
END-TO-END NETWORKS FOR DETECTION AND TRACKING OF MICRO
UNMANNED AERIAL VEHICLES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CEMAL AKER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2018

Approval of the thesis:

END-TO-END NETWORKS FOR DETECTION AND TRACKING OF MICRO
UNMANNED AERIAL VEHICLES

submitted by CEMAL AKER in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. Sinan Kalkan
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Assist. Prof. Dr. Ramazan Gökberk Cinbiş
Computer Engineering Department, METU

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering Department, METU

Assoc. Prof. Dr. Erkut Erdem
Computer Engineering Department, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: CEMAL AKER

Signature :

iv

ABSTRACT

END-TO-END NETWORKS FOR DETECTION AND TRACKING OF
MICRO UNMANNED AERIAL VEHICLES

Aker, Cemal
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Sinan Kalkan

September 2018, 64 pages

As the number of micro unmanned aerial vehicles (mUAV) increases, several threats

arise. Hence, there is a need for a system that can detect and track them. In this

thesis, an object detection model based on convolutional neural networks for mUAV

detection, and a novel end-to-end object tracking architecture are proposed. To solve

the scarce data problem for training the detection network, an algorithm for creat-

ing an extensive artificial dataset by combining background-subtracted real images is

proposed. It has been shown that the created dataset is adequate for training well per-

forming networks and that the system can detect and track various types of mUAVs

in challenging environments.

Keywords: Object Detection, Object Tracking, Convolutional Neural Networks, Neu-

ral Turing Machine, Deep Learning

v

ÖZ

MİKRO İNSANSIZ HAVA ARAÇLARININ TESPİTİ VE TAKİBİ İÇİN
UÇTAN UCA AĞLAR

Aker, Cemal
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Sinan Kalkan

Eylül 2018, 64 sayfa

Mikro insansız hava araçlarının (mİHA) sayısı arttıkça, çok çeşitli tehditler gündeme

gelmektedir. Bu yüzden, bu araçları tespit ve takit edebilen sistemlere ihtiyaç duyul-

maktadır. Bu tezde, mİHA tespiti için evrişimsel sinir ağı tabanlı uçtan uca nesne

tespit modeli ile birlikte, özgün bir nesne takip mimarisi önerilmiştir. Tespit ağını

eğitmek için yetersiz veri problemini çözmek adına, arka planı temizlenmiş gerçek

imgeler kullanan geniş çaplı veri kümesi oluşturma yöntemi önerilmiştir. Oluşturulan

veri kümesinin, iyi çalışan sinir ağları eğitmek için yeterli olduğu ve sistemin zorla-

yıcı ortamlarda çok çeşitli mİHA türlerini tespit ve takip edebileceği gösterilmiştir.

Anahtar Kelimeler: Nesne Tespiti, Nesne Takibi, Evrişimsel Sinir Ağları, Nöral Tu-
ring Makinesi, Derin Öğrenme

vi

To my family and beloved ones.

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Sinan Kalkan
for his guidance, support, friendship, encouragements and toleration throughout the
preparation of this thesis.

I would like to thank Hande Çelikkanat for her kind friendship, encouragements and
help. She was the one who hold my hands when I got stuck.

I would like to thank my labmates Irmak Doğan, Osman Tursun, Ezgi Ekiz, İlker
Bozcan, Negin Bagherzadi, Yunus Terzioğlu, Sera Büyükgöz and Fatih Can Kurnaz.

I would like to thank NVIDIA Corporation for the hardware support. I would also
like to thank Turkish Scientific and Technological Research Council (TÜBİTAK) for
their financial support during my M.Sc. studies.

Last but not least, I would like to thank my family and beloved ones for being always
with me and their support originating from their invaluable hearts.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ALGORITHMS . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Definition . 2

1.2 Contributions . 2

1.3 Organization . 3

2 RELATED WORK AND BACKGROUND 5

2.1 Object Detection and Localization 5

ix

2.1.1 Classical Methods 6

2.1.2 Single Stage Detectors 8

2.1.3 Two Stage Detectors 9

2.2 Object Tracking . 10

2.2.1 Single Object Tracking 10

2.2.2 Multiple Object Tracking 13

2.3 mUAV Detection and Tracking 14

2.4 Recurrent Neural Networks and Variants 15

2.5 Neural Turing Machine . 19

3 A SINGLE SHOT DETECTOR BASED MUAV DETECTION 21

3.1 The Architecture . 21

3.2 Training Details . 24

3.3 Detection Details . 25

4 NEURAL TURING TRACKER: OBJECT TRACKING BASED ON
NTM . 29

4.1 Motivation . 29

4.2 Overview . 31

4.3 Model in Detail . 32

4.3.1 Read/Write Heads 34

4.3.2 Custom Memory Layout and Operations 35

4.3.3 Kalman Module 36

x

4.3.4 Data Flow and Bounding Box Computation 38

4.4 Adaptation for Muliple Object Tracking 39

5 EXPERIMENTS AND RESULTS 41

5.1 METU Drone Dataset . 41

5.2 Drone-vs-bird Challenge Dataset 44

5.3 Evaluation Metrics . 45

5.4 Results . 47

6 CONCLUSION AND DISCUSSION 53

REFERENCES . 55

xi

LIST OF TABLES

TABLES

Table 5.1 Details of the dataset. 44

Table 5.2 Final score of the algorithms on challenge test video. Adapted from
[17]. 50

Table 5.3 Penalty score comparison of different configurations for detection
algorithm. Numbers in parenthesis represent the number of iterations in
training. 51

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Examples for object localization and object detection problems. . . 5

Figure 2.2 Sliding window technique . 6

Figure 2.3 Bag of Visual Words technique 7

Figure 2.4 Basic RNN architecture, weight sharing and unfolding mecha-
nisms. Adapted from: [37]. 16

Figure 2.5 Different modes of RNNs. Source: [53]. 17

Figure 2.6 Chain of LSTM cells where yellow rectangles are neural network
layers and red ellipses are pointwise operations. Joined arrows means
vector concatenation, and arrow split means same copies of vectors. Top
horizontal input and output arrow represents the cell state, whereas bottom
one represents the hidden state. Adapted from [75]. 18

Figure 2.7 NTM architecture. Adapted from [39]. 19

Figure 3.1 Adaptation of the YOLOv2 network for drone detection. Since the
input size is changed, dimensions of succeeding layers are affected from
that. All layers are fine-tuned with METU Drone Dataset (see Section 5.1). 22

Figure 4.1 Overall architecture of the model. 32

Figure 4.2 Proposed novel single object tracking architecture that is based on
D-NTM. 33

Figure 5.1 Creating a single artificial data example with a randomly chosen
background scene and a drone with transparent background. 42

Figure 5.2 Realistic examples from the created dataset. 44

Figure 5.3 Unrealistic examples from the created dataset. 45

xiii

Figure 5.4 Examples from the Drone-vs-bird Challenge Dataset. 46

Figure 5.5 Examples for prediction penalty metric where blue rectangles rep-
resents the pixels of the ground truth bounding box and the orange ones
are for the detection. Adapted from: [17]. 47

Figure 5.6 Precision-Recall Curve created with different confidence thresholds. 48

Figure 5.7 Change of average prediction penalty with respect to confidence
threshold. 49

Figure 5.8 Change of loss in first 1000 iterations. 49

xiv

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Limited Ignorance Approach. 27

Algorithm 2 General Multiple Object Tracking Approach. 30

Algorithm 3 The algorithm applied for preparing the METU Drone dataset. . 43

xv

LIST OF ABBREVIATIONS

mUAV Micro Aerial Vehicle

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

NTM Neural Turing Machine

NTT Neural Turing Tracker

YOLO You Only Look Once

YOLOv2 You Only Look Once Version 2

IOU Intersersection Over Union

NIN Network In Network

BOVW Bag of Visual Words

FAST FAST Corner Detection

HARRIS Harris Corner Detection

GFTT Good Features To Track

MSER Maximally Stable Extremal Region extractor

SIFT Scale Invariant Feature Transform

SURF Speeded-up Robust Features

HOG Histogram of Oriented Gradients

BRIEF Binary Robust Independent Elementary Features

ORB Oriented FAST and Rotated BRIEF

SVM Support Vector Machine

SSD Single Shot Multibox Detector

R-CNN Regions with CNN

SPP Spatial Pyramid Pooling

ROI Region of Interest

RPN Region Proposal Network

IVT Incremental Visual Tracking

xvi

MIL Multiple Instance Learning

MOSSE Minimum Output Sum of Squared Error

SRDCF Spatially Regularized Discriminative Correlation Filters

TLD Tracking Learning Detection

BPTT Back Propagation Through Time

D-NTM Dynamic Neural Turing Machines

PR Precision-Recall

xvii

xviii

CHAPTER 1

INTRODUCTION

The technology needed to design and manufacture micro unmanned aerial vehicles

(mUAV)1 has advanced rapidly in recent years. This allowed corporations to mass

produce drones2. In these days, everyone can own a drone with a high definition

camera attached to it, for very low prices, even from super markets. The availability

of drones make it threatening since they can harm the privacy of people by taking

photos or recording videos unbeknown to them. Similarly, they can be used to gather

visual and audio information from places where security is crucial. In addition to

these general purpose drones, armed forces and defense industry are interested in

armed ones, which also motivates for examining them for security applications.

Increasing number of drones in the sky introduces new problems for pilots. Since

they are small in size, the pilots of manned air vehicles may fail to notice, which may

result in collisions and loss of lives and property. On the other side, one may want to

pilot many drones at the same time, i.e., drone swarm. The rise in popularity creates

a demand for solution of such problems.

With the mentioned motivation, it is essential to detect drones before any undesired

circumstances, track them until they disappear and act for defense if possible. Like-

wise, it essential for them to detect and track others to form a group.

The rapid improvement in machine learning, especially deep learning, area has re-

cently enabled most of the computer vision problems to be almost solved. With this

1 mUAVs are unmanned aerial vehicles less than 5kg.
2 mUAVs are often called drones. This name is used especially for multi-copters.

1

light, the mentioned problems are attacked as end-to-end learning problems in this

thesis.

1.1 Problem Definition

The following problems are addressed in this thesis:

‚ Detecting drones: Given an image, the aim is to report pixel coordinates of

the centers of the drones in the image along with its extents. This is basically

visual object detection adapted specifically to drones. However, they resemble

birds in the sky a lot. Hence the detection method should be able to distinguish

between them.

‚ Tracking drones: Given a sequence of video frames along with drone detec-

tion result for each time step, the goal is to refine detection so that the noise

in detection process is eliminated, the occlusion of the main object is handled,

and its behavior is estimated to be able to make further refinements.

1.2 Contributions

The main contributions of the thesis are as follows:

‚ Investigation of a deep learning based method on drone detection task: In

this thesis, it has been shown that a deep convolutional neural network based

object detection network can be trained to detect drones under harsh conditions

such as bad illumination, small scale and clutter. A thorough search of the

relevant literature had yielded no published deep learning based method for

visual drone detection problem until the Drone-vs-Bird Detection Challenge34

was held. Although the proposed method had the third best results, it has shown

3 Challenge was held in conjunction with the “International workshop on small-drone surveillance, detection
and counteraction techniques” of IEEE AVSS 2017.

4 https://wosdetc.wordpress.com/challenge/

2

along with the studies ranking highest in the challenge that deep learning has a

very crucial role in drone detection problem.

This part of the thesis is published within the scope of the challenge [1], [17].

‚ METU Drone Dataset: Since flying time of the drones are limited, and

recording and labeling hours of videos for deep learning frameworks is very

tremendous, a novel artificial dataset creation algorithm is proposed. The cre-

ated drone detection dataset is published online.

‚ A novel end-to-end network for object tracking: Considering the results,

which state that detection is not adequate on its own, of aforementioned chal-

lenge, a novel object tracking approach is proposed to take the time domain

information into consideration.

The contributions presented in this thesis are disseminated in the following studies:

‚ Cemal Aker and Sinan Kalkan. Using Deep Networks for Drone Detection.

14th IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS), 2017.

‚ Angelo Coluccia, Marian Ghenescu, Tomas Piatrik, Geert De Cubber, Arne

Schumann, Lars Sommer, Johannes Klatte, Tobias Schuchert, Juergen Beyerer,

Mohammad Farhadi, Ruhallah Amandi, Cemal Aker, Sinan Kalkan, Muham-

mad Saqib, Nabin Sharma, Sultan Daud, Michael Blumenstein. Drone-vs-Bird

detection challenge at IEEE AVSS2017. 14th IEEE International Conference

on Advanced Video and Signal Based Surveillance (AVSS), 2017.

1.3 Organization

In Chapter 2, the related literature is reviewed by focusing on general purpose meth-

ods for object detection and tracking, and on specifically drone detection and tracking.

Moreover, background information about recurrent neural networks, their variants

and Neural Turing Machine (NTM) architectures is provided.

3

In Chapter 3, an end-to-end deep convolutional network based mUAV detection and

localization method is proposed. The chapter includes details of both network archi-

tecture and training details. This part of the thesis has been published in [1].

In Chapter 4, a novel object tracking method, that is based on NTM, is proposed. The

chapter describes the modules of the model, data flow and training details.

In Chapter 5, the details of the datasets and proposed artificial dataset creation method

are described. The chapter also describes the evaluation metrics and experimental

results for drone detection problem.

In Chapter 6, closing remarks for the thesis are provided by summarizing the proposed

methods, their limitations and pathways for further studies.

4

CHAPTER 2

RELATED WORK AND BACKGROUND

In this chapter, object detection and tracking methods, and using them specific to

drones are reviewed. In addition, background information about recurrent neural net-

works, its variants and neural turing machines is provided.

2.1 Object Detection and Localization

Object localization is the problem of determining a bounding box and class for an

image that includes only one object of interest. However, object detection requires to

detect all instances of all relevant categories in an image.

(a) Object localization (b) Object detection

Figure 2.1: Examples for object localization and object detection problems.

5

2.1.1 Classical Methods

The widely used classical methods are all based on a technique called sliding window.

In this technique, a window is cropped from each position of a query image, and a

classifier is used to determine whether the window has an object of interest or back-

ground. Figure 2.2 shows how sliding window technique is applied. This approach

fails to detect objects when their scale changes. In order to overcome this, the tech-

nique is applied to an image pyramid of the query which consists of different scales

of the same image. If multiple detections are done for a single object, non-maximum

suppression is applied to choose the one with the highest response.

. . .

Figure 2.2: Sliding window technique

In order to classify a given image patch, one needs a means of gathering high level

information from the pixels and a strong classifier that discriminates between the

objects and background using that information. The most widely used methods are

based on bag of visual words (BOVW) [99], or Viola Jones framework [105].

In BOVW approach, the first step is detecting keypoints that are assumed to be im-

portant to describe objects with the help of keypoint detectors such as Fast corner

detection (FAST) [103], Harris corner detection (HARRIS) [42], Good Features To

Track (GFTT) [95] and Maximally Stable Extremal Region extractor (MSER) [67].

In order to extract mid-level information, the subwindows surrounding the keypoints

are described by local feature descriptors such as Scale Invariant Feature Transform

(SIFT) [63], Speeded-up Robust Features (SURF) [5], Histogram of Oriented Gra-

6

dients (HOG) [22], Binary Robust Independent Elementary Features (BRIEF) [14],

and Oriented FAST and Rotated BRIEF (ORB) [88]. The resulting feature vectors

from all patches including objects or background are quantized using a clustering al-

gorithm (e.g., K-means clustering [62]) to form a dictionary of visual words. While

forming the high level features for image patches, keypoints are detected, described,

and an histogram of corresponding visual words are formed. The feature vectors rep-

resenting the high level information in image patches are used as data instance for a

discriminative machine learning model; e.g., support vector machines (SVM) [20], in

training and testing stages. The overall approach is described in Figure 2.3.

Feature Extraction

Dictionary
Construction

Dictionary
Size

Image patches
Training Patch Test Patch

Feature Extraction

Histogram Creation

Classifier

Feature Extraction

Histogram Creation

Class

Dictionary Construction Training Testing

Dictionary

. . .

Figure 2.3: Bag of Visual Words technique

Although the first method has high accuracy, its time complexity is very high. On

the other hand, Viola Jones framework is designed to work on real-time scenarios

with the help of early rejection technique that will be explained in detail. The ap-

proach uses Haar-Like features since they are very easy to compute. This features

are composed of additive and subtractive blocks that sums up to zero. With different

types, scales and positions, these features can count to more than 100.000 which will

dramatically slow down the system. Hence, Adaboost algoritm [32] is used to select

most useful features. Finally, many weak classifiers are trained using them, and com-

7

bined to form a cascaded strong classifier. In testing phase, each stage of the cascaded

classifier is responsible for either rejecting the object proposal or propagating it to the

next stage. If a proposal passes through all stages it is accepted as a detection. Oth-

erwise, it is rejected as early as possible. This eliminates the complex executions for

background patches in the sliding window approach. Therefore, it results in a real

time performance.

2.1.2 Single Stage Detectors

Single stage object detectors [61, 79, 80, 94] are the network architectures that reports

the bounding boxes for objects directly from the image pixels. These methods are

known to have high frame rates since the coordinate computation and classification is

done directly in a single stage.

In the study of Sermanet et al. [94], a feature extractor network OverFeat and an

object detection framework using it has been proposed. After extracting the features

from the convolutional network, a fully connected network is applied to the feature

maps in a sliding window manner to predict the coordinates of bounding boxes with

a regressor and to classify the image patch. Since this approach results in multiple

boxes around detected objects, the boxes related to an object are merged by averaging

them.

In Single Shot Multi Box Detector (SSD) [61], multiscale feature maps are computed

and bounding box coordinates are computed using default bounding boxes (aspect

ratio, position, etc.) in different resolutions by estimating the offsets relative to the

default boxes. Finally the class of the objects are estimated. The You Only Look Once

(YOLO) approach [79, 80], is very similar to SSD in terms of prior box usage in the

computations of extents. However, it uses a spatial grid to estimates the coordinates.

This approach is explained throughly in Chapter 3.

8

2.1.3 Two Stage Detectors

Convolutional neural networks (CNN) are known to be very successful image clas-

sification problem. The idea in two stage detectors [21, 34, 35, 43, 47, 57, 83], is

to use this power for classification as in the classical methods (see Section 2.1.1).

However, the sliding window approach requires to classify extensive amount of im-

age patches, and classification with CNNs is very expensive. Hence, the number of

candidate windows must be decreased dramatically.

The first attempt with this paradigm, the study of Girshick et al., Regions with CNN

features (R-CNN) [35], tries to eliminate negative windows before the classification

stage. To this end, it uses a segmentaion method called selective search [104] to

detect the regions that are most likely to have objects. The regions proposed by se-

lective search are classified by a CNN after warping them to the input shape. Finally,

coordinates and extents of the proposals are refined by bounding box regression.

Although R-CNN decreases the number of regions to test dramatically, it runs the

CNN again and again for each proposal. However, SPP-net [43] computes feature

maps from entire image only ones, and pools them from arbitrary image regions pro-

posed by selective search. This operation is done by spatial pyramid pooling (SPP)

which pools features with different grid sizes and combines them to create a fixed

length representation. This allows regions with different sizes to be classified with

a single classifier. Similarly, in Fast R-CNN [34], a region of interest (ROI) pooling

layer is proposed to convert different sized feature maps to a fixed length vectors. In

this approach, a region is basically divided into a 2D grid and pooling is applied to

each cell. Unlike SPP, ROI pooling enables the Fast R-CNN to be trained end-to-end

since it can backpropagate the error signal to the preceding layers.

Another important improvement comes with the Faster R-CNN [83] architecture. In

this study, Ren et al. introduce a region proposal network (RPN) that eliminates the

need for a separate region proposal stages. RPN is a fully convolutional network that

is slid over the image. For each position, it makes a bounding regression utilizing

prior knowledge about bounding boxes, called anchor boxes, and applies a binary

9

classification to decide on whether the predicted box contains an object or not. The

remaining part of the architecture is the same as Fast R-CNN.

2.2 Object Tracking

The aim of object tracking is estimating the state of a moving target (or possibly

multiple targets) through time in an image sequence. The state may include position,

appearance, shape, velocity, etc. In simple terms, it is estimating the next state of an

object given noisy observations up to the current time instance. In multiple objects

case, estimations should be done for all targets.

2.2.1 Single Object Tracking

Before going into details of the related work on this topic, it is useful to make formal

definition. As the name suggests, there is only one target to track in single object

tracking problem. It can be formulated as a Bayesian network. In order to estimate

the state xt utilizing all of the observations z1:t up to time instance t, one should find

a solution that maximizes posterior probability P pxt|z1;tq. Recursive Bayesian filter

offers a solution with two stages. In prediction stage a motion model and the previous

posterior estimate (as prior knowledge) are used to predict P pxt|z1;t´1q. Then the

actual posterior probability is computed with the help of an observation function and

the prior prediction.

Statistical methods: With the assumptions that probability density functions are

Gaussian and state transitions are linear, Kalman filter [52] offers a solution to Bayes

equations. Extended Kalman filter [55] makes it possible to work with non-linear

state transition models. However the Gaussian assumption has a negative effect on

the success of filter. Particle filters [9, 26, 27] propose solutions that are based on

Monte Carlo methods to work with non-Gaussian densities and nonlinear state tran-

sitions.

10

Template matching: Other than filtering based solutions to the equations, the poste-

rior probability can be directly maximized. When the problem is to locate an object

in the next frame, correlation filter based template matching [15, 66] and searching

for the maxima of similarity [18, 19] can be applied. With the assumption that the

target cannot move too much in consecutive frames, one can apply a search in the

neighborhood to find the window with the best matching representation.

Online learning: Although statistical methods are robust to occlusions and noisy ob-

servations, they still need observations provided most probably by object detection or

template matching. Object detectors and aforementioned template matching methods

work with fixed appearance models. This has negative effects on the performance of

statistical or template matching based tracking methods since illumination, scale and

orientation changes, background clutter, and partial occlusions alter the appearance

of the target significantly. This can be overcome by an adaptive appearance model

[4, 10, 51, 86]. Ross et al. propose the Incremental Visual Tracking (IVT) method to

keep track of the change in object appearance [86]. IVT uses an eigenbasis to repre-

sent a target, and particle filter to find the best matching window to the mean of the

eigenbasis in the next frame. After accumulating a predefined number of windows,

the eigenbasis is updated with incremental principle component analysis.

Another online tracking method is MILTrack algorithm [4] that utilizes multiple in-

stance learning (MIL) [28] to learn the target online. At each time instance, the algo-

rithm first crops patches around the target and classifies them with the MIL classifier

to find the best matching one. Then, positive and negative bags formed with samples

around the target are used to train weak classifiers. The most discriminative ones

among the previous and new weak classifiers are chosen to form the strong classifier.

A breakthrough comes with the Minimum Output Sum of Squared Error (MOSSE)

filter [10] which adds appearance model adapting ability to aforementioned correla-

tion filter techniques. The earlier ones require strong constraints or complex train-

ing procedures. With a simple training procedure and unconstraint tracking method,

MOSSE increases execution speed and accuracy. The appearance model is correlated

with the next frame in frequency domain which makes it real time. The maximum

11

value in the correlation output is determined as the new location, and online update is

applied. Although many studies follow the MOSSE approach, only a few of them are

included here. Kernelized Correlation Filters [45] utilize nonlinear kernels having

circulant structure which encode convolution of vectors. Correlating with such fil-

ters is similar to applying a classifier on different subwindows. Spatially Regularized

Discriminative Correlation Filters (SRDCF) [24] apply regularization on correlation

coefficients depending on their spatial locations to eliminate unwanted boundary ef-

fects caused by the assumption of periodicity in correlation filters. Discarding the

background patches, and instead learning from shifted patches of the cropped target

may cause suboptimal results. Background Aware Correlation Filters [33], however,

exploit all background patches as negative examples for learning a filter which is more

discriminative to background clutter.

Another important framework is Tracking-Learning-Detection (TLD) [51] that is ca-

pable of long term tracking thanks to its integration of tracking and detection. When a

frame comes, it estimates the target location with both tracker and detector. While the

former one uses temporal information, the latter utilizes spatial information. Finally,

estimations are integrated to decide on actual result, and the detector is updated with

positive and negative samples around the output. Learning phase makes the detector

stronger while detector resets the tracker if it fails to avoid drifting.

Neural network based tracking: Similar to several computer vision problems, vi-

sual object tracking has benefited from the undeniable performance of deep neural

networks. However, an extensive literature review has resulted in no new paradigms

other than the classical methods. Similar to statistical methods, Ning et al. , have

proposed a method [74] that utilizes an LSTM to model temporal constraints (i.e.,

motion of the object).

Since CNNs have an excellent representation capability, online learning methods have

been developed for them [73, 106, 107]. Teng et al., have proposed Temporal-Spatial

Network [102] that resembles TLD approach. A feature network forms a represen-

tation of the target while a temporal network encodes the trajectory. With local spa-

tial object information, spatial network refines the tracking state. Both temporal and

12

spatial networks are updated if necessary. Memory Augmented Visual Object Track-

ing [60] is another online learning approach that utilizes foreground and background

memories. At each time step, foreground and background patches are written into

memory. With patches in a region of interest, memory reads are done to create fore-

ground and background heatmaps. Combining them gives the bounding box of the

object.

Similar to other classical methods, there are studies that brings deep learning and

template matching together. Siamese architectures [8, 41, 101] have been utilized in

order to create matching functions between target and search image. Guo et al., add

online learned target variation and background suppression transformations [41] to

the siamese architecture. Similarly, correlation filters have been married with deep

learning by designing filters working with deep CNN features, utilizing hierarchi-

cal information in CNNs, ensembling weak trackers from CNN layers or choosing

between them with attentional mechanism [16, 23, 25, 65, 78].

2.2.2 Multiple Object Tracking

Tracking multiple objects is different than tracking a single one in terms of its require-

ments since it should retain object identities in addition to their trajectories. When

there are multiple objects searching each one in the next frame is unreasonable since

it requires the number of objects to be fixed. To this end, the widely used approach is

tracking by detection instead of detection free methods whose single object counter-

parts has been discussed in Section 2.2.1. Hence, Luo et al. formulates the problem in

a general perspective, following the tracking by detection approach in their extensive

literature review [64] as maximal a posteriori estimation of all object’s states through

time which is given in Equation (2.1);

Ŝ1:t “ argmax
S1:t

P pS1:t|O1:tq, (2.1)

where St “ ps1t , s2t , ..., s
Mt
t q is the collection of object states (sit of i-th object), Ot “

po1
t , o2

t , ..., o
Mt
t q is the collected observations (oit for i-th object) and Mt is the number

of objects in t-th frame. This formulation converts the problem into data association

13

problem where the detections are matched to the states of objects being tracked. As

reported in [64], this is done in two ways; as a probabilistic inference solution [11,

54, 71, 82, 85, 109, 111] and as a deterministic optimization solution [3, 7, 12, 13,

29, 48, 58, 70, 77, 96, 110, 115].

Similar to many other computer vision tasks, multiple object detection also exploits

fabulous performance of deep learning methods. In order to learn a similarity met-

ric, siamese networks [56] and quadruplet structure similar to siamese architecture

[100] are utilized. However, these methods require an external trajectory creation al-

gorithm and cannot utilize long term history of objects since they only focus on the

similarity of objects and detections. Similarly, Sadeghian et al. [91] combine tempo-

ral features using multiple cues (appearance, interaction and motion) with RNNs to

feed a target RNN that computes a similarity score which is used in bipartite graph

matching. Milan et al. [69] use a single custom RNN for Bayesian state estimation,

track birth/death and data association. However, their approach is not aware of the

appearance of the objects. Fernando et al. [30] combine generative adversarial net-

works [38] with LSTM to detect objects, and use attention mechanism along with

an LSTM to create short term trajectories which are associated with the detections

if their positions intersect. Recurrent autoregressive network architecture proposed

in [30] utilizes an external memory to hold previous inputs and internal memory for

data association. Jiang et al. [50] formulates tracking as a reinforcement learning

problem. After making predictions, trackers are associated with detections using an

LSTM. An important drawback of the studies [30] and [50] is that they both require

a tracking network for each object, which limits the number of objects and makes it

necessary to have an external controller for the networks.

2.3 mUAV Detection and Tracking

Although the problem of detecting and tracking mUAVs is not a well studied sub-

ject, there are some attempts to mention. Mejias et al. [68] utilized morphological

pre-processing and Hidden Markov Model filters to detect and track micro unmanned

planes. Gökçe et al. [36] used cascaded boosted classifiers along with some lo-

14

cal feature descriptors. In addition to this pure spatial information based methods,

spatio-temporal approaches exist. Rozantsev et al. propose a method that first creates

spatio-temporal cubes using sliding window method at different scales, applies mo-

tion compensation to stabilize spatio-temporal cubes, and finally utilizes boosted tree

and CNN based regressors for bounding box detection [87].

Drone-vs-bird challenge [17] has shown that when the conditions are harsh; e.g., cam-

era is moving, drone is at a distant location, or there are distracting objects, classical

methods fail to detect the drone while deep learning approaches have promising re-

sults. The successful methods [31, 92, 93] sent to the challenge other than the one

explained in Chapter 3 utilize or get inspiration from Faster R-CNN [83].

A through literature survey has resulted in no study other than [112] for drone track-

ing. In that one, the authors have proposed a convolutional long short-term memory

network that makes use of spatio-temporal information to simultaneously detect and

track flying small objects.

2.4 Recurrent Neural Networks and Variants

Recurrent neural networks (RNN) [89] are the models that have a hidden state be-

tween the input and the output which is updated through time to hold the context of

an input sequence. This enables them to learn a specific task instead of mapping input

to output with feature learning as in the feed forward networks. It has been shown

that RNNs are Turing-Complete [97], which means that they can mimic any program

if proper weights can be found. They are mostly used to model sequences such as

time series data, text, video and audio data. Architecture of a basic RNN can be seen

in the left part of the Figure 2.4. The most important part in the architecture is the

weight sharing mechanism. Unlike the feed forward networks, RNNs use same pa-

rameters at each stage of the computation. While training an RNN, Back Propagation

Through Time (BPTT) algorithm [72, 84, 108] is utilized. In this method, the net-

work is unfolded through time with the same parameters at each time step (see Figure

2.4). Although unfolding is done to a specific time step, there is no limitation on the

15

sequence length due to the recurrent structure of the hidden state. The training data

for the network is a sequence of ă xt, yt ą pairs. The hidden state should be initial-

ized before each sequence which is done with all zeros in general. Then, outputs are

computed according to Equation (2.2)

ht “ σhpWxxt ` bx `Whht´1 ` bhq,

yt “ σypWyht ` byq, (2.2)

where σh and σy are nonlinearities such as sigmoid or tanh functions. Loss is com-

puted using the ground truth labels and the predicted outputs and back propagated

through time to update the same parameters at each time step.

ht

xt

yt

unfold

Wx, bx

Wh, bh

Wy, by

h0

x0

y0

Wx, bx

Wy, by

Wh, bh h1

x1

y1

Wx, bx

Wy, by

Wh, bh h2

x2

y2

Wx, bx

Wy, by

. . . Wh, bh ht

xt

yt

Wx, bx

Wy, by

Figure 2.4: Basic RNN architecture, weight sharing and unfolding mechanisms.

Adapted from: [37].

There are four different modes of RNNs; one to many, many to one, many to many

and synchronized many to many. The left most diagram in the Figure 2.5 is a simple

feed forward network without any recurrent structure. The second one gets only one

input but outputs a sequence. This can be used to create text by providing the first

word and expecting the remaining word sequence from the network. The third one

is the other way around. It gets a sequence of inputs, and provides a single output.

This can be used in problems like video and audio classification. The fourth diagram

represents a mode that gets a sequence of inputs and provides a sequence of outputs.

This mode can be utilized to solve machine translation problem. The last mode is the

synchronized many to many which gets sequence of inputs and provides an output for

each input at the same time step. This mode can be utilized to classify each frame of

a video.

As mentioned before, RNNs can mimic any program in theory. But setting proper

16

Figure 2.5: Different modes of RNNs. Source: [53].

weights is not that easy in practice. Although BPTT makes gradient descent algorithm

possible to be used to learn the parameters, there are still problems that need solving.

When the sequence length is kept short in training, it results in poor performance since

it cannot get the long-term dependencies. When it is long enough to learn long-term

dependencies, exploding or vanishing gradient problems are encountered since the

network becomes very deep in time. This requires introduction of a memory structure

as in biological systems. To this end Hochreiter and Schmidhuber has proposed Long

Short Term Memory (LSTM) [46] architecture which is a variant of RNNs.

LSTM adds four different units to the basic RNN. In order to provide a memory-

like structure, it includes a cell unit which remembers some information through time

steps. Forget gate is utilized to decide on which parts of the cell states will be got

rid of. Input gate is responsible for deciding on what to keep and what to add to the

cell state. Finally, the output gate choses the parts of cell state that will be used while

creating the output. With all of these units, basic RNNs gain the ability of remem-

bering long term dependencies, getting rid of unnecessary details, selecting important

parts from the input and remembered information for output. Internal structure of an

LSTM cell can be seen in Figure 2.6.

For each time step t, there are three inputs to an LSTM cell which are xt, ht´1 and

Ct´1. The outputs are Ct and ht. While computing the outputs, first stage is the

decision of which parts will be forgotten from the cell state using the Equation (2.3)

ft “ σpWf ¨ rht´1, xts ` bf q, (2.3)

where σ is sigmoid function, Wf and bf are network parameters. Then, the values

17

Figure 2.6: Chain of LSTM cells where yellow rectangles are neural network layers

and red ellipses are pointwise operations. Joined arrows means vector concatenation,

and arrow split means same copies of vectors. Top horizontal input and output arrow

represents the cell state, whereas bottom one represents the hidden state. Adapted

from [75].

that will be updated are determined with Equation (2.4), and the candidate content to

be added to those values is computed using the Equation (2.5).

it “ σpWi ¨ rht´1, xts ` biq. (2.4)

C̃t “ tanhpWc ¨ rht´1, xts ` bcq. (2.5)

Having computed the forget and input gates, the new cell state can be created with

(2.6)

Ct “ ft ˚ Ct´1 ` it ˚ C̃t, (2.6)

where the first term in summation eliminates the unnecessary content from the pre-

vious cell state, keeps the related information, and the second term adds new content

from the input xt. The final stage is the computation of new hidden state with the help

of output gate as in Equation (2.7)

ot “ σpWo ¨ rht´1, xts ` boq

ht “ ot ˚ tanhpCtq. (2.7)

To sum up, LSTM introduces mechanisms to carry, add and discard information

through time, which enables it to remember long-term information with a memory

like structure to deal with long-term dependencies.

18

2.5 Neural Turing Machine

Although RNNs are Turing Complete in theory as stated in Section 2.4, it is not easy

to train them for executing specific tasks. In order to solve this problem, Graves et

al., have proposed an architecture called Neural Turing Machine (NTM) that adds

a large addressable memory increasing the ability of RNNs to simplify the training

for algorithmic tasks [39]. The architecture has two fundamental components which

are a controller network and a memory consisting of fixed length data rows called

memory “locations”. With this memory and controller structures it resembles the

Turing Machine and Von Neumann Architecture. The overall architecture can be

seen in Figure 2.7.

Figure 2.7: NTM architecture. Adapted from [39].

Controller of an NTM is responsible for the input from and output to the outside

world, and interacting with the memory unit using read and write heads. During this

interaction an attention based fuzzy addressing mechanism is utilized. Each head

outputs a normalized weighting w (see Equation (2.8)) over memory locations where

each weight represents the contribution of each location to the read or write operation.

ÿ

i

wpiq “ 1, @i 0 ď wpiq ď 1. (2.8)

The weighting can be seen as a fuzzy address to the memory locations which is based

on content based addressing paradigm. While location based addressing focuses on

19

the memory locations and manipulates the data without knowing what it means, in

content based addressing, related data itself is used as the address. Hence, the com-

putation of weights outputted by heads uses the content address

wct piq Ð
exp pβtSrkt,Mtpiqsq

ř

j exp pβtSrkt,Mtpjqsq
, (2.9)

where wct is the content based address, Mt is memory, and βt is the key strength that

arranges the content focus precision at time t. Key vector kt is the content created by

the controller to access the memory, and the operator Sr¨, ¨s is a similarity measure

such as cosine similarity. The reader is directed to the original paper [39] for details

of the addressing mechanism.

Having computed the weighting, read and write operations are easy to do. While

reading, a weighted summation of memory locations is computed

rt Ð
ÿ

i

wtpiqMtpiq, (2.10)

where Mt is N ˆM memory matrix and wt is N dimensional weight address vector.

Writing is similar to content update in LSTMs. First, unrelated content is erased

from the memory and new content is added to the remaining one since the fuzzy

addressing mechanism holds different data in the same locations. This operation can

be summarized as

Mtpiq Ð Mt´1piqr1´ wtpiqets ` wtpiqat, (2.11)

where 1 is a vector full of 1’s with the same dimension as the erase vector et and add

vector at. The multiplications with the memory locations are pointwise.

Putting it all together, NTMs make learning algorithmic tasks easier with the help of

external long-term memory, reading and writing mechanisms.

20

CHAPTER 3

A SINGLE SHOT DETECTOR BASED MUAV DETECTION

The solution for drone detection problem described in this chapter is based on a single

shot object detection model, YOLOv2 [80], which is the follow-up study of YOLO

[79]. The model has been chosen because the motivation described in Chapter 1

requires real time performance and it is reported in [80] that the model outperforms

others in both detection and time performance. The model has been adapted and fine-

tuned to detect objects of two classes (i.e., drone and bird). Although the problem is

detecting drones in the scene, bird class has also been included so that the network

can learn robust features to distinguish them too. This adaptation has been used to

participate in Drone-vs-Bird Detection Challenge [17], and ranked third.

The chapter continues with the details of network architecture and training details.

3.1 The Architecture

YOLOv2 is a fully convolutional network whose architecture tries to devise an end-

to-end regression solution to the object detection problem. The architecture consists

of two parts; convolutional feature extractor and object detector. The former has

been designed with the knowledge gained from some of the most successful image

classification networks in the literature. It has been shown with VGGNet [98] that

stacking 3 ˆ 3 convolution filters with max-pooling operations in between results in

higher accuracies for image classification task and therefore representation learning.

Hence, YOLOv2 makes use of such convolutional and max-pooling layers consec-

21

utively. “Network In Network” (NIN) [59] architecture proposes using multi layer

perceptrons instead of linear filters in convolution operation. This results in a cross

channel parametric pooling operation which can be implemented as a 1ˆ 1 convolu-

tion. It has been shown that, nonlinear convolution operations, which are done with

multi layer perceptrons, can model the local patches better. Hence, the feature repre-

sentations created by 3ˆ3 convolution filters of feature extraction part of the network

are compressed by 1ˆ 1 convolution filters. The first part is first pre-trained for clas-

sification task using global average pooling operation as suggested in [59], instead of

flattening the final feature maps and using fully connected layers to predict the class.

This prevents the classification layers from overfitting to data and works as a struc-

tural regularizer. While connecting the detector part to feature extractor, the classifier

is detached, and higher and lower resolution features are concatenated as suggested in

ResNet [44] to provide fine grained features. These features are required to correctly

detect and localize smaller objects in the scene. The final architecture can be seen in

Figure 3.1.

480

480

3

240

240

32

120

120
64

30

30
256

Conv. Layer

3x3-s1

Max Pooling

2x2-s2

Conv. Layer

3x3-s1

Max Pooling

2x2-s2

Conv. Layers

3x3-s1

1x1-s1

3x3-s1

Max Pooling

2x2-s2

x2

30

30
256

Conv. Layers

3x3-s1

1x1-s1

x2

30

30
512

Conv. Layer

3x3-s1

15
15

1024

Max Pooling

2x2-s2

Conv. Layers

3x3-s1

1x1-s1

3x3-s1

x2

x3

15
15

3072

Reshape

15
15 35

Conv. Layers

3x3-s1

1x1-s1

Combine

Figure 3.1: Adaptation of the YOLOv2 network for drone detection. Since the input

size is changed, dimensions of succeeding layers are affected from that. All layers

are fine-tuned with METU Drone Dataset (see Section 5.1).

In the detector part, final feature maps are passed through two convolutional layers to

create an S ˆ S grid where the duty of each grid cell is predicting bounding boxes

of the form pbx, by, bw, bh, boq. In this output, bx and by are the coordinates of the

centers of the boxes computed with respect to center of the grid cell, bw and bh are the

22

width and height in proportion to the whole image, and bo is the confidence that an

object is in the bounding box. The final task of a grid cell is computing conditional

class probabilities given the probability that the corresponding bounding boxes have

objects in them. The mentioned confidence is defined as:

Pr(Object) ˚ IOUptruth, predictionq. (3.1)

Prediction of positions with respect to grid cell instead of entire image makes it pos-

sible to bound ground truth values between 0 and 1. With the help of a sigmoid

activation function, the problem turns into a constrained regression instead of un-

constrained one. This makes it easier to learn and stabilize for the network. While

predicting the width and height of bounding boxes, the model utilizes some prior

information computed by K-means clustering on width and heights of ground truth

bounding boxes. Redmon and Farhadi have reported that Euclidean distance is not a

suitable metric for clustering bounding boxes since it over punishes larger boxes. In

order to eliminate the dependence on size, they have proposed a new metric based on

intersection over union (IOU) scores [80]. Likewise, the distance metric in Equation

(3.2) has been used while creating prior information.

dpbox, centroidq “ 1´ IOUpbox, centroidq. (3.2)

When it comes to how outputs are computed, it should first be mentioned that the

network makes one prediction for each centroid computed with K-means clustering,

at each cell of the output feature map. For the cell at offset pcx, cyq from top left corner

of the image and the centroid with prior width pw and prior height ph, four relative

coordinates tx, ty, tw, th and an objectness score to are predicted. With all these data,

the final outputs are predicted as:

bx “ σptxq ` cx

by “ σptyq ` cy

bw “ pwe
tw

bh “ phe
th

bo “ σptoq.

23

The final output size for a grid cell is:

Output Size “ pNcls `Ncoord ` 1q ˆNcent, (3.3)

where Ncls is the number of classes, Ncoord is the number of coordinates, Ncent is the

number of centroid bounding boxes used as prior knowledge and the 1 in the paren-

thesis is for the confidence value. In the adaptation, grid size is set to 15, number of

classes is two, number of coordinates is four and number of centroids is five. Hence,

the final output is of the shape 15ˆ 15ˆ 35.

3.2 Training Details

The architecture has twenty-two convolutional layers in total, which has very high

capacity, and is prone to overfitting. In order to achieve high accuracy with such deep

models, one needs a large scale dataset that includes many scenarios of the problem,

to get better generalization and avoid overfitting. However, the dataset provided by

the challenge organizers was too scarce. To this end, an artificial dataset, named

METU Drone Dataset, has been created including real drones, real birds and real

backgrounds, which is described in detail in Section 5.1.

In order to get better initial points, commonly used pretraining and finetuning tech-

niques has been applied as described in Section 3.1. In order to apply fine tuning, the

network is initialized with the pre-trained weights using the ImageNet dataset [90]

for image classification problem. Then the challenge dataset and the METU Drone

Dataset have been divided into training (85%) and validation (15%) parts. The train-

ing part of the former one is duplicated four times before combining them to training

sets since it is too scarce compared to the artificially created, large scale one. Then,

the network is fine-tuned for 10,000 iterations with 128 as batch size and batch nor-

malization after all convolutional layers.

The loss function used in iteration t while finetuning the network for drone detection

24

is given in Equation (3.4):

losst “
W
ÿ

i“0

H
ÿ

j“0

P
ÿ

k“0

1noobj λnoobj ˚ p´b
o
ijkq

2

` 1early λprior ˚
ÿ

rPpx,y,w,hq
ppriorrijk ´ b

r
ijkq

2

` 1truthk p λcoord ˚
ÿ

rPpx,y,w,hq
ptruthr ´ brijkq

2

` λobj ˚ pIOUk
truth ´ b

o
ijkq

2

` λclass ˚ p
řC
c“0ptruth

c ´ bcijkq
2qq, (3.4)

where W is width of the grid, H is the height, P is the number of prior boxes, 1noobj

means the box is not responsible for any object, 1early means the iteration is in the

early stages of the training (i.e., t ă 12800), and 1truthk means bounding box k is

responsible for truth box. The coefficients have been set as follows; λnoobj “ 1,

λprior “ 0.01, λcoord “ 1, λobj “ 5, and λclass “ 1. The first term tries to min-

imize the objectness score of a bounding box when it does not contain any object.

The second aligns the predictions with the prior information for the early stages of

training. The last contributes to the loss if the box k is responsible for an object indi-

cated by a “truth” box. This term is divided into three parts which are responsible for

coordinates, objectness score and classification error.

3.3 Detection Details

Although 480ˆ 480ˆ 3 resolution was used as input size in training (see Figure 3.1),

it is increased to 800 ˆ 800 ˆ 3 in detection configuration. This is applicable since

the network is fully convolutional. This increase is helpful in detecting small sized

targets.

The aforementioned challenge requires the algorithm to work on a video sequence

and report a bounding box for the only drone in the scene for each frame. Hence, the

detection stage has been designed to report the bounding box which the network is

most confident that there is the drone. Since the network is trained with two classes,

the bird detections are eliminated after getting all predicted bounding boxes from the

25

last layer. Then a threshold, which can be determined according to accuracy on a

validation set, is applied on the confidence values for objectness. If this operations

eliminate all predicted bounding boxes, it means that the frame does not include a

drone or it is not clear enough to detect. Otherwise, the one that has the highest confi-

dence is selected as the prediction. Note that the algorithm can easily be extended to

multi-drone situations with more intelligent thresholding strategies for different use

than the challenge requires. One possible problem with this approach is encountered

when the network mixes up a bird with the drone. If the objectness confidence of it is

higher than that of the drone, it is selected as the prediction. In order to decrease the

number of such misinterpretations, a limited ignorance approach (see Algorithm 1)

that uses time domain information has been proposed. After determining the bound-

ing box that the network is most confident, its intersection with the rectangle having

same center, three times the width and height as the predicted bounding box in the

previous frame is checked, assuming that the drone cannot move more than its height

or width in a single frame. If the rectangles intersect, we can accept the newly pre-

dicted one. Otherwise, we ignore the current prediction and report the previous one if

the limit has not been exceeded yet. After exceeding the limit, we reset it and cancel

the technique for the same number of frames. During this period, we report the cur-

rent predictions directly. Likewise, when there is no predicted bounding box in the

previous frame, we directly report the prediction in current frame.

26

Algorithm 1 Limited Ignorance Approach.

1: Input: Video frames V “ tfiu, maximum tolerance Tmax, threshold θ.

2: Output: Predicted bounding boxes B “ tbiu (for each frame only the best box

is reported).

3:

4: limitÐ Tmax

5: disabledÐ FALSE

6: for ft P V do

7: Dt Ð DETECTIONSpftq s.t. @b̂kPDt
b̂ck “ drone^ b̂ok ą θ

8: b̂best Ð b̂j P Dt s.t. @b̂kPDt
b̂oj ě b̂ok

9: b̂ext Ð pbxt´1, b
y
t´1, 3 ˚ b

w
t´1, 3 ˚ b

h
t´1q

10: if b̂best X b̂ext ‰ ∅ then

11: bt Ð b̂best

12: else if disabled “ FALSE then

13: bt Ð bt´1

14: limitÐ limit´ 1

15: if limit “ 0 then

16: disabledÐ TRUE

17: limitÐ Tmax

18: else

19: bt Ð b̂best

20: limitÐ limit´ 1

21: if limit “ 0 then

22: disabledÐ FALSE

23: limitÐ Tmax

27

28

CHAPTER 4

NEURAL TURING TRACKER: OBJECT TRACKING BASED ON NTM

In this chapter, an NTM based end-to-end object tracking model is proposed. The

proposed architecture extends the abilities of NTM with a specialized memory layout,

customized read/write heads and a novel adaptive Kalman filter based on multi layer

perceptrons. The model is named Neural Turing Tracker (NTT).

4.1 Motivation

The insight gained from the drone detection method described in Chapter 3 has re-

vealed the need for considering time domain to increase accuracy while working with

videos. This means that it is required to work with tracking algorithms. Since real-

time scenarios include several drones appearing in the scene at the same time, the

method should be able to handle multiple objects.

The studies reviewed in Section 2.2 focus on only one part of the problem. Some try

to refine the detections with statistical filtering while some others search for a similar

appearance in consecutive frames. Another group of studies try to keep track of long

term history of a single object. Single object tracking methods constitute such groups

which do not make use of advantages of others. For multiple object case, most of the

benefits of single object tracking methods have been discarded, and the focus is only

on matching the detections with objects. This grouping of tracking methods unveils

the requirements for a tracking method to be robust. These can be summarized as:

‚ In order to handle occlusions and failed detections, one needs a statistical mo-

29

tion model.

‚ In order to handle changes in the appearance of the objects, one needs online

learning.

‚ In order to be able to do long term tracking, handle objects leaving and re-

entering the scene, one needs a long term memory.

‚ In order to deal with multiple objects, one needs a matching mechanism and a

controller that monitors tracking.

The requirements can be put together to form a general approach for multiple object

tracking as given in Algorithm 2. As described earlier, an extensive literature review

Algorithm 2 General Multiple Object Tracking Approach.

1: Input: Video frames V “ tfiu for time instances i “ 0, ..., T

2: Output: Predicted bounding boxes B “ tbjiu for each object j in frame i

3:

4: LÐH (Empty set of trackers)

5: for fi P V do

6: Di Ð DETECTIONSpfiq

7: for Object o P Di do

8: if There is a tracker t P L that o can be assigned as visible then

9: Report boi using t and o

10: Update model and parameters of t with o

11: else

12: Create a new tracker t with o

13: Report boi using t and o

14: if There are trackers T Ď L that are not updated then

15: Report bounding boxes with recently updated trackers TU Ď T

16: Update TU

17: Kill the remaining trackers TR Ď T

has not resulted in a study that focuses on all of the requirements at the same time as

30

an end-to-end approach. This is because current architectures have been designed for

specific requirements of the problem. However, NTM architecture described in Sec-

tion 2.5 is capable of learning execution of arbitrary algorithms. Its external memory

can be utilized for long term history of objects. The controller can be made responsi-

ble for matching detections with tracks. Additional modules can be designed to ease

the learning of tracking task. This is the motivation behind designing a NTM based

multiple object tracking algorithm that has a long-term memory, read/write mech-

anisms, internal controller and a special statistical filter. To the best of knowledge

gained by the literature review, NTM is the only architecture that is capable of all

requirements as an end-to-end trainable network.

It is recommended to use curriculum learning strategy while training networks that

are designed to solve algorithmic tasks [40, 81, 113, 114]. Curriculum learning [6]

suggests starting training procedure with a simpler version of the problem and in-

creasing the difficulty as training progress. Since the simplest form of the problem

is single object case, a novel network architecture to solve single object tracking task

is proposed in this chapter. In addition, a method for adapting the proposed architec-

ture to multi object case is provided in Section 4.4. With this adaptation curriculum

learning can be applied.

4.2 Overview

The proposed architecture has a recurrent structure since it processes image sequences.

The NTM based architecture can be seen in Figure 4.1. A custom NTM cell is ex-

ecuted for each video frame. First, the controller is updated with object detection

results. It is followed by a read operation from memory. If the read result does not

contain a tracking information a new track is created following the green path. After

refining the tracking information with Kalman filter, memory is updated following

the blue path. With the same information, bounding boxes are computed as output.

31

Bounding
Boxes

read

C
on

tro
lle

r

M
em

or
y

update

Ka
lm

an

R
eg

re
ss

io
n

Ka
lm

an

O
bj

ec
t

D
et

ec
tio

n

create

Video
Frames

Figure 4.1: Overall architecture of the model.

4.3 Model in Detail

The proposed architecture has its roots from the Dynamic Neural Turing Machines

(D-NTM) [40]. Starting from the original D-NTM and getting inspiration from its

equations the final architecture has been designed as shown in Figure 4.2.

In this model, the controller is responsible for managing the input which is the con-

catenation of the detection bounding box and feature vector describing it. The con-

troller prepares the input for content addressable memory. It utilizes its hidden state

when detection fails but object still needs to be tracked. The read head is in charge

of computing the address weights for the provided input using content addressable

memory while the memory unit stands for long term storage of information. Kalman

module is a novel adaptive Kalman filter that uses multi layer perceptrons instead

of covariance matrices to decide on error of prediction and observation. Finally, the

track creator and updater are write heads that are responsible for creating a new track

when the current object is not tracked and updating the state of a track if the cur-

rent detection has a corresponding tracker. Since the memory is content addressable,

there is no need to an external matching algorithm. Memory read directly gives the

tracking information related to the detection. The final module is a bounding box

regressor that converts the internal state into the external state which is the rectangle

that bounds the object.

Controller is a simple LSTM that gets input it at time t and previous hidden state ht´1

32

it

Controllerht−1 ht

Read Headvt−1 vt

Memory

Address Feature State

...

Is new?
Create New

Track

ObservationPrediction Update

Kalman Module

Regression

yt

Update
Track

x+t−1

εp+t−1

εo+t−1

x+t
εp+t
εo+t

Mt−1 Mt

ht

rt, it

No, rt, it

Yes, it

wt

ect , c
c
t rt

rt, it

ht

x+t

x+t

eut , c
u
tht

Figure 4.2: Proposed novel single object tracking architecture that is based on

D-NTM.

to update its internal state. Similarly, bounding box regression module is a simple

multi layer perceptron. In order to implement decision box that divides the data flow

in two different paths, two different methods can be proposed. The first one which

is rather easier is using an on-the-fly computation graph creation framework such as

PyTorch [76]. The other can be utilizing a gating mechanism that passes very little

portion of data through blocked path and most of it through the desired path. The

remaining part of this section explains the specialized and novel modules and how

data flows inside network.

33

4.3.1 Read/Write Heads

The architecture represented in Figure 4.2 includes three heads, namely, read head,

create new track and update track. The first one is responsible for computing the

address weight vector corresponding to the tracking information in memory that is

associated with the input. The others are write heads that are responsible for creating

erase and candidate memory vectors that are used in memory write operations for

creating a new track or updating an existing one. To summarize, the read head finds

the corresponding memory location and the other parts of the architecture uses that

weight vector for the remaining part of operations.

The addressing mechanism is the continuous one adapted from [40]. First, read head

computes a key vector kt for content based addressing,

kt “ pWkq
Jht ` bk, (4.1)

where ht is the hidden state of controller, Wk is the weight matrix, and bk is the bias

vector. Then, sharpening factor βt P R ě 1 is computed with,

βt “ softplusppuβq
Jht ` bβq ` 1, softpluspxq “ logpexppxq ` 1q, (4.2)

where uβ and bβ are weight and bias vectors trained to compute sharpening factor.

Given kt and βt, logits for address weights are computed by,

ztris “ βtSpkt,Mtrisq, (4.3)

where Mt is the current memory content, and Sp¨, ¨q is basically cosine distance. At

this point, the logits can directly be used to compute address weights. However, utiliz-

ing a dynamic least recently used addressing scheme might be useful when an object

that is not being tracked appears in the scene. Hence, one can follow the approach in

[40]. First the exponentially moving averages of the logits (ztq are computed using

its previous value and current logits,

vt “ 0.1vt´1 ` 0.9zt. (4.4)

In order to make it dynamic, a scaling factor γt is used to adjust the influence of

previously written memory locations on the weights of current time step,

γt “ sigmoidppuγqJht ` bγq, (4.5)

34

where uγ and bγ are the parameters of the function computing the scaling factor.

Finally, weights are computed using updated logits,

wt “ softmaxpzt ´ γtvt´1q. (4.6)

As it is easily seen from Equation (4.6), when the scaling factor is zero, least re-

cently used addressing is discarded. Otherwise, their usage is limited according to

that scalar.

On the other hand, the write heads do not compute any address weights. They are re-

sponsible for updating the memory content by erasing unnecessary parts and adding

the relevant information. Since both use the same mechanism, a combined represen-

tation can be used for the data they use. While creating a new track, one needs to

make use of input it. On the contrary, update of existing track requires using poste-

rior state estimate x`t . Both are represented as dt. The first thing that a write head

should do is computing an erase vector that is discarded from the memory. A simple

multi layer perceptron φe can model that function as,

et “ φephtq. (4.7)

Then, a scalar gate αt is computed based on controller’s hidden state and the provided

data dt,

αt “ φαpht, dtq, (4.8)

where φα is a simple neural network. Finally, candidate memory content vector ct is

computed with,

ct “ ReLUpWhht ` αtWddtq, (4.9)

where Wh and Wd are trainable weight matrices.

4.3.2 Custom Memory Layout and Operations

The proposed tracking architecture has an external memory Mt whose each cell con-

sists of three parts, namely address, feature and state. The address part is a trainable

vector that enables the network with combining location based addressing and content

35

based addressing. On the other hand, since the input of the network is the concate-

nation of a bounding box with features representing it, best way to hold the trackers

in memory is keeping the features and internal state. They are together called the

content part of the memory cell. Although they can be used as is, the equations can

be updated to process them separately.

When it comes to operations, they are basically memory read and write. Read op-

eration is just a single matrix-vector multiplication that corresponds to a weighted

summation of memory cells. Equation (4.10) formulates the operation.

rt “ pMtq
Jwr

t . (4.10)

Memory write operation, however, is not that simple. It requires first erasing the

irrelevant data and then adding the related one. Since the data is stored in the content

part (Ct) of the memory, only it is updated as seen in Equation (4.11),

Ctrjs “ p1´ etw
w
t rjsq dCt´1rjs `w

w
t rjsct, (4.11)

where d represents element-wise multiplication.

4.3.3 Kalman Module

The classical Kalman filters [2, 52, 55] consists of three steps to solve Bayesian es-

timation equations defined in Section 2.2.1. In the first one a prior state estimate

is predicted with a motion model that uses previous posterior state estimate. Then,

observation is done and its innovation is computed. Kalman gain is the measure of

how reliable the prediction and observation. Since they use a Gaussian distribution

assumption, they require working with covariance matrices that are responsible for

representing the error in observation or prediction. Finally, the prior state estima-

tion is updated with the help of Kalman gain to report posterior one. Akhlaghi et

al. [2] propose a method to estimate process and measurement noise covariance ma-

trices adaptively. Getting inspiration from their study, a novel filter is designed to

solve Bayesian estimation problem in the same way with Kalman filter but with no

assumptions about distributions. Hence, covariance matrix based computations have

been replaced with neural network based trainable functions.

36

Similar to classical methods, the first step is prediction. As mentioned before, predic-

tion is a function of previous posterior state estimation. In our scenario, previous state

information is provided by two sources; directly from the previous posterior state es-

timation and current memory read that holds tracking information. Then, Equation

(4.12) gives the prior state estimation for current time instance,

x´t “ φ1px
`
t´1, rtq, (4.12)

wherex`t´1 is the previous posterior state estimation and rt is the current memory read

vector. In a similar way, one can estimate the prior prediction error as in Equation

(4.13),

εp´t “ φ2pε
p`
t´1, rtq, (4.13)

where εp`t´1 is the previous posterior estimate of prediction error.

The second stage is observation where the input bounding box is utilized to make a

measurement, given in Equation (4.14), about the output bounding box.

mt “ φ3pitq. (4.14)

In this stage of computation, the prior observation error should also be predicted as in

Equation (4.15),

εo´t “ φ4pε
o`
t´1, itq, (4.15)

where εo`t´1 is the previous posterior estimate of observation error. The functions φi

that are used in the first two stages are simple feed-forward neural networks.

The final stage is the update of prior state estimation using a gating mechanism to

create the posterior state estimation and update of error predictions. To start with, the

gate k is computed as the fraction of prediction error in the total error,

g “ εp´t m pεp´t ` εo´t q, (4.16)

where m is element-wise division. Then, the posterior state estimate is the weighted

combination of prior state estimate and observation as given in Equation (4.17).

x`t “ p1´ gqx
´
t ` gmt. (4.17)

37

Having predicted the posterior state estimate, one can update the prediction and ob-

servation errors as follows,

εp`t “ |x`t ´ x
´
t |,

εo`t “ |x`t ´mt|. (4.18)

With the final Equations (4.18), the error predictions are corrected, and the filter be-

comes ready for the next prediction.

4.3.4 Data Flow and Bounding Box Computation

The aim of the section is twofold; clarifying the way data is processed in the net-

work, and demonstrating the correspondences between the proposed architecture and

Algorithm 2.

First of all, Figure 4.2 represents the operations of the network in one time instance

where the horizontal connections represents the signals that are coming from previous

times instance and passed to the next one. However, the data corresponding to current

frame flows from bottom to top. First, the controller gets the input and previous

hidden state to update its internal memory which is passed to the next time step and

the read/write heads. Then, read head computes the corresponding address weights

that are used by all memory operations. Next, a memory read is executed to get

tracking information. Comparing it with the input, one can decide on whether the

object is being tracked or a new one. At this point, data flow is divided into two

paths. If the object is new, a new tracker is created and its corresponding data is read

from the memory. Otherwise, the corresponding tracking information has already

been read from the long term memory. After passing the read vector and input to

the Kalman module, two concurrent operations; updating the track and outputting the

bounding box, finalize the operation for the current time instance.

When it comes to correspondences, one can examine the algorithm step by step. The

external memory of the network starts execution as a zero matrix which corresponds

to 4th line in the algorithm. The if-then-else statement in lines 8 to 13 matches with

38

the content based addressing, Kalman module, write heads and bounding box regres-

sor. In a single object scenario, the last if statement is executed when the object

detection fails. Hence, one can utilize a no-object token in such a case. Putting it

together, examining the algorithm and proposed architecture simultaneously results

in an observation that the network is capable of tracking objects if it can be trained.

4.4 Adaptation for Muliple Object Tracking

Although the motivation is for multiple objects, the proposed architecture is designed

to work with a single object as explained in Section 4.1. However, it is very easy to

adapt the model to multiple object case. NTT is basically an RNN with some exten-

sion adding it some important skills for learning tracking task. The aforementioned

architecture works in the mode at the right most diagram of Figure 2.4. In this mode,

it gets an input for each frame and provides a bounding box for it. Instead, one can

utilize the other many to many (i.e., delayed many to many) mode such that all detec-

tions are written to the memory to update or create trackers, and bounding boxes are

created afterwards using all trackers for a single frame.

In clearer words, when a frame comes bounding boxes are detected and given as input

to the system sequentially. After the last box a special token is provided to denote

that there is no other box to process. While each box is being processed, the network

finds the corresponding tracker and updates it, or creates a new one. After the token is

given, network starts to output all of the tracking information as predicted bounding

boxes. Unmatched trackers may create output until a threshold is passed. Then, they

are killed. Finally, the network outputs an end-of-boxes token which means that there

will not be any other output for that frame. The following frames repeat the same

steps.

39

40

CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, an artificial dataset is described along with the novel creation method.

The dataset is named METU Drone Dataset and published in [1]. In addition, the

dataset provided by the Drone-vs-bird challenge [17] and evaluation metrics used

while assessing the performance are described. With the help of them, the assess-

ment of object detection method is done. In addition, the learning capability of the

method is discussed. Finally, the comparison with other methods that were able to

send meaningful results to the Drone-vs-bird challenge is done.

5.1 METU Drone Dataset

Drone flights have limitations due to inadequate battery technology, weather con-

ditions and legislative regulations; hence, there is no publicly available large scale

dataset for training deep networks for drone detection. However, the approach in

Chapter 3 requires immense amount of data to learn useful features. One possible

solution to this is creating an artificial dataset. To this end, public domain pictures

of drones and birds, and videos of coastal areas have been collected. First, the back-

grounds of the drone and bird images are deleted manually to create transparent back-

grounds which makes it more realistic when overlaid on a different background scene.

While creating artificial images, an Rˆ C grid is utilized. For each grid cell, images

are created by placing drones in a random position in the cell with different sizes in

predefined size intervals and different background scenes extracted from all videos.

41

This is done for each drone twice; once with only the drone and once with a randomly

positioned bird. Figure 5.1 represents the creation of an artificial data example.

Figure 5.1: Creating a single artificial data example with a randomly chosen

background scene and a drone with transparent background.

The overall dataset creation process is summarized in Algorithm 3. As can easily be

seen, the dataset needs a huge storage size when all of the configurations are used.

Hence, some portion of the configurations are eliminated with probability

p “ 1´
Max. allowed size

Total size for all configurations
,

to reduce the size of the dataset to reasonable amounts.

The details of the created dataset can be found in the Table 5.1.

Fully randomized selections and configurations result in very different data examples.

Most of the created images have realistic looking. This is an expected consequence

because the background scenes are extracted from real videos, drones and birds are

extracted from real photos taken while they are flying. Examples for realistic images

can be seen in Figure 5.2. However, the randomization results in some problems.

42

Algorithm 3 The algorithm applied for preparing the METU Drone dataset.

1: S Ð tsiu predefined size intervals

2: D Ð tdiu drone images (background eliminated)

3: B Ð tbiu bird images (background eliminated)

4: V Ð tviu background videos

5: RÐ # of rows that the image will be divided into

6: C Ð # of columns that the image will be divided into

7: GÐ tgi,j | gi,j “ pri, cjquR ˆ C grid

8: for all pd, g, s, vq P D ˆGˆ S ˆ V do

9: ignore this configuration with probability p “ 1´ Max. allowed size
Total size for all configurations

10: draw random positions p0, p1 and p2 in g

11: draw random sizes s0, s1 and s2 from s

12: draw random frames f0, f1, f2 from v

13: draw random birds b0 and b1 from B

14: draw random positions pb,0 and pb,1 for birds in the scene

15: draw random sizes sb,0 and sb,1 for birds where sb,0 is from smaller half of S,

and sb,1 is from greater half of S

16: overlay f0 with d resized to s0 in position p0

17: overlay f1 with d resized to s1 in position p1

18: overlay f1 with b0 resized to sb,0 in position pb,0

19: overlay f2 with d resized to s2 in position p2

20: overlay f2 with b1 resized to sb,1 in position pb,1

21: save f0, f1, f2 into the dataset

Since the algorithm does not consider semantic information, it may result in some

unrealistic images. When the illumination source in the scene and illumination on

the drone or bird has different characteristics, it results in an inconsistency. Another

problem is that algorithm places the drones and birds at random sizes without consid-

ering the objects in the scene. For example, it seems very unrealistic when a drone

near a human is two times bigger than the human. Figure 5.3 shows some unrealistic

examples from the created dataset.

43

Table 5.1: Details of the dataset.
Aspect Information
drones 89
birds 126
background videos 11
rows in grid 12
columns in grid 10
size intervals 19
size intervals in [5,160]

(bias towards smaller values)
image resolution 850ˆ 480

resulting images 676,534

Figure 5.2: Realistic examples from the created dataset.

5.2 Drone-vs-bird Challenge Dataset

For the challenge, 5 MPEG4-coded videos were provided to participants. although

the videos have only one drone that may enter and leave the scene at arbitrary time

instances, there are several distractor objects (i.e., birds) in some of them. As can

be seen from the examples in Figure 5.4, it is very difficult to deal with those di-

verse background and illumination conditions, clutter, different scales, viewpoints

44

Figure 5.3: Unrealistic examples from the created dataset.

and inadequate contrast. It is apparent that this dataset cannot fulfill the expectations

described in Section 5.1. Hence the detection algorithm does not fully depend on it.

However, the only test video which is similar to the training ones provided by the

challenge organizers has been used to assess the performance of the method.

5.3 Evaluation Metrics

In order to evaluate the detection method explained in Chapter 3, well-known precision-

recall (PR) curve and the penalty metric defined in [17]. Precision is defined as

Precision “
tp

tp ` fp
, (5.1)

where tp is is the number of true positives and fp is the number of false positives. This

corresponds to the answer of the question that what fraction of retrieved elements; i.e.,

detected objects, is actually the wanted ones. In a related vein, recall is defined as

Recall “
tp

tp ` fn
, (5.2)

where fn is the number of false negatives. It is a metric that measures what fraction of

the relevant examples; i.e., ground truth boxes, is retrieved. When there is a matching

45

Figure 5.4: Examples from the Drone-vs-bird Challenge Dataset.

detection with a ground truth box, it is counted as true positive. If a detection does not

match any of the ground truth boxes, it is a false positive detection. On the other hand,

if there is no detection that matches a ground truth box, it means the box is classified

as negative while it is actually positive. This is counted as a false negative. In order

to decide whether a detection matches a ground truth box or not, the Intersection over

Union (IOU) metric is utilized,

IOUpd, gq “
ApdX gq

ApdY gq
, (5.3)

where A is the area function, d and g are the detection box and ground truth box. In

clearer words, it is the ratio of overlapping area of boxes to the area of their union.

When they do not intersect, it becomes zero whereas it is one in case of perfect over-

lap. Therefore, the value 0.5 is a good measure of overlap to decide on whether they

match or not.

Another metric utilized in evaluation is the prediction penalty that measures the area

of smallest rectangle that includes both the ground truth and predicted bounding boxes

46

divided by the area of ground truth bounding box. This division provides normaliza-

tion that results in 1 as minimum penalty score when the perfect overlap occurs. The

less accurate overlap, the more penalty score. This is because as the area of over-

lap decreases, the boxes diverge increasing the area of smallest rectangle that bounds

both. This is exemplified in Figure 5.5.

Target Bounding Box: 24 pixels
Detection Box: 28 pixels

Penalty is 5 x 9 / 24 = 1.875

Target Bounding Box: 24 pixels
Detection Box: 28 pixels

Penalty is 8 x 12 / 24 = 4.000

Figure 5.5: Examples for prediction penalty metric where blue rectangles represents

the pixels of the ground truth bounding box and the orange ones are for the

detection. Adapted from: [17].

The defined penalty metric is calculated for only one detection and ground truth box

pair. In case of evaluating detection in videos, square root of the mean squared penal-

ties of individual frames is utilized.

5.4 Results

As explained in Chapter 3, the detection network outputs a confidence value as a

probability of including an object for each box, and a threshold is applied to eliminate

detections that the network is not confident enough. In order to test the effects of the

threshold value on detection performance precision and recall have been computed

with different threshold values in range [0,1] since it is applied on a probability. The

PR curve given in 5.6 shows that only a few configurations have resulted in poor

performance. However, almost all of the configurations have achieved around 90%

47

precision and recall at the same time. In more clear words, the closer the PR curve

to the top right corner, the better the performance of the method, and the evaluated

method has a very good detection performance.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
o
n

Recall

Figure 5.6: Precision-Recall Curve created with different confidence thresholds.

Another metric that has been utilized to test the effects of threshold value is predic-

tion penalty. Figure 5.7 shows the change of average prediction penalty with respect

to confidence threshold. The reason for higher penalties is that when the threshold

increases detection rate decreases. When a drone cannot be found, the top-left pixel is

reported as prediction, which is a requirement of the challenge. This results in a huge

penalty since the metric is designed that way. Hence, the smallest possible threshold

(which is zero) has been chosen for quantitative evaluation on the test video of the

challenge. Although this threshold hurts precision in the artificial dataset, it works

well in the provided test video. Analysis of the training procedure makes it possible

to assess the learning capability of the network. As it can easily be seen from Fig-

ure 5.8, training loss sharply decreases from a sky-high point to reasonable amounts.

Then, it decreases to almost zero which is the optimum point. The sharp decline im-

plies that the network along with the created dataset has a strong learning capability.

As a final result to discuss, one can consider the penalty score of the successful meth-

48

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 0.2 0.4 0.6 0.8 1

A
v
g

.
Pe

n
a
lt

y

Detection Threshold

Figure 5.7: Change of average prediction penalty with respect to confidence

threshold.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ss

Iteration Number

Figure 5.8: Change of loss in first 1000 iterations.

ods on challenge test video. Since the challenge has permitted the participants to send

results from at most three settings of their algorithms three of the four successful par-

ticipants have come up with three settings as seen in Table 5.2. The bold entries in the

table corresponds to the method proposed in Chapter 3 where settings have different

limits for ignorance algorithm which are respectively 2, 4 and 6.

49

Other challenge participants used similar methods to ours. E.g., Schuman et al. have

proposed a convolutional neural network architecture optimized for classifying small

objects [93]. They have trained the network with crawled and self acquired small

dataset. The network is utilized in the classification part of the Faster R-CNN ar-

chitecture. Farhadi et al. have utilized the original Faster R-CNN architecture with

the help of dynamic background subtraction and position history to refine detections

[31]. Likewise, Saqib et al. have trained the original Faster R-CNN architecture with

the challenge dataset [92].

The first thing that attracts attention when looked at the table is the grouping of scores.

It implies that algorithm design is more important than specifically tuning it for the

problem. Considering that the remaining 16 participants failed to achieve meaningful

results, and that the penalty of the setting with limit 6 is very close to the most success-

ful methods, much better than all settings of [92], one can conclude that the method

has a reasonably good performance. Huang et al. [49] report that Faster R-CNN [83]

based methods have more accurate prediction whereas they are much slower than the

single stage counterparts. Considering the motivation of the challenge that requires

real-time performance, using stage detectors is more appealing although the penalty

score and other performance metrics do not take execution time into account. With

this notion in mind, utilizing the method in Chapter 3 is more convenient although

penalty scores of algorithms [93] and [31] are better.

Table 5.2: Final score of the algorithms on challenge test video. Adapted from [17].
Algorithm Penalty
[93] (setting 1) 1.0000
[93] (setting 2) 1.2963
[93] (setting 3) 2.6347
[31] (unique setting) 3.1896
[1] (setting 3) (Method in Chapter 3) 7.7556
[1] (setting 2) (Method in Chapter 3) 13.3270
[1] (setting 1) (Method in Chapter 3) 18.8449
[92] (setting 2) 110.7539
[92] (setting 3) 124.1251
[92] (setting 1) 176.8701

50

In addition to the challenge results, penalty metric can be utilized to assess the per-

formance of the artificially created dataset. Since the ground truth information is not

provided by the challenge organizers it has been extracted manually to construct the

Table 5.3. Ground truth extraction methodology may differ from the original one.

This may be the cause of difference in penalty scores for the same configurations.

However, the table still provides a meaningful assessment.

Table 5.3: Penalty score comparison of different configurations for detection
algorithm. Numbers in parenthesis represent the number of iterations in training.

Data/Tolerance 0 2 4 6
Artificial Data (10k) 3.7434 3.1053 2.8879 3.1125
Artificial Data (20k) 3.8320 3.3108 3.0506 3.2743
Challenge Data (10k) 7.5589 7.3129 7.1160 7.1219
Challenge Data (20k) 9.4443 9.2080 10.6418 10.9510
Combined Data (10k) 5.1821 4.5904 3.019 1.8689

As it can easily be seen from the table, training with the artificial dataset is always

better than training with the challenge dataset. Since the latter is too scarce, network

overfits to training data. The steady scores for artificial data shows that the result-

ing algorithm is robust and stable. The most successful configuration is the result

of training with combined data when the maximum tolerance is 6. With the scores

of artificial data, it can be concluded that the results may be improved by training

with artificial data and adapting to the problem domain with the combined or domain

specific data.

51

52

CHAPTER 6

CONCLUSION AND DISCUSSION

Increasing availability and improving autopilot technologies of drones pose impor-

tant threats especially when they are equipped with cameras or weapons. With this

motivation, an end-to-end neural network based drone detection method and a novel

object tracking architecture are proposed in this thesis.

The evaluations have shown that the drone detection method is a meaningful choice

among the alternatives when both accuracy and execution times are a critical issue.

It has also ranked 3rd among 20 participants in the Drone-vs-bird challenge [17].

The subjective evaluation of the method on challenge test video has shown that it is

successful in most scenarios except its detecting the bird as drone when the bird is

closer to the camera and in specific poses that cannot be easily distinguished from

a drone by human eye. Another observation is that when the drone and the bird are

too close to each other, the network supposes that the bird is a part of the drone, and

outputs a bounding box enclosing both of them. This has created a motivation to

process time domain information to increase accuracy. Hence, the study continued

with drone tracking as a future work of the former one.

In the second part of the study, a novel single object tracking architecture based on

Neural Turing Machines has been proposed. It has been discussed that it can easily

be converted to a multiple object tracking architecture with the proposed adaptation

method. The analysis of the correspondences between the architecture modules and

general multiple object tracking algorithm steps has shown that with a successful

training strategy and valuable dataset, it can learn the task of object tracking.

53

In addition to the detection and tracking methods, the thesis adds an extensive image

database, which is intended to be used in deep learning approaches for drone detection

problem, to the literature. The dataset is named as METU Drone Dataset. The success

of the detection method trained with the dataset has revealed the capabilities of the

dataset. Since training deep networks requires immense amount of data with high

variance, the results have shown that the dataset is a valuable one for drone detection

problem.

The proposed object tracking architecture opens many future directions in the domain

of single and multiple object tracking algorithms. The first one is obviously designing

a training strategy to make it work. Others may include studying the novel modules

of the architecture separately. For instance, the architecture requires memory to store

information of different objects in different locations. Kalman module is also another

novel part that can be studied individually.

Apart from drone tracking problem, the proposed architecture can be adapted to any

other tracking problem although it requires off-line training for the specific domain.

The architecture has been designed to be class agnostic; hence, it can track multiple

objects from multiple classes at the same time. This, of course, depend on the detector

in use and off-line training for motion models. Another marvelous future direction is

that the detections can be handled in the tracking network with a new detector module

that benefits from the spatial and temporal information in the memory module. This

modification converts the network to a black box that gets frames of a video and out-

puts the trajectories of the objects entering and leaving the scene in a robust manner.

Considering all future directions, the proposed architecture widens the horizon for the

next studies in visual object tracking.

54

REFERENCES

[1] C. Aker and S. Kalkan. Using deep networks for drone detection. CoRR,
abs/1706.05726, 2017.

[2] S. Akhlaghi, N. Zhou, and Z. Huang. Adaptive adjustment of noise covari-
ance in kalman filter for dynamic state estimation. In Power & Energy Society
General Meeting, pages 1–5. IEEE, 2017.

[3] A. Andriyenko, K. Schindler, and S. Roth. Discrete-continuous optimization
for multi-target tracking. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1926–1933. IEEE, 2012.

[4] B. Babenko, M. Yang, and S. Belongie. Visual tracking with online multiple
instance learning; 2009.

[5] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features
(surf). Computer Vision and Image Understanding, 110(3):346–359, 2008.

[6] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learn-
ing, pages 41–48. ACM, 2009.

[7] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking us-
ing k-shortest paths optimization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(9):1806–1819, 2011.

[8] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr. Fully-
convolutional siamese networks for object tracking. In European Conference
on Computer Vision, pages 850–865. Springer, 2016.

[9] A. Blake and M. Isard. The condensation algorithm-conditional density prop-
agation and applications to visual tracking. In Advances in Neural Information
Processing Systems, pages 361–367, 1997.

[10] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object track-
ing using adaptive correlation filters. In 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2544–2550. IEEE, 2010.

[11] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool.
Robust tracking-by-detection using a detector confidence particle filter. In

55

2009 IEEE 12th International Conference on Computer Vision, pages 1515–
1522. IEEE, 2009.

[12] W. Brendel, M. Amer, and S. Todorovic. Multiobject tracking as maximum
weight independent set. In 2011 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1273–1280. IEEE, 2011.

[13] A. A. Butt and R. T. Collins. Multi-target tracking by lagrangian relaxation to
min-cost network flow. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1846–1853, 2013.

[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust indepen-
dent elementary features. In European Conference on Computer Vision, pages
778–792. Springer, 2010.

[15] D. Casasent. Unified synthetic discriminant function computational formula-
tion. Applied Optics, 23(10):1620–1627, 1984.

[16] J. Choi, H. J. Chang, S. Yun, T. Fischer, Y. Demiris, J. Y. Choi, et al. Atten-
tional correlation filter network for adaptive visual tracking. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, volume 2, page 7, 2017.

[17] A. Coluccia, M. Ghenescu, T. Piatrik, G. D. Cubber, A. Schumann, L. W.
Sommer, J. Klatte, T. Schuchert, J. Beyerer, M. Farhadi, R. Amandi, C. Aker,
S. Kalkan, M. Saqib, N. Sharma, S. D. Khan, K. Makkah, and M. Blumenstein.
Drone-vs-bird detection challenge at ieee avss2017. 2017 14th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance (AVSS),
pages 1–6, 2017.

[18] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(5):603–619, 2002.

[19] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(5):564–577,
2003.

[20] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[21] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based
fully convolutional networks. In Advances in Neural Information Processing
Systems 29, pages 379–387. 2016.

[22] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition, 2005.

56

[23] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Convolutional
features for correlation filter based visual tracking. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 58–66, 2015.

[24] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Learning spatially
regularized correlation filters for visual tracking. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4310–4318, 2015.

[25] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Beyond correla-
tion filters: Learning continuous convolution operators for visual tracking. In
European Conference on Computer Vision, pages 472–488. Springer, 2016.

[26] P. Del Moral. Non linear filtering: Interacting particle solution. 2:555–580, 03
1996.

[27] P. Del Moral et al. Measure-valued processes and interacting particle systems.
application to nonlinear filtering problems. The Annals of Applied Probability,
8(2):438–495, 1998.

[28] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple
instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-
2):31–71, 1997.

[29] G. Duan, H. Ai, S. Cao, and S. Lao. Group tracking: exploring mutual re-
lations for multiple object tracking. In European Conference on Computer
Vision, pages 129–143. Springer, 2012.

[30] K. Fang, Y. Xiang, and S. Savarese. Recurrent autoregressive networks for
online multi-object tracking. arXiv preprint arXiv:1711.02741, 2017.

[31] M. Farhadi and R. Amandi. Drone detection using combined motion and shape
features. In 2017 14th IEEE International Conference on Advanced Video and
Signal Based Surveillance. IEEE, 2017.

[32] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, 1997.

[33] H. K. Galoogahi, A. Fagg, and S. Lucey. Learning background-aware corre-
lation filters for visual tracking. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 21–26, 2017.

[34] R. Girshick. Fast R-CNN. In Proceedings of the International Conference on
Computer Vision (ICCV), 2015.

57

[35] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[36] F. Gökçe, G. Üçoluk, E. Şahin, and S. Kalkan. Vision-based detection and
distance estimation of micro unmanned aerial vehicles. Sensors, 15(9):23805–
23846, 2015.

[37] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672–2680, 2014.

[39] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[40] C. Gulcehre, S. Chandar, K. Cho, and Y. Bengio. Dynamic neural tur-
ing machine with soft and hard addressing schemes. arXiv preprint
arXiv:1607.00036, 2016.

[41] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang. Learning dy-
namic siamese network for visual object tracking. In The IEEE International
Conference on Computer Vision (ICCV), 2017.

[42] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey
Vision Conference, volume 15, pages 10–5244. Citeseer, 1988.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolu-
tional networks for visual recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 37(9):1904–1916, Sept 2015.

[44] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[45] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking
with kernelized correlation filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(3):583–596, 2015.

[46] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[47] S. Hong, B. Roh, K.-H. Kim, Y. Cheon, and M. Park. Pvanet: Lightweight
deep neural networks for real-time object detection. 11 2016.

58

http://www.deeplearningbook.org

[48] C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical asso-
ciation of detection responses. In European Conference on Computer Vision,
pages 788–801. Springer, 2008.

[49] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for modern
convolutional object detectors. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 4, 2017.

[50] M. Jiang, C. Deng, Z. Pan, L. Wang, and X. Sun. Multiple object tracking in
videos based on lstm and deep reinforcement learning. Complexity.

[51] Z. Kalal, K. Mikolajczyk, J. Matas, et al. Tracking-learning-detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(7):1409, 2012.

[52] R. E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, 1960.

[53] A. Karphaty. The unreasonable effectiveness of recurrent neural networks,
May 2015.

[54] L. Kratz and K. Nishino. Tracking with local spatio-temporal motion patterns
in extremely crowded scenes. 2010.

[55] H. J. Kushner. Dynamical equations for optimal nonlinear filtering. Journal of
Differential Equations, 3:179–190, 1967.

[56] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler. Learning by tracking:
Siamese cnn for robust target association. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, pages 33–40,
2016.

[57] K. Lenc and A. Vedaldi. R-cnn minus r. In British Machine Vision Conference,
pages 5.1–5.12. BMVA Press, 2015.

[58] Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted multi-
target tracker for crowded scene. 2009.

[59] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400,
2013.

[60] B. Liu, Y. Wang, Y.-W. Tai, and C.-K. Tang. Mavot: Memory-augmented
video object tracking. arXiv preprint arXiv:1711.09414, 2017.

[61] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
Ssd: Single shot multibox detector. In European Conference on Computer
Vision, pages 21–37, Cham, 2016. Springer International Publishing.

59

[62] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Informa-
tion Theory, 28(2):129–137, 1982.

[63] D. G. Lowe. Object recognition from local scale-invariant features. In Inter-
national Conference on Computer Vision, 1999.

[64] W. Luo, X. Zhao, and T. Kim. Multiple object tracking: A review. CoRR,
abs/1409.7618, 2014.

[65] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional fea-
tures for visual tracking. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3074–3082, 2015.

[66] A. Mahalanobis, B. V. Kumar, and D. Casasent. Minimum average correlation
energy filters. Applied Optics, 26(17):3633–3640, 1987.

[67] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from
maximally stable extremal regions. Image and Vision Computing, 22(10):761–
767, 2004.

[68] L. Mejias, S. McNamara, J. Lai, and J. Ford. Vision-based detection and track-
ing of aerial targets for uav collision avoidance. In International Conference
on Intelligent Robots, 2010.

[69] A. Milan, S. H. Rezatofighi, A. R. Dick, I. D. Reid, and K. Schindler. Online
multi-target tracking using recurrent neural networks. In Association for the
Advancement of Artificial Intelligence, volume 2, page 4, 2017.

[70] A. Milan, S. Roth, and K. Schindler. Continuous energy minimization for
multitarget tracking. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 36(1):58–72, 2014.

[71] D. Mitzel and B. Leibe. Real-time multi-person tracking with detector assisted
structure propagation. In 2011 IEEE International Conference on Computer
Vision Workshops, pages 974–981. IEEE, 2011.

[72] M. C. Mozer. A focused backpropagation algorithm for temporal. Backpropa-
gation: Theory, Architectures, and Applications, page 137, 1995.

[73] H. Nam and B. Han. Learning multi-domain convolutional neural networks for
visual tracking. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4293–4302, 2016.

[74] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He. Spatially
supervised recurrent convolutional neural networks for visual object track-
ing. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
2017.

60

[75] C. Olah. Understanding lstm networks, Aug 2015.

[76] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch.
In Conference on Neural Information Processing Systems Workshops, 2017.

[77] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-optimal greedy algo-
rithms for tracking a variable number of objects. In 2011 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1201–1208. IEEE, 2011.

[78] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H. Yang. Hedged
deep tracking. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4303–4311, 2016.

[79] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[80] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 6517–
6525, July 2017.

[81] S. Reed and N. De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

[82] D. Reid et al. An algorithm for tracking multiple targets. IEEE Transactions
on Automatic Control, 24(6):843–854, 1979.

[83] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. In Neural Information Pro-
cessing Systems (NIPS), 2015.

[84] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation
network. Technical Report CUED/F-INFENG/TR.1, Engineering Department,
Cambridge University, Cambridge, UK, 1987.

[85] M. Rodriguez, J. Sivic, I. Laptev, and J.-Y. Audibert. Data-driven crowd anal-
ysis in videos. In 13th International Conference on Computer Vision, pages
1235–1242. IEEE, 2011.

[86] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust
visual tracking. International Journal of Computer Vision, 77(1-3):125–141,
2008.

[87] A. Rozantsev, V. Lepetit, and P. Fua. Detecting Flying Objects using a Single
Moving Camera. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 39:879 – 892, 2017.

61

[88] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alter-
native to sift or surf. In IEEE International Conference on Computer Vision,
pages 2564–2571. IEEE, 2011.

[89] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533, 1986.

[90] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[91] A. Sadeghian, A. Alahi, and S. Savarese. Tracking the untrackable: Learn-
ing to track multiple cues with long-term dependencies. arXiv preprint
arXiv:1701.01909, 4(5):6, 2017.

[92] M. Saqib, S. D. Khan, N. Sharma, and M. Blumenstein. A study on detecting
drones using deep convolutional neural networks. In 2017 14th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance, pages
1–5. IEEE, 2017.

[93] A. Schumann, L. Sommer, J. Klatte, T. Schuchert, and J. Beyerer. Deep cross-
domain flying object classification for robust uav detection. In 2017 14th IEEE
International Conference on Advanced Video and Signal Based Surveillance,
pages 1–6. IEEE, 2017.

[94] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun. Over-
feat: Integrated recognition, localization and detection using convolutional net-
works. In International Conference on Learning Representations (ICLR2014),
CBLS, April 2014, 2014.

[95] J. Shi and C. Tomasi. Good features to track. Technical report, Cornell Uni-
versity, 1993.

[96] X. Shi, H. Ling, J. Xing, and W. Hu. Multi-target tracking by rank-1 tensor
approximation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2387–2394, 2013.

[97] H. T. Siegelmann. Computation beyond the turing limit. Science,
268(5210):545–548, 1995.

[98] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.

[99] J. Sivic, A. Zisserman, et al. Video google: A text retrieval approach to object
matching in videos. In IEEE International Conference on Computer Vision,
2003.

62

[100] J. Son, M. Baek, M. Cho, and B. Han. Multi-object tracking with quadruplet
convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5620–5629, 2017.

[101] R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance search for track-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1420–1429, 2016.

[102] Z. Teng, J. Xing, Q. Wang, C. Lang, S. Feng, Y. Jin, et al. Robust object
tracking based on temporal and spatial deep networks. In IEEE International
Conference on Computer Vision, volume 2, 2017.

[103] M. Trajković and M. Hedley. Fast corner detection. Image and Vision Com-
puting, 16(2):75–87, 1998.

[104] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for
object recognition. International Journal of Computer Vision, 2013.

[105] P. Viola and M. Jones. Rapid object detection using a boosted cascade of sim-
ple features. In Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2001. CVPR 2001., volume 1,
pages I–I. IEEE, 2001.

[106] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully con-
volutional networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3119–3127, 2015.

[107] L. Wang, W. Ouyang, X. Wang, and H. Lu. Stct: Sequentially training convo-
lutional networks for visual tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1373–1381, 2016.

[108] P. J. Werbos. Generalization of backpropagation with application to a recurrent
gas market model. Neural Networks, 1(4):339 – 356, 1988.

[109] J. Xing, H. Ai, and S. Lao. Multi-object tracking through occlusions by local
tracklets filtering and global tracklets association with detection responses. In
2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
1200–1207. IEEE, 2009.

[110] B. Yang and R. Nevatia. Multi-target tracking by online learning of non-linear
motion patterns and robust appearance models. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1918–1925. IEEE, 2012.

[111] M. Yang, F. Lv, W. Xu, and Y. Gong. Detection driven adaptive multi-cue in-
tegration for multiple human tracking. In 2009 IEEE 12th International Con-
ference on Computer Vision, pages 1554–1561. IEEE, 2009.

63

[112] R. Yoshihashi, T. T. Trinh, R. Kawakami, S. You, M. Iida, and T. Naemura.
Differentiating objects by motion: Joint detection and tracking of small flying
objects. arXiv preprint arXiv:1709.04666, 2017.

[113] W. Zaremba and I. Sutskever. Learning to execute. arXiv preprint
arXiv:1410.4615, 2014.

[114] W. Zaremba and I. Sutskever. Reinforcement learning neural turing machines-
revised. arXiv preprint arXiv:1505.00521, 2015.

[115] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-object track-
ing using network flows. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2008.

64

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Problem Definition
	Contributions
	Organization

	Related Work and Background
	Object Detection and Localization
	Classical Methods
	Single Stage Detectors
	Two Stage Detectors

	Object Tracking
	Single Object Tracking
	Multiple Object Tracking

	mUAV Detection and Tracking
	Recurrent Neural Networks and Variants
	Neural Turing Machine

	A Single Shot Detector Based mUAV Detection
	The Architecture
	Training Details
	Detection Details

	Neural Turing Tracker: Object Tracking Based on NTM
	Motivation
	Overview
	Model in Detail
	Read/Write Heads
	Custom Memory Layout and Operations
	Kalman Module
	Data Flow and Bounding Box Computation

	Adaptation for Muliple Object Tracking

	Experiments and Results
	METU Drone Dataset
	Drone-vs-bird Challenge Dataset
	Evaluation Metrics
	Results

	Conclusion and Discussion
	REFERENCES

