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ABSTRACT 

 

 

OBLIQUE SURFACE CRACKING AND CRACK CLOSURE IN AN 

ORTHOTROPIC MEDIUM UNDER CONTACT LOADING

 

 

ToktaĢ, Selim Ercihan 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Serkan Dağ 

September 2018, 123 pages  

 

In this study, inclined surface cracks in an elastic orthotropic half-plane exposed 

to contact loading at the material surface are examined for both open and closed 

crack assumptions. At first, mixed mode stress intensity factors are computed for 

fully open crack assumption depending on the solution of singular integral 

equations, obtained by Full Fourier Transform techniques. Unless fully open 

crack assumption is valid, the suitable crack closure mode is determined. Both 

crack tip and full length closure modes are examined. Singular integral equations 

are solved with a suitable expansion-collocation technique depending on the 

closure mode. Finally, the closed portions of the cracks, contact pressure 

distributions between crack faces and modified mode II stress intensity factors 

are computed considering sliding crack face conditions. The main result of the 

analyses is the influence of the material parameters, the crack orientation angle 

and applied load on mixed mode stress intensity factors, closed portions of the 

cracks and the contact pressure distributions in the closed parts.  

 

Keywords: Inclined Edge Crack, Stress Intensity Factors, Crack Closure 

Problems, Singular Integral Equations 
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ÖZ 

 

 

TEMAS YÜKLEMESİ ALTINDA ORTOTROPİK ORTAMDAKİ EĞİK 

YÜZEY ÇATLAĞI VE ÇATLAK KAPANMASI 

 

 

ToktaĢ, Selim Ercihan 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Serkan Dağ 

Eylül 2018, 123 sayfa 

 

Bu çalıĢmada, malzeme yüzeyinden temas yüklemesine maruz kalan elastik 

ortotropik yarı düzlemdeki eğik yüzey çatlakları, açık ve kapalı çatlak 

varsayımlarıyla incelenmiĢtir. Ġlk olarak karıĢık mod gerilme Ģiddet çarpanları 

tamamen açık çatlak varsayımıyla, Tam Fourier DönüĢümü teknikleriyle elde 

edilen tekil integral denklemlerinin çözümüne göre hesaplanmıĢtır. Tamamen 

açık çatlak varsayımı geçerli değilse, uygun olan çatlak kapanma modu tespit 

edilmiĢtir. Hem çatlak ucu hem de çatlağın tüm uzunluğunda oluĢan kapanma 

modları incelenmiĢtir. Tekil integral denklemleri çatlak kapanma moduna bağlı 

olarak uygun bir sıralama-düzenleme tekniğiyle çözülmüĢtür. Son olarak 

çatlakların kapanan bölümleri, çatlak yüzeyleri arasındaki temas gerilme 

dağılımları ve modifiye edilmiĢ ikinci mod gerilme Ģiddet çarpanları kayan yüzey 

Ģartlarına göre hesaplanmıĢtır. Analizlerin ana sonucu, malzeme parametrelerinin, 

çatlak açısının ve uygulanan yükün gerilme Ģiddet çarpanlarına, çatlakların 

kapanan kısımlarına ve çatlakların kapanan kısımlarındaki temas gerilme 

dağılımlarına olan tesiridir. 

 

Anahtar Kelimeler: Eğik Yüzey Çatlağı, Gerilme ġiddet Çarpanları, Çatlak 

Kapanma Problemleri, Tekil Ġntegral Denklemleri. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The main interest of this study is to evaluate SIF‟s for inclined edge cracks in 

orthotropic media with a solution method utilizing singular integral equations. A 

method is developed using integral transform techniques for an arbitrarily angled 

edge crack in orthotropic medium by considering the solution methods already 

available in the literature for different crack and material types. As discussed in 

the following sections, the conditions for fully open crack assumption cannot be 

satisfied for every loading case. The method in the present study is able to deal 

with the consequences of the crack closure on mixed mode stress intensity factors 

as well. In the following pages in Chapter 1, a summary about the studies in the 

literature related to this topic is given. Then, the scope of the study is specified. 

 

1.1 Literature Survey 

 

Conducted studies towards the investigation of fracture mechanics problems 

under various loading cases generally deal with isotropic materials. However, 

lastly developed materials in tribological applications need a comprehension of 

the behavior of nonisotropic material systems. Due to the demand of usage of 

different kind of orthotropic materials in tribological applications (some 

composite structures, coatings and thin films) over the years, there is an extensive 

volume of literature related on fracture mechanics of orthotropic materials. But, 

the lack of information on contact-related fracture of orthotropic surfaces is 

noticed in the literature.  
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The calculation of SIF‟s for a closed crack is a non-linear problem in solid 

mechanics due to variable contact zone between the crack faces. The applied load 

and material parameters are the dominant factors for the determination of the 

closed part of the crack. For this reason, it is needed to apply different loads to 

work on all closure modes. Hence, related articles and dissertations concerning 

open or partially closed cracks under the effect of wide range of loads are briefly 

summarized in this section. 

 

Several material type and loading cases for the coupled crack/contact problems 

are considered by Dag [1]. Crack/contact problems in isotropic medium and 

functionally graded isotropic medium are studied. Moreover, crack problems in 

general loading conditions are taken into consideration. It is observed that the 

singular behavior of the unknown crack functions are affected by the contact 

loading, if the contact loading area is very close to the crack. The main goal of 

the study is to investigate the mixed mode stress intensity factors at the crack tip 

and contact stress distribution at the material surface for sliding contact case. 

Numerical results are given for different combinations of friction coefficient, 

material nonhomogeneity parameter and crack/contact length parameter for flat, 

circular and triangular stamp profiles.  

 

The study by Sarikaya [2] is related with the straight surface crack problem in an 

elastic orthotropic half-plane subjected to contact loading. The solution procedure 

developed only for crack problem in orthotropic strip by Delale and Erdogan [3] 

is adapted for the crack problem in orthotropic semi-infinite medium associated 

with the contact mechanics problem. Sample results are presented to detect the 

effect of the material properties and friction coefficient on the mixed mode stress 

intensity factors at the crack tip and the contact stresses.  

 

Orthotropic materials related studies in fracture mechanics also provide stress 

intensity factors under different types of loading conditions by applying various 

methods. Li and Lee [4] work on a closed form solution for an orthotropic strip 
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with a perpendicular internal crack under the effect of shear loading for four 

commonly encountered constraints. Ding and Zhou [5] deal with the interface 

cracks in a multi-layered orthotropic material under thermo-mechanical loading. 

Stress intensity factors evaluated by analytical and computational approaches are 

also available in the literature for functionally graded orthotropic materials 

[6],[7]. The enriched finite elements, specially located at the crack tip, enable the 

direct calculation of mixed mode stress intensity factors from the solution of a 

system of linear equations without any further process. In the study by Dag et al 

[8], a numerical solution based on the enriched finite elements is formulated for 

mixed mode fracture analysis of orthotropic functionally graded materials 

subjected to thermal stresses. 

 

The general concepts about indentation theory of orthotropic materials loaded by 

a moving frictional punch are reported by Zhou et al [9]. In another study by 

Guler [10], a closed-form solution is given for two-dimensional frictional contact 

problem of an orthotropic medium. Dag et al [11] focus on evaluating Hertzian 

contact pressure distribution beneath a rigid circular stamp by both analytical and 

numerical procedures for orthotropic functionally graded materials. 

 

The study by Dag et al [12] is an extension work of Dag [1]. The ideas have been 

improved by adding the effect of crack tip closure to the problem. The main 

emphasis is that partial closure of the crack faces takes place for small values of 

the friction coefficient at the material surface. The surfaces of the crack are 

assumed to be in frictionless contact for the closed portion of the crack. In the 

end, a boundary value problem, highly nonlinear in terms of the unknown length 

of the closed portion of the crack, is obtained. The length of the closed portion of 

the crack and the modified mode II stress intensity factors are evaluated with an 

iterative method.  

 

Beghini et al [13] examine the closure conditions of oblique edge cracks under 

travelling loading case. The weight functions method, an analytical expression of 
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the Green functions, is used to obtain the crack opening displacements. The 

sticking and sliding conditions of partial crack closure are studied using the crack 

opening displacements. The effects of different friction conditions in the closure 

region on mixed mode stress intensity factors during a typical loading cycle were 

investigated. 

 

Birinci and Cakiroglu [14] consider mode I problem of an internal crack parallel 

to its surfaces in an infinite elastic isotropic layer. The system is loaded by a pair 

of compressive concentrated forces and a pair of uniform compressive stress 

along the crack surface. A normalized critical load factor, which starts the crack 

closure, is calculated. It is proved that the stress intensity factor reaches to its 

maximum value as the closure length approaches to zero. However, for fully 

closed cracks, it is zero which is an expected result because of the disappearance 

of the crack. The results show that the increase in the closure length decreases the 

stress intensity factor and prevents the crack propagation. Similar calculations are 

done by Kahya et al [15] for monoclinic, orthotropic and transversely isotropic 

materials. 

 

The scope of the study by Hills and Nowell [16] is to examine the plane cracks 

under the effect of bulk stress field. At least some parts of the crack faces are 

pressed together due to this stress field. This situation is mostly faced in problems 

triggered by a contact stress field. However, the illustrative problems for simpler 

cases are given for normal and slant cracks. In this study, the distributed 

dislocation technique by Hills et al [17] is applied. This technique can be used in 

a wide range of solid mechanics problems including fretting, rolling contact 

fatigue, etc. 

 

Porter and Hills [18] examine the problem of finding the mode II stress intensity 

factor for only fully closed inclined edge crack under the effect of a compressive 

stress field. The strategy is based on Bueckner‟s Superposition Principle. This is a 

corrective solution procedure. First, stress state in the uncracked body is found. 
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Then, dislocations are revealed to simulate the existence of the crack. Accurate 

results are obtained for shallow cracks with friction present on the crack faces. 

The results show that friction on the crack faces reduces mode II stress intensity 

factor. This reduction of the shear stress by friction between the crack faces is 

strong enough to make KII equal to zero for low inclinations. Therefore, sticking 

may occur for shallow cracks. 

 

Choi [19] conducts parametric studies about two dissimilar half-planes bonded to 

each other with a graded interfacial zone containing an inclined crack. For 

external loading conditions, the uniform crack surface tractions and the remote 

biaxial loading cases are considered separately. The estimation of probable 

cleavage angles of the crack growth direction is done. Also, some hints about 

how crack closure occurs are given.  

 

Guo et al [20] investigate the arbitrarily oriented interface crossing crack problem 

between two graded layers. The results prove that the mixed-mode SIF‟s are 

extremely affected by the crack angle. It is evidence that the oblique crack 

problems should be examined in more details. In other words, the study indicates 

that the consideration of merely horizontal and vertical cracks is not enough. In 

most cases, the maximum levels for SIF‟s are obtained when the crack is on the 

intersection of two layers. In addition, this study gives the basic principles for 

establishing a multi-layered model for the arbitrarily oriented crack problem. 

 

Delale et al [21] describe an orthotropic strip problem with an inclined crack. The 

crack is placed straight on an axis of orthotropy. However, the strip has a 

different angular orientation compared to the orthogonal axes of material 

orthotropy so that an inclined crack problem is obtained. The numerical results 

for mixed mode stress intensity factors are given for both embedded and edge 

cracks.    
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An arbitrarily oriented crack problem in a FGM layer is examined in the study by 

Long and Delale [22]. Then, this problem is combined with a homogeneous half-

plane problem by the same authors ( Long and Delale [23] ). The system is 

externally loaded by crack surface tractions. It is determined that as the crack 

angle increases, KI decreases all the time while KII increases until some point and 

then it also decreases. Mode I fracture generally is dominant at the crack tips. 

Lastly, the presence of homogeneous substrate has negligible effects on stress 

intensity factors for small cracks away from the interface.  

 

Multiple crack problems in nonhomogeneous orthotropic medium subjected to in-

plane loading is investigated by Monfared and Ayatollahi [24]. Combinations of 

circular arc crack and straight crack arrangements are examined in details. Jin and 

Keer [25] solve two types of multiple edge cracks problems in isotropic medium. 

A half-plane containing up to 100 oblique edge cracks case and periodical 

oblique edge cracks case are examined. Yildirim et al [26] also deal with 

repeatedly located cracks in FGMs. A unit cell approach is taken into 

consideration using periodicity. Then, the unit cell is treated as though it is a 

strip. In all three studies, the results are compared with the finite element 

implementations for verification. 

 

Thermal stress intensity factors for a circumferential crack problem in a thin 

walled cylinder made of FGMs are calculated by Dag [27]. Thermomechanical 

properties of FGMs alter as exponential functions in the thickness direction. The 

thin walled cylinder problem is reduced to a plate problem using the 

axisymmetry. The fluctuation of thermal stress intensity factors is investigated by 

changing the thermomechanical properties of the material. 

 

El-Borgi et al [28] and Dag et al [29] work on surface crack problem in graded 

coatings bonded to a homogeneous substrate. El-Borgi et al [28] choose to 

examine this problem under general loading conditions. On the other hand, the 

solution is done with a two-stage method for the sliding contact case by Dag et al 
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[29]. First, only the sliding frictional contact problem with a rigid punch is solved 

for the contact stresses. Afterwards, these stresses are accepted as inputs for the 

crack problem. This is an uncoupled solution. Because, the influence of the 

presence of the crack on the contact stress distribution is ignored. However, the 

solution still gives accurate results in certain cases. 

 

Guo et al [30] answer the problem of which direction that the cracks will 

propagate, for multiple embedded cracks in a strip by using the maximum 

circumferential stress criterion. It states that the crack will propagate from its tip 

with a critical cracking angle (  ), determined by using the fact that the 

circumferential stress in the direction of crack propagation is a principal stress. It 

is also found that if the distance between two cracks is ten times larger than the 

half length of the cracks, the existence of multiple cracks can be ignored. Also, 

the angular variations of the other cracks have inconsiderable effects on the 

critical cracking angle.  

 

In fretting problems, it is a common knowledge that at the first step, a slant crack 

appears at the surface of the material. Then, this slant crack becomes rather 

normal with crack propagation. In other words, two or more straight crack 

segments with different crack angles exist in the material. Therefore, the resulting 

geometry will be a kinked crack. This situation is examined by Yingzhi and Hills 

[31] for a crack that remains open throughout its length. Variations of mixed 

mode stress intensity factors for the crack segments with different crack sizes and 

crack angles are given. 

 

1.2 Scope of the Study 

 

In certain engineering applications, the contact of two machine elements may be 

encountered, which leads to surface crack formation and propagation near the 

contact zone. In other words, contact between machine components is one of the 

origins of surface crack initiation. Indentation fractures ( Lawn [32] ) and fretting 
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fractures ( Hills and Nowell [33] ) are the examples of these types of failures. The 

surface cracks triggered by fretting fatigue, are within the scope of this study. 

 

The structures exposed to fretting fatigue experience with severe loading 

conditions caused by relative and repeated movement. This recurrent movement 

in fretting fatigue induces a significant decrease in the fatigue strength of the 

material. It also deteriorates the material surface. Hence, surface cracks initiate in 

the long run. It is observed that at first, a number of micro-cracks appear at the 

edge of the contact region, and then some of them merge in to one. Thus, the 

main crack becomes oblique to the contact surface in the early stage of crack 

growth in fretting fatigue problems. Kimura and Sato [34] state that the reduction 

of life in fretting fatigue is related with the early crack initiation and propagation 

in the short crack region. Therefore, a detailed investigation of the mixed mode 

stress intensity factors for an inclined edge crack is essential to be able to predict 

subcritical crack growth. This prediction is vital for safety and economic reasons 

in aircraft structures, bearings, engines, and so-forth. 

 

In addition, Elber [35] observed that the crack face closure occurs in some 

loading conditions. This crucial phenomenon in fracture mechanics may 

substantially alter the results for mixed mode stress intensity factors. Therefore, 

the scope for this study is to examine the effects of crack angle and crack closure 

phenomenon for an inclined edge crack in the orthotropic half-plane under the 

effect of contact loading conditions.  

 

As it is mentioned above, a model for contact-based fracture in an orthotropic 

material is developed by Sarikaya [2] for straight and fully open cracks. Present 

study provides compulsory and crucial extensions over the model developed by 

Sarikaya [2]. The model is enhanced by the consideration of crack orientation 

angle and modification of the solution with crack closure. Thus, crack growth 

behavior is taken into account in a more precise way for more realistic cracks. 
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Therefore, the present study submits a procedure that embodies both crack angle 

and crack closure modes into the solution. 

 

In Chapter 2, the definition of problem is given. The boundary conditions in the 

problem are identified. A brief overview about plane elasticity of orthotropic 

materials is mentioned. Then, the formulation of the problem is expressed. 

Overall problem is divided into 3 sub problems for simplification. These sub 

problems are considered by using Fourier Transform for the suitable variable. 

When the indentation of punches is selected as the load, the contact pressure 

distribution on the material surface is obtained by solving the sliding contact 

problem separately. Then, the stress field in the loading region of two bodies 

becomes a known function for the crack problem. The displacement and the 

stress fields are obtained in the integral form. Using the equilibrium equations, 

the overall problem is degraded to the system of one or two singular integral 

equations depending on the closure mode. In Chapter 3, several figures for the 

mixed mode stress intensity factors for both open and closed cracks and contact 

pressure distributions between crack faces are presented by changing material 

properties, crack angle and load type. Finally, concluding remarks and future 

work of this study are stated in Chapter 4.  
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CHAPTER 2 

 

 

PROBLEM STATEMENT AND FORMULATION 

 

 

 

2.1 Problem Definition 

 

The configuration of the main problem is illustrated in Figure 2.1. An orthotropic 

elastic half-plane is loaded by known functions  (  ) and  (  ) as a 

representation of the contact of two solids. These loads are applied from    = a to 

   = b at the material surface and the half-plane contains an inclined edge crack 

of length d and crack angle . Clockwise direction is selected as positive 

direction for crack angle. Dag [1] showed that depending on the surface loads, 

negative values for mode I stress intensity factors may be obtained at the crack 

tip. The physical meaning of these results is that the surfaces of the crack must 

come into contact and take the shape of a cusp. Hence, at least some part of the 

crack is closed. However, this unknown closed portion of the crack is not 

designated until Section 2.7. Thus, the formulation continues with fully open 

crack assumption (the closed portion of the crack is assumed to be zero) until 

Section 2.7. In the formulation of the problem, two coordinate systems (X-Y and 

x1-x2) are introduced. The stress transformation between these coordinate systems 

can be applied whenever desired. Lastly, E1, E2,    and     represent the 

Young‟s moduli, shear modulus, and Poisson‟s ratio of the material, respectively.  

 

2.2 Formulation of the Problem 

 

First of all, the mixed boundary conditions, needed to be verified, are determined. 

At the material surface, there are no normal and shear stresses except for the ones 
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( (  ) and  (  )) between    = a and    = b. Coulomb‟s friction law is valid for 

shear stress in the loading area. The crack angle can be selected between -90 and 

90 degrees. At the crack plane (Y=0), tangential and normal displacements are 

nonzero for the inside of the crack (   ). Crack faces are stress free for the 

open portion of the crack. In addition, it is compulsory to be bounded for all field 

quantities (stresses and displacements) in the half-plane as (      ) or 

(  
     

 )   . Note that the crack is loaded from the surface of the material as 

illustrated in Figure 2.1. Yet, these loads can be replaced by any type of loading 

as discussed in Section 2.7 and Chapter 3 for the verification of the present study 

with the results in the literature.  

 

  

 

 

 

Figure 2.1 The General Description of Problem 

 

 

 

To sum up, the main boundary conditions can be written as follows: 

 

     (       )                   (2.1a) 

     (       )                   (2.1b) 



  13 

 

     (       )   (  )          (2.1c) 

     (       )   (  )          (2.1d) 

 (  )     (  )          (2.1e) 

   (     )           (2.1f) 

   (     )           (2.1g) 

                             as 

(  
     

 )    

(      )    
(2.1h,i,j,k) 

                      as 

  (     )   (     )          as 

 (   )  (   )          as 

 

where    in (2.1e) is the coefficient of friction. Note that, selected coordinate 

system is specified in the subscript. For instance,       represents the normal 

stress in    direction in   -   coordinate system while     represents the shear 

stress in  -  coordinate system. The derivatives of crack surface displacements 

are used in the representation of the crack. In this way, the crack is defined with 

two unknown functions   ( ) and   ( ). 

 

   
 

 

  
( (    )   (    ))    ( )       (2.2a) 

   
 

 

  
( (    )   (    ))    ( )         (2.2b) 

 

where     is a material parameter.   in (2.2a) and   in (2.2b) represent the 

displacement components in   and   directions, respectively. By neglecting the 

body forces, the equilibrium equations can be expressed as the following fashion. 

 

      
   

 
      
   

   or 
    
  

 
    
  

   (2.3a) 
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   or 
    
  

 
    
  

   (2.3b) 

 

The constitutive relations of orthotropic materials can be represented for plane 

stress and plane strain cases in the following form ( Sarikaya [2] ). 

 

[

   
   
   

]  [

       
       
     

] [

   
   
   

] (2.4a) 

 

   ,    ,     and     are stiffness terms and can be written in terms of material 

parameters as the equation set below. 

 

    

{
 
 

 
   

 

      
   

(        )  
 

 

 

Plane Stress 

(2.4b) 

Plane Strain 

    {

       
      

   
(          )    

 

 

Plane Stress 

(2.4c) 

Plane Strain 

    

{
 

 
    

      
   

(        )    
 

 

Plane Stress 

(2.4d) 

Plane Strain 

         For Both Cases (2.4e) 

            (2.4f) 

   (                            ) (2.4g) 

   (   
                

    
 ) (2.4h) 

 

Now, the overall problem is divided into sub problems. First, crack and contact 

loading problems are separated. Then, crack problem is split into two as the crack 

problem in an infinite plane and the half-plane problem that satisfies the 
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boundary conditions at the free surface. Thus, contact loading problem, infinite 

plane problem and half-plane problem are superposed to fulfill the requirements 

of the original problem. These subdivision methods are shown in Figure 2.2 and 

Figure 2.3. 

 

The governing partial differential equations of the half-plane are written in the 

formulas below by utilizing equilibrium equations and constitutive relations of 

orthotropic materials. 

 

   
    
    

 
   
 

    
    

 (    
   
 
)

    
      

   (2.4i) 

(    
   
 
)

    
      

 
   
 

    
    

    
    

   
    (2.4j) 

 

 

 

 

Figure 2.2 Solution Procedure of the Coupled Problem 
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Figure 2.3 Solution Procedure of the Crack Problem 

 

 

 

2.3 The Contact Loading Problem 

 

The necessary equations for the formulation of the contact loading problem are 

derived in the dissertation by Sarikaya [2]. The stress and displacement fields in 

the problem are found using Fourier Transform for    variable in   -   

coordinate system in terms of known stress distributions (  (  )  and  (  ) ). In 

Figure 2.4, the configuration of the contact loading problem is given. The 

formulation relies on the representation of displacement fields as Fourier 

Integrals. 

  (     )  
 

  
∫   (    )   (    )   

 

  

 (2.5a) 
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  (     )  
 

  
∫   (    )   (    )   

 

  

 (2.5b) 

 

 

 

 

 

Figure 2.4 Geometry of Contact Loading Problem 

 

 

 

This means two partial differential equations in (2.4i-j) can be transformed to 

ordinary differential equations using Fourier Transform for    variable. Then, the 

solutions for    and    are searched in the form of    (   ) and the resulting 

equations are written in the matrix form. 

 

   
    
    

   
   
 
   (    

   
 
)   

   
   

   (2.6a) 

(    
   
 
)   

   
   

 
   
 

    
    

           (2.6b) 
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[
(    

  
   
 
  ) (    

   
 
)    

(    
   
 
)       (

   
 

       
 )

] {
  
  
}    (2.7a) 

             (2.7b) 

   
 (           

        ) 
 

      
    

     
   

 (2.7c,d) 

For     ,   
        |  |  √  

      Type 1 Material (2.7e) 

 

A characteristic equation is found by equating the determinant of the matrix in 

equation (2.7a) to zero. Now, the exact solutions for    and    can be obtained 

by solving the characteristic equation in (2.7b). Delale and Erdogan [3] and 

Sarikaya [2] classify the orthotropic materials in two groups depending on the 

roots of this characteristic equation. If the condition related to material 

parameters given by equation (2.7e) is satisfied, in other words, the characteristic 

equation of the material gives four real roots; it is classified as type 1 orthotropic 

material in practical engineering applications. Otherwise, if the roots are 

complex, the material is called as type 2. 

 

Orthotropic materials used in tribological applications such as composite 

structures, coatings and thin films generally possess the characteristics of type 1 

material. Hence, Sarikaya [2] worked on type 1 materials.  In this study, the main 

objective is to add the effects of crack orientation angle and crack closure to 

Sarikaya [2]‟s work. For this reason, type 1 materials are focused on. Thus, the 

formulation from this point on is related to type 1 materials. 

 

In the previous step, the solutions of    and    are found. Now, the displacement 

components are updated and corresponding stresses are defined. 
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  (     )  
 

  
∫∑     (         )   

 

   

 

  

 (2.8a) 

  (     )  
 

  
∫∑       (         )   

 

   

 

  

 (2.8b) 

     (     )  
 

  
∫∑(             )     (         )   

 

   

 

  

   (2.8c) 

     (     )  
 

  
∫∑

   
 

(       )     (         )   

 

   

 

  

     (2.8d) 

     (     )  
 

  
∫∑(             )     (         )   

 

   

 

  

 (2.8e) 

 

Keep in mind that terms related ( j = 1,2 ) vanish in stress and displacement fields 

given by equations (2.8a-e) due to the regularity conditions in equations (2.1h-k). 

The unknown functions of the contact loading problem   ‟s and   ‟s are 

obtained through equilibrium equations in (2.7a) and the boundary conditions in 

(2.1a-e), respectively. 

 

  ( )  
      

  
   
   

.    
   
 /     

 

 

(2.9a) 

[
  

  
]  [

                          
   
 

(       )
   
 

(       )
]

  

[
  
  
] (2.9b) 

∑(             )   ∫ ( )   (    )  

 

 

 

   

 (2.9c) 

∑
   
 

(       )   ∫ ( )     (    )  

 

 

 

   

 (2.9d) 
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   ∫ ( )   (    )  

 

 

 (2.9e) 

     ∫ ( )   (    )  

 

 

 (2.9f) 

 

where the roots of the characteristic equation   ‟s  ( j = 1,4 ) are noted as below: 

 

     | |  (  )         | |  (  )    (2.10a,b) 

      | |  (  )          | |  (  )    (2.10c,d) 

   

√      √  
     

 
    

√      √  
     

 
 

(2.10e,f) 

 

Then,    and    are substituted to equations (2.8c-e). The order of integration is 

changed and infinite integrals are evaluated in MAPLE. Eventually, the stresses 

and the displacement fields are obtained as the integral forms in terms of  ( ). 

By deriving the equations about normal and shear stresses acting along the crack 

line, this section is completed. The explicit expressions of these stresses are given 

in Appendix A. 

 

   
       (   )  ∫   (   )

 

 

 ( )         (2.10g) 

   
       (   )  ∫   (   )

 

 

 ( )         (2.10h) 

 

2.4 Determination of Loading Function ( (  )) 

 

Indentation of three rigid stamp profiles is used to represent the contact between 

two solids in this study. It is assumed that the modulus of elasticity of the stamp 
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is very large compared to the modulus of elasticity of the half-plane so that the 

stamp preserves its shape in the contact region. Flat, triangular and circular 

stamps are selected in this study. A two-step solution procedure is applied. First, 

the stress distribution in the contact region is determined ignoring the impacts of 

the presence of the crack. Then, this stress distribution is utilized in the 

calculation of mixed mode stress intensity factors. Note that the crack and the 

contact loading problems are considered as an uncoupled form with this two-step 

solution case. However, the results are expected to be accurate when there is a 

wide distance between the crack and the loading area [29]. 

 

Sarikaya [2] showed that the strengths of singularity at the end points of the 

contact region (   and   ) depend on the coefficient of friction, the parameters 

of type 1 orthotropic material and stamp profile. 

 

 (  )  (    )  (    )
   (  ) (2.11a) 

     
   (                                 )(     )

      
 (2.11b) 

    
 (     )   (     )    

   
 (2.11c) 

      
      

          
       

   
    

      
          

    

                      
               

                        
     

(2.11d) 

   (   )   
   
   

    (   )  
   
   

 (2.11e,f) 

Note that    ,     and     in equations (2.11b-d) are defined as follows:  

 

    
    
   

     
    
   

     
    
   

 (2.12a,b,c) 
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Figure 2.5 Types of Stamp Profiles 

 

 

 

Two distinct solutions for both   and    are obtained for the equations in 

(2.11e-f) between -1 and 1. The correct values for    and    are chosen by 

bearing the physics of the problem in mind. If there is a smooth contact at the end 

point, a positive value should be selected for the strength of singularity. 

Otherwise, the strength of singularity at that point is negative in the case of sharp 

contact as the contact stress approaches to infinity. For each stamp profiles, the 

unknown stress distribution is obtained by expanding it with Jacobi polynomials. 

 

2.4.1 Pressure Distribution for Flat Stamp 

 

The solution of the pressure distribution is based on the displacement derivative 

in the contact region. To begin with, it is observed that there exists a constant 
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displacement in the half-plane. Therefore, the displacement derivative equals to 

zero. 

 

  (       )           (2.13a) 

   (       )

   
          (2.13b) 

 

Then, the total force ( ), applied by the stamp is defined. 

 

∫ (  )

 

 

       (2.13c) 

 

The displacement derivative for this problem has already been shown by Sarikaya 

[2].   

 

   
 

 

 
∫

 ( )

    
  

 

 

 
   
 
 (  )                             (2.13d) 

 

At this point,    and   variables are normalized to   and   variables in order to 

make the integration limits -1 and 1. Also, the normalized form of the contact 

stress distribution  ( ) is introduced. 

 

   
(   )

 
  

(   )

 
 (2.13e) 

  
(   )

 
  

(   )

 
 (2.13f) 

 ( )  
 (

(   )
   

(   )
 )

  (   )
 

(2.13g) 

 

Equations (2.11a), (2.13c) and (2.13d) are rearranged as follows:  
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 ( )  (   )  (   )  ∑    
(     )

 

   

( ) 

where   
(     )( ) 

represents Jacobi 

Polynomials 

 

(2.14a) 

∫ ( )     

 

  

 (2.14b) 

   
 

 

 
∫
 ( )

   
  

 

  

 
   
 
 ( )                             (2.14c) 

 

Using the orthogonality properties of Jacobi Polynomials, orthogonality relations 

in Erdogan et al [36], and the expression in Appendix B, the pressure distribution 

can be obtained.  

∫(   )  (   )  

 

  

  
(     )( )  

(     )( )   {
          
           

       (2.15a) 

   

{
 
 

 
  

        (    ) (    )

 (       )
                     

         (      ) (      )

(          )   (         )
                   

 (2.15b) 

 

Equation (2.14c) is updated as follows: 

∑
   

    (   )
      

(       )( )     

 

   

                    (2.16) 

 

It can be seen from equation (2.16) that all unknown coefficients of expansion 

except for    are zero. Therefore, the only remaining coefficient of expansion 

that appears in the contact pressure distribution is    and it is found using the 

relation in (2.15b). Eventually, the normalized contact pressure distribution is 

obtained. 
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 (    ) (    )
          (2.17a) 

 ( )   
 (   )  (   )  

 (    ) (    )
 

        

        

 

(2.17b) 

 

2.4.2 Pressure Distribution for Triangular Stamp 

 

The triangular stamp has a constant displacement derivative throughout the 

loading region.   

 

   (       )

   
    

       

  is the slope of the stamp 
(2.18) 

 

The governing equation then becomes as follows: 

 

   
 

 

 
∫

 ( )

    
  

 

 

 
   
 
 (  )                              (2.19) 

 

Here, the similar procedures are applied to the governing equation in (2.19) and it 

is observed that the unknown coefficients of expansions excluding     are zero. 

 

∑
   

    (   )
    

(       )( )      

 

   

                    (2.20) 

 

Note that    can be defined in terms of   by using equation (2.20). However, it 

is not desired to have the stamp parameters in the normalized contact stress 

distribution. Instead of this, it is preferred to apply equation (2.15b) to find   . 

 

∫ ( )     

 

  

 

 

(2.21a) 
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 (    ) (    )
         (2.21b) 

 ( )   
(   )  (   )  

 (    ) (    )
 

       

        

 

(2.21c) 

 

2.4.3 Pressure Distribution for Circular Stamp 

 

The displacement derivative for the circular stamp problem is rather complex 

than other two cases. The proof of the displacement derivative equation is 

presented in details by Ozatag [37].  

 

   (       )

   
 
    
 

         (2.22) 

 

In equation (2.22),   and   are the centerline and radius of the stamp, 

respectively. Again, it is found that the coefficients of expansion starting from 

  vanish in the governing equation (2.23). 

 

∑
   

   (   )
      

(       )( )

 

   

 
 (   )  

(       )( )

  
  

                   (2.23) 

 

Once again, it is applied to the orthogonality relation of Jacobi Polynomials in 

order to eliminate the stamp parameters (  and  ) in the normalized contact stress 

distribution. 

 

∫ ( )     

 

  

 (2.24a) 
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 (    ) (    )
         (2.24b) 

 ( )   
(   )  (   )  

 (    ) (    )
 

       

       

 

(2.24c) 

 

At this point, the loading functions for three different stamp profiles are 

determined. Sample contact stress distributions are illustrated in Figure 2.6. 

 

 

 

 

 

Figure 2.6 Sample Pressure Distributions for Plane Stress Case,    = 0.6 

 

 

 

2.5 The Crack Problem 

 

As shown in Figure 2.7, the crack faces are exposed to surface stresses, 

originating from the stresses found from contact loading problem. Fully open 

crack assumption states that crack faces are stress free. Thus, the main boundary 

conditions of the crack problem read: 
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Figure 2.7 Geometry of Crack Problem 

 

 

 

   (   )     
     (   )  ∫   (   ) ( )

 

 

            (2.25a) 

   (   )     
     (   )  ∫   (   ) ( )  

 

 

          (2.25b) 

     (    )       (    )              (2.25c,d) 

   
 

 

  
. (  )(    )   (  )(    )/    ( )       (2.25e) 

   
 

 

  
. (  )(    )   (  )(    )/    ( )       (2.25f) 

 

where    
     (   ) and    

     (   ) in equations (2.25a) and (2.25b) are the 

stresses written in terms of unknown derivatives of crack surface displacement 

functions (  ( ) and   ( )), stemmed from the solution of crack problem. In this 

section, the infinite plane-half plane superposition method in Figure 2.3 can be 

applied to crack problem. Infinite plane problem and half plane problem are 

depicted in Figure 2.8 and Figure 2.9, respectively. Infinite plane problem is 

considered in X-Y coordinate system. Therefore, coordinate transformation is 
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applied to obtain the stiffness matrix of the material in X-Y coordinate system. 

Fourier Transforms of the equilibrium equations can be taken in X-direction. By 

solving the resulting system of ordinary differential equations, the stress and 

displacement expressions for both half-planes   0 and   0 can be obtained. 

The superscripts ( ) and ( ) in displacements and stresses in this section 

designate the solutions for infinite plane and half plane problems, respectively. 

 

 

 

 

 

Figure 2.8 Infinite Plane Problem with a Crack 

 

 

 

At this point, a simple stress transformation procedure is given for orthotropic 

materials. 

 

  [

       
       
     

] (2.26a) 
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[
   
   

   
   

]  [
   ( )

   ( )

    ( )

      ( )
] 6
     
     

     
     

7 [
     ( )

    ( )

     ( )

     ( )
] (2.26b) 

[

   
   
   

]  [

    ( )     ( )     (  )

    ( )     ( )       (  )

   ( )   ( )     ( )   ( )       (  )

] [

     
     
     

] (2.26c) 

  [

    ( )     ( )     (  )

    ( )     ( )       (  )

   ( )   ( )     ( )   ( )       (  )

] (2.26d) 

[

   
   
   

]          [

   
   
   

] (2.26e) 

          (2.26f) 

 

After the transformation, the constitutive relations take the following form. 

 

[

   
   
   

]  [

         
         
         

] [

   
   
   

] (2.26g) 

 

The displacement components for infinite plane problem are in the form of 

Fourier Integrals. 

 ( )(   )  
 

  
∫   

( )
(   )   (   )   

 

  

 (2.27a) 

 ( )(   )  
 

  
∫   

( )
(   )   (   )   

 

  

 (2.27b) 

The equilibrium equations are given as follows: 

   
   ( )

   
 
   
 

   ( )

   
 (

   
 

    )
   ( )

    
    

   ( )

   

 
   
 

   ( )

   
 (

   
 

    )
   ( )

    
   

(2.27c) 
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   ( )

   
 
   
 

   ( )

   
 (

   
 

    )
   ( )

    
    

   ( )

   

 
   
 

   ( )

   
 (

   
 

    )
   ( )

    
   

(2.27d) 

 

Searching a solution for   
( ) and   

( )
 in the form of    (  ) and using the 

Fourier Transform, the equilibrium equations can be updated as follows: 

 

(       
   
 

   (
   
 

    )    )  
( )

 (    
  

   
 

   (
   
 

    )    )  
( )

   

(2.28a) 

(       
   
 

   (
   
 

    )    )  
( )

 (    
  

   
 

   (
   
 

    )    )  
( )

   

(2.28b) 

 

Equations (2.28a) and (2.28b) can be written in the matrix form. 

 

[
    
    

] {
  
( )

  
( )
}         (2.28c) 

          
   
 

   (
   
 

    )       (2.28d) 

       
  

   
 

   (
   
 

    )         (2.28e) 

          
   
 

   (
   
 

    )      (2.28f) 

       
  

   
 

   (
   
 

    )       (2.28g) 
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The determinant of the matrix in equation (2.28c) will give the solutions for   
( )

 

and   
( )

. 

            (2.29) 

Once the roots of the characteristic equation in (2.29) are obtained, the relations 

for both half-planes   0 and   0 are noted as follows: 

 

For the half-plane   < 0 

 

 (  )(   )  
 

  
∫∑      (       )

 

   

 

  

   (2.30a) 

 (  )(   )  
 

  
∫∑        (       )

 

   

 

  

        (2.30b) 

   
(  )(   )  

 

  
∫∑         (       )

 

   

 

  

    (2.30c) 

   
(  )(   )  

 

  
∫∑         (       )

 

   

 

  

    (2.30d) 

   
(  )(   )  

 

  
∫∑         (       )

 

   

 

  

    (2.30e) 

 

For the half-plane   > 0 

 

 (  )(   )  
 

  
∫∑      (       )

 

   

 

  

   (2.31a) 
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 (  )(   )  
 

  
∫∑        (       )

 

   

 

  

                  (2.31b) 

   
(  )(   )  

 

  
∫∑         (       )

 

   

 

  

                (2.31c) 

   
(  )(   )  

 

  
∫∑         (       )

 

   

 

  

               (2.31d) 

   
(  )(   )  

 

  
∫∑         (       )

 

   

 

  

   (2.31e) 

    (              
   
 

(       )) (2.32a) 

    (              
   
 

(       )) (2.32b) 

    (              
   
 

(       )) (2.32c) 

 

where   ‟s can be obtained using one of the equilibrium equations and index j is 

selected based on the roots   ‟s. Using the following system of linear equations, 

  ‟s ( j=1..4) can also be found. 

 

   
.      

   
 

  
  .

   
 

    /     /

.     
  

   
    .

   
     /     /

 (2.33) 

   
(  )(      )     

(  )(      )       (2.34a) 

   
(  )(      )     

(  )(      )       (2.34b) 

   
 

 

  
. (  )(    )   (  )(    )/    ( )       (2.34c) 

   
 

 

  
. (  )(    )   (  )(    )/    ( )       (2.34d) 
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∑     ( )  

 

   

∑     ( )   

 

   

 (2.34e) 

∑     ( )  

 

   

∑     ( )   

 

   

 

 

(2.34f) 

∑
   
 

      ( )  

 

   

∑
   
 

      ( )  ∫  ( )

 

 

   (    )   

 

   

 (2.34g) 

∑
   
 

    ( )  

 

   

∑
   
 

    ( )  ∫  ( )

 

 

   (    )    

 

   

 (2.34h) 

 

In practical engineering applications of type 1 materials, it is observed that the 

solution of equation (2.29) gives four complex n values. Two of them are with 

positive real parts and two of them are with negative real parts.  

 

     | |         (  )    (2.35a) 

     | |        (  )    (2.35b) 

      | |        (  )    (2.35c) 

      | |        (  )    (2.35d) 

 

where           and    are positive real numbers and lengthy functions of 

material parameters and crack angle. Substituting   ‟s into related equations, and 

using MAPLE in the evaluation of infinite integrals, the stress and displacement 

equations in (2.30a-e) and (2.31a-e) can be evaluated.  

 

Now, stress fields obtained for the infinite plane problem are transformed to   -

   coordinate system. For the half plane problem, the equilibrium equations are 

solved in   -   coordinate system using Fourier Transform of    variable. 

Eventually, the stress free material surface conditions in (2.25c-d) are satisfied 

with the summation of stress fields for both infinite plane problem and half plane 

problem.  
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( ) (    )  ,    ( )     ( )    (  )- [

   
( )(   )

   
( )(   )

   
( )(   )

]    (2.35e) 

     
( ) (    )  ,    (  )     (  )      (  )- [

   
( )(   )

   
( )(   )

   
( )(   )

]    (2.35f) 

 

The displacement components are in the form of Fourier Integrals. 

 

 ( )(     )  
 

  
∫   

( )
(    )   (    )   

 

  

 (2.36a) 

 ( )(     )  
 

  
∫   

( )

 

  

(    )   (    )   (2.36b) 

 

The equilibrium equations in   -   coordinate system can be written as follows: 

 

   
   ( )

    
 
   
 

   ( )

    
 (    

   
 
)
   ( )

      
   (2.37a) 

(    
   
 
)
   ( )

      
 
   
 

   ( )

   
 
    

   ( )

   
    (2.37b) 

 

Searching a solution for   
( )

 and   
( )

 in the form of    (   )  and using the 

Fourier Transform, the equilibrium equations can be updated as follows: 

 

(    
  

   
 

  )  
( )  (    

   
 
)      

( )
   (2.38a) 

(    
   
 
)      

( )  (
   
 

       
 )  

( )
   (2.38b) 
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Equations (2.38a) and (2.38b) can be rearranged in the matrix form. 

 

[
    
    

] 8
  

( )

  
( ) 9                (2.38c) 

   (    
  

   
 

  )    (    
   
 
)     (2.38d,e) 

   (    
   
 
)           (

   
 
       

 ) (2.38f,g) 

 

 

 

 

 

Figure 2.9 Half Plane Problem 

 

 

 

The determinant of matrix in (2.38c) will give the solution for   
( )

 and   
( )

. 

                               (2.39) 

Once the roots of the characteristic equation in (2.39) are obtained, all field 

quantities are noted as follows: 
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For the half-plane    > 0 

 

 ( )(     )  
 

  
∫∑      (         )

 

   

 

 

       (2.40a) 

 ( )(     )  
 

  
∫∑        (         )

 

   

 

  

          (2.40b) 

     
( ) (     )  

 

  
∫∑(             )      (         )

 

   

 

  

   (2.40c) 

     
( ) (     )  

 

  
∫∑(             )      (         )

 

   

 

  

   (2.40d) 

     
( ) (     )  

 

  
∫∑

   
 

(       )      (         )

 

   

 

  

   (2.40e) 

 

where   ‟s ( j = 3,4) can be obtained using one of the equilibrium equations in 

(2.38a-b) and index j is selected based on the roots   ‟s. Keep in mind that terms 

related ( j = 1,2 ) vanish in stress and displacement fields given by equations 

(2.40a-e) due to the regularity conditions in equations (2.1h-k). Using the 

following system of linear equations,    and    can be found. 

 

   
      

  
   
   

.    
   
 /     

 (2.41a) 

*  +     
                     (2.41b) 

     
( ) (       )    [

   
( )(   )

   
( )(   )

   
( )(   )

]    (2.42a) 
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( ) (       )    [

   
( )(   )

   
( )(   )

   
( )(   )

]    (2.42b) 

   ,    ( )     ( )    (  )- (2.42c) 

   ,    ( )   ( )    ( )   ( )     (  )- (2.42d) 

2
  
  
3  [

      ( )      ( )

    ( )      ( )
] 2
 
 
3 (2.42e) 

 

If     , then  

       ( )        ( )             (2.42f,g) 

Note that, the relations in (2.42f) and (2.42g) are used instead of   and   in 

equation (2.41b). The equation in (2.41b) is rearranged in the matrix form.  

 

   [
    ( )     ( )       (  )

    ( )   ( )    ( )   ( )       (  )
] (2.43a) 

   

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
∫

[
 
 
 
 
 
∫∑        (       )    (     )    

 

   

 

 

 ∫∑        (       )    (     )    

 

   

 

  ]
 
 
 
 
 

 

  

 

  
∫

[
 
 
 
 
 
∫∑        (       )    (     )    

 

   

 

 

 ∫∑        (       )    (     )    

 

   

 

  ]
 
 
 
 
 

 

  

 

  
∫

[
 
 
 
 
 
∫∑        (       )    (     )    

 

   

 

 

 ∫∑        (       )    (     )    

 

   

 

  ]
 
 
 
 
 

 

  

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.43b) 
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   [

                          
   
 

(       )
   
 

(       )
] (2.43c) 

 

The solution of equation (2.39) gives four real   values. Two of them are with 

positive real parts and two of them are with negative real parts.  

 

     | |                 | |    (  )     (  )    (2.43d,e) 

      | |                | |        (  )     (  )    (2.43f,g) 

 

The inner integrals in equation (2.43b) are evaluated in MAPLE in the closed 

form. Residue Theorem is applied in order to evaluate the outer integrals in 

equation (2.43b) in the closed form. Detailed information about Residue Theorem 

can be found in Greenberg [38], Kreyszig [39] and Hildebrand [40]. Firstly, an 

integration contour   like the one in Figure 2.10 is selected in the complex plane. 

Let a function   (   ) be an analytical function except for finite number of 

singular points inside this contour. Then, Residue Theorem states the equation 

(2.44b). 

 

 

 
 

Figure 2.10 The Contour for Evaluation of Integral 

𝛤  

𝛤  

𝑅 

Im 

Re 
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∫ (   )    (    )

 

   ∫ (   )    (    )

  

   

 ∫ (   )    (    )

  

   

 

 

(2.44a) 

 

 
∫ (   )    (    )

 

  

    ∑(                              )

 

   

 

 

 

 

(2.44b) 

 

 

Taking the limits as     ∫ (   )    (    )

  

      (2.44c) 

 

For type 1 orthotropic material, the integral in (2.44c) always approach to zero as 

  tends to infinity [2]. Lastly, the outer integrals in (2.43b) are evaluated by using 

equation (2.44e). 

 

∫  (   )    (    )

 

  

  

     ∑
(                                  

                        )

 

   

 

 

 

(2.44d) 

 

∫  (   )    (    )

 

  

  

     (
      
    

(    )  (   )    (    )

    
    

(    )  (   )    (    )
) 

(2.44e) 

 

The denominators of the kernels of the outer integrals in (2.43b) give four 

complex roots which make them singular in the following form. 

 

      | |        (  )    (2.45a) 
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      | |        (  )    (2.45b) 

       | |       (  )    (2.45c) 

       | |        (  )    (2.45d) 

 

where            and     are positive real numbers and lengthy functions of 

material parameters and crack angle. From those   ‟s, only the ones in the lower 

complex half plane with negative imaginary parts (   and   ) are needed for 

Residue Theorem. Now,    and    are found from two linear equations in (2.41b) 

and they are substituted to the related equations in (2.40a-e). 

 

The infinite integrals in equations (2.40a-e) are evaluated in MAPLE. Stresses for 

the half plane solution are transformed to  -  coordinate system. In the end, the 

solution of crack problem is completed with the summation of displacement and 

stress equations. 

 

{
 (   )

 (   )
}  8

 ( )(   )

 ( )(   )
9  [

   ( )     ( )
   ( )       ( )

] 8
 ( )(     )

 ( )(     )
9 (2.46a) 

{

   
     (   )

   
     (   )

   
     (   )

}  {

   
( )(   )

   
( )(   )

   
( )(   )

}   {

     
( )(     )

     
( )(     )

     
( )(     )

}  (2.46b) 

  [

    ( )     ( )     (  )

    ( )     ( )       (  )

   ( )   ( )     ( )   ( )       (  )

] 

 

(2.46c) 

 

2.6 The Solution of Singular Integral Equations 

 

Using the boundary conditions in (2.1f) and (2.1g) and the relation in (2.46b), 

two singular integral equations are written after lengthy manipulations on the 

stresses given for infinite and half plane problems.  
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  ∫
  ( )

   

 

 

   ∫   (   )  ( )

 

 

     ∫
  ( )

   

 

 

   

 ∫   (   )  ( )

 

 

    ∫   (   ) ( )

 

 

   

 

      (2.47a) 

  ∫
  ( )

   

 

 

   ∫    (   )  ( )

 

 

     ∫
  ( )

   

 

 

   

 ∫   (   )  ( )

 

 

    ∫   (   ) ( )

 

 

   

      (2.47b) 

 

In these equations, the terms containing „   ‟ in the denominator are called as 

Cauchy kernels and the others are called as Fredholm kernels. Cauchy kernels are 

stemmed from infinite plane solution while Fredholm kernels are originated from 

half plane solution.           and    in equations (2.47a-b) are constants and 

lengthy functions of material parameters and crack angle. Note that the 

denominators of Cauchy kernels become zero in the given interval for    . 

Thus, these terms should be evaluated in closed form with the relation in 

Appendix B. On the other hand, singular points are not observed for Fredholm 

kernels. Hence, they can be evaluated using any quadrature method with a 

suitable weight function. Unfortunately, deriving parametric relations of the 

constant numbers             in equations (2.35a-d),              in equations 

(2.45a-d),             and the kernels of the crack problem    (   ), 

    (   ),    (   ) and    (   ) in equations (2.47a-b) is not possible in terms 

of material parameters and crack angle because of too many independent terms 

involved in the problem. On the other hand, when numerical values are inserted 

to the material parameters, mentioned values and kernels can be calculated easily 

through asymptotic analysis in MAPLE.   

 

The strengths of singularities of the unknown functions   ( ) and   ( ) at the end 

points of a surface crack are found in many studies by using function-theoretic 
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method (For instance, Dag [1] and Sarikaya [2]). When function-theoretic method 

is applied to the singular integral equations, it is seen that they both have inverse 

square root singularity at the crack tip     because of Cauchy kernels. 

However, there is no singularity at the other end point    . Hence, the 

unknown functions can be written in the following form. 

 

  ( )  
  ( )

(   )   
   ( )  

  ( )

(   )   
 (2.48a,b) 

 

In order to solve this system of singular integral equations, an expansion-

collocation method is applied. The unknown crack surface displacement 

derivative functions and the intervals of variables   and   are normalized.  

 

  
 

 
  

 

 
   

   

 
 ̃  

   

 
 (2.49a,b) 

  
 

 
   

 

 
 (2.49c) 

  ( )  
  .

 
   

 
 /

(  (   ))
           (2.49d) 

  ( )  (   )    ∑     
(      )( )

 

   

           (2.49e) 

 

The normalized unknown functions are expanded as the series of Jacobi 

Polynomials. 

 

  ∫
  ( )

    

 

  

   ∫   (    )  ( )

 

  

     ∫
  ( )

    

 

  

   

 ∫   (    )  ( )

 

  

    ∫   (    ̃) ( ̃)

 

  

  ̃ 

 

-1<    <1 (2.50a) 
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  ∫
  ( )

    

 

  

   ∫   (    )  ( )

 

  

     ∫
  ( )

    

 

  

   

 ∫   (    )  ( )

 

  

    ∫   (    ̃) ( ̃)

 

  

  ̃ 

-1<    <1 (2.50b) 

 

The integrals with Cauchy kernels in (2.50a-b) are calculated in closed form by 

using the relation in Appendix B. On the other hand, the integrals with Fredholm 

kernels are evaluated numerically with Gauss-Jacobi Quadrature Method.  

 

∑   (  )

 

   

    ∑   (  )

 

   

       (  )                              (2.51a) 

∑   (  )

 

   

    ∑   (  )

 

   

       (  )                            (2.51b) 

       4
 (    )

 (   )
5                                                             (2.51c) 

As the collocation points, the roots of the Chebyshev Polynomials of the first 

kind in equation (2.51c) are used. By inserting the collocation points into 

equations (2.51a-b), a linear system of equations is obtained and solved for the 

unknown coefficients of expansion. N is selected as 15 in (2.51a-c) for accuracy. 

Therefore, a system of 32 equations&unknowns are solved. 

 

In order to link the coefficients of expansions of unknown functions to the stress 

intensity factors, the following regulations are done. Since the denominator of 

Cauchy kernels approaches to zero at    , the dominant stress terms near 

    are written as follows: 

 

   (     )    ∫
  ( )

   

 

 

     ∫
  ( )

   

 

 

   (2.52a) 
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   (     )    ∫
  ( )

   

 

 

     ∫
  ( )

   

 

 

   (2.52b) 

 

The following equations are obtained by inserting equations given by (2.48a-b) 

into (2.52a-b) and evaluating the integrals in MAPLE. 

 

   (     )       ( )(   )          ( )(   )      (2.53a) 

   (     )       ( )(   )          ( )(   )     (2.53b) 

 

The definitions of mixed mode stress intensity factors at the crack tip are given as 

follows:  

 

      
    

√ (   )    (   ) (2.54a) 

      
    

√ (   )    (   ) (2.54b) 

 

The dominant stress terms are inserted to (2.54a-b) and the relations are 

simplified to normalized mixed mode stress intensity factors. 
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For fully open crack assumption, equations (2.55c-d) give mode I and mode II 

stress intensity factors in the normalized form. In Chapter 3, the results with fully 

open crack assumption can be found. 

 

2.7 Implementation of Crack Closure  

 

In order to determine whether crack faces are in contact or not, the overall 

problem should be solved by fully open crack assumption. If mode I stress 

intensity factor obtained by the fully open crack assumption is positive, then fully 

open crack assumption is valid. However, if the results show otherwise, crack 

closure implementation is needed. 

 

Unless the applied load is too complex, a single closure region between crack 

faces is expected. This assumption results in 4 closure modes in Figure 2.11. In 

order to determine correct closure mode shape, the problem is solved first using 

fully closed crack assumption ( Liu et al [41] ). Depending on contact pressure 

distribution between crack faces, the suitable closure mode can be selected easily. 

If contact pressure distribution is negative (compression) for all points along the 

crack line, then fully closed crack assumption is correct. On the other hand, the 

crack parts with positive contact pressure are not in contact.  

 

For instance, when the crack is under the effect of bending load, crack mouth 

closure is observed for   = 10 degrees. On the other hand, middle part of the 

crack is closed for a crack with   = 45 degrees under bending load as shown in 

Figure 2.12. It is also found from further analyses that punch indentation always 

results in crack tip or complete (full length) closure modes. (For sample results, 

check Figure 2.13). Thus, crack tip and full length closure modes are examined 

for cracks loaded by punch indentation, while the results about crack mouth and 

middle part closure modes are presented for bending load only for the verification 

of the study.  
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Figure 2.11 Crack Closure Mode Shapes 
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Figure 2.12 Sample Contact Pressure Distributions for Fully Closed Cracks 

Under Bending Load  

 

 

 

 

 

Figure 2.13 Sample Contact Pressure Distributions for Fully Closed Cracks 

Loaded by Punch Indentation 
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In this section, sliding crack face contact boundary conditions are added to the 

system of singular integral equations. First, some of the boundary conditions 

given in the previous sections are updated. At the crack plane (Y=0), normal 

displacements are zero in the closed region. Luckily, this boundary condition 

causes changes only in the intervals of singular integral equations and stress 

terms related to normal displacements while all kernels remain same. Normal and 

shear stresses exist for the closed portion of the crack because of the contact of 

the crack faces. The contact between crack faces is assumed to be flat. Coulomb‟s 

friction law is valid between normal and shear stresses at the closed crack faces. 

In Figure 2.11, there may be two additional unknowns    and    depending on 

the closure mode. Unlike the fully open crack assumption, additional boundary 

condition(s) in Figure 2.11 should also be satisfied this time which results in the 

iterative solution of system of singular integral equations. Therefore,    and    

are iterated until the additional boundary conditions are satisfied.  

 

For full length closure, 

   (   )        (   )        (2.56a) 

 (      )   (      )       (2.56b) 

 (      )   (      )       (2.56c) 

 (      )   (      )        (2.56d) 

For crack tip closure, 

   (   )     (   )            (2.57a) 

   (   )        (   )         (2.57b) 

 (      )   (      )       (2.57c) 

 (      )   (      )        (2.57d) 

 (      )   (      )        (2.57e) 

 (      )   (      )         (2.57f) 
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Note that normal stress at the closed crack face is multiplied by CoF between 

crack faces „  ‟ and equated to shear stress in order to represent slipping of crack 

faces. The sign of friction between crack faces in (2.56a) and (2.57b) is applicable 

for both forward and backward slipping of crack faces. However, the sign of the 

friction between crack faces is arranged depending on the relative tangential 

movement of the crack faces. 

   

2.7.1 Full Length Closure Mode 

 

Among four closure modes, full length closure is the easiest closure mode to 

solve. Referring equations (2.56a-d), there is only one remaining singular integral 

equation.  
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The unknown crack surface displacement derivative function and the intervals of 

variables   and   are normalized. 
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Normalization of this equation and other terms are done using (2.58b-g).  
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After the normalization, the integrals are evaluated by the relation given in 

Appendix B and suitable quadrature methods. A linear system of equations is 

obtained by inserting the collocations points given by (2.58i) into equation 

(2.58j). When the coefficients of expansion of the unknown function are found, 

normalized stress intensity factors and normal pressure distribution between 

crack faces can be obtained as follows: 
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2.7.2 Crack Tip Closure Mode 

 

Referring equations (2.57a-f), two singular integral equations are written for 

crack tip closure mode by using Heaviside step function. 
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It should be noted that bold written terms containing Heaviside step function 

become regular in equation (2.59b), although the kernels are same as Cauchy 

kernel [17]. In the next step, the unknown crack surface displacement derivative 

functions and the intervals of variables   and   are normalized. Similar 
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expansion-collocation techniques are applied to two singular integral equations in 

(2.59a) and (2.59b).  
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Normalization of these equations and other terms are done using (2.59h-r).After 

the normalization, the integrals are evaluated by the relation given in Appendix B 

and suitable quadrature methods. A non-linear system of equations is obtained by 

inserting the collocations points given by (2.59s) and (2.59t) into equations 

(2.59c) and (2.59d). Lastly, the closure point    is iterated until the cusp 

condition given in Figure 2.11 is satisfied. (   (    )    ).  
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When the coefficients of expansions of the unknown functions are found, 

normalized SIF‟s and normal pressure distribution between crack faces can be 

obtained as follows: 
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Eventually, crack tip closure problem is completed with normalized relative crack 

surface displacements by integrating equations (2.2a) and (2.2b). 
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Note that only crack tip and full length closure modes are within the scope of the 

present study. However, investigations of other crack closure modes are also 

presented by applying bending load for verification in the following sections.     

 

For crack tip closure mode,    is taken as d at the first attempt in the iterative 

solution. If the solution gives negative mode I stress intensity factor,    is 

adjusted with bisection method. At the second attempt,    is taken as d/2. If the 

solution still gives negative mode I stress intensity factor,    becomes d/4. 

However, if positive mode I stress intensity factor is obtained,    is equated to 

3d/4. This procedure continues until    is squeezed in a suitable range. A similar 

algorithm is applied for crack mouth closure mode except for this time,    is 

adjusted according to single-valuedness condition in Figure 2.11. Unfortunately, 

an algorithm cannot be developed for middle part closure problem since both    

and    affect both cusp and single-valuedness conditions in Figure 2.11. 

Therefore, the values for    and    should be adjusted manually for middle part 

closure mode.  
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CHAPTER 3 

 

 

NUMERICAL RESULTS 

 

 

 

For the numerical calculations, plasma sprayed alumina (Al2O3) with the material 

properties in equations (3.1a-g) ( Sarikaya [2] ) is chosen. Due to its hardness, 

wear resistance and high temperature strength, plasma sprayed alumina is 

preferred as coatings in many engineering applications. The usage of plasma 

sprayed alumina as wear resistant coating can be encountered in textile 

machinery parts, automobile parts, engines, aircraft parts, computer systems (hard 

disk of a computer) and bioceramics (joint prosthetics). Besides, several elastic 

modulus ratios (E2/E1 and E3/E1) are considered in order to investigate the 

influence of material properties on the results as long as Poisson‟s ratios of the 

material satisfy equations (3.1h-k). Figures, related to the effect of loading size – 

crack length ratio ((   )  ) and crack angle ( ) variation, have also been 

presented. In addition to selecting punch indentation as loading, uniform tension 

and bending loads are also examined for verification. Depending on the iterative 

solution of singular integral equations, closed portions are calculated and 

illustrated in the related figures. Lastly, mixed mode stress intensity factors and 

normal pressure distributions at the closed crack faces are examined. 

 

   : 116.36 GPa    : 90.43 GPa     : 38.21 GPa (3.1a,b,c) 

   : 0.28    : 0.27       : 0.21    : 0.14 (3.1d,e,f,g) 

                                   (3.1h,i,j) 

                                     (3.1k) 
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The inclined edge crack formulation in the present study is confirmed by Beghini 

et al [42]. Finite element method is applied by Beghini et al [42] in order to 

evaluate SIF‟s for an inclined edge crack in isotropic medium under uniform 

tension as illustrated in Figure 3.1. When orthotropic material constants are 

arranged as though the material is isotropic, the results in both studies agree quite 

well between   = 0-75 degrees as shown in Figure 3.2. Besides, finite element 

results for SIF‟s related to inclined cracks in orthotropic medium are provided 

using Ansys by implementing pre-meshed crack analysis. A pre-meshed crack is 

a fracture tool in Ansys based on a previously-generated mesh and utilizes a 

node-based named selection to analyze SIF‟s. In both comparisons, a 

convergence trend is observed as shown in Figure 3.2. For those cases, singular 

integral equations are modified by changing the last terms in equations (2.47a-b) 

with uniform tension      ( )   and     ( )   ( )  , respectively. Thus, 

SIF‟s are given in the following form. Effect of E2/E1 ratio on mixed mode stress 

intensity factors for a crack under uniform tension is also given in Figure 3.3. 
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Figure 3.1 Representation of the Problem by Beghini et al [42] 
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Figure 3.2 Comparison of SIF‟s for Inclined Edge Cracks in a) Isotropic Material 

b) Orthotropic Material under Uniform Tension. 

 

 

 

 

 

Figure 3.3 Effect of Elastic Modulus Ratio E2/E1 on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane under Uniform 

Tension for Plane Strain Case.  
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To verify the formulation of orthotropic material, the results with zero crack 

angles ( 0) have been compared with the ones given by Sarikaya [2] for 

orthotropic half-plane of plasma sprayed alumina indented by flat, triangular and 

circular punches in Figure 3.4, Figure 3.5 and Figure 3.6, respectively. Since the 

coupled contact loading\crack problem is solved simultaneously by Sarikaya [2], 

small deviations may be expected for the results having low     ratio (when the 

crack is placed in the closed vicinity of the loading region). The reason for this 

deviation is that the effect of the presence of the crack on the loading functions at 

the material surface is neglected in the present study. Hence, the loading 

functions alter in the results given by Sarikaya [2] when the starting point of the 

contact of the punch is very close to the crack. Nevertheless, excellent agreement 

has been observed between two studies for the results with high     ratio. 

 

 

 

 

 

Figure 3.4 Comparison of Mixed Mode Stress Intensity Factors for Straight Edge 

Crack Provided by Sarikaya [2] (Markers) and Present Study (Lines) in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Flat Punch for 

Plane Strain Case and Fully Open Crack Assumption, (   )   = 1. 
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Figure 3.5 Comparison of Mixed Mode Stress Intensity Factors for Straight Edge 

Crack Provided by Sarikaya [2] (Markers) and Present Study (Lines) in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Triangular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1. 

 

 

 

 

 

Figure 3.6 Comparison of Mixed Mode Stress Intensity Factors for Straight Edge 

Crack Provided by Sarikaya [2] (Markers) and Present Study (Lines) in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Circular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1. 
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Figure 3.7 Representation of the Problem by Beghini et al [43]. (Inclined Edge 

Crack under Bending Load) 

  

 

 

Last verification in this study is related with closed cracks. Beghini et al [43] 

examine SIF‟s for closed cracks in isotropic medium under bending load. The 

configuration of the problem is given in Figure 3.7. Stress intensity factors are 

given considering both weight function method and finite element method by 

both ignoring and adding the effects of crack closure. Beghini and co-workers 

report that when crack angle is between 0 and ≈ 35 degrees, crack mouth closure 

is observed. Thus, transition to middle part closure mode starts about 35 degrees. 

If crack angle is further increased, middle part closure mode is detected until 

almost 52 degrees. If crack angle is taken greater than 52 degrees, crack tip 

closure is noticed. When the proposed method in this study is modified 

accordingly with the equations below, closure modes, mixed mode SIF‟s and 

contact pressure distributions seem consistent with the ones in Beghini et al [43] 

(Check Figure 3.8 and Figure 3.9).   
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SIF’s for Fully Open Crack Assumption 
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Numerical results for flat, triangular and circular punch profiles are respectively 

provided for fully open crack assumption in Figure 3.10-Figure 3.20, Figure 3.21-

Figure 3.31 and Figure 3.32-Figure 3.42. The first notice about these results is 

that changing the punch profile causes significant changes only for low values of 

   . Because the pressure distribution between punch and material surface 

affects SIF‟s when the loading area is near the crack. Figure 3.10-Figure 3.12, 

Figure 3.21-Figure 3.23 and Figure 3.32-Figure 3.34 illustrate the relations 

between SIF‟s and crack angle and CoF at the material surface.  
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Figure 3.8 Comparison of SIF‟s by Beghini et al [43] (Markers) and Present 

Study (Lines) for Inclined Edge Crack under Bending Load. (Orthotropic 

Material Constants: E1=116.37GPa, E2=116.35GPa, μ12=46.54GPa, 𝛖 =0.25) 

 

 

 

 

 

Figure 3.9 Comparison of Normal Contact Pressure Distributions by Beghini et 

al [43] (Markers) and Present Study (Lines) for Frictionless Contact. (Orthotropic 

Material Constants: E1=116.37GPa, E2=116.35GPa, μ12=46.54GPa, 𝛖 =0.25) 
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The impact of (   )   ratio on the results is shown in Figure 3.13-Figure 3.14, 

Figure 3.24-Figure 3.25 and Figure 3.35-Figure 3.36 for crack angle  12. 

For small values of    , the influence of (   )   ratio is more apparent. 

 

Another set of results in Figure 3.15-Figure 3.18, Figure 3.26-Figure 3.29 and 

Figure 3.37-Figure 3.40 are provided for three punch profiles to show the 

influence of elastic modulus ratios on SIF‟s for crack angle 2/9. Similar 

trends as stated by Sarikaya are found. As E2/E1 ratio decreases, mode I SIF‟s 

increase while mode II SIF‟s decrease. On the other hand, E3/E1 ratio does not 

lead to critical changes for both mode I and mode II SIF‟s. 

 

Figure 3.19-Figure 3.20, Figure 3.30-Figure 3.31 and Figure 3.41-Figure 3.42 

present the results about SIF‟s versus crack angle. In these figures, SIF‟s fluctuate 

with the change in crack angle.  

 

Related figures concerning the parameters mentioned above are also given for 

closed cracks loaded by flat punch indentation in Figure 3.43-Figure 3.49. In 

those figures, both inclined and vertical edge cracks are examined. The direction 

of friction between crack faces is taken as negative due to forward slipping of 

crack faces as shown in Figure 3.49. That‟s why a small drop is observed in mode 

II SIF‟s for all cases. To avoid sticking, analyses are performed with low values 

of   . It is observed that full length closure mode occurs only for straight cracks 

when   = 0, while crack tip closure is detected in all other cases. In Figure 3.46b, 

contact pressure distributions between crack faces are presented for an inclined 

crack ( 12). In this figure, contact stress at      is found as zero as 

expected since mode I stress intensity factor is zero at that point. Another set of 

results in Figure 3.47 and Figure 3.48 are also given to show the influence of 

other parameters in the problem on contact pressure distribution between crack 

faces. 
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3.1 Figures for Orthotropic Half-Plane Indented by Flat Stamp (Fully Open 

Crack Assumption) 

 

 

 

 

 

Figure 3.10 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Flat Punch for 

Plane Strain Case and Fully Open Crack Assumption, (   )   = 1, Crack 

Angle /12 
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Figure 3.11 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Flat Punch for 

Plane Strain Case and Fully Open Crack Assumption, (   )   = 1,    0.2 
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Figure 3.12 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Flat Punch for 

Plane Strain Case and Fully Open Crack Assumption, (   )   = 1,    0.4 
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Figure 3.13 Effect of (   )   Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Flat Punch for Plane Strain Case and Fully Open Crack 

Assumption, Crack Angle  12,    0.2. 
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Figure 3.14 Effect of (   )   Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Flat Punch for Plane Strain Case and Fully Open Crack 

Assumption, Crack Angle 12,    0.4. 
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Figure 3.15 Effect of Elastic Modulus Ratio E2/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Flat Punch for Plane Strain Case and Fully Open Crack Assumption, (   )   = 

1, Crack Angle 9  0.2. 

 

 

 



  72 

 

 

 

 

 

Figure 3.16 Effect of Elastic Modulus Ratio E2/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Flat Punch for Plane Strain Case and Fully Open Crack Assumption, (   )   = 

1, Crack Angle 9  0.4. 
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Figure 3.17 Effect of Elastic Modulus Ratio E3/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Flat Punch for Plane Strain Case and Fully Open Crack Assumption, (   )   = 

1, Crack Angle 9  0.2. 
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Figure 3.18 Effect of Elastic Modulus Ratio E3/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Flat Punch for Plane Strain Case and Fully Open Crack Assumption, (   )   = 

1, Crack Angle 9  0.4. 
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Figure 3.19 Effect of Crack Angle Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Flat Punch for Plane Strain Case and Fully Open Crack 

Assumption, (   )   = 1,     = 1.
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Figure 3.20 Effect of Crack Angle Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Flat Punch for Plane Strain Case and Fully Open Crack 

Assumption, (   )   = 1,     = 2 
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3.2 Figures for Orthotropic Half-Plane Indented by Triangular Stamp (Fully 

Open Crack Assumption) 

 

 

 

 

 

Figure 3.21 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Triangular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1, Crack 

Angle /12
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Figure 3.22 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Triangular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1,    

0.2. 
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Figure 3.23 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Triangular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1,    

0.4.  
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Figure 3.24 Effect of (   )   Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Triangular Punch for Plane Strain Case and Fully Open 

Crack Assumption, Crack Angle 12,    0.2. 
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Figure 3.25 Effect of (   )   Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Triangular Punch for Plane Strain Case and Fully Open 

Crack Assumption, Crack Angle 12,    0.4. 
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Figure 3.26 Effect of Elastic Modulus Ratio E2/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Triangular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle 9  0.2. 
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Figure 3.27 Effect of Elastic Modulus Ratio E2/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Triangular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle 9  0.4. 

 

 

 



  84 

 

 

 

 

 

Figure 3.28 Effect of Elastic Modulus Ratio E3/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Triangular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle 9  0.2. 
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Figure 3.29 Effect of Elastic Modulus Ratio E3/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Triangular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle 9  0.4. 
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Figure 3.30 Effect of Crack Angle Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Triangular Punch for Plane Strain Case and Fully Open 

Crack Assumption, (   )   = 1,     = 1. 
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Figure 3.31 Effect of Crack Angle Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Triangular Punch for Plane Strain Case and Fully Open 

Crack Assumption, (   )   = 1,     = 2 

 

 



  88 

 

3.3 Figures for Orthotropic Half-Plane Indented by Circular Stamp (Fully 

Open Crack Assumption) 

 

 

 

 

 

Figure 3.32 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Circular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1, Crack 

Angle /12 
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Figure 3.33 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Circular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1,    

0.2. 
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Figure 3.34 Mixed Mode Stress Intensity Factors for Inclined Edge Crack in 

Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by Circular Punch 

for Plane Strain Case and Fully Open Crack Assumption, (   )   = 1,    

0.4.  
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Figure 3.35 Effect of (   )   Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Circular Punch for Plane Strain Case and Fully Open Crack 

Assumption, Crack Angle 12,    0.2. 
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Figure 3.36 Effect of (   )   Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Circular Punch for Plane Strain Case and Fully Open Crack 

Assumption, Crack Angle 12,    0.4. 
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Figure 3.37 Effect of Elastic Modulus Ratio E2/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Circular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle 9  0.2. 
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Figure 3.38 Effect of Elastic Modulus Ratio E2/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Circular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle  9  0.4. 
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Figure 3.39 Effect of Elastic Modulus Ratio E3/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Circular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle 9  0.2. 
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Figure 3.40 Effect of Elastic Modulus Ratio E3/E1 on Mixed Mode Stress 

Intensity Factors for Inclined Edge Crack in Orthotropic Half-Plane Loaded by 

Circular Punch for Plane Strain Case and Fully Open Crack Assumption, 

(   )   = 1, Crack Angle  9  0.4. 
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Figure 3.41 Effect of Crack Angle Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Circular Punch for Plane Strain Case and Fully Open Crack 

Assumption, (   )   = 1,     = 1. 
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Figure 3.42 Effect of Crack Angle Variation on Mixed Mode Stress Intensity 

Factors for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed 

Alumina Loaded by Circular Punch for Plane Strain Case and Fully Open Crack 

Assumption, (   )   = 1,     = 2 
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3.4 Figures for Orthotropic Half-Plane Indented by Flat Stamp (Crack Tip 

and Full Closure Modes) 

 

 

 

 

 

Figure 3.43 Effect of    on Mode II SIF for Inclined Edge Crack in Orthotropic 

Half-Plane of Plasma Sprayed Alumina Loaded by Flat Punch for Plane Strain 

Case, (   )   = 1, Crack Angle 12. 
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Figure 3.44 Effect of    on Mode II SIF for Inclined Edge Crack in Orthotropic 

Half-Plane of Plasma Sprayed Alumina Loaded by Flat Punch for Plane Strain 

Case, (   )   = 1, Crack Angle 18. 

 

 

 

 



 101 

 

 

 

 

 

 

Figure 3.45 a) Effect of Elastic Modulus Ratio E2/E1 for  9 b) Effect of 

Crack Angle Variation on Mode II SIF‟s for Inclined Edge Crack in Orthotropic 

Half-Plane Loaded by Flat Punch for Plane Strain Case, (   )   = 1. 
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Figure 3.46 a) Effect of    on Mode II SIF for (   )   = 0.1, b) Effect of     

Variation on Contact Pressure Distributions Between Crack Faces for Inclined 

Edge Crack in Orthotropic Half-Plane of Plasma Sprayed Alumina Loaded by 

Flat Punch for Plane Strain Case, Crack Angle 12 
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Figure 3.47 Effect of     Variation on Contact Pressure Distributions Between 

Crack Faces for Straight Edge Crack in Orthotropic Half-Plane of Plasma 

Sprayed Alumina Loaded by Flat Punch for Plane Strain Case. 
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Figure 3.48 Effect of Elastic Modulus Ratios E2/E1 and E3/E1 on Contact 

Pressure Distributions Between Crack Faces for Straight Edge Crack in 

Orthotropic Half-Plane Loaded by Flat Punch for Plane Strain Case,    =1,    = 

0.2,     0. 
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Figure 3.49 Effect of    on Normalized Relative Crack Surface Displacements 

for Inclined Edge Crack in Orthotropic Half-Plane of Plasma Sprayed Alumina 

Loaded by Flat Punch for Plane Strain Case, Crack Angle 12,     = 0.25, 

(   )   = 1,    = 0.1. 
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CHAPTER 4 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

4.1 Conclusions 

 

In the present study, a solution method for the calculation of stress intensity 

factors is proposed for inclined edge cracks in orthotropic half-plane exposed to 

surface loads originating from the contact of rigid punches. It is found that    is 

the dominant parameter in the determination of whether fully open crack 

assumption is valid or not. For large enough values of   , fully open crack 

assumption is confirmed by positive mode I stress intensity factors (    > 0 ). 

Based on the iterative solution of singular integral equations, the crack closure is 

also taken into consideration. Iterative solution for determination of closed parts 

is a very time consuming process compared to the solution by fully open crack 

assumption because of several repetitions of the expansion and collocation 

methods. For this reason, the results for crack closure are presented only for 

cracks in orthotropic half-plane loaded by flat punch. 

 

Computer programs are designed by using MAPLE in order to carry out all 

numerical procedures described in Chapter 2 and Chapter 3. Various sets of 

results about crack angle variation, CoF at the material surface and between crack 

faces, the ratios of Young‟s moduli of the material, contact loading size – crack 

length ratio are given for cracks under the effect of indentation of three loading 

punch profiles in Chapter 3. Besides, cracks exposed to uniform tension and 

bending load in the study by Beghini et al [43] are also examined in Chapter 3 for 
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verification. The results of the present study for both open and closed cracks are 

validated by comparing them with the ones in the literature. 

 

 

 

 

 

Figure 4.1 General Solution Algorithm 

 

 

 

General solution algorithm used in the present study is given in Figure 4.1. First, 

the solution always starts with fully open crack assumption. Then, the results are 

judged by using mode I stress intensity factors obtained by fully open crack 

analysis. If mode I stress intensity factors are positive, correct solution is reached. 

Otherwise, further analyses are performed. Normal pressure distributions between 

crack faces are plotted by applying full length closure mode. Following the data 

on contact pressure distribution between crack faces, the suitable closure mode is 
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determined. If contact pressure distribution between crack faces is found as 

compression for all points, then full length closure assumption is confirmed. On 

the other hand, if crack segments under the effect of tension are seen, it means 

that those segments are not in contact [41]. Then, closure point(s) are iterated 

until additional boundary condition(s) stemmed from crack closure are satisfied.  

 

The outcomes of the study are summarized as follows: 

 

 Effect of elastic modulus ratio E2/E1 on mixed mode stress intensity 

factors for a crack under uniform tension is illustrated in Figure 3.3. As 

E2/E1 ratio goes up, a notable decrease in mode I stress intensity factors 

and a notable increase in mode II stress intensity factors are observed.  

 

 When the shear stress acting on the material surface equal to zero (   = 

0), negative mode I stress intensity factors are obtained for all punch 

locations as shown in Figure 3.10, Figure 3.21 and Figure 3.32 for flat, 

triangular and circular punches, respectively. It means that crack closure 

occurs independent of punch location for    = 0. As CoF at the material 

surface increases, mode I stress intensity factors become positive. In other 

words, tensile stresses exist at the crack tips and fully open crack 

assumption is valid in those cases. 

 

 The effect of     ratio on mixed mode stress intensity factors is given 

with respect to crack angle variation between 30° and 75° in Figure 3.11-

Figure 3.12, Figure 3.22-Figure 3.23 and Figure 3.33-Figure 3.34. Crack 

closure is not observed for the cases having crack angle higher than 45°. 

 

 As (   )   ratio decreases, mixed mode stress intensity factor curves 

shift right. (Check Figure 3.13-Figure 3.14, Figure 3.24-Figure 3.25 and 

Figure 3.35-Figure 3.36). Due to this shift,    decreases for low     ratio, 
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while    increases. On the other hand, (   )   ratio causes minor 

changes for cases with high     ratio. 

 

 As E2/E1 ratio increases, perceptible decrements in mode I stress intensity 

factors and increments in mode II stress intensity factors can be observed 

for low     ratios. (Check Figure 3.15-Figure 3.16, Figure 3.26-Figure 

3.27 and Figure 3.37-Figure 3.38). While the variation in E2/E1 ratio 

causes inconsiderable changes for cases with high     ratio and   = 0.2, 

it results in more significant changes for cases with high     ratio and 

  = 0.4.    

 

 The influence of E3/E1 ratio on mixed mode stress intensity factors is 

inconsiderable for almost all cases. A slight increase in mode I stress 

intensity factors and a slight decrease in mode II stress intensity factors 

can still be observed as E3/E1 ratio goes up. (Check Figure 3.17-Figure 

3.18, Figure 3.28-Figure 3.29 and Figure 3.39-Figure 3.40)  

 

 The effect of crack angle variation between -60° and 60° on mixed mode 

stress intensity factors is given with respect to    in Figure 3.19-Figure 

3.20, Figure 3.30-Figure 3.31 and Figure 3.41-Figure 3.42. The highest 

and lowest values for mixed mode stress intensity factors due to crack 

angle variation can be checked in these figures. 

 

 Crack tip and full closure modes are investigated in Section 3.4. For those 

cases, mode I stress intensity factor vanishes. A slight decrease in mode II 

stress intensity factors is observed for all cases when they are modified 

with the crack tip closure as shown in Figure 3.43, Figure 3.44 and Figure 

3.46a. Because, the friction between crack faces reduces the shear stress at 

the crack tip. However, the change in mode II stress intensity factors 
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becomes more critical for inclined cracks with negative crack angles as 

shown in Figure 3.45b. 

 

 Contact pressure distributions between crack faces caused by the 

indentation of flat punch are given for several cases in Figure 3.46b, 

Figure 3.47 and Figure 3.48. For    = 0 and    = 0.2, complete closure 

mode is observed for all     values. For    = 0.2 and    = 0.2, crack tip 

closure mode is detected. Closure length and total contact pressure 

decrease as     ratio goes up. 

 

 Effects of both E2/E1 and E3/E1 ratios on contact pressure distributions 

between crack faces for crack tip closure mode are illustrated in Figure 

3.48. As E2/E1 ratio increases and E3/E1 ratio decreases, closure length and 

total contact pressure get larger. 

 

 Finally, normalized crack surface displacements due to flat punch 

indentation are given for crack tip closure mode in Figure 3.49. Note that 

crack surface displacements in tangential direction for this case result in 

forward slipping of crack faces. Thus, the sign of the friction between 

crack faces should be chosen accordingly.     

  

4.2 Future Work 

 

Investigated crack closure modes in this study contain a single closed portion. 

However, more than a single closed portion may be encountered under more 

complex loading condition as shown in Figure 4.2. The formulation can be 

updated for other closure modes considering two or more closed portions as the 

future study. 

 

In this study, it is assumed that crack faces slide over each other in the whole 

closed region of the crack for small values of coefficient of friction between the 

crack faces. However, sticking of crack faces are expected for larger values of    
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as shown in Figure 4.3 and Figure 4.4. Thus, sticking crack face contact problem 

can be examined as the future study. If the sliding crack face condition is violated 

at    , there will not be any stress intensification at the crack tip. Hence, the 

crack is locked and it cannot propagate. 

 

 

 

 

 

Figure 4.2 An Example of Other Closure Modes 

 

 

 

 

Figure 4.3 Effect of    on Sticking of Crack Faces for Inclined Edge Cracks 

under Bending Load for Plane Strain Case. (Mode I SIF‟s) 

Crack Mouth and Tip are Closed 

 

Middle Part Open 
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Figure 4.4 Effect of    on Sticking of Crack Faces for Inclined Edge Cracks 

under Bending Load for Plane Strain Case. (Mode II SIF‟s) 

 

 

 

For sticking of crack faces, influence of    on SIF‟s are illustrated in Figure 4.3 

and Figure 4.4. The maximum coefficients of friction are found for cracks under 

bending load as 0.145, 0.219 and 0.294 for  8°,  12° and  16°, 

respectively before sticking starts. In other words, sliding crack face condition is 

violated if    is beyond these values. 
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APPENDIX A 

 

 

EXPLICIT RELATIONS OF THE KERNELS OF CONTACT PROBLEM 

 

 

The expression of kernels    (   ) and    (   ) are provided as below. 
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APPENDIX B 

 

 

CLOSED FORM EXPRESSIONS FOR CAUCHY PRINCIPAL VALUE 

INTEGRALS 

 

 

 

Integrals related to Cauchy kernels are evaluated using the relation provided by 

Tricomi [44]. 
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In this relation, F( ) designates Hypergeometric Function. For detailed 

information about the Hypergeometric Function, Abramowitz and Stegun [45] 

can be viewed. 

 

 

 

 

 

 

 

 

 


