area Masking Thr. 215 215 215

Histogram Eq. Method CLAHE Uniform CLAHE

CLAHE (cont. limit, tile) 3, 8× 8 - 3, 8× 8

Gaussian Blur Kernel 7× 3 5× 3 5× 5

Edge Filter Method Canny Canny Sobel

Filter Parameters 1-35, 3× 3 1-35, 3× 3 2nd derivative,

3× 3

Morph. Operations Opening Opening and

Closing

Opening

Morph. Kernels 3× 1 3× 1, 1× 3 3× 1

Hough Resolutions 1 px, π
180
rad 1 px, π

180
rad 1 px, π

180
rad

Hough Thresh. h
4

h
3

h
4

Angular Filtering 90◦ ± 20◦ 90◦ ± 20◦ 90◦ ± 20◦

Notes Success rate

90%, optimal

perf.

Less broken

line perf., better

noise perf.

Worst noise

perf., very

aggressive

Simple idea but complexity of n parameters and m quantization bins is in the order

of mn. But, still this is a really cheap, portable, simple and less hardware burdening
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system. In Table 4.5, given timing performance on real hardware. Please check

pseudo-code (Sec. 4.4.2.2) for time tick locations in a loop. Note that tick 4 comes

first, this is the breakpoint for total loop time. It is located such, due to Python

implementation of camera capture is in for statement.

Table 4.5: Average hardware real-time measurements of low-cost system [sec]

Main Method Variation 1 Variation 2

Capture Time (T4 − T3) 0.089 0.089 0.089

Calculation Time (T2 − T1) 0.071 0.070 0.060

Show Time (T3 − T2) 0.018 0.011 0.024

Total Time (T4 − T1) 0.178 0.170 0.173

In summary, this method is very efficient in terms of price-performance considera-

tions. The real-time implementation gives around 5-6 FPS (Tab. 4.5) with sufficient

success rate of around 90%. But, it is far from robust, in many times, fine tuning of

parameters would be needed depending on the material, scratch types and illumina-

tion of the environment. The major problem, namely temporal changes in the images,

is explained in Sec. 4.4.2.3. Software based solution is also presented; moreover, a

high quality camera would always sort out this issue. Some more future work idea

can be found in the Section 5.2.

4.4.3 Simulation Results for Low-Cost System Algorithm

In this section, we will present Hough Transform based algorithm performance re-

garding timing and detection. As expected, this basic method was not very successful

on finding weak scratches, but had no problem on stronger ones. Weak lines are ei-

ther broken or has intensity values lower than 200 (out of 255) in a given image (Fig.

4.24). On the other hand, strong lines have high intensity values in the input image

with length of at least half of the input image height. As the customer needs are to

find those long and strong lines, in the final system, it will not poses a problem. All
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in all, sensitivity values are much lower than second method’s (See Sec. 4.5.3.2).

Figure 4.24: Demonstration of weak and strong lines

For this modeling task, MATLAB environment was chosen, due to the fact that it is

very flexible for modeling, parameter adjustments and observing results. The mod-

eling platform of low-cost system design is MATLAB v2016a - Student Version with

Image Processing Toolbox v9.4 on a Windows v10 - Home operating system.

4.4.3.1 Timing Results

This results, on the contrary of mid-end system, are expected to get better in hard-

ware implementation. Because, Python implementation with OpenCV is much faster

than MATLAB, but as stated before, MATLAB is the suitable platform for modeling.

However, results show similar trends in terms of timing. In Table 4.6, the total loop

time is almost the same with the ones in Table 4.5; although, they are implemented

on completely different systems. The aim here is not to calculate real-world FPS,

but to check if the final system is predicted to work in reasonable time. Still, time

measurements in MATLAB model implies around 5 FPS.

The timing ticks are located slightly alike with Raspberry Pi implementation (Sec.

4.4.2.2).
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Table 4.6: Average MATLAB modeling measurements of low-cost system [sec]

Main Method Variation 1 Variation 2

Capture Time (T4 − T3) 0.049 0.050 0.050

Calculation Time (T2 − T1) 0.028 0.030 0.026

Show Time (T3 − T2) 0.095 0.095 0.094

Total Time (T4 − T1) 0.173 0.175 0.170

In contrast with hardware implementation timings (Tab. 4.5), show time has taken a

lot of time in average. But, in modeling case capture time is rather short, as it is not

an actual image capture, but only acquiring it by reading a file.

Please note that, main method and its variations are defined in Table 4.4.

4.4.3.2 Detection Results

In this section, we will make use of semantic metrics and some visual examples.

As expected, Hough transform based pure image processing model, introduced in

Sec. 4.4.2, has failed to achieve a high percentage in semantics. It is due to low

resolution of scratches and their scale is rather small compared to whole picture. This

is why we call this data set as Hard Set. As all the variations gave similar results, in

average, we present only main methods results in the following way:

Sensitiviy 18.48%

Specificity 98.40%

Accuracy 98.27%

To discuss the results, sensitivity is below 20%. This means that only one fifth of the

scratches were successfully found, in broad terms. This is expected, because power of

this algorithm is low, in other words it is intended to detect strong scratches, defined
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in Sec. 4.4.3. Moreover, parameters are tuned for images that are shot closer, than the

ones in the data set. In fact, those results are well enough for the needs of customer,

but fails at vague area and causes a fairly low sensitivity.

To prove our point of the results are good enough on finding many scratches, please

see Figures in 4.25.

(a) Input and Rectangular Result 1
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(b) Input and Rectangular Result 2
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(c) Input and Rectangular Result 3
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(d) Input and Rectangular Result 4

Figure 4.25: Resulting images for low-cost system modeling

4.4.3.3 Evaluation

In the figures (4.25), it is observed that the system is able to spot certain number of

scratches, and those are the ones with strong features (see Sec. 4.4.3 for definition).

The timing measurement values are very promising for a slow platform like MAT-

LAB. In hardware implementation of Raspberry Pi (Sec. 4.4.2), a faster system was
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expected. But, it should be noted that an image acquisition by camera is be included

at that system which slows down the operation slightly.

4.5 Mid-End System

4.5.1 Principles of the Mid-End System

In this section, particularly, we will introduce brief background knowledge on theoret-

ical aspect of mid-end solution. The focal point of this system is robustness. Robust

systems are able to solve a problem under a variety of conditions successfully, or

easily adapt to another problem by tuning. In this one, we have implemented a deep

learning algorithm network that is convolution based.

Segmentation method applied here can be regarded under the title supervised seg-

mentation. This type of approach needs an input and also a ground truth of this input.

Ground truth is the user defined area for true objects on an image. Specifically, our

main scope in thesis is classification of true objects.

A classic classification based supervised segmentation consists two major steps, namely,

feature extraction and decision. Features may be lines, corners, colors or more com-

plex attributes of an image object. The decision is done by machine learning, which

divides the feature space into meaningful dimensions and clusters. When an object is

a member of a certain cluster, then this object is announced as a classified object.

Neural Networks

Those are the type of network that we have chosen for learning task. Using the high

level of operation power of recent GPUs and CPUs, a computer can solve complex

mathematical problems in milliseconds. But, human brain, although being simpler

in mathematics, is able solve even more complex problems thanks to the parallel

structure inside. To fulfill tasks like image classification, artificial neural networks

are coined in 1940s. A building block of such a network would be artificial neurons.

Just like its biological counterpart, an artificial neuron has dendrites that are excited
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by other neurons and makes an impulse signal to the output, considering a threshold

[95]. A neuron function generating binary output is expressed as perceptron (Eqn.

4.6) [96].

a =
N∑
j=1

ujwj + θ (4.6)

Figure 4.26: A layered network built by neurons

In above equation w represents weights, while u is an input coming from other neu-

rons. To make it a perceptron, the activation function f(a) has to be a threshold

function.

Our network structure is feedforward, meaning signals flow through neurons in a
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single direction. Those neurons form a layered network (Fig. 4.26 and if there are

more than one hidden layer, then it is called a deep neural network.

All in all, all the neurons in the network has its own parameters for every input

synapse they have. Those parameters would make matrices and the matrices will

needed to be trained somehow. This is an optimization problem to be solved with

backpropagation methods.

Gradient Descent

Weights are updated according to cost functions. The optimizers strive to minimize

cost or errors in a network. Gradient descent is one the most efficient and popular

methods [97].

This methods tries to find a local minimum, iteratively. At each iteration, first deriva-

tive of the function is compared with previous steps. Equation 4.7 shows the how it

is derived.

w(i+ 1) = w(i) + δw(i)

δw(i) = −η∇ε(w(i))

∇ε(w(i)) = ∂ε

∂w(i)
(4.7)

To train a network single, batch or mini batch samples can be used. Batch sample

includes every single sample. Mini batch sampling that we will use, network is fed

with a number of samples. Batch sampling is strong against local minima and give

stable results, but for the cost of a long training time. Single sampling is not result in

a good optimization. So, mini batch is the middle point between. Batch size is chosen

regarding data size and hardware capabilities.
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Adam Optimizer

This is a upgrade to conventional gradient descent approach. By combining advan-

tages of AdaGrad [98] (successful at problems with sparse gradients) and RMSProp

(successful at noise problems) algorithms, Adam optimizer is claimed to achieve bet-

ter results. In machine learning, decreasing the learning rate as the iterations increase,

is a common approach. Adam handles this by itself. It also assigns a different learn-

ing rate for each trained parameter. Additionally, Adam utilizes a moving average of

the first and second momentums for updates. Another important feature of Adam is

that prior to parameter update, it introduces a bias correction. This avoids large step

sizes, and thus, divergence [99].

Backpropagation

There are many weights in a single network. Optimization is a complex one, could

not be solved by a basic single equation. The chain rule comes in action. The er-

ror propagated from output to input gradually, that is backpropagation [100]. Using

backpropagation, an equation is found for each weight so that there are same number

of equations and unknowns. This is done by propagating error through input. Then,

the derivative of those propagated errors are calculated according to the weights cor-

respondingly. On a multilayer network, backpropagation is done by chain rule appli-

cation.
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Figure 4.27: A simple deep network with weights indicated on

Examining Figure in 4.27, starting from the output layer chain rule is applied as in

Eqn. 4.8.

xk = f(W T
(L+1),kxL)

xL,i = f(W T
L,iu)

∂ε

∂ωL,j,i
=

∂ε

∂xk

∂xk
∂xL,i

∂xL,i
∂ωL,i,j
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∂ε

∂wL,j,i
= − 2

M
×

M∑
k=1

(tk − xk)f ′(W T
(L+1),kxL)(w(L+1),i,k)f

′(W T
L,iu)(uj) (4.8)

The error ε is chosen to be mean square error for above derivation. To apply gradient

descent, ∂ε
∂ωL,j,i

is needed. Starting from first output neuron to Mth with the index k,

error change with respect to weight is calculated for each neuron. Activation functions

f() varies and depends on the designers choice.

From this point on we will discuss about layers of a CNN structure. The aspects

introduced in this section so far, are implemented in every CNN. But, the remaining

are not must.

Convolution Layers

Those are of course the main type of layer in a CNN. The convolution layer actually

corresponds to a special type of feedforward network layer, where each pixel pij

corresponds to an input uj and each value wij of the convolution filter corresponds

to a weight wj .Assuming a filter size of 3 × 3 and an input size of d × n, there are

(d−2)×(n−2) neurons with (d−2)×(n−2) number of outputs. Unlike a traditional

network, which would have (d − 2) × (n − 2) number of different weight matrices,

there is only one weight matrix that is shared among all neurons in a convolution

layer. This is the most important characteristic of a convolutional neural network.

What makes shared weights possible is that the features do not change according to

spatial positions.

The transfer function Equation 4.6 corresponds to a convolution in a CNN. A simple

2D convolution with 3 × 3 weight matrix is formulated in Equation 4.10 (Note that

this equation does not take the symmetric of the filter unlike the general 2D discrete

convolution formula in Equation 4.9). Basically, one may refer to a convolution filter

as an artificial neuron given in Figure 4.29. This operation is applied on whole image
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by sliding the filter as shown in Figure 4.28.

Cij =
1∑

k=−1

1∑
l=−1

A(i−k)(j−l)B(k)(l) (4.9)

where 1 < i < D and 1 < j < N and dimensions of matrix A is D ×N

P =


p11 p12 p13 . . . p1n

p21 p22 p23 . . . p2n

. . . . . . . . . . . . . . . . . . . . . .

pd1 pd2 pd3 . . . pdn

 W =


w11 w12 w13

w21 w22 w23

w31 w32 w33



R =


r22 r23 r24 . . . r2(n−1)

r32 r33 r34 . . . r3(n−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r(d−1)2 r(d−1)3 r(d−1)4 . . . r(d−1)(n−1)


rij =

1∑
k=−1

1∑
l=−1

p(i+k)(j+l)w(2+k)(2+l) (4.10)

where 1 < i < d and 1 < j < n

Figure 4.28: Convolution is applied on the entire image.

The red rectangle in P represents 3 × 3 pixels on the upper left corner. The result is

the red rectangle in R and it is actually r22 in Figure 4.29.
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Figure 4.29: A neuron representing the filter W applied on pixels around p22.

If there are multiple channels, then the filter W becomes a 3D matrix with the same

number of channels.

In other words, convolution layers consist of filters that will be applied on each chan-

nel of the input. Since applying a filter on an image is basically a convolution, these

layers are named convolution layers. By applying filters, features of an image that

correspond to each filter is found. Similar to the architecture proposed in [101], as

the layers go deeper, the features become more complex. For example, assume that

in the first layer, vertical and horizontal edges of an image are found. In the second

layer, the outputs of the first layer, which correspond to vertical and horizontal edges

of the image, are used to find the corners in the image. Of course in real applications

the features get much more complex in the deeper layers of a network.

Pooling Layers

Pooling layers are usually used to reduce the dimensions of the output of a convo-

lution layer. These layers are needed because number of features obtained from a

convolution layer can be undesirably high. For example, assuming zero padding on

the edges so that the convolution result has the same size with the image, an RGB

image of size H ×W × C would have H ×W × (number of filters in the layer)

features. Training on such high number of features would result on problems like

overfitting. Therefore, dimension reduction is needed. There are many methods that

can be used to reduce the dimensions, such as average pooling and max pooling. The
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most preferred one is max pooling because it extracts the feature that is dominant in

that local region where the pooling is applied. This is particularly critical since this

module allows to propagate the error with the highest responses so that it decreases

the chance of vanishing gradient problem which might be frequently observed for the

averaging operations. Figure 4.30 shows max pooling and average pooling applied

on 2× 2 windows with stride 2.

Figure 4.30: (a) Image pixel values. (b) Result of max pooling for each colored

region. (c) Result of average pooling for each colored region.

Upscaling Layer

Not always downsampling is needed in neural networks. Upsampling is also needed

in neural networks for tasks like pixel-wise classification, or semantic image segmen-

tation. After reducing the spatial dimensions as in classical classification task, a CNN

built for pixelwise classification needs to construct an output with the same spatial di-

mensions of input. Thus, upsampling layers are used to increase the dimension of the

deep features. There are many methods used as an upsampling layer in CNNs. Bilin-

ear interpolation, deconvolution and subpixel upsampling are some of the important

ones.

Interpolation

Bilinear interpolation is the simplest method to upscale a 2D image. It is an extension

of linear interpolation. In linear interpolation, the effect of a known point, on the

value of the target point is inversely proportional to the distance between them. The

equation of the linear interpolation is given in Eqn. 4.11. It actually finds a point on
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a line, given one of its coordinates and the equation of the line.

y3 = y1 +
(x3 − x1) ∗ (y2 − y1)

(x2 − x1)
(4.11)

Bilinear interpolation extends this equation to 3D space, considering the 2D coordi-

nates and the pixel values. It can be seen in Figure 4.31

Figure 4.31: Bilinear interpolation

Fully Connected Layers

Fully connected layers use the feature information to reach a final class label. Nodes

of fully connected layers are connected to each output of the preceding layer and their

outputs are connected to each node of the following layer. In the last layer, there are n

number of nodes, where n equals to the number of classes. The nodes in the last layer

of the fully connected layers generally have a special activation function that will

generate a probabilistic result for each label. This activation function is generally a

softmax function, or a sigmoid function in binary classification case.

1x1 Convolution

If the aim of the network is to perform segmentation, it is a fully convolutional net-

work. The dense layer at becomes a 1×1 convolution layer with a different activation

function. In the classical classification problem, the output layer is a vector with a sin-

gle dimension equal to the number of classes. In the pixelwise classification problem,

on the other hand, the output is a 3D matrix. Its width and height is equal to those of
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input image while its depth is equal to the number of classes. So, one might say that

there is an output vector for each pixel in the image, resulting in an output of dimen-

sion Width×Height×NumberOfClasses. Particularly, one can represent a fully

connected layer in a classifier by 1 × 1 convolutions applied to single pixel images.

In this case, the output’s dimensions are 1×1×NumberOfClasses.

After the input of an artificial neuron is multiplied by the weights and summed to

a scalar, the result is fed into an activation function f(). In this section, different

activation functions will be given and their advantages and disadvantages will be

discussed.

Softmax

Softmax function (Equation 4.12) is usually used in the output layer of multilayer

neural networks that are built to do classification task. It actually calculates the prob-

ability of each class. Since we are speaking of probabilities, the sum of all softmax

results in an output layer equals to 1. Instead of making a strict choice between

classes, softmax estimates which class the input more likely belongs to. Assuming

there are M classes, softmax can be represented as:

softmax(xk) =
exk∑M
i=1 e

xi
(4.12)

Rectified Linear

Until publishing of [102], it was believed that differentiable, non linear, symmet-

ric functions were better to use in neural networks. However, [102] has shown that

rectified linear units(ReLU) makes training a neural network computationally more

efficient and faster. Due to its being differentiable everywhere except 0, it is easy to

calculate the gradient descent (Eqn. 4.13) for ReLUs. At 0, on the other hand, its

derivative is accepted and defined by the user as either 0 or 1. Additionally, since the

function does not saturate, the gradients do not vanish for very large values. There-

fore, the training is faster.

ReLU = max(0, x) (4.13)
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Figure 4.32: ReLU function

ReLu Variations

Rectified linear units somewhat ignores the negative input values. Any negative val-

ued input results in a 0 output and the gradient is 0. In order to keep the constant

gradient and to avoid the dying problem, leaky rectified linear units (LReLU) are

used. In LReLUs, the function becomes Eq. 4.14

Figure 4.33: LReLU function as given in Eq. 4.14(where α is 0.2)

LeakyReLU = max(αx, x) (4.14)

where α is a positive constant smaller than 1. Note that if α is trainable value, the

function is called parametric rectified linear unit (PReLU).

Batch Normalization

Since the datasets used in deep learning are huge, the input of network varies signifi-

cantly. Batch normalization is, as the name suggests, normalizing the data in the mini

batch and making the normalization part of the network, instead of normalizing the

whole dataset as a pre-processing method. Thus, in tasks like image classification, it

increases learning speed [103]. Additionally, [103] states that the need for dropout

layers may be excluded since batch normalization acts as a regularizer.
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4.5.2 Implementation of Mid-End System

In this section, an overview of the proposed mid-end system will be given. This

system consist of a mechanic frame, a light source (more can be added if needed) and

a Nvidia JETSON TX2 a powerful computer that is upgraded with a Standard Camera

Module, comes with development kit. The resulting system is expected to be faster

compared to low-cost one, to return more accurate image segmentation, robust and

fast enough to be a real-time solution.

The algorithm is coded mainly in Python 3.5 language, and it was chosen almost as

a must, which is due to the fact that deep learning related frameworks commonly

runs in Python. Tensorflow was the chosen framework, as it is very flexible and

good at handling background operations for such problems. The greater advantage

was that transferring a network model from PC to Jetson is quite easy, when both

devices have Tensorflow environment installed. Image acquisition is managed by a

streamer library of Python by Nvidia. In this section, a brief background knowledge

will be introduced, and moving onto implementation image acquisition and the model

designed will be discussed.

4.5.2.1 Image Acquisition

Image acquisition, in contrast with low-cost system, was not deeply studied for this

system. Although, its camera has a fewer megapixel sensor than Raspberry’s, Jetson

is capable at transferring high quality images with low noise into the main processing

board. There was less need in fine adjustment of camera specifications. Also, motion

blur was not experiences as we did for low-cost system.

Resembling to picamera firmware interface, Jetson camera can be commanded by

nvcamerasrc framework. It is a Gstreamer pipeline designed for Jetson cards created

by Nvidia itself [104]. This firmware interface makes a connection to ISP unit of the

graphical units, converting Bayer data into YUV and other types.

Unlike studied for the low-cost system in Section 4.4.2.1, there was a shallow practice

was done on TX2 camera module to acquire images. Because, the card was power-
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ful enough to process video images with high quality and FPS. Although, we may

say that Raspberry Pi camera is better in a general sense, in comparison with Jetson

Development Kit camera.

Still, we should discuss some of the properties assigned for the camera module.

Sensor Resolution 2592× 1944

Capture Format I420

Acquired Resolution 640× 480

Acquired Format BGR

White Balance Auto

Color Effects Off

Auto Exposure On

Contrast 0

Exposure Time 0.33 sec

Edge Enchancement 0

FPS 30

Those are some important parameters and majority are in their default options. Bayer

sensor resolution is chosen as 2592 × 1944, that is a high value, but it is a capability

of Nvidia Jetson to handle such high resolution frames. But, in ISP, all images are

converted 640 × 480 resolution and acquired with at least 30 FPS. The input images

comes in BGR colorspace, namely blue-green-red. There is no strong denoise filter

in the camera module hardware, acquired images are denoised with software tools,

instead. By the way, exposure time is not applicable for video operations, otherwise,

default FPS would be around 3.
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4.5.2.2 Algorithm and Hardware Results

This section includes depiction of deep neural network model and also visual outputs

from a real-time session as in Section 4.4.2.2. Actually, what time consuming is in

this implemention was preparing the software medium. Because, design and also

coding have been done during modeling and explained in Section 4.5.3.

In literature, there are some small neural network models like Tiny YOLO, Mobile

SSD, or Squeezenet [105]. But even those consist of at least 8 convolutional layers

and they are intended to segment more complex objects like cat, dog, car, human

etc. As our main aim is to detect linear scratches, it was decided to propose a simpler

neural network architecture. The convolution deep neural network designed consist of

4 main convolution blocks (Fig. 4.34), maxpooling after first three, and upsampling

in the end with a 1 × 1 convolution layer. Whole architecture is demonstrated in

Figure 4.35.

Figure 4.34: Operations in a single convolution block
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Figure 4.35: Whole CNN architecture for mid-end system

Each convolution block starts with a 3 × 3 convolution operation with 1 pixel stride.

The number of filters depend on the parameter feature depth. This parameter is

the main one changing model size and timings. In Section 4.5.3, this parameter is

changed in 64, 128 and 256 numbers. But both model nominated for hardware side

are made with 256 feature depths, Tab. 4.12.

Here are the convolutional filter numbers for each tensor channel, given in Table 4.7.

Table 4.7: Number of convolution filters per tensor channel in blocks

Block Number Filter Count

1 32

2 64

3 128

4 256

After each convolution batch normalization, parametric rectification and 2 × 2 max-

pool are applied in order. All of them are theoretically introduces in the previous

section. In the end of 4 convolution blocks, upsampling is done by bi-linear interpo-

lation, which also functions as resizing. All tensors are resized to original image size
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and concatenated. This 3-channel matrix is filtered with 1× 1 convolution layer. The

soft results are obtained with a final softmax operation.

Algorithm 2 Algorithm for Mid-End Method

Library Import

< Time Tick 1

Parameter ← CorrespondingV alues

MemoryAllocation

procedure WITH TENSOR SESSION

if Training = 0 then

Restore Model

else

Initialize Model

end if

< Time Tick 2

while True do

< Time Tick 3

Capture Image

Gaussian Blur

Light Source Detect

CNN Segmentation . (see Fig. 4.35)

Result Showing . Optional

< Time Tick 4

end while

end procedure

Algorithm, first, starts with introducing libraries and adjusting parameters, like fea-

ture depth, Gaussian kernel size, height and soft filters. Tensorflow framework func-

tions with allocating everything in the beginning and starting a session for implement-

ing those allocated units. In session, model is either restored or saved depending on it

is a training or test run. Gaussian blur is applied with a 7× 7 kernel. Finally, images

goes through custom network of ours (Fig. 4.35), soft results are thresholded with

soft filter of 10 and rectangles with less than height filter (50 pixels in this case).
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This network model is implemented in modeling (Sec. 4.5.3) and also in the following

real-time algorithm, run on Jetson TX2. Two parameters sets chosen for modeling

(Model A and B) are given in Table 4.12.

As long as this is a hardware implementation in practice, it is not possible to gener-

ate a ground truth. Because, the input images are, in fact, real-time captured frames.

Consequently, it is not possible to discuss sensitivity, specificity and other segmenta-

tion metrics in this case. The evaluation will be on timing and intuitive observation

on the resulting images. In the following figures, the soft results and spotted scratches

with bounding boxes are given for both Model A (Fig. 4.36) and Model B (Fig. 4.37).

(a) Soft and Rectangular Result 1
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(b) Soft and Rectangular Result 2

(c) Soft and Rectangular Result 3
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(d) Soft and Rectangular Result 4

(e) Soft and Rectangular Result 5
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(f) Soft and Rectangular Result 6

(g) Soft and Rectangular Result 7
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(h) Soft and Rectangular Result 8

Figure 4.36: Resulting images for mid-end system hardware implementation (Model

A)

The results above presented in Figure set 4.36, all in all Jetson TX2 performance

on finding scratches with such a simple network seems reasonable. In some cases,

scratch clusters are considered to be one object like in Fig. 4.36a-c-d. This is due to

soft results are thresholded with soft filter parameter, and if the blobs are connected

in neighborhood, somehow, everything is merged to be single object. Model A seems

to fulfill the task successfully enough, in the same way, it had high sensitivity and

specificity in modeling experiments (Table 4.14).
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(a) Soft and Rectangular Result 1

(b) Soft and Rectangular Result 2
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(c) Soft and Rectangular Result 3

(d) Soft and Rectangular Result 4
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(e) Soft and Rectangular Result 5

(f) Soft and Rectangular Result 6
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(g) Soft and Rectangular Result 7

(h) Soft and Rectangular Result 8

Figure 4.37: Resulting images for mid-end system hardware implementation (Model

B)
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Just like its counterpart, Model B was also successful on spotting linear objects in our

real-time images. This model had a slightly better loss metric, meaning we expected

sharper linear shapes in the soft results. Figures 4.37e-f-g-h are proof of the fact.

In addition to those models trained by Hard Set, we also made a smaller experiment

with the model of which training set is NEU Set. As expected real-time images we

had was not suitable with NEU Set. Because, NEU set images consist of microscopy

and close-up shots. There was a subtle problem of image size in this run, due to

the fact that model was trained with 200 × 200 images, but real-time photos can not

go as small as that. The solution was taking 600 × 200 images, cutting it into three

and feeding the system with 3 images in batches. Here in Figure 4.38, results are

presented. As expected, light source is predicted as a scratch.

(a) Soft and Rectangular Result 1
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(b) Soft and Rectangular Result 2

Figure 4.38: Real-time experiment of model trained with NEU data set on Jetson TX2

4.5.2.3 Conclusion

To sum up, both models trained with Hard Set or a data set with correct proportion

and image size, handle the job successfully. The CNN architecture designed here is

simple, yet achieving good results. Jetson TX2 was really a necessary, as it can run

such many number of convolution in reasonable time. In Table 4.8, FPS values are

given depending on the feature depth parameter. As presented in Table, FPS values

are quite high and definitely whole operation is considered as real-time.

Table 4.8: Feature Depth effect on FPS

Feature Depth FPS

256 9− 10

128 14− 15

64 ∼ 30

Time measurement are with putting time ticks in proper places. In Table 4.9, nam-

ings are indicated with which ticks. Prepare time is around 7.5 seconds and almost
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the same for every different model run.

Table 4.9: The time ticks used for each time measurement

Name Ticks Used

Prepare Time (T2 − T1)
Loop Time (T4 − T3)

4.5.3 Simulation Results for Mid-End System Algorithm

For modeling mid-end system, Tensorflow framework was chosen as it is very flex-

ible for learning based designs and also handles a lot of operations automatically in

behind [106]. The modeling platform and dependencies of mid-end system design are

Tensorflow v1.6, OpenCV v3.4.2, CUDA v9.0, cudNN v7.04, and Linux OS v16.04.

On the given software medium, we coded with Python 3.5.2 version. Tensorflow takes

care of CUDA features. CUDA is another language, that results in a firmware con-

trolling software for parallel processing on a graphic cards. Parallel processing is the

necessity for learning tasks for 2-D array problems, as there are logical and algebraic

operations in high numbers. The cudNN is a library dependency of Nvidia which

is high-performance building blocks for applications such as convolutions, activation

functions, and tensor transformations [107].

There are 16 models trained in this thesis work with chosen parameters. All the

models have the same layer design, but they differ in batch size, training iterations,

data set and feature depth. Some of the results are gathered in training sessions and

others in test runs.

4.5.3.1 Timing Results

The first concern was on the timing performance while designing the models, as we

needed a model that could work in real-time. Real-time ability is not the case for deep
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learning models, majorly. Here is timing results are given for Hard set and batch size

of 8 in Table 4.10.

Table 4.10: Timing results for deep neural network models (Hard Set, batch size:8)

# FD Iter. No Total Training Time Prep. Time Loop Time

1 256 200 17.42 sec 2.39 sec 0.039 sec

2 256 5K 308.12 sec 2.42 sec 0.039 sec

3 256 10K 641.61 sec 2.40 sec 0.038 sec

4 256 20K 1318.37 sec 2.36 sec 0.039 sec

5 128 200 11.53 sec 2.39 sec 0.031 sec

6 128 5K 174.65 sec 2.37 sec 0.030 sec

7 128 10K 346.85 sec 2.56 sec 0.030 sec

8 128 20K 744.34 sec 2.38 sec 0.030 sec

9 64 200 7.91 sec 2.39 sec 0.026 sec

10 64 5K 110.00 sec 2.36 sec 0.026 sec

11 64 10K 215.97 sec 2.38 sec 0.026 sec

12 64 20K 447.20 sec 2.42 sec 0.026 sec

Total training time obviously is taken during training session, and expresses complete

session time. The second and third values are taken during run time for data set test,

in average. In preparation time, system allocates memory and restores models before

starting a test loop. This value seems to be constant for all cases. But, loop time

which will directly be FPS in hardware implementation goes low with less feature

depth, as expected. Because there much fewer convolutional operations for shallow

networks.

Alternative models of #4 and #2, with batch size changed to 2, gives training time

of 1351.43 seconds and 320.02 seconds, respectively. Other two values do not even

change as much as training time.

A model trained by NEU data set, with 256 FD, 8 batch size for 20000 iterations

has taken around 488 seconds in total. The image size affects critically, in the end.
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Similarly, average loop time is as low as 0.015 sec for this data set.

All in all, preparation time does not alter significantly. Training time goes up with

more iterations and more features to be examined. But, system would work faster in

run time if depth of features were less.

4.5.3.2 Detection Results

In this section, we will examine segmentation results of mid-end algorithm depending

on metrics and visuals for network models. We will start with loss during training

time, showing how it decreases over iterations, Fig. 4.39. It is lowered drastically

after 100 iterations almost. So, average loss does not change significantly after this

point.

Figure 4.39: Decrease in loss versus iteration
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Examining average loss values for test run in Hard set (Fig. 4.40), implies that loss

decreases with deeper networks. Average loss also converges to very low values as

number of iterations gets high.

Training Hard set with a 256 feature deep network for 20000 iterations, but with

a batch size of 2, has given the best average loss, precisely 0.0124. The best we

acquired with 8-batch models was 0.0125, that is still very successful. That result

nominates the model (as Model B) to the next step, hardware implementation.

NEU data set modeling could go as low as 0.23 only. This is a high value compared

Hard set. The reason behind may be image size difference and the mean area of an

scratch object covers on image samples.

Figure 4.40: Loss versus number of iterations for different feature depths (Hard Set,

batch size:8)

The loss results above demonstrates that feature depth is important on segmentation
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performance. Moreover, batch size has a slight effect on the loss. But, this parame-

ter also shows that 20000 iteration may not be that advantageous compared to 5000

iteration training. At this point, we should have a look at binary metrics.

Table 4.11: Semantic metric results for deep neural network models (Hard Set, batch

size:8)

# FD Iter. No Accuracy(%) Sensitivity(%) Specificity(%)

1 256 200 64.0 97.1 63.9

2 256 5K 98.5 82.1 98.5

3 256 10K 98.8 90.8 98.8

4 256 20K 98.9 91.5 98.9

5 128 200 58.5 99.9 58.4

6 128 5K 99.0 81.3 99.0

7 128 10K 98.9 89.5 99.0

8 128 20K 99.1 90.6 99.1

9 64 200 58.5 99.9 58.4

10 64 5K 98.9 82.8 98.9

11 64 10K 98.9 88.2 98.9

12 64 20K 98.8 90.2 98.8

The binary metrics in Table 4.11, clearly display that some more iterations are needed

after 5000 point. Please note that, there are shallow networks in the Table, with a high

sensitivity or specificity. The proper examination in this evaluation should be two-

sided. In other words, it is better to check if both metrics are acceptably high. For

example, model number 9 may be misleading with a sensitivity of 99% and specificity

of 58%.

Going over the binary metric results, model #4 draws attention with a successful

segmentation. It is the second model (namely, Model A) which will be experimented

on real-world applications. Model B still promises good results with an accuracy of

98.8% and sensitivity 91.5%.
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Here are some visual outputs of both nominated models in Figures 4.41, 4.42. Both

are well-done on the task, but Model B is more aggressive and might need a higher

height filter. The filters that turns soft results to rectangular boxes are explained in

Section 4.5.3.3.

(a) Soft and Rectangular Result 1

(b) Soft and Rectangular Result 2

(c) Soft and Rectangular Result 3
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(d) Soft and Rectangular Result 4

Figure 4.41: Resulting images for mid-end system modeling (Model A)

(a) Soft and Rectangular Result 1

(b) Soft and Rectangular Result 2
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(c) Soft and Rectangular Result 3

(d) Soft and Rectangular Result 4

Figure 4.42: Resulting images for mid-end system modeling (Model B)

4.5.3.3 Evaluation

Regarding high timing performance (Sec. 4.5.3.1), precision in the dataset (Sec.

4.5.3.2) and robustness it serves, this model is qualified for a hardware implemen-

tation for the next stage.

The models differ in parameters like batch size, feature depth and number of iterations

in training step. Some reasonable values are determined and evaluated with the help

of data sets and segmentation metrics. Eventually, two of those models take attention,

Table 4.12.
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Table 4.12: Two chosen models for hardware experiments

Strength Feature Depth Batch Size # of Iterations

Model A Best Binary Metrics 256 8 20000

Model B Best Loss 256 2 20000

Both models shows sufficient timing performances for real-time application. In eval-

uation of such models, the file size of the whole parameters is important, actually.

Because, the network designed would be transferred to a hardware in the end and this

task may be impossible or inefficient for excessively large models. This is a problem

for some models and coding studies are done for the sake of compression. The total

file size goes up to 240MB for AlexNet, 552MB for VGG-16 [108].

For our models, only feature depth parameter affects the file size, as it is directly con-

nected to the number of convolutional filters (Tab. 4.13).

Table 4.13: File Sizes of our networks

Feature Depth Model File Size

256 4.9 MB

128 1.4 MB

64 523.5 kB

Finally, there are two more parameters of test-run. Those parameters has nothing

to do with training, but can affect run time or test run results. They come in action

when converting probabilistic soft results to discrete rectangular results, so they have

a role in semantic segmentation, but for loss function. Those are namely, soft filter

and height filter, fixed at values 10 and 25 respectively. Soft filter is the threshold for

soft result to create a binary image, while height filter eliminates small rectangular
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boxes around blobs in this binary.

Still, semantic metrics can be improved by tuning those filters. The table below (Tab.

4.14) proves that trained models still can be developed during run time applications.

Table 4.14: Fine-tuning of filters in run time on trained models

Soft Filter Height Filter Sensitivity Specificity

Model A
5 10 97.3 98.2

5 25 97.2 98.2

Model B
5 10 96.4 98.6

5 25 95.9 98.7

120



CHAPTER 5

CONCLUSION AND FUTURE WORK

This is the last part of the document apart from Appendices. There, final words on

the work and a summary of all effort. Also, this part is supported with some idea to

develop current system might be able to make it more efficient, more functional or

less costly.

5.1 Conclusion

All in all, literature is reviewed enough and some techniques are picked among. Com-

parisons are made by modeling in controlled experiment, scientifically. And the result

are presented for two different systems in ways as equal as possible.

Both systems may be preferred depending on the budget and environmental terms.

Low-cost solution seems to be genuinely close to the lowest price level that such

system could go. It is fairly successful, but prone to change in environmental factors.

That can always be solved by fine tuning and better equipment, though.

Mid-end solution, otherwise, is completely robust and still in the price grades of

acceptable as inexpensive. The training time is really short compared to popular net-

works and method is appropriate for supervised learning to be supported by workers.

In fact, a correct image acquisition was a main objective at first. Because, datasets,

which is the essence of neural network training, are formed by those images. Also,

the idea was that even a perfect linear object detection algorithm would not solve the

problem, if the images acquired was under a certain quality and other measures. So,

a considerable amount of time was taken by hardware studies and image forming by
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cameras.

Another observation was that it is always easier to model on a software platform, but

a hardware system to be finalized has its own hardships and disadvantages. In such

works, as ours, software and hardware grow together, and even might make changes

in each other. This last sentence summarizes the most difficult aspect of this and

similar studies. Such studies form a bridge between distant visions of academics and

industry, or theory and practice.

In short, we tried follow a scientific path by working over related work, examining

potential hardware and making software models in advance. In the end, both meth-

ods proposed fulfilled app. more than 90% accuracy and can be used for different

task of the same problem in real-time inspection. Please, see next section for further

improvements.

5.2 Future Work

This section includes some idea on future possible work. Some of those directed to

improve current methods, while some other may bring a whole new idea and require

substantial amount of work.

Illumination techniques can always be developed. For example, there was an idea

of light matrix in the beginning, so that system could span whole metal sheet. A

primitive drawing is included in Figure 5.1. For switching, the circuit given in the

end of Section 4.1.

Besides, other illumination configuration 2.4 can be tried. Especially, a polarizer

other that a cheap linear one 2.9, for example, circular filter may be helpful. A ring

light would possibly fail as it will create a large bright area in the middle, on the other

hand, a structured light configuration can always improve emphasize on scratches.

Low-cost method does not consider the colors, in fact. It only focuses on the gra-

dient of the original raw gray image. But, it can make use of the color of a scratch
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Figure 5.1: Primitive drawing of matrix of lights idea (numbers may vary)

which is white in the center and gets darker gray around (e.g. Generalized Hough

Transform). In fact, some other aspects like randomness, line thickness checks and

other application improvements can be done on Standard HT, with the help of this

amazing study [91].

The CNN based model may be implemented on the Raspberry Pi 3. As seen in the

Graph 3.4, Raspberry can handle small popular networks. But a smaller CNN model

can be implemented (less than 9 convolutional layers) to get FPS greater than 1-2.

Additionally, we may take advantage of a neural network USB stick, e.g. Movidius

[109].

As this method needs a fine tuning under different environment circumstances, we

123



could consider generating a learning model with the Hough Transform based algo-

rithm. As a result, with supervised learning, the parameters would be fine tuned

[110] [111] [112].

In addition, Raspberry Pi performance can be enhanced by software overclocking

[113]. Also, Python is a language for easier and neat research-development, but C++

is a better choice when it comes to final product. With these improvements a perfor-

mance boost of 30% can be expected.

Mid-end method is also entirely open to improvement. In fact, this can be enough

workload for even a new thesis. The proposed neural network may include some

more or less layers of convolutions. Those convolutions may be separated into 3× 1

and 1 × 3 instead of a single 3 × 1. In the separated case, there will be 6 parameters

instead of 9 parameters as in the current version. Eventually, this will decrease the

model size and operation time [114].

We could have gone for a more complex segmentation network like U-NET [115],

which makes upsampling by deconvolution using information from earlier convolu-

tions. Otherwise, there we may add a dilated convolution layer. This type adds zeros

between numbers of 3× 3 convolution kernels. In this way, with the same number of

operations, o larger area can be analyzed by a single convolution layer [116].

A definite update would be using a professionally generated data set. A fixed distance

for the final product should be determined before. After image acquisition, with a

professional surface inspector, ground truth would be generated. This data set will

result in better loss and accuracy performance, for sure.

Finally, we might perform a broader parameter adjustment. For example, we have not

changed learning rate at all, from its default 0.001. Furthermore, heigth filter and soft

filter could be changed in a more selection. Those parameters experimentally were

decided to take their fixed values. They only affect sensitivity and specificity, though.

Other surface defects may be added. However, this need a lot more time and

effort, as each type of defect needs a special study. But, for deep learning methods
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robustness serves. Same networks may be successful without extra work.
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APPENDIX A

AUXILIARY TOOLS

A.1 Some Methods Commonly Used in Image Processing

In the following section, a short explanation for each method is given concerning

image processing applications. Note that, those methods may or may not be imple-

mented in our project. Some of them were implemented at some point, then decided

to be inefficient or unnecessary. Some of them are only explained shortly due to their

place in the literature.

A.1.1 Canny Edge Detector

This is method for detection of edge features in an 2-D array, alternatively an image.

The original algorithm is developed by J. Canny in 1986 [117]. The method is formed

by a multi-stage approach.

Gaussian filtering is the first step in the original paper to get rid of the noise related

false edges. This blurring technique may or may not be included in Canny Edge

Detector functions of different software languages. In our case, this step separately

examined (App. A.1.5) and also coded before Canny filter.

Intensity gradient of the image is , in fact, the major feature data to be analyzed

by most of the edge filtering algorithms. There many matrix filters to unveil gradient

features of an image: Sobel, Prewitt, Roberts. The kernel size may be user-defined,

but it conventional to use 3×3 kernels, as they the smallest possible in odd number. A
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Sobel filtered image consists of two feature extractor in horizontal (Gx) and vertical

(Gy), see Eqn. A.1 [118].

A : inputimage

Gx =


+1 0 −1
+2 0 −2
+1 0 −1

 ∗ A

Gy =


+1 +2 +1

0 0 0

−1 −2 −1

 ∗ A

Gsobel =
√
G2
x +G2

y (A.1)

Non-maximum suppression is an edge-thinning technique used, because a good

edge detector should return center point of a thick edge. Figure A.1 illustrates this

method: every pixel is checked if it is a local maximum in the gradient direction.

Edge, in the example, is vertical. Point A is checked if it is a maximum in relation

with B-C points, which are points on the gradient direction. If so, Point A stays as an

edge pixel, otherwise suppressed.

Figure A.1: Non-maximum Suppression [18]

Double thresholding is one of the novelties of Canny Edge Detector. This step is

also called Hysteresis Search, due to tracking mechanism with two different thresh-

olds. The remaining pixels with gradient intensity higher thanmaxV al (Fig. A.2) are

considered strong edge pixels. Anything lower thatminV al are discarded in the same
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fashion. The values between are checked if they are connected to a strong edge pixel

with 8- or 4- connectivity (user defined). If so, they are picked in the resulting edge

map, as well. After double thresholding step, Canny Edge Filtered image is acquired.

Figure A.2: Double Hysteresis Thresholding [18]

A.1.2 Otsu’s Threshold Method

This automatic thresholding method was used in early stages of coding. As it is highly

related to our topic, it should be briefly mentioned in this context. This method could

have used at mask thresholding step (fixed number in current version of the code) and

also can help at Hough, Gaussian or CLAHE parameter choices.

Otsu method aims to divide given image into two classes (foreground, background)

such that intra-class variance (Eqn. A.2) is minimized. This variance is calculated as

weighted sum of variances of those two classes [119]:

σ2
w(t) = ω0(t)σ

2
0(t) + ω1(t)σ

2
1(t) (A.2)

ω0(t) =
t−1∑
i=0

p(i)

ω1(t) =
L−1∑
i=t

p(i)

L: number of histogram bins, t: Otsu’s Threshold, p(i): pixel count at bin i
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A.1.3 Morphological Operations

In any image processing application, working with masks, binary or gray images, it

is probable to encounter a morphological operation (also Mathematical Morphology).

Those operations are in fact , sliding matrices with different kernel shapes (structuring

elements), values and simple logical rules. Consequently, a new image of the same

data type is obtained, with desired filtering applied. This filtering operation may

be removing holes, eliminating certain shapes pixel clusters, detection certain blobs,

extracting granular shapes and so on. The theory is supported by many fields of

math, mainly topology and geometrical continuous-space concepts like convexity,

connectivity, geodesy. On the other hand, what we are going to include shortly are

the most simple operation: dilation, erosion , opening and closing. However, there are

some other popular morphological transforms in image processing literature [120]:

• Hit-or-miss Transform

• Pruning Transform

• Skeletonization (medial axis trans.)

• Thickening, Thinning

• Watershed Transform

• Reconstruction

• Granulometry

• Geodesic Distance

• Top-hat, Bottom-hat Transforms

• etc.

Dilation is one of two most basic operations in this context. A user-defined struc-

turing element (B) is windowed around the image, and for every foreground pixel of
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input image (A), structuring element is superimposed. This operation is shown with

following equation (Eqn. A.3) (Fig. A.3a):

A⊕B =
⋃
b∈B

Ab = {z ∈ E| (Bs)z ∩ A 6= ∅} where (A.3)

Bs = {x ∈ E| − x ∈ B}

Erosion is the other basic operation, and the dual of dilation. A user-defined struc-

turing element (B) is windowed inside foreground pixels of input image (A) this time.

Only those pixels correspoding to center point of B remain, if whole structuring el-

ement fits in foreground area of A. Formally the operation is shown with following

equation (Eqn. A.4) (Fig. A.3b):

A	B =
⋂
b∈B

A−b = {z ∈ E|Bz ⊆ A} where (A.4)

Bz = {b+ z|b ∈ B},∀z ∈ E

Image opening is simply an erosion ofA byB, followed by dilation by same struc-

turing element (Eqn. A.5). This basically removes shapes smaller than B element,

but does not distort other details in A (Fig. A.3c).

A ◦B = (A	B)⊕B (A.5)

Image closing is simply an dilation of A by B, followed by erosion by same struc-

turing element (Eqn. A.6). This operation closes the holes and makes connections

between foreground of A depending on element B (Fig. A.3d).

A •B = (A⊕B)	B (A.6)

143



(a) Dilation (b) Erosion

(c) Opening (d) Closing

Figure A.3: Basic morphological operations in image processing [19]

A.1.4 Histogram Equalization

This is another image processing tool, of contrast adjustment. The algorithm is based

on the histogram of the image, as the name suggests. Histogram of an image is count

of pixels divided into intensity bins that has the same gray value. If an image has a

histogram distribution that is concentrated in a small region, then it is low contrast. To

make details visible without changing total brightness, histogram equalization is used

as a common method. By memorizing a look-up table, the operation can be reversed
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easily.

To understand main transform, we should state what a CDF is. Cumulative Distri-

bution Function is the sum of probabilities for given index and indexes before. So,

starting from the first bin it accumulates the pixel probabilities (Eqn. A.7). Here,

px(i) denotes the probability of a pixel to be found in a histogram bin i of histogram

of image x. The number bins L is typically 256 [121].

cdfx(i) =
i∑

j=0

px(j) where (A.7)

px(i) =
ni
n
, 0 6 i < L

Using knowledge of CDF, the aim is to acquire a single slope line on CDF graph

(Fig. A.4d). Because, this is equivalent to having a uniform histogram, in which the

contrast distribution is perfect. A general formula for the method is given in Eqn.

A.8. An example in Figure A.4, clearly shows improvement in contrast.

h(v) = round

(
cdf(v)− cdfmin

(M ×N)− cdfmin
× (L− 1)

)
where (A.8)

M ×N : image dimensions, cdfmin : minimum value of CDF, L : number of bins
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(a) Before Histogram Equalization (b) Initial CDF and histogram

(c) After Histogram Equalization (d) Transformed CDF and histogram

Figure A.4: Histogram Equalization with images, CDFs (black lines) and histograms

(red bins) [20]

The most significant downside of equalization using whole image histogram is that it

also amplifies noise. Modifications on this method, hence, use multiple histograms

(subhistograms) for local contrast dependence. A widely used variation is called

Contrast Limited Adaptive Histogram Equalization (CLAHE), in which a window is

sliding across the image and applies histogram equalization in those tiles separately

[21]. While doing so, histogram is clipped by a defined value and clipped pixels

are distributed uniformly to the rest of the histogram, as in Figure A.5. Suggested

parameters are 8× 8 tile size and 3-4 clip limit (or contrast limit) [92].
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Figure A.5: CLAHE histogram clipping [21]

A.1.5 Gaussian Filtering

Gaussian filters are in low-pass characteristics, and used in many applications. But,

here we will explain shortly its role in image filtering. The main purpose of a Gaus-

sian filter applied on an image is blurring. This may be due to intended blur effect,

however, in many cases its power to eliminate noise. To prevent false detection, the

image is smoothed.

Figure A.6: Digital Gaussian Filter with different kernel sizes [22]

A Gaussian kernel is the matrix representation of this method, to be convolved with

the image by sliding window procedure. Those kernels are digitized (quantized) ver-

sions of smooth Gaussian functions (Fig. A.6), and usually depicted in square form.

147



Below, an equation (A.9) for kernel with size (2k + 1)× (2k + 1) is given [122]:

Hij =
1

2πσ2
exp

(
−(i− (k + 1))2 + (j − (k + 1))2

2σ2

)
; 1 ≤ i, j ≤ (2k + 1) (A.9)

Choosing a Gaussian kernel with the correct size for specific problem is important.

A large Gaussian filter may reduce SNR in whole image, while edge details may be

lost in the same proportion, so that edge features could be harder to find. Kernel with

sizes 3× 3 are 5× 5 are commonly used [123].

Lastly, sigma σ parameter denotes the square root of standard deviation. The greater

sigma would result in more blurred image. There is no single way to determine this

parameter which is user-dependent. In software languages, it is usually default valued

(commonly 0.5) or calculated by kernel size (see Eqn. A.10, for OpenCV [124]).

σ = 0.3× ((ksize− 1)× 0.5− 1) + 0.8 (A.10)

A non-square shaped Gaussian Filter is found by matrix multiplication of two one-

dimensional filters. For example, multiplying 7 × 1 and 1 × 3 kernel sized filters

results in a 7× 3 filter.

A.2 Hough Transform

Classical Hough Transform aimed to be able to detect imperfect lines in a simple way.

Given a 2-D matrix (an image) with binary pixel values, either 1 or 0 each. Then for

each pixel having the value 1 following line equation is solved in Hesse form

r = x cos θ + y sin θ[79]

Here r stands for the perpendicular distance of the line to the origin. Note that, every

language and framework has its own origin definition, but it is usually located at

upper left or lower left corner of the image. In a few cases, it located at the center.

Furthermore, θ is the angle that x-axis makes with the perpendicular line from origin
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to the line with given equation. Depiction of both parameters is given in the following

Figure A.7.

Figure A.7: Demonstration of line equation parameters [17]

Then, a 2-D matrix is generated for each r and θ value. The step size for each param-

eters are defined by user. It is usual to enter step of 1 pixel for r and 1 degree for θ.

This 2-D matrix is called Hough space. For each pixel having value 1, the number in

the cell corresponding (r, θ) pair in Hough space is incremented.

After, all image pixels with value 1 are visited, depending on the parameter Hough

threshold, the line candidates in accumulator matrix are filtered. This filter may be

directly thresholding whole matrix or may be local maxima search. The main trans-

form ends here returning orientation and distance to origin information of lines [78].

Next step may be finding pixels and line location that matches with the strongest line

candidates.

Here, is a toy example of an image having 2 different lines. Black pixels have value

1, while white pixels are 0. In Figure A.8b, resulting Hough space is given. Please

notice that there are two points that accumulation has high values.
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Figure A.8: A Hough Transform example applied to an image with 2 lines [17]

A.2.1 Variation of Hough Transform

In literature, Standard Hough Transform logic did not stop expanding until today. Al-

though, there are still some improvements for line detection in this manner [80] , usu-

ally new Hough Transform covers other shape detection. Methods with the purpose of

multi shape detection are called Generalized Hough Transform [81]. The most pop-

ular one is obviously circles [82] and ellipses, in other words curvatures. Those new

methods often points to slowness and memory demands of original method. Some

of them proposed solution based on randomization and RHT (Randomized Hough

Transform) is coined [83]. In the same way, others make some pre-estimations (e.g.

circle radius) to limit candidates [84].

Probabilistic Hough Transform has a significant importance as it is almost 30%

faster in general [85]. The idea behind is elimination of some points randomly to

lower the number of operations in a single image. But in OpenCV implementation,

the results were not satisfying that we did not prefer to use this method.
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Adaptive Hough Transform also called Multi-Scale Hough Transform, is another

decent method. In that one, the way of how to find peaks in accumulator matrix,

changes. There are 2 more parameters that come in action called srn and stn. Those

parameters divide corresponding step sizes of r and θ, resulting numbers would be

accurate accumulator resolution. Consequently, two level approach is implemented

in Hough space [86]. This transform yields better result at finding weak lines, but

operation time rockets up (from 0.15 seconds to 2 seconds) in OpenCV frame, so it

was not preferable.

Fast Hough Transform in fact, divides and conquers the image given. It, recur-

sively, aparts the image given into smaller rectangular area from low to high reso-

lution, while calculating Hough Transform for each. If an area cannot exceed the

threshold, then that area is skipped for further transforms. In short, number of candi-

dates is limited and operation count is decreased [87].

One of recent articles made a new approach to simple accumulation function, and

changed to a complex one that considers edge pixel with small weights. In this Canny

(App. A.1.1) resembling approach, they take stronger edges for accumulation. This

phenomenon of edge weight consideration is called isotropic surrounding suppres-

sion. Their objective is to reduce false positives in real-world images [88]. Another

one made use of parallel process power of FPGAs [89].

Having difficulties on choosing the right Hough Transform, there are valuable stud-

ies on surveying HTs [90]. All in all, Hough Transform has proven itself to be a

great tool, as there are more than 2500 published material concerning generalization,

improvement, variant and application of Hough Transform [91]. After examining

variations, and experimenting several, we have decided to continue with the original

approach to keep it smart and simple.
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