
ANOMALY-BASED CYBER INTRUSION DETECTION SYSTEM WITH 

ENSEMBLE CLASSIFIER 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

 

 

ALPER SARIKAYA 
 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF INFORMATION SYSTEMS 

 
 

 
 
 
 
 
 

SEPTEMBER 2018 
  



 
  



 
ANOMALY-BASED CYBER INTRUSION DETECTION SYSTEM WITH 

ENSEMBLE CLASSIFIER 
 

 
 
Submitted by ALPER SARIKAYA in partial fulfillment of the requirements for the degree of 
Master of Science in Information Systems Department, Middle East Technical 
University by, 
 
Prof. Dr. Deniz Zeyrek Bozşahin 
Dean, Graduate School of Informatics 
 
Prof. Dr. Yasemin Yardımcı Çetin 
Head of Department, Information Systems 
 
Assoc. Prof. Dr.  Banu Günel Kılıç 
Supervisor, Information Systems Dept., METU 

 
Examining Committee Members: 
 
Assoc. Prof. Dr. Altan Koçyiğit 
Information Systems Dept., METU 
 
Assoc. Prof. Dr. Banu Günel Kılıç 
Information Systems Dept., METU 
 
Assoc. Prof. Dr. Cengiz Acartürk 
Cognitive Science Dept., METU 
 
Asst. Prof. Dr. Pelin Angın  
Computer Engineering Dept., METU 
 
Assoc. Prof. Dr. Sevil Şen 
Computer Engineering Dept., Hacettepe University 
 
 

Date:                    6 September 2018 
 

 
  

 





iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained 
and presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 

 

 
 
 
 
 

Name, Last name:   Alper SARIKAYA 
 
 
 

Signature             :         
  



iv 
 

ABSTRACT 

 
ANOMALY-BASED CYBER INTRUSION DETECTION SYSTEM WITH 

ENSEMBLE CLASSIFIER 
 
 

SARIKAYA, ALPER 
MSc., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Banu Günel Kılıç 
 

September 2018, 61 pages 
 
Nowadays, cyberattacks are occurring progressively. Along with this, diversity, size and 
density of the cyberattacks are increasing. When the logs of security devices are 
analyzed, massive amounts of attack signs are detained. Besides, it is also difficult for 
humans to evaluate the logs accurately. Therefore, the identification of key data, which 
can be used to distinguish an attack from this very large data set, is important for both 
rapid detection of attacks and rapid response of security devices. This study focuses on 
selection of appropriate features from logs via machine learning and determining the 
distinctive attributes specific to an attack in the selection of these data. Based on the 
selected features, a classification methodology is proposed. As a result, 80.20% overall 
accuracy has been achieved using the proposed model with 19 features. Moreover, a 
better detection rate on DoS and Exploit classes has been obtained. 
 
Keywords: Cyberattack, Machine Learning, Intrusion Detection System 
  



v 
 

ÖZ 

 
TOPLULUK ÖĞRENMESİYLE ANOMALİ TABANLI SİBER İHLAL TESPİT 

SİSTEMİ 

 
SARIKAYA, ALPER 

Yüksek Lisans, Bilişim Sistemleri Bölümü 
Tez Yöneticisi: Doç. Dr. Banu Günel Kılıç 

 
Eylül 2018, 61 sayfa 

 
Günümüzde, siber saldırılar giderek artan bir şekilde meydana gelmektedir. Bununla 
birlikte, siber saldırıların çeşitliliği, büyüklüğü ve yoğunluğu artmaktadır. Güvenlik 
cihazlarının logları incelendiğinde, büyük miktarda saldırı izi elde edilmektedir. Ayrıca, 
insanlar için logların doğru olarak değerlendirmesi de zordur. Bu nedenle, bu çok büyük 
veri setinden bir saldırıyı ayırt etmek için kullanılabilecek anahtar verilerin 
tanımlanması hem saldırıların hızlı tespiti hem de güvenlik cihazlarının hızlı bir şekilde 
tepki göstermesi açısından önemlidir. Bu çalışma, makine öğrenmesi yoluyla loglardan 
uygun verilerin seçimine ve bu verilerin seçiminde bir saldırıya özgü ayırt edici 
özelliklerin belirlenmesine odaklanmaktadır. Seçilen özellikler kullanılarak, bir 
sınıflandırma metodolojisi önerilmiştir. Sonuç olarak, 19 özellik ile önerilen model 
kullanılarak %80,20 ortalama doğruluk başarılmıştır. Ayrıca, DoS ve Exploit 
sınıflarında daha iyi bir tespit oranı elde edilmiştir. 
 
Anahtar Sözcükler: Siber Saldırı, Makine Öğrenmesi, Saldırı Tespit Sistemi  



vi 
 

 
 
 
 
 
 
 
 
 

DEDICATION 

 
 

“Life is measured in achievement, not in years alone.” 
Bruce McLaren 

  



vii 
 

ACKNOWLEDGMENTS 

 

First of all, I would like to express my gratitude and my respect to my thesis advisor 
Assoc.Prof.Dr. Banu Günel Kılıç for her priceless guidance, encouragement and 
continuous support to make this research possible. 
I also thank my thesis jury members, Assoc. Prof. Dr. Altan Koçyiğit, Assoc. Prof. Dr. 
Cengiz Acartürk, Assoc. Prof. Dr. Sevil Şen, Asst. Prof. Dr. Pelin Angın for their 
suggestions and reviewing my work.  
Special thanks to The Scientific and Technological Research Council of Turkey 
(TÜBİTAK) for 2210-A scholarship. 
Finally, I would like to express my deepest gratitude to my wife, Özlem, for her love, 
encouragement and support in all my life. This thesis would not have been written 
without her. 
  



viii 
 

TABLE OF CONTENTS 

 
ABSTRACT ...................................................................................................................... iv 
ÖZ ...................................................................................................................................... v 
DEDICATION .................................................................................................................. vi 
ACKNOWLEDGMENTS ............................................................................................... vii 
TABLE OF CONTENTS ................................................................................................ viii 
LIST OF TABLES ............................................................................................................. x 

LIST OF FIGURES .......................................................................................................... xi 
LIST OF ABBREVIATIONS .......................................................................................... xii 
CHAPTERS 
1. INTRODUCTION ..................................................................................................... 1 

1.1. Motivation ........................................................................................................... 1 
1.2. Aim of the Study ................................................................................................. 3 

1.3. Scope of the Thesis ............................................................................................. 3 
1.4. Outline of the Thesis ........................................................................................... 4 

2. MACHINE LEARNING AND INTRUSION DETECTION SYSTEM ................... 5 
2.1. Cyber Security and Network/Host Security Applications ................................... 5 
2.2. Machine Learning ............................................................................................... 7 

2.2.1 Supervised and Semi-supervised Machine Learning ................................... 7 
2.2.2 Unsupervised Machine Learning ................................................................. 8 
2.2.3 Reinforcement Learning .............................................................................. 8 

2.3 Feature Selection and Applications ..................................................................... 9 

2.3.1 Filter-based Feature Selection ...................................................................... 9 
2.3.2 Wrapper-based Feature Selection .............................................................. 10 

2.4 Machine Learning Based Intrusion Detection System Models ......................... 10 
2.5 Performance Metrics ......................................................................................... 13 

3. METHODOLOGY .................................................................................................. 15 
3.1. UNSW-NB15 Data set ...................................................................................... 15 
3.2. Feature Selection ............................................................................................... 18 



ix 
 

3.2.1. Result of Feature Selections .......................................................................... 21 
3.2.2. Initial Insights about the Accuracy of Decision Tree Classifier .................... 22 

3.3. Proposed Method: Hierarchical Multiclass Classifier ....................................... 23 

3.3.1. Stages and Purposes ....................................................................................... 25 
3.3.2. Data set Adjustment for Stages ...................................................................... 25 

4. EVALUATION OF HIERARCHICAL MULTICLASS CLASSIFIER ................. 29 
4.1. Experiment Setup .............................................................................................. 29 
4.2. Results ............................................................................................................... 29 

5. DISCUSSION .......................................................................................................... 35 
6. CONCLUSION ........................................................................................................ 39 

6.1. Future Work ...................................................................................................... 40 
6.2. Limitations of the Thesis ................................................................................... 40 

REFERENCES ................................................................................................................ 41 
APPENDICES ................................................................................................................. 47 
APPENDIX A .................................................................................................................. 47 
APPENDIX B .................................................................................................................. 51 
APPENDIX C .................................................................................................................. 53 
 
  



x 
 

LIST OF TABLES 

 
Table 1 2017 Cyber Threats and Status Change according to ENISA Threat Landscape 
Report 2017 (ENISA, 2017) .............................................................................................. 2 
Table 2 Some example of Machine Learning based Intrusion Detection Models ........... 12 
Table 3 UNSW-NB15 Training and Testing Set Statistical Information ........................ 16 
Table 4 UNSW-NB15 Data Set Features ......................................................................... 17 
Table 5 Selected Features in UNSW-NB15 Testing Set by Wrapper Method ................ 20 
Table 6 Selected Features in UNSW-NB15 Testing Set by Filter Method ..................... 21 
Table 7 Selected Features by Khammassi and Krichen ................................................... 21 
Table 8 Overall Accuracy of Decision Tree Using Three Different subsets ................... 21 
Table 9 Results of classifier with 19 features and 43 features in UNSW-NB15 Testing 
Set .................................................................................................................................... 22 
Table 10 Confusion Matrix of Decision Tree Classifier with 19 Features ...................... 23 
Table 11 Data Set Parts and Instance Sizes ..................................................................... 27 
Table 12 Results for the proposed Hierarchical Multiclass Classifier and the Random 
Forest Classifier ............................................................................................................... 29 
Table 13 Stage-1 Attack Detection Result ....................................................................... 30 
Table 14 Confusion Matrix of Hierarchical Multiclass Classifier ................................... 30 
Table 15 Results of some Researches about Anomaly-based IDS model ....................... 35 
Table 16 Hierarchical Multiclass Classifier vs. GA-LR Model ...................................... 36 
Table 17 Results for the proposed Hierarchical Multiclass Classifier and the Random 
Forest Classifier using Khammassi and Krichen’s Subset .............................................. 37 

  



xi 
 

LIST OF FIGURES 

 
Figure 1 An example of p0f warning/alerts log ................................................................. 6 
Figure 2 Example of Decision Tree Structure ................................................................... 8 
Figure 3 UNSW-NB15 Testing Set for Feature Selection by WEKA ............................. 19 
Figure 4 Result of Wrapper-based Feature Selection ...................................................... 20 
Figure 5 Hierarchical Multiclass Classifier ..................................................................... 24 
Figure 6 UNSW-NB15 Data sets and Adjustment on Data set ....................................... 26 
Figure 7 Stage-1 Learning Curve ..................................................................................... 31 
Figure 8 Stage-1 ROC Curve ........................................................................................... 32 
Figure 9 Stage-2 Learning Curve ..................................................................................... 32 
Figure 10 Stage-2 ROC Curve ......................................................................................... 33 
Figure 11 Stage-3 DoS/Exploit Learning Curve .............................................................. 33 
Figure 12 Stage-3 DoS/Exploit ROC Curve .................................................................... 34 

 

  



xii 
 

LIST OF ABBREVIATIONS 

 
ACCS Australian Centre for Cyber Security 
ANOVA Analysis of Variance 
APT Advanced Persistent Threat 
ARFF Attribute-Relation File Format 
CATSUB Clustering Categorical Data Based on Subspace 
CVE Common Vulnerabilities and Exposures 
DARPA Defense Advanced Research Projects Agency 
DDoS Distributed Denial of Service 
DoS Denial of Service 
ENISA European Union Agency for Network and Information Security 
FN False Negative 
FP False Positive 
GA-LR Genetic Algorithm–Logistic Regression 
GB Gigabyte 
ID3 Iterative Dichotomizer 3 
IDS Intrusion Detection System 
IPS Intrusion Prevention System 
KDD Knowledge Discovery and Data Mining 
kNN k-Nearest Neighbor 
NP Nondeterministic Polynomial Time 
PCAP Packet Capture 
R2L Remote to Local 
RDP Remote Desktop Protocol 
RMSE Root Mean Square Error 
ROC Receiver Operating Characteristic 
SIEM Security Information and Event Management 
SQL Structured Query Language 
SVM Support Vector Machine 
TCP/IP Transmission Control Protocol/Internet Protocol 
TN True Negative 
TP True Positive 
TTL Time to Live 
U2R User to Root 



xiii 
 

UNSW University of New South Wales 
VPN Virtual Private Network 
WAF Web Application Firewall 
XML Extensible Markup Language 
 
 
 
 
 
 
 





1 
 

 
 

 
CHAPTER 1 
CHAPTER 

1. INTRODUCTION 

 

1.1. Motivation 

In today’s world, the Internet is an indispensable need for humanity. In everyday life, 
people share their credit card information, bank accounts and many other sensitive 
private information through Internet. Besides, many commercial organizations and state 
agencies rely on the Internet. The networks are deeper and bigger than ever. For these 
reasons, keeping safe our resources, data, information and reputation are critical at the 
moment.  

According to the European Union Agency for Network and Information Security 
(ENISA, 2017), the complexity of the attacks and sophistication of malicious actions 
continue to increase (Table 1). As of 2017, Malware, Web-based attack, Web 
application attack, Phishing, Spam and Denial of Service attacks were the main threats 
to our networks according to ENISA 2017 Cyber Threat Landscape Report. This report 
also emphasizes that the critical infrastructure is the main target for hackers. Therefore, 
cyberattacks which have evolved rapidly are instruments that target our networks and 
the information systems. 

There are millions of different malwares, SQL Injection attacks and emerging XML 
injections. Each cyberattack type, such as Ransomware, DDoS, Web Application attack, 
have different characteristics. Therefore, writing a simple program to detect all 
cyberattack types is not possible. Since these attacks change continuously, it is essential 
to use adaptive technologies for cyberattack detection.  

Cyber security is a set of technologies and functions designed to protect computers, 
networks, programs, resources and data from out of service attacks, unauthorized access, 
eavesdropping, change, or destruction. Designing an effective cyberattack detection 
mechanism requires many skilled tasks. High detection capability, quick response, 
preventive measures are important properties of these detection mechanisms. 

There are many defense measures to protect a network and an information system, such 
as intrusion detection system (IDS), firewalls, anti-virus, and security information and 
event management (SIEM) (Zhong et al., 2018). Intrusion Detection/Prevention Systems 
(IDS/IPS) are important parts of network security to confront cyberattacks.  



2 
 

 
Table 1 2017 Cyber Threats and Status Change according to ENISA Threat Landscape 

Report 2017 (ENISA, 2017) 

Threats in 2016 Threats in 2017 Status Change 

1. Malware 1. Malware « 

2. Web based attacks 2. Web based attacks « 

3. Web application attacks 3. Web application attacks « 

4. Denial of service  4. Phising  
5. Botnets 5. Spam  

6. Phising 6. Denial of service ¯ 

7. Spam 7. Ransomware  

8. Ransomware 8. Botnets ¯ 

9. Insider threat 9. Insider threat « 
10. Physical manipulation 
/ damage / theft / loss 

10. Physical manipulation 
/ damage / theft / loss « 

11. Exploit kits  11. Data breaches  

12. Data breaches  12. Identity theft  

13. Identity theft 13. Information leakage  

14. Information leakage 14. Exploit kits ¯ 

15. Cyber espionage 15. Cyber espionage « 
 

Machine learning based IDS models provide skillful techniques for network security and 
cyberattack detection. Generally, there are three IDS models based on machine learning: 
Signature-based, anomaly-based and hybrid (Buczak and Guven, 2016). 
 
Signature-based (Misuse-based) IDS is designed to detect known attacks by using 
signatures of attacks. If attacks are known, they produce good detection rates and low 
false positive rates. In order to achieve better detection, frequent signature update is 
essential. Its main weak point is that signature-based techniques cannot detect zero-day 
attacks (Buczak and Guven, 2015). These are due to new vulnerabilities that emerge 
every day which hackers exploit quickly (Iglesias and Zseby, 2014). 

Anomaly-based IDS analyzes the network traffic and the system behavior. It is simple to 
monitor normal network behavior. When it detects suspicious behavior, which is 
different from the normal network traffic, it alerts. They are attractive because of the 
ability to detect zero-day attacks (Gogoi et al., 2014). Also, abnormal activities detected 



3 
 

from anomaly-based systems can be used to create an attack signature (Buczak and 
Guven, 2016) . Therefore, anomaly-based IDS is a much more preferred choice. 

Hybrid IDS combines strong point of the signature-based and the anomaly-based IDS. 
Hybrid systems’ main purposes are increasing the detection rates of known cyberattacks 
and decreasing false positive (FP) rates of unknown attacks (Buczak and Guven, 2016). 

Another division of IDS is network-based or host-based. Simply, network-based IDS 
monitors all network traffic, while host-based IDS works on a specific host (Buczak and 
Guven, 2016).  

However, in machine learning-based IDS, the critical point is that the network data or 
attack data set which are used for model training should be present for the real network 
behavior of today’s attack types. 

Even though IDS/IPS provide security against attacks, some attacks are hard to detect. 
Anomaly-based IDS may suffer from realizing attacks, which are carried out by highly 
skilled groups through various tactics and techniques. Especially, Advanced Persistent 
Threat (APT) is usually hard to detect by IDS/IPS.  

1.2. Aim of the Study 

This study aims to increase the detection rate of attack classes by an anomaly-based 
intrusion detection system. 
 
The objectives of the study are: 

• To analyze the effectiveness of a machine learning based IDS model against 
current attack types on a new cyberattack data set, University of New South 
Wales (UNSW)-NB15, 

• To show the ability of hierarchical machine learning model for increasing the 
detection/accuracy rate, 

• To reveal the difficulty of detecting some attack types, 
• To understand the reasons of low detection rates for some attack types. 

1.3. Scope of the Thesis 

Within the scope of this thesis, cyberattack detection by a machine learning based IDS 
model was targeted. Only, supervised machine learning approach was considered. 
Random Forest Classifier was used for developing the model. For feature selection 
process, wrapper-based feature selection was selected. 
 
The proposed model is an example of anomaly-based IDS. Signature-based IDS and 
hybrid-based IDS models are outside the scope of this thesis. In view of the data set, 
UNSW-NB15 cyberattack dataset was chosen for training and testing purposes. 



4 
 

Knowledge Discovery and Data Mining (KDD)-CUP 99 and NSL-KDD are well known 
data sets; however, they were not used in this thesis. 

1.4. Outline of the Thesis 

This document is organized as six chapters. The aim and scope of the thesis are stated in 
the first chapter. Chapter 2 defines the basis of machine learning and some developed 
IDS models in the literature. Chapter 3 explains the feature selection process and the 
proposed model. Chapter 4 provides the evaluation of the proposed model.  Chapter 5 
compares the proposed model with other studies. Chapter 6 concludes the thesis and 
provides the limitations and future work. 
 
  



5 
 

 
 
 
 

CHAPTER 2 
 

2. MACHINE LEARNING AND INTRUSION DETECTION SYSTEM 

 
In cyber security, machine learning has a strong background and versatile application. In 
this chapter, machine learning basis, intrusion detection models, discussion and criticism 
about previous studies are given. 

2.1. Cyber Security and Network/Host Security Applications 

Today, the information age presents many practicalities to us. People can easily check 
their bank accounts, look at social media, send e-mail to their employer, take a family 
photo and many other individual processes by using a computer, mobile phone or other 
smart devices. Although many commercial organizations and state agencies use the 
internet for their daily business, too, they have other special services, such as VPN, 
cloud services etc. Even military operations rely on the Internet, which shows us that the 
Internet is indispensable for our everyday lives. 

Basically, the Internet consists of a distributed local network. We keep, work, produce 
and distribute our data through this network. For all of these reasons, protecting our 
network is critical. Cyber security is all the measures that protect our resource, network 
and data. It simply provides the hardware and software for this purpose. 

However, hackers, hacktivists and even state sponsored hackers use the Internet for 
making money, deactivate devices, changing political behavior, destroying our 
resources, eavesdropping, changing information and many other purposes. These make 
cyber security an indispensable part of our network. 

Some security software and hardware (Zhong et al., 2018) which are prevalent are; 

• Antivirus / End-point security software, 

• Data Loss Prevention Software, 

• Software Based Firewall (Snort, Bro etc.), 

• Hardware Based Firewall, 



6 
 

• Web Application Firewall (WAF), 

• Load Balancer, 

• Intrusion Detection / Prevention System (IDS/IPS), 

• Security Information and Event Management (SIEM). 
 

Among these, the most critical measure is the Intrusion Detection/Prevention System 
(IDS/IPS). IDS/IPS monitors all the network traffic and alerts when it detects an attack. 
Besides, IPS behaves actively to suppress the attack. The systems are suitable for 
network security and provide very detailed network traffic logs. They mostly use attack 
signatures to detect an attack and generate logs. However, periodical updates for attack 
signatures are critical for these systems. 
 
There are many examples of software-based IDS/IPS. Surricata (Suricata, 2017), Snort 
(Roesch, 1999) and Bro (Sommer, 2016) are freeware versions of IDS/IPS systems. 
These applications use attack signatures and rely on daily/hourly signature update, 
which is critical for success. These applications produce logs which are related to 
signature/warning and errors. Often, the logs which are produced are hard to analyze and 
trace. A parsed log example of p0f is presented in Figure 1. 
 

 
Figure 1 An example of p0f warning/alerts log 

Network security engineers actively use IDS/IPS, firewalls and other security 
software/hardware in many networks. However, despite the active/passive measures, 
logs which are produced by this security software/hardware are plenty and hard to 
evaluate manually. For example, port scan is an alert for many IDS/IPS. They produce 
thousands of logs in every hour. On the other hand, a malicious request to port 139 with 
RDP is much more critical than port scan and this might happen once a week. Moreover, 



7 
 

many IDS/IPS provide alerts or warnings but all decisions are taken by a security expert, 
which is not ideal for network security. 

2.2. Machine Learning 

Machine learning is a subset of artificial intelligence that a program learns from 
experience with help of data without being explicitly programmed. The main idea 
behind machine learning is making a human level task. Machine learning helps us in 
many fields: spam detection, face recognition, drug discovery, driverless car, 
cyberattack detection, speech recognition, budget expectation, etc. 
 
Machine learning methods usually produce good accuracy/detection result for 
cyberattack detection (Buczak & Guven, 2016). However, in anomaly detection 
research, Tavallaee et al. (2010) point out the importance of data sets, methods on 
experiments and performance evaluation criteria. 
 
There are four types of machine learning: 

• Supervised Learning 

• Semi-supervised Learning 

• Unsupervised Learning 

• Reinforcement Learning 

2.2.1 Supervised and Semi-supervised Machine Learning  

In supervised learning, the model uses labeled data to learn from experience. Every 
instance in the data set has features and a class label. The model uses features and label 
to build up a classifier. After training, the model predicts new instances. 

Classification and regression are the main tasks in supervised learning. In classification 
problem, the model uses instance’s features to assign it to a class. In regression problem, 
the model uses the features to predict a value. Decision tree (Quinlan, 1999), Naive 
Bayes (Mukherjee and Sharma, 2012), Support Vector Machine (Cortes and Vapnik, 
1995), Multilayer Perceptron (Pal and Mitra, 1992) are examples of supervised learning. 

Decision Tree is a well-known machine learning method, because, it is robust to noisy 
data and capabilities of learning disjunctive expressions (Quinlan, 1999). C4.5 is the 
mostly preferred type of decision trees (Quinlan, 1992). A simple example of the 
decision tree structure of IRIS data set is presented in Figure 2. 



8 
 

 
Figure 2 Example of Decision Tree Structure 

k-Nearest neighbor is another machine learning method (Cunningham and Delany, 
2007). It is an instance-based model. This type of model simply keeps the training 
example and uses them for classification. It is a lazy method because it delays learning 
until a new instance is to be classified (Mitchell, 1997). 

Support vector machine (SVM) is another widely used machine learning model (Cortes 
and Vapnik, 1995). It is capable of linear or nonlinear classification, regression and 
outlier detection. It divides the classes using linear, polynomial or radial kernel. 

Ensemble learning methods combine multiple weak classifiers to improve the model 
accuracy (Buczak and Guven, 2016). Random forest is an ensemble classifier which 
combines multiple decision trees (Oshiro et al., 2012). Prediction of input is done with 
voting of decision trees. It is efficient in large data set. 

2.2.2 Unsupervised Machine Learning 

In unsupervised learning, labelled data is not available, and the model uses clustering 
and grouping for analyzing future data. Expectation-maximization (Do and Batzoglou, 
2008), outlier (Ben-Gal, 2005) and clustering (Jain et al., 1999) are examples of 
unsupervised learning. 
 
Clustering is a method for grouping objects using similarity within group. It is essential 
that similarity within a cluster is high as well. An outlier means that the data is very 
different from the rest of the data (Gogoi et al., 2014) 

2.2.3 Reinforcement Learning 

Last type of machine learning is reinforcement learning. There is an agent for future acts 
and each act has a reward or penalty. The purpose of agent’s policy is the maximization 



9 
 

of the total reward or minimization of the total penalty. Q-learning (Watkins and Dayan, 
1992) and Boltzmann Machine (Hinton and Salakhutdinov, 2009) are examples of 
reinforcement learning. 

2.3 Feature Selection and Applications 

Despite its benefits and good problem-solving ability, one of the main problems of 
machine learning is the feature size in the data set. Many machine learning models use 
thousands of features for training. The more features we use in machine learning 
application, the more this may yield slow training, more overfitting and curse of 
dimensionality (Iglesias and Zseby, 2015). 
 
Feature selection acts to solve these problems. Many researchers emphasize the 
importance of feature selection in machine learning research (Li et al., 2009; 
Chandrashekar and Sahin, 2014; Iglesias and Zseby, 2015).  Removing unnecessary and 
trivial features reduces the training time and increases accuracy. Guyon and Elisseeff 
(2003) also assert the importance of feature selection. They argue that feature selection 
improves the performance of a classifier, reduces the computational effort and presents 
better data understanding. 
 
Aldehim and Wang (2017) attempts to figure out how to use the data set in feature 
selection methods. They compared full data sets and part of the data set for the feature 
selection process and found that if the data set had large enough data, two methods 
produced the same result. 
 
Najafabadi et al. (2016) also work on feature selection. They used the Kyoto Data set 
which has 24 features and kNN, C4.5, Naive Bayes classifiers. They also conducted an 
ANOVA test for measuring the significance of the feature selection process. ANOVA 
test results showed that the feature selection is important for data preprocessing. 
Reduced feature data set provided better results than all-features data set. 
 
There are two main machine learning strategies for feature selection: Filter-based and 
wrapper-based (Khor et al., 2009; Chandrashekar and Sahin, 2014). Filter-based feature 
selection uses ranking techniques as the principle criteria for variable selection by 
ordering (Chandrashekar and Sahin, 2014). On the other hand, wrapper-based feature 
selection uses a classification model to evaluate the feature subsets. It is a cluster-based 
approach (Ladha and Deepa, 2011).  

2.3.1 Filter-based Feature Selection 

Filter-based methods use feature ranking for detecting important features. If a feature 
has no effect over a class, this feature is discarded (Chandrashekar and Sahin, 2014). A 
threshold can be used for the elimination process. Using the correlation criteria is one of 



10 
 

the ranking methods. It simply calculates the Pearson correlation coefficient between a 
feature and a class label: 

𝑅" =
$%&((),+)

-&./(())	×	&./(+)
        (2.1) 

where  𝑥" is ith feature, Y is the class label, cov() is the covariance and var() is the 
variance. Filter-based methods are quick and the result is less overfitting. However, the 
main disadvantage of these methods is that the selected subset may not be an optimal 
subset in that a redundant subset can be obtained (Chandrashekar and Sahin, 2014). 

2.3.2 Wrapper-based Feature Selection 

Wrapper-based feature selection uses the Black-Box technique for ranking features 
(Chandrashekar and Sahin, 2014). In every iteration, it adds a feature to the subset and 
then evaluates the classifier success. Successful feature is kept in the subset. If the data 
set contains n features, there are 24 available subsets and this is called an NP-hard 
problem. Some optimized algorithms, such as the Genetic Algorithm or Particle Swarm 
Optimization present feasible computational subsets. As a result, the main disadvantage 
of wrapper-based methods is the computational power. However, once a subset is 
selected, it is much more successful than using a subset obtained by filter-based feature 
selection. 

2.4 Machine Learning Based Intrusion Detection System Models 

For cyber security, machine learning studies generally use packet-level data (Cannady, 
1998), NetFlow oriented data (Apiletti et al., 2009) and public data sets (Buczak and 
Guven, 2016). Packet-level data is obtained from the physical interface of computers, 
switches or routers, etc. They are saved as Packet Capture (PCAP) file format generally. 
NetFlow, which is a property of CISCO, is another type of network packet traffic 
collection. It is simply compressed and preprocessed version of network traffic. 
However, the mostly used data in the cyber-security field is public data sets. They are 
generally Defense Advanced Research Projects Agency (DARPA), KDD-CUP 99 and 
NSL-KDD data set. 

DARPA 1998 data set was created in Massachusetts Institute of Technology Lincoln 
Laboratory for testing of the IDS/IPS. A simulation network was used for the traffic 
capture and nine weeks’ data was created. First seven weeks of data was used for the 
training set and last two weeks of data was used for the testing set. There are four attack 
classes: Denial of Service (DoS), Probe, Remote-to-Local (R2L), User-to-Root (U2R). 
 
KDD-CUP 99 is created from DARPA 1998 Transmission Control Protocol/Internet 
Protocol (TCP/IP) data. This data set has 41 attributes and three base components: Basic, 
content and traffic features. It has four attack classes: Normal, Denial of Service, Probe, 
Remote-to-Local, User-to-Root. However, this data set is obsolete and has some 



11 
 

drawbacks (McHugh, 2000; Tavallaee et al., 2009; Gogoi et al., 2012). For example, 
time to live (TTL) value in attack data packet is 126 or 153, but these values do not 
occur in the training records of attack data, the probability distributions of testing and 
training sets are different from each other. Also, the data set does not include a low foot 
print attack (Moustafa and Slay, 2015).  
 
UNSW (University of New South Wales)-NB15 attack data set was created by the 
Australian Centre for Cyber Security (ACCS) to present a more realistic data set. 
Common Vulnerabilities and Exposures (https://cve.mitre.org) were used for the attack 
generation. Attack types in data set and features are explained in Section 3.1. There are a 
number of anomaly-based IDS researches based on this data set (Janarthanan and 
Zargari, 2017; Khammassi and Krichen, 2017; Moustafa and Slay, 2017; 
Papamartzivanos et al., 2018; Nawir et al., 2018). 
 
Tavallaee et al. (2009) proposed NSL-KDD data set. Simply, it consists of selected 
records of KDD-CUP 99 dataset. The inherent problems of KDD-CUP 99 were tried to 
be solved, but still this data set has some drawbacks as mentioned by (McHugh, 2000). 
 
General approaches in machine learning based intrusion detection systems can be 
classified into three groups: anomaly-based, signature-based and hybrid. While some 
researchers focus on only the attack detection (Normal or Attack), others focus on the 
attack classification (Classification of each specific type of attack).  
 
Shon and Moon (2007) propose a hybrid SVM classifier for combining one-class SVM 
(unsupervised) and Soft-Margin SVM (supervised). They work on DARPA 1999 data 
set and use filter-based feature selection algorithm. Also, they use real-time network 
traffic to test the unsupervised approach. Their research provides 99.90% accuracy on 
real time network traffic and on DARPA 99 data set accuracy rate is nearly equal to 
Snort and Bro detection rate which is about 94.19%. This model only detects anomaly; 
no attack classification is specified. 
 
Pervez and Farid (2014) test another SVM model. They use the NSL-KDD data set. 
Their approach is attack detection and they use filter-based feature selection. Using only 
14 features rather than 41, they achieve 82.68% accuracy rate. Using only three features, 
they achieve 78.85%. However, the accuracy of each attack class is not provided. 
 
Gogoi et al. (2014) propose the combination of supervised and unsupervised classifiers 
using KDD-CUP 99, NSL-KDD and real time traffic. The developed version of 
clustering categorical data based on subspace (CatSub) supervised model (CatSub+) is 
used for DoS/Probe detection; K-point unsupervised method is used for normal traffic 
and outlier model is used for User-to-Root and Remote-to-Local attacks detection in a 
multistage manner. In all classes, they achieve better accuracy rates by using only C4.5 
Decision Tree or SVM. It is clear that the combination of classifiers provides better 
accuracy. 
 



12 
 

Bolón-Canedo et al. (2011) work on the multiclass classification problem. They use 
KDD-CUP 99 data set with C4.5 decision tree and Naïve Bayes classifiers. They try two 
different approaches: multiple class algorithm and multiple binary classifier, but none of 
them achieve the KDD winner result (Detection rate of Normal:99.45%, U2R:13.16%, 
DoS: 97.12, Probe: 83.32%). They also assert that Naïve Bayes and decision tree are 
applicable for large databases. 
 
Moustafa and Slay (2017) work on hybrid feature selection method using NSL-KDD 
and UNSW-NB15 data sets. They use Naïve Bayes, expectation-maximization and 
logistic regression classifier. Results show that only 11 features are enough to yield 
better results for both data sets. Logistic regression for UNSW-NB15 provide 83% 
accuracy. UNSW-NB15 data set is considered as a complex data set due to behaviors of  
attack and normal network traffic (Moustafa and Slay, 2016). 
 
Khammassi and Krichen (2017) use Genetic Algorithm-Logistic Regression (GA-LR) 
for feature selection and C4.5 decision tree for multiclass classification on UNSW-NB15 
and KDD-CUP 99 data set. Using only 20 features on UNSW-NB15 data set, they 
achieve 81.42% accuracy. Also, they agree that UNSW-NB15 data set is a more 
complex data set than KDD-CUP 99 data set. These two assertions should be tested with 
a new machine learning model. 

Janarthanan and Zargari (2017) analyze UNSW-NB15 and KDD-CUP 99 data set’s 
features for effective network intrusion detection system. According to their findings, 
service, sbytes, sttl, smean and ct_dst_sport_ltm are significant features in UNSW-NB15 
data set.  

Nawir et al. (2018) use Average One Dependence Estimator, Bayesian Network and 
Naive Bayes for binary classification on UNSW-NB15 data set. Average One 
Dependence Estimator is the best classifier with 94.37% accuracy and Naive Bayes is 
the worst classifier with 75.73% accuracy. They also argue that UNSW-NB15 is 
relevant for anomaly detection due to synthesized attack patterns. However, they 
develop models against binary classification. 
 

Table 2 Some example of Machine Learning based Intrusion Detection Models 

ML Model Authors Approaches Data set Used 
Bayesian Net Khor et al., 2009 Anomaly KDD-CUP 99 

Bayesian Net Kruegel, Mutz, Robertson, & 
Valeur, 2003 Anomaly DARPA 1999 

Decision Tree Eesa, Orman, & Brifcani, 
2015 Anomaly KDD-CUP 99 

Decision Tree Akyol, Hacibeyoglu, & 
Karlik, 2016 Anomaly KDD-CUP 99, 

ISCX 2012 



13 
 

Decision Tree 
& Naive Byes Bolón-Canedo et al., 2011 Anomaly KDD-CUP 99 

Ensemble-
Random Forest 

Jiong Zhang, Zulkernine, & 
Haque, 2008 

Anomaly, 
Misuse KDD-CUP 99 

k-NN Leung & Leckie, 2005 Anomaly KDD-CUP 99 
k-NN, 
Decision Tree, 
Naive Bayes 

Najafabadi et al., 2016 Anomaly KYOTO 2006 

Logistic 
Regression Khammassi & Krichen, 2017 Anomaly UNSW-NB15, 

KDD-CUP 99 
Naive Bayes & 
Decision Tree 

Amor, Benferhat, & Elouedi, 
2004 Anomaly KDD-CUP 99 

Neural 
Networks Cordella & Sansone, 2007 Anomaly KDD-CUP 99 

Neural 
Networks Cannady, 1998 Misuse Real time 

Network Traffic 

SVM Aburomman & Ibne Reaz, 
2017 Anomaly NSL-KDD 

SVM Shon & Moon, 2007 Anomaly, 
Misuse DARPA 99 

SVM Ganapathy, Yogesh, & 
Kannan, 2012 Anomaly KDD-CUP 99 

SVM Pervez & Farid, 2014 Anomaly NSL-KDD 
 
Attack classification, which involves more than two classes, is a more difficult problem 
than attack detection, which involves just a binary decision. Moreover, in attack 
classification, the classifier’s performance may vary according to the attack class. While 
the accuracy for some classes may be high, for other classes it may be worse than 
expected (Gogoi et al., 2014). To overcome this accuracy problem, multi-level model 
might be a solution. 

2.5 Performance Metrics 

Accuracy, Precision, Recall and F1-Score are used for measuring the performance of 
models. For multiclass classification, overall accuracy, class detection rate and class FP 
rate are used. True Positive (TP), i.e., positive instances that are classified as a positive; 
True Negative (TN), i.e., negative instances that are classified as a negative; False 
Positive (FP), i.e., negative instances that are classified as a positive; False Negative 
(FN), i.e., positive instances that are classified as a negative, are our basis terms. 

Accuracy is the percentage of correctly classified instances and is measured as 



14 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ;<=;>
;<=;>=?<=?>

 .         (2.2) 

Precision is the percentage of positive instances that are correctly labeled and is 
measured as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ;<
;<=?<

 .           (2.3) 

Recall (Detection Rate) is the percentage of actually positive instances and is measured 
as 

𝑅𝑒𝑐𝑎𝑙𝑙 = ;<
;<=?>

  .         (2.4) 

F1-Score is the weighted average of the precision and recall: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2	 ×	 (K/L$"M"%4	×	/L$.NN)	
(K/L$"M"%4=	/L$.NN)

 .      (2.5) 

Overall accuracy is exemplars classified correctly from all exemplars. 
 
Class detection rate is the ratio of exemplars classified correctly to all exemplars from 
the given class. 
 
Class FP rate is the ratio of exemplars classified incorrectly from given class to all 
exemplars not from the given class. 
 
Receiver Operating Characteristic curve (ROC curve) is used for the true positive 
rate against the false positive rate at various threshold settings. 
 
  



15 
 

 
 

 
CHAPTER 3 

 
 

3. METHODOLOGY 

 
 
In this chapter, UNSW-NB15 data set, wrapper feature selection method, the results of 
the feature selection process and the proposed machine learning model are explained. 
The feature selection method gives us some initial insights about attack classification. 
Then, the proposed model and the usage of data set are described.  

3.1. UNSW-NB15 Data set 

UNSW (University of New South Wales)-NB15 Network data set was created by the 
Australian Centre for Cyber Security (ACCS) to present a more realistic data set. The 
main idea behind this data set is projection of today’s network behavior. IXIA 
PerfectStorm is used for network traffic simulation. This appliance uses the current 
Common Vulnerability and Exposure (CVE) list and simulates a specific attack type. By 
using these latest vulnerabilities and exposures, more realistic attack behaviors are 
created. The data set is publicly available at https://www.unsw.adfa.edu.au/unsw-
canberra-cyber/cybersecurity/ADFA-NB15-Data sets. Some selected ground tables of 
attack classes are presented in Appendix-C.  
 
Tcpdump software was used for capturing the network traffic info into *.pcap format. 
Totally, 100 GB network traffic was captured. Bro and Argus security tools and scripts 
were used for creating the features and instance’s labels.   
 
There are nine different types of attacks in this data set, which can represent the situation 
of today’s network. Detailed examples of each attack classes are presented in 
Appendices-C.  
 
Attack types are: 

(1) Analysis: to penetrate a web application via emails, web scripts etc. 
(2) Backdoor: to bypass authentication and unauthorized access 
(3) DoS: to attempt to use up resources of a target 
(4) Exploit: to benefit from glitch, vulnerabilities and bugs. 
(5) Fuzzers: to discover vulnerabilities 
(6) Generic: a technique against the block-ciphers using hash function 
(7) Reconnaissance: to gather information about a target 



16 
 

(8) Shellcode: piece of code that enables making a target vulnerable 
(9) Worm: spreadable small and malicious program 

 
Developers of this data set have created a training set of 175,341 instances and a testing 
set of 82,332 instances, separately in *.csv format. Traffic category ratios in two sets are 
nearly the same and well structured. Instance sizes of training and testing sets and attack 
size ratios are presented in Table 3: 
 

Table 3 UNSW-NB15 Training and Testing Set Statistical Information 

 Testing Set Training Set 

Category Instance 
Size 

Ratio in 
Testing 
Set (%) 

Ratio in 
Attacks 

Instance 
Size 

Ratio in 
Training 
Set (%) 

Ratio in 
Attacks 

Normal 37,000 44,94 - 56,000 31,94 - 
Analysis 677 0,82 1,49 2000 1,14 1,68 
Backdoor 583 0,71 1,29 1746 1,00 1,46 
DoS 4,089 4,97 9,02 12,264 6,99 10,28 
Exploits 11,132 13,52 24,56 33,393 19,04 27,98 
Fuzzers 6,062 7,36 13,37 18,184 10,37 15,24 
Generic 18,871 22,92 41,63 40,000 22,81 33,52 
Reconnaissance 3,496 4,25 7,71 10,491 5,98 8,79 
Shellcode 378 0,46 0,83 1,133 0,65 0,95 
Worms 44 0,05 0,10 130 0,07 0,11 
Total 82,332 175,341 
 
Moustafa and Slay (2016) argue that UNSW-NB15 data set can be considered as a 
complex data set, as it shows the same characteristics of a modern network traffic. 
 
Originally, there are 49 features in UNSW-NB15. Detailed information about these 
features is presented in Table 4. In training and testing sets (csv files), only 43 features 
were used by the creators of this data set. Srcip, sport, dstip, dsport, stime and ltime 
features were excluded from the testing and training csv files. These six features are 
related to individual characteristics of the system and are not features for attack-
detection. These features were also excluded in our work. 
 
Before applying the feature selection process, nominal features were converted to 
integer format. In testing and training sets, each nominal value has a unique integer 
value. After the preprocessing, the testing set (82,332 instances) was used to select the 
features and obtain initial insights about the accuracy of attack detection. 
 
 
 
 
 
 



17 
 

 
Table 4 UNSW-NB15 Data Set Features 

(* marks the features that are excluded from the training and testing sets.) 
 
 

 Feature Type Info 

Fl
ow

 
Fe

at
ur

es
 srcip* nominal Source IP address 

sport* integer Source port number 
dstip* nominal Destination IP address 
dsport* integer Destination port number 
proto nominal Transaction protocol 

Ba
sic

 F
ea

tu
re

s 

state nominal Indicates to the state and its dependent protocol 
dur Float Record total duration 
sbytes Integer Source to destination transaction bytes  
dbytes Integer Destination to source transaction bytes 
sttl Integer Source to destination time to live value  
dttl Integer Destination to source time to live value 
sloss Integer Source packets retransmitted or dropped  
dloss Integer Destination packets retransmitted or dropped 

service nominal http, ftp, smtp, ssh, dns, ftp-data, irc and (-) if not much 
used service 

Sload Float Source bits per second 
Dload Float Destination bits per second 
Spkts integer Source to destination packet count  
Dpkts integer Destination to source packet count 

C
on

te
nt

 F
ea

tu
re

s  

swin integer Source TCP window advertisement value 
dwin integer Destination TCP window advertisement value 
stcpb integer Source TCP base sequence number 
dtcpb integer Destination TCP base sequence number 
smean integer Mean of the low packet size transmitted by the src  
dmean integer Mean of the low packet size transmitted by the dst  

trans_depth integer Represents the pipelined depth into the connection of 
http request/response transaction 

res_bdy_len integer Actual uncompressed content size of the data 
transferred from the server’s http service. 

Ti
m

e 
Fe

at
ur

es
 

Sjit Float Source jitter (mSec) 
Djit Float Destination jitter (mSec) 
Stime* Timestamp Record start time 
Ltime* Timestamp Record last time 
Sintpkt Float Source inter packet arrival time (mSec) 
Dintpkt Float Destination interpacket arrival time (mSec) 

tcprtt Float TCP connection setup round-trip time, the sum of 
’synack’ and ’ackdat’. 

synack Float TCP connection setup time, the time between the SYN 
and the SYN_ACK packets. 

ackdat Float TCP connection setup time, the time between the 
SYN_ACK and the ACK packets. 



18 
 

3.2. Feature Selection 

After data preprocessing, feature selection process was applied to the UNSW-NB 15 
testing set (82,332 instances). WEKA tool (3.8.2 version), which is a tool for machine 
learning and data mining task, was used for this purpose. 
 
With the feature selection method, we aim to reduce the computation time, improve the 
accuracy of the model and reduce the data-size for saving. Wrapper feature selection 
method was applied. 
 
To use WEKA effectively, *.csv files were converted to *.arff. Attribute-Relation File 
Format (ARFF) which is a file type used by WEKA tools. Simply, it has two distinct 
sections: Header and Data. 
 

C
on

ne
ct

io
n 

Fe
at

ur
es

 

is_sm_ips_ports Binary If source and destination IP addresses equal and port 
numbers equal then, this variable takes value 1 else 0 

ct_state_ttl Integer No. for each state according to specific range of values 
for source/destination time to live. 

ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in 
http service. 

is_ftp_login Binary If the ftp session is accessed by user and password, 
then 1 else 0.  

ct_ftp_cmd integer No of flows that has a command in ftp session. 

ct_srv_src integer 
No. of connections that contain the same service and 
source address in 100 connections according to the last 
time. 

ct_srv_dst integer 
No. of connections that contain the same service and 
destination address in 100 connections according to the 
last time. 

ct_dst_ltm integer No. of connections of the same destination address in 
100 connections according to the last time. 

ct_src_ ltm integer No. of connections of the same source address in 100 
connections according to the last time. 

ct_src_dport_ltm integer 
No of connections of the same source address and the 
destination port in 100 connections according to the 
last time. 

ct_dst_sport_ltm integer 
No of connections of the same destination address and 
the source port in 100 connections according to the last 
time. 

ct_dst_src_ltm integer 
No of connections of the same source and the 
destination address in in 100 connections according to 
the last time. 

La
be

l  attack_cat nominal The name of each attack category. 

Label binary 0 for normal and 1 for attack records 



19 
 

The header of the ARFF file contains the relation names and attributes/types of features. 
Data starts with ‘@DATA’ mark and continues. Using the WEKA ‘Explorer’ function, 
UNSW-NB15 testing set is loaded to WEKA. 
 

 
Figure 3 UNSW-NB15 Testing Set for Feature Selection by WEKA  

In this research, the feature set is created only once during the whole process. To achieve 
good multiclass accuracy, good feature set is important. For this reason, the wrapper 
method was preferred, rather than the filter method. 
 
WEKA’s “Feature Selection” module was used. “WrapperSubsetEval” was selected 
from the Attribute Evaluator, “J48 Decision Tree” was selected for estimating the subset 
accuracy and “Greedy Stepwise” was selected as the Search Method. Greedy Stepwise 
search method is a heuristic method. In each step, it finds the locally optimal choice. 
Feature selection criteria in this set is “attack_cat”. After applying the feature selection 
options, 19 features were selected by the wrapper feature selection method (Figure 4). 



20 
 

 
Figure 4 Result of Wrapper-based Feature Selection 

The selected features by wrapper-based method are presented in Table 5. When the 
selected features were analyzed, the most important connection properties were found to 
be Time-to-live (TTL) value, dropped packet size in both directions, transmit packet size 
in both directions, bit size per second, number of connection attempts and mean of data 
size in the upper layer. Basic features and connection features are more important 
feature groups according UNSW-NB15 data set. Since all of these selected features are 
related to upper layer protocols such as File Transfer Protocol or Hyper Text Transfer 
Protocol and carried the connection information about application layer protocols, these 
distinct features are selected by wrapper-based feature selection.  

Table 5 Selected Features in UNSW-NB15 Testing Set by Wrapper Method 

Selected Features 
service, state, sbytes, dbytes, sttl, dttl, sload, sloss, dloss, smean, dmean, 
response_body_len, ct_srv_src, ct_src_dport_ltm, ct_dst_sport_ltm, 
ct_dst_src_ltm, is_ftp_login, ct_ftp_cmd, ct_srv_dst 

 
Filter-based feature selection method was also conducted for comparison with the 
wrapper-based feature selection method. “Correlation-based Feature Selection” was 
used as the feature evaluation criteria and “Particle Swarm Optimization” was used as 
the search algorithm. The selected features by the filter-based method are presented in 
Table 6. 
 



21 
 

 
Table 6 Selected Features in UNSW-NB15 Testing Set by Filter Method 

Selected Features 

proto, service, sbytes, sttl, smean, ct_src_dport_ltm, ct_dst_sport_ltm 

 
Previously, Khammassi and Krichen (2017) has built a GA-LR model and selected 20 
features on the UNSW-NB15 data set which are listed in Table 7. GA-LR model is a 
filter-based feature selection model. However, their 11 features are also present in our 
feature set. 

Table 7 Selected Features by Khammassi and Krichen 

Selected Features by Khammassi and Krichen 
proto, service, state, spkts, dpkts, sbytes, dbytes, dttl, dloss, sinpkt, djit, swin, 
tcprtt, smean, dmean, trans_depth, response_body_len, ct_srv_src, 
ct_dst_sport_ltm, is_sm_ips_ports 

3.2.1. Result of Feature Selections 

19 features were selected by the wrapper-based feature selection method. This is fewer 
than half of all the features. Besides, seven features were selected by the filter-based 
feature selection method. To measure the success of the feature selection, Decision Tree 
classifier was used and 10-fold cross validation was applied. Results show that the 
model overall accuracy using 19 features is better than using all the features or using 
seven features (Table 8). 
 

Table 8 Overall Accuracy of Decision Tree Using Three Different subsets 

 
All Features  
(43 Features) 

Features Selected by 
Wrapper Method  

(19 Features) 

Features Selected by 
Filter Method  
(7 Features) 

Model 
Overall 

Accuracy 
87.80% 88.20% 83.25% 

 
Meanwhile, to measure the effectiveness of the wrapper-based feature selection, kNN, 
decision tree and neural network were used against multiclass classification. Decision 
tree and kNN were set for 10-fold cross validation and neural network was set for 
70%:30% training/testing ratio. Overall accuracy results are presented in Table 9: 
 



22 
 

Table 9 Results of classifier with 19 features and 43 features in UNSW-NB15 Testing 
Set 

 Decision Tree 
(Accuracy – 

Building Time) 

kNN 
(Accuracy – 

Building Time) 

Neural Network 
(Accuracy – 

Building Time) 

All Features (43) 
87.80% 80.71% 85.45% 

15.72 seconds 0.03 seconds 810.83 seconds 

Wrapper-Based 
Subset (19) 

88.19% 85.80% 83.85% 

8.03 seconds 0.01 seconds 299.63 seconds 

 
3.2.2. Initial Insights about the Accuracy of Decision Tree Classifier 

Except the neural network, other two classifiers provided better overall accuracies with 
reduced features by wrapper-based method. Besides, the model-built time in all 
classifiers decreased. Therefore, it can be said that the wrapper feature selection process 
provides more accurate results and less computational resource than using all the 
features. 
 
Decision tree performed the best among the classifiers tested. Generally, the decision 
tree classifier works well at multiclass classification. Due to its better overall accuracy 
and more versatile structure, the decision tree model is used for multiclass classification. 
 
The confusion matrix of the decision tree model is presented in Table 10. According to 
the confusion matrix, Normal, Generic, Recon. attack types have fairly good detection 
rates. Analysis, Backdoor, Shellcode and Worms have small size instances and the 
reason behind low detection rates might be this low instance size. Despite the fact that 
DoS, Exploit and Fuzzers have enough instances in the training phase, their detection 
rate is worse than expected. It is clear that the more problematic attack classes in this 
data set are DoS, Exploit and Fuzzers. These attack classes also interfere with each 
other.  
 
Despite the issue of misclassification, this model is good at detecting anomalies with 
98.3% detection rate for normal traffic and only 2.9% false positive rate. It is also very 
promising for traffic labeling. 
 
 
 



23 
 

Table 10 Confusion Matrix of Decision Tree Classifier with 19 Features 

 Predicted Class 
 

N
or

m
al

 

A
na

ly
si

s 

B
ac

kd
oo

r 

D
oS

 

E
xp

lo
it 

Fu
zz

er
s  

G
en

er
ic

 

R
ec

on
 

Sh
el

lc
od

e  

W
or

m
s  

T
ru

e 
C

la
ss

 

Normal 36360 0 0 33 141 371 16 19 60 0 

Analysis 1 53 0 150 289 184 0 0 0 0 

Backdoor 4 0 20 46 310 195 3 2 3 0 

DoS 59 3 6 2471 1210 233 41 26 39 1 

Exploit 319 3 14 2007 7943 528 127 143 38 10 

Fuzzers 803 0 0 297 694 4231 11 15 9 2 

Generic 25 1 6 72 208 36 18504 3 13 3 

Recon 29 0 3 268 356 19 6 2805 10 0 

Shellcode 55 0 1 25 49 25 4 17 202 0 

Worms 3 0 0 0 12 2 2 0 2 23 
 
At this point, our focus turns on solving the poor classification problem. Clearly, DoS, 
Exploit and Fuzzers are critical attack types and have enough instances for training. It is 
obvious that a stronger detection mechanism must be developed for attack detection. 

3.3. Proposed Method: Hierarchical Multiclass Classifier 

Confusion matrix tells us that in UNSW-NB15 Testing set (82,332 instances); 

1. DoS class has 4,089 instances. Detection rate is 60.4%, but 1,210 (29.5%) 
instances intervene with “Exploit” class, 

2. Exploit class has 11,132 instances. Detection rate is 71.2%, but 2,007 (18%) 
instances intervene with “DoS” class, 

3. Fuzzers class has 6,062 instances, Detection rate is 69.7%, but 803 (13.2%) 
instances intervene with “Normal” class and 694 (11.4%) instances intervene 
with “Exploit” class. 

 
The idea behind Hierarchical Multiclass Classifier model is that if confused classes are 
separated from other classes, class accuracy and average accuracy of multiclass 
classification will increase. A classifier which works on multiple classes may not 



24 
 

achieve better accuracy for all classes. An appropriate combination of customized 
classifiers in a hierarchical manner may increase the classification accuracy of all attack 
classes. 
 
 

 
Figure 5 Hierarchical Multiclass Classifier 

Hierarchical model is built up with stages. In each stage, there is a specific classifier for 
detection. Random Forest classifier is used for the detection process. General structure 
of the model is presented in Figure 5. Firstly, the network traffic (our data set) is 
monitored. If anomaly is detected, attack classification process occurs. Grouping is the 
key in hierarchical model. It is obvious that DoS and Exploit are detected easily with a 
more specific classifier after separated from other attacks.  
For our machine learning model, Python3 and Scikit-Learn were used. Python is a 
popular programming language. Scikit-learn (Pedregosa et al., 2012) is a machine 
learning library running with Python. Code of Hierarchical Model is presented in 
Appendix-A. 
 
 



25 
 

3.3.1. Stages and Purposes 

Stage-1: 

A Random Forest Classifier is trained to detect whether there is an attack or not in 
Stage-1. The main aim in Stage-1 is attack detection. The only required label in instance 
is Attack or Normal for training. 
 
Stage-2: 

In Stage-2, Random Forest Classifier finds whether an attack belongs to Group 1 (DoS, 
Exploit) or Group 2 (Other Attack Classes). This grouping is important because if more 
problematic two classes (DoS, Exploit) are excluded from the rest of the traffic, the 
model can achieve better accuracy. Confusion matrix (Table 10) shows that DoS and 
Exploit classes intervene with each other in multiclass classification. This makes the 
overall accuracy of classifier worse. For training of the classifier, binary data (e.g. “1” 
denotes Group 1 and “2” denotes Group 2.) will be required. 
 
Stage-3: 

After Stage-2 classification, hierarchical model will classify exact attack classes. In 
Stage-3, there are two distinct Random Forest Classifiers. One for DoS/Exploit classes 
and the other for other attack classes. 

DoS / Exploit Detection 
Until this point, the classifier does not detect exact attack classes. If Stage-2 classifier 
classifies the instance into Group 1, DoS/Exploit Classifier will analyze this instance. 
This classifier works on only two classes and this will provide more successful 
detection. 

Analysis / Backdoor / Fuzzers / Recon. / Generic / Worms / Shellcode Detection 
If Stage-2 classifier classifies instance into Group 2, Analysis / Backdoor / Fuzzers / 
Recon. / Generic / Worms / Shellcode Classifier will analyze the instances. At this part 
of the stage, DoS and Exploit will be excluded and the classifier will work on less noisy 
data. 

3.3.2. Data set Adjustment for Stages 

UNSW-NB15 Training Set (175,341 instances) is used for the evaluation of Hierarchical 
Multiclass Classifier model. First of all, 60:40% ratio is used for training and testing of 
the model. After splitting, the training set has 105,204 instances. Also, 60% of UNSW-
NB 15 data set was divided into three parts. All data sets were kept in *.csv format. All 
the instances in the subsets were randomly selected by WEKA. 
 
To train four Random Forest Classifiers, four different data sets were used (Figure 6): 



26 
 

• 60% of UNSW-NB 15 Training set was used in Stage-1 for first classifier to 
detect attack or normal, (Totally, 33,612 instances are “Normal”, and 71,592 
instances are “Attack”.) (Table 11) 

• Part 1 was used for Stage-2 classification (Group-1 or Group-2). “Normal” label 
instances were excluded, and 23,574 instances were used. Group-1 (DoS, 
Exploit) have 8,940 instances and Group-2 (Other attack class) have 14,634 
instances (Table 11), 

• Part 2 was used for DoS/Exploit classification in Stage-3. Except DoS/Exploit, 
other instances were excluded. 2,474 instances are DoS (“3” is label), 6,736 (“4” 
is label) instances are Exploit (Table 11), 

• Part 3 was used for other attack classes classification in Stage-3. DoS/Exploit 
were excluded from Part 3. 14,689 instances were used for training. “1” is 
Analysis, “2” is Backdoor, “5” is Fuzzers, “6” is Generic, “7” is Recon., “8” is 
Shellcode, “9” is Worms (Table 11). 

 
 

  

Figure 6 UNSW-NB15 Data sets and Adjustment on Data set 



27 
 

The parts of data set and instance sizes of parts are presented in Table 11. 40% of 
UNSW-NB15 Training set is used for testing purpose. 

Table 11 Data Set Parts and Instance Sizes 

 60% of UNSW-
NB15  

Training Set 
Part 1 Part 2 Part 3 

40% of 
UNSW-
NB15 

Training 
Set 

Original 
Attack 
Class 

Attack or Not Group 1 or 
Group 2 DoS or Exploit Other Attack 

Class 
Size Label Size Label Size Label Size Label 

Analysis 33612 0 11143 X 11115 X 11260 X 22388 
Backdoor 1204 

1 

403 GR2 415 X 388 1 796 
DoS 1047 323 GR2 359 X 385 2 699 

Exploits 7430 2441 GR1 2474 3 2444 X 4834 
Fuzzers 19921 6499 GR1 6736 4 6850 X 13472 
Generic 10936 3665 GR2 3671 X 3538 5 7248 
Recon. 23982 7889 GR2 8139 X 8011 6 16018 

Shellcode 6299 2093 GR2 2081 X 2129 7 4192 
Worms 694 236 GR2 231 X 219 8 439 

Analysis 79 25 GR2 23 X 19 9 51 
 105,204 34,717 35,244 35,243 70,137 

  



28 
 

 
 

  



29 
 

 
 
 

CHAPTER 4 
 
 

4. EVALUATION OF HIERARCHICAL MULTICLASS CLASSIFIER 

4.1. Experiment Setup 

For evaluation of the hierarchical multiclass classifier, a random forest classifier has also 
been implemented for comparison. 60% of UNSW-NB15 test set was used for training 
and 40% of UNSW-NB15 test set was used for testing. Training and testing times were 
also measured. Evaluation was conducted on a computer with Intel Core i7-3630QM 
CPU, 8 GB RAM and Microsoft Windows 10 operating system. 

4.2. Results 

Performance of the Random Forest classifier and the proposed Hierarchical Multiclass 
classifier are presented in Table 12. Overall accuracy of the multiclass classification 
with Random Forest classifier was measured as 78.64%. Training time was 3.2 s. and 
testing time was 1.62 s. 
 

Table 12 Results for the proposed Hierarchical Multiclass Classifier and the Random 
Forest Classifier 

 

Number 
of 

Instances 
in Test 

Set 

Random Forest Classifier Hierarchical Multiclass 
Classifier 

Correctly 
Detected 
Instances 
Number 

R
ec

al
l 

Pr
ec

is
io

n  

F1
-S

co
re

 Correctly 
Detected 
Instances 
Number 

R
ec

al
l 

Pr
ec

is
io

n  

F1
-S

co
re

 

Normal 22,388 20,885 0.93 0.93 0.93 20,183 0.90 0.93 0.92 
Analysis 796 186 0.23 0.06 0.09 139 0.17 0.36 0.24 
Backdoor 699 186 0.27 0.05 0.09 71 0.10 0.33 0.16 

DoS 4,834 1,887 0.39 0.35 0.37 3,053 0.63 0.33 0.44 
Exploits 13,472 7,626 0.57 0.84 0.68 8,599 0.64 0.74 0.68 
Fuzzers 7,248 5,207 0.72 0.77 0.75 5,120 0.71 0.70 0.70 
Generic 16,018 15,738 0.98 1.00 0.99 15,707 0.98 0.99 0.99 
Recon. 4,192 3,104 0.74 0.91 0.82 3,138 0.75 0.88 0.81 

Shellcode 439 299 0.68 0.69 0.68 240 0.55 0.64 0.59 
Worms 51 25 0.49 0.62 0.55 0 0.00 0.00 0.00 
Overall Accuracy 0.78 0.80 



30 
 

The overall accuracy of the Hierarchical Multiclass classifier was measured as 80.20%, 
which is greater than the overall accuracy of the Random Forest Classifier. DoS and 
Exploit classes have also greater detection rates in the former than the latter. 
Hierarchical model provides 94.80% accuracy in Stage-1. In Stage-1, the attack 
detection rate was 96.98%. Also, the normal traffic detection rate was 90.15% (See 
Table 13). 
 

Table 13 Stage-1 Attack Detection Result 

 Predicted Class 

Normal Attack 

T
ru

e 
C

la
ss

 Normal 20,183 2,205 

Attack 1,439 46,310 

 
The training time for the Hierarchical Multiclass classifier was measured as 5.64 s., and 
the testing time was measured as 158.34 s. During testing, 70,137 instances were 
evaluated. This means for evaluation of each instance roughly 2 msec. is required. The 
confusion matrix of the Hierarchical Multiclass Classifier is presented in Table 14. 
 

Table 14 Confusion Matrix of Hierarchical Multiclass Classifier 

 Predicted Class 
 

N
or

m
al

 

A
na

ly
si

s  

B
ac

kd
oo

r  

D
oS

 

E
xp

lo
it 

Fu
zz

er
s  

G
en

er
ic

 

R
ec

on
 

Sh
el

lc
od

e  

W
or

m
s 

T
ru

e 
C

la
ss

 

Normal 20,183 152 0 25 301 1691 0 24 12 0 

Analysis 54 139 12 443 139 4 0 5 0 0 

Backdoor 0 8 71 416 167 13 4 14 6 0 

DoS 12 26 33 3053 1497 98 15 67 33 0 

Exploit 68 46 79 4096 8599 245 47 252 39 1 

Fuzzers 1287 9 5 466 289 5120 8 33 31 0 

Generic 5 3 4 128 131 27 15707 4 9 0 

Recon 8 3 10 544 455 25 6 3138 3 0 

Shellcode 5 0 1 13 56 109 5 10 240 0 

Worms 0 0 0 1 45 4 1 0 0 0 

 



31 
 

 
To analyze the model’s performance, the learning curves and the Receiver Operating 
Characteristic (ROC) curves were used. The training set (Table 10) was divided with an 
80:20% ratio for test/validation set. To draw the ROC curve, predict_proba() method of 
“Random Forest Classifier” class in Scikit-learn was used. The predict_proba() method 
produces a probability array per class containing the probability that the given instance 
belongs to the given class. Root Mean Square Error (RMSE) was used for error 
measuring in the learning curves. To draw the learning curves, the classifiers were 
trained with 1,000 instances in each step and then tested with the validation set. Each 
time 1,000 instances were added up to the training set. 
 
In Stage-1, there are 105,204 instances (60% of UNSW-NB15). About 84,000 instances 
were used for the model training and the rest for the validation. Figure 7 shows that the 
model is overfitting, because, the RMSE in the validation set is higher than in the 
training set and the gap between the two lines is large. Using more training instances, 
would not improve the model accuracy and close the large gap between the RMSE’s. 
Some features might be irrelevant for this attack detection. For the ROC curve, the 
attack class was assumed as “Positive” classification. The ROC curve of Stage-1 is 
presented in Figure 8. 
 

 
Figure 7 Stage-1 Learning Curve 

Validation Set  

Training Set  



32 
 

 
Figure 8 Stage-1 ROC Curve 

In Stage-2, there are 23,574 instances (Part 1 data set). About 18,000 instances were 
used for the training and the rest for the validation. Figure 9 also shows overfitting. If 
more training data were collected, the model detection capability would improve 
slightly. For the ROC curve in Figure 10, Group 1 (DoS/Exploit) class was assumed as 
“Positive” classification. 
 

 
Figure 9 Stage-2 Learning Curve 

Validation Set  

Training Set  



33 
 

 
Figure 10 Stage-2 ROC Curve 

In Stage-3, there are 9,210 instances (Part 2 data set). About 7,000 instances were used 
for the training and the rest for the validation. Figure 11 shows that, although a more 
specific binary classifier was used, the model is simply underfitting and more data 
would not improve the performance. For the ROC curve in Figure 12, the Exploit class 
was assumed as “Positive” classification. RMSE error is high and ROC curve is not 
adjacent to ideal point (upper-left point of figure).  
 

 
Figure 11 Stage-3 DoS/Exploit Learning Curve 

Validation Set  

Training Set  



34 
 

 
Figure 12 Stage-3 DoS/Exploit ROC Curve 

  



35 
 

 
 
 

CHAPTER 5 
 

5. DISCUSSION 

Hierarchical Multiclass Classifier model is a model which is built up with Random 
Forest Classifier. As Tavallaee et al. (2010) stated, the data set is an important part of the 
research. In many previous studies, the researchers obtained success rates higher than 
90%. The results of some studies are presented in Table 15. 
 

Table 15 Results of some Researches about Anomaly-based IDS model 

Nu. Researcher Data set Results 
1 Shon & Moon KDD-CUP 99 Attack Detection - 99.90% 
2 Najafabadi et al. Kyoto Attack Detection - 98.54% 
3 Pervez & Farid NSL-KDD Attack Detection - 82.37% 

4 Khor et al. KDD-CUP 99 
Attack Classification - Normal:99%, 
DoS: 99%, Probe: %89, R2L: 91.5%, 
U2R:69% 

5 Jiong Zhang et al. NSL-KDD Attack Detection - 98.98% 
6 Ganapathy et al. KDD-CUP 99 Attack Detection - 90.25%; 

7 Gogoi et al. KDD-CUP 99 
Attack Classification -  Normal: 
94.68%, DoS: 98.54%, Probe: %93.5, 
R2L: 48.91%, U2R:97.14% 

 

However, U2R and Probe attacks have limited instances in KDD-CUP 99 and NSL-
KDD. DoS, R2L and Normal traffic instances outnumber these. Therefore, if higher 
detection rates on DoS and Normal traffic is achieved, the model looks as if more 
successful. In 2000’s network behavior, it was understandable, but for today’s network 
behavior, it is out of scope. 

Khammassi and Krichen (2017) developed GA-LR model using UNSW-NB15 and 
KDD-CUP 99. 20 features were selected from UNSW-NB15 data set and while using 
only the selected 2000 instances, the model achieved 81.42% accuracy. It is important 
that in GA-LR model, the testing set consists of only 2000 instances. Hierarchical 
Multiclass Classifier and GA-LR model produced simply the same accuracy rate and 
low-detection classes (Analysis, Backdoor, Shellcode and Worms) were identical. The 
comparison of the two models is presented in Table 16. 
 



36 
 

Khammassi and Krichen (2017) and Moustafa and Slay (2017) described UNSW-NB15 
as a complex data set. According to our findings, although there are enough instances for 
model training, some attack classes are hard to classify. 
 

Table 16 Hierarchical Multiclass Classifier vs. GA-LR Model 

 

Hierarchical Multiclass 
Classifier 

GA-LR Model Result (Subset Z7 
using C4.5 classifier) 

R
ec

al
l 

Pr
ec

is
io

n 

F1
- S

co
re

 

R
ec

al
l 

Pr
ec

is
io

n 

F1
- S

co
re

 

Normal 0.90 0.93 0.92 0.90 0.92 0.91 
Analysis 0.17 0.36 0.24 0.10 0.44 0.16 
Backdoor 0.10 0.33 0.16 0.69 0.51 0.58 

DoS 0.63 0.33 0.44 0.04 0.36 0.07 
Exploits 0.64 0.74 0.68 0.92 0.60 0.72 
Fuzzers 0.71 0.70 0.70 0.69 0.70 0.69 
Generic 0.98 0.99 0.99 0.97 0.99 0.97 
Recon. 0.75 0.88 0.81 0.76 0.90 0.82 

Shellcode 0.55 0.64 0.59 0.47 0.53 0.49 
Worms 0.00 0.00 0.00 0.38 0.46 0.41 

Model Accuracy 0.80 0.81 
 
Another important point in this study is feature selection. Wrapper feature selection 
method produced a more feasible feature set than the filter-based method. Also, the 
overall accuracy rate after the feature selection method was higher than using all the 
features. In many previous researches, researchers do not analyze the selected features’ 
attributes. Iglesias and Zseby (2015) asserted that the traffic features (number of 
connections, SYN errors, reject errors, connection ratio of same service, connection ratio 
of different service etc.) are important features in KDD-CUP 99. Our selected feature set 
consists of basic features (duration, source/destination bytes, source/destination TTL, 
source/destination loss, source/destination packet size average) and connection features 
similar to KDD-CUP 99 traffic features. This shows that the basic features and 
connection features are more important feature groups. For application on real time 
network traffic, security analysts must focus on these features. 

Janarthanan and Zargari (2017) find out that service, sbytes, sttl, smean and 
ct_dst_sport_ltm are significant features in UNSW-NB15 data set. Our wrapper-based 
feature selection model also selects these six features. 
 
Although the Hierarchical Multiclass Classifier model provided a better detection rate on 
DoS and Exploit classes, it is not as good as expected. Apparently, the model suffers 



37 
 

while detecting DoS, Exploit and Fuzzers. Feature extraction or some more special 
traffic feature may increase the model’s overall accuracy. 
 
Random Forest Classifier, which is an ensemble classifier and is based on decision trees, 
classifies 55,143 instances out of 70,137, correctly. On the other hand, the Hierarchical 
Multiclass Classifier classifies 56,250 instances out of 70,137, correctly. It may seem 
like a minor improvement in attack detection, but in a real network environment, every 
single detection is valuable and Exploit and Fuzzers are important attack types. 
 
Hierarchical Multiclass Classifier was also tested with the Khammassi and Krichen’s 
subset (20 features, Table 7) with the same attack distribution in Table 10. Results show 
that our 19 feature subset is better than Khammassi and Krichen’s 20 feature subset 
(Table 17). Also, while using a different feature subset, Hierarchical Multiclass 
Classifier produces better overall model accuracy and DoS/Exploit detection rate than 
Random Forest Classifier. 
  

Table 17 Results for the proposed Hierarchical Multiclass Classifier and the Random 
Forest Classifier using Khammassi and Krichen’s Subset 

 

Number 
of 

Instances 
in Test 

Set 

Random Forest Classifier using 
Khammassi and Krichen’s 

Subset 

Hierarchical Multiclass 
Classifier using Khammassi 

and Krichen’s Subset 
Correctly 
Detected 
Instances 
Number 

R
ec

al
l 

Pr
ec

is
io

n 

F1
-S

co
re

 Correctly 
Detected 
Instances 
Number 

R
ec

al
l 

Pr
ec

is
io

n 

F1
-S

co
re

 

Normal 22,388 20,618 0.92 0.92 0.92 19,422 0.87 0.92 0.89 
Analysis 796 173 0.22 0.06 0.09 51 0.06 0.14 0.09 
Backdoor 699 149 0.21 0.05 0.07 75 0.11 0.16 0.13 

DoS 4,834 1,772 0.37 0.32 0.34 2,781 0.58 0.32 0.41 
Exploits 13,472 7,605 0.56 0.82 0.67 8,302 0.62 0.71 0.66 
Fuzzers 7,248 5,078 0.70 0.73 0.72 4,835 0.67 0.60 0.63 
Generic 16,018 15,714 0.98 1.00 0.99 15,704 0.98 0.99 0.98 
Recon. 4,192 3,094 0.74 0.91 0.81 2,905 0.69 0.81 0.75 

Shellcode 439 213 0.49 0.59 0.53 209 0.48 0.52 0.50 
Worms 51 24 0.47 0.57 0.52 1 0.02 0.12 0.03 
Overall Accuracy 0.77 0.78 

 
 
 
 
  



38 
 

 
  



39 
 

 
 

CHAPTER 6 
 

6. CONCLUSION 

 

This thesis presents an anomaly-based intrusion detection approach for multiclass 
classification with Random Forest Ensemble Classifier. Usage of a new and realistic 
data set is important in this thesis, since the objective is providing attack profiles to the 
current network traffic. So, UNSW-NB15 data set was selected. UNSW-NB15 data set 
is more complex and realistic than other old-fashioned popular cyberattack data sets 
such as KDD-CUP 99 and NSL-KDD. 

UNSW-NB15 data set has 43 features for training/testing purposes. This leads to curse 
of dimensionality and overfitting. To eliminate this problem, wrapper feature selection 
method was applied. After the first multiclass examination with decision tree classifier, a 
better detection rate was obtained with multiclass classification with only 19 features 
rather than all features and filter-based selected features. Wrapper-based feature 
selection provides more feasible feature sets.   

When selected features were analyzed carefully, most valuable properties of connections 
were found as TTL value, dropped packet size in both directions, transmit packet size in 
both directions, bits size in per second, number of connection attempt, and mean of data 
size in upper layer. Basic features and connection features are more important feature 
groups in the UNSW-NB15 data set. 

Decision tree classifier was found as the best classifier for attack classification according 
to our model’s overall accuracy in the feature selection phase. Random forest is an 
ensemble classifier that combines multiple decision trees. For this reason, Random 
Forest ensemble classifier was selected for our model, which is Hierarchical Multiclass 
Classifier. 

Analysis, Backdoor, Shellcode and Worms have limited numbers of instances in testing 
and training sets. As a result of low instance sizes, these four classes have low detection 
rates. If there were more of these, the accuracy of these classes would also increase. 
However, DoS, Exploit and Fuzzers classes interfere as seen in the confusion matrix. To 
overcome this problem, a more specific Random Forest Classifier in a hierarchical stage 
was trained. In our point of view, we pay more attention to the Normal, DoS, Exploit, 
Fuzzers and Generic classes. As a result, better classification results were achieved by 
Hierarchical Multiclass Classifier except for Fuzzers.  



40 
 

Grouping and combining classes increased the accuracy of multiclass classification. 
Besides, the hierarchical model proves that using specific classifiers of different stages 
can increase both the class accuracy and average accuracy. 

The overfitting observed in Stage-1 deteriorates the model’s overall accuracy. The 
“Attack” detection rate is higher (96%) than the “Normal” class detection rate (90%) and 
if “Normal” class detection rate was the same as that of the “Attack” class, the model 
overall accuracy would increase.  

When Hierarchical Multiclass Classifier was tested with another feature subset, it 
produced better overall accuracy and specific attack class detection with the Khammassi 
and Krichen’s subset. Despite the improved detection rate, F1-Score improvement was 
not good enough in the model. 

6.1. Future Work 

As future work, a more robust classifier can be developed. Since recall and precision 
values for DoS, Exploit and Fuzzers are not as good as other classes such as Normal, 
Generic, Recon., etc., more can be done for dealing with these classes. Feature 
extraction can also be used to achieve better results. Also, it should be noted that some 
attacks are naturally hard to detect. 

UNSW-NB15 data set has some drawbacks. Some attack classes have low instance sizes 
which make them hard to detect. Data augmentation can be a choice to increase the 
instance sizes. After data augmentation, a deep learning-based model can provide better 
detection rates for attack classification. 

6.2. Limitations of the Thesis 
 
In this thesis, collected data from a synthetic network was used for Hierarchical 
Multiclass Classifier. UNSW-NB15 is a public data set. All features related to the 
network traffic was kept offline as a csv file. Real time network traffic cannot be used as 
is. Also, in UNSW-NB15 data set, the normal to attack ratio is 45:55%. However, in real 
network traffic, the attack rate is lower than our test situation. 
  



41 
 

 

REFERENCES 

Aburomman, A. A., & Ibne Reaz, M. Bin. (2017). A novel weighted support vector 
machines multiclass classifier based on differential evolution for intrusion detection 
systems. Information Sciences, 414, 225–246. 
https://doi.org/10.1016/j.ins.2017.06.007 

Akyol, A., Hacibeyoglu, M., & Karlik, B. (2016). Design of multilevel hybrid classifier 
with variant feature sets for intrusion detection system. IEICE Transactions on 
Information and Systems. https://doi.org/10.1587/transinf.2015EDP7357 

Aldehim, G., & Wang, W. (2017). Determining appropriate approaches for using data in 
feature selection. International Journal of Machine Learning and Cybernetics, 8(3), 
915–928. https://doi.org/10.1007/s13042-015-0469-8 

Amor, N., Benferhat, S., & Elouedi, Z. (2004). Naive bayes vs decision trees in intrusion 
detection systems. ACM Symposium on Applied Computing. 
https://doi.org/10.1145/967900.967989 

Apiletti, D., Baralis, E., Cerquitelli, T., & D’Elia, V. (2009). Characterizing network 
traffic by means of the NetMine framework. Computer Networks. 
https://doi.org/10.1016/j.comnet.2008.12.011 

Ben-Gal, I. (2005). Outlier Detection. In Data Mining and Knowledge Discovery 
Handbook (pp. 131–146). New York: Springer-Verlag. https://doi.org/10.1007/0-
387-25465-X_7 

Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2011). Feature 
selection and classification in multiple class datasets: An application to KDD Cup 
99 dataset. Expert Systems with Applications, 38(5), 5947–5957. 
https://doi.org/10.1016/j.eswa.2010.11.028 

Boulaiche, A., & Adi, K. (2018). An auto-learning approach for network intrusion 
detection. Telecommunication Systems, 68(2), 277–294. 
https://doi.org/10.1007/s11235-017-0395-z 



42 
 

Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning 
Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys 
and Tutorials, 18(2), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502 

Cannady, J. D. (1998). Artificial neural networks for misuse detection. Proceedings of 
the 21st National Information Systems Security Conference. 
https://doi.org/citeulike-article-id:9827770 

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. 
Computers & Electrical Engineering, 40(1), 16–28. 
https://doi.org/10.1016/j.compeleceng.2013.11.024 

Cordella, L. Pietro, & Sansone, C. (2007). A multi-stage classification system for 
detecting intrusions in computer networks. Pattern Analysis and Applications, 
10(2), 83–100. https://doi.org/10.1007/s10044-006-0053-7 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 
273–297. https://doi.org/10.1007/BF00994018 

Cunningham, P., & Delany, S. J. (2007). K -Nearest Neighbour Classifiers. Multiple 
Classifier Systems. https://doi.org/10.1016/S0031-3203(00)00099-6 

Do, C. B., & Batzoglou, S. (2008). What is the expectation maximization algorithm? 
Nature Biotechnology. https://doi.org/10.1038/nbt1406 

Eesa, A. S., Orman, Z., & Brifcani, A. M. A. (2015). A new feature selection model 
based on ID3 and bees algorithm for intrusion detection system. Turkish Journal of 
Electrical Engineering and Computer Sciences. https://doi.org/10.3906/elk-1302-
53 

ENISA. (2017). ENISA Threat Landscape Report 2017. Retrieved from 
europa.eu/publications/enisa-threat-landscape-report-2017 

Ganapathy, S., Yogesh, P., & Kannan, A. (2012). Intelligent Agent-Based Intrusion 
Detection System Using Enhanced Multiclass SVM. Computational Intelligence 
and Neuroscience, 2012, 1–10. https://doi.org/10.1155/2012/850259 



43 
 

Gogoi, P., Bhattacharyya, D. K., Borah, B., & Kalita, J. K. (2014). MLH-IDS: A Multi-
Level Hybrid Intrusion Detection Method. The Computer Journal, 57(4), 602–623. 
https://doi.org/10.1093/comjnl/bxt044 

Gogoi, P., Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2012). Packet and 
Flow Based Network Intrusion Dataset. Contemporary Computing. 
https://doi.org/10.1007/978-3-642-32129-0_34 

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. 
Journal of Machine Learning Research (JMLR). 
https://doi.org/10.1016/j.aca.2011.07.027 

Hinton, G., & Salakhutdinov, R. (2009). Deep Boltzman machines. 2009 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition 
Workshops, CVPR Workshops 2009. 
https://doi.org/10.1109/CVPRW.2009.5206577 

Iglesias, F., & Zseby, T. (2015). Analysis of network traffic features for anomaly 
detection. Machine Learning, 101(1–3), 59–84. https://doi.org/10.1007/s10994-
014-5473-9 

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM 
Computing Surveys, 31(3), 264–323. https://doi.org/10.1145/331499.331504 

Janarthanan, T., & Zargari, S. (2017). Feature selection in UNSW-NB15 and 
KDDCUP’99 datasets. In 2017 IEEE 26th International Symposium on Industrial 
Electronics (ISIE) (pp. 1881–1886). IEEE. 
https://doi.org/10.1109/ISIE.2017.8001537 

Jiong Zhang, Zulkernine, M., & Haque, A. (2008). Random-Forests-Based Network 
Intrusion Detection Systems. IEEE Transactions on Systems, Man, and 
Cybernetics, Part C (Applications and Reviews). 
https://doi.org/10.1109/TSMCC.2008.923876 

Khammassi, C., & Krichen, S. (2017). A GA-LR wrapper approach for feature selection 
in network intrusion detection. Computers and Security, 70, 255–277. 
https://doi.org/10.1016/j.cose.2017.06.005 



44 
 

Khor, K.-C., Ting, C.-Y., & Amnuaisuk, S.-P. (2009). A Feature Selection Approach for 
Network Intrusion Detection. In 2009 International Conference on Information 
Management and Engineering (pp. 133–137). 
https://doi.org/10.1109/ICIME.2009.68 

Kruegel, C., Mutz, D., Robertson, W., & Valeur, F. (2003). Bayesian event classification 
for intrusion detection. In Proceedings - Annual Computer Security Applications 
Conference, ACSAC. https://doi.org/10.1109/CSAC.2003.1254306 

Ladha, L., & Deepa, T. (2011). Feature Selection Methods And Algorithms. 
International Journal on Computer Science and Engineering, 3(5), 1787–1797. 
Retrieved from http://journals.indexcopernicus.com/abstract.php?icid=945099 

Li, Y., Wang, J. L., Tian, Z. H., Lu, T. B., & Young, C. (2009). Building lightweight 
intrusion detection system using wrapper-based feature selection mechanisms. 
Computers and Security, 28(6), 466–475. 
https://doi.org/10.1016/j.cose.2009.01.001 

McHugh, J. (2000). Testing Intrusion detection systems: a critique of the 1998 and 1999 
DARPA intrusion detection system evaluations as performed by Lincoln 
Laboratory. ACM Transactions on Information and System Security. 
https://doi.org/10.1145/382912.382923 

Mitchell, T. M. (1997). Machine Learning. Annual Review Of Computer Science. 
https://doi.org/10.1145/242224.242229 

Moustafa, N., & Slay, J. (2015). UNSW-NB15: a comprehensive data set for network 
intrusion detection systems (UNSW-NB15 network data set). In 2015 Military 
Communications and Information Systems Conference (MilCIS) (pp. 1–6). IEEE. 
https://doi.org/10.1109/MilCIS.2015.7348942 

Moustafa, N., & Slay, J. (2016). The evaluation of Network Anomaly Detection 
Systems: Statistical analysis of the UNSW-NB15 data set and the comparison with 
the KDD99 data set. Information Security Journal: A Global Perspective, 25(1–3), 
18–31. https://doi.org/10.1080/19393555.2015.1125974 

Moustafa, N., & Slay, J. (2017). A hybrid feature selection for network intrusion 
detection systems: Central points. Australian Information Warfare and Security 
Conference, Symposia and Campus Events, 5–13. 



45 
 

https://doi.org/10.4225/75/57a84d4fbefbb 

Mukherjee, S., & Sharma, N. (2012). Intrusion Detection using Naive Bayes Classifier 
with Feature Reduction. Procedia Technology. 
https://doi.org/10.1016/j.protcy.2012.05.017 

Najafabadi, M. M., Khoshgoftaar, T. M., & Seliya, N. (2016). Evaluating Feature 
Selection Methods for Network Intrusion Detection with Kyoto Data. International 
Journal of Reliability, Quality and Safety Engineering, 23(01), 1650001. 
https://doi.org/10.1142/S0218539316500017 

Nawir, M., Amir, A., Lynn, O. B., Yaakob, N., & Badlishah Ahmad, R. (2018). 
Performances of Machine Learning Algorithms for Binary Classification of 
Network Anomaly Detection System. Journal of Physics: Conference Series, 1018, 
012015. https://doi.org/10.1088/1742-6596/1018/1/012015 

Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How Many Trees in a Random 
Forest? In Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 154–168). 
https://doi.org/10.1007/978-3-642-31537-4_13 

Pal, S. K., & Mitra, S. (1992). Multilayer Perceptron, Fuzzy Sets, and Classification. 
IEEE Transactions on Neural Networks. https://doi.org/10.1109/72.159058 

Papamartzivanos, D., Gómez Mármol, F., & Kambourakis, G. (2018). Dendron : Genetic 
trees driven rule induction for network intrusion detection systems. Future 
Generation Computer Systems, 79, 558–574. 
https://doi.org/10.1016/j.future.2017.09.056 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … 
Duchesnay, É. (2012). Scikit-learn: Machine Learning in Python. Journal of 
Machine Learning Research. https://doi.org/10.1007/s13398-014-0173-7.2 

Pervez, M. S., & Farid, D. M. (2014). Feature selection and intrusion classification in 
NSL-KDD cup 99 dataset employing SVMs. In SKIMA 2014 - 8th International 
Conference on Software, Knowledge, Information Management and Applications. 
https://doi.org/10.1109/SKIMA.2014.7083539 



46 
 

Quinlan, J. R. (1999). Simplifying decision trees. International Journal of Human-
Computer Studies, 51(2), 497–510. https://doi.org/10.1006/ijhc.1987.0321 

Quinlan, J. R. (1992). C4.5: Programs for Machine Learning. Morgan Kaufmann San 
Mateo California. https://doi.org/10.1016/S0019-9958(62)90649-6 

Roesch, M. (1999). Snort: Lightweight Intrusion Detection for Networks. LISA ’99: 13th 
Systems Administration Conference. 
https://doi.org/http://portal.acm.org/citation.cfm?id=1039834.1039864 

Shon, T., & Moon, J. (2007). A hybrid machine learning approach to network anomaly 
detection. Information Sciences, 177(18), 3799–3821. 
https://doi.org/10.1016/j.ins.2007.03.025 

Sommer, R. (2016). The Bro Network Security Monitor. Bro.Org. 

Suricata. (2017). Suricata Open Source IDS / IPS / NSM engine. 

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the 
KDD CUP 99 data set. In IEEE Symposium on Computational Intelligence for 
Security and Defense Applications, CISDA 2009. 
https://doi.org/10.1109/CISDA.2009.5356528 

Tavallaee, M., Stakhanova, N., & Ghorbani, A. A. (2010). Toward Credible Evaluation 
of Anomaly-Based Intrusion-Detection Methods. IEEE Transactions on Systems, 
Man, and Cybernetics, Part C (Applications and Reviews), 40(5), 516–524. 
https://doi.org/10.1109/TSMCC.2010.2048428 

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning. 
https://doi.org/10.1007/BF00992698 

Zhong, C., Lin, T., Liu, P., Yen, J., & Chen, K. (2018). A cyber security data triage 
operation retrieval system. Computers & Security, 76, 12–31. 
https://doi.org/10.1016/j.cose.2018.02.011 

 



47 
 

 

APPENDICES 

 

APPENDIX A 

 
Hierarchical Multiclass Classifier Model Codes 

 
#Required library 
import numpy as np 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn.ensemble import RandomForestClassifier 
from time import time 
 
#Starting time of Model Creation 
start = time() 
 
# Attack or Not classifier training 
data=np.loadtxt("1OR0.csv",delimiter=",") 
x=data[:,0:19] 
y=data[:,19] 
clf0=RandomForestClassifier(class_weight="balanced", random_state=42) 
clf0 = clf0.fit(x,y) 
 
# Attack or Not classifier training 
data=np.loadtxt("part1.csv",delimiter=",") 
x=data[:,0:19] 
y=data[:,19] 
clf1 = RandomForestClassifier(class_weight="balanced", random_state=42) 
clf1 = clf1.fit(x,y) 
 
# DoS vs. Exploit classifier training 
data=np.loadtxt("part2.csv",delimiter=",") 
x=data[:,0:19] 
y=data[:,19] 
clf2=RandomForestClassifier(class_weight="balanced",random_state=42) 
clf2 = clf2.fit(x,y) 
 
 
# DoS vs. Exploit classifier training 
data=np.loadtxt("part3.csv",delimiter=",") 



48 
 

x=data[:,0:19] 
y=data[:,19] 
clf3 = RandomForestClassifier(class_weight="balanced", random_state=42) 
clf3 = clf3.fit(x,y) 
 
# Model Creation Time 
print("Training %.2f seconds:" % ((time() - start))) 
 
# Testing Phase 
start = time() 
data=np.loadtxt("UNSW_NB15_total_numeric_testing_WR_19FS-40percent.csv",delimiter=",") 
x=data[:,0:19] 
y=data[:,19] 
result=np.zeros(len(y)) 
a=0 
knt=False 
 
for p in x: 
    test = p[0:19] 
    if (clf0.predict(test.reshape(1,-1)) == 0): 
        result[a]=0 
        a=a+1 
        continue 
    if clf1.predict(test.reshape(1,-1)) == 1: 
        result[a]=clf2.predict(test.reshape(1,-1)) 
    if clf1.predict(test.reshape(1,-1)) == 2: 
        result[a]=clf3.predict(test.reshape(1,-1)) 
    a=a+1 
 
target_names = ['Normal', 'Analysis', 'Backdoor','DoS','Exploit','Fuzzers','Generic','Recon', 
                'Shell','Worms'] 
 
acc = accuracy_score(y,result) 
conf=confusion_matrix(y,result) 
 
 
print(classification_report(y,result,target_names=target_names)) 
 
print (acc) 
print (conf) 
 
print ("Normal:"+str(float(conf[0,0])/np.count_nonzero(y==0))) 
print ("Analysis:"+str(float(conf[1,1])/np.count_nonzero(y==1))) 
print ("Backdoor:"+str(float(conf[2,2])/np.count_nonzero(y==2))) 
print ("DoS:"+str(float(conf[3,3])/np.count_nonzero(y==3))) 
print ("Exploit:"+str(float(conf[4,4])/np.count_nonzero(y==4))) 
print ("Fuzzers:"+str(float(conf[5,5])/np.count_nonzero(y==5))) 
print ("Generic:"+str(float(conf[6,6])/np.count_nonzero(y==6))) 



49 
 

print ("Recon:"+str(float(conf[7,7])/np.count_nonzero(y==7))) 
print ("Shell:"+str(float(conf[8,8])/np.count_nonzero(y==8))) 
print ("Worms:"+str(float(conf[9,9])/np.count_nonzero(y==9))) 
 
print("Testing %.2f seconds:" % ((time() - start))) 
 
  



50 
 

  



51 
 

APPENDIX B 

 
RANDOM FOREST CLASSIFIER CODES 

 
#Required library 
import numpy as np 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
from sklearn.ensemble import RandomForestClassifier 
from time import time 
 
start = time() 
 
# Testing Phase 
data=np.loadtxt("UNSW_NB15_total_numeric_testing_WR_19FS-60percent.csv",delimiter=",") 
x=data[:,0:19] 
y=data[:,19] 
clf0 = RandomForestClassifier(class_weight="balanced", random_state=42) 
clf0 = clf0.fit(x,y) 
 
print("Training %.2f seconds:" % ((time() - start))) 
 
# Testing Phase 
start = time() 
data=np.loadtxt("UNSW_NB15_total_numeric_testing_WR_19FS-40percent.csv",delimiter=",") 
x=data[:,0:19] 
y=data[:,19] 
 
y_pred = clf0.predict(x) 
 
target_names = ['Normal', 'Analysis', 'Backdoor','DoS','Exploit','Fuzzers','Generic','Recon', 
                'Shell','Worms'] 
 
acc = accuracy_score(y,y_pred) 
conf=confusion_matrix(y,y_pred) 
 
print(classification_report(y,y_pred,target_names=target_names)) 
 
print (acc) 
print (conf) 
 
print ("Normal:"+str(float(conf[0,0])/np.count_nonzero(y==0))) 
print ("Analysis:"+str(float(conf[1,1])/np.count_nonzero(y==1))) 
print ("Backdoor:"+str(float(conf[2,2])/np.count_nonzero(y==2))) 
print ("DoS:"+str(float(conf[3,3])/np.count_nonzero(y==3))) 



52 
 

print ("Exploit:"+str(float(conf[4,4])/np.count_nonzero(y==4))) 
print ("Fuzzers:"+str(float(conf[5,5])/np.count_nonzero(y==5))) 
print ("Generic:"+str(float(conf[6,6])/np.count_nonzero(y==6))) 
print ("Recon:"+str(float(conf[7,7])/np.count_nonzero(y==7))) 
print ("Shell:"+str(float(conf[8,8])/np.count_nonzero(y==8))) 
print ("Worms:"+str(float(conf[9,9])/np.count_nonzero(y==9))) 
 
print("Testing %.2f seconds:" % ((time() - start))) 

 
  



53 
 

APPENDIX C 

SOME SELECTED GROUND TABLES FOR ATTACK TYPES 
 

Analysis 
 

Type Prot. Information 
Port 
Scanner 

ggp Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

ip Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

ipnip Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

st2 Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

cbt Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

egp Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

argus Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

bbn-
rcc 

Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

chaos Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

emco
n 

Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

igp Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

nvp Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

pup Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

Port 
Scanner 

xnet Analysis: IP Protocol Scan 
(https://strikecenter.bpointsys.com/bps/strikes/analysis/portscan/portscan_ip_proto.x
ml) 

 



54 
 

 
Backdoor 

 

 
 
 

 

Prot. Information 
ospf HP Performance Manager Tomcat Bypass 

(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2009_3548_HP_Performance
Manager_Tomcat_Bypass.xml) 

ospf Vtiger CRM Unauthenticated Password Reset 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2014_2269_vtiger_crm_pass
word_reset.xml) 

sctp HP OpenView Insight Server Backdoor Access 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2011_0276_HP_OpenView_
Backdoor.xml) 

sctp phpmyadmin 3.5.2.2 Backdoor Access and Code Execution 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2012_5159_phpmhyadmin_b
ackdoor.xml) 

sctp Vtiger CRM Unauthenticated Password Reset 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2014_2269_vtiger_crm_pass
word_reset.xml) 

gre Cisco Network Registrar Default Credentials Backdoor Access 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2011_2024_cisco_network_r
egistrar_auth_bypass.xml) 

gre HP OpenView Insight Server Backdoor Access 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2011_0276_HP_OpenView_
Backdoor.xml) 

gre HP Performance Manager Tomcat Bypass 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2009_3548_HP_Performance
Manager_Tomcat_Bypass.xml) 

tcp Backdoor: Windows XP CMD.EXE Reverse Shell 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/windows_cmd_shell_reverse_xp.x
ml) 

ospf Cisco Network Registrar Default Credentials Backdoor Access 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2011_2024_cisco_network_r
egistrar_auth_bypass.xml) 

ospf Cisco Network Registrar Default Credentials Backdoor Access 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2011_2024_cisco_network_r
egistrar_auth_bypass.xml) 

ospf phpmyadmin 3.5.2.2 Backdoor Access and Code Execution 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2012_5159_phpmhyadmin_b
ackdoor.xml) 

ospf phpmyadmin 3.5.2.2 Backdoor Access and Code Execution 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/cve_2012_5159_phpmhyadmin_b
ackdoor.xml) 

tcp Backdoor: Girlfriend v1.35 Client Connection 
(https://strikecenter.bpointsys.com/bps/strikes/backdoors/trojan_girlfriend_02.xml) 



55 
 

DoS 
 

Type Prot. Information 
Miscellaneous tcp Cisco DCP2100 SADownStartingFrequency Denial of Service 

(https://strikecenter.bpointsys.com/bps/strikes/denial/misc/cisco_dcp2100_de
nial_of_service.xml) 

Miscellaneous tcp Cisco DCP2100 SADownStartingFrequency Denial of Service 
(https://strikecenter.bpointsys.com/bps/strikes/denial/misc/cisco_dcp2100_de
nial_of_service.xml) 

Browser tcp Mozilla Firefox OBJECT Tag Crafted Style Null Dereference 
(https://strikecenter.bpointsys.com/bps/strikes/denial/browser/firefox_display
_moz_deck_null_deref.xml) 

Miscellaneous tcp Tri PLC Nano 10 PLC Denial of Service 
(https://strikecenter.bpointsys.com/bps/strikes/denial/misc/cve_2013_2784_tr
i_PLC_nano10_dos.xml) 

 SNMP udp Cisco SNMP Trap Service GET Request DoS (162) 
(https://strikecenter.bpointsys.com/bps/strikes/denial/snmp/cisco_snmptrap_s
nmp_01.xml) 

Miscellaneous tcp Apple OS X QuickDraw GetSrcBits32ARGB Memory Corruption Denial of 
Service (POP3) 
(https://strikecenter.bpointsys.com/bps/strikes/denial/misc/osx_quickdraw_ge
tsrcbits32argb_pop3_download.xml) 

Browser tcp Mozilla Firefox XUL menupopup.menu Null Pointer Dereference 
(https://strikecenter.bpointsys.com/bps/strikes/denial/browser/firefox_xul_nu
ll_menu.xml) 

Browser tcp Apple Quicktime for Windows QTPlugin.ocx ActiveX Control SetBgColor 
Denial of Service 
(https://strikecenter.bpointsys.com/bps/strikes/denial/browser/apple_quicktim
e_activex_setbgcolor.xml) 

FTP tcp Microsoft IIS FTP Server NLST Infinite Recursion DoS 
(https://strikecenter.bpointsys.com/bps/strikes/denial/ftp/ms09_053_iis_ftpd_
nlst_infinite_recursion_dos.xml) 

FTP tcp Microsoft IIS FTP Server NLST Infinite Recursion DoS 
(https://strikecenter.bpointsys.com/bps/strikes/denial/ftp/ms09_053_iis_ftpd_
nlst_infinite_recursion_dos.xml) 

FTP tcp Microsoft IIS FTP Server NLST Infinite Recursion DoS 
(https://strikecenter.bpointsys.com/bps/strikes/denial/ftp/ms09_053_iis_ftpd_
nlst_infinite_recursion_dos.xml) 

Miscellaneous tcp Wireshark Profinet DCP Dissector Name of Station Set Request Format 
String Vulnerability 
(https://strikecenter.bpointsys.com/bps/strikes/denial/misc/wireshark_profine
t_dcp_ident_request_dos.xml) 

Miscellaneous tcp Sybase Open Server Function Pointer 
(https://strikecenter.bpointsys.com/bps/strikes/denial/misc/sybase_open_serv
er_function_pointer.xml) 

 
 
 
 
 
 



56 
 

 
Exploit 

 
Type Prot. Information 

Unix 'r' Service udp Solaris rwalld Format String Vulnerability 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/rservices/solaris_rw
all_format_string.xml) 

Browser tcp Windows Metafile (WMF) SetAbortProc() Code Execution [009] 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/wmf_009.x
ml) 

Miscellaneous 
Batch 

tcp HP Data Protector Backup 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/misc/cve_2011_172
9.xml) 

Cisco IOS  tcp Cisco IOS HTTP Authentication Bypass Level 64 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/ios/cisco_auth_bypa
ss_level_64.xml) 

Browser tcp Microsoft Internet Explorer Frameset Memory Corruption 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/ms06_042_
html_frameset_memory_corruption.xml) 

Browser tcp Microsoft Internet Explorer Frameset Memory Corruption 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/ms06_042_
html_frameset_memory_corruption.xml) 

SCADA tcp Mitsubishi EZPcAut260.dll ActiveX Control ESOpen Buffer Overflow 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/scada/cve_2014_16
41_Mitsubishi_EZPcAut260_ActiveX_Control_ESOpen_bo.xml) 

Browser tcp Microsoft Internet Explorer Layouts Handling Memory Corruption 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/ms11_018_
layouts_handling_memory_corruption.xml) 

Browser tcp Microsoft Internet Explorer ActiveX Arbitrary Command Execution 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/ms03_040_
malicious_popups.xml) 

Browser tcp Microsoft Internet Explorer ActiveX Arbitrary Command Execution 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/ms03_040_
malicious_popups.xml) 

Miscellaneous 
Batch 

tcp BigAnt Server Arbitrary File Upload 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/misc/cve_2012_627
4.xml) 

SCADA tcp Advantech WebAccess SCADA webvact NodeName2 Buffer overflow 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/scada/cve_2014_07
66_advantech_webaccess_scada_webvact_nodename2_bo.xml) 

Miscellaneous 
Batch 

tcp HP SiteScope Default User information 
(https://strikecenter.bpointsys.com/bps/strikes/exploits/misc/osvdb_74865_
hp_sitescope_default_credential.xml) 

 
  



57 
 

Fuzzers 
 

Type Prot. Information 
OSPF ospf Fuzzer: OSPF Database Description Packet: Basic 

(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/ospf/dbd_basic.xml) 
OSPF ospf Fuzzer: OSPF Hello Packet: Invalid Length, Long Payload 

(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/ospf/hello_invalid_length_long
_payload.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

HTTP tcp Fuzzer: HTTP GET Request Invalid URI 
(https://strikecenter.bpointsys.com/bps/strikes/fuzzers/http/get_invaliduri.xml) 

 
  



58 
 

Generic 
 

Type Prot. Information 
IXIA tcp Alt-N_MDaemon_WorldClient_Service_Memory_Corruption_attack 

(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/alt-
n_mdaemon_worldclient_service_memory_corruption_attack.xml) 

SIP udp RFC 4475: SIP Torture Tests: Missing Required Header Fields (CSeq) 
(https://strikecenter.bpointsys.com/bps/strikes/generic/sip/rfc_4475_3_3_1_missing_h
eader_field_cseq.xml) 

 IXIA tcp Apple_QuickTime_udta_Atom_Buffer_Overflow_attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/apple_quicktime_udta_ato
m_buffer_overflow_attack.xml) 

 IXIA tcp Adobe_Shockwave_Player_DIR_Files_PAMI_Chunk_Code_Execution_attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/adobe_shockwave_player_
dir_files_pami_chunk_code_execution_attack.xml) 

SIP udp RFC 4475: SIP Torture Tests: Unknown Protocol Version 
(https://strikecenter.bpointsys.com/bps/strikes/generic/sip/rfc_4475_3_1_2_16_unkno
wn_protocol_version.xml) 

SMTP tcp SMTP: Executable File Attachment in Archive (SCR in TAR.GZ) 
(https://strikecenter.bpointsys.com/bps/strikes/generic/smtp/attachment_tar_gz_scr.xm
l) 

 IXIA tcp Microsoft_Excel_File_Importing_Code_Execution_attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/microsoft_excel_file_impo
rting_code_execution_attack.xml) 

SMTP tcp SMTP: Executable File Attachment in Archive (BAT in RAR) 
(https://strikecenter.bpointsys.com/bps/strikes/generic/smtp/attachment_rar_bat.xml) 

TFTP udp TFTP GET Request - Long File Name (512 bytes) (Octet) 
(https://strikecenter.bpointsys.com/bps/strikes/generic/tftp/tftp_octet_long_get_512.x
ml) 

 IXIA tcp HP_WEB_JETADMIN_issue2_GET 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/hp_web_jetadmin_issue2_
get.xml) 

 IXIA tcp Adobe_Reader_and_Acrobat_util_printf_Stack_Buffer_Overflow_attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/adobe_reader_and_acrobat
_util_printf_stack_buffer_overflow_attack.xml) 

 IXIA tcp Apple QuickTime Color Table ID Heap Corruption attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/apple_quicktime_color_tab
le_id_heap_corruption_attack.xml) 

 IXIA tcp Apple_QuickTime_STSD_Atoms_Handling_Heap_Overflow_attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/apple_quicktime_stsd_ato
ms_handling_heap_overflow_attack.xml) 

 IXIA tcp Cisco_WebEx_Player__WRF_Stack_Buffer_Overflow_attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/cisco_webex_player__wrf_
stack_buffer_overflow_attack.xml) 

 IXIA tcp InterNetNews Control Message Handling Buffer Overflow attack 
(https://strikecenter.bpointsys.com/bps/strikes/generic/ixia/internetnews_control_mess
age_handling_buffer_overflow_attack.xml) 

SIP udp RFC 4475: SIP Torture Tests: Invalid Time Zone in Date Header Field (Negative 
Offset) 
(https://strikecenter.bpointsys.com/bps/strikes/generic/sip/rfc_4475_3_1_2_12_invalid
_timezone_negative_offset.xml) 

 



59 
 

Reconnaissance 
 

Type Prot. Information 
HTTP tcp Domino Web Server Database Access: /doladmin.nsf 

(https://strikecenter.bpointsys.com/bps/strikes/recon/http/domino/access_domi
no_doladmin_nsf.xml) 

SunRPC 
Portmapper 
(UDP) TCP 
Service 

udp SunRPC UDP Portmapper GETPORT Request (iostatv2/tcp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_udp/servi
ce_tcp/iostat_v2_tcp.xml) 

SunRPC 
Portmapper 
(TCP) UDP 
Service 

tcp SunRPC TCP Portmapper GETPORT Request (etherifv3/udp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_tcp/servi
ce_udp/etherif_v3_udp.xml) 

SunRPC 
Portmapper 
(TCP) TCP 
Service 

tcp SunRPC TCP Portmapper GETPORT Request (schedv3/tcp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_tcp/servi
ce_tcp/sched_v3_tcp.xml) 

SunRPC 
Portmapper 
(TCP) UDP 
Service 

tcp SunRPC TCP Portmapper GETPORT Request (x25_inrv3/udp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_tcp/servi
ce_udp/x25_inr_v3_udp.xml) 

 SunRPC 
Portmapper 
(UDP) UDP 
Service  

udp SunRPC UDP Portmapper GETPORT Request (statusv3/udp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_udp/servi
ce_udp/status_v3_udp.xml) 

 SunRPC 
Portmapper 
(UDP) UDP 
Service  

udp SunRPC UDP Portmapper GETPORT Request (kerbdv3/udp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_udp/servi
ce_udp/kerbd_v3_udp.xml) 

SunRPC 
Portmapper 
(TCP) TCP 
Service 

tcp SunRPC TCP Portmapper GETPORT Request (swu_svrv2/tcp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_tcp/servi
ce_tcp/swu_svr_v2_tcp.xml) 

 SunRPC 
Portmapper 
(UDP) UDP 
Service  

udp SunRPC UDP Portmapper GETPORT Request (rpcbindv3/udp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_udp/servi
ce_udp/rpcbind_v3_udp.xml) 

 SunRPC 
Portmapper 
(UDP) UDP 
Service  

udp SunRPC UDP Portmapper GETPORT Request (loggerv1/udp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_udp/servi
ce_udp/logger_v1_udp.xml) 

SunRPC 
Portmapper 
(TCP) UDP 
Service 

tcp SunRPC TCP Portmapper GETPORT Request (remote_dbxv3/udp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_tcp/servi
ce_udp/remote_dbx_v3_udp.xml) 

SunRPC 
Portmapper 
(UDP) TCP 
Service 

udp SunRPC UDP Portmapper GETPORT Request (iostat2v3/tcp) 
(https://strikecenter.bpointsys.com/bps/strikes/recon/sunrpc/portmap_udp/servi
ce_tcp/iostat2_v3_tcp.xml) 

 
  



60 
 

Shellcode 
 

Type Prot. Information 
Multiple 
OS 

tcp Shellcode: Multi-OS Shell (solaris/linux/irix) - dymitri (TCP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/multi/shell_multi_dymitri
_3_tcp.xml) 

Mac OS 
X 

udp Shellcode: Mac OS X PPC Reverse Shell - metasploit (UDP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/osx/reverse_ppc_metaspl
oit_udp.xml) 

Linux tcp Shellcode: Linux SPARC Reverse Connect Shell - metasploit (TCP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/linux/reverse_sparc_meta
sploit_tcp.xml) 

Solaris tcp Shellcode: Solaris SPARC Reverse Connect Shell - metasploit (TCP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/solaris/reverse_sparc_met
asploit_tcp.xml) 

Windows tcp Shellcode: Windows x86 Execute Command - metasploit (TCP) Variant 1 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/win32/exec_x86_metaspl
oit_1_tcp.xml) 

Linux tcp Shellcode: Linux x86 Reverse Connect TCP Shell - metasploit 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/linux/reverse_x86_udp_
metasploit_tcp.xml) 

OpenBS
D 

udp Shellcode: OpenBSD x86 Bind Shell - noir (UDP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/openbsd/bind_x86_noir_
udp.xml) 

Mac OS 
X 

udp Shellcode: Mac OS X PPC Reverse Stage - metasploit (UDP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/osx/reverse_ppc_stage_m
etasploit_udp.xml) 

BSD tcp Shellcode: BSD x86 Bind Shell (random) - MayheM (TCP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/bsd/bind_x86_random_tc
p.xml) 

BSD tcp Shellcode: BSD x86 FindRecv Stage -  metasploit (TCP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/bsd/findrecv_x86_stage_
metasploit_tcp.xml) 

 SCO 
Unix  

udp Shellcode: SCO OpenServer x86 Shell - minervini (UDP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/sco/shell_x86_minervini_
udp.xml) 

Linux udp Shellcode: Linux x86 Bind Shell - metasploit (UDP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/linux/bind_x86_metasplo
it_udp.xml) 

Windows udp Shellcode: Windows x86 Download Execute - metasploit (UDP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/win32/downloadexec_x8
6_metasploit_udp.xml) 

Windows udp Shellcode: Windows x86 Add User - metasploit (UDP) Variant 1 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/win32/adduser_x86_meta
sploit_1_udp.xml) 

Windows tcp Shellcode: Windows x86 Reverse Stage - metasploit (TCP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/win32/reverse_x86_stage
_metasploit_tcp.xml) 

BSD tcp Shellcode: BSD x86 chroot() - s0t4ipv6 (TCP) 
(https://strikecenter.bpointsys.com/bps/strikes/shellcode/bsd/chroot_x86_s0t4ipv6
_tcp.xml) 

 



61 
 

Worms 
 

Prot. Information 
tcp Lupper.A XML-RPC Propogation Request Variant 8 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_08.xml) 
tcp Trojan.MDropper Word Document (http) Variant 2 

(https://strikecenter.bpointsys.com/bps/strikes/worms/mdropper_http_02.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 6 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_06.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 7 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_07.xml) 
tcp Linux Lupper A Work Propogation via HTTP 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_http_download.xml) 
tcp Linux Lupper A Variant 1 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_awstats_0.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 3 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_03.xml) 
udp ISS Realsecure/BlackICE Witty Worm 

(https://strikecenter.bpointsys.com/bps/strikes/worms/witty.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 10 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_10.xml) 
tcp Code Red Worm (https://strikecenter.bpointsys.com/bps/strikes/worms/codered_a.xml) 
tcp Linux Lupper A Variant 2 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_awstats_1.xml) 
tcp Trojan.MDropper Word Document (http) Variant 1 

(https://strikecenter.bpointsys.com/bps/strikes/worms/mdropper_http_01.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 13 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_13.xml) 
udp Nimda Worm TFTP Request Admin.dll 

(https://strikecenter.bpointsys.com/bps/strikes/worms/nimda_tftp_req.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 1 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_01.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 9 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_09.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 2 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_02.xml) 
udp Microsoft SQL Server Slammer/Saphire Worm 

(https://strikecenter.bpointsys.com/bps/strikes/worms/slammer.xml) 
tcp X97EmbedAn Excel Document (http) 

(https://strikecenter.bpointsys.com/bps/strikes/worms/x97embedan_http_01.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 11 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_11.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 12 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_12.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 14 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_14.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 4 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_04.xml) 
tcp Lupper.A XML-RPC Propogation Request Variant 5 

(https://strikecenter.bpointsys.com/bps/strikes/worms/linux_lupper_a_xmlrpc_05.xml) 
 



SKB-SA02/F01 Rev:03 06.08.2018  

TEZ İZİN FORMU / THESIS PERMISSION FORM 
 

                                     
ENSTİTÜ / INSTITUTE 
 

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences 
 

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences      
 

Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics  
   

Enformatik Enstitüsü / Graduate School of Informatics 
 

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences    
   

 
YAZARIN / AUTHOR 
 
Soyadı / Surname   :  Sarıkaya 
Adı / Name    :  Alper 
Bölümü / Department : Bilişim Sistemleri 

 
 

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : 
 
Anomaly-Based Cyber Intrusion Detection System with Ensemble Classifier 

 
TEZİN TÜRÜ / DEGREE:   Yüksek Lisans / Master                            Doktora / PhD   
 

 
1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately 

for access worldwide.  
 

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or 
proprietary purposes for a period of two year. * 

 
3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six 

months. *   
                                              

 
 

Yazarın imzası / Signature     ............................                    Tarih / Date : 6 Eylül 2018 

X 

X 

X 


