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ABSTRACT 

 

 

NON-INVASIVE ACOUSTIC DETECTION OF VASCULAR DISEASES 

FROM SKIN SURFACE USING COMPUTATIONAL TECHNIQUES 

WITH FLUID-STRUCTURE INTERACTION 

 

Salman, Hüseyin Enes 

Ph.D., Department of Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. Yiğit Yazıcıoğlu  

 

 

September 2018, 223 pages 

Atherosclerosis is a cardiovascular disease in which arterial occlusion adversely 

affects blood circulation. Because of the narrowing of the artery, the blood flow is 

disturbed and a recirculating flow occurs at the downstream of the stenosis exit. 

The dynamic pressure fluctuations on the inner arterial wall cause the blood vessel 

wall to vibrate and the resulting acoustic energy propagates through the 

surrounding soft tissue and reaches the skin surface. To understand the problem in 

more detail, computational analyses and experimental studies have been carried 

out. Vein, blood, muscle, fat and bones are modeled by means of computational 

analysis. The turbulence-induced dynamic pressure fluctuations are applied to the 

inner wall of the artery and the radial displacement, velocity and acceleration 

responses on the skin surface are investigated considering various flow rates, 

stenosis severities and structural material properties. The computational results 

show good agreement with the experimental findings. Vibration of the phantom 

tissue used in the experimental studies is determined using a contact microphone, 

an electronic stethoscope and a laser Doppler vibrometer. 70% stenosis is an 

important threshold value, because severities higher than 70% lead to significant 
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increase in vibration amplitudes. If the severity of stenosis is increased from 70% 

to 90%, the arterial vibration amplitudes increase by more than ten times. Arterial 

vibration is approximately proportional to the third power of the Reynolds number. 

When thickness of the tissue surrounding the artery is increased from 6.5 to 16.5 

mm, the amplitudes are reduced by about 35%. The highest excitation is obtained 

about 20 mm downstream of the stenosis exit for a tissue thickness of 16.5 mm. 

The first two highly excited frequencies are determined as 30 and 60 Hz for the 

thigh, 100 and 200 Hz for the upper arm, 120 and 190 Hz for the neck. The optimum 

range for stenosis detection is between 200 and 500 Hz. 

Keywords: Stenosis detection, Cardiovascular biomechanics, Turbulence-induced 

sound and vibration, Modal analysis 
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ÖZ 

 

 

DAMAR HASTALIKLARINA GİRİŞİMSEL OLMAYAN AKUSTİK 

METOTLARLA TANI KOYMANIN KATI-SIVI ETKİLEŞİMLİ SAYISAL 

TEKNİKLER KULLANILARAK İNCELENMESİ 

 

Salman, Hüseyin Enes 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Yiğit Yazıcıoğlu 

 

 

Eylül 2018, 223 sayfa 

Ateroskleroz, arter içinde oluşan tıkanıklığın kan dolaşımını olumsuz etkilediği 

kardiyovasküler bir hastalıktır. Arterin daralması nedeniyle kan akışı bozulur ve 

tıkanıklık çıkışınında bir devridaim akış bölgesi oluşur. İç arter duvarındaki 

dinamik basınç dalgalanmaları damarın titremesine neden olur ve ortaya çıkan 

akustik enerji damarı çevreleyen doku boyunca yayılarak cilt yüzeyine ulaşır. 

Problemi daha iyi anlamak için hesaplamalı analizler ve deneysel çalışmalar 

gerçekleştirilmiştir. Damar, kan, kas, yağ ve kemikler hesaplamalı çalışmalarda 

modellenmiştir. Türbülanslı akış nedeni ile oluşan dinamik basınç dalgalanmaları 

arterin iç duvarına uygulanmış ve çeşitli akış hızları, darlık şiddetleri ve malzeme 

özellikleri dikkate alınarak cilt yüzeyinde elde edilen radyal deplasman, hız ve 

ivmeler incelenmiştir. Sayısal modelleme ile elde edilen sonuçların deneysel 

bulgularla iyi bir şekilde uyuştuğu görülmüştür. Deneysel çalışmalarda kullanılan 

fantom dokusu üzerindeki titreşim, yüzey mikrofonu, elektronik stetoskop ve lazer 

Doppler titreşim ölçer kullanılarak belirlenmiştir. %70 tıkanıklık seviyesi önemli 

bir eşik değeridir, çünkü %70’in üzerindeki seviyelerde titreşim genliklerinde 

belirgin bir artış görülmüştür. Eğer tıkanıklık seviyesi %70’den %90’a çıkarsa, 



viii 

damarın dış yüzeyindeki titreşim genlikleri on kattan daha fazla artmaktadır. Damar 

titreşimi yaklaşık olarak Reynolds sayısının üçüncü kuvveti ile orantılıdır. Damarı 

çevreleyen doku kalınlığı 6.5 mm’den 16.5 mm’ye çıkarıldığında, titreşim 

genlikleri yaklaşık olarak %35 oranında azalmıştır. 16.5 mm’lik bir doku kalınlığı 

için, doku yüzeyindeki en yüksek genlikler yaklaşık olarak tıkanıklık çıkışının 20 

mm uzağında görülmüştür. Yüksek titreşim genliğine sahip ilk iki frekans, üst 

bacak için 30 Hz ve 60 Hz değerlerinde, üst kol için 100 Hz ve 200 Hz değerlerinde, 

boyun için 120 Hz ve 190 Hz değerlerinde gözlenmiştir. Damar tıkanıklığını tespit 

etmek için en uygun frekans aralığı 200 Hz ile 500 Hz arasındadır. 

Anahtar Kelimeler: Damar tıkanıklığı teşhisi, Kardiyovasküler biyomekanik, 

Türbülans kaynaklı ses ve titreşim, Modal analiz 
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INTRODUCTION 

 

 

 

1.1 Statement of the problem 

Atherosclerosis is a cardiovascular disease that causes thickening of the arterial 

wall due to accumulation of fatty substances such as cholesterol [1]. 

Atherosclerotic lesions chronically expand asymptomatically and a soft plaque may 

rupture forming a thrombus. The intraluminal thrombi can clog small veins in the 

circulatory system and cause sudden thromboembolism. In addition to embolism, 

atherosclerotic lesions may enlarge until the blood flow is severely reduced or until 

the lumen is completely closed (ischemic insufficiency). In the case of an infarct 

which may be caused by one of the above-mentioned mechanisms, the tissue fed 

by the artery will die within a few minutes. Atherosclerosis may occur in any part 

of the circulatory system especially in the arteries feeding the brain, heart, kidneys, 

arms and legs. 

Atherosclerosis is usually found in the major arteries and usually begins in early 

adolescence. For the vast majority of the population, it is not recognized by most 

of the diagnostic methods in the first years of the disease progression. Depending 

on the location of the atherosclerotic lesions, Coronary Artery Disease (CAD), 

Stroke or Peripheral Arterial Occlusive Disease (PAOD) may develop. CAD is the 

result of plaque accumulation on the inner walls of coronary arteries that feed 

myocardium (heart muscle). Symptoms of this disease usually appear at an 

advanced stage, but most of CAD individuals show no symptoms for years. After 

years of silent progression, plaque rupture may occur and restrict blood flow to the 

heart muscle. CAD is not only the leading cause of death in the world, it is also the 



2 

most common cause of sudden death, and at the same time is the most common 

cause of mortality in men and women over 20 years of age [2]. 

Stroke or Cerebrovascular Accident (CVA) is the rapid loss of brain functions due 

to decrease in the blood supply to the brain due to ischemia caused by a blockage 

or a hemorrhage. Affected area of the brain will be unable to function, resulting in 

impaired motor, sensory, communication and cognitive abilities. A stroke can cause 

permanent disabilities and even sudden death. It is the leading cause of adult 

disability in the United States and Europe and the second leading cause of death 

worldwide [3]. 

PAOD is the artery occlusion except the heart and brain related ones. It usually 

refers to the lack of blood supply to the legs, arms and other vital organs. PAOD 

patients carry a higher risk for other potentially more serious cardiovascular events 

such as CAD and stroke. For PAOD patients, the risk of CAD in 10 years is more 

than 20% [4]. 

Cardiovascular diseases are usually diagnosed by cardiac stress testing and/or 

angiography. Interestingly, the cardiac stress test can detect only 75% or greater 

lumen obstruction severities. Angioplasty treatment methods can be applied at later 

stages of disease, but due to invasive nature of this procedure, it is preferred when 

there is a doubt about serious arterial occlusion. Therefore, these methods can only 

be applied in cases where severe stenosis is present, but most of blood flow 

disruption occurs after 50% lumen narrowing. [5, 6]. It should also be noted that 

there may be arterial sites with severe plaque formation that do not lead to lumen 

narrowing. In this case, the plaque may still break and cause a sudden blockage of 

the lumen. 

Atherosclerosis treatments are divided into two main categories. One is the major 

invasive bypass surgery. The other is relatively less invasive angioplasty 

procedures. These treatments are usually performed in later stages of the disease 

due to the limited abilities of existing diagnostic methods. It is of utmost 



3 

importance to take protective actions by making life style changes before the 

disease is detected with a significant vascular damage. Considering the 

aforementioned facts, it is critical to diagnose the stenotic narrowing at an early 

stage. 

A widely used diagnostic method is arteriography [7]. The basis of the 

arteriography is the injection of X-ray contrast agent into the body and the 

acquisition of the X-ray image near the stenosis site. The diseased artery image 

detected by arteriography is shown in Figure 1.1. 

 

Figure 1.1 Obstructed coronary artery diagnosed using arteriography [8]. 

Although arteriography is the most common method for diagnosing a stenosis, this 

method has some disadvantages. Above all, arteriography is an invasive procedure 

that requires placement of a catheter near the suspected area, causing bleeding or 

infection after catheter surgery. Arteriography is also performed when the disease 

shows clinical symptoms [7, 9]. This method is not preferred before the clinical 

symptoms; this means that it is not a preventive method and is used for the 

understanding of the disease level. In addition, X-ray angiography is prone to error 



4 

if the blood vessel geometry is not sufficiently circular, since the method employs 

a projected view of the arterial geometry [10, 11]. 

1.2 Related studies in the literature 

1.2.1 Generation of murmurs 

The reasons for the generation of vascular sounds (murmurs) are discussed in the 

literature. Bruns [12] investigated the cause of vascular sounds and concluded that 

the source of the murmurs was almost periodic fluctuation after the stenotic area. 

An alternative noninvasive diagnostic method called "phonoangiography" has been 

proposed by Lees and Dewey [13]. The method of phonoangiography uses acoustic 

radiation due to abnormal flow conditions in the blood flow. Phonoangiography is 

a noninvasive diagnostic technique that examines vascular sound generation and its 

effects on the skin surface. In Figure 1.2, the concept of phonoangiography is 

represented. 

 

Figure 1.2 The concept of phonoangiography [13]. 

The vascular sound is generated due to the narrowing in the blood vessel. After 

passing through the stenotic occlusion, the blood flow turns into turbulent nature, 

which causes pressure fluctuations in the arterial wall. Sound generated in the artery 
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wall propagates through the surrounding soft tissues and reaches the skin surface. 

The basic idea of phonoangiography is to utilize the sound disturbances detected 

on the skin surface. 

Significant results have been obtained in the study of Lees and Dewey [13]. It has 

been found that the sound spectra obtained for in vivo experiments are almost 

identical to the wall pressure spectrum for fully developed turbulent pipe flow. In 

Figure 1.3, Lees and Dewey compared in vivo experimental results with the 

findings of Bakewell et al. [14] considering fluid flow in a rigid pipe. 

 

Figure 1.3 Comparison of in vivo experimental results with the turbulence spectrum 

of flow in a rigid pipe [13]. 
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In Figure 1.3, f, d and U denote the frequency, effective diameter at the stenosis 

and the mean velocity proximal to the stenosis, respectively. The rigid line is 

obtained by Bakewell et al. [14] which is found in laboratory conditions using the 

flow inside a rigid tube. In vivo experimental results of Lees and Dewey [13] were 

performed for the right femoral, left femoral, left carotid and right carotid arteries, 

and the results were in good agreement with Bakewell's study [14]. 

It is stated that even for low Reynolds numbers, an unstable free jet is observed for 

the flow through an orifice, which causes some of the kinetic energy to turn into 

turbulent fluctuations [13]. Most researchers have reported that distorted flow due 

to narrowing and associated turbulence-induced pressure fluctuations are the main 

sources of murmurs [9, 15-19]. 

1.2.2 Analytical studies 

In analytical studies, a closed form solution may be obtained, but simplifying 

assumptions have to be made for the complicated turbulent flow. The problem 

domain also has to be selected as a simple geometry which does not exactly 

represent the reality. 

Borisyuk developed an acoustic model for the human chest, taking into account the 

stenotic occlusion and elastic properties of the blood vessel [18]. Acoustic 

generation and transmission of arterial sound from the source to the receiver is 

modelled assuming simple stenotic constriction. For the developed analytical 

model, the flow separation in the post-stenotic region is neglected. Borisyuk 

obtained [18] the acoustic power spectrum for normal and occluded vascular 

models and indicated the characteristic signs of vascular constriction. Mild 

thickening of the artery wall leads to a noticeable increase in the sound level and a 

shift of the peaks at resonance frequencies in the acoustic spectrum. It was stated 

that a 30% reduction in the arterial diameter, resulted a 10-fold increase in the 

radiated acoustic power. 
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Wang et al. [20] studied on a model of sound generation in stenotic coronary 

arteries. It has been found that the resonance frequencies for the occluded coronary 

arteries are different from the normal arteries, in which additional high frequency 

components are observed for the stenosed ones. They also recorded sounds from 

the chest wall of the patients and the theoretical findings are supported and 

confirmed by the experimental results. 

1.2.3 Experimental studies 

Experimental studies in the literature are mostly related to the flow downstream of 

the stenosis. After passing through the clogged region, it is observed that there are 

recirculation zones and high level of turbulent flow [21].  

Yazicioglu et al. studied flow-induced vibration of thin-walled viscoelastic tube 

theoretically and experimentally [22]. The vibration is due to a constriction that 

causes turbulent flow inside the tube. The vibration of the tube is investigated with 

coupling to internal flow and external tissue-like viscoelastic material. In the 

experimental studies [22], the intended flow rate is adjusted by changing the height 

difference between the two reservoirs. Mean flow pressure and vibration on the 

tube are measured using a catheter type pressure transducer and Laser Doppler 

Vibrometry (LDV), respectively. The experimental data are processed, and the wall 

pressure and the frequency spectra of the tube vibration are obtained. 

Borisyuk performed in vitro experiments to investigate the properties of the 

acoustical field in the human chest [19]. Hollow axisymmetric rigid plugs with 

various internal diameters and lengths are used as stenosis elements. It has been 

found that there is a general increase in the noise level and production of new 

frequency components in the power spectrum with increasing stenosis severity. 

This condition is a characteristic sign for the presence of a blockage in the blood 

vessel. The acoustic power produced by the stenosis is found to be approximately 
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proportional to the fourth power of the stenosis severity and the fourth power of the 

Reynolds number of flow. 

Tobin and Chang obtained wall pressure spectra at various locations downstream 

of the axisymmetric stenosis element [23]. The focus of their investigation was 

developing a noninvasive clinical diagnostic technique that can determine the 

degree of the stenosis using the murmurs. They placed an obstruction inside a latex 

rubber tube which contains a steady water flow. Various stenosis severities and 

Reynolds numbers are considered for the analysis. Important universal correlations 

were found between the spectrum frequency and the pressure amplitude. At the 

peak activity location, a universal power spectral density function is determined 

using new set of non-dimensional variables. 

1.2.4 Numerical studies 

Salman et al. [24] modelled the occluded intravenous flow. Geometric parameters 

are selected as the same with the parameters used in the experimental study of 

Yazicioglu et al. [22] to verify the results. Since the fluid flow is modeled using 

Detached Eddy Simulation (DES), the dynamic pressure fluctuations on the inner 

wall of the blood vessel are obtained computationally. It has been observed that the 

spectral distribution of the fluctuating wall pressure shows a significant increase at 

the downstream of the arterial stenosis. As the flow rate increases, the amplitudes 

also increase over a wide frequency range. The numerical results showed good 

agreement with the experimental findings in terms of general spectral trend 

indicating the relative increase in the pressure fluctuations depending on the 

stenosis severity. The turbulent pressure fluctuations predominantly stimulate the 

first few natural frequencies of the artery [22]. 

Seo and Mittal [25] investigated the sound produced by the blood flow in the 

obstructed veins. They used a hybrid approach in which the flow is solved using an 

immersed boundary approach employing an incompressible flow solver, and the 
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wave propagation through the tissue is modeled using a simplified linear structural 

wave equation. 

Lee et al. [26] investigated the blood flow dynamics of a carotid bifurcation 

performing a numerical simulation by employing spectral element method. 

Pulsatile blood velocity inlet conditions based on in-vivo color Doppler ultrasound 

measurements are applied as the boundary conditions. They examined [26] 

turbulence levels, complex flow field and the biomechanical stresses on the 

stenosed carotid artery wall. It is stated that areas under severe constriction can 

have distinct biomechanical environment compared to the healthy blood vessels. 

The velocity fluctuations were in the audible range within 100 and 300 Hz.  

Khanafer and Berguer [27] computationally studied turbulent pulsatile flow and the 

wall mechanics using an axisymmetric three-layered wall model of the descending 

aorta. A fully coupled Fluid-Structure Interaction (FSI) analysis is performed using 

ADINA (Watertown, MA) commercial finite element analysis software. The 

researchers obtained von Mises wall stresses, streamlines and fluid pressure 

contours. According to the results, the peak wall stress and maximum shear stress 

are observed in the media part (i.e., the layer at the middle of the arterial wall). 

Tang et al. [28] investigated a three dimensional thick-wall model with FSI using 

ADINA (Watertown, MA). Wall stress-strain distributions and flow parameters in 

the carotid arteries with symmetrical and asymmetrical stenosis were obtained 

performing numerical simulations. According to the results, the stenosis caused 

considerable compressive stresses that may be associated with the plaque cap 

rupture in the arterial wall.  

Valencia and Villanueva [29] investigated blood flow in symmetrical and 

asymmetrical occlusions. In their work, the unsteady non-Newtonian blood flow is 

the main interest. It is reported that FSI has significant effect on the hemodynamics 

of the stenotic artery models. The stenosis severity and geometry change the length 

of the recirculating flow zone. 
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Tang et al. [30] performed numerical simulations in order to quantify the 

compressive conditions in the constricted arteries. If a severe stenosis is present, 

the occluded arteries may be compressed under the physiological conditions due to 

significant drop in the mean pressure. An axisymmetric model is presented to 

simulate the flow in a compliant tube. ADINA (Watertown, MA) is used to solve 

the coupled FSI model. The results indicate that severe stenosis leads to critical 

flow conditions such as pressure drop, artery compression, plaque cap rupture and 

thrombus formation. A complex pressure field is observed around the stenosis site 

which can not be resolved in one-dimensional models. 

Shurtz [31] performed Large Eddy Simulation (LES) coupled with a finite element 

structural model. The flow-induced pipe vibration is analyzed and it is found that 

pipe wall acceleration is inversely proportional to the pipe wall thickness. The 

structural bending modes are especially effective on long pipes. 

1.2.5 Spectral methods 

Semmlow et al. [32] analyzed thoracic sounds to detect coronary artery disease. 

They applied time windowing, frequency windowing and averaging of the thoracic 

sounds for diseased and normal conditions. A full cardiac cycle is recorded for the 

patients and only the diastolic part is taken into account for the diagnosis of CAD. 

Since the highest turbulent fluctuations occurred during the diastolic phase in the 

coronary arteries, only the diastolic period of the recorded data is used. Due to the 

lack of use of the systolic period, very loud sounds due to the valve closure have 

been eliminated. Several diastolic periods are averaged to improve the signal-to-

noise ratio. Figure 1.4 shows the average power spectra of the cardiac sounds for 

normal and diseased coronary arteries. 
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Figure 1.4 Average power spectra of the cardiac sounds from a selected portion of 

diastole. (a) Normal subject. (b) Patient with 70% stenosis in left coronary artery 

(adopted from [32]). 

The spectrum is obtained by performing Fourier transformation [32]. The most 

obvious difference between these spectra is the high frequency components in the 

occluded artery. As a result, high frequency (within 120-200 Hz) energy is 

associated with the coronary artery narrowing [32]. Only a single feature is used to 

classify the diseased and normal cases. The feature is selected as the ratio of energy 

above and below 90 Hz. A sensitivity of 83% is achieved in 24 patients using this 

classifier. 

In another spectral study, the Autoregressive (AR) approach is utilized instead of 

Fourier transform [33] to detect coronary artery disease. Diastolic isolated 

segments are recorded and averaged. Using the AR spectra obtained from these 

segments, it is concluded that a high percentage of the spectral energy is present in 

the high frequency range (300 Hz) for the diseased coronary arteries. 
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1.2.6 Acoustic localization and beamforming 

Owsley and Hull [34] investigated acoustic localization of a stenosis by applying 

nearfield beamforming using multiple sensor arrays. For the conventional 

auscultation method, a single vibroacoustic sensor (stethoscope) is placed on the 

area close to a specific heart zone. Multiple Auscultation Point (MAP) space-time 

phonoangiography allows to simultaneously receive data from an array of sensors. 

It is stated that [34], MAP implementation provides a better Signal-to-Noise Ratio 

(SNR) estimation and makes it possible to spectrally and spatially resolve the image 

of the vibratory energy source. The method proposed to localize the arterial stenosis 

depends on the phased array sensor technology to monitor the shear wave energy 

field under the sensor array [35]. 

The vibroacoustic effect, which is caused by turbulence, propagates in the form of 

wave energy to the body surface as a vibration field. The space-time field is used 

to track the energy field in a viscoelastic medium enclosing the stenosed vessel 

[34]. It is proposed that detection and source localization can be performed by 

filtering and combining the outputs of the vibroacoustic sensor array. A number of 

noninvasive vibroacoustic sensors are placed on the model of a human body. The 

spatial identification features of the sensor array are used as a focusing antenna to 

perform spatial localization. It is stated that [34] turbulence-induced murmur can 

be distinguished acoustically in temporal, spectral and spatial domains by masking 

the background sound.  

Owsley and Hull [34] performed experiments considering the steady-state flow, 

because a related study [36] showed that turbulent wall force levels are nearly 

identical in pulsatile and steady-state conditions. Experiments are conducted in the 

electromagnetically shielded anechoic chamber to reduce the effect of ambient 

noise. In Figure 1.5, the occluded region is monitored using the nearfield 

beamforming method. 
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Figure 1.5 Experimental image of the acoustic shear wave energy field at 300 Hz, 

with the vessel and occlusion shown schematically (adopted from [34]). 

1.2.7 Noninvasive diagnostic methods 

Various investigations aimed to develop and evaluate noninvasive diagnostic 

methods. Banks et al. [37] suggested an approach for noninvasive detection of 

arterial stenosis using shear waves in an experimental chest cavity model. 

Azimpour et al. [38] evaluated the performance of acoustic signals measured with 

an electronic stethoscope to investigate the coronary murmurs. Acoustic signals 

from patients undergoing angiography were analyzed to estimate the diseased 

cases. Stenosis threshold level for the optimum detection was reported as 50%. At 

95% of stenosis severity, the flow is attenuated and the acoustic signals are reduced 

considerably. With increased stenosis severity, high frequency spectral energy is 
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significantly increased. Semmlow and Rahalkar [39] summarized signal processing 

algorithms for the acoustic perception of the vascular sounds. 

Tomczak and Kaszynski [40] carried out a nonlinear vibration analysis to 

investigate the resonance of an aneurysm. Lowe et al. [41] noninvasively estimated 

aortic blood pressure using suprasystolic brachial pressure waveforms. Campo et 

al. [42] investigated the diagnosis of arteriosclerosis using Pulse Wave Velocity 

(PWV) in carotid and femoral arteries. The stiffness of an artery can have 

significant role in the development of a cardiovascular disease. The pulse wave 

velocity is an important measure to determine the arterial stiffness in a noninvasive 

way. In the study of Campo and Dirckx [43], the stiffness of the large arteries was 

determined using PWV data obtained by laser Doppler vibrometry. 

1.3 Aim of the study and contribution to the literature 

Much of the work in the literature is concerned with the hemodynamics of the blood 

flow and effective stress on the arterial wall. The investigation of flow-induced skin 

surface vibration is very limited. In this study, the main contribution to the literature 

is a feasibility study that clarifies the diagnostic aspects of vibroacoustic effects on 

the skin surface due to turbulent flow in the stenotic arteries. 

Arterial structure and surrounding soft body tissues are computationally modelled 

and investigated by performing vibration analysis involving the effect of acoustic 

pressures caused by the turbulence in the stenotic arteries. ADINA (Watertown, 

Ma.) commercial finite element analysis software is used for modelling, solving 

and post-processing. The computationally modelled phenomena is also verified 

experimentally performing laser Doppler vibrometry. The computational and 

experimental results agree well and provide a deeper insight on the feasibility of 

noninvasive detection of vascular stenosis. 

It is aimed to emphasize the importance of the vibroacoustic data available on the 

skin surface and to show that they can be used for diagnosis of stenosis without 
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using other complex and expensive means. Using the latest technological 

measurement capabilities, today’s measurement technology is evaluated for 

diagnostic purposes. 

1.4 Thesis outline 

This study consists of seven chapters. In the first chapter, the problem is stated and 

related studies in the literature are summarized. In the second chapter, the theory 

and the background information is provided. Computational modelling studies are 

described in the third chapter. In the fourth and fifth chapters, the results of 

idealized and realistic computational models are presented, respectively. 

Experimental studies and findings are provided in the sixth chapter. Finally, the 

conclusions and future improvements are outlined in the seventh chapter by 

summarizing the study and suggesting guidelines for the future work. 
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CHAPTER 2 

THEORY AND BACKGROUND 

 

 

 

2.1 Formulation of the problem 

In the literature, vascular sound generation and transmission have been investigated 

using a variety of methods, either by coupling the pipe wall vibration equation with 

a two-dimensional wave equation of sound radiation [18], or by performing FSI 

analysis combining a Computational Fluid Dynamics (CFD) analysis with a 

structural model [24]. 

In this study, the steady-state structural responses to the applied harmonic loads are 

determined by performing harmonic vibration analysis using the theory of vibration 

of discrete systems. Structural responses are obtained by superposing the modal 

responses. Natural frequencies and corresponding mode shapes are obtained within 

the interested frequency range by employing the Lanczos method available in 

ADINA (Watertown, MA), which is suggested for models with acoustic fluid 

elements [44, 45].  

A structural system discretized by finite elements can be expressed as the following 

[46, 47]: 

 𝐌�̈� + 𝐂�̇� + 𝐊𝐮 = 𝐅 = ∑ 𝑭𝒌

𝑁

𝑘=1

 (2.1) 
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where, 𝐌 is the structural mass matrix, 𝐅 is the load matrix, 𝐮 is the structural 

displacement vector, 𝐂 is the structural damping matrix, 𝐊 is the structural stiffness 

matrix, 𝑁 is the total number of load cases, and 𝑭𝒌 is the vector expressing the 

forces applied for the load case 𝑘. If a modal superposition analysis is performed, 

(2.1) can be decomposed as the following [46, 47]: 

 �̈�𝑖 + 2𝜉𝑖𝜔𝑖�̇�𝑖 + 𝜔𝑖
2𝑥𝑖 = ∑ 𝛤𝑖

𝑘

𝑁

𝑘=1

𝑏𝑘 (2.2) 

where 𝜉𝑖 is the modal damping ratio for mode 𝑖, 𝛤𝑖
𝑘 is the modal participation factor 

for mode 𝑖 and load case 𝑘, 𝑥𝑖 is the generalized coordinate for mode 𝑖, 𝑏𝑘 is a 

dimensionless multiplier for load case 𝑘, and 𝜔𝑖 is the angular frequency for mode 

𝑖. For a harmonic loading, 𝑏𝑘 is written in the form: 

 𝑏𝑘 = 𝑏𝑘0sin(𝜔𝑘𝑡 − 𝛼𝑘) (2.3) 

where, 𝑏𝑘0 is a function of the angular forcing frequency (𝜔𝑘), and 𝛼𝑘 is the term 

specifying the phase of the applied harmonic load. 

The structural mass matrix (𝐌) and the structural stiffness matrix (𝐊) are 

constructed using the mass densities and material properties of the structural 

elements, respectively. The structural damping matrix (𝐂) is defined by determining 

a modal damping coefficient for the interested frequency range. The system load 

matrix (𝐅) is defined by the use of empirical turbulence-induced acoustic pressures. 

After defining all these parameters, the displacement variable (𝐮) can be 

determined by solving the series of equations. 

Linear potential based fluid elements which are inviscid, irrotational with no heat 

transfer and almost incompressible are employed for the frequency domain 

analysis. These acoustic fluid elements are only used to model the mass properties 
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of the fluid as well as the wave propagation in the fluid medium [48], which means 

that the flow cannot be solved using them. The basic equations of continuity and 

energy are written in the form of fluid velocity potential (𝜙) as follows: 

 �̇� + ∇ ∙ (𝜌∇𝜙) = 0 (2.4) 

 ℎ = ∫
𝑑𝑝

𝜌
= 𝜴 − �̇� −

1

2
∇𝜙 ∙ ∇𝜙 (2.5) 

where, 𝜌 is the fluid mass density, ℎ is the specific enthalpy, 𝑝 is the pressure and 

𝜴 is the body forces. In the analysis, the body forces are neglected (i.e., 𝜴 = 𝟎) due 

to the insignificant effect. The bulk modulus (B) can be expressed in the following 

form: 

 B = 𝜌
�̇�

�̇�
 (2.6) 

For the frequency domain analysis, an infinitesimal velocity formulation is used for 

linear potential based fluid elements, where the density changes and velocities are 

assumed to be infinitesimal. By using this assumption and combining (2.4) and 

(2.6), the following expression is obtained. 

 �̇� + ∇ ∙ (𝜌∇𝜙) ≈ �̇� + 𝜌∇2𝜙 ≈
𝜌�̇�

B
+ 𝜌∇2𝜙 = 0 (2.7) 

With the assumption of infinitesimal density changes and velocities, (2.5) can be 

simplified as follows: 
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 ℎ ≈
𝑝

𝜌
≈ −�̇� (2.8) 

Using (2.8), the pressure (𝑝) can be expressed in the following form: 

 𝑝 ≈ 𝜌(−�̇�) (2.9) 

If (2.9) is substituted in (2.7), the following wave equation is obtained. 

 −𝜌�̈� + B∇2𝜙 = 0 (2.10) 

(2.10) is a special form of the wave equation and it is linear with respect to the 

variable 𝜙 [49]. 

The acoustic fluid medium is directly coupled to the surrounding arterial structure 

by assigning the same displacements in the fluid-structure interaction boundary 𝑆1 

[49, 50]. (2.10) can be expressed in the variational form as the following: 

 − ∫ 𝜌�̈�

 

𝑉

𝛿𝜙𝑑𝑉 − ∫ B∇𝜙

 

𝑉

∙ 𝛿∇𝜙𝑑𝑉 − ∫ B

 

𝑆1

�̇� ∙ 𝐧𝛿𝜙𝑑𝑆1 = 0 (2.11) 

where 𝛿𝜙 is the variation in the fluid velocity potential, and 𝐧 is the normal vector 

of surface 𝑆1. For the fluid domain, the system matrices can be expressed in the 

following form [49]: 

 [
𝟎 𝟎
𝟎 𝑴𝑭𝑭

] [
�̈�
�̈�

] + [
𝟎 𝑪𝑭𝑼

𝑻

−𝑪𝑭𝑼 𝟎
] [

�̇�
�̇�

] + [
𝟎 𝟎
𝟎 𝑲𝑭𝑭

] [
𝐮
𝝓] = 𝟎 (2.12) 
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where 𝑴𝑭𝑭 is the matrix from �̈�𝛿𝜙 term in (2.11), 𝑲𝑭𝑭 is the matrix from ∇𝜙 ∙

𝛿∇𝜙 term in (2.11), 𝑪𝑭𝑼 is the matrix from �̇� ∙ 𝐧𝛿𝜙 term in (2.11), u is the unknown 

structural displacement vector, and 𝜙 is the fluid potential vector. Finally, the 

system matrices of fluid (2.12) and the arterial structure (2.1) are combined in the 

following form: 

 [
𝐌 𝟎
𝟎 𝑴𝑭𝑭

] [
�̈�
�̈�

] + [
𝐂 𝑪𝑭𝑼

𝑻

−𝑪𝑭𝑼 𝟎
] [

�̇�
�̇�

] + [
𝐊 𝟎
𝟎 𝑲𝑭𝑭

] [
𝐮
𝝓] = [

𝐅
𝟎

] (2.13) 

By solving the set of equations in the matrices given by (2.13), the structural 

displacement response 𝐮 can be determined. Since the responses are assumed to be 

harmonic (i.e., 𝐮 = 𝐔𝑒𝑖𝜔𝑡 where 𝐔 is the amplitude), the velocity response �̇� can 

be determined as the following: 

 �̇� = 𝑖𝜔𝐮 (2.14) 

where 𝑖 = √−1 and 𝜔 is the angular frequency. 

2.2 Fluid excitation 

In this section, a brief information is provided about the flow in a stenotic pipe. As 

shown in Figure 2.1, the stenosed flow can be examined in five zones. 
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Figure 2.1 Five characteristic zones in a stenosed pipe flow (adopted from [19]). 

The first zone is the upstream of the stenosis and laminar flow with an axial flow 

velocity U is observed if the critical Reynolds number is not exceeded [7, 19, 51, 

52]. In the second zone, the lumen diameter is sharply reduced to d, which 

significantly increases the axial flow velocity. After passing through the stenotic 

obstruction, the lumen diameter again expands to D with a central jet velocity u in 

the third zone. This third zone has an extreme turbulent nature, in which the flow 

separation and recirculation occur. The flow reattachment is observed in the fourth 

zone [7, 19, 51, 52], and if the pipe is long enough, the flow stabilization and 

redevelopment is observed in the fifth zone where the flow characteristics are very 

similar to the first zone. 

Arterial sounds are mainly produced at the downstream of the stenosis and the peak 

generation is observed in the third zone. Therefore, only downstream of the stenosis 

exit is considered in the computational analysis. 

2.3 Modelling the turbulence-induced acoustic pressure field 

Tobin and Chang [23] obtained universal correlations using experimental results to 

find the fluctuating pressures on the inner wall of the blood vessel. Experiments 

were conducted using a latex rubber tube. Axisymmetric stenotic occlusion was 
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placed in a latex rubber tube and a steady flow was considered. The wall pressure 

spectrum was obtained at different locations downstream of the constriction exit. 

In the experimental set-up, two reservoirs were used with a certain height 

difference. A cotton batting with a thickness of 3-4 inches is used to avoid ground 

disturbances. The Root Mean Square (RMS) wall pressure spectrum is obtained for 

different Reynolds numbers and stenosis levels. The effect of Reynolds number on 

the wall pressure spectrum measured at 2D (where D is unconstricted diameter) 

distance to the constriction exit is represented in Figure 2.2 considering 90% 

stenosis. 

 

Figure 2.2 Effect of Reynolds number on the wall pressure spectra at 2D distance 

downstream of the constriction exit in case of 90% flow area reduction (adopted 

from [23]). 
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A jet is visible at the stenosis exit and there is a recirculation region in which the 

flow separation is observed. The length of the recirculation region is about three 

unconstricted diameters. As the Reynolds number increases, the RMS wall pressure 

amplitudes tend to increase in Figure 2.2. Two different Reynolds numbers of 1500 

and 3000 show a similar trend in terms of amplitude reduction with the increasing 

frequency, but higher Reynolds numbers have peak RMS wall pressure at relatively 

higher frequencies. For locations close to the recirculation zone, there is highly 

excited pressure response. As the axial position moves away from the constriction 

exit, the wall pressure amplitudes decrease. The effect of the distance to the 

constriction exit is represented in Figure 2.3. 

 

Figure 2.3 Effect of the distance to the constriction exit on the wall pressure spectra 

for 90% flow area reduction (adopted from [23]). 
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In Figure 2.3, RMS wall pressures are given at a distance of 2D and 24D to the 

constriction exit. For 90% stenosis and Reynolds number of 3000, a significant 

decrease in RMS wall pressure is observed at 24D. At distances of 2D and 24D, 

the reduction tendency is similar, but a higher peak frequency is observed for 2D 

distance to the occlusion. 

Tobin and Chang [23] considered various Reynolds numbers and stenosis levels in 

their experimental studies. RMS wall pressure spectra for different Reynolds 

numbers and stenosis levels are given in Figure 2.4. 

 

Figure 2.4 RMS pressure spectra for different stenosis levels and Reynolds 

numbers (adopted from [23]). 
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As shown in Figure 2.4, the RMS pressure spectrum varies significantly depending 

on the Reynolds number and the stenosis level. Tobin and Chang [23] developed a 

common set of parameters to define a universal non-dimensional function for RMS 

wall pressure spectra. This nonlinear relationship is called 𝐹𝑛1 [
𝑥

𝐷
] and expressed as 

the following: 

 
𝐹𝑛1 [

𝑥

𝐷
] =

𝑝𝑟𝑚𝑠

𝜌𝑢𝑗
2

𝐷

𝑑
 (2.15) 

In the above parameter set, 𝑝𝑟𝑚𝑠 is the RMS pressure, 𝜌 is the fluid mass density, 

𝑢𝑗  is the axial flow velocity at the constriction exit, 𝑑 is the constricted diameter 

and 𝐷 is the unconstricted diameter. Using the non-dimensional function described 

in (2.15), the pressure spectrum was normalized for various Reynolds numbers and 

stenosis levels as shown in Figure 2.5. 

 

Figure 2.5 RMS wall pressure variation with 𝑥/𝐷, normalized data – assorted 

Reynolds numbers and levels of stenosis (adopted from [23]). 
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Figure 2.5 shows that, the new non-dimensional function gives very similar results 

for different Reynolds numbers and stenosis levels, especially around the location 

where the maximum pressure is observed. This nonlinear relationship is used to 

define the empirical pressure equation for the stenosis levels ranging from 75% to 

95% and the Reynolds numbers within 500 to 4000. The following relationship is 

found between the dynamic RMS wall pressure (𝑝𝑟𝑚𝑠) and the axial distance (𝑥) 

downstream of the constriction exit: 

 
𝑝𝑟𝑚𝑠 = 𝜌𝑢𝑗

2
𝑑

𝐷
𝐹𝑛1[𝑥/𝐷] (2.16) 

where Fn1 [
x

D
] is the non-dimensional function obtained from Figure 2.5. 

Tobin and Chang [23] also found another nonlinear relationship between the power 

spectral density (𝐸(𝑓)) and the frequency (𝑓). The power spectral density is defined 

as the following: 

 
𝐸(𝑓) ≡

𝑝(𝑓)2

∆𝑓
= 𝜌2𝐷𝑢𝑗

3 (
𝑑

𝐷
)

2

𝐹𝑛2[𝑓𝐷/𝑢𝑗] (2.17) 

 
𝐹𝑛2 [

𝑓𝐷

𝑢𝑗
] =

𝑝(𝑓)2

∆𝑓

1

𝜌2𝐷𝑢𝑗
3 (

𝐷

𝑑
)

2

 (2.18) 

where 𝐹𝑛2[𝑓𝐷/𝑢𝑗] is the non-dimensional power spectral density and the 

expression of 
𝑝(𝑓)2

∆𝑓
 is the power spectral density of the wall pressure variation as 

function of frequency. As the frequency increases, the value of the dimensionless 

power spectral density 𝐹𝑛2 [
𝑓𝐷

𝑢𝑗
] approaches a negative slope of 5.3 for completely 

different conditions, as shown in Figure 2.6. 
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Figure 2.6 Non-dimensional power spectral density 𝐹𝑛2 [
𝑓𝐷

𝑢𝑗
] (adopted from [23]). 

In Figure 2.5, for all conditions examined by Tobin and Chang [23], the maximum 

RMS pressure was obtained at the same 𝑥/𝐷 position with Fn1 [
x

D
] value of 0.0355 

as described in the following expression. 

 𝑝𝑟𝑚𝑠,𝑚𝑎𝑥

𝜌𝑢𝑗
2

𝐷

𝑑
= 0.0355 (2.19) 

Yazicioglu et al. [22] used the empirical relations obtained by Tobin and Chang 

[23] to perform theoretical analysis of fluid-filled elastic tube vibration. The 

pressure distribution on the inner wall of the tube is assumed to be axisymmetric. 
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For this reason, the dynamic (acoustic) pressure 𝑝 depends on time 𝑡, and only one 

spatial variable 𝑥, which is the axial distance downstream of the constriction exit. 

Yazicioglu et al. [22] developed an expression for 𝑝(𝑥, 𝑓) and obtained the curve 

fitting function for 𝐹𝑛2 [
𝑓𝐷

𝑢𝑗
] using the data represented in Figure 2.6 as the 

following: 

 
𝐹𝑛2 [

𝑓𝐷

𝑢𝑗
] =

0.00208

1 + 20(𝑓𝐷/𝑢𝑗)5.3
 (2.20) 

The equation used to describe the RMS value is given [22] in (2.21): 

 
𝑝𝑟𝑚𝑠

2 = 〈𝑝(𝑡)2〉 = (
1

𝑇
∫ 𝑝(𝑡)2𝑑𝑡

𝑇

0

) = ∫ 𝐸(𝑓)𝑑𝑓
∞

0

 (2.21) 

where 𝑇 is an appropriate averaging time in which the value asymptotically 

converged. The empirical equation used to find the RMS pressure [22] in the 

frequency domain is given in (2.22). 

 
𝑝𝑟𝑚𝑠(𝑓) ≈ 𝜌𝐷1/2𝑢𝑗

3/2
(

𝑑

𝐷
) 𝐹𝑛2[𝑓𝐷/𝑢𝑗]1/2 (2.22) 

The fluid jet velocity at the stenosis exit can be defined using the flow rate at the 

unconstricted region as the following: 

 
𝑢𝑗 =

𝐷2

𝑑2
𝑈 (2.23) 

(2.23) is substituted in (2.22) and the pressure spectrum is expressed in the 

following form [22]: 



30 

 
𝑝(𝑒𝑗2𝜋𝑓𝑡, 𝜗𝑓) = √2𝜌𝑈3/2

𝐷5/2

𝑑2
(𝐹𝑛2[𝑓𝑑2/𝑈𝐷])1/2𝑒𝑗(2𝜋𝑓𝑡+𝜗𝑓) (2.24) 

where 𝜗𝑓 denotes the phase angle. 

When (2.21) and (2.24) are combined, the following expression is obtained to 

define the RMS pressure:  

 

𝑝𝑟𝑚𝑠 ≈ (∑(𝑝[𝑒𝑗2𝜋𝑓𝑡, 𝜗𝑓])
2

∞

𝑓=1

)

1

2

 (2.25) 

(2.23) is substituted in (2.16) and the following empirical equation is obtained: 

 
𝑝𝑟𝑚𝑠 ≈ 𝜌𝑈2

𝐷3

𝑑3
𝐹𝑛1 [

𝑥

𝐷
] (2.26) 

In Figure 2.5, the point of peak activity is observed at 2𝐷 distance from the 

constriction exit. As previously defined in (2.19), 𝐹𝑛1 [
𝑥

𝐷
] has a value of 0.0355 at 

the point of peak activity. By using this information and combining (2.19) and 

(2.26), the following expression is determined [22].  

 
𝑝𝑟𝑚𝑠 ≈ 𝜌𝑈2

𝐷3

𝑑3
𝐹𝑛1 [

𝑥𝑚𝑎𝑥

𝐷
] ≈ 𝜌𝑈2

𝐷3

𝑑3
(0.0355) (2.27) 

(2.27) is the equation used to determine the wall pressure spectrum at the peak 

activity point. According to the study of Tobin and Chang [23], the spectral 

tendency of the wall pressure variation at different axial locations is almost the 

same as the spectral tendency of the peak activity point. Therefore, Yazicioglu et 
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al. [22] assumed that the spectral behavior observed at the peak activity point is 

valid at all spatial locations. 

The phase angle (𝜗𝑓) is investigated by Keith and Abraham [53] for turbulent flow 

over a wall. According to their hypothesis, the turbulent wall pressure convection 

is associated with the flow velocity. 

In the study of Owsley and Hull [34], it is assumed that the turbulent wall pressure 

convection velocity moves axially depending on the jet velocity (𝑢𝑗) observed at 

the constriction exit. 

Yazicioglu et al. [22] stated that the flow velocity in the regions close to the wall is 

lower when compared to the central flow rate. Larger and coherent structures with 

lower frequencies are seen in the central location. The smaller structures located 

near the wall are dissipated faster as they move away from the stenosis exit [22]. It 

is stated that the effect of larger structures may be more pronounced in the further 

downstream region and the velocity of the turbulent wall pressure convection may 

depend on the frequency. Yazicioglu et al. [22] followed the assumptions of 

Owsley and Hull [34] and formulated the pressure field considering the phase angle 

as the following: 

 𝑝[𝑒𝑗2𝜋𝑓𝑡, 𝑥, 𝜗𝑓] = 𝑃0𝑒𝑗(2𝜋𝑓−𝜗𝑓) (2.28) 

where, 

 
𝑃0 = 1.8𝐹𝑛1[𝑥/𝐷]𝜌𝑈3/2 ∙

𝐷5/2

𝑑2
(

1

1 + 20(𝑓𝑑2/𝑈𝐷)5.3
)

1/2

 (2.29) 

and, 
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𝜗𝑓[𝑓, 𝑥] =

2𝜋𝑓𝑥𝑑2

𝑈𝐷2
 (2.30) 

The amplitude of the acoustic pressure (𝑃0) depends on several parameters 

including 𝐹𝑛1 [
𝑥

𝐷
]. Using the values given in Figure 2.5, curve fitting is performed 

to represent 𝐹𝑛1 [
𝑥

𝐷
] as a function. The data points used for the fitting function are 

given in Table 2.1. 

Table 2.1 The data used to approximate 𝐹𝑛1 [
𝑥

𝐷
] based on Figure 2.5 

𝑥

𝐷
 0 1 1.5 2 3 4 6 8 10 15 70 

𝐹𝑛1 [
𝑥

𝐷
] 0 0.02 0.03 0.0355 0.025 0.01 0.004 0.003 0.0025 0.002 0.002 

Using the values given in Table 2.1, the fitting function is obtained in the following 

form considering an unconstricted diameter of 6.4 mm: 

 
𝐹𝑛1[𝑥] =

0.07057𝑥 + 0.3849

𝑥2 − 23.22𝑥 + 167.9
 (2.31) 

(2.31) is substituted in (2.29) and the final form of the acoustic pressure amplitude 

is defined as: 

 
𝑃0 = 1.8

0.0705x + 0.385

x2 − 23.2x + 168
ρU3/2

D5/2

d2
(

1

1 + 20(fd2/UD)5.3
)

1/2

 (2.32) 

In the computational studies, the phase data and turbulence-induced acoustic 

pressure field are determined using (2.30) and (2.32). In Chapter 3, the method used 

to apply the empirical pressure field to the arterial model is explained in detail. 
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CHAPTER 3 

METHODS FOR MODELLING FLOW-INDUCED ACOUSTIC FIELD 

 

 

 

In this study, the main focus is the arterial sound and vibration emitted from the 

peripheral organs such as arm, leg and neck. Large artery diameters in peripheral 

organs result in high vascular sound generation when compared to the coronary 

arteries. The vascular sound generated in coronary arteries is mostly suppressed by 

the natural sounds of heart valve closure and breathing. These natural sounds make 

the diagnosis challenging and advanced signal analysis techniques are needed to be 

applied in order to filter the sounds emitted from the coronary arteries [54]. In this 

study, the pure effect of flow-induced vascular sound is analyzed by concentrating 

on the peripheral arteries. 

The geometric and anatomical features of the peripheral organs are important 

reasons to focus on the peripheral arteries. The anatomy of peripheral organs is 

much simple, regular and similar to an axisymmetric form when compared to the 

complicated anatomies of abdomen and chest. 

In the literature, Peripheral Arterial Occlusive Disease (PAOD) is reported as a 

critical indication of possible serious cariovascular diseases such as CAD and 

stroke. PAOD patients have a higher risk of CAD within 10 years [4]. This fact is 

supported by a clinical investigation. It is reported that PAOD patients over 50 

years of age have 68% and 42% incidence of coexistent CAD and CVA, 

respectively [55]. 

The abovementioned facts clearly indicate that early detection of PAOD has great 

importance to take preventive actions before encountering CVA or CAD, and to 
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motivate the patient for a healthier life style before facing with serious arterial 

damage. Considering the stated reasons, analyzing the large arteries in peripheral 

organs is more feasible for noninvasive diagnosis of arterial occlusion. 

3.1 Constitutive elements of the problem 

Artery, blood, bones and surrounding soft tissues are the constitutive elements in 

the problem domain. The large arteries in the peripheral organs are considered as 

linearly elastic finite pipe with uniform thickness and diameter. In the literature, 

arterial lumen diameter is reported between 1 to 20 mm [9, 19, 56-59] for the large 

arteries. The ratio between the lumen diameter and arterial thickness is an important 

value and it should be in the range of 0.04 to 0.13 for the peripheral arteries. In the 

computational studies, the lumen diameter and the arterial thickness are considered 

as 6.4 and 0.3 mm, respectively, to approximate the anatomical relevance and to 

follow the studies of Yazicioglu et al. [22], Tobin and Chang [23], and Salman et 

al. [24]. The considered diameter and thickness correspond to a thickness to 

diameter ratio of 0.047 which is in the stated range for large arteries. The arterial 

lumen diameters are 4, 6.4 and 10 mm for the brachial, common carotid and femoral 

arteries, respectively [60, 61]. Therefore, the selected lumen diameter of 6.4 mm is 

a suitable approximation for the peripheral arteries. 

In several studies, the arterial structure is modelled with material properties within 

0.129 to 1 MPa of elastic modulus, 0.23 to 0.57 of Poisson’s ratio, and 690 to 1350 

kg/m3 of mass density [7, 19, 58]. Latex rubber is an appropriate alternative to 

model the artery where it has elastic modulus of 0.8 MPa, Poisson’s ratio of 0.42, 

and mass density of 1086 kg/m3, which are suitable for the arterial structures [22-

24]. The main objective is to investigate the arterial vibration and to see the effects 

of the most influencing factors such as arterial lumen diameter, blood pressure, 

blood flow rate and the severity of the occlusion. Prestress, curved artery geometry, 

structural layers in the arterial wall, density change in the arterial structure have 

indiscernible effects and they are neglected within the scope of the investigation. 
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The stenosis inside the artery is modelled with a blunt constriction profile following 

the studies of Yazicioglu et al. [22], and Tobin & Chang [23]. The calcified material 

deposited in the stenosis site has much higher stiffness when compared to the 

arterial structure and can be considered as rigid. 

The flow-induced acoustic pressures on the arterial wall are the main cause of 

vibration. In several studies, these fluctuating acoustic pressures are obtained 

performing CFD analysis which are time consuming and require high 

computational power. By considering an alternative approach, the acoustic 

pressures are determined in a more effective and accurate way using the 

experiment-based empirical equations defined in the literature as previously 

explained in Chapter 2. Acoustic fluid elements are employed in the computational 

studies to model the wave propagation in the fluid medium and the mass properties 

of the blood. The flow is not solved and only structural modal analysis is performed 

to obtain the solution. By using this approach, the computational demand is 

significantly lowered. 

Blood is modelled using the material properties of water at room temperature. It is 

stated that if the shear rate exceeds 50 s-1, the blood can be considered as a 

homogenous incompressible Newtonian fluid [9, 51, 52], and this condition is 

satisfied for the large peripheral arteries. The mass density and bulk modulus of the 

blood are used as 1000 kg/m3 and 2.2 GPa, respectively. 

The blood flow rate is dependent on time due to the pulsatile nature of the 

cardiovascular system. The highest vascular sound is generated at the instant of 

peak flow rate. Therefore, the peak flow velocity at the systolic phase is the main 

focus for the investigation. In the analysis, the interested frequency range of 

vibration is up to 1000 Hz but the pulsation due to cardiac cycle is around 1 Hz 

[19]. It means that the change in flow rate is much slower when compared to the 

interested fluctuations. For this reason, the quasi-steady solution at the peak 

instantenous flow rate is utilized in the computational analysis. 
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3.2 Comparison of ANSYS and ADINA 

A sample problem is modelled and solved using ANSYS Workbench (Canonsburg, 

PA) and ADINA (Watertown, MA) to compare the effectiveness of the softwares. 

A cantilever beam is considered which is fixed at one end with no displacement. 

Linearly elastic latex rubber material properties are used for the beam material. The 

cantilever beam has a square cross-section of 10 mm, with a total length of 100 

mm. The same mesh is generated for both ANSYS Workbench (Canonsburg, PA) 

and ADINA (Watertown, MA) using 10000 hexahedral structural elements. The 

models created for ANSYS Workbench (Canonsburg, PA) and ADINA 

(Watertown, MA) are represented in Figure 3.1. 

 

Figure 3.1 The models used for the sample cantilever beam problem. (a) ADINA. 

(b) ANSYS Workbench. 

Thirty natural frequencies and corresponding mode shapes of the cantilever beam 

are determined within the interested frequency range of 0 to 500 Hz. The total time 

elapsed for the modal analysis in ANSYS Workbench (Canonsburg, PA) is 145 

seconds. This duration is reduced to 46 seconds using ADINA (Watertown, MA), 

which is three times faster when compared to ANSYS Workbench (Canonsburg, 

PA). 
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Two different harmonic loading cases are considered for the cantilever beam. The 

modal damping coefficient is set to 0.02 (2%) for all interested frequencies and 

mode shapes assuming light damping conditions in the models. In the first loading 

case, a harmonic pressure of 1 Pa is applied at the bottom line of the cantilever 

beam as a distributed force. For the second loading case, a harmonic pressure of 1 

Pa is applied on the bottom line and another harmonic pressure of 2 Pa is applied 

on the top line with a phase angle difference of 90° as shown in Figure 3.2. 

The harmonic acceleration response in the loading direction is obtained for the top 

node at the free end of the cantilever beam. The results of ADINA (Watertown, 

MA) and ANSYS Workbench (Canonsburg, PA) are given in Figure 3.3 and Figure 

3.4 for the first and second harmonic loading cases, respectively. As seen in Figure 

3.3 and Figure 3.4, the results of harmonic analysis with phase difference are nearly 

same for ADINA (Watertown, MA) and ANSYS Workbench (Canonsburg, PA). 

 

Figure 3.2 Two different harmonic loading cases for the cantilever beam. (a) 

Harmonic pressure of 1 Pa on the bottom line. (b) Harmonic pressures of 1 Pa and 

2 Pa with a phase difference of 90°. 
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Figure 3.3 Comparison of acceleration responses for the top node at the free end of 

the cantilever beam considering 1 Pa of harmonic pressure load. 

 

Figure 3.4 Comparison of acceleration responses for the top node at the free end of 

the cantilever beam considering 1 Pa and 2 Pa of harmonic pressure loads with a 

phase difference of 90°. 

3.3 Methods for applying the harmonic acoustic pressure field 

Acoustic pressure fluctuations on the inner arterial wall are assumed as a harmonic 

load. These pressure fields are determined using the empirical equations [22] 

presented in Chapter 2 as a function of frequency and axial distance downstream 
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of the constriction exit. In Figure 3.5, a sample case is considered for an artery with 

a lumen diameter of 6.4 mm and 87% stenosis. The acoustic pressure field is 

determined for Re = 2000 (Reynolds number of 2000) using the empirical 

equation (2.32). 

 

Figure 3.5 Acoustic pressure amplitudes (dB ref: 1 Pa) as function of axial position 

and frequency for Re = 2000 with 87% stenosis. The color scale is used for dB. 

The highest sound generation is observed about 15 mm downstream of the 

constriction exit for a lumen diameter of 6.4 mm. The spectral behavior at this peak 

activity point is determined by Tobin and Chang [23] and compared to the other 

points. They stated that for all points nearly the same spectral trend is observed. 

The spectral behavior can be represented as a function which defines the change in 

the pressure amplitudes depending on the frequency. In the same manner, the 

spatial behavior can also be defined as an independent function which represents 

the variation in the pressure amplitudes depending on the axial distance 

downstream of the constriction exit. By combining these spectral and spatial 

functions, the amplitudes in the acoustic pressure field can be obtained in an 

accurate way as presented in Figure 3.6. 
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Figure 3.6 Spatial and spectral functions used to generate the acoustic pressure field 

represented in Figure 3.5. 

In Figure 3.6, the same acoustic pressure field presented in Figure 3.5 is obtained 

accurately using only spatial and spectral functions. The spectral function defines 

the variation in pressure amplitudes depending on the frequency, at the location of 

highest sound generation. For the sample case presented in Figure 3.5 and Figure 

3.6, the highest sound is generated at 13 mm downstream of the constriction exit. 

The spatial function is showing the variation in the pressure amplitudes at 5 Hz 

depending on the axial distance to the constriction exit. By trial and error, it is seen 

that the spatial function at low frequencies reduces the error while generating the 

pressure field. Therefore, 5 Hz is chosen to obtain the spatial function correctly. 

For example, if the spatial function at 100 Hz is used to generate the pressure field, 

the percent error in the pressure amplitudes increases. As presented in Figure 3.7, 

the percent errors for the acoustic pressure amplitudes are lower than 0.1% using 

the spatial function at 5 Hz for various Reynolds numbers (Re) and stenosis 

severities. 
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Figure 3.7 Acoustic pressure amplitudes (dB ref: 1 Pa) and percent errors as 

function of axial position and frequency. For acoustic pressure contours, the color 

scale is used for dB. For percent error contours, the color scale is used for the 

magnitude of the percent error. (a) Re = 1000, 90% stenosis. (b) Percent error for 

(a). (c) Re = 1000, 70% stenosis. (d) Percent error for (c). (e) Re = 2000, 90% 

stenosis. (f) Percent error for (e). (g) Re = 2000, 70% stenosis. (h) Percent error 

for (g). 
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The spectral and spatial functions are presented in Figure 3.8 and Figure 3.9, 

respectively, considering various Reynolds numbers and stenosis levels. 

 

Figure 3.8 Spectral functions at the point of highest sound generation for various 

Reynolds numbers and stenosis levels.  

 

Figure 3.9 Spatial functions at 5 Hz for various Reynolds numbers and stenosis 

levels. 
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Up to here, the method of the acoustic pressure amplitude determination is 

explained considering different conditions. The phase angle of the applied pressure 

may have difference depending on the frequency and the distance to the stenosis 

exit. As previously explained, (2.30) defines the phase of the load as function of 

the frequency and the distance downstream of the stenosis exit. The phase of the 

pressure load is also dependent on the Reynolds number of the flow and the lumen 

diameter of the artery. A unique phase contour would be generated for different 

flow rates and stenosis severities. In Figure 3.10, the acoustic pressure amplitudes 

and the corresponding phase contour plots are represented for a sample case with 

Re = 2000 and 90% stenosis considering arterial lumen diameter of 6.4 mm. 

 

Figure 3.10 (a) Phase contour plot (10 x 10 resolution) for Re = 2000 and 90% 

stenosis. Color scale is used for degree angle. (b) Acoustic pressure contour (dB 

ref: 1 Pa) on the arterial wall (10 x 10 resolution) for Re = 2000 and 90% stenosis. 

Color scale is used for dB. 

In Figure 3.10, both acoustic pressure amplitude and phase contour plots are 

discretized in 100 regions. The piecewise continuous phase mapping is applied to 

excite all interested frequencies up to 600 Hz. The frequency domain is divided 

into 10 different zones with intervals of 60 Hz. In the same manner, total distance 

of 100 mm is divided into 10 different zones with 10 mm intervals. The phase of 
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the pressure load is assumed to be constant for each discretized region and applied 

to the corresponding discretized region in the amplitude map as shown in Figure 

3.10. The phase map can be improved to a resolution of 20 x 20 as represented in 

Figure 3.11. Using 20 x 20 phase map resolution, the frequency range within 0 to 

600 is divided into 20 independent regions with intervals of 30 Hz. Similarly, the 

total distance of 100 mm is divided into 20 regions with 5 mm intervals. 

 

Figure 3.11 Phase maps for Re = 2000 and 87% stenosis considering a lumen 

diameter of 6.4 mm. The color scale is used for degree angle. (a) 10 x 10 resolution. 

(b) 20 x 20 resolution.  

Due to the computational limitations, the phase map is used considering the 

resolutions of 10 x 10 and 20 x 20. Higher resolutions than 20 x 20 dramatically 

increased the post-processing time for the harmonic analysis. As will be 

represented and discussed in the following chapters, 10 x 10 and 20 x 20 phase 

maps lead to satisfactorily accurate results. The acoustic pressure amplitudes and 

the corresponding phase maps are given in Figure 3.12 and Figure 3.13, 

respectively, considering various Reynolds numbers and stenosis severities. 
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Figure 3.12 Acoustic pressure amplitudes (dB ref: 1 Pa) for a lumen diameter of 

6.4 mm as function of axial position and frequency. The color scale is used for dB. 

(a) Re = 2000, 50% stenosis. (b) Re = 1000, 50% stenosis. (c) Re = 2000, 70% 

stenosis. (d) Re = 1000, 70% stenosis. (e) Re = 2000, 90% stenosis. (f) Re =

1000, 90% stenosis. 
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Figure 3.13 Phase maps with resolution of 20 x 20 for a lumen diameter of 6.4 mm. 

The color scale is used for degree angle. (a) Re = 2000, 50% stenosis. (b) Re =

1000, 50% stenosis. (c) Re = 2000, 70% stenosis. (d) Re = 1000, 70% stenosis. 

(e) Re = 2000, 90% stenosis. (f) Re = 1000, 90% stenosis. 
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CHAPTER 4 

IDEALIZED COMPUTATIONAL MODELS 

 

 

 

Computational studies are performed in two parts using idealized and realistic 

models. For the idealized models, some simplifications are considered for the 

problem geometry and the material properties. For the realistic models which are 

presented in Chapter 5, material properties and the anatomical geometry of the 

problem domain are modelled more realistically considering the biological 

relevance. In this chapter, the idealized models are investigated using the simplified 

material properties and geometry. 

4.1 The problem geometry for the idealized models 

Artery, blood and surrounding soft tissue are modelled in the idealized models. The 

problem geometry is assumed to be in an axisymmetrical form. The lumen diameter 

of the artery is denoted by D and the arterial thickness is denoted by ta. Arterial 

lumen diameter and the arterial thickness are selected as 6.4 and 0.3 mm, 

respectively, to follow the numerical and experimental studies in the literature [22-

24, 62]. The artery is occluded at a particular location and the constricted diameter 

is denoted by d. The stenosis severity (S) is expressed as the percent flow area 

reduction in the lumen using the following equation. 

 
S = 100

(D2 − d2)

D2
 (4.1) 
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The artery is surrounded by a hollow cylindrical soft tissue with a thickness of H. 

Since the highest vibroacoustic excitation is observed at the downstream of the 

constriction exit, only the downstream region is modelled in the computational 

studies. The total length of the artery and the surrounding soft tissue are denoted 

by L. Axial flow velocity at the inlet of the artery is denoted by U. The geometrical 

parameters of the idealized model are represented in Figure 4.1. 

  

Figure 4.1 Sectional view of the axisymmetric idealized model. Flow is from left 

to right. Blood, artery and surrounding soft tissue are displayed by blue, green and 

yellow colors, respectively. Axial and radial coordinates are shown by x and r, 

respectively. 

4.2 Material properties for the idealized models 

The artery is modelled as a tubular structure with acoustic fluid elements inside. 

These acoustic fluid elements are used to model the wave propagation inside the 
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blood. Structural properties of the artery are modelled using the latex rubber 

material properties [22]. Linearly elastic material model is used for the arterial 

structure [22-24] with elastic modulus (Ea) of 800 kPa, Poisson’s ratio (νa) of 0.42 

and mass density (ρa) of 1086 kg/m3. Material properties of water are used for 

modeling the blood with mass density (ρf) of 1000 kg/m3 and bulk modulus (B) of 

2.2 GPa [7, 19, 22-24]. Since the geometry of the idealized model is axisymmetric, 

only the radial component of the variables is investigated. Radial displacement, 

radial velocity and radial acceleration responses are obtained at the outer surface of 

the models. In the analysis, the radial velocity responses are considered primarily 

to compare with the radial velocity responses presented in the literature [22]. The 

two ends of the artery and the surrounding soft tissue are fixed by setting zero 

displacement (i.e., u = 0 at x = 0 and x = L). The reason for limiting the two ends 

to zero displacement is to assume that these two sides are joints. Due to high 

stiffness in the joints, the two sides of the model are considered to be motionless. 

The flow-induced harmonic pressure load is applied radially on the inner arterial 

wall. Three different phase maps are applied for the harmonic pressure load as no 

phase map, 10 x 10 phase map and 20 x 20 phase map. For the no phase map, all 

points have the same phase and this value does not change with varying frequencies 

and distances. 10 x 10 phase map and 20 x 20 phase map are previously explained 

in Figure 3.11. For all mode shapes, 2% of modal damping is employed for the 

idealized computational models considering the light damping conditions. 

4.3 Bare artery models 

For idealized models, two different cases are mainly investigated. First, the bare 

artery models are analyzed without considering the surrounding soft tissue (i.e., 

H = 0). After completing the bare artery analysis, the soft tissue surrounding the 

artery is taken into account. By this way, the effects on the outer surface of the 

artery and the surrounding soft tissue are compared. The problem has an 
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axisymmetric geometry, therefore only the radial variables are recorded for the 

nodes at the top of the model. 

4.3.1 Mesh independence study for the bare artery analysis 

Three different mesh densities are used for the idealized bare artery models. In 

Table 4.1, the details of the meshes are provided. 

Table 4.1 Details of the meshes for the bare artery models 

Mesh 

Density 
Medium 

Number 

of nodes 

in axial 

direction 

Number 

of nodes 

in radial 

direction 

Number of nodes 

in 

circumferential 

direction 

Total 

number 

of nodes 

Total 

number 

of 

elements 

Mesh 1 
Artery 41 2 20 

3321 3200 
Blood 41 4 20 

Mesh 2 
Artery 81 3 30 

17091 16800 
Blood 81 6 30 

Mesh 3 
Artery 81 4 40 

48521 48000 
Blood 81 8 40 

The radial velocity responses on the top line of the bare artery are obtained for a 

sample case using three mesh densities as shown in Figure 4.2. Average response 

amplitude (within 0-100 mm, 0-600 Hz) has a difference of 1.86% between Mesh 

1 and Mesh 2. This difference is obtained as 0.8% between Mesh 2 and Mesh 3. 

Results are accepted as mesh-independent if the difference in amplitudes is less 

than 3%. Therefore, results of Mesh 1 are satisfactorily accurate in terms of spectral 

content and response amplitudes. For a frequency domain based structural modal 

analysis, the mesh independent results can be achieved with low density meshes 

when compared to the time domain based transient structural analysis. The results 

of Mesh 1 are presented for all remaining bare artery analyses. 
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Figure 4.2 Radial velocity response (dB ref: 1 mm/s) on outer surface of the artery 

for Re = 2000 with 90% stenosis. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3. The color 

scale is used for dB. 

4.3.2 Responses on the bare artery models 

Radial displacement, velocity and acceleration responses on outer surface of artery 

are presented in Figure 4.3 for Re = 2000 with 90% stenosis considering no phase 

map. General spectral behaviors of the displacement, velocity and acceleration 

responses are similar, and bending modes of fluid-filled artery are clearly visible. 

In all response plots, the first highly excited frequency range is within 25 to 225 

Hz. The second excited region is observed within 250 to 400 Hz. The increase in 

Reynolds number increases the amplitudes due to turbulent pressure fluctuations 

on arterial wall. The amplitudes in Figure 4.3 indicate that displacements are in the 

range of -100 dB to -50 dB for a reference displacement of 1 mm which are too low 

to measure. Radial velocities have higher amplitudes (within 1 to 300 μm/s) that 

can be measured using the state of the art sensor technologies. Laser Doppler 

Vibrometers (LDV) are capable of measuring velocities higher than 0.02 μm/s 

(IVS-300, Polytech, Auburn, MA). The highest amplitudes are found for the 

accelerations, but highest experimental noise is seen for acceleration data which 

makes the measurement challenging due to low signal to noise ratio. For this 

reason, the radial velocity is the most suitable parameter for the investigations. 
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Figure 4.3 Responses on the outer surface of the artery with 90% stenosis 

considering no phase map. (a) Radial displacement (dB ref: 1 mm) for Re = 1000. 

(b) Radial displacement (dB ref: 1 mm) for Re = 2000. (c) Radial velocity (dB ref: 

1 mm/s) for Re = 1000. (d) Radial velocity (dB ref: 1 mm/s) for Re = 2000. (e) 

Radial acceleration (dB ref: 1 mm/s2) for Re = 1000. (f) Radial acceleration (dB 

ref: 1 mm/s2) for Re = 2000. 
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The same mode shapes and the corresponding natural frequencies are observed for 

Re = 1000 and Re = 2000. Increase in the radial velocity amplitudes becomes 

much more prominent as the flow rate increases. The effect of stenosis severity is 

investigated in Figure 4.4 considering stenosis levels from 50% to 95%. It is seen 

that the response amplitudes tend to increase with the increasing stenosis level. 

The maximum and average values of the radial velocity responses presented in 

Figure 4.4 are given in Figure 4.5. It is seen that the response amplitudes increase 

nonlinearly due to the increase in the stenosis level. As the stenosis level reaches 

95%, a dramatic increase is observed for the response amplitudes. The radial 

velocity amplitudes do not change seriously up to 70% stenosis for both Re = 1000 

and Re = 2000. However, as the stenosis level exceeds 70%, the relative increase 

in the response amplitudes is observed much more clearly. This important increase 

in the response amplitudes is a characteristic sign for the presence of a stenosis and 

70% stenosis is an important threshold severity to detect an occlusion. 

In Figure 4.4 and Figure 4.5, the radial velocity responses are determined 

considering no phase map in which the phase of the applied pressure load does not 

vary depending on the axial distance to the stenosis exit and the frequency. In 

Figure 4.6 and Figure 4.7, the effect of stenosis severity is investigated considering 

10 x 10 phase map and 20 x 20 phase map, respectively. 

In this chapter, the arterial lumen diameter is used as 6.4 mm. For the selected 

arterial diameter, the mass flow rate (ṁ) is 0.005 kg/s for Re = 1000 and 0.010 

kg/s for Re = 2000. 
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Figure 4.4 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

artery considering no phase map. (a) Re = 1000, 50% Stenosis. (b) Re = 1000, 

70% Stenosis. (c) Re = 1000, 90% Stenosis. (d) Re = 1000, 95% Stenosis. (e) 

Re = 2000, 50% Stenosis. (f) Re = 2000, 70% Stenosis. (g) Re = 2000, 90% 

Stenosis. (h) Re = 2000, 95% Stenosis. 
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Figure 4.5 (a) Maximum radial velocity response (within 0-600 Hz, 0-100 mm) for 

Re = 1000 and Re = 2000 as function of stenosis level. (b) Average radial 

velocity response (within 0-600 Hz, 0-100 mm) for Re = 1000 and Re = 2000 as 

function of stenosis level. 
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Figure 4.6 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

artery considering 10 x 10 phase map. (a) Re = 1000, 50% Stenosis. (b) Re =

1000, 70% Stenosis. (c) Re = 1000, 90% Stenosis. (d) Re = 2000, 50% Stenosis. 

(e) Re = 2000, 70% Stenosis. (f) Re = 2000, 90% Stenosis. 

The same natural frequencies are observed for the no phase map, 10 x 10 phase 

map and 20 x 20 phase map. However, the spectral content slightly changed 

depending on the applied phase map. The response plots presented in Figure 4.4 

demonstrate smooth and regular characteristics. On the other hand, a more 

complicated and piecewise continuous trend is obtained for the radial velocity 

responses given in Figure 4.6 and Figure 4.7 considering 10 x 10 and 20 x 20 phase 

maps, respectively. 

In Figure 4.8, the radial velocity responses are obtained for Re = 2000 with 87% 

stenosis considering different phase maps, and the computational results are 

compared to the experimental findings in the literature [22]. The amplitudes of the 

computational results are in good agreement with the theoretical and experimental 

findings in the literature. 
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Figure 4.7 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

artery considering 20 x 20 phase map. (a) Re = 1000, 50% Stenosis. (b) Re =

1000, 70% Stenosis. (c) Re = 1000, 90% Stenosis. (d) Re = 2000, 50% Stenosis. 

(e) Re = 2000, 70% Stenosis. (f) Re = 2000, 90% Stenosis. 

The first three mode shapes of the bare artery model are obtained at 30, 60 and 90 

Hz by using sharp peaks in Figure 4.8(f). The determined natural frequencies agree 

well with the theoretical results in Figure 4.8(g). However, the same mode shapes 

appear at slightly lower frequencies in the experimental results given in Figure 

4.8(h). Internal mean dynamic pressure may be the reason for this frequency shift. 

In the experimental studies, the mean pressure results increased circumferential 

prestress on the arterial wall. This condition leads to an increase in radial 

dimensions and consequently an increase in arterial blood volume. The additional 

fluid mass shifts the natural frequencies slightly downward. 
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Figure 4.8 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

artery for Re = 2000 with 87% stenosis. (a) No phase map, 2% modal damping. 

(b) 10 x 10 phase map, 2% modal damping. (c) 20 x 20 phase map, 2% modal 

damping. (d) No phase map, 5% modal damping. (e) No phase map, 10% modal 

damping. (f) No phase map, 20% modal damping. (g) Theory in air [22]. (h) 

Experiment in air [22]. 

In the experimental results shown in Figure 4.8(h), high activity is mainly observed 

at three regions, within 0-100 Hz, around 200 Hz, and around 400 Hz. Similarly, 

three highly excited regions are observed in the computational analyses shown in 

Figure 4.8(a), (b) and (c), within 0-220 Hz, within 300-400 Hz, and around 575 Hz. 

These three regions can be considered as the same excited regions with a slight 
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frequency shift when compared to the experimental results, as a consequence of the 

additional fluid mass loading due to prestress. 

In the theoretical and experimental results given in Figure 4.8(g) and (h), the 

response amplitudes are relatively higher within 0-25 mm. After passing the 

distance of 25 mm, the amplitudes tend to decrease gradually. The first 25 mm is 

the recirculating flow region at which the highest sound generation is recorded, so 

the radial velocity amplitudes at this region are relatively high. However, the 

relatively high excitation is not clearly seen in the computational results given in 

Figure 4.8(a), (b) and (c) within 0-25 mm. Modal damping of 2% is employed for 

all modes of the model, since a light damping condition is considered for the bare 

artery analysis. If the damping is increased in the arterial model, the directional 

dependence of the response amplitudes becomes more apparent as seen in Figure 

4.8(d), (e) and (f). When the modal damping is increased to 20%, the radial velocity 

amplitudes sharply decrease with increasing axial distance, and the amplitudes 

within 0-25 mm appear to be more dominant. However, the amplitude scale of the 

response plot shifts to lower values as the modal damping increases.  

4.3.3 Average responses for the bare artery analysis  

In this section, the averages of the previously presented response plots are 

examined in detail. For the bare artery analysis, 41 nodes are placed at a total 

distance of 100 mm. The radial velocity responses are averaged considering all 41 

nodes on the top line of the artery and the average responses are obtained as 

function of frequency. In Figure 4.9, the average responses are investigated to see 

the effect of stenosis severity. The highest average response amplitude in Figure 

4.9(a) is lower than 1 mm/s for Re = 1000. When the flow rate increases to Re =

2000, the highest amplitude becomes 2 mm/s in Figure 4.9(b). The increase 

depending on the stenosis severity is more obvious for the high frequency range, 

within 250-600 Hz. For Re = 2000 with 95% stenosis, the average radial velocity 
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amplitude at 600 Hz is determined as 0.1 mm/s. This value decreased to 0.01 mm/s 

for 90% stenosis. The 5% difference in the stenosis level caused a 10-fold reduction 

in the average amplitudes at 600 Hz. The amplitude difference at high frequencies 

may indicate severe stenosis in the artery. 

 

Figure 4.9 Average radial velocity response (within 0-100 mm) on the outer surface 

of the artery as function of frequency considering no phase map. (a) Re = 1000. 

(b) Re = 2000. 

The effect of the applied phase map is shown in Figure 4.10 and Figure 4.11 

considering 10 x 10 and 20 x 20 phase maps, respectively. 
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Figure 4.10 Average radial velocity response (within 0-100 mm) on the outer 

surface of the artery as function of frequency considering 10 x 10 phase map. (a) 

Re = 1000. (b) Re = 2000. 

The smooth and regular trend is not observed for the results of the 10 x 10 and 20 

x 20 phase maps, and a segmented average response is obtained in Figure 4.10 and 

Figure 4.11. 
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Figure 4.11 Average radial velocity response (within 0-100 mm) on the outer 

surface of the artery as function of frequency considering 20 x 20 phase map. (a) 

Re = 1000. (b) Re = 2000. 

The change of the radial velocity responses depending on the phase map is clearly 

visible in the average results presented in Figure 4.12. The average responses have 

similar spectral content within 0-200 Hz. However, a certain difference is observed 

in the amplitudes as the frequency increases. The highest response amplitude is 

observed around 400 Hz for 20 x 20 phase map considering Re = 2000 with 90% 
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stenosis. For the no phase map and 10 x 10 phase map, the highest amplitude is 

observed around 100 Hz considering the same case. This fact shows that the applied 

phase map may affect the response for the bare artery analysis, especially at 

frequencies higher than 200 Hz. 

 

Figure 4.12 Comparison of the radial velocity response (within 0-100 mm) on the 

outer surface of the artery as function of frequency considering 90% stenosis. (a) 

Re = 1000. (b) Re = 2000. 

In addition, the average responses are determined as function of axial distance 

downstream of the constriction exit to see the directional dependence of the average 
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amplitudes. This time, average responses are obtained using the results between 0 

to 600 Hz. In Figure 4.13, Figure 4.14, and Figure 4.15, the average responses are 

shown as function of the axial distance to the stenosis exit considering no phase 

map, 10 x 10 phase map, and 20 x 20 phase map, respectively. Two sides of the 

model are considered as joint ends and fixed with zero displacement. For this 

reason, responses at 0 and 100 mm tend to approach zero. 

 

Figure 4.13 Average radial velocity response (within 0-600 Hz) on the outer surface 

of the artery as function of axial distance downstream of the constriction exit 

considering no phase map. (a) Re = 1000. (b) Re = 2000. 
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Figure 4.14 Average radial velocity response (within 0-600 Hz) on the outer surface 

of the artery as function of axial distance downstream of the constriction exit 

considering 10 x 10 phase map. (a) Re = 1000. (b) Re = 2000. 

Relatively higher amplitudes are observed within the distance of 0-20 mm, since 

the stenosis exit is placed at 0 mm. The response amplitudes gradually decrease 

with the increasing downstream distance from the stenosis exit. 
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Figure 4.15 Average radial velocity response (within 0-600 Hz) on the outer surface 

of the artery as function of axial distance downstream of the constriction exit 

considering 20 x 20 phase map. (a) Re = 1000. (b) Re = 2000. 

For all applied phase maps, the highest average amplitude is about 0.025 mm/s for 

Re = 1000 with 90% stenosis. The highest amplitude increases to 0.2 mm/s for 

Re = 2000 with 90% stenosis. This shows that when the flow rate is doubled, an 

8-fold increase is observed for the highest radial velocity amplitude on the outer 
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surface of the artery. As stated in the literature [19], the acoustic power generated 

on the inner wall of the artery is proportional to the fourth power of the Reynolds 

number. Results of the bare artery analysis indicate that this proportionality drops 

to the third power for the radial velocity responses on the outer surface of the artery. 

In Figure 4.16, the average responses are compared considering the no phase map, 

10 x 10 phase map and 20 x 20 phase map. 

 

Figure 4.16 Comparison of average radial velocity responses on the outer surface 

of the artery (within 0-600 Hz) as function of axial distance downstream of the 

constriction exit considering 90% stenosis for Re = 1000 and Re = 2000. 

The results obtained for the bare artery analysis are reasonable and in good 

agreement with the findings in the literature, but there is a certain amplitude 

difference depending on the applied phase map. In this section, a bare artery model 

is considered as the first step. The results provide important information to 
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understand the problem. In the next step, the artery is surrounded by soft tissue and 

the effects observed on the outer surface of the surrounding tissue are investigated.     

4.4 Soft tissue surrounded models 

In this section, the previously described bare artery model is surrounded by soft 

tissue. The surrounding soft tissue is modelled as linearly elastic considering three 

different elastic modulus values of 0.1, 1 and 10 MPa. The Poisson’s ratio and the 

mass density of the soft tissue are used as 0.49 and 1200 kg/m3, respectively. The 

arterial geometry is the same as the previous bare artery model presented in Figure 

4.1. Three different thicknesses are used for the surrounding soft tissue as 6.5, 16.5 

and 36.5 mm (i.e., H = 6.5, 16.5, 36.5 mm) considering the muscle and 

subcutaneous tissue thicknesses in arm and neck [63]. Using tissue thicknesses of 

6.5, 16.5 and 36.5 mm, the outer diameters of the tissue surrounded models 

correspond to 20, 40 and 80 mm, respectively. 

4.4.1 Responses for the soft tissue surrounded models 

Three different meshes are created for each tissue surrounded model to achieve a 

mesh independent solution. The details of the meshes are given in Table 4.2, Table 

4.3 and Table 4.4, considering surrounding soft tissue thicknesses of 6.5, 16.5 and 

36.5 mm, respectively.  
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Table 4.2 Details of the meshes for soft tissue thickness of 6.5 mm 

Mesh 

Density 
Medium 

Number of 

nodes in 

axial 

direction 

Number of 

nodes in 

radial 

direction 

Number of nodes 

in circumferential 

direction 

Total 

number 

of nodes 

Total 

number of 

elements 

Mesh 

1 

Artery 41 2 20 

9881 9600 Blood 41 4 20 

Tissue 41 9 20 

Mesh 

2 

Artery 81 2 30 

38961 38400 Blood 81 4 30 

Tissue 81 13 30 

Mesh 

3 

Artery 121 3 40 

101761 100800 Blood 121 5 40 

Tissue 121 16 40 

Table 4.3 Details of the meshes for soft tissue thickness of 16.5 mm 

Mesh 

Density 
Medium 

Number of 

nodes in 

axial 

direction 

Number of 

nodes in 

radial 

direction 

Number of nodes 

in circumferential 

direction 

Total 

number 

of nodes 

Total 

number of 

elements 

Mesh 

1 

Artery 41 2 20 

11521 11200 Blood 41 4 20 

Tissue 41 11 20 

Mesh 

2 

Artery 81 2 30 

46251 45600 Blood 81 4 30 

Tissue 81 16 30 

Mesh 

3 

Artery 121 2 36 

104665 103680 Blood 121 4 36 

Tissue 121 21 36 
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Table 4.4 Details of the meshes for soft tissue thickness of 36.5 mm 

Mesh 

Density 
Medium 

Number of 

nodes in 

axial 

direction 

Number of 

nodes in 

radial 

direction 

Number of nodes 

in circumferential 

direction 

Total 

number 

of nodes 

Total 

number of 

elements 

Mesh 

1 

Artery 41 2 20 

13161 12800 Blood 41 4 20 

Tissue 41 13 20 

Mesh 

2 

Artery 81 2 30 

48681 48000 Blood 81 4 30 

Tissue 81 17 30 

Mesh 

3 

Artery 121 2 36 

104665 103680 Blood 121 4 36 

Tissue 121 21 36 

The radial velocity responses on the outer surface of the surrounding soft tissue are 

obtained using three different mesh densities, considering a sample case as shown 

in Figure 4.17. Mesh independence studies are carried out using an elastic modulus 

of 0.1 MPa, because the highest number of modes is expected to be observed for 

0.1 MPa when compared to 1 and 10 MPa. Average response amplitude (within 0-

100 mm, 0-300 Hz) is determined for each soft tissue thickness value. Between 

Mesh 1 and Mesh 2, there are average amplitude differences of 4.32%, 6.91% and 

3.45% for 6.5 mm, 16.5 mm and 36.5 mm tissue thickness, respectively. Between 

Mesh 2 and Mesh 3, there are average amplitude differences of 0.76%, 2.11% and 

2.14% for 6.5 mm, 16.5 mm and 36.5 mm tissue thickness, respectively. Mesh 2 

with the moderate mesh density is used for the further analysis of the soft tissue 

surrounded models since average amplitude differences between Mesh 2 and Mesh 

3 are less than 3%. 
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Figure 4.17 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

surrounding soft tissue (0.1 MPa) for Re = 2000 with 90% stenosis considering 

no phase map. (a) 6.5 mm thickness, Mesh 1. (b) 6.5 mm thickness, Mesh 2. (c) 6.5 

mm thickness, Mesh 3. (d) 16.5 mm thickness, Mesh 1. (e) 16.5 mm thickness, 

Mesh 2. (f) 16.5 mm thickness, Mesh 3. (g) 36.5 mm thickness, Mesh 1. (h) 36.5 

mm thickness, Mesh 2. (i) 36.5 mm thickness, Mesh 3.  

Figure 4.18 shows the radial displacement, velocity and acceleration responses on 

the outer surface of the surrounding soft tissue for an elastic modulus of 0.1 MPa 

and a thickness of 36.5 mm, considering no phase map. 
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Figure 4.18 Responses on the outer surface of the surrounding soft tissue (0.1 MPa, 

36.5 mm thickness) for Re = 2000 with 90% stenosis considering no phase map. 

(a) Radial displacement response (mm). (b) Radial velocity response (mm/s). (c) 

Radial acceleration response (mm/s2). 

It is seen that the radial displacement, velocity and acceleration responses are 

similar in terms of general spectral behavior. The main difference is related with 

the scale of the response amplitudes. The most sensitive variable is the radial 

acceleration on the outer surface of the tissue and the maximum acceleration appear 

to be around 100 mm/s2. Considering the elastic modulus of 0.1 MPa and the tissue 

thickness of 36.5 mm, the maximum radial velocity and displacement are 

approximately 100 μm/s and 0.1 μm, where velocities greater than 0.02 μm/s can 

be sufficiently measured by LDV (IVS-300, Polytech, Auburn, MA). 

The radial velocity responses on the tissue surface are presented in Figure 4.19 and 

Figure 4.20 for various stenosis levels and flow rates, considering no phase map 

and 10 x 10 phase map, respectively. 
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Figure 4.19 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

surrounding soft tissue (0.1 MPa) with 36.5 mm thickness considering no phase 

map. (a) Re = 1000, 50% Stenosis. (b) Re = 2000, 50% Stenosis. (c) Re = 1000, 

70% Stenosis. (d) Re = 2000, 70% Stenosis. (e) Re = 1000, 90% Stenosis. (f) 

Re = 2000, 90% Stenosis. 
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Figure 4.20 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

surrounding soft tissue (0.1 MPa) with 36.5 mm thickness considering 10 x 10 

phase map. (a) Re = 1000, 50% Stenosis. (b) Re = 2000, 50% Stenosis. (c) Re =

1000, 70% Stenosis. (d) Re = 2000, 70% Stenosis. (e) Re = 1000, 90% Stenosis. 

(f) Re = 2000, 90% Stenosis. 
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As supporting the previous findings, increased flow rate and stenosis severity lead 

to increased response amplitudes. The modes of the tissue surrounded model are 

clearly visible in the contour plots of the radial velocity responses. However, the 

spectral content is more complicated when compared to the bare artery analysis due 

to the additional mass, damping and stiffness of the soft tissue. The stenosis exit is 

located at 0 mm, but the maximum response amplitude is observed between 60 to 

70 mm for a tissue thickness of 36.5 mm. The amplitude difference due to the 

applied phase map is lowered for the tissue surrounded model compared to the bare 

artery model. This indicates that as the tissue thickens, the phase map dependent 

amplitude difference is suppressed. The radial displacement and acceleration 

responses of the tissue surrounded models are given in Figure 4.21. 

 

Figure 4.21 Responses on the outer surface of the surrounding soft tissue (0.1 MPa) 

for Re = 2000 with 90% stenosis considering no phase map. (a) Radial 

displacement (dB ref: 1 mm), 6.5 mm thickness. (b) Radial displacement (dB ref: 

1 mm), 16.5 mm thickness. (c) Radial displacement (dB ref: 1 mm), 36.5 mm 

thickness. (d) Radial acceleration (dB ref: 1 mm/s2), 6.5 mm thickness. (e) Radial 

acceleration (dB ref: 1 mm/s2), 16.5 mm thickness. (f) Radial acceleration (dB ref: 

1 mm/s2), 36.5 mm thickness. 
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In Figure 4.21, the increase in tissue thickness decreases the response amplitudes, 

but do not significantly affect the spectrum content. The effect of elastic modulus 

is investigated in Figure 4.22 and Figure 4.23, considering no phase map and 10 x 

10 phase map, respectively. 

 

Figure 4.22 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

surrounding tissue for Re = 2000 with 90% stenosis considering no phase map. 

(a) 6.5 mm thickness, 0.1 MPa. (b) 6.5 mm thickness, 1 MPa. (c) 6.5 mm thickness, 

10 MPa. (d) 16.5 mm thickness, 0.1 MPa. (e) 16.5 mm thickness, 1 MPa. (f) 16.5 

mm thickness, 10 MPa. (g) 36.5 mm thickness, 0.1 MPa. (h) 36.5 mm thickness, 1 

MPa. (i) 36.5 mm thickness, 10 MPa. 
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Figure 4.23 Radial velocity response (dB ref: 1 mm/s) on the outer surface of the 

surrounding tissue for Re = 2000 with 90% stenosis considering 10 x 10 phase 

map. (a) 6.5 mm thickness, 0.1 MPa. (b) 6.5 mm thickness, 1 MPa. (c) 6.5 mm 

thickness, 10 MPa. (d) 16.5 mm thickness, 0.1 MPa. (e) 16.5 mm thickness, 1 MPa. 

(f) 16.5 mm thickness, 10 MPa. (g) 36.5 mm thickness, 0.1 MPa. (h) 36.5 mm 

thickness, 1 MPa. (i) 36.5 mm thickness, 10 MPa. 

In Figure 4.22 and Figure 4.23, it is seen that the effect of tissue thickness is less 

drastic than the effect of the elastic modulus. The increased elastic modulus 

significantly reduces the response amplitudes and alters the spectrum content due 

to the change in structural stiffness matrix (𝐊). Stiffness matrix (𝐊) is proportional 

to the elastic modulus. For this reason, increase in elastic modulus directly 

increases the natural frequencies in the problem domain. Also, increased stiffness 
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in the model leads to lowered vibration amplitudes on the outer surface of the 

surrounding soft tissue. The results of the no phase map and 10 x 10 phase map 

show the suppressive effect of tissue thickness on the response amplitudes.  

As seen in Figure 4.22 and Figure 4.23, the total number of bending modes 

increases with the reduction of the elastic modulus. The peaks in the response plots 

show the natural frequencies of the bending modes. For example, when the elastic 

modulus is 10 MPa, two bending modes are visible within 0-600 Hz. In Figure 

4.22(c), the single peak around 250 Hz indicates the first mode and two separate 

peaks around 450 Hz indicate the second mode of the model. The spectrum content 

of 0.1 MPa is more complex than 1 and 10 MPa, and the first bending mode is 

observed at 50 Hz. 

4.4.2 Average responses for the soft tissue surrounded models  

Similar to the bare artery analysis, the average responses are determined using the 

results of 41 nodes placed on the top of the surrounding soft tissue. In Figure 4.24, 

the average responses are given as function of the axial distance downstream of the 

constriction exit, and the effects of phase mapping and stenosis severity are shown. 

It is seen that the average responses are in good agreement for the no phase map 

and 10 x 10 phase map. The radial velocity response on the outer surface of the 

bare artery is sensitive to the applied phase map, but when the artery is surrounded 

by a soft tissue, the phase map dependent amplitude difference is significantly 

reduced. The average response amplitudes on the tissue show an approximately 10-

fold increase when the level of stenosis increases from 70% to 90%.  

In Figure 4.25, the average displacement and acceleration responses are given 

considering various tissue thicknesses. When the thickness increases from 6.5 to 

16.5 mm, the average response amplitudes decrease by about 35%. If the tissue 

thickness increases from 16.5 to 36.5, the response amplitudes drop by 

approximately 50%. The average responses at 0 and 100 mm are zero because of 
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the boundary conditions applied on both sides of the model. It is assumed that the 

two sides of the model are motionless joint ends, and therefore zero displacement 

is used as a boundary condition at 0 and 100 mm. The results are similar to a 

symmetrical form due to the assumed low damping conditions (2% modal 

damping) in the analysis. For low damping conditions, the results show a nearly 

symmetrical behavior for the average responses presented in Figure 4.25, but as the 

damping increases, the symmetrical response behavior begins to deteriorate as 

previously observed in Figure 4.8.   

 

Figure 4.24 Average radial velocity response (within 0-600 Hz) on the outer surface 

of the surrounding soft tissue (0.1 MPa, 36.5 mm thickness) as a function of axial 

distance downstream of the constriction exit considering no phase map. (a) Re =

1000. (b) Re = 2000. 
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Figure 4.25 Average responses (within 0-600 Hz) on the outer surface of the 

surrounding soft tissue (0.1 MPa) for Re = 2000 with 90% stenosis as function of 

axial distance downstream of the constriction exit considering no phase map.              

(a) Average radial displacement response. (b) Average radial acceleration response. 

In Figure 4.26, the average radial velocity responses on the surrounding soft tissue 

are compared to investigate the effects of the elastic modulus and the applied phase 

map. 
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Figure 4.26 Comparison of average radial velocity responses (within 0-600 Hz) on 

the outer surface of the surrounding soft tissue (36.5 mm thickness) for Re = 2000 

with 90% stenosis. 

The results show that the increasing elastic modulus reduces the radial velocity 

amplitudes by a significant amount. The amplitude difference based on phase 

mapping is more pronounced for higher elastic modulus values. The highest 

response amplitude is observed at 20 mm for 10 MPa. However, the highest 

excitation is observed at 60 mm from the stenosis exit for 0.1 MPa. As the elastic 

modulus increases, the highest excitation point moves towards the stenotic zone. 

In Figure 4.27, the average responses are presented as a function of frequency 

considering different phase maps and stenosis severities. 
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Figure 4.27 Comparison of average radial velocity response (within 0-100 mm) on 

the outer surface of the surrounding soft tissue (0.1 MPa, 36.5 mm thickness) as 

function of frequency. (a) Re = 1000. (b) Re = 2000. 

In Figure 4.27, the results of the no phase map and 10 x 10 phase map are again in 

good agreement, especially within 0-300 Hz. For the frequencies higher than 300 

Hz, a segmented response is observed for 10 x 10 phase map due to the piecewise 

continuous mapping.  

In Figure 4.28, the average radial displacement and acceleration responses are 

given as function of frequency.  
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Figure 4.28 Average responses (within 0-100 mm) on the outer surface of the 

surrounding soft tissue (0.1 MPa) as function of frequency for Re = 2000 with 

90% stenosis considering no phase map. (a) Average radial displacement response.  

(b) Average radial acceleration response. 

Confirming the previous findings, the increase in the tissue thickness reduces the 

amplitudes of the radial displacement and acceleration responses on the tissue 

surface. In Figure 4.29, the average radial velocity responses on the surrounding 

soft tissue are compared considering different elastic modulus values. 
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Figure 4.29 Comparison of average radial velocity responses (within 0-100 mm) 

on the outer surface of the surrounding soft tissue (36.5 mm thickness, no phase 

map) as function of frequency for Re = 2000 with 90% stenosis considering 

various elastic modulus values. 

In Figure 4.29, as the elastic modulus increases, the natural frequencies of the tissue 

surrounded model shift to the higher frequencies. For 0.1 MPa, more than 10 modes 

are visible within 0-600 Hz. However, only two modes are apparent within 0-600 

Hz when the elastic modulus is increased to 10 MPa. The highest response 

amplitude is observed at 150 Hz for 0.1 MPa. When the elastic modulus is increased 

to 1 and 10 MPa, the maximum excitations are observed at about 325 and 480 Hz, 

respectively. For 0.1, 1 and 10 MPa, the highest average radial velocity amplitudes 

are about 0.08, 0.01 and 0.0005 mm/s, respectively. It is observed that the elastic 

modulus and structural material properties have an important role in the spectrum 

content and response amplitudes on the tissue surface. 
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CHAPTER 5 

REALISTIC COMPUTATIONAL MODELS 

 

 

 

In this chapter, realistic material properties and human anatomy based geometric 

models are introduced for the upper arm, thigh and neck. Muscle, fat, skin, bone, 

blood and artery are considered in the realistic computational models. Radial 

velocity and pressure responses on the skin are investigated for diagnostic 

purposes. 

5.1 Mechanical properties of human body tissues 

Biological soft tissue is a complex material, which is anisotropic, nonlinear, 

viscoelastic and nearly incompressible [64]. Soft tissues can be classified as 

tendons, ligaments, skin, articular cartilages, blood vessels, fat and muscles [65]. 

Tendons are bone-to-muscle linkages to stabilize the skeleton and to produce 

movements. Ligaments are bone-to-bone linkages to restrict the relative motion. 

The largest single organ of the human body is skin as it corresponds to 16% of the 

weight of an adult. The skin protects the body and internal organs. Articular 

cartilages provide load distribution to a surface across the joints to minimize the 

contact stresses and friction. 

Soft tissue material properties are influenced by the concentration and arrangement 

of collagen and elastin [65]. Collagen is a protein which is a major part of the soft 

tissues. It has a great importance for human physiology and it is the main load 

carrying constituent. For example, the collagen content of the human achilles 

tendon is 20 times that of elastin. Elastin is a flexible and linearly elastic constituent 
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and it can be stretched up to 2.5 times of the initial unloaded length. Relaxation of 

elastin is very limited but the collagen has larger relaxation when compared to the 

elastin. 

Soft tissues exhibit a nonlinear and time dependent behavior by having a 

multiphasic and inhomogeneous structure [66]. Mechanical behavior of the soft 

tissues are identified by certain material phases. These are mainly solid phase with 

collagen fibers, proteoglycans, other proteins, cells, and interstitial fluid phase 

composed of water and electrolytes [67]. The resilience of the tissue is depending 

on binding of water and proteoglycans forming a firm gel. The tensile strength of 

the tissue is due to the collagen fibers. The arrangement and hierarchy of the fibers 

have major effect on the mechanical behavior of the tissue [68]. In human body, 

the arrangement of fibers are optimized according to the specific function of each 

tissue [69]. 

Collagen fibers are quantitatively major organic component in the soft tissues. 

Proteoglycans are the second common organic components which contribute to 

viscoelastic behavior [67]. Fluid phase also has an important effect on the 

viscoelasticity. Soft tissues represent analogous structure and properties for 

different anatomical regions. Thus, the material constitutive laws and modeling 

approaches can be adapted with little effort for different soft tissues [66]. 

Soft tissues are anisotropic materials due to the fibers oriented in preferred 

directions. In micro scale, the soft tissues are non-homogenous because of their 

composition. They have nonlinear tensile response which is affected by the strain 

rate. Some of the soft tissues represent viscoelastic characteristics due to the shear 

interaction of collagen with proteoglycan matrix. A viscous lubrication is provided 

by proteoglycan matrix between the collagen fibers. Figure 5.1 represents the 

stress-strain behavior of a typical soft tissue. 
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Figure 5.1 Stress-strain response of a typical soft tissue and corresponding collagen 

fiber alignment (adopted from [66]). 

In Figure 5.1, the first region is the toe region in which the collagen fibers are wavy 

and crimped. As a consequence, the soft tissue behaves almost isotropic in the toe 

region. The stress-strain curve is nonlinear and the elastic modulus is relatively low 

in the toe region [65]. The nonlinearity in the toe region is due to the straightening 

of the collagen fibers [66]. As the loading increases, the crimped structure 

disappears and the collagen fibers align with a straighter form in the loading 

direction. Secondly, there is a linearly elastic region, where the collagen fibers are 

exposed to linear stretch until failure. In this second region, the straightened form 

of the soft tissue shows anisotropic behavior and resists load strongly. 

In the computational analysis, strains observed due to the acoustic pressures are 

extremely small. For this reason, soft tissues can be assumed as isotropic, since the 

strains are within the toe region. Skin, fat and skeletal muscle are individually 
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considered as a single homogeneous medium [70-75] and different layers are 

considered as tied to its adjacent tissue. 

5.1.1 Hyperelasticity 

The nonlinear stress-strain (hyperelastic) behavior of the soft tissues can only be 

described using the large strain theory [66]. In order to use a hyperelastic material, 

a strain energy density function (𝑊) is defined. The stress can be obtained by taking 

the derivative of the strain energy density function with respect to the strain. 

Different methods can be used to define the strain energy function. The simplest 

model is the Neo-Hookean approach in which an initial linear behavior is described 

similar to the Hooke’s law and the behavior turns into nonlinear at some points 

[76]. For larger strains, Mooney-Rivlin model is more appropriate in which two 

invariants are used to define the strain energy density function [77, 78]. Mooney-

Rivlin model is usually accurate for strain values less than 100% but the Neo-

Hookean model is accurate for strain less than 20% [79]. A more advanced 

hyperelastic approach is Ogden model [80]. Ogden model is described by using 

principal stretches. Also there are models which consider anisotropic 

hyperelasticity [81, 82]. 

It is stated that Neo-Hookean hyperelastic material model can closely represent 

mechanical properties of biological soft tissues especially the skin and fat under 

short term loading [70, 83-88]. Also Mooney-Rivlin model is sufficiently capable 

of modeling nonlinear behavior and has advantages for the computation time [89]. 

Sussman and Bathe [90] developed a model of incompressible, isotropic, 

hyperelastic material based on separable strain energy description in terms of 

logarithmic strains and piecewise spline interpolations using tension-compression 

test data [90]. In this model [90], there is no need for the model constants. The 

model mimics even complicated test data accurately for small and large strains. The 

strain energy density is represented by piecewise splines. The model is easy to use 
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and it is a generalization of the Ogden model. In other models such as Mooney-

Rivlin and Ogden, the constants are selected to best represent experimental data in 

the desired range of strain values. 

For Mooney-Rivlin [77, 91] hyperelastic model, the strain energy density function 

is defined as the following: 

 𝑊 = 𝑐10(𝐼1 − 3) + 𝑐01(𝐼2 − 3) + 𝑐20(𝐼1 − 3)2 + 𝑐02(𝐼2 − 3)2

+ 𝑐11(𝐼1 − 3)(𝐼2 − 3) + 𝑐30(𝐼2 − 3)2

+ 𝑐03(𝐼2 − 3)3 + 𝑐21(𝐼1 − 3)2(𝐼2 − 3)

+ 𝑐12(𝐼1 − 3)(𝐼2 − 3) + 𝐷1(𝐽 − 1)2 

(5.1) 

where 𝑊 is the strain energy for unit volume, 𝐽 is the volume ratio, 𝑐10, 𝑐01, 𝑐20, 

𝑐02, 𝑐11, 𝑐30, 𝑐03, 𝑐21, 𝑐12, 𝐷1 are the material parameters, 𝐼1, 𝐼2 are the first and the 

second strain invariants defined as the following: 

 𝐼1 = �̅�1
2

+ �̅�2
2

+ �̅�3
2
 (5.2) 

 𝐼2 = �̅�1
−2

+ �̅�2
−2

+ �̅�3
−2

 (5.3) 

where 𝜆1, 𝜆2, 𝜆3 are the principal stretches and �̅�1, �̅�2, �̅�3 are the deviatoric stretches 

defined as the following: 

 �̅�1 = 𝐽−1/3𝜆1 (5.4) 

 �̅�2 = 𝐽−1/3𝜆2 (5.5) 

 �̅�3 = 𝐽−1/3𝜆3 (5.6) 

For Ogden [80] model, the strain energy density function (𝑊) is defined as the 

following: 
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𝑊 = ∑
𝜇𝑖

𝛼𝑖
(𝜆1

𝛼𝑖 + 𝜆2
𝛼𝑖 + 𝜆3

𝛼𝑖 − 3)

𝑁

𝑖=1

+ ∑
1

𝐷1

(𝐽 − 1)2𝑖

𝑁

𝑖=1

 (5.7) 

where 𝑁 is the number of polynomials, 𝜆1
𝛼𝑖, 𝜆2

𝛼𝑖, 𝜆3
𝛼𝑖 are the principle stretches and 

𝜇𝑖, 𝛼𝑖, 𝐷1 are the material parameters. 

5.1.2 Viscoelasticity 

For an elastic material, the elastic modulus is defined as the slope of the stress-

strain curve. For a purely viscous material, stress is proportional to the strain rate 

and the ratio of stress to strain rate is the viscosity. Materials which do not exactly 

obey these two classifications are the viscoelastic materials. An instantaneous 

elastic response is observed for the viscoelastic materials, then it is followed by a 

continuous and slow response with a decreasing rate. Viscoelastic materials 

represent properties of both elasticity and viscosity. For a material with elastic 

property, when the load is removed, the structure returns to its unloaded state. For 

a material with the property of viscosity, strain increases with time as a load is 

applied. Similarly, strain decreases with time when the load is removed which is 

resulting in a time-dependent strain [66]. 

When a viscoelastic member is loaded at an infinitely slow rate, observed stress-

strain behavior is the equilibrium response and follows the path E-E' in Figure 5.2. 

If the loading is infinitely fast then observed stress-strain behavior is the 

instantaneous response and follows path I-I'. Both instantaneous and equilibrium 

responses are elastic responses and the viscoelastic response lies between these two 

phases [92]. 



91 

 

Figure 5.2 Typical response of a viscoelastic solid (adopted from [93]). 

A viscoelastic material undergoes a time dependent deformation under loading and 

a time dependent recovery of deformation with unloading. Creep is the change in 

strain over time under applied constant stress. Relaxation is the change in stress 

over time under applied constant strain. For a linearly viscoelastic material, creep 

and relaxation are dependent only on time and they are independent of stress and 

strain. 

Holzapfel et al. [94] employed generalized Maxwell approach for modelling the 

viscoelasticity of the arteries. Five Maxwell elements are used for the viscoelastic 

model as represented in Figure 5.3. 
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Figure 5.3 (a) Generalized Maxwell model. (b) Normalized dissipation 𝑊𝐷 versus 

frequency according to material parameters for artery. Solid line denotes the 

dissipation of whole model. Each dotted line corresponds to a specific Maxwell 

element (adopted from [94]). 

In Figure 5.3, the normalized dissipation is represented as a function of frequency. 

For extremely slow and fast loading, viscoelastic effect is nearly obsolete. For the 

frequency range between 0.01 and 100 Hz, the dissipation is nearly constant and 

has the maximum value. At 1000 Hz, the dissipation is lower than half of the 

maximum value. The solution of the generalized Maxwell model is obtained by 

using Prony series. 

In ADINA (Watertown, MA), the viscoelasticity is modelled using generalized 

Maxwell approach and the relaxation modulus (𝐸(𝑡)) is defined using the Prony 

series expression as the following: 

 

𝐸(𝑡) = 𝐸∞ [1 + ∑ 𝛽𝛼𝑒(−
𝑡

𝜏𝛼)

𝑁

𝛼=1

] (5.8) 
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𝑁 is the number of Maxwell elements, 𝐸∞ is the long-term elastic modulus, 𝐸𝛼 is 

elastic coefficient and 𝜏𝛼 is the relaxation time. In ADINA (Watertown, MA), the 

viscoelastic material properties are defined using 𝛽𝛼 and 𝜏𝛼. Relaxation time (𝜏𝛼) 

is directly used without any calculation and 𝛽𝛼 is calculated as the following [95]: 

 
𝛽𝛼 =

𝐸𝛼

𝐸∞
 (5.9) 

 

𝐸∞ = 1 − ∑ 𝐸𝛼

𝑁

𝛼=1

 (5.10) 

Viscoelastic parameters of the generalized Maxwell approach are obtained from 

the related studies in the literature and listed in Table 5.1. 

Table 5.1 Viscoelastic material properties 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝜏1 (𝑠) 𝜏2 (𝑠) 𝜏3 (𝑠) 𝜏4 (𝑠) 𝜏5 (𝑠) 

Fat 

[96] 
0.493 0.427    0.3834 4.6731    

Skin 

[96] 
0.288 0.712    0.2136 8.854    

Muscle 

[95] 
2.0216 0.519 0.1125 0.433 0.2424 0.6 6 30 60 300 

Artery 

[94] 
0.353 0.286 0.298 0.285 0.348 0.001 0.01 0.1 1 10 

5.1.3 Realistic material properties of soft tissues  

Realistic mechanical properties of muscles are required for modelling the human 

body but the data related with muscles are mostly available for animals. In the 

literature, there are experimental studies which investigate in-vitro mechanical 

properties of sample animal muscles [97-106]. Chawla et al. [107] and Untaroiu et 

al. [108] investigated human muscle mechanical properties. In order to obtain 

hyperelastic behavior of human muscle, the sternocleidomastoideus muscle is 
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investigated by Aimedieu et al. [109]. In the literature, it is obvious that there is a 

lack of data related with the material properties of the human tissues. 

Muscle is a complex and fibre-oriented structure which is composed of 80% water, 

3% fat and 10% collagenous tissues [95]. Muscle is considered as linearly elastic 

material with an elastic modulus of 100 kPa for the passive state in which the active 

components due to biochemical energy supply is neglected [83, 110-113]. The 

elastic modulus of the contracted muscle increases to about 400 kPa [112-114].   

In the literature, muscle [110, 115-117], fat [64, 118, 119] and skin [71, 72, 120, 

121] are modelled as hyperelastic materials. Mooney-Rivlin [108, 122, 123] and 

Ogden [101, 124] material models are used to model the passive mechanical 

properties of muscles with finite element models. Muscle is considered as almost 

incompressible and the Poisson’s ratio is employed as 0.495 [101, 122, 123, 125-

127]. It is stated that volume of muscle remains nearly constant after contraction 

[83].  The muscle is modelled as homogeneous since the mechanical property of 

the entire structure is investigated and thus the modeling approach is simplified. In 

Figure 5.4, the stress-strain response of passive muscle tissue is given using 

Mooney-Rivlin approach. 

 

Figure 5.4 Stress-strain response of passive muscle tissue (adopted from [128]). 
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Skin is the largest single organ of the human body [129] and it is composed of 

dermis and epidermis. Mechanical properties can be determined using positive or 

negative external stress using methods of indentation or suction, respectively. 

Adipose tissue is mainly composed of fat and the mechanical properties are 

characterized by means of compression tests for human breast [70, 74, 130, 131]. 

In several studies, skin is modeled as a single-layered hyperelastic material [71, 

72]. In the study of Barbarino et al. [132], mass density is used as 1 g/cm3 for all 

muscular tissues and fat. Skin density is assigned as 1.1 g/cm3 in accordance with 

the results of Duck [133]. Teran et al. [134] stated that the initial elastic moduli of 

fat is about 20 kPa [135]. Small-deformation slope of skin for the stress-strain 

relationship is reported as 15 kPa [68]. It is stated that bulk moduli of most soft 

tissues are close to the bulk modulus of water and the difference is less than 15% 

[136, 137]. 

Bone is modelled considering two different parts as cortical (compact) and 

trabecular (cancellous) regions. The cortical bone surrounds the trabecular bone 

and the thickness varies for different parts of human body [138]. Cortical and 

trabecular bones are modeled as homogenous, isotropic and elastic. Spatial 

variation of density is neglected for the bone and a uniform average density is 

employed. 

Thigh, upper arm and neck are modelled in the realistic computational analysis. 

The thigh model is composed of blood, femoral artery, bone, muscle, fat and skin. 

The upper arm model is created considering blood, brachial artery, bone, muscle, 

fat and skin. The neck model is composed of blood, common carotid artery, vein, 

bone, trachea, air, fat and skin. The fat and skin are modelled using nonlinear stress-

strain relationship of Ogden material model. The muscle and femoral artery are 

modelled using Mooney-Rivlin model. The material parameters are obtained from 

the related studies in the literature and summarized in Table 5.2. 
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Table 5.2 Material parameters employed in the realistic computational analysis 

Material Model Density 
Bulk 

Modulus 
 

Blood [24] 
Acoustic 

fluid 

1000 

kg/m3 
2.2 GPa     

 Air 
Acoustic 

fluid 

1.225 

kg/m3 
100 kPa     

Fat [96] Ogden 
1000 

kg/m3 
2.2 GPa 

𝜇1

= 23583 𝑃𝑎 
𝜇2 = 40 𝑃𝑎 

𝜇3

= −40878 𝑃𝑎 

𝜇4

= 19340 𝑃𝑎 

𝛼1

= −2.0623 
𝛼2 = 25 

𝛼3

= −3.4784 

𝛼4

= −4.4864 

Skin [96] Ogden 
1100 

kg/m3 
2.2 GPa 

𝜇1

= 6375.4 𝑃𝑎 

𝜇2

= 180 𝑃𝑎 

𝜇3

= −3770.7 𝑃𝑎 

𝜇4

= 1840 𝑃𝑎 

𝛼1

= 1.3416 
𝛼2 = 25 

𝛼3

= −7.8671 

𝛼4

= −10.898 

Muscle 

[128] 

Mooney-

Rivlin 

1000 

kg/m3 
2.2 GPa 

𝑐10

= 10000 𝑃𝑎 

𝑐20

= 10000 𝑃𝑎 

𝑐30

= 6666.7 𝑃𝑎 
 

Trachea 

[139] 
Linear 

1000 

kg/m3 
 

Poisson’s 

ratio = 

0.499 

Elastic 

modulus = 

1.66 MPa 

  

Femoral 

artery 

[140] 

Mooney-

Rivlin 

1000 

kg/m3 
2.2 GPa 

𝑐10

= 18900 𝑃𝑎 

𝑐01

= 2750 𝑃𝑎 

𝑐20

= 590420 𝑃𝑎 

𝑐11

= 857180 𝑃𝑎 

Brachial 

artery 

[141] 

Linear 
1086 

kg/m3 
 

Poisson’s 

ratio = 

0.490 

Elastic 

modulus = 

3.8 MPa 

  

Common 

carotid 

artery 

[142] 

Mooney-

Rivlin 

1000 

kg/m3 
2.2 GPa 

𝑐10

= 94600 𝑃𝑎 
   

Cortical 

bone [108] 
Linear 

2000 

kg/m3 
 

Poisson’s 

ratio = 0.3 

Elastic 

modulus = 

15 GPa 

  

Trabecular 

bone [108] 
Linear 

1100 

kg/m3 
 

Poisson’s 

ratio = 0.3 

Elastic 

modulus = 

0.6 GPa 
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5.2 Realistic geometries based on the human anatomy 

Coronary arteries that provide blood to the heart are smaller in diameter, and 

stenosis-based sounds are suppressed by valve closure and breathing sounds. The 

diameters of the brachial artery in the upper arm, the femoral artery in the thigh, 

and the common carotid artery in the neck are 4 mm [60], 10 mm [61] and 6.4 mm 

[143], respectively. These arterial diameters are much higher compared to the 

coronary arteries, therefore it is much easier to distinguish the stenosis-based 

sounds in the peripheral arteries. The anatomies of the upper arm, thigh and neck 

are less complicated when compared to the chest and abdomen. It is difficult to 

model various organs and tissues in the chest and abdominal region considering the 

mechanical and geometrical properties. In the thigh, upper arm and neck, soft 

tissues are predominantly skin, fat, muscle and blood vessels. As consequence of 

the reasons stated, the thigh, upper arm and neck are investigated in the realistic 

computational models to see the pure effect of stenosis-based sound generation. 

Simplistic and Computed Tomography (CT) based models are employed for the 

realistic computational models. The sizes of the thigh, upper arm and neck depends 

on age, gender, height and weight of individuals. For the simplistic models, average 

dimensions are considered using the cross-sectional views of the human cadavers. 

For the CT based models, patient-specific data is used to generate the model 

geometry. 

For simplistic thigh model, the circumference of the model decreases from 500 to 

375 mm. The total length of the thigh is 250 mm and the thickness of fat and skin 

are 4 mm and 2 mm, respectively [63]. The inner diameter and thickness of the 

femoral artery are 10 mm [61] and 0.75 mm [144], respectively. Since femur bone 

is much stiffer compared to the soft tissues, it is assumed as a rigid material. 

Therefore, the nodes on the surface of the femur bone are fixed with zero 

displacement. The diameter of the femur bone is 25 mm with an eccentricity of 15 

mm between the center of the thigh model and the center of the femur bone. The 
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distance between the center of femoral artery and the center of the thigh model is 

32.5 mm. In Figure 5.5, simplistic and CT based thigh models are represented. 

 

Figure 5.5 (a) Real cross-sectional view of thigh [145]. (b) Simplistic 3D model of 

thigh. (c) CT-based 3D model of thigh. 

For simplistic upper arm model, a uniform circumference about 250 mm is 

considered. The total length of the upper arm is 140 mm and the thickness of fat 

and skin are 6 and 2 mm, respectively [63]. The inner diameter and thickness of the 

brachial artery are 4 mm [60] and 0.4 mm [146], respectively. Humerus bone is 

modelled considering the trabecular and cortical zones. Trabecular (spongy) and 

cortical bone diameters are 7 and 20 mm, respectively. There is an eccentricity of 

5 mm between the center of the humerus bone and the center of the simplistic upper 

arm model.  The distance between the center of the brachial artery and the center 
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of the model is 23 mm. In Figure 5.6, simplistic and CT based upper arm models 

are presented. 

 

Figure 5.6 (a) Real cross-sectional view of the upper arm [147]. (b) Simplistic 3D 

model of the upper arm. (c) CT-based 3D model of the upper arm. 

A uniform circumference about 315 mm is employed for the simplistic neck model. 

The total length of the neck is 70 mm. Bones of cervical vertebrae are considered 

with a diameter of 14 mm. Since these bones are much stiffer than the soft tissues, 

the boundary nodes of the bones are fixed with zero displacement for the simplistic 

models. There is an eccentricity of 7 mm between the center of model and the center 

of cervical vertebrae. The thickness of fat and skin are considered as 4 mm and 2 

mm, respectively [63]. The common carotid artery is placed at 20 mm distance 

from the center of the simplistic neck model. The common carotid artery inner 

diameter and thickness are 6.4 mm [143] and 0.7 mm [144, 148], respectively. The 

large vein in the neck is also considered with a diameter of 10 mm. The distance 
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between the center of the common carotid artery and the center of the neck model 

is 20 mm. Trachea and the air inside are also considered in the model. The trachea 

is modelled as a hollow cylindrical structure with an inner diameter of 20 mm and 

a thickness of 2 mm. In Figure 5.7, simplistic and CT based neck models are 

presented. 

 

Figure 5.7 (a) Simplistic 3D model of the neck. (b) Real cross-sectional view of the 

neck [149]. (c) CT-based 3D model of the neck. 

Simplistic models and CT based models are investigated separately. Open-access 

CT data provided by OsiriX DICOM image library (Bernex, Switzerland) is used 

to obtain three-dimensional models. CT images are processed using Mimics 

(Materialise, Leuven, Belgium) segmentation software to differentiate the 

structures by color scales. 

The thigh, upper arm and neck models have similar boundary conditions. The joint 

surfaces on both ends of the models are fixed with zero displacement. The acoustic 

pressure field is applied radially on the inner arterial wall. For simplistic models, 

the bone boundary nodes are fixed with zero displacement, since the bones are 

assumed as rigid materials due to high stiffness. 
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5.3 Physiological conditions in the peripheral arteries 

Blood flow velocity and lumen diameter vary for different peripheral arteries. The 

peak flow rate for the upper arm brachial artery reaches 650 mm/s [150] for a lumen 

diameter of 4 mm [60]. The peak flow rate is considered in the analysis since the 

highest sound generation is observed in the systolic phase as shown in Figure 

5.8(b). The average velocity (V𝑎𝑣𝑔) for fully developed pipe flow is about half of 

the peak velocity as shown in Figure 5.8(a). For a peak flow rate of 650 mm/s, the 

Reynolds number of blood flow reaches 1300 in the upper arm brachial artery. The 

highest Reynolds number is observed as 3840 in the common carotid artery of the 

neck. The lowest Reynolds number is 750 in the femoral artery of the thigh. The 

brachial and common carotid arteries are closer to the heart, and therefore higher 

Reynolds numbers are observed. As the distance between the heart and the 

peripheral artery increases, the Reynolds number of blood flow tends to decrease. 

 

Figure 5.8 (a) Average velocity (𝑉𝑎𝑣𝑔) for fully developed pipe flow. (b) Sample 

blood velocity waveform for a peripheral artery (adopted from [151]). 

5.4 Acoustic pressure field in the peripheral arteries 

In Chapter 2, acoustic pressure amplitudes are obtained using (2.32). This equation 

is expressed for a lumen diameter of 6.4 mm using the nonlinear 𝐹𝑛1 function given 
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in (2.31). For a different lumen diameter, a modification should be done to define 

the stenosis-based acoustic pressure field. The upper arm brachial artery has a 

lumen diameter of 4 mm. 

 𝐷𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙 = 4 𝑚𝑚 (5.11) 

The modification factor for the brachial artery is defined as the following: 

 
𝐶𝑚𝑜𝑑,𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙 =

6.4

𝐷𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙
=

6.4

4
= 1.6 (5.12) 

Using the modification factor, the nonlinear 𝐹𝑛1 function given in (2.31) is 

modified for the brachial artery as the following: 

 
𝐹𝑛1,𝑏𝑟𝑎𝑐[𝑥] =

0.07057𝐶𝑚𝑜𝑑,𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙𝑥 + 0.3849

(𝐶𝑚𝑜𝑑,𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙𝑥)2 − 23.22𝐶𝑚𝑜𝑑,𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙𝑥 + 167.9
 (5.13) 

 
𝐹𝑛1,𝑏𝑟𝑎𝑐[𝑥] =

0.112912𝑥 + 0.3849

2.56𝑥2 − 37.152𝑥 + 167.9
 (5.14) 

For the brachial artery, the acoustic pressure field is determined using the modified 

𝐹𝑛1,𝑏𝑟𝑎𝑐 function and the same procedure is applied to find the modified  𝐹𝑛1 

function for the femoral artery in the thigh with a lumen diameter of 10 mm. 

In Figure 5.9, Figure 5.10 and Figure 5.11, acoustic pressure fields and 

corresponding phase maps are represented for femoral, brachial and common 

carotid arteries, respectively. Acoustic pressure amplitudes are much higher for the 

common carotid artery in the neck due to high flow rate. 
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Figure 5.9 Femoral artery in the thigh. (a) Acoustic pressure (dB ref: 1 Pa) for 90% 

stenosis. (b) Acoustic pressure (dB ref: 1 Pa) for 70% stenosis. (c) Phase map for 

90% stenosis. (d) Phase map for 70% stenosis. 
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Figure 5.10 Brachial artery in the upper arm. (a) Acoustic pressure (dB ref: 1 Pa) 

for 90% stenosis. (b) Acoustic pressure (dB ref: 1 Pa) for 70% stenosis. (c) Phase 

map for 90% stenosis. (d) Phase map for 70% stenosis. 
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Figure 5.11 Common carotid artery in the neck. (a) Acoustic pressure (dB ref: 1 

Pa) for 90% stenosis. (b) Acoustic pressure (dB ref: 1 Pa) for 70% stenosis. (c) 

Phase map for 90% stenosis. (d) Phase map for 70% stenosis. 

5.5 Simplistic thigh models 

Radial velocity response on the skin surface is investigated to detect the stenosis 

location and to observe the effects of severity. The frequency range of interest is 0-

150 Hz for the thigh, 0-400 Hz for the upper arm and neck. Since the blood flow 

velocity is lower for the thigh compared to the upper arm and neck, effects of 

stenosis are observed only up to 150 Hz. For all models, highest responses are 

expected at the location which has the closest radial distance to the artery, therefore 
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the skin nodes on the radially closest line are the main focus of the analyses. Results 

are indicated in colored dB scale using a reference velocity of 1 mm/s. 

A mesh independence study is performed using three different mesh densities. The 

details and total number of elements of the meshes are provided in Table 5.3. In 

Figure 5.12, radial velocity responses are given for a sample case with 90% 

stenosis. Between Mesh 1 and Mesh 2, there is an average amplitude (within 0-250 

mm, 0-150 Hz) difference of 25.95%. Between Mesh 2 and Mesh 3, there is an 

average amplitude difference of 2.85%. Mesh 2 is used for further analysis since 

the average amplitude difference between Mesh 2 and Mesh 3 is less than 3%. 

 

Figure 5.12 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic thigh model with 90% stenosis. Stenosis exit is placed 

at 0 mm. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3. (d) Average of radial velocity 

responses for simplistic thigh model. Amplitudes within 0-250 mm are averaged at 

each frequency. 
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Table 5.3 Mesh details for simplistic thigh model 

# of Elements Mesh 1 Mesh 2 Mesh 3 

Skin 4804 27773 11697 

Fat 4734 7062 11400 

Blood 2693 2693 2693 

Femoral Artery 1382 1382 1382 

Muscle 40334 56206 108016 

Total 53947 95116 135188 

As shown by the red line in Figure 5.13(a), the radial velocity responses are 

investigated for the nodes on the skin that are closest to the femoral artery. In 

addition to the radial velocity responses, pressure responses on the skin are also 

investigated. For this purpose, some elements are fixed with zero displacement as 

shown in Figure 5.14. Pressure responses at those fixed regions indicate the 

measurements that will be obtained using a stethoscope or contact-type pressure 

sensor placed on the skin. In Figure 5.13(b), three fixed regions on the skin are 

named x, y, z, and are shown in circles. The center of y-region has a distance of 

125 mm to the both ends of the model. The centers of x and z-regions have a 

distance of 80 mm from the center of y-region. 

 

Figure 5.13 (a) Simplistic thigh model – (Top line depicts the nodes on the skin 

which are closest to the femoral artery in radial direction). (b) Fixed regions used 

to measure the pressure on the skin. 
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Figure 5.14 Fixed elements to determine the pressure on skin (Black region depicts 

the center of the fixed region containing four elements used to determine the 

pressure response). 

5.5.1 Pressure response on the simplistic thigh model 

In Figure 5.15, three different stenosis locations are considered as 0, 125 and 220 

mm. The total length of the thigh model is 250 mm. For low frequencies between 

0 and 15 Hz, the pressure responses have higher amplitudes for the regions closer 

to the stenosis. When the stenosis is placed at 0 mm, region-x has the highest 

amplitudes within 0-15 Hz, since x is the region closest to 0 mm. Similarly, if the 

stenosis is placed at 125 mm, the highest amplitudes are observed at region-y within 

0-15 Hz, since it is the closest region to the stenosis location. According to these 

results, low frequency responses give important information about the location of 

the stenosis. 

In Figure 5.16(a), the average pressure responses are determined by taking the 

mean of the responses in x, y, and z-regions. In the computational analysis, the 

stenosis is placed at 0 mm unless otherwise stated. The highest pressure amplitudes 

on the skin are obtained as -40, -15 and -5 dB for 70, 90 and 95% stenosis, 

respectively. In Figure 5.16(b), the average pressure responses are compared for 
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phased and no phased conditions. The phased pressure response appears to result 

in slightly lower amplitudes for the 0-50 Hz frequency range. 

 

Figure 5.15 Pressure response (dB ref: 1 Pa) on the skin of simplistic thigh model 

(x, y and z regions are represented in Figure 5.13). (a) Stenosis at 0 mm. (b) Stenosis 

at 125 mm. (c) Stenosis at 220 mm. 
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Figure 5.16 (a) Average pressure response (dB ref: 1 Pa) on the skin of simplistic 

thigh model considering different stenosis levels. (b) Average pressure response of 

simplistic thigh model for phased and no phased analysis. 

5.5.2 Radial velocity response on the simplistic thigh model 

In Figure 5.17, radial velocity responses are investigated for phased and no phased 

conditions considering 90% stenosis severity. It is observed that phased and no 

phased results give similar conclusions in terms of general trend in the frequency 

domain. In both analyses, the vibrational modes are apparently seen. In Figure 5.18, 

effects of different stenosis levels are investigated for the simplistic thigh model. 
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Figure 5.17 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic thigh model with 90% stenosis. Stenosis exit is placed 

at 0 mm. (a) 10 x 10 phase map. (b) No phase map. (c) Average of radial velocity 

responses considering 10 x 10 phase map and no phase map. 
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Figure 5.18 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic thigh model considering no phase map. Stenosis exit 

is placed at 0 mm. (a) 70% stenosis. (b) 90% stenosis. (c) 95% stenosis. (d) Average 

of radial velocity responses considering various stenosis levels. 

For 70% stenosis, the radial velocity amplitudes are quite low, but they 

significantly increase for 90% stenosis. If the stenosis severity is increased from 

70% to 90%, the flow velocity u increases by 3 times where u is the flow jet 

velocity in the constricted region as previously presented in Figure 2.1. Depending 

on the increase in u, average vibration amplitudes (within 0-150 Hz) on the thigh 

surface increase by 10.5 times. When the average response amplitudes are 

investigated for 70% and 90% stenosis, it is found that the vibration amplitudes on 

the tissue surface are proportional to u2.19. In Figure 5.19, the effect of stenosis 

location is investigated for the simplistic thigh model. 
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Figure 5.19 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic thigh model with 90% stenosis considering different 

constriction locations. Sample anti-resonance curves are represented on the 

response contours. (a) Stenosis exit at 0 mm. (b) Stenosis exit at 50 mm. (c) Stenosis 

exit at 125 mm. (d) Stenosis exit at 150 mm. (e) Stenosis exit at 200 mm. 
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For all different stenosis locations, first, second and third natural frequencies are 

seen at 15, 30 and 45 Hz, respectively. Amplitude scales of the response contours 

do not significantly change, but the spectral contents have certain differences 

depending on the stenosis location. On the response contours, there are anti-

resonance points which have the lowest amplitudes. Locus of these anti-resonance 

points may be used to create anti-resonance curves that are visualized in Figure 

5.19. Anti-resonance curves can be used to provide critical information, since these 

curves always tend to meet near the stenosis location on the spatial axis of the radial 

velocity contour plots. In short, anti-resonance curves clearly show the stenosis 

location in simplistic thigh models. 

5.6 Simplistic upper arm models 

Mesh independence study is performed using three different meshes. The details 

and total number of elements of the meshes are provided in Table 5.4. In Figure 

5.20, the radial velocity responses are presented for a sample case with 90% 

stenosis. Between Mesh 1 and Mesh 2, there is an average amplitude (within 0-140 

mm, 0-200 Hz) difference of 21.2%. Between Mesh 2 and Mesh 3, there is an 

average amplitude difference of 2.58%. Mesh 2 is used for further analysis since 

the average amplitude difference between Mesh 2 and Mesh 3 is less than 3%. 

Table 5.4 Mesh details for simplistic upper arm model 

# of Elements Mesh 1 Mesh 2 Mesh 3 

Skin 6609 10106 14533 

Fat 18386 24992 36488 

Blood 537 537 537 

Brachial Artery 336 336 336 

Muscle 39659 55244 88885 

Total 65527 91215 140779 
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Figure 5.20 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic upper arm model with 90% stenosis. Stenosis exit is 

placed at 0 mm. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3. (d) Average of radial velocity 

responses for simplistic upper arm model. Response amplitudes within 0-140 mm 

are averaged at each frequency. 

As shown by the red lines in Figure 5.21(a), the radial velocity responses are 

investigated for top (closest line to the brachial artery), bottom and lateral lines on 

the skin. Pressure responses are obtained at three fixed regions (x, y, and z) as 

shown in Figure 5.21(b). The center of y-region has a distance of 70 mm to the both 

ends of the model. The centers of x and z-regions have a distance of 35 mm from 

the center of y-region. 
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Figure 5.21 (a) Simplistic upper arm model – (Red lines depict the nodes on top 

and lateral side of the model). (b) Fixed x, y, z-regions used to measure the pressure 

on skin of the simplistic upper arm model. 

5.6.1 Radial velocity response on the simplistic upper arm model 

In Figure 5.22, radial velocity responses are presented for simplistic upper arm 

model to see the effect of stenosis severity in the brachial artery. For all radial 

velocity response maps presented, the same color scale (-87.5 to 12.5 dB) is 

employed for ease of comparison. Increased response amplitudes depending on the 

stenosis severity are observed for the simplistic upper arm model. The spectral 

content is not as simple as the simplistic thigh model which makes it difficult to 

distinguish anti-resonance curves. As the geometry of the model is getting complex, 

detection of anti-resonance curves becomes more difficult. In Figure 5.22(e), it is 

seen that amplitude increase due to stenosis severity does not have a linear trend. 

Increase in amplitudes is not critical up to 70%, but severities higher than 70% lead 

to a major increase. Therefore, 70% of severity can be treated as a critical value for 

diagnosing a stenosis. Average amplitudes in Figure 5.22(e) indicate that the effect 

of stenosis severity is more dominant at frequencies higher than 200 Hz. The 

amplitude difference at high frequencies is an indicator of presence of a stenosis. 
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Figure 5.22 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency. Stenosis exit is placed at 0 mm. (a) 50% stenosis. (b) 70% stenosis. 

(c) 90% stenosis. (d) 95% stenosis. (e) Average of radial velocity responses for 

simplistic upper arm model. Response amplitudes within 0-140 mm are averaged 

at each frequency. 
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In Figure 5.22(e), when the average response amplitudes (within 0-400 Hz) are 

investigated, it is seen that the vibration amplitudes on the simplistic upper arm 

surface are proportional to u2.09, where u is the flow jet velocity in the constricted 

region.  

In Figure 5.23, radial velocity responses are presented for bottom, lateral side and 

top lines of the simplistic upper arm model. The highest amplitudes are observed 

on the top line, since it is the closest line to the brachial artery. Results obtained at 

bottom and lateral lines are significantly lower when compared to the top line. As 

the distance from the artery increases, the amplitudes decrease. Also, the presence 

of bone affects the response on the bottom line, since it partially inhibits wave 

propagation. 

 

Figure 5.23 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic upper arm model with 90% stenosis. Stenosis exit is 

placed at 0 mm. (a) Bottom line. (b) Lateral line. (c) Top line. (d) Average of radial 

velocity responses for simplistic upper arm model. 
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In Figure 5.24, phased and no phased models are compared and it is seen that the 

phased analysis results in smaller amplitudes especially within 75-225 Hz 

frequency range. 

 

Figure 5.24 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic upper arm model with 90% stenosis. Stenosis exit is 

placed at 0 mm. (a) No phase map. (b) 10 x 10 phase map. (c) Average of radial 

velocity responses for simplistic upper arm model. 

In Figure 5.25, the effect of bone rigidity is investigated. In one of the analyses, the 

humerus bone is considered to be a rigid body, and border nodes of the bone are 

fixed with zero displacement instead of modelling the material properties. In the 

other analysis, the material properties of the bone are modelled realistically. Both 
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models lead to almost the same spectral behavior. There are slight variations in 

amplitudes for two different models, but not at the level to affect the main 

conclusions. 

 

Figure 5.25 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic upper arm model with 90% stenosis. (a) Without 

modelling bone. (b) With modelling bone. (c) Average of radial velocity responses 

for simplistic upper arm model. 

In the computational analysis, realistic material properties are employed 

considering the nonlinear stress-strain relationship of soft body tissues. In addition, 
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linear material models of fat and skin are also investigated in the analysis. For linear 

models of fat and skin, the elastic modulus is used as 25 [135] and 1000 kPa [65], 

respectively. In Figure 5.26, the results of linear and nonlinear models are provided. 

It is seen that similar amplitudes are obtained for both nonlinear and linear models, 

but the spectral content is changed at a certain rate for the frequencies higher than 

200 Hz. 

 

Figure 5.26 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic upper arm model with 90% stenosis. Stenosis exit is 

placed at 0 mm. (a) Linear fat model (25 kPa). (b) Linear fat (25 kPa) and skin (1 

MPa) model. (c) Nonlinear model. (d) Average of radial velocity responses for 

simplistic upper arm model. 
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In Figure 5.27, the effect of stenosis location is investigated for the simplistic upper 

arm model. It can be observed that the radial velocity amplitudes are higher at 

regions closer to the stenosis location. This effect is observed especially in the low 

frequency range of 0-150 Hz. 

 

Figure 5.27 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic upper arm model with 90% stenosis considering 

different constriction locations. (a) Stenosis exit at 0 mm. (b) Stenosis exit at 40 

mm. (c) Stenosis exit at 80 mm. (d) Stenosis exit at 120 mm. 
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5.6.2 Pressure response on the simplistic upper arm model 

In Figure 5.28, four different stenosis locations are considered as 0, 40, 80 and 120 

mm. The total length of the simplistic upper arm model is 140 mm. For low 

frequencies between 0 and 50 Hz, the pressure responses have higher amplitudes 

for the regions closer to the stenosis. When the stenosis is placed at 0 mm, region-

x has the highest amplitudes within 0-50 Hz, since x is region closest to 0 mm. 

Similarly, if the stenosis is placed at 120 mm, the highest pressure amplitudes are 

observed at region-z within 0-50 Hz, since it is the closest region to 120 mm. In 

Figure 5.29, the average pressure responses are determined by taking the mean of 

the responses in x, y, and z-regions. The highest pressure amplitudes on the skin 

are obtained at the top of the model. For frequencies higher than 150 Hz, if the level 

of stenosis increases from 70 to 90%, the average pressure amplitudes increase by 

more than 10 dB. Depending on the severity of the stenosis, the amplitude increase 

is more pronounced in the high frequency range. 
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Figure 5.28 Pressure response (dB ref: 1 Pa) on the skin surface of simplistic upper 

arm model (x, y and z regions are represented in Figure 5.21). (a) Stenosis at 0 mm. 

(b) Stenosis at 40 mm. (c) Stenosis at 80 mm. (d) Stenosis at 120 mm. 
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Figure 5.29 (a) Average pressure response (dB ref: 1 Pa) of simplistic upper arm 

model considering different stenosis levels. (b) Average pressure response of 

simplistic upper arm model on top, side and bottom lines. The top line is the radially 

closest line to the brachial artery. 
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5.7 Simplistic neck models 

Mesh independence study is performed using three different mesh densities. The 

details and total number of elements of the meshes are provided in Table 5.5. In 

Figure 5.30, the radial velocity responses are presented for a sample case with 90% 

stenosis. Between Mesh 1 and Mesh 2, there is an average amplitude (within 0-70 

mm, 0-350 Hz) difference of 16.2%. Between Mesh 2 and Mesh 3, there is an 

average amplitude difference of 1.2%. Mesh 2 is used for further analysis since the 

average amplitude difference between Mesh 2 and Mesh 3 is less than 3%. 

Table 5.5 Mesh details for simplistic neck model 

# of Elements Mesh 1 Mesh 2 Mesh 3 

Blood 7515 7515 7515 

Air 4568 4568 4568 

Trachea 1312 1312 1312 

Skin 2479 4559 7450 

Fat 2782 9515 12763 

Common Carotid 

Artery 
2542 2542 2542 

Muscle 35511 54564 76159 

Total 56709 84575 112309 
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Figure 5.30 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic neck model with 90% stenosis. Stenosis exit is placed 

at 0 mm. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3. (d) Average of radial velocity 

responses for simplistic neck model. Response amplitudes within 0-70 mm are 

averaged at each frequency. 

As shown by the red lines in Figure 5.31(a), radial velocity responses are 

investigated on the front line of the neck, the closest line to the common carotid 

artery, and the back line of the neck. Pressure responses are obtained at two fixed 

regions (x and y) as shown in Figure 5.31(b). 
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Figure 5.31 (a) Simplistic neck model – (Red lines depict the nodes on the front of 

trachea and the closest line to the artery in radial direction). (b) Fixed regions used 

to measure the pressure on skin of the simplistic neck model. 

5.7.1 Radial velocity response on the simplistic neck model 

In Figure 5.32, radial velocity responses are presented considering different 

stenosis locations. By confirming the previous findings, the low frequency response 

within 0-100 Hz indicates the location of stenosis with relatively higher amplitudes. 

 

Figure 5.32 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic neck model considering 90% stenosis with no phase 

map. (a) Stenosis at 0 mm. (b) Stenosis at 30 mm. (c) Stenosis at 55 mm. 
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The effect of stenosis severity is shown in Figure 5.33. The relative increase in 

response amplitudes due to the stenosis severity is clearly evident at frequencies 

higher than 200 Hz. In Figure 5.33(e), if the average response amplitudes (within 

0-400 Hz) are investigated, it is observed that the vibration amplitudes on the 

simplistic neck model are proportional to u1.9, where u is the flow jet velocity in 

the constricted region. These proportionality constants are previously found as 2.19 

and 2.09 for the simplistic thigh and simplistic upper arm models, respectively.  

 

Figure 5.33 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic neck model. Stenosis exit is placed at 0 mm. (a) 50% 

stenosis. (b) 70% stenosis. (c) 90% stenosis. (d) 95% stenosis. (e) Average of radial 

velocity responses for simplistic neck model. Response amplitudes within 0-70 mm 

are averaged at each frequency. 
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In Figure 5.34, the radial velocity responses are compared for phased and no phased 

analyses for the simplistic neck model. It is seen that the phased case results in 

lower radial velocity amplitudes within 200-400 Hz, while maintaining a similar 

spectral content.  

 

Figure 5.34 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic neck model. Stenosis exit is placed at 0 mm. (a) 10 x 

10 phase map. (b) No phase map. (c) Average of radial velocity responses for 

simplistic neck model. Response amplitudes within 0-70 mm are averaged at each 

frequency. 

A large vein is present near the common carotid artery. This large vein is considered 

in the simplistic neck model due to the mass of blood in it. The effect of the large 

vein is investigated in Figure 5.35. It is observed that, when the large vein is 
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included in the analysis, the radial velocity amplitudes slightly decrease. In this 

section, all neck models contain the large vein unless otherwise stated.  

 

Figure 5.35 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic neck model. Stenosis exit is placed at 0 mm. (a) 

Without modelling the vein. (b) With modelling the vein. (c) Average of radial 

velocity responses for simplistic neck model. Response amplitudes within 0-70 mm 

are averaged at each frequency. 

In Figure 5.36, the radial velocity responses are compared at different regions of 

the simplistic neck model. Highest excitation is observed at the closest line to the 

common carotid artery, and the responses at the front and the back of the neck are 
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relatively much lower when compared to the closest line. The amplitudes on the 

closest line are about 5 times higher than the front and the back line of the neck. 

 

Figure 5.36 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic neck model. Stenosis exit is placed at 0 mm. (a) Front 

line on the neck. (b) Back line on the neck. (c) Closest line to the artery in radial 

direction. (d) Average of radial velocity responses for simplistic neck model. 

Response amplitudes within 0-70 mm are averaged at each frequency. 
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5.7.2 Pressure response on the simplistic neck model 

In Figure 5.37, three different stenosis locations are considered as 0, 30 and 55 mm. 

The total length of the simplistic neck model is 70 mm. If the stenosis is placed at 

0 mm, region-x has the highest amplitudes within 0-50 Hz, since this region is 

closest to 0 mm. Similarly, when the stenosis is placed at 55 mm, the highest 

pressure amplitudes are observed at region-y within 0-50 Hz, since it is the closest 

region to 55 mm. This fact is supporting that the low frequency pressure response 

indicates the location of the stenosis. In Figure 5.38, the average pressure responses 

are determined by taking the mean of the responses in x and y-regions. The highest 

pressure amplitudes on the skin are obtained at the closest line to the common 

carotid artery. For the stenosis severities higher than 90%, average pressure 

amplitude exceeds 0 dB due to the flow rate in the common carotid artery which is 

quite high when compared to the upper arm and thigh models. 
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Figure 5.37 Pressure response (dB ref: 1 Pa) on the skin of simplistic neck model 

(x and y regions are represented in Figure 5.31). (a) Stenosis at 0 mm. (b) Stenosis 

at 30 mm. (c) Stenosis at 55 mm. 
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Figure 5.38 (a) Average pressure response (dB ref: 1 Pa) of simplistic neck model 

considering different stenosis levels. (b) Average pressure responses of simplistic 

neck model on the front of the neck, the back of the neck and the closest line to the 

artery in the radial direction. 

5.8 CT based models 

For CT based models, patient-specific data is utilized. Consequently, there are 

slight differences in size compared to the simplistic models. The maximum and 

minimum diameters in the simplistic thigh model are 160 and 120 mm, 

respectively. However, these values are approximately 172 and 125 mm for the CT 

based thigh model. The total length of the simplistic thigh model is 250 mm, but 

the total length of the CT based thigh model is 223 mm. The total length of the CT 

based upper arm model is 150 mm, while the simplistic upper arm model has a total 

length of 140 mm. Due to the complexity of the CT data, some simplifications are 
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done for the CT based neck model. The cervical vertebrae bones in the neck are 

considered to have a uniform cross-section and also the thicknesses of skin and fat 

are assumed to be uniform. There is a certain difference in the geometric 

dimensions of CT based and simplistic models, but this difference is not higher 

than 10%.  

For each model, three different mesh densities are used to achieve mesh 

independent results. The details of the meshes are provided in Table 5.6, Table 5.7, 

and Table 5.8 for CT based thigh, upper arm, and neck models, respectively. In 

Figure 5.39, the radial velocity responses are presented for a sample case with 90% 

stenosis. Between Mesh 1 and Mesh 2, there are average amplitude differences of 

53.66% (within 0-223 mm, 0-140 Hz), 13.71% (within 0-150 mm, 0-300 Hz) and 

17.84% (within 0-60 mm, 0-350 Hz) for CT based thigh, CT based upper arm and 

CT based neck models, respectively. Between Mesh 2 and Mesh 3, there are 

average amplitude differences of 1.29%, 1.12% and 2.81% for CT based thigh, CT 

based upper arm and CT based neck models, respectively. Mesh 2 with the 

moderate mesh density is used for the further analysis of CT based models since 

the average amplitude differences between Mesh 2 and Mesh 3 are less than 3%. 

Table 5.6 Mesh details for CT based thigh model 

# of Elements Mesh 1 Mesh 2 Mesh 3 

Skin 6609 10106 14533 

Fat 18386 24992 36488 

Blood 537 537 537 

Femoral Artery 336 336 336 

Muscle 39659 55244 88885 

Total 65527 91215 140779 
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Table 5.7 Mesh details for CT based upper arm model 

# of Elements Mesh 1 Mesh 2 Mesh 3 

Skin 3103 4116 6134 

Fat 3778 8278 16658 

Blood 10186 10186 10186 

Brachial Artery 2899 2899 2899 

Muscle 31626 46122 66504 

Trabecular Bone 39 335 789 

Cortical Bone 447 1493 2686 

Total 52078 73429 105856 

Table 5.8 Mesh details for CT based neck model 

 # of Elements Mesh 1 Mesh 2 Mesh 3 

Blood 7562 7562 7562 

Air 497 2717 7051 

Trachea 552 923 1948 

Skin 1210 3289 6378 

Fat 1386 8531 13976 

Common Carotid 

Artery 
2272 2272 2272 

Muscle 19246 35744 64128 

Bone 1357 5257 11158 

Total 34052 66295 114567 
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Figure 5.39 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based models with 90% stenosis considering 2% modal 

damping. Stenosis exit is placed at 0 mm. (a) Thigh, Mesh 1. (b) Thigh, Mesh 2. 

(c) Thigh, Mesh 3. (d) Upper arm, Mesh 1. (e) Upper arm, Mesh 2. (f) Upper arm, 

Mesh 3. (g) Neck, Mesh 1. (h) Neck, Mesh 2. (i) Neck, Mesh 3. 

In Figure 5.40, the radial velocity responses are given for CT based thigh, upper 

arm and neck models to see the effect of stenosis severity. Up to here, 2% modal 

damping is employed for the simplistic models considering the light damping 

conditions. For the CT based models, modal damping coefficients of 2, 10 and 20% 

are employed separately. In the forthcoming section, the effect of damping is 

investigated in detail. 
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For CT based thigh, upper arm and neck models, average response amplitudes are 

investigated within 0-140 Hz, 0-300 Hz and 0-400 Hz, respectively. It is observed 

that the vibration amplitudes on the CT based thigh, upper arm and neck models 

are proportional to u2.52, u1.92 and u2.02, respectively, where u is the flow jet 

velocity in the constricted region. These proportionality constants are previously 

found as 2.19, 2.09 and 1.9 for the simplistic thigh, upper arm and neck models, 

respectively. The proportionality constants for u are in good agreement for 

simplistic and CT based models. The highest proportionality constants are obtained 

for the thigh models due to thicker fat and muscle layers. Thicker soft tissue layers 

increase the number of resonant peaks within the interested frequency range. 

Geometries of CT based models are quite complex compared to the simplistic 

models. Therefore, there is a slight difference in the amplitudes of the simplistic 

and CT based models. Anti-resonance curves are not visible on the response maps 

of CT based models, therefore an alternative approach is employed to gain 

information about the stenosis location. For each position downstream of the 

constriction exit, all the amplitudes within the interested frequency range are 

summed and a 2D plot is obtained for each radial velocity response contour plot. 

The sum of amplitudes displayed against the axial position is presented in Figure 

5.41 considering the simplistic and CT based upper arm models. It is seen that, 

these amplitude summations have a maximum value around the stenosis location 

for both simplistic and CT based upper arm models, and this approach can be 

utilized to determine the stenosis location in both simplistic and CT based models. 

Stenosis locations are more clearly distinguished for the simplistic models 

compared to the CT based models due to less complexity of the geometry.  

In Figure 5.41, local peaks in the plots are not the main focus and the highest 

summation values are the main interest. The local peaks may arise depending on 

the natural frequencies and mode shapes of the model. The highest peak of the 

summation is obtained at about 20 mm downstream of the stenosis exit for the 

simplistic models. For the simplistic cases, the highest peak of the plot is clearly 
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observed. However, for the CT based models, the highest peak is not as clear as in 

the simplistic models. For the CT based models, there is another peak close to 0 

mm due to the zero-displacement boundary condition applied at the two sides the 

model considering the joint ends. Therefore, the peaks around 0 mm may not be 

due to the stenosis for the CT based models and they may depend on the applied 

boundary conditions. Even if the peak due to the boundary condition is included, 

the highest peak summation value is again obtained around the stenosis location for 

the CT based models as presented in Figure 5.41(b), (d), (f) and (h). 

 

Figure 5.40 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based models considering 10% modal damping. Stenosis exit 

is placed at 0 mm. (a) Thigh, 70% stenosis. (b) Thigh, 80% stenosis. (c) Thigh, 

90% stenosis. (d) Upper arm, 70% stenosis. (e) Upper arm, 80% stenosis. (f) Upper 

arm, 90% stenosis. (g) Neck, 70% stenosis. (h) Neck, 80% stenosis. (i) Neck, 90% 

stenosis. 
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Figure 5.41 Sum of response amplitudes for upper arm models considering 90% 

stenosis and 10% modal damping. The highest summation amplitudes are shown 

in circles which are indicating the stenosis location. (a) Simplistic, 0 mm. (b) CT 

based, 0 mm. (c) Simplistic, 40 mm. (d) CT based, 47 mm. (e) Simplistic, 80 mm. 

(f) CT based, 93 mm. (g) Simplistic, 120 mm. (h) CT based, 117 mm. 
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In Figure 5.42, Figure 5.43, and Figure 5.44, the effect of stenosis location is 

investigated in CT based thigh, upper arm and neck models, respectively. In 

contrary to the results of the simplistic models, low frequency responses of the CT 

based models provide limited information about the location of the stenosis. The 

contour plots of the radial velocity responses are complex and the anti-resonance 

curves are not visible for the CT based models, since the geometric features are 

more complex. In CT based thigh models, the response amplitudes are relatively 

high around the stenosis in the 0-30 Hz frequency range. However, the relative 

increase is not as clear as the simplistic models. For the CT based thigh model, 

amplitudes tend to increase at frequencies of 30, 60, and 90 Hz, which represent 

the natural frequencies. In the CT based upper arm model, the natural frequencies 

are observed around 100 and 200 Hz. The natural frequencies of the CT based neck 

model are around 120, 190 and 260 Hz. 

 

Figure 5.42 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based thigh model considering 90% stenosis and 2% modal 

damping. (a) Stenosis at 0 mm. (b) Stenosis at 50 mm. (c) Stenosis at 100 mm. (d) 

Stenosis at 150 mm. (e) Stenosis at 200 mm. 
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Figure 5.43 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based upper arm model considering 90% stenosis and 2% 

modal damping. (a) Stenosis at 0 mm. (b) Stenosis at 47 mm. (c) Stenosis at 93 

mm. (d) Stenosis at 117 mm. 
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Figure 5.44 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based neck model considering 90% stenosis and 2% modal 

damping. (a) Stenosis at 0 mm. (b) Stenosis at 24 mm. (c) Stenosis at 48 mm. 

In Figure 5.45, the average pressure responses on the skin are compared for CT 

based and simplistic models. The results of the thigh models are in good agreement 

for CT based and simplistic cases. There is a certain difference in the results of the 

upper arm models. Since upper arm CT data is clinically obtained in the hands up 

position, a small portion of the shoulder muscles is also included in the CT data of 

the upper arm. This variation in the geometric features can cause the amplitude 

difference between the simplistic and CT based upper arm models. At the 

frequencies other than 100 and 200 Hz, the average pressure amplitudes on the neck 

models are also in good agreement. 
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Figure 5.45 Average pressure response (dB ref: 1 Pa) comparison for simplistic and 

CT based models considering 2% modal damping. Stenosis exit is placed at 0 mm. 

(a) Thigh model. (b) Upper arm model. (c) Neck model. 
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5.9 Effect of modal damping coefficient 

In Figure 5.46, Figure 5.47, Figure 5.48, Figure 5.49 and Figure 5.50, the effect of 

modal damping is investigated on the radial velocity contour plots of simplistic 

thigh, simplistic upper arm, CT based thigh, CT based upper arm, and CT based 

neck models, considering various stenosis locations. It is observed that by 

increasing the modal damping coefficient in the model, all radial velocity contour 

plots seemed more dispersed and the amplitudes of the responses slightly 

decreased, but the location of stenosis is more clearly observed. Increased modal 

damping makes it easier to detect the location of  the stenosis since the stenosed 

regions have relatively higher radial velocity amplitudes.  

The amplitude decrease due to the modal damping is more pronounced for the 

positions distant from the stenosis. The vibrational modes are not clearly visible for 

high damping conditions. However, detection of the stenosis is more practical by 

using the sum of the amplitudes within the interested frequency range. If the 

damping in the model is low, anti-resonance curves should be employed to detect 

the stenosis location. As the damping increases, it is logical to use the altenative 

approach which employs the sum of the amplitudes in the response contours. 
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Figure 5.46 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic thigh model with 90% stenosis severity, considering 

different constriction locations and modal damping coefficients. (a) 0 mm, 2%. (b) 

0 mm, 10%. (c) 0 mm, 20%. (d) 50 mm, 2%. (e) 50 mm, 10%. (f) 50 mm, 20%. (g) 

125 mm, 2%. (h) 125 mm, 10%. (i) 125 mm, 20%. (j) 150 mm, 2%. (k) 150 mm, 

10%. (l) 150 mm, 20%. (m) 200 mm, 2%. (n) 200 mm, 10%. (o) 200 mm, 20%. 
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Figure 5.47 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for simplistic upper arm model with 90% stenosis severity, 

considering different constriction locations and modal damping coefficients. (a) 0 

mm, 2%. (b) 0 mm, 10%. (c) 0 mm, 20%. (d) 40 mm, 2%. (e) 40 mm, 10%. (f) 40 

mm, 20%. (g) 80 mm, 2%. (h) 80 mm, 10%. (i) 80 mm, 20%. (j) 120 mm, 2%. (k) 

120 mm, 10%. (l) 120 mm, 20%. 
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Figure 5.48 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based thigh model with 90% stenosis severity, considering 

different constriction locations and modal damping coefficients. (a) 0 mm, 2%. (b) 

0 mm, 10%. (c) 0 mm, 20%. (d) 50 mm, 2%. (e) 50 mm, 10%. (f) 50 mm, 20%. (g) 

100 mm, 2%. (h) 100 mm, 10%. (i) 100 mm, 20%. (j) 150 mm, 2%. (k) 150 mm, 

10%. (l) 150 mm, 20%. (m) 200 mm, 2%. (n) 200 mm, 10%. (o) 200 mm, 20%. 
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Figure 5.49 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based upper arm model with 90% stenosis severity, 

considering different constriction locations and modal damping coefficients. (a) 0 

mm, 2%. (b) 0 mm, 10%. (c) 0 mm, 20%. (d) 47 mm, 2%. (e) 47 mm, 10%. (f) 47 

mm, 20%. (g) 93 mm, 2%. (h) 93 mm, 10%. (i) 93 mm, 20%. (j) 117 mm, 2%. (k) 

117 mm, 10%. (l) 117 mm, 20%. 
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Figure 5.50 Radial velocity response (dB ref: 1 mm/s) as function of axial distance 

and frequency for CT based neck model with 90% stenosis severity, considering 

different constriction locations and modal damping coefficients. (a) 0 mm, 2%. (b) 

0 mm, 10%. (c) 0 mm, 20%. (d) 24 mm, 2%. (e) 24 mm, 10%. (f) 24 mm, 20%. (g) 

48 mm, 2%. (h) 48 mm, 10%. (i) 48 mm, 20%. 
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5.10 Partial derivative analysis for radial velocity responses 

In the investigation of the simplistic models, it is observed that the anti-resonance 

curves are visible in the radial velocity contour plots and they are directing the 

stenosis location. Then, CT data are used for the models of the thigh, upper arm 

and neck. When CT based models are investigated, it is seen that the anti-resonance 

curves are not visible as in the simplistic models. Using an alternative approach, 

the sum of radial velocity amplitudes are used to find the stenosis location in the 

CT based models. 

In this section, partial derivatives of the radial velocity responses with respect to 

distance (
𝜕

𝜕𝑥
) and frequency (

𝜕

𝜕𝑓
) are investigated. The partial derivatives of the 

responses are determined for all points on the radial velocity contour plots. In 

Figure 5.51, Figure 5.52 and Figure 5.53, the partial derivative analyses are 

performed for CT based thigh, upper arm and neck models, respectively. It is 

concluded that the partial derivatives of the radial velocity responses are not 

providing critical information to determine the stenosis location. For this reason, 

the best method for determining the stenosis location in the CT based models is to 

directly sum the radial velocity responses within the interested frequency range 

without taking any partial derivatives. 
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Figure 5.51 Partial derivative analysis for CT based thigh model considering 90% 

stenosis and 2% damping. Stenosis exit is located at 0 mm. (a) Radial velocity 

response. (b) First derivate with respect to distance (
𝜕

𝜕𝑥
). (c) First derivate with 

respect to frequency (
𝜕

𝜕𝑓
).  (d) Derivative with respect to distance and frequency 

(
𝜕2

𝜕𝑥𝜕𝑓
). (e) Second derivative with respect to frequency (

𝜕2

𝜕𝑓𝜕𝑓
). (f) Second 

derivative with respect to distance (
𝜕2

𝜕𝑥𝜕𝑥
). (g) Sum of amplitudes in (a). (h) Sum of 

amplitudes in (b). (i) Sum of amplitudes in (c). (j) Sum of amplitudes in (d). (k) 

Sum of amplitudes in (e). (l) Sum of amplitudes in (f). 
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Figure 5.52 Partial derivative analysis for CT based upper arm model considering 

90% stenosis and 2% damping. Stenosis exit is located at 0 mm. (a) Radial velocity 

response. (b) First derivate with respect to distance (
𝜕

𝜕𝑥
). (c) First derivate with 

respect to frequency (
𝜕

𝜕𝑓
).  (d) Derivative with respect to distance and frequency 

(
𝜕2

𝜕𝑥𝜕𝑓
). (e) Second derivative with respect to frequency (

𝜕2

𝜕𝑓𝜕𝑓
). (f) Second 

derivative with respect to distance (
𝜕2

𝜕𝑥𝜕𝑥
). (g) Sum of amplitudes in (a). (h) Sum of 

amplitudes in (b). (i) Sum of amplitudes in (c). (j) Sum of amplitudes in (d). (k) 

Sum of amplitudes in (e). (l) Sum of amplitudes in (f). 
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Figure 5.53 Partial derivative analysis for CT based neck model considering 90% 

stenosis and 2% damping. Stenosis exit is located at 0 mm. (a) Radial velocity 

response. (b) First derivate with respect to distance (
𝜕

𝜕𝑥
). (c) First derivate with 

respect to frequency (
𝜕

𝜕𝑓
).  (d) Derivative with respect to distance and frequency 

(
𝜕2

𝜕𝑥𝜕𝑓
). (e) Second derivative with respect to frequency (

𝜕2

𝜕𝑓𝜕𝑓
). (f) Second 

derivative with respect to distance (
𝜕2

𝜕𝑥𝜕𝑥
). (g) Sum of amplitudes in (a). (h) Sum of 

amplitudes in (b). (i) Sum of amplitudes in (c). (j) Sum of amplitudes in (d). (k) 

Sum of amplitudes in (e). (l) Sum of amplitudes in (f). 
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CHAPTER 6 

EXPERIMENTAL STUDIES 

 

 

 

6.1 Experimental set-up 

Water-filled latex penrose drainage tube with a lumen diameter of 6.4 mm and 

thickness of 0.3 mm is used for modelling the artery simulated previously in the 

computational analysis. Compliant latex rubber tube is surrounded by a tissue 

phantom produced by bovine gelatin (Bloom 250) to mimic human flesh. Phantom 

models are produced using 3D printed molds with various thicknesses. One 

volumetric unit of gelatin powder is mixed with nine volumetric units of hot water 

at 70° Celsius. This liquid mixture is kept at room temperature for two hours. Latex 

tube is placed at the centerline of the hollow-cylindrical mold before pouring the 

liquid mixture to have an axisymmetric form. Stenosis element is placed at the 

intended location inside the latex tube. The stenosis elements and the hollow-

cylindrical mold are shown in Figure 6.1. Stenosis element has much higher 

stiffness compared to the tissue phantom and the latex drainage tube. The mixture 

is poured into the mold and kept at 4° Celsius for 36 hours. After this process, the 

phantom material is solidified and taken out of the mold. For each experimental 

case, this procedure is repeated to have a fresh phantom model. All measurements 

and experiments are performed within two hours following the removal of phantom 

model from the mold. 
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Figure 6.1 (a) Parts of the cylindrical mold. (b) Liquid-mixture poured in the 

hollow-cylindrical mold. (c) Stenosis elements (Left to right, 95, 90, 80 and 70% 

stenosis). 

In the experimental setup, there are two reservoirs placed at different heights to 

provide gravity-fed flow as depicted in Figure 6.2. A valve is placed at the 

downstream of the stenosed latex tube. Intended flow rates and mean pressures 

inside the tube are achieved by adjusting the height of the upper reservoir and 

adjusting the valve, independently. In Table 6.1, the required height differences 

between the two reservoirs are listed to obtain the necessary flow rate and internal 

dynamic pressure. 

Since the latex tube is buried in the phantom model, there is no slip at the interface 

surface between the tissue phantom and the latex tube. Experimental model is 

placed on a passively isolated optical table (M-RPR-36-8, Newport, Irvine, CA) to 

avoid ground vibration and the two ends of the phantom model are free to vibrate 

with no constraints. Experiments are performed for various cases considering 

different stenosis severities, stenosis locations, tissue phantom thicknesses, mean 
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pressures, and Reynolds numbers. Reynolds numbers of 1000 and 1750 are 

considered to be consistent with the biological relevance [150]. 

Radial velocity responses on the tissue phantom surface are measured by using a 

single-point non-contacting Laser Doppler Vibrometer (LDV) (IVS-300, Polytech, 

Auburn, MA) with a sensitivity of 125 mm/s/V (Low-pass filtered at 5 kHz). Total 

length of the experimental model is 100 mm and there are 41 measurement points 

with 2.5 mm spacing in between. Highly reflective grey paint is applied along the 

measurement points to improve the quality of the LDV signal as seen in Figure 6.3. 

A digital dynamic signal analyzer (HP 35665A, Hewlett Packard, Washington, 

USA) is used to capture and record the experimental data. The signals are processed 

using the dynamic signal analyzer to convert the time domain data into frequency 

domain by performing Fast Fourier Transform (FFT) with Hanning window. Time 

data is measured with a sampling rate of 4096 Hz with a corresponding -120 

dB/decade anti-aliasing filter set at 1600 Hz. For each measurement point, 64 

independent time records are taken to determine the RMS averaged power spectra 

at the measurement location. All results are post-processed using MATLAB. 

Table 6.1 Height difference between the upper and lower reservoirs for all 

experimental cases 

Stenosis 

severity (%) 

Mean dynamic 

pressure 

(mmHg gauge) 

Reynolds 

number 

Height difference between the 

upper and lower reservoirs (cm) 

90 27 1000 58 

90 35 1000 68 

90 45 1000 88 

0 35 1750 51 

55 35 1750 51.5 

70 35 1750 52 

80 35 1750 60 

90 35 1750 103 
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Figure 6.2 Schematic representation of experimental setup. 

 

Figure 6.3 (a) Tissue phantom with thickness of 16.5 mm. (b) Retroreflective 

painted surface to improve LDV signal quality. (c) Experimental setup placed on 

the optical table to measure radial velocity responses on the phantom surface. 
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Single-point LDV studies are conducted considering axisymmetric cylindrical 

tissue phantom models. In addition to the axisymmetric phantom models, a 

rectangular prismatic tissue phantom is also prepared to investigate the response on 

flat surface. A constricted latex drainage tube is buried in the rectangular prismatic 

phantom model similar to the previous applications. The stenosis element is placed 

to a particular location and the lateral surface of the rectangular prismatic phantom 

is scanned using a scanning LDV (PSV-400-B, Polytech, Auburn, MA) to study 

the effects of stenosis location. 

6.2 Mechanical characterization of the tissue phantom 

Human soft tissue is mimicked using bovine gelatin based tissue phantom. A visco-

hyperelastic model is developed by performing tension, compression, and 

relaxation tests [152] to define the material characteristics of the tissue phantom. 

The test setup is shown in Figure 6.4(c) and (d). Five independent measurements 

are recorded for each type of test and averaged test results are used for material 

property identification. Obtained results are presented in Figure 6.4(a) and (b) to 

show the stress-strain relation and the relaxation behavior of the tissue phantom, 

respectively. 

Tension and compression behaviors of the phantom material are slightly different. 

For the case of tension, the slope of stress-strain curve is nearly constant up to 5% 

strain level. If the compression case is investigated, a variation is observed in the 

slope of stress-strain curve depending on the strain level. Test results are employed 

using Sussman-Bathe material model [153] available in ADINA-Structures module 

where the experimental stress-strain data is directly used as an input to 

mechanically characterize the tissue phantom. 
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Figure 6.4 (a) Stress-strain data for tissue phantom. (b) Relaxation behavior of 

tissue phantom. Force relaxation is observed within the range of 180 and 280 s. 

Relaxation function given in (6.1) is obtained by means of Prony series expansion 

using the data within 180 and 280 s to determine the viscoelastic material 

parameters. (c) Test setup for tension tests. (d) Test setup for compression tests. 

Effect of viscoelasticity is also considered in the computational studies by 

employing generalized Maxwell approach available in ADINA [44]. The force 

relaxation behavior shown in Figure 6.4(b) is obtained by holding the phantom 

specimen at a fixed strain level during 100 seconds (from 180 to 280 s). The 

function of force relaxation is accurately defined by using the following Prony 

series fit, 

 𝐹 = 6.2𝑒(−0.0123𝑡) + 46.99  (6.1) 
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where 𝐹 denotes force and 𝑡 denotes time. Relaxation modulus (𝐸(𝑡)) can be 

defined in the form of Prony series expression by using the generalized Maxwell 

approach by [95]. Only one Maxwell element sufficiently modelled the relaxation 

behavior of the tissue phantom. By using previously defined (5.8), (5.9), (5.10) and 

using (6.1), viscoelastic parameters are calculated as 𝛽1 = 0.13104 and 𝜏1 =

81.3008 𝑠 where these two parameters are used for modelling the viscoelasticity 

of tissue phantom in the computational studies. 

6.3 Single-point LDV analysis 

In this section, results of computational models and experimental findings are 

elaborated to clarify the effects of stenosis severity, stenosis location, and 

surrounding tissue phantom thickness on the radial vibration of tissue surface. 

Experimental studies are examined in two categories using single-point and 

scanning LDV observations. 

6.3.1 Bare tube analysis 

Accuracy of the current experimental findings is verified by implementing the same 

experimental conditions in Ref. [22]. Stenosis-driven radial vibration on a bare 

latex tube is determined by laser Doppler vibrometry and compared to the results 

in Ref. [22] as presented in Figure 6.5. 
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Figure 6.5 Radial velocity response (dB ref: 1 mm/s) on the outer surface of fluid-

filled bare latex tube considering 87% stenosis. Stenosis exit is located at 0 mm. 

(a) Re = 1000, ~45 mmHg gauge pressure. (b) Re = 1000, ~15 mmHg gauge 

pressure. (c) Re = 2000, ~15 mmHg gauge pressure. (d) Adopted from Ref. [22]. 

Re = 1000, ~45 mmHg gauge pressure. (e) Adopted from Ref. [22]. Re = 1000, 

~15 mmHg gauge pressure. (f) Adopted from Ref. [22]. Re = 2000, ~15 mmHg 

gauge pressure. 

Experimental results agree well with the findings in Ref. [22] in terms of vibration 

amplitudes and spectral behavior. A highly excited region with relatively increased 

amplitudes is observed within the range of 0 and 100 Hz where the first three 

bending modes of the tube are clearly visible. Second highly excited region is 

observed slightly above 300 Hz in Figure 6.5(a) and (d) for mean (head) pressure 

adjusted to ~45 mmHg gauge. If the mean pressure in the tube is adjusted to ~15 

mmHg gauge, this highly excited region is scaled down to 250 Hz as seen in Figure 

6.5(b) and (e). This situation clarifies the findings, as the increased pre-stress level 

depending on higher mean pressure leads to a shift towards higher frequencies. 
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In Figure 6.5(c) and (f), Reynolds number is increased from 1000 to 2000 and as a 

consequence, the vibration amplitudes are generally increased due to higher 

acoustic pressure amplitudes generated on the inner wall of the tube. In Figure 

6.5(c), three highly excited regions are observable within 0 and 100 Hz, within 200 

and 300 Hz, and around 500 Hz. However, these regions are encountered at slightly 

lower frequencies in Figure 6.5(f). The reason is thought to be the axial pre-stress 

differences in the experimental conditions. 

Axial pre-stress can shift the resonance frequencies as represented in Figure 6.6. In 

Figure 6.6(a) and (b), all experimental conditions are kept the same except the tube 

extension. Larger tube extension values increased axial pre-stress and resulted an 

upwards shift in resonance frequencies. In Figure 6.6(b), highly excited regions are 

observed around 300 and 600 Hz for 15% tube elongation. However, the 

corresponding resonance frequencies are seen around 260 and 550 Hz for 0% 

elongation in Figure 6.6(a).  

Clearly visible spectral contents in Figure 6.6(b) and (c) are attributed to the 

increased axial pre-stress. As the extension and pre-stress scales up, effect of 

bending mode shapes becomes more prominent at high frequencies. The change in 

Reynolds number is not an influencing factor on the resonance frequencies. 
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Figure 6.6 Radial velocity response (dB ref: 1 mm/s) on the outer surface of fluid-

filled bare latex tube considering 90% stenosis. Mean pressure is adjusted to ~35 

mmHg gauge. Stenosis exit is located at 0 mm. (a) Re = 1750, 0% tube extension. 

(b) Re = 1750, 15% tube extension. (c) Re = 1000, 15% tube extension. 

6.3.2 Tissue surrounded models 

Up to here, experimental results are presented for bare tube wall vibration without 

considering any surrounding phantom material. Here, the constricted tube is 

surrounded by a phantom model to mimic human flesh. Radial vibration on the 

phantom surface is investigated both experimentally and computationally. Using 

the same procedures followed in Chapter 4 and Chapter 5, the experimental cases 

are modelled in ADINA.  

Three different mesh densities are employed to achieve mesh independent results. 

Mesh 1, Mesh 2 and Mesh 3 have 3240, 11200 and 45600 elements, respectively. 

Average response amplitude (within 0-100 mm, 0-600 Hz) has a difference of 

5.61% between Mesh 1 and Mesh 2. This difference is obtained as 0.91% between 

Mesh 2 and Mesh 3. Results are accepted as mesh-independent if the difference in 

average amplitudes is less than 3%. Results of Mesh 2 are satisfactorily accurate in 

terms of spectral content and response amplitudes. Mesh 2 with the moderate mesh 

density is used for the further analysis since the average amplitude difference 

between Mesh 2 and Mesh 3 is less than 3%. 
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In experimental studies, modal damping coefficients are uncertain. Consequently, 

a trial and error method is followed to determine experimental modal damping 

characteristics. For this purpose, an experimental case is computationally modelled 

considering various modal damping coefficients as represented in Figure 6.7. 

In Figure 6.7(c), (d) and (e), high and low-excited regions are clearly separated by 

border lines as indicated on the responses. The border line angle with the horizontal 

axis scales up with increasing modal damping coefficient. In Figure 6.7(a), 

experimental vibration amplitudes within 0 and 100 Hz are relatively higher and 

resonant peaks are sharper which is indicating a low damping region. However, as 

the frequency increases, vibration amplitudes tend to decrease much faster and 

resonant peaks become broader. Therefore, it is considered that experimental 

damping coefficients vary depending on the frequency. In Figure 6.7(c), (d) and 

(e), a constant modal damping coefficient is employed for all frequencies. In Figure 

6.7(b), frequency-varying damping behavior given in Table 6.2 is utilized to better 

reflect the experimental conditions. Experimental vibration amplitudes and spectral 

content in Figure 6.7(a) best fit with frequency-varying damping case shown in 

Figure 6.7(b). Therefore, all further computational results are obtained using 

frequency-varying damping coefficients given in Table 6.2. 

Table 6.2 Frequency-varying modal damping coefficients employed in the 

computational models 

Frequency range Modal damping coefficient 

0-25 Hz 1% 

25-100 Hz 3% 

100-150 Hz 7% 

150-600 Hz 12% 
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Figure 6.7 Radial velocity response (dB ref: 1 mm/s) on the outer surface of 16.5 

mm thickness tissue phantom considering 90% stenosis with Re = 1750. Stenosis 

exit is located at 0 mm. Mean pressure is adjusted to ~35 mmHg gauge. (a) 

Experimental result. (b) Computational result using frequency-varying modal 

damping coefficients given in Table 6.2. (c) Computational result using 1% modal 

damping. (d) Computational result using 10% modal damping. Black dash line 

indicates border line. (e) Computational result using 15% modal damping. Orange 

dash line indicates border line. (f) Computational result using 20% modal damping. 

Red dash line indicates border line. 
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Effect of stenosis severity is investigated in Figure 6.8. Experimental findings agree 

well with the computational results in terms of spectral content and the relative 

increase in vibration amplitudes depending on the stenosis severity. There is no 

background noise in the computational analysis and the lowest response amplitude 

is obtained at about -80 dB. On the other hand, the lowest experimental response 

amplitude is measured about -60 dB as a consequence of experimental noise in 

LDV studies. This fact is the main difference between the experimental and 

computational results. Up to 70% stenosis, the relative increase in response 

amplitudes is not at a considerable amount. However, if the stenosis severity 

exceeds 70%, vibration amplitudes begin to increase significantly. Therefore, 70% 

stenosis severity is regarded as an important threshold level to effectively detect an 

occlusion inside a tube. In Figure 6.9, average responses are given for the 

experimental results by averaging the amplitudes within 0 and 600 Hz. When the 

stenosis severity is increased from 70 to 80%, approximately 2 dB increase is 

observed in the average response amplitudes especially around the stenosis 

location. If the stenosis severity is increased from 80 to 90%, this increase is more 

than 6 dB. The general increase in the vibration amplitudes can be accepted as an 

indication of a stenosis. 
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Figure 6.8 Radial velocity response (dB ref: 1 mm/s) on the outer surface of 16.5 

mm thickness tissue phantom with Re = 1750. Stenosis exit is located at 0 mm. 

Mean pressure is adjusted to ~35 mmHg gauge with 0% tube extension. (a) 

Experiment, 90% stenosis. (b) Computational result, 90% stenosis. (c) Experiment, 

80% stenosis. (d) Computational result, 80% stenosis. (e) Experiment, 70% 

stenosis. (f) Computational result, 70% stenosis. (g) Experiment, 55% stenosis. (h) 

Computational result, 55% stenosis. (i) Experiment, 0% stenosis. 
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Figure 6.9 Average of the experimental radial velocity responses given in Figure 

6.8(a), (c), (e) and (g). 

In Figure 6.9, the maximum excitation is observed around the stenosis location. If 

the stenosis element is moved to a different location, the peak activity point is 

shifted towards the occlusion as seen in Figure 6.10. Averages of vibration 

responses in Figure 6.10(a), (b) and (c) are presented in Figure 6.10(d) using the 

amplitudes within 0 and 600 Hz. The relative increase in amplitudes downstream 

of the stenosis exit is an important indication to detect the occluded location. For a 

stenosis placed at 0 mm, the peak activity point is observed at approximately 10 

mm downstream of the occlusion. If the stenosis is located at 25 mm, the spatial 

location of the peak activity is seen at 55 mm. The peak activity point varies within 

10 and 30 mm (1.5 and 4.5D) downstream of the constriction exit depending on the 

stenosis location and tissue phantom thickness. 
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Figure 6.10 Experimental radial velocity response (dB ref: 1 mm/s) on the outer 

surface of 16.5 mm thickness tissue phantom considering 90% stenosis with Re =

1750. Mean pressure is adjusted to ~35 mmHg gauge with 0% tube extension. (a) 

Stenosis exit located at 0 mm. (b) Stenosis exit located at 25 mm. (c) Stenosis exit 

located at 50 mm. (d) Average responses within 0 and 600 Hz for experimental 

results presented in (a), (b), and (c). Peak activity points are indicated by arrows. 
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Effect of tissue phantom thickness is investigated in Figure 6.11. Experimental and 

computational results show well agreement again in terms of amplitudes and the 

general spectral trend. Increasing thickness resulted a general decrease in response 

amplitudes. When the thickness is increased from 6.5 to 16.5 mm, approximately 2 

dB decrease is observed in the amplitudes as shown in Figure 6.11(g). If the 

thickness is increased from 16.5 to 36.5 mm, the amplitude decrease is more than 

6 dB around the stenosis location. In Figure 6.11, all stenosis elements are placed 

at 0 mm, but peak activity points are observed at different locations. The distances 

between the stenosis exit and the peak activity points are 7.5, 12.5, and 32.5 mm 

for tissue phantom thicknesses of 6.5, 16.5, and 36.5 mm, respectively. As the 

thickness of the tissue phantom decreases, the peak activity point is getting closer 

to the stenosis location. For 36.5 mm tissue phantom thickness, the peak activity 

point moved away from the stenosis location. Detection of the stenosis location 

becomes more challenging as the tissue thickness increases since the surrounding 

tissue attenuates the effects generated on the artery wall. 
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Figure 6.11 Radial velocity response (dB ref: 1 mm/s) on the outer surface of tissue 

phantom considering 90% stenosis with Re = 1750. Mean pressure is adjusted to 

~35 mmHg gauge with 0% tube extension. Stenosis exit is located at 0 mm. (a) 

Experiment, 6.5 mm phantom thickness. (b) Experiment, 16.5 mm phantom 

thickness. (c) Experiment, 36.5 mm phantom thickness. (d) Computational result, 

6.5 mm phantom thickness. (e) Computational result, 16.5 mm phantom thickness. 

(f) Computational result, 36.5 mm phantom thickness. (g) Average responses 

within 0 and 600 Hz for experimental results presented in (a), (b) and (c). Peak 

activity points are indicated by arrows. 
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The influence of mean pressure is investigated in Figure 6.12. There is no 

significant change in responses which indicates that the tissue phantom subdues the 

effect of mean pressure. For previously conducted bare tube studies in Figure 6.5, 

a change in mean pressure affected the tube radius and imparted circumferential 

pre-stress, resulting in shifted resonance frequencies and slightly changed spectral 

content. Addition of surrounding phantom material limits the effect of the mean 

pressure. Effect of Reynolds number is presented in Figure 6.13 which shows the 

relative increase in response amplitudes depending on increasing flow rate. Both 

experimental findings and computational results for tissue phantom thickness of 

16.5 mm with 90% stenosis indicate that if the flow rate is increased by 75%, the 

response amplitudes tend to increase more than 6 dB especially around the stenosis 

location. When the average response amplitudes (within 0-600 Hz) are 

investigated, it is found that the vibration amplitudes on the phantom tissue surface 

are proportional to Re1.41. This is an important fact, because Borisyuk [19] stated 

that acoustic pressure generation on inner arterial wall is proportional to Re4. 

Previously presented results in Figure 4.16 showed that vibration amplitudes on the 

outer surface of the artery are approximately proportional to Re3. Here, it is shown 

that this proportionality drops to the power of 1.41 when the artery is surrounded 

by a 16.5 mm tissue thickness. 

 

Figure 6.12 Experimental radial velocity response (dB ref: 1 mm/s) on the outer 

surface of 16.5 mm thickness tissue phantom considering 90% stenosis with Re =

1000 and 0% tube extension. (a) Mean pressure of 27 mmHg gauge. (b) Mean 

pressure of 35 mmHg gauge. (c) Mean pressure of 48 mmHg gauge. 



176 

 

Figure 6.13 Radial velocity response (dB ref: 1 mm/s) on the outer surface of 16.5 

mm thickness tissue phantom considering 90% stenosis. Mean pressure is adjusted 

to ~35 mmHg gauge with 0% tube extension. Stenosis exit is located at 0 mm. (a) 

Experiment, Re = 1750. (b) Experiment, Re = 1000. (c) Computational result, 

Re = 1750. (d) Computational result, Re = 1000. (e) Average responses within 0 

and 600 Hz for experimental results presented in (a) and (b). 
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6.4 Scanning LDV analysis 

In the previous experimental studies, investigating a line on the tissue phantom is 

sufficient to determine the general characteristics of the model due to axisymmetric 

geometry. Here, a rectangular prismatic tissue phantom model is introduced to 

investigate a flat surface as shown in Figure 6.14. Stenosis element is placed to a 

particular location inside the tube. For scanning LDV measurements, data 

processing procedure is the same with the single-point LDV studies. 

 

Figure 6.14 Rectangular prismatic tissue phantom model. The length, width and 

height of the rectangular prism are 95, 40 and 60 mm, respectively. 299 points on 

the lateral surface (23 x 13 grid) are used for scanning LDV measurements. Latex 

rubber drainage tube is placed at a height of 40 mm from the ground. 

Vibration responses of 299 points on the lateral surface are recorded. Average 

velocity response amplitude is determined for each measurement point using the 

amplitudes within 0 and 600 Hz. Average amplitudes on the investigated surface 

are presented in Figure 6.15 where the stenosis exit is located at a distance of 55 

mm from the right side of the prismatic tissue phantom. Unlike the previously 

presented cases, flow is from right to left in the cases shown below. 
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Figure 6.15 Average velocity amplitudes within 0 and 600 Hz (dB ref: 1 mm/s) on 

the scanned lateral surface of the rectangular prismatic tissue phantom considering 

90% stenosis with Re = 1000. Mean pressure is adjusted to ~20 mmHg gauge with 

0% tube extension. Flow is from right to left. Stenosis exit is placed at a height of 

40 mm and located at a distance of 55 mm from the right side. 

The highest activity is seen around 20 mm downstream of the constriction exit as 

previously observed in the axisymmetric models presented in Figure 6.10. The 

general increase in amplitudes immediately starts after passing over the stenosis 

element and the peak activity is observed about 3.1D downstream of the 

constriction exit. Although the stenosis element is placed at 40 mm height, the point 

of peak activity is seen at a height of 25 mm. The reason can be explained by the 

wave propagation phenomena. Since the prismatic tissue phantom is placed on the 

ground, generated waves are mostly reflected back from the ground. As a 

consequence, ground-reflected waves lead to relatively higher amplitudes at the 

region close to the bottom line, due to higher reflection compared to the free surface 

at the top line. 

In Figure 6.16, velocity amplitudes on the scanned surface are displayed at specific 

frequencies. As previously observed in Figure 6.7, the damping of the system is 
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low within 0 and 100 Hz. Therefore, the structural modes of the tissue phantom are 

clearly visible and the effect of stenosis is not dominant at 12 and 30 Hz. But within 

100 and 700 Hz, the effect of stenosis is more prominent where relatively higher 

amplitudes are observed in the downstream of the stenosis exit. For the frequencies 

higher than 700 Hz, the effect of stenosis is diminished and similar amplitudes are 

measured at all points on the scanned surface. Results in Figure 6.16 indicate that 

the optimum frequency range for diagnosing a stenosis is within 200 and 500 Hz, 

particularly around 300 Hz. A few measurement errors are present on the bottom 

edge of the scanned surface due to poorly reflected laser beam. Results of these 

problematic points are disregarded and shown inside blue circled regions in Figure 

6.16. 

 

Figure 6.16 Velocity amplitudes at various frequencies (dB ref: 1 mm/s) on the 

scanned lateral surface of the rectangular prismatic tissue phantom considering 

90% stenosis with Re = 1000. Flow is from right to left. Mean pressure is adjusted 

to ~20 mmHg gauge with 0% tube extension. Relatively increased amplitudes due 

to the stenosis are shown in black circled regions. Reflected signal quality is not 

adequate in blue circled regions. 
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6.5 Measurements using contact microphone and electronic stethoscope 

In this section, results obtained using contact microphone (CM-01B, Measurement 

Specialties, VA) and electronic stethoscope (Litmann 3200, 3M, MN) are 

presented. The measurements are performed for a case with Reynolds number 

1750, 35 mmHg gauge pressure, 90% stenosis severity and 16.5 mm tissue phantom 

thickness. The total length of the cylindrical phantom model is 100 mm. 

Measurements are performed at positions A, B and C, respectively, at distances of 

25, 50 and 75 mm from the exit of the stenosis. The stenosis exit is placed at 0 mm. 

Figure 6.17 and Figure 6.18 show the response amplitudes measured by the contact 

microphone and the electronic stethoscope, respectively. 

 

Figure 6.17 Responses at A, B, and C measured by contact microphone for 

Reynolds number 1750, 16.5 mm phantom material thickness, 35 mmHg gauge 

pressure and 90% stenosis. 
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Figure 6.18 Responses at A, B, and C measured by electronic stethoscope for 

Reynolds number 1750, 16.5 mm phantom material thickness, 35 mmHg gauge 

pressure and 90% stenosis. Stenosis exit is placed at 0 mm. 

Results of the contact microphone are processed using the same procedure followed 

for the single-point LDV analysis. The data obtained by the electronic stethoscope 

is the sound measured in the time domain. The measurement data of the electronic 

stethoscope is converted to the frequency domain by performing fast Fourier 

transform (FFT) with Hanning windowing. The background noise is present for the 

measurements of the electronic stethoscope. RMS averaging is performed utilizing 

20 independent data sets. By this way, the effect of the background noise is 

eliminated and the trend of the responses are more clearly observed for the 

measurements of the electronic stethoscope. The sampling frequency of the 

electronic stethoscope is 4000 Hz. Each data set is composed of 4000 data to be 

consistent with the sampling frequency.  

Results in Figure 6.17 and Figure 6.18 show that response amplitudes at position-

A are the highest since it is the closest position to the highest sound generation due 
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to the stenosis. The highest sound generation is observed about 20 mm downstream 

of the stenosis exit. Secondly, the highly excited measurement position is B. The 

farthest measurement position to the stenosis is point C, therefore the amplitudes 

at point C are the lowest. From the responses, it can be clearly seen that the 

obstruction is around the measurement position-A. 

In Figure 6.19, the stenosis exit is placed at 25 mm. For this case, the highest sound 

is generated at 45 mm. Position-B is located at 50 mm and therefore, it is the closest 

position to the highest sound generation. In the results, it is seen that the response 

amplitudes on position-B are the highest. 

In Figure 6.20, the stenosis exit is placed at 50 mm, which means that the highest 

sound generation is at 70 mm. Position-C located at 75 mm is the closest position 

to the highest sound generation. Therefore, the response amplitudes at position-C 

are the highest within 50-350 Hz frequency range. 

 

Figure 6.19 Responses at A, B, and C measured by electronic stethoscope for 

Reynolds number 1750, 16.5 mm phantom material thickness, 35 mmHg gauge 

pressure and 90% stenosis. Stenosis exit is placed at 25 mm. 
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Figure 6.20 Responses at A, B, and C measured by electronic stethoscope for 

Reynolds number 1750, 16.5 mm phantom material thickness, 35 mmHg gauge 

pressure and 90% stenosis. Stenosis exit is placed at 50 mm. 

For further analyses, the average of A, B and C is determined to compare the results 

considering different stenosis severities, Reynolds numbers and phantom material 

thicknesses. In Figure 6.21, the effect of stenosis severity is investigated using the 

measurements of the contact microphone and the electronic stethoscope. 
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Figure 6.21 Comparison of responses for stenosis severities of 70, 80 and 90%. 

Reynolds number, phantom thickness and gauge pressure are 1750, 16.5 mm and 

35 mmHg, respectively (Stet: Electronic stethoscope, Mic: Contact microphone). 

As expected, the response amplitudes increase with the increasing stenosis severity. 

There is a difference about 5 dB between the results of 80 and 90% stenosis. The 

relative amplitude difference depending on the stenosis severity is observable up to 

450 Hz for the measurements of the electronic stethoscope. The contact 

microphone provided information within 50-300 Hz frequency range. In Figure 

6.22, the effect of phantom thickness is investigated. 
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Figure 6.22 Comparison of responses for 6.5, 16.5 and 36.5 mm (20, 40 and 80 mm 

outer diameters) thicknesses, respectively. Reynolds number, stenosis severity and 

gauge pressure are 1750, 90% and 35 mmHg, respectively (Ste: Electronic 

stethoscope, mic: Contact microphone). 

As the thickness of the phantom model decreases, the response amplitudes increase 

especially for 6.5 mm tissue phantom thickness corresponding to 20 mm outer 

diameter. The amplitude difference between the tissue thicknesses of 6.5 and 16.5 

mm reaches to 10 dB. In Figure 6.23, the effect of Reynolds number is investigated 

using the contact microphone and the electronic stethoscope. 
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Figure 6.23 Comparison of responses for Reynolds numbers 1000 and 1750. Tissue 

phantom thickness, stenosis severity and gauge pressure are 16.5 mm, 90% and 35 

mmHg, respectively (Ste: Electronic stethoscope, Mic: Contact microphone). 

As the Reynolds number increases from 1000 to 1750, a relative amplitude increase 

about 5 to 10 dB is observed both in the measurements of the electronic stethoscope 

and the contact microphone. In Figure 6.24, the results of single-point LDV, contact 

microphone and electronic stethoscope are compared for a sample case. Results in 

Figure 6.24 indicate that the single-point LDV captures all the peaks up to 500 Hz. 

The electronic stethoscope clearly provides information up to 400 Hz. However, 

the contact microphone provides information up to only 250 Hz. 
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Figure 6.24 Comparison of responses using single-point LDV, contact microphone 

and electronic stethoscope for Reynolds number 1750, 16.5 mm tissue phantom 

thickness, 90% stenosis and 35 mmHg gauge pressure (STET: Electronic 

stethoscope, MIC: Contact microphone, LDV: Single point LDV). The peaks in the 

responses are shown inside the dashed circles. 

LDV is a non-contacting sensor, but contact microphone and electronic stethoscope 

need to touch to the outer surface of the phantom model which results in a slight 

tissue deformation. This deformation changes the boundary conditions and leads to 

a small shift in the natural frequencies as shown by the arrows in Figure 6.24. The 

arrows showing the shifts in natural frequencies are not parallel to each other. The 

reason is considered as the uncontrolled deformation of the tissue phantom 

depending on the weight of the electronic stethoscope head. The diameter of the 

contacting stethoscope head is around 4 cm which is comparable to the dimensions 

of the tissue phantom model and this condition changes the boundary conditions of 

the problem domain. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

 

 

7.1 Idealized computational models 

Effect of stenosis inside an artery is investigated computationally using harmonic 

analysis. First, radial wall velocity response of an artery is obtained without 

considering any surrounding soft tissue. Bending modes of the artery model is in 

agreement with previous findings in literature in terms of resonance frequencies 

and response amplitudes. For 90% stenosis with Re = 1000, the highest arterial 

vibration is about 0.025 mm/s. If the flow rate is doubled for the same case, the 

highest arterial vibration increases 8-fold and reach about 0.2 mm/s. This condition 

shows that vibration on the outer surface of the artery is approximately proportional 

to Re3. 

Then, effects of surrounding soft tissue are investigated by obtaining radial velocity 

response on the outer surface of the tissue models. Artery model is surrounded by 

soft tissue models employing various thicknesses and elastic modulus values. 

Increasing thickness of soft tissue results in lower surface response amplitudes. 

Considering 0.1 and 1 MPa elastic modulus, if thickness is doubled, radial velocity 

amplitudes decrease about 50%; if the elastic modulus is about 10 MPa, then the 

radial velocity amplitudes decrease about 75% in case of doubling the thickness. 

When the thickness of soft tissue surrounding the artery is increased from 6.5 to 

16.5 mm, the vibration amplitudes are reduced by about 35%. If the tissue thickness 

increases from 16.5 to 36.5 mm, the vibration amplitudes on the tissue surface drop 

by approximately 50%. Effect of elastic modulus is found to be more dominant 

when compared to the effect of tissue thickness. Increasing elastic modulus 
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decreases the response amplitudes and moves bending modes to the higher 

frequencies. Effect of phase behavior of internal dynamic pressure loading is also 

investigated. Without considering surrounding soft tissues, artery radial wall 

velocity response is affected by the phase difference, as the spectral behavior 

showed a difference for frequencies upper than 200 Hz. When surrounding soft 

tissue is taken into account in the structural model, it is observed that soft tissue 

played down the effect of phase difference and compensated for the change of 

response amplitudes in a significant amount. Based on the findings of this work, it 

is possible to gain an insight about constricted flow with varying amounts of area 

reduction and flow rate buried in different depths and stiffness of tissue including 

different phase behavior of pressure excitation. In all cases, severe stenosis levels 

with area reduction higher than 70% resulted in a serious increase in response 

amplitudes, which are detectable on the skin surface using state of the art sensor 

technologies. 

In the literature, constricted flow problem is mostly studied using fluid-structure 

interaction analysis. Fluctuating pressures due to stenosis are obtained by solving 

the flow and this dynamic pressure is applied to the structural model. This coupled 

analysis requires high computational cost mostly because of the solution of the flow 

domain. In this study, fluid flow is not solved but empirical relations provided in 

literature are used to model and apply dynamic pressure field due to stenosis. 

Harmonically fluctuating pressure field is applied as forcing on the inner surface of 

an artery model, seriously decreasing the computational cost. 

7.2 Realistic computational models 

Stenotic upper arm, thigh and neck models are investigated. For the physiological 

peak flow rates, Reynolds number reaches 750, 1300 and 3840 in the femoral artery 

of the thigh, in the brachial artery of the upper arm and in the common carotid artery 

of the neck, respectively. Artery is surrounded by muscle, fat and skin layers by the 

use of realistic geometrical parameters and material properties. Radial velocity 
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responses are computationally obtained on the outer skin surface. It is seen that 

increasing stenosis severity results in nonlinearly increased response amplitudes. 

70% of stenosis severity is deemed as a critical threshold for diagnostic purposes 

since severities higher than 70% result in serious increase in response amplitudes. 

If the severity of stenosis is increased from 70% to 90%, the vibration amplitudes 

on the outer surface of tissue increase about 10 times. Amplitude increase 

depending on stenosis severity is more pronounced at high frequencies, therefore 

the amplitude difference at frequencies higher than 200 Hz can be an indicator for 

the presence of a stenosis. The vibration amplitudes on the CT based thigh, upper 

arm and neck models are proportional to u2.52, u1.92 and u2.02, respectively, where 

u is the flow jet velocity in the constricted region. The vibration amplitudes on the 

simplistic thigh, upper arm and neck models are proportional to u2.19, u2.09 and 

u1.9. The highest proportionality constants are obtained for the thigh models due to 

thicker fat and muscle layers. 

Anti-resonance curves are clearly observed for the simplistic thigh models and they 

meet near the stenosis location. If anti-resonance curves can be observed in a 

response map, they can be used to determine the stenosis location. As the geometry 

gets more complex in CT based models, anti-resonance curves may not be clearly 

visible. Therefore, a different approach may be used based on the sum of velocity 

response amplitudes for all frequencies at each spatial location within the interested 

frequency range. The sum of amplitudes has a maximum value around the stenosis 

location. In both simplistic and CT based models, the sum of response amplitudes 

effectively indicate the stenosis location. The first two natural frequencies are 

determined as 30 and 60 Hz for the thigh, 100 and 200 Hz for the upper arm, 120 

and 190 Hz for the neck. 
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7.3 Experimental findings 

The feasibility of noninvasive diagnosis of arterial stenosis is investigated both 

computationally and experimentally. Experiments are conducted by performing 

single point and scanning laser Doppler vibrometry. Results of stenosed bare tube 

experiments showed well agreement with the results in the literature. In bare tube 

analysis, increasing mean flow pressure led to circumferential pre-stress on the tube 

and increased the resonance frequencies. Then, the tube is surrounded by an 

axisymmetric bovine gelatin based tissue phantom. Radial velocity responses on 

the tissue phantom are obtained considering various stenosis severities, stenosis 

locations, tissue phantom thicknesses, mean flow pressures, and Reynolds 

numbers. The peak activity is observed within 1.5D and 4.5D downstream of the 

constriction exit where D is the unconstricted inner diameter of the tube. The peak 

activity point moved away from the stenosis location as the tissue phantom 

thickness increased. For the tissue phantom thicknesses of 6.5, 16.5 and 36.5 mm, 

the highest excitation is observed about 7.5, 12.5 and 32.5 mm downstream of  the 

stenosis exit, respectively. When phantom thickness is increased from 6.5 mm to 

16.5 mm, the vibration amplitudes decrease by about 2 dB. If the thickness is 

increased from 16.5 mm to 36.5 mm, the amplitude reduction is about 6 dB. 

Stenosis severity significantly affects the vibration amplitudes. If the severity is 

increased from 70% to 80%, the amplitudes are increased about 4 dB. When the 

stenosis severity increases from 80% to 90%, the amplitude increase is 

approximately 10 dB. For a tissue phantom thickness of 16.5 mm, the vibration 

amplitudes on the phantom tissue surface are proportional to Re1.41. 

Material characteristics of the tissue phantom are determined by performing 

tension, compression, and relaxation tests. These test results are employed in the 

computational models using commercial finite element analysis software ADINA. 

Computational models agreed well with the experimental findings in terms of 

spectral content and amplitudes. The conclusions drawn using the experimental 

findings are also observed in the computational results. At low-excited regions, the 
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difference in computational and experimental amplitudes is related with the 

experimental noise at the background. 

Also, a rectangular prismatic tissue phantom is employed to investigate the effect 

of a flat surface using scanning LDV device. Velocity amplitudes at specific 

frequencies showed that the structural modes of the tissue phantom are dominant 

between 0 and 100 Hz suppressing the effects generated by the stenosis. The 

relative amplitude increase at the downstream of the stenosis exit is quite visible 

between 100 and 700 Hz. According to the experimental results, the optimum range 

of frequency for detecting a stenosis is found to be between 200 and 500 Hz. 

7.4 State of art sensor technologies for non-invasive diagnosis 

In the experimental studies, the vibration responses on the outer surface of the 

tissue phantom models are investigated considering various parameters. Three 

different sensors are used as LDV, electronic stethoscope and contact microphone. 

In the experimental studies, the smallest radial velocity amplitude is obtained 

around the low-excited regions as 1 μm/s and the highest amplitude is measured as 

300 μm/s. Laser Doppler Vibrometer (IVS-300, Polytech, Auburn, MA) has a 

sensitivity of 0.02 μm/s. Therefore, LDV can capture even the smallest effects 

generated due to the flow-induced vibration and can be effectively used for 

diagnosing purposes. Although, it can measure the effects precisely, high cost of 

the device is a disadvantage for LDV. 

The contact microphone (CM-01B, Measurement Specialties, VA) provides limited 

information up to 300 Hz. The optimum upper limit of frequency is 500 Hz for 

investigating the effects of stenosis. Therefore, the contact microphone is not 

capable of capturing the effects due to the stenosis within 300-500 Hz. The limited 

measuring capacity at high frequencies creates a handicap for the contact 

microphone. The electronic stethoscope (Litmann 3200, 3M, MN) records the 

sounds emitted from the stenosis. It is considered as the most suitable sensor in 
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terms of cost-accuracy balance. The stenosis-based effects measured by LDV can 

be captured up to 500 Hz using the electronic stethoscope which can be effectively 

used for non-invasive diagnosis in a cheap and accurate manner. 

7.5 Future improvements 

The focus of the current study is the peripheral arteries having large-diameter 

lumens with high vibroacoustic generation. As for the future improvements, 

coronary arteries can be investigated by using the same approach in addition to 

more advanced temporal and spectral filtering techniques. Advanced signal 

processing techniques can be performed as cepstrum analysis by taking the inverse 

Fourier transform of the interested signal and also superharmonic responses can be 

investigated. In addition, wavelet analysis can be performed to provide localized 

temporal and spectral information.   

Non-Newtonian fluid behavior and the pulsatile nature of blood flow can be 

considered for further improvement. The effect of different stenosis shapes can be 

investigated considering tapered, one sided and CT based complex and more 

realistic constriction profiles. The stenosis inside peripheral arteries may affect the 

hemodynamics of the cardiovascular circulation system. Therefore, a more detailed 

full-body circulation model such as lumped-parameter model can be used to better 

estimate the physiological conditions in the arteries in case of a stenosis. 

Damping models can be improved considering the frequency dependency of the 

damping values. Rayleigh damping models can be employed to model the damping 

behavior proportional to the mass and stiffness of the tissue. Experimental studies 

can be performed to better understand the modal damping characteristics of the 

human soft tissues. In addition, the results, findings and methods proposed in the 

current investigation can be utilized in future studies with the aim of diagnosing 

cardiovascular diseases by employing machine learning algorithms. 
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