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ABSTRACT

STRUCTURAL MAPPING AND NETWORK ANALYSIS OF
PATIENT-SPECIFIC MUTATIONS IN GLIOBLASTOMA

Kaya, Tuğba

MSc, Department of Bioinformatics

Supervisor : Assoc. Prof. Dr. Nurcan Tunçbağ

Co-Supervisor : Assoc. Prof. Dr. Tunca Doğan

August 2018, 76 pages

Cancer is one of the most common cause of death worldwide. It occurs as a result of a
collection of somatic deviations from normal state. Therefore, many efforts have been
invested to profile mutations in different types of tumors; such as, the Cancer Genome
Atlas (TCGA) which deposits multiple omic data for more than 11,000 tumor sam-
ples. In this thesis, we present a pipeline which retrieves patient-specific mutation
data in Glioblastoma from TCGA, maps these mutations on the protein structures in
Protein Databank (PDB) and finds the location and functional effect of the mutations
and reconstruct functional networks by integrating mutation data with interactome.
As a result of this thesis study, we found that some mutations are specific to alter-
native isoform sequence of the protein instead of the canonical sequence. We also
showed that functional impact of mutations in interface region is more damaging
compared to the surface region and more similar to the core region of the protein. We
showed that most common change in the protein core is that hydrophobic residues are
mutated to another hydrophobic residue. However, in the surface or interface region a
charged residue is changed either to another charged residue or a polar residue when
we analyzed the chemical classes of mutations. From these mutation profiles of the
patients, we reconstructed 290 GBM-specific networks with Omics Integrator which
solves the prize-collecting Steiner forest (PCSF) problem and optimally connects the
given set of proteins in a network context. We merged the most common nodes and
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edges across these patients and clustered the merged network into functional commu-
nities. The ontology and pathway enrichment analyses gave us that Wnt signaling,
ERBB signaling and NfKb/Ikb signaling pathways are the most commonly enriched
pathways. From mutation to protein structures and functional networks, we believe
that the result of this thesis will have significant contribution in cancer research.

Keywords: Network Modeling, Structural Mapping, Missense Mutation, Cancer,
Glioblastoma Multiforme
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ÖZ

GLİOBLASTOMADA HASTAYA ÖZGÜ MUTASYONLARIN YAPISAL
HARİTALANMASI VE AĞ ANALİZİ

Kaya, Tuğba

Yüksek Lisans, Biyoenformatik Bölümü

Tez Yöneticisi : Doç. Dr. Nurcan Tunçbağ

Ortak Tez Yöneticisi : Doç. Dr. Tunca Doğan

Ağustos 2018 , 76 sayfa

Kanser dünya çapında en yaygın ölüm nedenlerinden biridir. Bu nedenle, farklı tip-
teki tümörlerin mutasyon profillerinin çıkarılmasına çokça çaba harcanmıştır; örne-
ğin, Kanser Genom Atlas (TCGA) 11000’den fazla tümör örneği için omik veri bi-
riktiren platformlardan biridir. Bu tezde, TCGA’den Glioblastoma için hastaya özgü
mutasyon verilerini alan, Protein Databank (PDB) ’den elde edilen protein yapıları
üzerine haritalayan, yerini ve fonksiyonel etkisini tespit eden ve protein interaktomu
ile entegre ederek fonksiyonel ağları yeniden yapılandıran bir veri işleme hattı sun-
maktayız. Bu tez sonucunda, bazı mutasyonların, proteinin bilinen dizisi yerine al-
ternatif izoform dizisine spesifik olduğunu bulduk. Aynı zamanda, etkileşim yüzeyin-
deki mutasyonların fonksiyonel etkisinin iç bölgesindeki etkilere benzer olduğunu
ve yüzey bölgesi ile karşılaştırıldığında daha çok zarar verdiğini gösterdik. Protein
iç kısmındaki en yaygın değişimin, hidrofobik amino asitlerin başka bir hidrofobik
amino aside değişiminin olduğunu gösterdik. Bununla birlikte, yüzey veya etkileşim
yüzeyinde, mutasyonların kimyasal sınıflarını analiz ettiğimizde yüklü bir amino asit
başka bir yüklü ya da polar amino aside dönüşmüştür. TCGAdeki hastaların bu mutas-
yon profillerinden, prize collecting Steiner forest (PCSF) problemini çözen ve verilen
bir protein kümesini bir ağ bağlamında en iyi şekilde birleştiren Omics Integrator ile
GBMda hastaya özgü 290 tane ağı yeniden oluşturduk. Bu hastalar arasında en yaygın
protein düğümleri ve ayrıtlarını birleştirdik ve bu birleştirilmiş ağı işlevsel topluluk-
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lar halinde kümeledik. Ontoloji ve yolak analizleri Wnt sinyal ERBB sinyal ve NfKb
/ Ikb sinyal yolaklarının en yaygın zenginleştirilmiş yolaklar olduğunu göstermiştir.
Mutasyondan protein yapılarına ve fonksiyonel ağlara kadar, bu tez çalışmasının so-
nucunun kanser araştırmalarına önemli katkı sağlayacağına inanıyoruz.

Anahtar Kelimeler: Ağ Modelleme, Yapısal Haritalama, Mutasyon, Kanser,Glioblastoma

Multiforme

vii



To my family

viii



ACKNOWLEDGMENTS

First and foremost, I would like to wholeheartedly thank my excellent supervisor As-
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CHAPTER 1

INTRODUCTION

Cancer is a generic term for diseases where cells grow and divide uncontrollably
and these cells proliferate abnormally. Internal factors (mutations, hormones immune
conditions etc.) and external factors (tobacco smoke, radiation, chemical etc.) can
cause cancer. As reported by the World Health Organization (WHO) fact sheet, cancer
is the second most common cause of death worldwide. In 2015, 8 million deaths were
caused by cancer. Globally, approximately 1 in 6 deaths is because of cancer.

From a point of cancer genetics, it occurs as a result of a collection of somatic devia-
tions from normal state. The thought about cancer to be a process of the accumulation
of mutations has been changed recently with the developments and improvements in
sequencing technologies and eventually accumulated sequencing data. Instead of the
linear accumulation of mutations, there is rather a more complex arrangements of
mutations in cancerous cells. In the recent years, tumor samples from thousands of
cancer patients have been collected, and genomic and proteomic changes have been
analyzed in a tumor-specific way for tens of different tumor types. One of these ef-
forts is the Cancer Genome Atlas (TCGA) which catalogs 33 cancer types (including
Glioblastoma, ovarian cancer, breast cancer and many more and 10 rare tumors) from
around 11,000 patients with both normal and cancer tissues [Tomczak et al., 2015]. In
TCGA, many high-throughput data types including genomic, epigenomic, and tran-
scriptomic profiles as well as the clinical data of each patient are deposited. The
genomic data contains tumor specific mutation profiles and copy number variations.
In terms of mutations, there are 617,354 somatic mutations in total in TCGA which
are our target in this thesis study [Kandoth et al., 2013].

The pattern of somatic changes in DNA is different in each type of cancer. Especially,
Glioblastoma Multiforme (GBM), which is the most common malignant brain tumor
and highly deadly with 12-15 months survival and very heterogeneous in terms of
mutation profiles. The effect of each somatic mutation is not uniform in the involve-
ment to the development of cancer. Conventionally, mutations are divided into two
types; driver and passenger mutations. The former contribute to the growth process
of the tumor by providing selective growth advantage to the cancer cells while the
latter are silent and co-player in the tumor development.

In the context of mutation, replacement of one or more nucleotides with other nu-
cleotides of the same number is called substitution. Depending on the resulting amino
acid in the encoded protein, substitution is divided into three categories; silent, mis-
sense and nonsense. Silent mutation does not cause any amino acid change in the
encoded protein. The missense mutation causes the amino acid change in the en-
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coded protein. The nonsense mutation results in an inserted stop codon to encoded
protein and the translation process stops earlier. Missense and nonsense mutations are
in the class of amino acid changing (aa-changing) mutations. Therefore, at the protein
level, missense and nonsense mutations may have functional impact; however, they
may also be neutral in terms of functional effect. Current research direction in the
field is toward elucidating the functionally critical mutations in cancer.

Three-dimensional information of proteins and their complex states are deposited in
Protein Databank (PDB). Although not all proteins have a complete known structure
in PDB, the yearly growth rate of the database is exponential. The homology mod-
eling and threading based techniques can also accurately model a given protein with
an unknown structure. Proteins are not functional on their own; rather they inter-
act with other proteins to be get functional. Proteins interact through their surfaces
called interface region. Interface regions are different than the rest of the surface in
terms of conservation, amino acid preferences and solvent accessibility. Many stud-
ies have shown that the characteristics of protein interfaces, surfaces and core regions
are different. Two key property of the interfaces are the shape complementarity and
chemical complementarity. Any alteration affecting the global structure of the pro-
tein or the complementarity in the interface may result in the loss of the interaction,
or an alteration changing the physicochemical properties of the surface region may
lead to an interaction-gain. Therefore, the location of the aa-changing mutations are
important in the analysis of patient-specific networks. While some of these mutations
are located distantly to the functional site of the protein and have mild effect in the
functional change, some others located in the core region of the protein and signif-
icantly changes the protein structure. Mutations occurring in the interface regions
may change the interaction preferences of proteins and are expected to have more
deleterious effect in protein function. In these cases, it has been observed that the
proteins either lose the ability to bind a protein or gain a capability of binding to the
new proteins. In addition, mutations located in the core region may affect the stabil-
ity of the structure and eventually changes its interaction preference as well. These
changes caused by mutations in the binding patterns of proteins may cause diseases.
Therefore, it is important to analyze at which region mutations are located in the
three-dimensional structure of proteins [Nishi et al., 2013].

In another aspect, mutations can change the functionality of the cellular pathways
by altering the interaction preferences or the stability of the proteins. To analyze
the changes at pathway level, many network reconstruction methods are available
which aims to optimally connect the given set of proteins in a network context. Some
examples are Omics Integrator, Modulomics, HotNet and Paradigm. These tools and
softwares aim to construct the optimal network that would represent the given data
best. The constructed networks usually reveal the hidden components of the pathways
and show the interplay between pathways beyond the list of mutated proteins.

Given the number of mutations deposited in TCGA, the number of structures in PDB
and the number known interactions between proteins, computational approaches are
crucial for a system level analysis of the mutation effects on proteins, protein inter-
actions and functional pathways in a patient-specific way. Therefore, we designed
this thesis study to apply an integrative approach to a given set of mutations and to
functionally analyze their effects. In this dissertation, we use the patient-specific mu-
tation data from GBM tumors deposited in TCGA and search for their effects both
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at protein and network level. For this purpose, we developed a pipeline that takes
mutation set as input and analyzes these mutations to find out potential proteins that
mutations can take place and use these extracted proteins to map mutations to 3D
protein structures, then apply the network reconstruction and detailed evolutionary
mutation effect analyzes. This pipeline helps to figure out effects of mutations to pro-
tein structures which is an essential step to inspect malfunctioning proteins and their
related interactions and pathways.

Chapter 2 includes corresponding work related to mutations in cancer, how they are
classified and how their effects are analyzed, and which tools are used for this pur-
pose. We also reviewed topics related to proteins; how they interact, the publicly
available sources about protein structure, sequence and functional information. In
addition to this, we also give brief information about integrative network modeling
approaches.

In chapter 3, we present our pipeline for this study that includes, dataset description,
filters that are applied to dataset, formation of processed dictionaries that are excluded
from public databases, foundation of potential mutated proteins, methods for mapping
mutations to 3D structures, methods for analyzing mutations in network level.

In chapter 4, the results our pipeline are described. As a result of mapping mutations
to 3D structures of proteins, possible effects of mutations depending to the mapped
region of proteins are analyzed. The significance of mutations in related pathways are
also shown in this chapter. With the help of network analysis, the crucial interactions
of mutated proteins in the interactome is extracted. The effect of mutations of this
interactions is inspected.

We conclude this thesis with a general overview of our study, the discussion of the
results and our plans as a future work. We would like to extend the application of
this pipeline to other cancer types. Additionally, we only used the available exper-
imental structural data deposited in PDB. Therefore, our future aim is to enrich the
structural dataset of proteins with homology models and structurally predicted protein
interactions. We believe that this study provides another perspective to the analysis
of mutation effects and a good training towards the precision medicine.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the available studies on mutation characteristics in can-
cer, their related protein features and interactions, mutation effect analysis tools,
platforms and databases that are used in cancer researches and network modeling
approaches. Firstly, platforms that provide cancer related data and protein feature,
structure databases are explained. Then, the characteristics and classifications of mu-
tations are detailed. After that, tools that are used to inspect effects of mutations on
protein structure are reviewed. Finally, the approaches used in integrative network
modeling are reviewed.

2.1 Catalogs of Genomic Alterations

2.1.1 The Cancer Genome Atlas (TCGA)

TCGA is a public platform that is created with the collaboration of National Can-
cer Institute (NCI) and the National Human Genome Research Institute (NHGRI).
TCGA contains genomic alterations of 33 cancer types from tumors and normal tis-
sues of more than 11,000 patients. The goal of the TCGA project is to create an
index of genetic alterations that cause cancer. This index aims to contribute to the
improvement of cancer diagnosis and treatment methods by making wide range of
analyzed cancer data public. TCGA process through the co-operation of a number
of centers in an organized way. In this process, tissue samples taken from cancer pa-
tients are passed through analyses and quality controls. Clinical data obtained from
the controlled samples are uploaded to the repository for further genomic and high-
throughput analysis. TCGA conducts a comprehensive analysis of patient data high-
throughput technologies such as microarray-based and next-generation sequencing
technologies [Tomczak et al., 2015]. These methods can be listed as, RNA sequenc-
ing (RNAseq), MicroRNA sequencing (miRNAseq), DNA sequencing (DNAseq),
SNP based platforms, array based DNA methylation sequencing and reverse phase
protein array (RPPA). RNAseq is a high-throughput technology for total RNA profil-
ing and it is a fast method for identifying and quantifying transcripts, isoforms, novel
transcripts, non-coding RNAs. On the other hand, miRNAseq is a form of RNAseq
and it is used for the detection of short small RNA sequences (miRNAs) that are re-
sponsible for regulation of genes in signaling pathways. DNAseq method is used to
find out DNA molecule sequence and inspect the alterations in DNA sequence such as
insertion, deletion, polymorphism, copy number variation. SNP based platforms pro-
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vide the analysis of variations in cancer. Array-based DNA methylation sequencing
is a method for profiling DNA methylation of CpG sites that are the most common
alterations in cancer. Reverse-phase protein array is a proteomic method for measur-
ing protein expression levels. These methods provide many type of data such as exon
expression, copy number variation, DNA methylation, protein expression, single nu-
cleotide polymorphism. In TCGA, there are four levels of data. Level 1 is the raw
data, Level 2 is the processed data, Level 3 is the interpreted data for each individual
sample. While Level 3 is publicly available, Level 1 and Level 2 require permission.

2.1.2 International Cancer Genome Consortium (ICGC)

The International Cancer Genome Consortium (ICGC) is a volunteer organization
that aims to launch and coordinate genomic researches through 50 cancer types and/or
subtypes with global importance. The ICGC was started in 2008 and main focus of
ICGC is to generate an atlas of genomic alterations in cancer for improvement of
prognosis, diagnostics and treatment. The ICGC goal is to provide full catalog of
somatic mutation data in high quality, high resolution and high coverage. To advance
researches, the ICGC aims to make available data to community in minimum time
with minimum restrictions. ICGC members agree the ICGS’s policies that request
rapid data release with specified data standards. These policies include data release
policy, publication policy, intellectual policy, quality standards etc. The main objec-
tive of these policies is to maximize the benefit of the community without violating
the personal rights of the donors [Zhang et al., 2011, Consortium et al., 2010].

2.1.3 Cancer Genome Project (CGP)

The Cancer Genome Project was carried out by Sanger Center in England in 2000.
The main aim of this project is to determine mutated genes in tumors and the patterns
of these mutations by using latest DNA sequencing methods. For this purpose, using
the Human Genome Project data, normal and cancerous cells were compared and
tumor mutations were detected [Dickson, 1999].

2.2 Mutations in Cancer and Their Classification

DNA variation is the change in DNA sequence. The criterion for evaluating a DNA
variant as mutation or polymorphism is the prevalence of the variation in the popu-
lation. If an alteration has 1% or more frequency in the population, it is classified as
polymorphism. If the frequency is less, it is classified as a mutation [Widłak, 2013,
p. 59].

Mutations are changes in several nucleobases or chromosome scales that occur per-
manently in the DNA sequence. Mutations can be separated into two groups ac-
cording to the type of the cells; somatic and germline mutations. Germline mutation
occurs in the organism’s sex cells and can be transferred to the offspring of the or-
ganism. On the other hand, somatic mutation is a mutation that occurs in the cells of
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the organism outside the sex cells. While this mutation is transferred to the daughter
of the cell, it can not be transferred to the offspring of the organism [Widłak, 2013,
p. 56-57].

Mutations can also be categorized as functional and non-functional mutations. Func-
tional mutations are defined as mutations that change the function of a protein. This
change can be gaining a new functionality or losing a functionality. On the other
hand, non-functional mutations have no effect on the functionality of the protein.
Driver versus passenger and functional versus nonfunctional mutation categories are
determined based on different properties. While categorization of driver and passen-
ger mutations is done by assessing tumor growth contribution of mutation, functional
and non-functional mutations are categorized by observing the effect of mutation on
protein function [Gonzalez-Perez et al., 2013].

Figure 2.1: Visual representation of single point mutations. A) Wild type DNA and
its encoded protein sequence. B) Silent mutation in DNA and its encoded protein
sequence. C) Missense mutation in DNA and its encoded protein sequence. D) Non-
sense mutation in DNA and its encoded protein sequence.

Cancer occurs when somatic mutations accumulate in the cell and it changes the
structure and properties of the cell. But that does not mean that every somatic mu-
tation causes cancer. The main challenge of research is to detect driver and passen-
ger mutations. While driver mutations provide positive growth advantages to can-
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cer cells, passenger mutations do not provide selective advantages to cancer cells
[Watson et al., 2013]. On the other hand, it is necessary to examine the structural
changes in order to be able to examine the effects of mutations on behavior in the
system.

Replacement of one or more nucleotides with other nucleotides of the same number
is called substitution. Depending on the results on the encoded protein, substitution
is divided into three categories; Silent, Missense and Nonsense. An example of this
type of mutations is shown in Figure 2.1. Silent mutation does not cause any amino
acid change in the encoded protein. The missense mutation causes the amino acid
change in the encoded protein. The nonsense mutation results in inserted stop codon
to encoded protein [Widłak, 2013, p. 57].

2.3 UNIPROT

The main objective of UniProt is to provide comprehensive, stable and centralized
repository of protein knowledge. UniProt is a joint project between European Bioin-
formatics Institute (EMBL-EBI), Swiss Institute of Bioinformatics (SIB) and Pro-
tein Information Resource (PIR) [Watson et al., 2013]. UniProt is a freely accessi-
ble database of protein sequences and related annotation. It has four components
which differ in usage. The UniProt knowledgebase (UniProtKB) is composed of two
sets of sequences; UniProt/SwissProt and UniProt/TrEMBL. The former is an ex-
perimentally curated database and has cross reference to multiple database and the
latter is automatically annotated protein sequence database which is not curated. The
UniProt Archive (UniParc) stores all sequences of proteins through history. On the
other hand, UniProt Reference Clusters (UniRef) provides a clustered set of proteins
based on similarity in sequence. UniProtKB contains protein related features includ-
ing function, interaction, structure, family and domains, sequences, expression and
cross references. As of July 2018, there are 152,938 unreviewed protein sequences
in TrEMBL and 20,386 reviewed protein sequences for human in UniProtKB/Swis-
sProt. UniProt website performs text based search which allow researchers to obtain
data without prior knowledge. UniProt also has query tools which include full text
search, field based text search, batch retrieval, database identifier mapping, sequence
similarity search and multiple sequence alignment. UniProt data can be downloaded
through website or UniProt FTP server in various formats such as plain text, XML,
Fasta etc. [Consortium, 2011].

2.4 Protein Structures and Protein Databank

The Protein Data Bank (PDB) was established in 1971 to catalog 3D structures of
macromolecules that are experimentally stated. In 2003, The Research Collabo-
ratory for Structural Bioinformatics (RCSB), Protein Data Bank Japan (PDBj) and
Macromolecular Structure Database at the European Bioinformatics Institute (PDBe)
have become three main centres of Worldwide PDB (wwPDB) [Berman et al., 2006].
PDB stores 3D structures of molecules in many dimensions from small protein frag-
ments to large virus structures that are obtained by experimental method such as
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electron microscopy (EM), X-ray crystallography (X-ray) and nuclear magnetic res-
onance (NMR). In total, approximately 90% of of all structures deposited in PDB
are resolved by X-ray experiment which is the most common method,. Structural
information is available for many type of molecules including proteins, ribosomes,
drug targets, viruses, nucleic acids. There are 142,015 structures in total in PDB.
When we refer to more statistics, we see that PDB contains 44,394 distinct protein
structures, 38,787 structures of human sequences and 10,107 nucleic acid containing
structures. Overall yearly growth rate of the number of released structures is expo-
nential. In 2017, 11,115 structures are released and total structure number reached
136,413. While 10,116 of the released structures in 2017 gathered by X-ray crystal-
lography, 416 of them are gathered by NMR and others are analyzed with electron
microscopy, hybrid etc. When the data distribution according to source organism
inspected, the majority of data belongs to Homo sapiens and Bos taurus. Approxi-
mately 17% (21818/127524) of the PDB structures have 1.8-2.0 Å resolution, while
approximately 15% (19404/127524) of them have 2.0-2.2 Å resolution.

PDB entries represented with 4-character unique identifier starting with a number
between 1-9 and remaining three character can be either numeral or letter. Protein
structures are publicly available in PDB standard file format. The PDB file format
consist of two sections; header section gives details concerning name, author, se-
quence, citation, secondary structure etc. and coordinate section describes atomic co-
ordinates in Angstrom units, chain identifiers, position identifiers and atomic names
[Dutta et al., 2009]. The PDB data can be downloaded from the website or through
the FTP server in PDB, mmCIF and XML format. The distribution of number of
entries in PDB according to the number of residues in each protein is shown in Fig-
ure 2.2. Very large protein structures are less common in PDB compared mid-sized
proteins because of the constraints of crystallization and NMR techniques.

Figure 2.2: The distribution of number of entries in PDB according to the num-
ber of residues in each protein. (This histogram retrieved from PDB web site)
[Berman et al., 2000].
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2.5 Protein-Protein Interactions (PPIs) and PPI Databases

More than 80% of proteins interact with each other to perform their function in signal-
ing pathways, replication, cell to cell communication, transcription. Damage in pro-
teins can result in disruptions in these processes and can cause diseases. Interactome
is the complete set of protein protein interactions in an organism. Representing the
full interactome may be impossible because of the complexity. Post-transcriptional
modifications, cellular localization, tissue specificity increases complexity. On the
other hand, some proteins interact permanently, some proteins needs phosphoryla-
tion to interact their partners and protein interactions may be different in different
cell types. This heterogeneity makes it difficult to get full interactome. Experimental
methods can be insufficient to reveal the whole interactome for this reason, computa-
tional methods are also used to predict protein protein interactions.

There are low throughput and high throughput techniques to detect pairwise protein-
protein interactions. One of the most frequently used method is yeast-two-hybrid
(Y2H) system which is a high throughput technique used in vivo. However, this
method may produce false positive interactions besides the true positives. For exam-
ple, two proteins that exist in separate parts in cell in different time may be marked as
interacting with this method, because they can physically bind to each other. In addi-
tion to this, observing interactions that occur after post-transcriptional modifications
is not possible with this method.

Besides the experimental methods, there are many prediction approaches to accu-
rately identify protein-protein interactions. Sequence-based approaches can be clas-
sified as machine learning based approaches, interolog search, domain co-occurrence
and gene/domain fusion events. More advance techniques such docking, knowledge-
base prediction use structural information which gives also residue level binding re-
gions. All techniques are detailed and reviewed in [Keskin et al., 2016].

As the experimental and predicted interactions in recent studies grow the necessity
for databases to store these information has emerged. There are many such type of
databases storing different aspects of PPIs. BIND is a database for storing biomolec-
ular interactions, molecular complexes and pathways [Bader et al., 2003]. BioGRID
deposits protein and genetic interactions over 116,000 from many species includ-
ing Homo sapiens [Stark et al., 2006]. CORUM also stores manually curated protein
complexes from human, mouse and rat [Ruepp et al., 2009]. HPDR database is de-
signed to collect experimentally curated proteins and its features including interac-
tion, post-translational modifications, enzyme/substrate relationship only for human
[Keshava Prasad et al., 2008]. MINT database stores experimentally verified molec-
ular interactions especially PPI [Chatr-Aryamontri et al., 2006]. Different than these
single source databases, there are several others those integrate the interactions in
these databases and scores them based on evidences from multiple sources. iRe-
fWeb is a unified database of 10 public databases. The databases are BIND, Bi-
oGRID, CORUM, DIP, HPDR, MPact, OPHID, and IntAct. The aim of the unified
iRefWeb database is to provide comparison between result of multiple interaction
databases. The difference of iRefWeb from other listed databases is that it integrates
and scores the interactions retrieved from different databases [Turner et al., 2010].
STRING database also stores interactions in a similar fashion that based on the inter-
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action source, i.e. experimental, database search, text-mining, co-expression, and it
scores each interaction between 0 to 1 [Szklarczyk et al., 2016].

Table 2.1: List of protein-protein interaction databases.

Name Organism Number of
Interactions

Number of
Proteins

BioGRID
https://thebiogrid.org/

Homo sapiens 332,829 22,792

HPDR
http://www.hprd.org/

Homo sapiens 41,327 30,047

MINT
https://mint.bio.uniroma2.it/

208 organisms 57,001 13,196

STRING
https://string-db.org/

2,031 organisms 1,380M 9.6M

IntAct
https://www.ebi.ac.uk/intact/

> 9 organisms 851,299 107,104

iRefWeb
http://wodaklab.org/iRefWeb/

1,448 organisms 263,479 66,701

2.6 Properties of PPIs

According to type of proteins in a complex, complexes can be divided into two
groups; homo-oligomeric and hetero-oligomeric. Homo oligomeric complexes are
made of identical protein, whereas hetero-oligomeric proteins are made of different
proteins. Complexes can be group into obligate and nonobligate complexes. For this
classification can be done, affinity and stability of proteins that formed the complex
must be examined. If proteins that located in complex is unstable on their own, this
complex is obligate. On the other hand, if proteins in the complex are stable own
their own, this is a nonobligate complex. Non-obligate complexes can be grouped
according to lifetime of complex; permanent and transient. Permanent interactions
are stable and proteins stay together permanently. Transient interactions are not sta-
ble, proteins interact temporarily. This interaction takes place in signaling pathways
for transmitting the signal. This classifications can be summarized as, obligate com-
plexes are permanent, non obligate complexes can be transient or permanent. The
forces contributing into protein-protein interactions are electrostatic interactions, hy-
drophobic interactions, hydrogen bonds and salt bridges. For example, hydrophobic
interactions are more common in obligate complexes. On the other hand, salt bridges
and hydrogen bonds are more common in transient complexes.

Proteins interact each other with their interfaces. Protein interfaces are determined
with several methods. First method is the calculating the accessible surface area
(ASA) of the residues. In this method, ASA of a residue in the complex state is
compared to ASA of the residue in monomer state. If the difference - in other
words the ASA lost after the complex formed between two proteins - is greater
than 1Å

2
, this residue is marked as interface residue. Second method is the calcu-
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lating atomic distances of residues each from one chain. In this method, the dis-
tance between two residues in different chains in the complex is calculated and if
the distance is less than a threshold, then, these two residues are marked as in-
teracting. This threshold is conventionally used as 5Å; however, 6Å or 7Å are
also used as thresholds. In some studies, the threshold is variable according to the
van der Waals radii of the contacting atoms for a more precise calculation (used in
[Keskin et al., 2004, Tuncbag et al., 2008]). Interfaces are generally named with their
PDB IDs and the chain names forming the interface. An example of protein interface
is shown in Figure 2.3 where Nfkb (colored white, chain A) and Ikb (colored gray,
chain D) are interacting through the interface drawn in surface representation. The
name of the interface is 1iknAD. Cyan surface is the interface partner from Nfkb and
pink surface is the interface partner from Ikb protein.

Figure 2.3: An interface illustration. The interface between NF-KAPPA-B P65 SUB-
UNIT (chain A) and I-KAPPA-B-ALPHA (chain D) is calculated with distance-based
approach and its corresponding structure is deposited with ‘1ikn’ identifier in PDB.

Binding sites have many physicochemical properties like hydrogen bonds, the charge
distribution, composition of the interface, strength of the interaction, hot spots, shape
of the interface, residue conservation. Energy distribution is one of the main property
of the binding sites. Hot spots are the residues in the interfaces that are energetically
important. This residues can be found by experimental methods like alanine scan-
ning mutagenesis but this method cannot be applied to all structures because of the
lack of data. Therefore, computational methods such as learning based methods and
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molecular dynamics based methods are used for hot spot prediction.

2.7 Tools to Analyze of the Mutation Effect on Protein Stability and Protein
Interactions

Disease causing variants mostly occur in protein coding regions. However dbSNP and
1000 Genomes databases are used to categorize variants, they are not sufficient for
predicting variants that affect protein function. The questions how a non-synonymous
mutation affect the stability of the protein or how it changes the interaction prefer-
ences of the proteins are not yet fully answered. Nevertheless, there are many meth-
ods that are using conservation, co-evolution information or energy calculations to
classify the mutations based on their effects; damaging/deleterious or benign/neutral.
In the following section, we review a selected set of methods designed to predict
mutation effects.

2.7.1 SIFT

The Sorting Intolerant from Tolerant (SIFT) algorithm a tool for predicting the ef-
fect of a variant on protein function. It is first released in 2001 as a website. SIFT
mainly focuses on the measuring the effect of amino acid substitutions on protein
function and recently, predicting the effect of frameshifting indels feature added to
the SIFT tool. It is used in researches about genetic diseases and infectious diseases.
SWIFT uses sequence homology for predicting the variant effect and it run on the
assumption that evolutionary conserved regions are less tolerant to mutations. There-
fore, mutations that occurs in evolutionary conserved regions are more likely to affect
the function. First step of the SIFT pipeline is querying the protein through protein
databases to obtain sequence. After this step, protein sequence aligned and accord-
ing to given mutation position, and SIFT analyzes the amino acid composition and
calculates the score. The score is a normalized value which ranges between 0 and
1 and it is the value of probability of existence of a given amino acid change at that
position. If the calculated score is less than 0.05, then the given change is found to
have damaging effect in protein function [Sim et al., 2012].

2.7.2 PolyPhen-2

Polymorphism Phenotyping v2 (PolyPhen-2) is a tool for predicting effect of amino
acid substitution on protein structure and protein function. PolyPhen-2 tool is avail-
able as a software and via web server. The PolyPhen-2 pipeline maps SNPs to gene
transcripts and analyzes sequences and structure attributes. With these annotations,
it generates conservation profiles. Then, analyzed properties are used in machine
learning classification to predict harmful effect of amino acid effect on protein struc-
ture and function. In the PolyPhen-2 tool, input can be protein or SNP identifier. It
also provide batch query option. In the tool output substitution can be categorized as
probably damaging, possibly damaging and benign. These categorization is done ac-
cording to sensitivity and specificity. “Probably damaging” refers to damaging with
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high confidence and “Benign” refers to benign with high confidence. On the other
hand, “Possibly damaging” means damaging with low confidence. PolyPhen-2 also
provides a damaging prability score that ranges between 0 to 1 and 1 referring to
damaging. PolyPhen-2 output also provides multiple sequence alignment and 3D-
structure protein viewer [Adzhubei et al., 2013].

2.7.3 EVmutate

EVmutate is a statistical method for predicting mutation effect and it considers de-
pendencies between positions. EVmutation provides precomputed dataset for approx-
imately 700 human proteins on its website and it can be used to calculate mutations
affect in any organism. Evmutation tool calculates changes in statistical energy (∆E)
using multiple sequence alignment of the protein family. Its algorithm combines two
factor to calculate quantitative mutations affect: the interactions between mutations
and sequence background [Hopf et al., 2017].

2.7.4 MutaBind

MutaBind is a computational method on a web server that analyzes effects of muta-
tions on binding affinity of proteins. MutaBind server calculates quantitative changes
in binding affinity by mapping mutations to protein 3D structures. After that, it in-
spects the corruptive effects of mutations with confidence level of this estimation. In
order to run MutaBind tool, 3D structure of protein complexes must be available. It
can take protein PDB code as an input and gathers the structure from Protein Data
Bank or user can upload their own structure file. The selected structure files in either
case must have at least two protein chains. Additional parameters like interaction
partners, chains of partners must be determined by the user. After these, user must
provide the mutations which can be at most 16 at one submission. With all these
parameters, MutaBind server analyzes the complex and evaluates output for each
individual mutations separately. The outputs for one mutation includes, estimated
change in binding affinity, whether the mutation on interface or not, whether the mu-
tation deleterious or not and confidence level. Estimated change in binding affinity
can be positive and negative. Positive value of ∆∆G refers destabilizing mutation
that results decrease in binding affinity. Tool decides a mutation deleterious or not by
∆∆G score and marks mutation as deleterious if ∆∆G is higher and equal to 1.57
kcal mol−1 [Li et al., 2016].

2.8 Integrative Network Modeling

The response to an external stimulus results in alterations in cell signaling pathways
and gene regulatory networks. Recently, high throughput technologies allow us to
discover many molecular processes within the cell. Although high throughput omics
data obtained at a specific state of the cells enable us to observe the changes in cel-
lular response, not all components within the response pathways are revealed, but
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many remain hidden. These hidden components might be driver proteins connect-
ing significantly changing gene/protein at the given condition or a transcription factor
regulating differentially expressed genes [Huang and Fraenkel, 2009]. Unfortunately,
no single dataset provide all data about molecular processes. Rather, each data type
represents a different state of the cell. Therefore, multi-omic data need to be inte-
grated to reveal these hidden components to understand the full process. Network
modeling approaches allow to integrate multiple types of data and provide a solu-
tion to this problem. Some of the network modeling approaches can be listed as
network propagation, network inference from gene expression, Bayesian networks,
linear programing, the Steiner tree approach, electric circuits, network alignment,
maximum-likelihood, network flow optimization [Tuncbag et al., 2013].

In network propagation methods, a set of nodes and a network are taken as in-
put. By transferring the initial values of the selected nodes to their neighbors in
the given network, it finds a subnetwork that represents the given condition best
[Carlin et al., 2017]. An approach using network propagation called PRINCE pre-
dicts the genes and proteins for a specific disease by integrating disease similarity
metric and protein protein interaction network [Vanunu et al., 2010].

Network inference from gene expression is the process of reconstructing network
by using high throughput data [De Smet and Marchal, 2010]. An example of this
approach predicts the regularity network only from the gene expression data. This
approach uses message passing techniques and concentrate on combinatorial control
that means the expression of a gene is regulated by mutual activity of many proteins
[Bailly-Bechet et al., 2010].

Bayesian networks are probabilistic graphical models that represented in directed
acyclic graphs. Nodes are random variables and edges represents probabilistic de-
pendencies between nodes in a Bayesian network [Ben-Gal et al., 2007]. A sample
approach that apply Bayesian networks uses gene expression and chromosomal copy
number data together to find out driver mutations in cancer [Akavia et al., 2010].

Linear programming which is a special case of mathematical programming is a method
for maximization or minimization of a linear objective function [Dantzig and Thapa, 2006,
p. 1]. SPINE is a framework that intend to explain gene expression experiments in
gene knocked out events. This framework is validated by predicting 99% of gene
knockout effects in yeast [Ourfali et al., 2007].

In electrical circuit approaches, interactome is modeled as electrical circuit where
proteins are interconnecting nodes and interactions are resistors and biological signal
is treated as a flow of electrical current. In an example study, the method is applied
to interactome of muscle specific genes in C. elegans. The role of genes that has high
flow of informations is found to be important in muscles [Missiuro et al., 2009].

In network alignment approaches, two or more network from different species are
aligned go find similarities and evolutionary conserved regions that might help us to
discover functional properties of molecular components [Sharan and Ideker, 2006].
The study of Kelley et al. uses network alignment in the protein interaction networks
[Kelley et al., 2003].

In network flow optimization approaches, network is modeled with minimum-cost
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flow optimization problem. With this algorithm, the flow goes from source to tar-
get node through the network edges with flow capacities. The aim of this algorithm
is to maximize flow between target to sink node with minimum possible cost. Re-
sponseNet is a web server that uses this algorithm together with linear programming.
It outputs a sub-network and its gene ontology enrichment analysis by analyzing
weighted list of proteins and genes [Lan et al., 2011].

The Prize-Collecting Steiner Tree Problem is a network inference method to find a
subtree on a graph with edge costs and vertex profits where the sum of edge costs
contained in subtree and the sum of vertices profits not contained in subtree are min-
imized [Ljubić et al., 2006]. Prize collecting steiner tree (PCST) algorithm is a ver-
sion of Steiner tree that does not require all data given by user is included in final
network. In the study of Huang, the network is constructed from given data and
using predefined protein-protein and protein-DNA interactions. Specifically, with
this algorithm, the components that are hidden in the original data are extracted
[Huang and Fraenkel, 2009].

In this thesis study, we are specifically using the prize-collecting version of the Steiner
tree problem. Therefore, we emphasize more on the PCST based approaches and their
applications in this context. In the study by Bailly-Bechet, the belief propagation, that
is heuristic based, to solve the PCST problem has been applied and its performance
has been assessed in synthetic datasets. Then, the same approach has been applied
to the gene expression dataset of yeast and selected targets has been validated exper-
imentally. As of their publication date, their solver exceeds the performance of other
exact solvers [Bailly-Bechet et al., 2011]. In the study of Marcus T. Dittrich, linear
programming and prize collecting Steiner tree problem are integrated and applied to
lymphoma microarray dataset to find functional modules [Dittrich et al., 2008]. In
another study, Steiner tree problem is used to extract hidden component of PPIs to
figure out underlying biological pathways. This method is applied to phosphopro-
teomic and transcriptional data in yeast pheromone response and changes in unex-
pected pathways are identified [Huang and Fraenkel, 2009].

2.9 Omics Integrator

Network modeling approaches allow the investigation of cellular activities in many
respects, since various types of data can be combined without the need for pathway in-
formation. Today’s high throughput data is difficult to analyze and visualize because
it contains millions of interactions between DNA, proteins and small molecules. The
Omics Integrator package consists of two modules, Garnet and Forest. The Forest tool
solves the prize-collecting Steiner forest problem and creates an interaction network
using the omic data hits provided by the user [Tuncbag et al., 2013]. When creating
the network, it considers the importance of omic hits and the possibility of the reality
of interaction. Each given omic hit has a positive prize that expresses the confidence
of the interaction.The hits provided by the user are called terminal nodes. When the
algorithm includes a terminal node into the network, it is not penalized by the prize
of the terminal node. The algorithm pays cost for each included edge to the final
network. The algorithm creates a network by maximizing the collected prizes and
minimizing the paid edge cost. During the optimization stage, not all terminal nodes
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are forced to be included in the final tree. This eliminates the inclusion of the low
probability edges. At the same time, the algorithm can also include nodes from the
interactome. These nodes are called Steiner nodes and are biologically relevant but
somehow not in the given dataset. The nodes that are highly connected generally exist
in the networks even if they are not biologically related. Forest has the ability to give
a negative prize value to the "hub" nodes to avoid this situation. In this way, they can
only take place in the network when they are very dominant [Tuncbag et al., 2016].
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CHAPTER 3

MATERIALS AND METHODS

In this chapter, we detail the methodology of the pipeline starting from parsing patient-
specific mutation data to structural mapping and network modeling.

3.1 Overview of the Pipeline

We integrate data from multiple resources to detect the effect of mutations on pro-
teins and eventually on the networks. As shown in Figure 3.1, the mutation data
has been retrieved from TCGA [Tomczak et al., 2015], pathway data from Reac-
tome [Joshi-Tope et al., 2005] and KEGG [Kanehisa et al., 2009], protein data from
UniProt [Consortium, 2011], structural data of the proteins from Protein Databank
[Berman et al., 2006](PDB) and finally protein-protein interaction data from iRefWeb
[Turner et al., 2010].

All data retrieved from different databases were converted into objects with attributes
and saved in json format. The external tools we used in this pipeline are Omics
Integrator [Tuncbag et al., 2016] for network modeling and the modules implemented
in BioPython [Cock et al., 2009] for sequence alignment. In the following parts, we
describe each data set, analysis method and tools in more details.

3.2 Datasets

3.2.1 Data from TCGA

The mutation data in TCGA is downloaded in “mutation annotation format” (MAF)
for the barcodes whose protection status is public. These files are generated by align-
ing the DNA sequence obtained from the patient samples to the sequence obtained
from the normal samples and the reference sequence. Gene name, genomic coordi-
nate, variation and many other descriptors are given in the mutation files. All these
data were converted into patient objects as described above where each object has the
barcode attribute and mutation object as another attribute. Mutation object has se-
quence position, UniProt entry identifier and gene names as attributes. The first step
of the analysis is to find all missense and nonsense mutations. For that purpose, each
patient file analyzed and nonsense and missense mutations gathered in a unique set.
The mutation information representation composed of “hugo_symbol” (HGCN gene
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Figure 3.1: The general flowchart of our method. There are four types of data that
are retrieved from multiple databases and transformed into Python objects. First
one is the patient-specific mutation data from TCGA and it contains mutation po-
sition, amino acid change and UniProt entry list that is initially empty and filled with
matched UniProt entries during analysis. Second one is the pathway data gathered
from KEGG and Reactome and it is turned into pathway object that stores identifier,
name of the pathway and list of UniProt entry names per pathway. The third data is
protein features obtained from UniProt. This data is stored in UniProt objects and
it contains entry identifier, gene names, canonical sequence, alternative sequences,
list of PDB entries and isoform objects. The fourth data is the protein structure data
provided from Protein Databank (PDB). The data is converted into Python object that
comprises entry name, chain object list that contains chain sequence, sequence start
and end indices.
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symbol) and “protein_change” information. This gives us the mutation related gene,
position and nucleotide change. Then, a binary matrix is constructed for finding the
frequency of mutations in patients. The columns of the binary matrix represent the
patients and the rows represent mutation names. This matrix can be used for filtering
the patients that having mutation number less than a threshold.

3.2.2 Data Retrieval from UniProt

UniProt allows users to download the whole proteome of a given species. In this
study, we downloaded the human proteome from UniProt which contains both manu-
ally curated proteins (UniProt/SwissProt) and automatically annotated proteins (UniPro-
t/TrEMBL). The downloaded human proteome contains of 70,947 UniProt entries.
The cross-reference of each protein from UniProt to other database identifiers such
as official gene names, PDB identifiers, sequence in fasta format and the isoform in-
formation are also accessible from the downloaded proteome. All these information
is arranged in a table format where rows are UniProt entries and the columns are the
cross-references. The file format is tab delimited and each column in the table has
its own separator. Gene names are provided in space separated, PDB identifiers and
alterations in the isoform sequences are provided in semicolon separated. UniProt
entry section for TP53 protein is shown in Figure 3.2 where UniProt identifier, gene
names, cross-reference to PDB, sequence and alternative sequences (isoforms) are
listed.

3.2.2.1 Cross-checking the Sequence Positions of the Mutated Residues

Each UniProt entry contains canonical sequence and its available isoforms. The
UniProt objects we created during the analysis contain the sequence and associated
genes of UniProt entries and isoforms. It means that we know which genes these
proteins are coded from. In order to examine how mutations affect biological mech-
anisms, we need to check presence of the mutated residue positions in the given set
of protein sequences. Since we have the gene name for each mutation, we can detect
potential proteins by checking the gene list of UniProt entries. For this purpose, we
looked for the name of each mutation in the mutation set on the gene list of UniProt
entries. We performed a sequence analysis to find out the match in mutation and
UniProt gene information. By sequence analysis, we checked whether the amino acid
change in the position identified in our mutation could be in corresponding protein.
If at the position of the mutation in the sequence of the protein the previous amino
acid of the mutation is present, the protein has the potential for mutation. Sequence
control was also performed for the isoforms of the corresponding protein. As a result
of this analysis, we have identified the potential proteins and potential isoforms that
each mutation can occur.
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Figure 3.2: UniProt server output for TP53 protein. The downloaded entry infor-
mation from UniProt given in a single line with tab separation and illustrated in this
figure. Entry name represented as single identifier. Gene names are provided in space
separated format. PDB identifiers given in a semicolon separated string. Sequence
is an one single text. Alternative sequences are separated by semicolon and single
alternative sequence entry contains change position range, change type, isoform list
that corresponding change take place and paper identifier.

3.2.2.2 Extracting Isoform-Specific Mutations

There are several control mechanisms in post transcriptional process i.e. alternative
splicing, alternative promoter usage, alternative initiation, or ribosomal frameshift-
ing events. Therefore, a protein is expected to have multiple isoform sequences
which are different than their canonical sequence. The human-proteome table down-
loaded from UniProt does not directly contain the sequences for each isoform. Each
UniProt entry has an alternative sequence list. Isoforms can have more than one of
these alternative sequences, and alternative sequences can occur in more than one
isoform [Consortium, 2011]. Each alternative sequence representation starts with
“VAR_SEQ” identifier, followed by position, change information in the sequence and
the information about which isoform contains that change in brackets. In Figure 3.2,
alternative sequences represent three types of changes in two general formats: i) The
deletion of the amino acids at the given interval of positions, denoted as "Missing",
ii) The insertion and substitution of the amino acids which are represented together
because in fact both of them are replacement of the sequence from one sequence to
another in the given position range. After the position information in the second for-
mat, the original sequence information is separated by the ‘->’ sign with the changed
sequence information as shown in Figure 3.2.

To check the possibility of some mutations to be specific to protein isoforms, we
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scanned the mutations that are not matching to the canonical sequences. If a mutation
only matches in the isoforms of the corresponding proteins, we labelled it as isoform-
specific. For this purpose, we used the isoform sequences generated by our pipeline
and identified the proteins having at least one isoform specific mutation. Then, we
analyzed the frequency of isoform-specific mutations in the protein of interest in pa-
tients.

Figure 3.3: Isoform sequences of p53 protein. (A) Isoform 6 sequence changes with
respect to canonical sequence. (B) Isoform 7 sequence differences with respect to
canonical sequence. (C) Isoform 8 sequence changes difference from the canonical
sequence. (D) Isoform 9 sequence changes with respect to canonical sequence. The
isoforms of a protein can have same changes in their sequences. For example, the
missing of 1-132 residues occurs in both isoform 7, 8 and 9.

Figure 3.3 shows the TP53 UniProt entry sequences for isoforms 6, 7, 8 and 9.
For each isoform, the changes in sequence with respect to canonical sequence are
provided. Some of the changes are observed in multiple isoforms. For example,
missing amino acids in 1-132 position range (Missing 1-132) occurs in isoform 7, 8
and 9. This information provided in the downloaded human proteome in an abstract
way as shown in Figure 3.2 where the changes are the primary keys, the same changes
are collected together and given as for example “VAR_SEQ 1 132 Missing (in isoform
7, isoform 8 and isoform 9).” Therefore, we designed the part to parse the isoform
sequences in our pipeline accordingly.

In the Figure 3.2, there are six VAR_SEQ in TP53 alternative sequences and isoform
numbers are provided in the VAR_SEQ entries. To be able to process this information
properly and obtain sequences of isoforms, we first need to find out which changes
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exist in the corresponding isoform. For this purpose, we examine all these sequence
changes with a preliminary analysis and collect the variations in each isoform sepa-
rately. Subsequently, we apply the sequence changes in each of these isoforms to the
canonical sequence to obtain the sequence of isoform. When applying the changes to
generate the isoform sequences, a problem has been encountered. All changes made
for isoforms are given based on the original sequential positions. As the changes in
isoform are applied consecutively, since the positions differ after each applied change,
the next changes cannot be applied to the right place. For this reason, we must some-
how apply all these changes at the same time to the original sequence. To do this,
we need to keep the original sequence indices while the changes are applied in order.
That is, when an insertion is made, this sequence should not be expanded at that time,
and the effect of the insertion should be reflected after all changes have been applied.
For this purpose, the original sequence has been converted into a list with each amino
acid corresponding to one element and all changes are applied on this list as detailed
below;

I. The sequence list has not been expanded or shrunk after any changes.

II. To keep the index constant and apply the changes at the same time, the method
of expanding or decrementing the elements of the list according to need is fol-
lowed.

III. If former and latter sequences have the same length, substitution can easily be
applied to former sequence indices.

IV. If an insertion is the case to form the isoform sequence, then it means that the
latter sequence is longer than the former one. Therefore, amino acid subse-
quence to be inserted are entered in the list in the given position range of the
old one.

V. If the new sequence is shorter than the former sequence, the former amino acids
are inserted to corresponding indices. As the former sequence is longer, there
are amino acids in the list that need to be removed. Empty string is entered in
place of these amino acids.

VI. If a deletion occurs in a position range, amino acids in the mutation position
range turned into empty strings.

Thus, the index is preserved and the new sequence is transferred to the list. This list
is converted into a sequence by concatenating all the elements. With this method, all
changes can be applied to the correct indices without losing the original sequential
positions in individual isoform sequences.

The snapshot from UniProt website for FOSL2 protein isoform is illustrated in Figure
3.4. The described list processing in our pipeline to keep the indices correct and
to prepare isoform sequences is shown in Figure 3.5 (the list version of isoform 2
sequence of P15408 FOSL2 protein). Isoform 2 has a deletion of 1-25 positions and
this is applied as empty string in the corresponding positions on the list. ( 3.5 B Red)
There are amino acid changes in positions 26-34. Since the length of the old sequence
is equal to the length of the new sequence, the replacement of amino acids are easily
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Figure 3.4: Isoform 2 sequence changes of FOSL2 protein (P15408). The changes in
isoform 2 sequence with respect to the canonical sequence has been listed. (A) Miss-
ing amino acids in 1-25 residues. (B) Substitution in 26-34 residues. (C) Insertion in
154 residue.

Figure 3.5: List representation of FOSL2 sequence. (A) Canonical sequence of
FOSL2 (P15408) as a list. (B) Method to form sequence of isoform 2 of FOSL2
protein. Red boxes highlight missing amino acids in 1-25 in canonical sequence
is applied as replacement of corresponding indices with empty strings in canonical
sequence list. Green boxes highlight substitution of amino acids in 26-34 residues
in canonical sequence which is reflected as alterations in respective positions. Pink
boxes highlight insertion to canonical sequence is reflected as appending new amino
acids in change position.

applied to the list. ( 3.5 B Green) In the 154th position, there is an insertion. To apply
this insertion to list without changing the index, the new amino acids are entered to
list; up to the length of the old sequence. The length of the former sequence is just 1 in
this example. The remaining elements have been added to the last changed element.
In the case, the last edited amino acid is “A” in the 154th position. For this reason, the
amino acid “A” at position 154 contains the newly introduced amino acids in its own
index. ( 3.5 B Pink) After all the changes have been applied, the list is concatenated
and the sequence of isoform 2 is obtained. In this way, we can apply all the changes
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of isoforms in the correct indices without losing the index of the original sequence.

3.3 Structural Mapping of Mutations

At this stage, our aim is to find the correct position of a given mutated residue in the
PDB structure. A PDB entry of a UniProt sequence may represent only a fragment
of the given protein and the residue numbering may not be exactly the same with the
sequence positions. Therefore, there is a need to find position in structure for advance
analysis, such as finding protein regions, spatial neighbors of mutated residues and
many more.

3.3.1 PDB File Format

The Protein Data Bank (PDB) format provides atomic details of the macromolecu-
lar structures including protein data obtained by X-ray diffraction and NMR studies.
This file format has “.pdb” extension [Berman et al., 2006]. PDB structure files are
available to users in website and via an ftp (file transfer protocol). Firstly, we down-
loaded the data of 109,889 PDB structure in UniProt-PDB mapping file through this
service. Monomers are represented only with one chain in the PDB structure. How-
ever, a PDB entry could be a complex composed of more than one proteins. Then,
each protein is labelled with a unique chain identifier with the given four-letter PDB
identifier.

The data in the PDB files include atomic coordinates, names of the molecules, pri-
mary and secondary structure information, sequence database references, bibliographic
citations etc. Each PDB file contains multiple lines and has 80 columns on each line.
In the file, each row contains information about a record type, and the first 6 columns
of each row represent the name of the corresponding record type. The record types
are like HEADER which is the first line of the file, and AUTHOR which is a list
of contributors, SHEET and HELIX which provide information about 2D structures,
ATOM represents atomic coordinate records for standard groups. The information
of the recording types can be one or more lines. The columns in each row type are
assigned to different fields in different positions. For example, columns 11-50 on the
HEADER line correspond to the grouping information, while columns 11-79 on the
AUTHOR line correspond to the author list. The information of the fields correspond-
ing to columns of each record type is included in the PDB file format documentation.

In the PDB file, the information we need to extract the sequence of the three-dimensional
structure exist in the lines of the ATOM record type which contains standard amino
acid and nucleotide coordinates.

In Figure 3.6, columns that correspond to fields of ATOM records are listed. Each
line starting with “ATOM” keyword represents each atom in the protein listed from
amino terminus to carboxyl terminus. ATOM records of a chain are terminated by a
“TER” keyword [Berman et al., 2006]. We obtained sequence information using the
residue name and residue sequence number columns of the CA atom in each chain in
the PDB record. For this purpose, the file corresponding to each PDB entry is read and
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Figure 3.6: Snapshot of a PDB File Format. One record represented in one line.
Columns refer to single character in a line. For example, 1-6 characters of a line
refers to record name.

the ATOM records are analyzed according to the chain information. The amino acids
corresponding to the atoms in each chain are transformed into sequence with one
letter amino acid representation by using positional information. During this process,
some exceptional cases have been encountered. First of all, position information in
atomic records of some chains is not consecutive. In these cases, the "X" character
is entered for the missing positions in the sequence. By this process, Python objects
were created to store and reuse the PDB input and chain information obtained as a
result of the analysis. The PDB object representing a PDB entry contains the PDB
identifier and the chain object list. The chain object holds the related data including
starting position, the ending position, the chain name, and the sequence information.

3.3.2 Mapping the Mutations onto the Protein Structure

PDB identifiers provide information about 3D structures of the proteins. Each identi-
fier is represented by four characters and each protein co-crystallized with their part-
ners are represented as a chain and chains are labelled with one letter. In general,
amino acid positions in UniProt sequences do not match to the residue position labels
in PDB sequences. Therefore, there is a need of position adjustment from sequence to
structure. As detailed in chapter 2, proteins can be divided into three regions, surface,
core and interface. In order to be able to find the location of mutations in the protein
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whether they are in the core, surface or in the interface, mapping the residue posi-
tions to the protein structure is crucial. For this purpose, we need to cross-reference
UniProt entries to their corresponding PDB identifier and the chain identifiers. PDB
and UniProt supply a cross reference table for mapping PDB chains to UniProt en-
tries in a space-delimited format where each row have a PDB identifier, its related
chain and corresponding UniProt entry. From the human proteome, we know PDB
identifiers for each UniProt entry and using this, we have extracted the corresponding
chain information for each UniProt. By this mapping, we have found specific chains
of PDB structures for each UniProt entry, if it maps to any.

We have processed this data and have stored it in a usable manner in our subse-
quent analyzes. For this purpose, we read the file in the Python script, create the
objects, and store all the objects in a json file with the help of jsonpickle library in
Python for decoding and encoding python objects. In order to efficiently store the
information that we obtain as a result of the analysis, we must define the classes that
hold the characteristics of the data set and use these classes to organize and store
the results efficiently. For this purpose, we first created a class "UniProt" to express
UniProt entries in the "human-proteome" file and an "Isoform" class to express more
than one isoform of UniProt objects. The Isoform class includes the following qual-
ities; “uniprotId "of the UniProt object to which it belongs, "no" which holds the
number information, "sequence" which is obtained by applying the original sequence
changes, and "varSeqs" list which contains the information of the change belonging
to the isoform. The UniProt class includes the following qualities; "uniProtId" which
corresponds to the key of UniProt entry, "geneNames" list which holds gene names,
"PDBs" list which contains PDB entries together with chain information, "sequence"
which contains canonical sequence and "isoforms" list which holds multiple Isoform
objects. All of these objects formed by processing the related files and formed objects
are stored in json format.

Once we have identified the potential proteins for mutations to occur, we can iden-
tify the positions of the mutations in the three-dimensional structure. We know cor-
responding structures of proteins from the PDB list of UniProt entries. With this
method, we can expand our analysis of detecting potential proteins from mutations
by detecting the position in the three-dimensional structure of proteins. We cannot di-
rectly check the position of the mutations because PDB chains express different parts
of the protein. Therefore, we should primarily align the PDB chains on the relevant
protein sequence. For this purpose, we use the sequence of the PDB chains that we
created in our previous analyzes. In this analysis, we aligned the UniProt sequence
(or the isoform sequence) with the sequence of each PDB chain to find which regions
in the protein sequence the chains correspond to. The alignment was done pairwise2
module of Biopython package [Cock et al., 2009]. By this way, we discovered the
position of our mutation in the PDB chain sequence. The mutations positions are
transformed to the related PDB chain sequence positions. Thus, we have matched
mutations to a three-dimensional structure.
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3.4 Analysis of Mutation Effects

3.4.1 Identification of Protein Regions

Proteins can be divided into three regions; namely, core, surface and interface regions.
The conventional approach for identification of these regions are calculating solvent
accessible surface areas of each residue in the protein. NACCESS is a software de-
signed for calculation of solvent accessible surface area both at residue level and at
molecule level [Hubbard, 1992]. In general, if the relative solvent accessible surface
area of a residue in its monomer state is greater than or equal to 15Å

2
, then this

residue is labelled as the surface residue. Interface residues are still surface residues.
To identify them, we browse PDBSum that lists interface residues.

Naccess is an implementation of the method of Lee and Richards [Lee and Richards, 1971].
It takes PDB structure file with .pdb extension as input and outputs three file. The first
one is the atomic accessibility file with .asa extension that contains calculated acces-
sible surface area (ASA) and van der Waals radii of each atom in the given PDB file.
Second file is the residue accessibility file with .rsa extension in that the residue ac-
cessibilities are listed over each protein, as well as the relative accessibility (relASA)
of each residue calculated as the percentage accessibility compared to the total acces-
sibility of the residue in an extended ALA-x-ALA tripeptide [Hubbard et al., 1991].
Third file is the log file of the calculation that keeps each calculation step and the error
and warning messages. The ASA is calculated by rolling a water molecules around
the protein structure. The default radius of the water molecule is assumed to be 1.4
Å, but it can be changed. The solvent molecule is located at the position that is cal-
culated as total radii of atom and solvent molecule for each atom. While the solvent
molecule rolls around the atoms of protein, arc for each atom are drawn. If there is
any arch for an atom, then it is detected as accessible. Total length of all arcs for a
atom is proportional to total accessibility. In this work, we used the default value. To
find the surface residues we used the output .rsa file and the relASA column in that
file.

3.4.2 Detection of the Effects of Mutations

3.4.2.1 EVmutation

EVmutate is developed based on an unsupervised statistical technique to identify
the effect of mutations by using residue coupling information [Hopf et al., 2017]. In
residue coupling, the dependency of a selected residue to its neighbors in a given win-
dow is considered. The EVmutation data is provided for a limited number of proteins
in text format where each position in a UniProt entry is substituted to the remaining
19 amino acid and the damage score is calculated. The more negative values of the
calculate score means the more damaging mutation. We use this data to measure the
likelihood of our mutations and we took the score of the displacement that occurred
in each mutation and compared it with the average score of all other displacement
probabilities. For this purpose, for each matched UniProt entries of each mutation,

29



Figure 3.7: Mutation effect analysis pipeline. First step is the determination of muta-
tion region as in core or not. If accessible surface area of mutation residue is greater
than 15Å

2
, the residue can be on interface or surface region of protein. If ASA is

not greater than 15Å
2
, the residue is in the core. After the region of residue is deter-

mined, the effect analysis of the mutation is applied with Mutabind, EVmutate and
PolyPhen-2.
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we checked the existence of EVmutation file of that UniProt entry and the sequence
interval provided in the EVmutation UniProt file to see if the mutation position in-
cluded in the given range. From EVmutation files, we extracted all possibilities of
substitution for preceding amino acid before the mutation occurred.

3.4.2.2 PolyPhen-2

PolyPhen-2 predicts effect of amino acid substitution on protein structure and protein
function [Adzhubei et al., 2013]. The web server can run batch queries. The muta-
tion list organized for batch input format and single row includes UniProt entry key,
former codon of mutation, mutation residue, latter codon of mutation. The query runs
as a job [Adzhubei et al., 2013].

3.4.2.3 MutaBind

MutaBind is an energy-based method for calculating binding affinity change as a
result of mutation [Li et al., 2016]. MutaBind server does not allow batch queries.
User can run a job from web interface by selecting inputs step by step. Therefore, we
selected some mutations and their mapped structures as input to MutaBind.

3.5 Network Modeling with Omics Integrator Software by Integrating Muta-
tion and Interactome Data

In this step, for each patient the number of mutations per gene was calculated and
prize files are formed. Prize file for each patient contains gene names in first col-
umn and mutation counts for specific gene in the second column. This prize files
are provided as prize input to Omics Integrator [Tuncbag et al., 2016]. Edge file for
Omics Integrator is obtained from iRefWeb which provides interaction data from 10
public databases including BIND, BioGRID, CORUM etc. [Turner et al., 2010]. The
edge file contains interaction partners, their interaction probability and optionally the
type of interaction (directed/undirected) in each row. The tuning parameters are de-
termined as ω = 10, D = 10, β = 5 and µ = 0.01 that are given in default. The
meaning of these parameters are explained in the following sections. In a more de-
tailed analysis, these parameters can be used in a given interval in their combinations.

3.5.1 Omics Integrator Algorithm

Given a graph G(V,E,w) where V is the node set {v|v ∈ V } {v, v}, E is the edge
set and w is the edge weights, the Forest module of Omics Integrator solves the prize-
collecting Steiner forest problem. In Omics Integrator formula which is defined in 3.1,
c(e) is the edge costs defined in 3.3, p′(v) is the function that assigns prizes to each
node which is defined in Equation 3.2, number of trees are defined by the parameter k
and w is the tuning parameter. Initially, dummy node (v0) is added to network and all
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nodes in the initial interactome is connected to the dummy node with an edge weight
of w. After optimization step, root node (v0) and its all edges removed from the final
network to obtain a forest from the optimized tree.

f ′(F ) =
∑
v/∈VF

p′(v) +
∑
e∈EF

c(e) + ω · k (3.1)

p′(v) = β · p(v)− µ · degree(v) (3.2)

The prize function to give weights to nodes is given in Equation 3.2 where degree(v)
is the number of connections of the node inG. β and µ parameters are the scaling fac-
tors. Assigning 0 to µ discards the hub correction in the algorithm, while increasing
the value of µ decreases the hub dominance in the resulting network. The higher value
of β forces more terminals to be included in the final network. A very useful feature
of Forest module is that it can incorporate negative evidence, in other words negative
prizes to nodes, to have a better reconstruction. In our work, negative weights are
coming from the µ scaled degree function (degree(v)).

The cost of edges is calculated with the Equation 3.3. prob(e) is the confidence
measure of interaction. prob(e) value close to 0 means that the probability of the
given interaction to be real is low. Because PCSF is a minimization problem in our
case, we would like to minimize the total cost of the edges included in the final forest.
Therefore, the cost function is given in Equation 3.3 which makes high probability
edges to be low cost. In this way, we eliminate the false positives as many as possible
in the final network.

c(e) = 1− prob(e) (3.3)

Omics Integrator takes three input parameters; w, β and D. Parameter w controls
the number of trees in the final forest, β controls the balance between including more
terminal nodes into the network and D controls the maximum depth of the network.
The optional parameter µ is used to penalize all nodes in the network based on their
degrees. In this way, the dominance of the hub nodes in the final network is overcome.

After the minimization of the objective function in Equation 3.1, the result is a forest
composed of multiple trees F = (VF , EF ) where F (E) ⊂ G(E). With all these
features, Forest algorithm provides output that can be easily viewed with Cytoscape,
the network visualization tool. In this study, node prizes are given as the number
of mutations per protein for each patient. Therefore, the prize list composed of the
proteins having at least one mutation. Every patient mutation file processed and the
number of mutation occurring in each protein calculated separately. Omics Integrator
is run for each patient with these files as prize input. We used the iRefWeb v8.0 as the
weighted interactome in our modeling. As a result, optimal forest file for each patient
is created with the extension _augmentedForest.sif.
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3.5.2 Merging Patient-Specific Networks and Community Detection

For each patient, we reconstructed one graph Gi(Vi, Ei) where Ei is the set of edges
and Vi is the set of vertices and obtained from set of graphs {G1, G2. . .GN} where N
is the number of patients.

Gunion =
N⋃
i=1

Gi (3.4)

Vunion is the vertices set represented by Vunion =
N⋃
i=1

Vi and Eunion is the edge set of

Gunion represented by E =
N⋃
i=1

Ei. Then, we filtered this graph based on the presence

of each edge in patient network. For this purpose, we prepared a matrix A where
columns are patients and the rows are the edges in the union graph (Gunion). Next,
we filtered Gunion to obtain a representative network by applying a constraint that an
edge needs to be present in at least three patients as shown in Equation 3.6.

Aij =

{
1, if ei ∈ Gj

0, else
(3.5)

if
N∑
j=1

Aij > 3 then ei ∈ Gcommon (3.6)

After that, nodes that exist at least three patient are gathered and merged as one net-
work. The resulting network is expected to have one giant component and many other
small connected components. We continued with the giant connected component for
further analysis. All the network merging and analysis stages are performed with the
help of networkx library in Python [Hagberg et al., 2005].

Next, this network is clustered using Cluster Maker which is a Cytoscape plugin.
Cluster maker has two types of algorithms for clustering; attribute clustering and net-
work clustering. Attribute clustering is used for clustering genetic data and includes
hierarchical, k-medoid, AutoSOMe and k-means algorithms. In attribute clustering,
a list of node attributes or an edge attribute can be selected as parameters. On the
other hand, network clustering is used for partitioning depending on a single edge
attribute and its available algorithms are community clustering (GLAY), MCL, affin-
ity propagation, MCODE, AutoSOME, SCPS, transitivity clustering. In this study,
community clustering (GLAY) has been applied for clustering. Community cluster-
ing is an implementation of Girvan-Newman fast greedy algorithm. This algorithm
depends on edge betweenness and it accepts the idea that if there is communities in a
network, then these communities are connected to each other with few edges. There-
fore these few edges must have high connections because all shortest paths must go
along on these edges meaning that they have high edge betweenness. To find clus-
ters with this algorithm, betweenness of all edges are calculated and edge that has
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highest betweenness is removed from the network. After that, betweenness of all
edges is calculated again. This step repeated until there is no edges in the network
[Girvan and Newman, 2002].

3.5.3 Network Centrality Measure (Betweenness centrality, degree centrality)

Centrality is an important property of networks. Over the years, several approaches
proposed for measuring centrality. A graph contains nodes and edges connecting pair
of nodes. Two nodes are adjacent, if there is an edge between them. The degree of
a node is the number of adjacent nodes to a given node. Given two nodes (ni, nj) is
reachable from each other, if there exist one or more edges between these nodes start-
ing from ni and ending at nj . Distance between two nodes are defined as the number
of edges between them. Shortest path is the path with minimum distance between
two nodes. Degree centrality determined by the degree of the nodes. Therefore the
node with maximum degree, has the degree centrality in graph. On the other hand,
betweenness centrality of a node determined with the frequency of shortest path of
other nodes that falls through it. If a node has a high number participation in shortest
paths between all pair of nodes, it has a high value of betweenness centrality in the
graph [Freeman, 1978].

3.6 Enrichment Analysis

3.6.1 Mutation Enrichment Analysis in Pathways

The pathway data was gathered from two different resources: Reactome and KEGG.
Reactome is a free, open source, peer reviewed and curated pathway database. We
used UniProt to reactome mapping table, which contains the mapping of 2,147 path-
ways to the related UniProt entries. The downloaded table is in a tab delimited text
format, where rows correspond to a mapping of a pathway and a UniProt entry and
columns correspond to the UniProt accession, Reactome identifier, link to related
pathway, pathway name and species information. In this mapping, each pathway have
multiple UniProt entry associations. On the other hand, KEGG deposits manually cu-
rated pathway information that represents knowledge on the molecular interactions
[Kanehisa and Goto, 2000]. KEGG provides pathway information in separate files,
named with the identifier of the pathways and represented in “simple interaction for-
mat” (SIF). A particular pathway interaction file contains the interacting proteins in
its first and second columns and the third column shows the interaction types. For
organising the pathway data, we processed these files and generated a unique list of
the genes in each pathway.

The pathway entries obtained from the Reactome and KEGG databases were stored
in a usable manner for our subsequent analyses. For this purpose, we read the file,
create the objects, and store all the objects in a json file. We created the Pathway class,
the qualities of which are; "id" which expresses the key to the metabolic pathway,
"species" which contains species information, and "uniprots" which is a list holding
the keys of the UniProt entries in the metabolic pathway. Pathway objects such as
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UniProt objects were also written to a file in "json" format.

We applied a similar strategy to gene list pathway enrichment analysis with mutation
data. Here, our aim is to identify significantly mutated pathways. For this purpose,
we analyzed each pathway for each patient and applied Fisher’s exact test for each
pair of patient and pathway combination. The contingency table to apply the Fisher’s
exact test is shown in Table 3.1.

Table 3.1: Contingency table of mutations according to patient and pathway.

In pathway Out pathway

In patient

Number of mutations
that are present in the
selected patient and

selected pathway
a

Number of mutations
that are present in the
selected patient but

not in the selected pathway
b

Number of mutations
in the selected patient

a+b

Not in patient

Number of mutations
that are present in the

selected pathway
but not in patient

c

Number of mutations
that are not present in the

selected patient and
the selected pathway

d

Number of mutations
that are not in patient

c+d

Total number of
mutations in pathway

a+c

Total number of
mutations that

are not in pathway
b+d

Total number of
mutations across

290 GBM patients
a+b+c+d

As in the contingency table shown, first we counted the number of mutations in each
patient (represented by a+b). Then, for each pair of patient-specific mutation set and
the set of proteins in each pathway, we counted the number of mutations belonging
to the proteins in the pathway (represented by a). Separately, we counted the number
of mutations in our overall dataset (all unique mutations in 290 GBM tumors) that
are belonging to the proteins in the pathway but not present in the selected patient
(represented by c). Finally, the number of mutations that are neither in the selected
patient nor belonging to the pathway components were counted (represented by d).
After constructing the contingency table, we used the fisher_exact_test function im-
plemented in scipy.stats module of Python to calculate the p-value. We focused on the
significant pathways with a p-value less than 0.05 and having at least three mutations
belonging to the patient. We applied this test to all pathways deposited in Reactome
and KEGG.

3.6.2 GO Enrichment Analysis on the Reconstructed Networks

With the purpose of functional annotation, genes and proteins are associated with
Gene Ontology (GO) terms, which constitute a controlled vocabulary for the biomolec-
ular attributes [Consortium, 2004]. GO system is composed of three aspects (cate-
gories): biological process, molecular function and cellular component [Ashburner et al., 2000].
Each gene/protein is mapped to the most relevant GO terms to record their attributes
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in biological annotation databases. A similar type of associations are made between
genes/proteins and pathway records in biological databases such as the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) [Kanehisa et al., 2009], considering the
pathway memberships of these genes/proteins. An overview of the annotations of a
gene/protein explains its biological attributes. One advantage of using ontological
systems for defining biomolecular attributes is that they are machine interpretable,
which makes it possible to conduct computational data analysis on the respective
genes/proteins.

Functional enrichment and overrepresentation analyses reveals the common annota-
tions among a list of genes/proteins [Subramanian et al., 2005]. They are frequently
employed to analyze clusters of differentially expressed genes to identify the affected
biological processes due to alterations from the healthy state. ClusterProfiler is a
R package that works within the Bioconductor project, to classify genes accord-
ing to their annotated biological terms and analyze the enrichment of gene clus-
ters. ClusterProfiler also supports annotation comparison among multiple clusters
[Yu et al., 2012].

In order to identify the shared biological processes and pathways among our gene/pro-
tein clusters, we run the clusterProfiler for 21 clusters that were obtained from the
cluster analysis on the merged network of 290 patients. The “compareCluster” func-
tion is called through R script with GO (Biological process) and KEGG annotations
separately to display the most enriched GO based biological processes and pathways
for each cluster.
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CHAPTER 4

RESULTS

In this chapter, we present the results of our patient specific analysis in GBM. We
first detail the statistics of the mutation data and then we show the distribution of the
mutations based on the protein regions. Additionally, we present the changes of the
chemical properties after a residue is mutated and the functional effect of the muta-
tions whether they are damaging or neutral. In the last part of the chapter, we show
the results of network modeling to give an insight how mutated proteins interplay in
functional pathways and biological processes beyond the list of mutations.

4.1 Data Statistics

Figure 4.1: GBM mutation data mappings statistics.
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By matching the positions of the mutations to protein sequences, we first validate
them in canonical sequences. There are in total 14,644 unique mutations when we
take the union of the mutations in 290 GBM patients. 444 of these mutations do not
match any protein, while 14,200 of them match at least one protein. Out of 14,200
mutations, 4,725 are mapped to at least one PDB structure; however, 9,475 are not
positioned to any PDB structure. On the other hand, 433 of the mutations are isoform
specific that do not match in the canonical sequence but match at least one isoform
sequence (shown in Figure 4.1).

Figure 4.2: Mutation statistics of Glioblastoma Multiforme patients. X axis repre-
sents 290 GBM patients and y axis represents total number of mutations. While
green bar refers to missense mutation number, orange bar refers to nonsense mutation
number and blue bar is the other type of mutations.

As shown in Figure 4.2, the distribution of number of mutations and mutation types
are not uniform across patients; rather it is heterogeneous. When we look at the
number of mutations in each patient, we notice that the number of missense mutations
dominates in almost all patients. Patient barcoded with “TCGA-06-5858-01” has the
maximum number of mutations which is 269; 171 of them are missense mutations, 7
of them are nonsense mutations and 91 of them are other types of mutations. Patient
barcoded with “TCGA-06-0178-01” has the minimum number of mutations which is
5 with 3 missense and 2 other type of mutations. The average of number of mutations
is 76.11 when we consider 290 patients.

In Figure 4.3, the distribution of the number of missense mutations number across
over 290 patients has shown. The patient with maximum number of missense mu-
tation is the patient with “TCGA-06-5858-01” barcode and it has 171 missense mu-
tation over 269 mutations. On the other hand, patient with “TCGA-06-0178-01”
barcode has minimum number of missense mutation with 3 missense mutation over 5
mutations. In addition to this, average number of missense mutation over 290 patient
is 49.01.
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The barcodes having the maximum and minimum number of all types of mutations
are the same with the ones having the maximum and minimum number of missense
mutations.

Figure 4.3: Missense mutation statistics of Glioblastoma Multiforme patients. X axis
represents 290 GBM patients and y axis represents total number of mutations. Green
bar refers to missense mutation number.

Figure 4.4: The heatmap of the mutations present in at least three patients. Blue
represents presence and white represents absence of the mutation (row) in the corre-
sponding patient (column).

As shown in Figure 4.4 and a more zoomed version in Appendix A, the distribution of
the mutations across different GBM tumors is very heterogeneous. There are only 62
unique mutations that are present in at least three patients and 245 mutations present
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in at least two patients. The most frequent mutation with 18 patients is HSD17B7P2
mutation N175S which is followed by EGFR mutation A289V and IDH1 mutation
R132H in 13 patients. When we sum up the total number of mutations in each protein,
we see that EGFR and IDH1 are the most frequently mutated proteins in GBM.

Figure 4.5: Scatter plot of isoform-specific mutations. X axis represents mutation
number. Y axis represents sequence length of corresponding protein.
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The protein having highest number of isoform-specific mutations is the Titin pro-
tein (TTN). More than 70 isoform specific mutations are observed in TTN. It is
a huge protein found in the heart and skeletal muscles [Guo et al., 2010]. To pro-
vide functional adaptation, TTN has many isoforms formed by alternative splicing
[Beckmann et al., 2000]. It consists of nearly 35,000 amino acids and 13 isoforms
[Consortium, 2011]. Since the size of the Titin protein is very large and it has too
many isoforms, the number of matching mutations is high.

The second protein that has the maximum number of mutations that occur in its iso-
form is Piccolo (PCLO). Piccolo is a member of presynaptic cytoskeletal protein
family and functions in the assembly of presynaptic active zones as sites of neu-
rotransmitter release [Fenster and Garner, 2002]. Although Piccolo is not as huge
as Titin, it is regarded as a large protein with approximately 5000 amino acid
[Consortium, 2011].The plot of the number of isoform specific mutations and the
size of the corresponding protein is shown in Figure 4.5. In Figure 4.5, the number
of isoform specific mutations increases with the size of the protein and the diversity
of isoform sequences. However, we could not show TTN and PCLO in Figure 4.5
because of their size. The general trend is that proteins having long sequences have
tendency to have more isoforms and more isoform specific mutations.

4.2 Structural Mapping of the Mutations

Many methods including electron microscopy, X-ray crystallography and nuclear
magnetic resonance is used to extract 3D structure of proteins. These methods do
not make it always possible to observe full structures of proteins; rather sometimes
only a fragment of a structure can be resolved. Therefore, a single PDB structure may
only represent a part of a protein. For example, Figure 4.6 is an illustration of EGFR
protein sequence and its corresponding PDB structures. Chain “A” of PDB structure
with 1MOX identifier is the structure for sequence position between 25-525 of the full
protein. Chain “B” of 1MOX can be a part of another protein, because crystallization
can be done in proteins in complex. There is no structural data for the region between
525 and 633. PDB identifier 2KS1 at chain B represents the region between 654 and
677 of EGFR protein. Therefore, in the process of mapping mutation positions to
PDB structures of all these pieces of the protein are needed to be considered. Another
challenge here is that residue positions at sequence may not match the residue posi-
tion in the corresponding PDB structure. Hence, a tuning is necessary by aligning
the protein sequence and the sequence in the PDB structure. For example, the muta-
tion at 289th position in sequence of EGFR corresponds to 265th position in the PDB
structure (in 1MOX chain A). We automatically tuned all the mutation positions in
sequence to the available PDB structures by using our pipeline.

In this way, we not only find the correct positions of the mutations in the structure,
but also we are able to identify the region in that they are located (the method is
described in chapter 3). When we detect mutations at binding interface, on the surface
or in the core, we will be able to better assess the effect of mutations. As a result of
our calculations, 94 mutations are found to be located in the interface region, 577
mutations are in the core region and 1,182 mutations are located on the surface of the
proteins.
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Figure 4.6: Structure-sequence relationship of EGFR protein. 25-525 range of EGFR
protein crystallized in the A chain of 1MOX PDB structure. 634-677 range of EGFR
protein is structured in B chain of 2KS1 PDB structure. 696-1022 range of EGFR
protein observed in A chain of 3W33 structure. 1066-1076 range of EGFR protein
crystallized in C chain of 3PFV structure.

4.2.1 Chemical Properties of the Mutations

Figure 4.7: Chemical properties of mutations. Grey bar represents core area, red bar
represents interface area, blue bar represents surface area. X axis refers to alterations
in chemical property, y axis represents the portion of mutations.
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Amino acids can be divided into three classes based on their chemical properties:
charged, polar, hydrophobic. In this part, we analyzed the frequency of the changes
in the chemical properties of the mutated residues from their wild types. Additionally,
we classified the mutations based on their location; interface, surface or core. This
classification is shown in Figure 4.7 where the x-axis represents the change from one
chemical class to another and y-axis represents the fraction of the mutations.

Mutated amino acids on interface and surface regions mostly have charged residues
changing to another charged residue that keeps its chemical property. Amino acids
that are mutated to amino acids with same chemical properties may have mild effect in
changing binding preferences of proteins. On the other hand, conversion into amino
acids that do not have the same chemical properties can result in alterations on binding
affinity and stability of proteins. The most significant change in chemical properties
of mutated amino acids in core regions is seen in hydrophobic residues. Hydropho-
bic to polar transformation is the second frequent change in core residues. While
charged to charged has the highest percentage in interface residues, charged to polar
and charged to hydropic changes are also commonly seen in interfaces. When we
look at distribution of chemical changes surface residues, charged to charged and hy-
drophobic to hydrophobic are the most commonly seen transformations. The changes
in amino acid chemical class as a result of mutations may have severe effect on protein
interface complementarity.

4.2.2 Regional Distribution of the Mutations in Protein Structures

Figure 4.8: PolyPhen-2 mutation analysis output. Grey bar represents core area,
red bar represents interface area, blue bar represents surface area. X axis refers to
mutations effect to protein, y axis represents the portion of mutations.
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The location of the mutated residues in the protein structure gives many more infor-
mation about the functional impact. We found the functional effect of mutations in
proteins by using PolyPhen-2 and classified the impact given by PolyPhen-2 (proba-
bly damaging, possibly damaging, benign) according to the location of the residues.
As shown in Figure 4.8, mutations in the core region are relatively more damaging
compared to the mutations in interface or on the surface. The profile of interface
residues are more similar to the core region in terms of the functional effect of muta-
tions. While approximately 40% of mutations on surface region of proteins stated as
probably damaging, 68% of mutations on core region of proteins are determined as
probably damaging and 62% of mutations on interface regions of proteins are stated
as probably damaging.

On the other hand, 30% of surface mutations, 20% of interface mutations and 15% of
the core mutations are predicted to be benign. This result implies that mutations in the
surface region are relatively more neutral compared to other regions. The interesting
part in Figure 4.8 is the set of mutations located in surface and belonging to probably
damaging class. Here, one possibility is that these mutations may belong to binding
regions that are not identified yet or these mutations make some regions of the protein
unfold or be disordered.

4.2.3 Case Study I: SMYD2 - TP53 Complex

Figure 4.9: The complex of SMYD - TP53 proteins. The grey new cartoon represents
the SMYD2 protein and the cyan peptide represents a fragment of TP53.

Among the structurally mapped mutation data, we selected case studies to show
the functional impact of the mutations when the structural data is available. Fig-
ure 4.9 presents the complex of SMYD2 (Protein-lysine N-methyltransferase) and
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TP53. There are 4 mutations that are mapped to the structure of the SMYD2/TP53
complex; namely, Y344A is in SMYD2 and L369F, Q375K and K370N are in TP53.
Three of the mutations (K370N, Q375K and L369F) have significant change that has
∆∆G value over 1.5 kcal/mol in binding affinity. SMYD2 is a methyltransferase that
methylates many proteins at Lysine residues including TP53. SMYD2 promotes de-
crease in DNA binding activity of TP53 by monomethylation of Lysine at 370 (K370).
Therefore, mutation at position 370 of TP53 from Lysine to Asparagine changes the
methylation process of TP53 and in this way, the regulation of TP53 by SMYD2 can
be altered which functionally impacts the cellular processes. Addiotionally, residue
375 in TP53 forms hydrogen bonds with the atoms of residues 370, 245, and 345 in
SMYD2. A mutation in 375 from Glutamine (uncharged) to Lysine (charged) may
change the contact profiles of these residues [Wang et al., 2011].

4.2.4 Case Study II: EGFR-TGFA Complex

Figure 4.10: The complex of EGFR and TGFA proteins. A) Represents the 3D vi-
sualization of complex. Grey structure refers to EGFR and pink structure refers to
TGFA. B) Graphical representation of change in binding affinity. X axis represents
the mutations and y axis represents the ∆∆G values of mutations.

Our second case study is the interaction between EGFR-TGFA where we show the
distribution of the mutations in the structure. We calculated the ∆∆G values of the
protein complexes using MutaBind web server. The complex between EGFR-TGFA
with the known mutations are shown in Figure 4.10A and the calculated energies
are shown in Figure 4.10B. The largest impact in binding is made by the mutation
C199Y. The Cysteine residue at position 199 forms a disulfide bond with another
Cysteine at position 191 which are shaded in pink and blue in Figure 4.10, respec-
tively. Disulfide bonds are formed between Cysteine residues. They are important
for the stability of proteins and they are stronger than any other non-bonded contact
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potentials. The mutation at position 199 from CYS to TYR leads to disappearance of
the di-sulfide bond between residue 199 and 191 in the same chain. Disappearance of
this contact lead to an energy decrease in the binding and significantly affects binding
although the mutated residue is not located in the interface region. There is only one
mutation (R125W) that is located in the interface region; others are distributed across
the surface and core regions of EGFR colored in yellow in Figure 4.10. The impact
of the mutation R125W in the interface is neutral and does not significantly affect the
binding of EGFR-TGFA which can be represented as a counterexample that a muta-
tion in the surface (C199Y) has more impact in binding affinity than a mutation in the
interface.

4.3 Network Modeling to Reveal Patient-Specific Pathways

We performed network analysis using the Omics Integrator. As we mentioned in the
previous section, we try to create optimal networks that contain relevant proteins by
performing network analysis. For this purpose, Omics Integrator software run for
each of 290 patients. For the simulation of each patient, the prize file is formed with
the protein name and the number of mutations in that protein. The edge file is a
generic weighted interactome that is common for all patients and obtained from iRe-
fWeb database. The outputs of Omics integrator are the network file, edge attributes
file, node attributes file and many other files about the information obtained in the
intermediate stages of the optimization. As a result of these bulk run, 290 patient-
specific networks are reconstructed in total.

4.3.1 An Example Patient Specific Network

In Figure 4.11, the final network of patient barcoded with “TCGA-32-2491-01” is
shown. The network has 144 nodes of which 71 are terminal nodes and 73 are Steiner
nodes. In general, centrality of Steiner nodes are higher. For example, YWHAG is
not in the terminal set but found to be a Steiner node in final network. It is an adapter
protein that binds proteins to generally modulate the activity of the partner. Although
YWHAG has high centrality network, it is hidden in the initial network of the patient.
This situation implies that the nodes that are central for the network and crucial for
biological processes can be hidden in the experimental data.

The final network is analyzed with Bingo Cytoscape plugin to determine the enriched
pathways. The results of the enrichment analysis are shown in Table 4.1. In the net-
work, many critical pathways are enriched including TNF signaling pathway, focal
adhesion, regulation of actin cytoskeleton, ERBB signaling pathway and PI3K-Akt
signaling pathway. The most significant pathway is the TNF signaling pathway. Tu-
mor necrosis factor (TNF) is a cytokine that can cause activation of signaling path-
ways like apoptosis, inflammation and immunity. Another pathway is the local ad-
hesion. Local adhesions are macromolecules that exist between cell and extracellular
matrix and they mediate processes including proliferation, differentiation, gene ex-
pression and survival. The other significant pathway is PI3K/Akt signaling pathway.
Activation of this pathway in Glioblastoma leads to increased cancer cell survival and
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Figure 4.11: Omics Integrator network of patient with TCGA-32-2491-01 barcode.
Blue color and rectangle shape represents Steiner nodes, red color and diamond shape
represents terminal nodes. Edge thickness is proportional to the edge probability
score. Node size is larger if a node is more central.
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decreased apoptosis [Mao et al., 2012]. Additionally, activation of ERBB family re-
ceptor signaling pathways in GBM, which are enriched in the reconstructed network,
can compensate the EGFR targeted therapy and lead to cancer cell proliferation and
invasion [Clark et al., 2012]. When we only analyzed the enrichment of the mutation
list, we can identify very generic pathways such as cancer pathways. The network
modeling gives us more specific pathways and it also shows how the mutated pro-
teins are connected directly or via an intermediate protein.

Table 4.1: Enriched KEGG pathways in the network shown in Figure 4.11

Pathway p-value Adjusted p-value
TNF signaling pathway 0.00072 0.01400
Focal adhesion 0.00120 0.01800
Regulation of actin cytoskeleton 0.00130 0.01600
Fc gamma R-mediated phagocytosis 0.00160 0.01800
ErbB signaling pathway 0.00190 0.01900
Insulin signaling pathway 0.00280 0.02200
Central carbon metabolism in cancer 0.00410 0.02900
Neurotrophin signaling pathway 0.00760 0.04700
PI3K-Akt signaling pathway 0.00840 0.05000

4.3.2 Analysis of Patient-Specific Network Models

As we mentioned in the previous section, we reconstructed 290 networks. These net-
works have some commonalities and differences when compared to each other. Each
network has different number of nodes and edges. The largest network belongs to
patient with “TCGA-06-5858-01” barcode and has 229 nodes and 319 edges. Ten pa-
tients have network with 0 nodes and 0 edges. The smallest network with 7 nodes and
7 edges belongs to the patient with the barcode “TCGA-06-0139-01”. The average
number of nodes across all networks is 73.3. The average number of edges across all
patients is 81.8. The distribution of node and edge numbers of all networks for each
barcode is shown in Figure 4.12 and 4.13, respectively.

Then, we merged 290 reconstructed networks to represent an overall disease network.
Here, we applied some thresholds that are described in chapter 3. If an edge in any
tumor-specific network is present in at least three patient networks we added that edge
to the network. This merged network is shown in Figure 4.14. This merged network
elucidates some important features as well. Some of the nodes are included in the
network because they are mutated (terminal node) in the patient while some other are
intermediate nodes (Steiner node) to connect mutated proteins. For example, PTEN
is present in the networks of 70 patients, in 63 out of 70 it is present as a terminal
node; however, in 7 patient networks it is present as Steiner node. This information
is represented as a pie chart embedded in the nodes in Figure 4.14. This implies
that some nodes are still very important although they are not mutated in the given
patient. Another example is ATXN1 protein that is present 24 networks of which in
22 networks it is labeled as Steiner and in 2 networks it is labeled as terminal node.
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Figure 4.12: Omics Integrator patient networks node count statistics. The distribution
of the node counts of the patient networks gathered from the Omics Integrator. The
horizontal axis represents 290 patients and the vertical axis refers to node counts.

Figure 4.13: Omics Integrator patient networks edge count statistics. The distribu-
tion of edge counts of the patient networks gathered from the Omics Integrator. The
horizontal axis represents 290 patients and the vertical axis refers to the edge counts.
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The most common interactions in the merged network of 290 patients is the clique
between PPP1CA, PTEN and TP53. PTEN (Phosphatase and Tensin Homolog) is
known with its tumor suppressor ability. PTEN was shown to be mutated in an abun-
dance of tumour formations. Similarly, TP53 (Tumor Protein p53) is also a tumor
suppressor. These two gene products are known to interact with each other. PTEN
binds and stabilizes TP53 to induce apoptosis [Patel et al., 2013].

One strong interaction that is common among 35 patients is between LGALS1 (Galectin
1) and MUC16 (Mucin-16). MUC16 binds to galectin-1 [Gubbels et al., 2006]. Galectin-
1 participates in the regulation of apoptosis, cell differentiation and proliferation, and
it is expressed by human immune cells [Consortium, 2011]. Mucin-16 is an inhibitor
of the cytolytic responses of human natural killer cells [Caligiuri, 2008], which be-
longs to the innate immune system [Caligiuri, 2008]. Especially, Galectin-1 is a po-
tential target in the treatment of Glioblastoma, because it has critical roles in the
progression of the tumor [Le Mercier et al., 2010].

4.3.3 Network Functional Enrichment Analysis

Figure 4.15: GO enrichment results for the gene clusters. Horizontal axis represents
the clusters and the vertical axis represents the enriched biological process GO terms.
Dots indicate enriched clusters and GO terms at the intersection points. Red color
refers high enrichment and blue refers low enrichment according to adjusted p-values.
The size of the dots represents the percentage of the genes in the cluster that are
annotated with the corresponding GO term.

As observed from Figure 4.15, most of the biological processes are enriched in only
one cluster and each cluster has 2 to 8 enriched GO terms. In most cases, terms
enriched in a cluster are closely related to each other on the directed acyclic graph
of GO, meaning that, they define only one particular biological process. For ex-
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ample, interleukin-1 secretion and interleukin-1 beta secretion terms are enriched
in the cluster 1. The release of Interleukin-1, a family of cytokines that play roles
in the immune and inflammatory responses, from the cell is regulated in these bio-
logical processes. In cluster 2, response to radiation and its child term response to
X-ray are enriched. Response to radiation is defined as any change that occur in a
cell, as a consequence of radiation exposure. In cluster 4, humoral immune response
and its child process; regulation of humoral immune response took over. In human
infections, bacterias that multiply outside the cell and spread through body fluids,
these bacterias are eliminated by the B cells as a part of the humoral immune sys-
tem [Janeway et al., 2005]. Positive chemotaxis and extracellular matrix organization
terms were manifested in cluster 5. Positive chemotaxis term defines the movement
of a cell towards higher concentration of a chemical. The extracellular matrix sup-
ports organs and tissues structurally. The proteins in the extracellular matrix mostly
functions in the proliferation, adhesion and migration of the cell [Hynes, 2009]. The
extracellular matrix organization process results in the assembly and disassembly of
the extracellular matrix. Cluster 6 is enriched in terms of lipid phosphorylation and
its child process phosphatidylinositol phosphorylation. Lipid phosphorylation is the
incorporation of one or more phosphate-containing phosphoryl groups into the lipid
molecule. In cluster 8, the significant term “regulation of cell morphogenesis” in-
volves morphogenesis-related processes that contribute to cell differentiation, and its
child term “regulation of axogenesis” includes processes that contribute to the forma-
tion of axons in neuronal cells. Cluster 10 includes the significant processes: regula-
tion of metal ion transport, muscle system process, muscle contraction and response
to caffeine. Regulation of metal ion transport process modulates the activities re-
lated to the movement of metal ions through the cell. Muscle contraction process is a
child of muscle system process and implies the changes in muscle shape. Response
to caffeine process defines the activities of a cell due to caffeine intake. In cluster
12, the dominant process is the negative regulation of dephosphorylation. This term
describes activities that prevent a phosphate group from being separated from the
molecule. In cluster 18, cellular potassium ion transport and its child term potassium
ion transmembrane transport processes are enriched. These processes describe the
movement of potassium ions through the cell. In cluster 19, the process regulation
of synaptic plasticity, which describes the ability of synapses to change according to
the situation, is enriched. Receptor metabolic process is also enriched in cluster 19.
This term includes the pathways that involves receptors to initiate a change in cellular
function. In cluster 20, cellular response to interferon-gamma and its child terms are
significant. These terms implies the changes in cell with due to an interferon-gamma
stimulus. Wnt signaling pathway is enriched in cluster 21. The process regulates the
events of cell migration, cell polarity and cell fate during the embryonic development
[Komiya and Habas, 2008]. All listed pathway or biological process descriptions are
obtained from Gene Ontology Consortium webpage [Consortium, 2004].

In this analysis, we focused on the non-disease pathways to observe the cellular pro-
cesses significant in each gene cluster. As shown in Figure 4.16, clusters 5, 6, 8, 13,
16 and 17 have similar enrichments. On than that, most of the clusters have distinct
enriched pathways. A few of the clusters does not contain any significantly enriched
pathway at all (e.g. clusters 3, 7, 11, 14, 15 and 18). In cluster 1, NOD-like receptor
signaling pathway is enriched. NOD-like receptors are defined as nucleotide-binding
oligomerization domain-like receptors and include more than 20 members. They are

52



Figure 4.16: KEGG enrichment results of the gene clusters. Horizontal axis repre-
sents the clusters and the vertical axis represents the enriched KEGG pathways. Dots
indicate enriched clusters and KEGG identifiers at the intersection points. Red color
refers high enrichment and blue refers low enrichment according to adjusted p-values.
The size of the dots represents the percentage of the genes in the cluster that are an-
notated with the corresponding KEGG pathway.

pattern identifiers that are responsible for recognizing pathogens and initiating the im-
mune system. In cluster 2, the first enriched pathway “homologous recombination” is
a type of genetic recombination and involved in the repair of break on both strands of
DNA. In homologous recombination, nucleotide sequences are altered between sim-
ilar or identical DNA molecules. The second enriched pathway, “Fanconi anemia”
takes role in DNA repair, specifically the interstrand cross-links. The third pathway,
“ubiquitin mediated proteolysis” is a system that mainly functions in proteasome de-
pendent protein degradation [Ciechanover et al., 2000]. In cluster 4, “complement
and coagulation cascades” and “salivary secretion” pathways are enriched. These
pathways define a defense mechanism against pathogens and the processes related to
the release of saliva, respectively. In clusters 5, 6, 8, 13, 16 and 17, multiple path-
ways are enriched, three of which are focal adhesion, Rap1 signaling and PI3K/AKT
signaling. Focal adhesion describe multi-molecular structures that take role in cell
differentiation, proliferation and motility. Rap1 is an enzyme that take part in cell-
cell junction formation and cell adhesion. PI3K/AKT signaling pathway controls
fundamental process such as cell survival, growth and proliferation. AKT protein,
which is activated by the action of PI3K, phosphorylates its substrates to regulate cell
cycle. In cluster 10, oxytocin signaling, calcium signaling and circadian entrainment
pathways are significant. Oxytocin takes role in lactation and stimulates uterine con-
traction. Calcium signaling is control calcium ion intake and release to/from the cell.
Circadian entrainment pathway takes role in regulating internal biological clock. In
cluster 20, insulin secretion and aldosterone synthesis and secretion pathways are en-
riched. Insulin secretion pathway is crucial for maintaining the homeostasis in the
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body. Aldosterone play role in regulating the systemic blood pressure. Finally in
cluster 21, Wnt signaling pathway is enriched, as also explained in the previous en-
richment analysis with GO biological process terms (Figure 4.15). All listed pathway
descriptions are obtained from Kyoto Encyclopedia of Genes and Genome (KEGG)
webpage [Kanehisa and Goto, 2000].

4.4 Pathway Enrichment Analysis of the Mutation Sets

We have found several enriched pathways as a result of mutation set enrichment anal-
ysis on the given patient data. The heatmap of the significant pathways is shown in
Figure 4.17, where columns and rows correspond to patient barcodes and pathways,
respectively, and the color intensity in each cell correspond to the negative logarithm
of the p-values.

Figure 4.17: The heatmap of patient-pathway sets. The columns are patient barcodes
and rows are pathway identifiers from the Reactome DB. The color intensity implies
the significance of the enrichment.

The most similar patient-pathway set are observed in three groups and these groups
details are explained below. All pathway definitions in this analysis are obtained from
the Reactome DB [Joshi-Tope et al., 2005].

The first subset of the Reactome pathway analysis results are shown in Figure 4.18.
Patients with the most similar features, with the barcodes TCGA-14-1395-01 and
TCGA-76-4927-01, display similarities on three pathways. The first of these path-
ways is the RNA Polymerase 2 Transcription. RNA Polymerase 2 is the main enzyme
that catalyzes DNA directed mRNA synthesis during the transcription of genes. The
second common pathway is the gene expression pathway. This includes both the tran-
scription and translation processes. In these processes, while RNA Polymerase 1 is
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involved in the synthesis of rRNA, RNA Polymerase 2 is involved in messenger RNA
synthesis and RNA polymerase 3 is involved in the synthesis of tRNA and its deriva-
tives. The third common pathway is the generic transcription pathway. A high level
patient cluster, which is obtained by expanding from the first cluster by adding the
patients with the most similar patterns, contains the patients with barcodes TCGA-
06-2565-01, TCGA-06-0129-01, TCGA-06-0238-01 and TCGA-06-0125-02, along
with TCGA-14-1395-01 and TCGA-76-4927-01. With the addition of these patients,
there are two new pathways in the cluster. The first one is the metabolism of pro-
teins. This pathway includes all processes from the synthesis of proteins and the post
translational modification to their degradation. The second pathway is the cell cycle.
The cell cycle contains all the processes that occur during genetic replication and the
distribution of chromosomes into daughter cells.[Joshi-Tope et al., 2005]

Figure 4.18: The first subset of patient-pathway enrichment analysis.

The second subset of the patient-pathway enrichment in Reactome is shown in Fig-
ure 4.19. Patients with the barcodes TCGA-14-0790-01 and TCGA-06-0214-01 have
seven pathways in common. First of them is the cytokine signaling in immune sys-
tem. Cytokines bind to specific membrane receptors and they regulate cellular activ-
ities by signaling. They are the molecules that are responsible for the regulation and
mediation of immunity, inflammation and hematopoiesis. The second of the common
pathways is the signaling by interleukins. Interleukins take role in many aspects of the
cell such as the tissue growth, repair, homeostasis and host defence against pathogens.
In addition to these pathways, RAF/MAP kinase cascade pathway participate in the
regulation of cell processes including differentiation, survival, proliferation by re-
sponding growth factor and hormones. In MAPK family signaling cascade pathway
involves mitogen activated protein kinases, which is a protein family that responses
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to several extracellular signals. These proteins activate a variety of cellular activities
including gene expression, proliferation and apoptosis.[Joshi-Tope et al., 2005]

Figure 4.19: The second subset of patient-pathway enrichment analysis.

The third subset of the patient-pathway analysis is shown in Figure 4.20. PIP3 ac-
tivates AKT Signaling pathway is a participant of intracellular signaling by second
messengers. Extracellular signals stimulate the cell surface receptors and the second
messengers generated within the cell as a result of this process. The other path-
way is the signaling by Interleukins. The cellular responses to stress pathway de-
fines the signaling processes in the cell for maintaining homeostasis, as a response
to external stimuli. This pathway is the descendent of the cellular response to exter-
nal stimuli. Cellular senescence is a descendent of the cellular responses to stress.
[Joshi-Tope et al., 2005]

A similar analysis has been also applied to KEGG pathways which are shown in
Appendix B.
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Figure 4.20: The third subset of patient-pathway enrichment analysis.
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CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Concluding Remarks

In this thesis, we studied the mutations in Glioblastoma patients to gain a better un-
derstanding of how the mutations are distributed in protein structure, how they affect
the protein stability and interaction preferences and through which interactions the
mutated proteins are connected to each other. Thus, we present an analysis pipeline
to interpret mutations in Glioblastoma in a patient-specific way. We used the mis-
sense mutations in GBM patients deposited in TCGA. The preliminary analysis of
the list of mutations has shown that the GBM tumors are very heterogeneous and
the number of mutations that are common in at least three patients is only 62 out of
14,644 unique mutations. We also note that some of the mutations are not found in
the canonical sequence of corresponding protein, and rather they are present in the
alternative isoforms. This type of mutations are only a small portion (433 mutations)
compared to the full set.

Because the mutation profiles of the patients are very heterogeneous and their links
to each other are not apparent from the mutation set, there is a need to model the
interplay between the mutations in a network context beyond the list. Additionally,
the effect of the mutations are not uniform across the proteins and patients. So, we
first started by analyzing the mutations and mapping the mutation positions onto the
available protein structure data. In this way, we are able to identify the region of
the mutations in the protein structure; which is divided into three regions, surface,
interface and core. When we compared the alteration of the chemical classes from
wild type to mutated residue we have seen that mutations located in the core region
have tendency to keep its chemical class (i.e., from hydrophobic to another hydropho-
bic residue). The next most frequent alteration is from hydrophobic to polar residue,
which may have a more severe effect on the protein stability. When we refer to the
mutated residues in the interface region we notice that charged to polar and polar to
charged alterations are frequent. The most mutated residues in the interface region
is the charged ones and they are either keep their chemical class or change to hy-
drophobic or polar residues. These results show that most of the mutations led to also
chemical property change in proteins and this profile is more similar to the surface re-
gion. Core region has more tendency to conserve the chemical properties despite the
mutation. Next, we predicted the functional effect of the mutations using PolyPhen-2
and assess their effect in three regions. We found that mutations, that are located in
the core and interface regions, are more damaging. It is expected that the mutations in
the core and interface to be more damaging compared to the rest of the surface; how-
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ever, we have specifically shown that this is valid in Glioblastoma mutations in our
results. Additionally, mutations that are located in the surface and damaging are an
interesting class of mutations, because they may lead to disorder or belong to uniden-
tified binding regions that needs to be analyzed in more detail. Two case studies -
one is the SMYD2-TP53 complex and the other is the EGFR-TGFA complex - have
shown the effect of mutations are not uniform. In the former the methylation profile
of TP53 protein is expected to be changing as a result of mutation, and in the latter
one a mutation is changing the protein stability with a broken di-sulfide bond and
eventually the interaction preference, which is located in the surface.

In terms of pathway enrichment, we first applied a naive method on the individual mu-
tation set for each patient and found the enriched pathways. The resulting significant
pathways were shown to be very generic; for example, transcription pathway, cancer
pathways etc. Then, we reconstructed a network of interactions between mutated pro-
teins in each patient. Here, our aim is to connect mutated proteins either directly or
by adding an intermediate node through high probability edges. We used the Omics
Integrator software for this purpose which solves the prize-collecting Steiner forest
problem. As a result we reconstructed 290 patient-specific network. Beyond the mu-
tation set enrichment analysis, the results of network modeling gave us more specific
pathways that are enriched in the given patient barcode. For example, the network
with barcode number TCGA-32-2491-01 is significantly enriched in TNF signaling
pathway, focal adhesion, regulation of actin cytoskeleton, ERBB signaling pathway
and PI3K-Akt signaling pathway, which are more specific and related to cancer. Ad-
ditionally, network analysis gave us some intermediate proteins as well which are not
in the mutated proteins set but they are connecting the mutated proteins with highly
confident protein interactions. Then, we compared these 290 networks based on their
commonalities and constructed a merged network by using the interactions that are
present in at least three patients. This merged network gave us the proteins that are
mutated in a set of patients but also plays a role as an intermediate protein in other
set of patients. Thus, we can conclude that although this type of proteins are not
mutated in some cases, they are still important as an intermediate node and could be
good clinical targets. We divided the merged network into communities based on the
topology of the network. Then, we searched for the significantly enriched pathways
and biological processes. We noted that multiple biological processes and pathways
are enriched in each community. While WNT signaling is enriched in one commu-
nity, ERBB signaling is enriched in another, and we can show the interplay between
these two pathways with our merged network.

This pipeline is designed to be applicable any set of mutations including breast cancer,
ovarian cancer, prostate cancer etc. The required input is just the set of mutations for
each patient in the corresponding cancer type.

5.2 Future Work

From mutations to protein structure mappings and constructing the functional net-
works, we believe that the result of this study will have significant contribution in
cancer research. We present these results as a proof-of-concept that the effect of mu-
tations are not uniform within individual protein structures, as well as within their
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interaction networks. Although this study have some missing modules that would
improve the results, these analyses are planned to be performed in future studies. In
this study, we applied the method only to the GBM patients data in TCGA. Our near
future plan is to apply it to other cancer types including ovarian cancer and breast
cancer. In this way, we will be able to make a cross-cancer comparison. Also, we
used the structural data in PDB in this study. Using homology modeling techniques
the available structural human proteome data can be increased by 50%. To this end,
another future aim is to include the predicted structures of the proteins that do not
have a known structure in PDB. Additionally, recent computational techniques such
as PRISM and Interactome3D, are reported to be successful in predicting 3D struc-
tures of protein interactions. In the future, we plan to integrate the predicted interface
information into our analysis to have a better coverage regarding the effect of muta-
tions.
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APPENDIX A

THE MAP OF MUTATIONS PRESENT IN PATIENTS

A.1 The heatmap of the mutations present in at least two patients.
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A.2 The heatmap of the mutations present in at least three patients.
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APPENDIX B

KEGG PATHWAY ENRICHMENTS IN PATIENT-SPECIFIC MUTATION
SETS

B.1 The third subset of patient-pathway enrichment analysis.
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Figure B.1: The third subset of patient-pathway enrichment analysis with KEGG.
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