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ABSTRACT 

 

 

AEROTHERMODYNAMIC SHAPE OPTIMIZATION USING  

DSMC AND POD-RBF METHODS 

 

 

Kutkan, Halit 

MS., Aerospace Engineering Department 

Supervisor: Assoc. Prof. Dr. Sinan Eyi 

 

July 2018, 72 pages 

 

 

This thesis study presents a hybrid method based on Proper Orthogonal 

Decomposition (POD) with Radial Basis Function (RBF), on Direct 

Simulation Monte Carlo (DSMC) solutions for aerothermodynamic front 

surface optimization of Stardust re-entry. Gaussian and multiquadric RBFs 

are implemented for comparison, and multiquadric functions are chosen 

due to their insensitivity to diverse shape parameters. Cubic uniform B-

spline curves are used innovatively for parameterization of the geometry 

change, instead of curve fitting the geometry itself. This makes possible to 

reduce the number of design variables. Gradient based optimization 

strategy is implemented by regarding the distributions of pressure, shear 

stress and heat flux along the surface of the geometries. DS2V two 

dimensional axisymmetric DSMC solver is used as the physics solver, and 

11 species air model are chosen with 41 chemical reactions according to 

atmospheric conditions of the re-entry. Different geometries are obtained 

via deviating the design variables arbitrarily to form a snapshot pool. In 

this manner, the approximation success of the POD-RBF methodology is 

tested on highly nonlinear flow conditions with arbitrarily chosen design 
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of experiment. Finally, the optimized geometries are simulated via DSMC 

code and the solutions are compared with the solutions of POD-RBF 

Reduced Order Model (ROM). Method lowered the optimization time 

extraordinarily and provided satisfactory results. 

 

Keywords: DSMC, POD, RBF, Hypersonic flow, Optimization 
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ÖZ 

 

 

DSMC VE POD-RBF YÖNTEMLERİ KULLANARAK 

AEROTERMODİNAMİK ŞEKİL OPTİMİZASYONU  

 

 

Kutkan, Halit 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Doç. Dr. Sinan Eyi 

 

Temmuz 2018, 72 Sayfa 

 

 

Bu tez çalışması, Stardust atmosphere giriş aracının aerotermodinamik ön yüzey 

optimizasyonu için Doğrudan Benzetim Monte Carlo (DSMC) çözümleri üzerinde 

Radyal Temel Fonksiyonu (RBF) ile Uyumlu Dikayrışım Yöntemine (POD) 

dayanan bir melez yöntem sunmaktadır. Gauss tipi ve multikuadrik radyal temel 

fonksiyonları karşılaştırma için uygulanmıştır ve çeşitli şekil parametrelerine 

duyarsızlıklarından dolayı multikuadrik fonksiyonlar seçilmiştir. Kübik üniform 

B-spline eğrileri, geometriye eğri uydurmak yerine, geometri değişiminin 

parametrelendirilmesi için yenilikçi bir şekilde kullanılmıştır. Bu, tasarım 

değişkenlerinin sayısını azaltmayı mümkün kılar. Gradyan bazlı optimizasyon 

stratejisi, geometrinin yüzeyi boyunca basınç, kesme gerilmesi ve ısı akısının 

dağılımları ile gerçekleştirilir. DS2V iki boyutlu eksenel simetrik DSMC çözücü, 

fizik çözücü olarak kullanılır ve 11 tür içeren hava modeli, atmosphere giriş 

aracının atmosferik koşullarına göre 41 adet kimyasal reaksiyon içeren model ile 

birlikte kullanılır. İndirgenmiş model için çözüm havuzu, B-spline eğrilerinin 

parametrelerini rastgele değiştirerek elde edilir. Bu şekilde, POD-RBF 

metodolojisinin yakınsama başarısı, keyfi olarak seçilen deney tasarımı üzerinde 

yüksek nonlineerliğe sahip akış koşullarında test edilir. Son olarak, optimize 

edilmiş geometriler DSMC kodu ile simüle edilir ve çözümler POD-RBF 
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indirgenmiş modelin çözümleri ile karşılaştırılır. Yöntem, optimizasyon süresini 

ciddi bir şekilde düşürmüştür ve tatmin edici sonuçlar vermiştir. 

 

Anahtar Kelimeler: Doğrudan Benzetim Monte Carlo Yöntemi, Uyumlu 

Dikayrışım Yöntemi, Radyal Temel Fonksiyonlar, Hipersonik akış, Optimizasyon 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Re-entry Vehicles 

 

Re-entry vehicles are the most common type of hypersonic vehicles. They enter 

atmosphere at high altitudes where the air is highly rarefied. They are designed for 

slowing down the velocity by increasing the drag force along their trajectory. 

However, they are exposed to very high velocities where the highly energetic 

thermochemical effects are dominant. In addition to this, strong shock waves 

generate tremendous heat on the windward side. Hence, the design requires 

accurate prediction of surface quantities such as heat flux, pressure and shear 

stress to calculate the aerodynamic forces and moments. These properties are not 

only responsible for the aerodynamic performance of the vehicle, they are also 

responsible for the selection and the sizing of the thermal protection system 

(TPS), which protects the vehicle from extreme heating. In this manner, designs 

of the re-entries need to be optimized.  

 

1.2. Direct Simulation Monte Carlo  

 

DSMC method is a particle-based stochastic approach which physically simulates 

the behaviour of gas molecules in the flow field. It is derived from the Boltzmann 

Equation through Chapman Enskog approximation and the details of the method 

can be found from [1]. It was developed by G.A. Bird in the late 1960’s and 

became popular in the field of aerospace due to its accuracy on rarefied gas flows 

with high Knudsen number [2]. 
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 𝐾𝑛 =
𝜆

𝐷
 (1) 

 

Knudsen number, Kn is defined as the ratio of mean free path, λ to characteristic 

dimension, D of the flow field. In such conditions mean free path between the gas 

molecules are quite high to consider the stream as continuous medium (Fig. 1). 

 

 

Figure 1 Application feasibility of numerical methods [3] 

 

According to the values of Kn, the flow regime can be classified in terms of 

continuum, slip, transition and free molecule. Continuum flow refers the regime 

where the Navier-Stokes equations are completely valid. Opposingly, free 

molecule regime is the regime with no intermolecular collisions. Slip regime can 

be assumed as similar to continuum regime except of its velocity slip and 

temperature jump conditions at solid surfaces. And the transition regime is the 

regime that lies between the slip and the free molecular regime [4]. 

 

According to Fig. 1, for the values of Kn, bigger than 0.1, DSMC is the only 

feasible numerical method, and this range can be widened up to 0.001, depending 

on the local Knudsen number. Depending on the arbitrary choice of the 
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characteristic length, these classifications may lead to miscarriages while defining 

the regime of the flow. Additionally, any single flow may contain more than one 

flow regime so that the treatment of local Kn rather than overall one comes into 

prominence. 

 

Paying attention to the applicability of the Boltzmann equation and remembering 

the origin of the method, molecular dynamic simulation (MD) and the direct 

simulation monte carlo (DSMC) are valid in all of the regimes if the required 

computation expense is satisfied. Likewise, the simplest form of DSMC gives the 

solution to Boltzmann equation when the number of particles goes to infinity 

while the grid size and time step are going to zero [4]. 

 

1.2.1. DS2V DSMC Code 

 

DS2V is two dimensional DSMC program developed by G.A. Bird. It has been 

used in many times in its field and can be regarded as commercial quality program 

[4]. It has an interactive graphical user interface (Fig. 2), and the source code is 

available. In other words, one can modify the code in terms of implementations of 

newer models or for any other goal. The code is capable of simulating gas flows 

in two-dimensional plane and axisymmetric conditions.  

 

The program reads data from an input file, and this file can be formed by 

manually or via the graphical user interface. It has predefined air models and 

chemical reaction sets, so the implementations of the flow conditions are easy. 

The total number of molecules in the simulation are entered to the program by 

defining the size of memory allocation. According to this, program calculates the 

number of molecules and also divides the flow field into the grids. However, the 

number of molecules and the cells can be expanded by the user in terms of 

entering a multiplication factor and adapting the grid respectively.  
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Figure 2 Interactive graphical user interface of DS2V program [4] 

 

DSMC requires two sets of grids for sampling and collision processes and the grid 

adaption is made by defining the maximum number of molecules in each 

sampling and collision cells. In the figures below (Fig. 3, 4 and 5) initial sampling 

cells, adapted sampling cells and the adapted collision cells are shown. 

 

 

Figure 3 Typical set of initial sampling cells [4] 
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Figure 4 Adapted sampling cells [4] 

 

 

Figure 5 Adapted collision cells [4] 

 

1.3. Reduced Order Modeling   

 

DSMC method is very useful while simulating rarefied gas flows. However, its 

utilization for optimization study still needs a considerable amount of computation 

process. To reduce the computation time and dynamize the optimization process, 

Reduced Order Modeling techniques may be used. These techniques provide a 

low dimensional approximation for the full high dimensional system by reflecting 

the dominant characteristics [5]. 
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Amongst the other ROM techniques Proper Orthogonal Decomposition technique 

stands out by its extensive usage in the field of aerodynamics. POD is such a 

mathematical method that provides an optimally ordered orthonormal basis in the 

least squares sense for a given set of data [5]. POD can obtain this orthonormal 

basis either taking singular value decomposition (SVD) of the original data matrix 

or determining the eigenvector matrix of the covariance matrix. Furthermore, this 

basis can be used either for reconstruction or extrapolation of the prospective 

vectors.  

 

POD has been widely used in the field of aerodynamics with linear regression 

models [6]–[9] successfully. However, its usage with linear regression models 

fails down when the nonlinear flow conditions are dominant. Jing [10] 

investigated the interpolation and extrapolation capability of POD on NACA 0012 

airfoil in transonic conditions with linear regression model and showed the 

inaccuracy in extrapolation. The reason for this, lies under the evaluation of 

coefficients of POD basis modes. Linear regression method like least squares 

cannot extract the nonlinear system behaviour and may cause fallacies especially 

in the flows where the discontinuities occur. To overcome this situation, nonlinear 

regression methods such as: quadratic polynomials or neural networks like radial 

basis functions (RBF) may have been utilized. Having said that, the nonlinear 

regression examples in the literature have been applied on the continuum 

approach solutions such as: FEM or CFD [11]–[17]. In this sense, the present 

study may have a place in the literature, for investigating the success of POD with 

nonlinear regression on particle based stochastic approach solutions. 

 

1.4. DOT Optimization Tool 

 

DOT is such a general-purpose gradient based commercial optimization tool that 

is provided as software libraries [18]. It provides the optimization algorithm and 

users must provide the main program and evaluation subroutines. Evaluation 

subroutines are prepared as the functions of design variables and main program 

manages the linkage between DOT and the evaluation subroutines (Fig. 6).  
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Figure 6 DOT Optimization tool working principle [18] 

 

User’s main program must provide the setup of the optimization. In other words, 

number of design variables, defining side constraints, selection of optimization 

type and etc must be specified in the main program. Secondly, user’s analysis 

program must provide the objective and constraint functions and according to the 

optimization, it must also provide the gradient information.  

 

Optimization process starts with calling DOT from main program. Then DOT 

changes the values of design variables in order to find the optimum. Afterwards, it 

turns back to main program with new design variables. Main program transfers 

these new variables to analysis program. Analysis program calculates the 

objective and constraint functions and send them to the main program and main 

program transfers these values to DOT to obtain the new values of design 

variables. And this routine is continued till the optimum design point is reached. 

 

1.5. Aim of the Study 

 

In the present study, aerothermodynamic front shape optimization of the Stardust 

re-entry has been aimed. Innovative parameterization approach has been made via 

implementing the B-spline curves on the geometry change, instead of fitting the 

geometry itself. Thus, the number of control points has been able to be decreased.  
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The base Stardust geometry had been composed of 600 intervals and the intervals 

of the cubic B-splines were also held as equal. Various geometries were obtained 

by summing up the cubic B-spline’s interval nodes and the base Stardust 

geometry nodes. DS2V direct simulation monte carlo code [4] was used as the 

physics solver and POD-RBF code was developed for model order reduction.  

 

Sampling space had been composed of 40 arbitrarily chosen geometry solutions 

initially and it was expanded up to 90 solutions finally. Leave-One-Out (LOO) 

cross validation method [17] was implemented for specifying these requirements. 

Multiquadric and gaussian RBFs were implemented for comparison, and 

multiquadric RBFs was chosen for optimization in case of its relative insensitivity 

to model parameter. Gradient based optimization tool DOT [19] was used for 

optimization and four different optimized geometry were obtained at the end of 

the optimization by changing the objective and the constraint functions. 

 

Developed POD-RBF code was used as the solver of optimization. Pressure, shear 

stress and heat flux distributions were obtained as corresponding outputs from 

POD-RBF code to the inputs of various geometries’ parameters. Aerodynamic 

drag and the total heat energy were calculated by integrating the distribution of 

pressure, shear stress and heat flux along the surface of the geometries. The 

optimized geometries were simulated via DS2V after the optimization. Pressure, 

shear stress and heat flux distributions were plotted and compared with the 

solutions of reduced order model.  
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CHAPTER 2 

 

 

MOLECULAR SIMULATION OF HYPERSONIC GAS FLOWS 

 

 

 

Molecular approach treats the gases as discrete particles. Unlike the macroscopic 

models, the flow properties like velocity, density, pressure and temperature are 

not dependent variables. It provides information of positions, velocities and states 

of particles in every time step. Being different than macroscopic approach, the 

fundamental equation at this level is Boltzmann equation. This makes possible the 

molecules are in their positions with having only dependent variables as their 

states. However, according to the physics of the flow they can have number of 

independent variables. 

 

The monatomic gas with no internal degrees of freedom can be given as an 

example to the simplest case. Despite this, the simulated particles have additional 

three velocity components at the phase space. In other words, any one-

dimensional steady flow becomes a three-dimensional and any two-dimensional 

flow becomes a five-dimensional flow [1] in the phase space. This is sourced by 

treating the velocities of any particle in three-dimensional as being independent of 

the dimension of the flow. This makes the analytical solution of Boltzmann 

equation is impossible and leads to difficulties in numerical modelling. 

Nevertheless, the discrete structure of gas gives opportunity to physical simulation 

of particles rather than developing mathematical or numerical model. 
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2.1. Governing Equations: Basics of Kinetic Theory 

 

2.1.1. Velocity Distribution Function 

 

In real gas flows at molecular level, the complete description of the flow requires 

the position, velocity and state information of all particles in the flow field in any 

time step [1]. However, having such information is impossible in real life. 

Therefore, the usage of statistical distribution functions would be beneficial.   

 

Considering homogeneous gas in a physical space with total N number of 

molecules. Any molecule with velocity c, and velocity components u, v, w can be 

defined as a point in the velocity space (Fig. 7), and just like the x, y, z in cartesian 

coordinates in the physical space, u, v, w refers to the axis of velocity space. 

 

 

Figure 7 Typical molecule and element in velocity space [1] 

 

Then the velocity distribution function, f can be defined as follows: 

 

 
𝑑𝑁

𝑁
= 𝑓𝑑𝑢𝑑𝑣𝑑𝑤  (2) 

 

or 
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𝑑𝑁

𝑁
= 𝑓𝑑𝑐 (3) 

 

where dN denotes the number of molecules whose velocity components are in the 

range of u to u+du, v to v+dv and w to w+dw. Thus, the product dc = dudvdw is 

entitled as the volume element in the velocity space. 

 

Since the distribution function is normalized function, its integration over the 

velocity space will be equal to one. 

 

 ∫ ∫ ∫ 𝑓𝑑𝑢𝑑𝑣𝑑𝑤
∞

−∞

= ∫ 𝑓𝑑𝑐
∞

−∞

=
𝑁

𝑁
= 1

∞

−∞

∞

−∞

 (4) 

 

Calculation of macroscopic properties requires a relation with the distribution 

function. Considering Q referring to any of the molecular quantity, the 

macroscopic correspondence can be calculated via averaging. Then the mean 

value can be expressed as follows: 

 

 �̅� = ∫ 𝑄𝑓𝑑𝑐
∞

−∞

 (5) 

 

Similarly, the stream velocity can be summarized as follows: 

 

 𝑐̅ = ∫ 𝑐𝑓𝑑𝑐
∞

−∞

 (6) 

 

Introducing r and dr as the position vector and volume element in physical space 

and t as time, the product dcdr is denoted as volume element in phase space. And 

phase space can be imagined as the combination of velocity and physical spaces. 

Then the single particle distribution function F(c,r,t) in phase space can be 

evaluated as follows: 
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 𝑑𝑁 = 𝐹(𝑐, 𝑟, 𝑡)𝑑𝑐𝑑𝑟 (7) 

 

By the way, dN now refers to the number of molecules in the phase space element 

dcdr. In cartesian coordinates dN gives the number of molecules with velocities 

ranging from u to u+du, v to v+dv and w to w+dw and with positions x to x+dx, y 

to y+dy and z to z+dz. And dcdr becomes dudvdwdxdydz in cartesian coordinates. 

Being different than f, F refers to integer number rather than fraction of molecules 

in the phase space element. So, the integration of F over the phase space gives the 

total number of molecules in the system. 

 

By equalizing the Eqns. (3 and 7) we obtain the equation below: 

 

 𝑑𝑁 = 𝑁𝑓𝑑𝑐 = 𝐹(𝑐, 𝑟, 𝑡)𝑑𝑐𝑑𝑟 (8) 

 

It is important to pay attention to Eqn. 8 that, N refers to the number of molecules 

in physical space volume element dr and dN refers to the number of molecules in 

the phase space volume element dcdr.  

 

Introducing new variable n as the number density in physical space element as 

N/dr and similarly number density in phase space element will be dN/dcdr. So 

that, the Eqn. 8 turns into the form below: 

 

 
𝑑𝑁

𝑑𝑐𝑑𝑟
= 𝑛𝑓 = 𝐹(𝑐, 𝑟, 𝑡) (9) 

 

Paying attention to Eqn. 9, f depends on both r and t. The presence probability of 

molecule number 1 in a phase space volume element dc1dr1 at time t is F(1)(c1,r1,t) 

and it is independent from the positions of other N-1 number of molecules. And 

the number of molecules in the phase space element at that time can be evaluated 

by multiplying the total number of molecules N with the probability F(1) of 

molecule.  
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On the other hand, the presence probability of two molecules in a phase space 

element can be found by the product of the two molecules’ probabilities and can 

be expressed as follows: 

 

 𝐹(2)(𝑐1, 𝑟1, 𝑐2, 𝑟2, 𝑡) = 𝐹
(1)(𝑐1, 𝑟1, 𝑡)𝐹

(1)(𝑐2, 𝑟2, 𝑡) (10) 

 

Because of the indistinguishability of the molecules, the probability functions of 

each molecule are the same. This is why the right-hand side of the Eqn. 10 are 

written as the multiplication of F(1)(…)F(1)(…) instead of F(1)(…)F(2)(…). This 

approach is entitled as molecular chaos. 

 

Depending on the diatomic or polyatomic structure of molecules, the phase space 

dimension is expanded upon the internal degrees of freedom. Furthermore, 

different species require different distribution functions in the gas mixture. 

Generally, the phase space dimension is specified with the minimum number 

which is enough for defining the position, velocity, orientation and internal state 

of molecule.  

 

2.1.2. Boltzmann Equation 

 

At any certain time, the total molecule number in a phase space element can be 

evaluated via Eqn. 8, and according to Eqn. 9 this expression is also written as 

nfdcdr. Assuming invariance of shape and location of the phase space element 

along the time, the rate of change of the number of molecules in the element can 

be expressed as below: 

 

 
𝜕

𝜕𝑡
(𝑛𝑓)𝑑𝑐𝑑𝑟 (11) 
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Figure 8 Molecular flux to and from a phase space element dcdr [1] 

 

Fig. 8 may be well understood by analysing the processes which contributes the 

molecule number change in the phase space element. The phase space element 

dcdr is expressed as separated into velocity dc and physical space elements dr. 

This is done because c and r are treated as independent variables. Velocity c is 

assumed as constant in physical space element dr, and velocity space element dc 

is assumed as located at the point defined by position vector r. 

 

Fig. 8 explains three processes such as: convection of molecules due to their 

velocities c, convection of molecules due to external force F and scattering of 

molecules due to intermolecular collisions. With the dilute gas assumption, 

collided molecules do not change their locations in physical space, while they are 

changing their velocities. In other words, they can jump from one to another place 

in velocity space, however, they remain their positions in physical space. This is 

why the collisions are shown only at the velocity space element, dc. Another 

important property of the dilute gas assumption is treating the collisions as binary 

collisions.  

 

Considering the convection of molecules by the effect of c across the face of dr, 

and knowing the number of molecules in the phase space element as nfdcdr, the 
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inflow of molecules with velocities c to c+Δc across the surface of dr can be 

written as below [1]: 

 

 −𝑐
𝜕(𝑛𝑓)

𝜕𝑟
𝑑𝑐𝑑𝑟 (12) 

 

Similarly, the inflow of molecules due to external force, F across the surface of dc 

can be written also: 

 

 −𝐹
𝜕(𝑛𝑓)

𝜕𝑐
𝑑𝑐𝑑𝑟 (13) 

 

Let’s consider that the collision between a molecule whose velocity is in the range 

of c to c+Δc and a molecule with velocity in the range of c1 to c1+Δc1 and 

assuming their post collision velocities as c* and c1
* respectively. In this manner, 

maybe the first molecule is chosen as test molecule and cr speed may be assigned 

on it. In this way we assume that the second molecule’s speed as zero or the 

second molecule is stationary. 

 

 

Figure 9 Effective volume swept by the test molecule amongst the stationary field 

molecules [1] 

 

Then the assigned velocity to test molecule will be cr = c - c1. And selecting the 

time interval, Δt is much shorter than the mean collision time, the test molecule 
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may collide any of the field molecule (with speed c1 to c1+Δc1) within the 

cylinder of volume σcrΔt as shown in Fig. 9. And using differential time, dΩ 

rather than discrete time interval, then the swept volume will be σcrdΩ and the 

increment rate of molecules due to collision scattering will be in the form below: 

 

 ∫ ∫ 𝑛2(𝑓∗𝑓1
∗ − 𝑓𝑓1)𝜎𝑐𝑟𝑑𝛺𝑑𝑐1𝑑𝑐𝑑𝑟

4𝜋

0

∞

−∞

 (14) 

 

Regarding collision process (Eqn. 14) as responsible for all of the changes in the 

number of molecules (Eqn. 11, 12 and 13), summing up the changes, equalizing 

with the collision expression (Eqn. 14) and dividing by dcdr gives the Boltzmann 

Equation (Eqn. 15) for the simple dilute gas. 

 

 

𝜕

𝜕𝑡
(𝑛𝑓) + 𝑐

𝜕(𝑛𝑓)

𝜕𝑟
+  𝐹

𝜕(𝑛𝑓)

𝜕𝑐

= ∫ ∫ 𝑛2(𝑓∗𝑓1
∗ − 𝑓𝑓1)𝜎𝑐𝑟𝑑𝛺𝑑𝑐1

4𝜋

0

∞

−∞

 

(15) 

 

If we want to write the Boltzmann Equation for particular species p and q in a 

mixture of gases, then the equation will be in the form of below: 

 

 

𝜕

𝜕𝑡
(𝑛𝑝𝑓𝑝) + 𝑐𝑝

𝜕(𝑛𝑝𝑓𝑝)

𝜕𝑟
+  𝐹

𝜕(𝑛𝑝𝑓𝑝)

𝜕𝑐

= ∑∫ ∫ 𝑛𝑝𝑛𝑞(𝑓𝑝
∗𝑓1𝑞

∗ − 𝑓𝑝𝑓1𝑞)𝜎𝑝𝑞𝑐𝑟𝑝𝑞𝑑𝛺𝑑𝑐1𝑞

4𝜋

0

∞

−∞

𝑠

𝑞=1

 

(16) 

 

As stated previously, presence of diatomic or polyatomic molecules (presence of 

internal degrees of freedom) requires an extended distribution functions which 

allow the additional dimensions in phase space. Besides, σ collisional cross 

section is not a constant variable for asymmetric molecules and it varies according 

to the rotation of molecule [1]. Through the reasons above, the Eqn. 16 is entitled 

as Generalized Boltzmann Equation. 
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In Boltzmann (Eqn. 15) or the Generalized Boltzmann Equation (Eqn. 16), the 

first term on the left-hand side refers to the rate change of molecules along the 

time, the second term refers to the diffusion of molecules and third term refers to 

the rate change of molecules due to external force. The term on the right-hand side 

refers to collision of particles, and if the flow contains chemical reactions, they are 

treated in this term. 

 

Due to spherically symmetric behaviour of velocity distribution function 

homogeneous gas can be treated as one dimensional in phase space for Boltzmann 

solution. However, any physically one-dimensional gas flow becomes three 

dimensional. Because in this case the velocity distribution function will be 

axisymmetric instead of spherically symmetric. On the other hand, the velocity 

distribution function is not axis-symmetric or spherically symmetric in the 

velocity space in physically two and three-dimensional flows, so it must be treated 

in three dimensions. Consequently, they become into five and six dimensional 

flows in the phase space. In addition to these, the time is also added to the flow as 

an extra dimension.  

 

In accordance with the explanations above, analytical solution of Boltzman 

equation is impossible in complex flow problems [1]. And numerical solutions 

require mesh structure to address the molecules’ positions and for easiness in 

bounding the control volume. 

 

2.1.3. Moment and Conservation Equations 

 

Considering Q as any molecular quantity of single molecule, as it was done in the 

Eqn. 5, this quantity can be multiplied with the Boltzmann equation and if the 

resulting equation (Eqn. 17) is integrated over the velocity space, moment of 

Boltzmann equation is obtained. Thus, the macroscopic properties of monatomic 

gas can be evaluated.  
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𝑄
𝜕

𝜕𝑡
(𝑛𝑓) + 𝑄𝑐

𝜕(𝑛𝑓)

𝜕𝑟
+  𝑄𝐹

𝜕(𝑛𝑓)

𝜕𝑐

= 𝑄∫ ∫ 𝑛2(𝑓∗𝑓1
∗ − 𝑓𝑓1)𝜎𝑐𝑟𝑑𝛺𝑑𝑐1

4𝜋

0

∞

−∞

 

(17) 

 

Because of being dependent variables, in the Eqn. 17, Q can be taken into the 

derivative for the first and the third term on the left-hand side, and Qc can be 

taken into derivative for the second term. Furthermore, Q can be taken into the 

integral on the right-hand side. If the terms are integrated over the velocity space 

and then are summed up, the moment equation of Q, can be written: 

 

 
𝜕

𝜕𝑡
(𝑛�̅�) + ∇(𝑛𝑐𝑄̅̅̅̅ ) − 𝑛𝐹

𝜕𝑄

𝜕𝑐

̅̅ ̅̅
= ∆[𝑄] (18) 

 

Eqn. 18 is entitled as transfer equation or the equation of change, and by replacing 

the quantity Q, to molecular mass m, molecular momentum mc and molecular 

kinetic energy 
1

2
𝑚𝑐2, conservation equations of gas dynamics are obtained [1]. 

The term on the right-hand side of the Eqn. 18 is called as collision integral. 

According to elastic binary collision mechanics, the total mass, total momentum 

and the total energy is conserved during the collision process. This means that the 

collision integral term Δ[Q] equals to zero, or in other words [Q] remains 

constant. Thus, the replacement of Q with m gives the conservation of mass, the 

replacement of Q with mc gives the conservation of momentum and the 

replacement of Q with 
1

2
𝑚𝑐2 gives the conservation of energy equations. 

 

2.1.4. Chapman Enskog Expansion 

 

Boltzmann equation can be solved for basic cases if the gas is at equilibrium state 

(f = f0) [20]. On the other hand, if the nonequilibrium conditions are present, the 

solution becomes impossible. In this manner, Chapman Enskog theory provides a 

solution to the Boltzmann equation in terms of small disturbance theory. Under 
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assumption of the small perturbations to the equilibrium state can be defined via 

the expression below: 

 

 𝑓 = 𝑓0(1 + 𝜑1 + 𝜑2 +⋯) (19) 

 

Equilibrium state of gas f0, means that there isn’t any change in the molecular 

properties. And the velocity distribution function f0 is sampled from Maxwellian 

distribution. 

 

 𝑓0 = (
𝑚

2𝜋𝑘𝑇
)
3 2⁄

𝑒𝑥𝑝 [−
𝑚

2𝑘𝑇
(�́�𝑥
2 + �́�𝑦

2 + �́�𝑧
2)] (20) 

 

where �́� refers to the thermal velocity of molecules and subscript x, y, z denotes 

the components. T denotes the temperature and m denotes the mass of molecules. 

And k refers to the Boltzmann constant. 

 

If the expansion is made through including only the first term φ1, Navier Stokes 

equation can be obtained, and if the second term φ2 is added, Burnett equations 

can be obtained [1].  

 

2.2. DSMC Procedures 

 

Direct Simulation Monte Carlo is based on physical simulation of representative 

molecules in a control volume. Each representative molecule refers to a number of 

real molecules so that the requirement of dilute gas assumption is born. Therefore, 

the method is appropriate while simulating the rarefied gas flows. In dilute gases 

mean free path, λ of molecules is much larger than the diameter, d of the 

molecules. So that treating the movement and collision of representative 

molecules separated in a time step, Δt is possible.  

 

As stated before, the method needs two sets of grids in computational domain for 

sampling and collision processes. While forming these grids, the dimensions of 
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cell sizes are provided in a relation with the mean free path, λ. The reason for this 

is to make a guarantee of the selection of collision partners in the same cells. 

Supportively, choosing the molecules which are close to each other is logical in 

physical reality [21]. 

 

First stage of DSMC method is movement stage, and all of the representative 

molecules are proceeded along the time step and are transposed according to their 

velocities. Since the collision and movement processes are separated from each 

other, the time step must be chosen as being lower than the mean collision time 

(Δt < tc). Thus, collision process is made become proportional to the mean 

collision time. And if the representative molecules trespass the wall boundaries in 

a time step, they are reflected in accordance with the appropriate wall reflecting 

model. If they exit from the inlet/outlet boundaries, they are deleted. Similarly, in 

this stage molecule addition process is also made through the inlet boundaries.  

 

At the second stage, representative molecules are serialized based on grid cells. So 

that, the representative molecules are able to be addressed and the molecules that 

are locating in the same cell can be specified. This information is required for the 

next collision stage. 

 

The third stage of DSMC is the collision stage with probability characteristics. In 

this stage, the representative molecules which are locating in the same cells, are 

collided with each other according to the appropriate collision model. The total 

mass, momentum and energy are conserved in collisions. However, the 

momentum and energy transfer between collided molecules are possible. On the 

other hand, the positions of the collided molecules are assumed invariant. DSMC 

method treat the collisions as binary collisions in rarefied gases. If the simulation 

includes chemical reactions, the reactions are treated in this stage by means of 

collisions. 

 

At the final stage, macroscopic properties (pressure, temperature, density, 

velocity, ...etc) are evaluated via taking average of molecular properties based on 
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cells. If the flow is steady state flow, the time average of these properties are 

taken, or if the flow is transient, ensemble averaging is made on these properties. 

Thus, the random walks are reduced to acceptable levels.  
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CHAPTER 3 

 

 

GEOMETRY PARAMETERIZATION 

 

 

 

Geometry parameterization plays an important role in engineering, especially in 

the parametric studies like engineering design and shape optimizations. It also 

provides description of any geometry in mathematical sense. So, the imagination 

and visualization are made simplify. Similar to the definition of a basic square 

which can be defined by only one variable, the geometries without having a 

predefined geometrical shape can be described in terms of numbers. Thus, the 

conceptual design of any objective becomes possible. When the parameterization 

has been achieved, the manipulation of the geometry gets easier by only changing 

the suitable parameters.  

 

In the field of aerodynamics, most of the geometries are composed of complex 

curvatures and so that they can not be defined via basic geometrical definitions. In 

this content, their definitions need higher order curvature polynomials. In such 

situations, the usage of space curves or conic curves may be beneficial.  

 

On the other hand, in supersonic and hypersonic flow considerations, the shape 

complexity is lower than it is in subsonic flow. So, the supersonic and hypersonic 

vehicle geometries can be specified easily regarding to the subsonic vehicles. 

Generally, and especially, any conceptual hypersonic vehicle can be 

parameterized in terms of basic geometrical configurations such as: circular nose, 

angular front face, circular shoulder.  
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Figure 10 Comparison of flow behaviour of sharp and blunt vehicles in supersonic 

and hypersonic flow [22] 

 

And these simplicities in the configuration is a conclusion of the physics of the 

flow field (Fig. 10). As an example, any re-entry capsule can be defined by using 

simple geometrical definitions (Fig. 11). And the parameters can be given as 

follows [22]: 

• Nose radius, RN 

• Side radius, RS 

• Rear cone half angle, θC 

• Mid radius, RM 

• Rear conical part length, LC 

 

 

Figure 11 Schematic representation of re-entry capsule [22] 
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Although these definitions are sufficient for designing a re-entry capsule, the 

design space may be extended using cubic splines such as Bezier and B-spline 

curves in optimization processes. These curves are so useful while defining 

curvatures in two and three-dimensional spaces.  

 

In this thesis study, B-spline curves were implemented innovatively in two-

dimensional space for the optimization of Stardust re-entry capsule. Since the B-

spline curves are based on Bezier basis, it would be beneficial to give some 

information about Bezier curves firstly. 

 

3.1. Bezier Curves 

 

A Bezier curve is described by its defining polygon. The defining polygon is 

composed of the control points of the curve, and mathematical representation can 

be given as follows [23]: 

 

 𝑃(𝑡) =∑𝐵𝑖𝐽𝑛,𝑖(𝑡)

𝑛

𝑖=0

         0 ≤ 𝑡 ≤ 1 (21) 

 

where the blending function or Bezier basis function is: 

 

 𝐽𝑛,𝑖(𝑡) = (
𝑛

𝑖
) 𝑡𝑖(1 − 𝑡)𝑛−𝑖 (22) 

 

In the Eqn. 21, Bi term refers to the coordinates of control points which form the 

control polygon of the curve. P(t) term corresponds to the curve interval nodes, 

this means that any Bezier curve contains number of little line segments or 

intervals along the curve length. The number of these intervals can be adjusted via 

t steps, according to the expected resolution without changing the degree or the 

order of the curve. Jn,i(t) refers to blending function or Bernstein basis and it is 

dependent on value n. The term n represents the degree of the curve, and it has to 

be one less than the number of control points (n+1). 
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In other words, any Bezier curve’s order is equal to the number of control points, 

and the degree and order of the curve cannot be changed without changing the 

number of control points. Therefore, if the geometry to be parameterized is 

complex and requires many points for fitting, the resultant Bezier curve’s order 

cannot be lowered. And this may lead to big responses in geometry across the 

little position changes of control points in some situations. Such situations are not 

wanted in optimization studies in case of difficulties in controlling the shape. To 

deal with this phenomenon, more advanced B-spline curves may be utilized. 

 

3.2. B-spline Curves 

 

Mathematically, the curve which is generated by the control points, is dependent 

on basis functions [23]. As stated above, Bezier curve is generated with Bezier 

basis. And due to the nature of Bezier basis, the order and degree of the curve is 

restricted with the number of control points. On the other hand, B-spline basis 

provide degree or order independency, so that the number of control points can be 

chosen arbitrarily. It also includes the Bezier basis as a special case.  

 

Similar to Bezier curve representation, any B-spline curve is represented as 

follows: 

 

 𝑃(𝑡) = ∑𝐵𝑖𝑁𝑖,𝑘(𝑡)

𝑛+1

𝑖=1

    𝑡𝑚𝑖𝑛 ≤ 𝑡 < 𝑡𝑚𝑎𝑥 ,    2 ≤ 𝑘 ≤ 𝑛 + 1 (23) 

  

where the B-spline basis function is defined as: 

 

 𝑁𝑖,1(𝑡) = {
1       𝑖𝑓  𝑥𝑖 ≤ 𝑡 < 𝑥𝑖+1
0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (24a) 

   

 𝑁𝑖,𝑘(𝑡) =
(𝑡 − 𝑥𝑖)𝑁𝑖,𝑘−1(𝑡)

𝑥𝑖+𝑘−1 − 𝑥𝑖
+
(𝑥𝑖+𝑘 − 𝑡)𝑁𝑖+1,𝑘−1(𝑡)

𝑥𝑖+𝑘 − 𝑥𝑖+1
 (24b) 
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In Eqns. 23 and 24b, k refers to the order of the curve, then the degree of the curve 

is k-1, and this k value can be defined arbitrarily. In other words, order of the 

curve is independent from the number of control points (n+1). Thus, any control 

point along the curve has effect on significant segments, and these segments are 

specified through the order of the curve. As an example, any control point can 

only affect maximum k number of curve segments. This property presents more 

control on the curve.  

 

3.2.1. B-spline Curve Fitting and Fitting Stardust Capsule 

 

Any Bezier or B-spline curve can be generated with the equations above, since the 

control points Bi’ s are provided. However, in most of the engineering 

optimization problems, the base geometry is present, and the parameterization 

curve must be fitted initially. When the curve is fitted, the control points 

coordinates are known so the deformation or modification can be made.  

 

Considering Di’s are, known data points of the curve to be fitted, satisfying Eqn. 

23, the below expression can be written [23]: 

 

 [𝐷] = [𝑁][𝐵] (25) 

 

where  

 

 [𝐷]𝑇 = [𝐷1(𝑡1)  𝐷2(𝑡2) ⋯  𝐷𝑗(𝑡𝑗)] (26a) 

   

 [𝐵]𝑇 = [𝐵1  𝐵2   ⋯  𝐵𝑛+1] (26b) 

   

 [

𝑁1,𝑘(𝑡1) ⋯ 𝑁𝑛+1,𝑘(𝑡1)

⋮ ⋱ ⋮
𝑁1,𝑘(𝑡𝑗) ⋯ 𝑁𝑛+1,𝑘(𝑡𝑗)

] (26c) 
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When the above vectors and matrix (Eqn. 26a, 26b and Eqn. 26c) are obtained [B] 

matrix, which holds the control points’ coordinates can be evaluated in two steps: 

 

 [𝑁]𝑇[𝐷] = [𝑁]𝑇[𝑁][𝐵] (27) 

   

 [𝐵] = [[𝑁]𝑇[𝑁]]−1[𝑁]𝑇[𝐷] (28) 

 

And if the matrix [N] is square matrix, then the Eqn. 27 would be unnecessary, 

and the control points could be evaluated just by multiplying Eqn. 25 with [N]-1. 

 

In this study, a FORTRAN code was written for fitting the Stardust geometry. 

LAPACK libraries were utilized for the matrix calculations. The geometry was 

constituted according to the dimensions in Fig. 12. Then the data points were 

taken from the constituted body, and the fitting procedure was followed.  

 

Figure 12 Stardust geometrical dimensions [24] 

 

Curve fitting was repeated by varying the number of control points Bi’s, and the 

minimum number of points with good parameterization quality was searched. The 

minimum number of control points with good approximation quality was achieved 

with 37 control points, and the decrement was seen in the quality while the 

number was being lowered further.  
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To make a comparison, fitting with 15 control points which is the desired design 

variable number for optimization was compared with the one with 37 control 

points and they were plotted in Fig. 13 a and b respectively. 

 

  

  a) with 15 control points                          b) with 37 control points 

Figure 13 B-spline curve fitting of Stardust geometry  

 

As shown from Fig. 13 a, desired fitting quality has not been able to be achieved 

with 15 control points. Otherwise 37 control points (Fig. 13 b) were too many to 

be used as design variables in the optimization study, so both satisfying the 

quality and also reducing the number of design variables, B-spline curves were 

utilized in parameterization of the geometry change rather than parameterizing the 

geometry itself. The following section explains the implementation procedure. 

 

3.2.2. B-spline Parameterization of Geometry Change 

 

First of all, the technique needs a base geometry, which is Stardust for this study, 

and an individual B-spline curve. Considering both as two individual curves, their 

intervals’ coordinate points are written in vectorial form and then summed up to 

form another geometry vector.  
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Figure 14 Control polygons and individual B-spline curves for two different 

geometries 

 

 

Figure 15 Base and resulting geometries 

 

The major point is to hold the number of intervals identical (or dimension of 

vectors) on both curves. In this manner, if we want to obtain the same of the base 

geometry, the control points’ coordinates and as a result, cubic spline’s 

coordinates are filled with zeros. In Fig. 14, for geometry 1 there are only four 

control points different than zero, and for geometry 2 there are only five control 

points different than zero. This means that the geometry 1 and geometry 2 in Fig. 

15 can be obtained by using only 4 and 5 control points respectively, and the rest 

of the points will be zero.  
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This procedure provides the parameterization with small number of control points. 

Furthermore, some of the control points affect only the aftbody of the capsule 

then, in the optimization of front body they are not supposed to be changed so 

they can be omitted. Finally, the optimization can be made by using 5 to 7 control 

points as the design variables. 
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CHAPTER 4 

 

 

REDUCED ORDER MODELING 

 

 

 

Reduced order models aim to find the dominant modes of the higher order 

dynamical system and use these modes for lowering the order [13]. In other 

words, it converts the high-fidelity high ordered physics solvers into lower 

ordered transfer functions. Consequently, it cuts down the computational effort 

significantly.  

 

On the other hand, ROM techniques require design of experiments or solution 

pools which are composed of precomputed high-fidelity solutions or experiment 

results [17]. These solution pools can be composed of properly sampled individual 

solutions or be composed of arbitrarily. However, ROM accuracy is mainly 

dependent on the scope and uniformity of the design of experiment and the 

sampling methods draw a boundary to the design space and provide the individual 

solutions distribute in this space uniformly. Therefore, they have positive effects 

on the ROM accuracy.  

 

Despite the benefits of sampling methods on the ROM accuracy, the utilization of 

them requires additional effort. And sometimes it requires another optimization 

process like adaptive sampling strategy while filling the design space.     

 

In the present thesis study, design of experiment has been formed semi-arbitrarily. 

First of all, various geometries up to 40 were generated arbitrarily. While 

generating these geometries, design variable side constraints were used as the 

boundaries of the design space. In this manner, the scope of the design space has 
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been defined. Using this solution pool, POD-RBF based ROM model was 

constructed [15], [16].  

 

A FORTRAN code was developed and LAPACK libraries were implemented in 

the code for matrix calculations. Using ROM model as the solver of optimization 

and assigning various constraint and objective functions, different geometries 

were obtained. These obtained geometries were simulated via DS2V and the 

results were compared with the ROM model’s results. Then these DS2V results 

were added to the solution pool and this step by step process was maintained till 

the satisfying agreement was achieved on the results. At the end, solution pool has 

been composed of 90 sample solutions.  

 

4.1. Proper Orthogonal Decomposition 

 

POD method is such a model order reduction technique that has been widely used 

in the field of aerodynamics [7]–[12], [14] since it’s usage was introduced by 

Sirovich [25], [26]. It is entitled in different names such as: Karhunen Loeve 

Transform [27] and Principal Component Analysis [28].  

 

Being a mathematical method, it provides orthogonal basis to a given set of data 

and use the effective orthogonal vectors of this basis for constructing reduced 

order models in terms of reconstruction, interpolation or extrapolation [5]. 

Because of being a mathematical method, there is no requirement to know about 

the source of the data and it can be applied to any suitable data set [25].  

 

POD’s linear infrastructure provides an advantage that it only requires the matrix 

calculations. Besides that, despite its linearity it can preserve the nonlinearity of 

the system.   

 

Since POD is a mathematical tool and composed of matrix calculations, POD 

basis can be obtained in two different ways, either finding the eigenvalues and 

eigenvectors or taking singular value decomposition of data matrix. In the 
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following two sections, these two ways are explained. In this thesis study, POD 

basis was calculated through POD Snapshots approach. 

 

4.1.1. POD Snapshots 

 

POD Snapshot method was first introduced by Sirovich [26] and it has been 

known as also method of snapshots or Sirovich’s method of snapshots. In 

Sirovich’s method, each snapshot corresponds to an instantaneous flow field 

contour plot of turbulence structure. And the data matrix was composed of these 

snapshots which were written in vectorial form.  

 

However, since the method’s applicability is not restricted to transient processes 

whose parameter is time step, it has been able to be applied to steady state 

solutions with parameters different than time step. Furthermore, the snapshots can 

be treated as surface variables rather than flow field variables.  

 

In this manner, considering the two-dimensional flow of Stardust re-entry, surface 

distributions of any of the flow variable (pressure, shear stress or heat flux) can be 

referred as snapshots. The important thing is to hold the number of intervals of the 

surface or in other words, dimensions of the snapshot vectors equal.  

 

Considering M as the number of snapshots, and N as the number of intervals 

holding the flow variable, each snapshot can be written in vectorial form of 

dimension N. By writing each vector as column vectors of data matrix U, POD 

data matrix can be formed (Fig. 16). Noting that, in Fig. 16 each column 

corresponds to flow variable distribution of different geometry. In other words, 

Stardust geometry is one of the total 90 different geometries.   
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Figure 16 Forming POD data matrix 

 

After forming the data matrix U, the procedure is followed by calculating the 

POD basis. Introducing correlation matrix C as below [15], [16], 

 

 𝐶 = 𝑈𝑇𝑈 (29) 

 

Non-trivial solution of eigenvalue problem will be the first step, 

 

 𝐶𝑉 = 𝛬𝑉 (30) 

 

where Λ is the diagonal matrix holding the eigenvalues λi on its diagonal and V is 

the eigenvector matrix holding the eigenvectors as its column vectors. From now 

on the orthogonal POD basis 𝛷 can be easily computed via the Eqn. 31. 

 

 𝛷 = 𝑈 𝑉𝛬−1 2⁄  (31) 

 

This POD basis can be truncated to K number of columns where K < M and the 

resulting matrix is shown as: 

 

 �̂� = 𝑈 �̂�𝛬−1 2⁄  (32) 
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In the above expression, �̂� and �̂� include the first K columns of the relevant 

matrices. And the number K can be evaluated as holding below expression close 

to unity. 

 

 
∑ 𝜆𝑖
𝐾
𝑖=1

∑ 𝜆𝑖
𝑀
𝑖=1

 (33) 

 

The obtained POD basis either original or the truncated one both must be 

orthogonal and provide the orthogonality condition 𝛷𝑇𝛷 = 𝐼, and �̂�𝑇�̂� = 𝐼. Once 

the truncated POD basis �̂� is computed, the snapshot matrix can be reconstructed 

or approximated according to the usage of 𝛷 or �̂� respectively.   

 

 �̃� =  �̂� 𝐴 (34) 

 

In the above expression A refers to the amplitude matrix, and it can be calculated 

for reconstruction of U or approximation of U as �̃� through the expression below: 

 

 𝐴 = �̂�𝑇 𝑈 (35) 

 

If K is chosen equal to M, then the �̂� is automatically changed with 𝛷 in both 

Eqns. 15 and 16 and �̃� is also changed with U automatically. Since �̂� is the 

truncated version of 𝛷 matrix in terms of cancelling the column vectors beyond 

the Kth column. 

 

4.1.2. POD SVD 

 

As stated before, POD basis can be evaluated through SVD also [11]–[13], [17]. 

Similar to POD Snapshots, U is the data matrix. However, covariance matrix is 

expressed as UUT instead of UTU this time. 

 

 𝐶 = 𝑈𝑈𝑇 (36) 
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And the POD basis modes, Φ will be the eigenvector matrix of covariance matrix, 

C [17]. 

 

 𝐶 = 𝑈𝑈𝑇 = 𝛷𝛬𝛷−1 (37) 

 

Fortunately, POD modes can be determined by taking SVD of data matrix U 

rather than evaluating the eigenvalues and eigenvectors of covariance matrix C. 

 

 𝑈 = 𝑄𝑆𝑋𝑇 (38) 

 

where Q and X are the left and right eigenvector matrices respectively and S is the 

diagonal matrix containing the eigenvalues. Substituting Eqn. 38 into Eqn. 37 

gives, 

 

 𝑈𝑈𝑇 = (𝑄𝑆𝑋𝑇)(𝑋𝑆𝑄𝑇) = 𝑄𝑆2𝑄𝑇 (39) 

 

Then comparing the Eqns. 37 and 39, the POD basis modes will be Φ = Q, and 

the amplitude or coefficient matrix will be A = SXT, and finally the reconstruction 

of U data matrix can be made by the expression below: 

 

 𝑈 = 𝑄(𝑆𝑋𝑇) = 𝛷𝐴 (40) 

 

4.2. Radial Basis Functions 

 

Radial basis functions are useful when scattered observations are present and the 

function to be approximated depends on many variables [29].  

 

To eliminate the misunderstandings, the procedure that is being explained right 

now, is the general implementation procedure of RBFs, its application on this 

study, will be explained in the following section. In other words, there is not any 
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dependency with POD in this section neither in terms of notation nor the 

functions.  

  

In a mathematical sense, RBF approximation can be defined as follows: 

 

 𝑠(𝑥) =∑(𝑤𝑖𝜃(‖𝑥 − 𝑥𝑖‖))

𝑛

𝑖=1

 (41) 

 

In the Eqn. 41, n refers to the number of observations, s(x) is the function with 

parameter x to be approximated, wi ‘s are the weights or coefficients of 

approximation, θ is the radial basis function, x is the parameter of the function to 

be approximated s(x) and xi’ s are the parameters of observations. And the norm in 

the radial basis function θ is the Euclidian norm.  

 

In order to determine the coefficients, we use the observations: 

 

 𝑠(𝑥𝑗) =∑(𝑤𝑖𝜃

𝑛

𝑖=1

(‖𝑥𝑗 − 𝑥𝑖‖)) (42) 

 

Since s(xj)’ s corresponds to the observations with parameter xj, they are known 

functions. Thus, it is possible to calculate each coefficient wi through the Eqn. 42.  

Despite the wide range of RBF’s, the most common choices are the multiquadric 

and the Gaussian RBFs.  

 

 𝜃(𝑟) = √𝑟2 + 𝑐2     (𝑚𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐) (43a) 

 𝜃(𝑟) = 𝑒−𝑐𝑟
2
                     (𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛)     (43b) 

 

In the above Eqns. 43a and 43b, r refers the Euclidian norm between the 

parameters and c refers to smoothing factor. 
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4.3. POD-RBF ROM Model Development 

 

POD methodology has been explained in POD Snapshots section. Continuing 

from the Eqn. 35, POD-RBF reduced order model can be explained. Referring 

amplitude matrix, A as the nonlinear function of the parameter vector, below 

expression may be written [15], [16]. 

 

 𝐴 = 𝐵𝐹 (44) 

 

where F denotes the interpolation matrix, and B denotes the coefficient matrix to 

be determined. If we compare the Eqn. 41 and Eqn. 44, A amplitude matrix is 

substituted with s(x), B coefficient matrix is substituted with wi and F 

interpolation matrix is substituted with θ. Then interpolation matrix F can be 

written as, 

 

 𝐹 =

[
 
 
 
 
 
𝑓(‖�⃗�1 − �⃗�1‖) ⋯      𝑓(‖�⃗�𝑗 − �⃗�1‖)    ⋯ 𝑓(‖�⃗�𝑀 − �⃗�1‖)

⋮
𝑓(‖�⃗�1 − �⃗�𝑖‖)

⋮

⋮
⋯      𝑓(‖�⃗�𝑗 − �⃗�𝑖‖)     ⋯

⋮

⋮
𝑓(‖�⃗�𝑀 − �⃗�𝑖‖)

⋮

𝑓(‖�⃗�1 − �⃗�𝑀‖) ⋯     𝑓(‖�⃗�𝑗 − �⃗�𝑀‖)   ⋯ 𝑓(‖�⃗�𝑀 − �⃗�𝑀‖)]
 
 
 
 
 

 (45) 

 

In Eqn. 45 �⃗�𝑖 and �⃗�𝑗 refer to the parameter vectors belong to ith and jth snapshots 

in the snapshot pool. These parameter vectors hold the control point coordinates 

of 90 different designs. The ‖�⃗�𝑗 − �⃗�𝑖‖ corresponds the Euclidian distance 

between parameter vectors, and 𝑓() denotes the interpolation function or the 

radial basis function. By multiplying both sides of Eqn. 44 with F-1, the 

coefficient matrix B can easily be calculated.  

 

 𝐵 = 𝐴𝐹−1 (46) 

 

Noting that, the amplitude A and the coefficients B matrices are known at the 

moment. From now on, equating Eqn. 35 and Eqn. 44 yields, 
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 �̂�𝑇 𝑈 = 𝐵𝐹 (47) 

 

Then using the orthogonality of �̂�, the data matrix U, can be approximated as 

follows. 

 

 �̃� = �̂� 𝐵 𝐹 (48) 

 

The Eqn. 48 gives the approximation of the original data matrix (snapshot matrix). 

However, we need a vector refers to the response solution of prospective design 

parameters, thus the solution would be in the shape of below, 

 

 �⃗⃗�(�⃗�𝑒𝑥𝑝) = �̂� 𝐵 𝑓(�⃗�𝑒𝑥𝑝) (49) 

 

�⃗�𝑒𝑥𝑝 corresponds to the prospective geometry parameter vector and it holds the 

control points coordinates. 𝑓(�⃗�𝑒𝑥𝑝) is the interpolation function vector and can be 

evaluated via Eqn. 50.  

 

 𝑓(�⃗�𝑒𝑥𝑝) =

{
 
 

 
 
𝑓(‖�⃗�𝑒𝑥𝑝 − �⃗�1‖)

⋮
𝑓(‖�⃗�𝑒𝑥𝑝 − �⃗�𝑖‖)

⋮
𝑓(‖�⃗�𝑒𝑥𝑝 − �⃗�𝑀‖)}

 
 

 
 

 (50) 

 

By this way, ROM model has become to be capable of providing flow variable 

(pressure or shear stress or heat flux) distribution solutions, �⃗⃗�(�⃗�𝑒𝑥𝑝) to the 

prospective various geometries �⃗�𝑒𝑥𝑝.  

 

At the end, RBF functions have been utilized for determining the amplitudes or 

coefficients of POD modes. In other words, by taking advantage of RBF’s ability 

on reflecting nonlinear system behavior, POD method has been able to be applied 

on hypersonic flow solutions where highly nonlinearities occur. 
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4.3.1. Comparison of RBFs 

 

Before starting the optimization process, the selection of RBFs was made. Both 

multiquadric (Eqn. 43a) and Gaussian (Eqn. 43b) RBFs were implemented in the 

ROM model and their effects on the extrapolation capability were tested on two 

arbitrarily selected geometries (sample 45 and sample 75). Leave one out 

approach (LOO) [17] was chosen for validation, since it does not need any extra 

solutions. In LOO the chosen solutions are taken from the snapshot pool, and they 

are tried to be extrapolated via the rest of the solutions.  

 

In Fig. 17, flow variable (pressure, shear stress and heat flux) distributions along 

the surface of the samples (sample 45 and sample 75) have been obtained via 

POD-RBF model for different number of POD mods, and they were compared 

with the solutions of DS2V. Both distributions from DS2V and POD-RBF ROM 

were written in vectorial form, and their comparisons have been made through the 

percentage error.  

 

 %𝑒𝑟𝑟𝑜𝑟 =
‖�⃗�𝑎𝑝𝑝 − �⃗�‖

‖�⃗�‖
 100 (51) 

 

Percentage errors on the ordinates of the comparison plots (Fig. 17) were 

calculated through Eqn. 51. In the equation, �⃗�𝑎𝑝𝑝 refers to any flow variable 

distribution (pressure or shear stress or heat flux) obtained from POD-RBF, and �⃗� 

refers to any flow variable distribution from DS2V. 
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   a) sample 45 heat flux distribution         d) sample 75 heat flux distribution 

  

   b) sample 45 pressure distribution          e) sample 75 pressure distribution 

  

  c) sample 45 shear stress distribution      f) sample 75 shear stress distribution 

Figure 17 Error charts of multiquadric and Gaussian RBFs on sample 45 and 

sample 75 extrapolation 
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For sample 45 extrapolation the model parameter c was optimized for gaussian 

RBF by trial and error, and a value of 1 was used for multiquadric RBF. The 

optimized c values were written on the graph’s legends. On the other hand, the 

same optimized c values of sample 45 were used in the extrapolation of sample 

75.  

 

Bearing in mind that and looking at the Fig. 17 a to e, if the parameter c is 

optimized for each of the extrapolation, gaussian RBF can provide more accurate 

predictions than the multiquadric RBF. However, if they are not optimized, the 

percentage error of Gaussian RBF can increase up to the range of %30’s. To this 

respect, due to its stable error characteristics, multiquadric RBF were chosen 

instead of gaussian RBF. 
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CHAPTER 5 

 

 

GRADIENT BASED OPTIMIZATION 

 

 

 

Generally, an optimization problem can be defined in mathematical sense as 

follows [19]: 

 

Minimizing or maximizing the objective function:  

 

 𝐹(𝑋)              𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (52) 

 

Subject to constraints: 

 

 𝑔𝑗(𝑋) ≤ 0,      𝑗 = 1,𝑚     𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (53) 

 𝑋𝑖
𝐿 ≤ 𝑋𝑖 ≤ 𝑋𝑖

𝑈,      𝑖 = 1, 𝑛            𝑠𝑖𝑑𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (54) 

 

Design variables: 

 

 𝑋 =

{
 
 

 
 
𝑋1
𝑋2
𝑋3
⋮
𝑋𝑛}
 
 

 
 

         𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (55) 

 

while F(X) and gj(X) refer to the objective and constraint functions, side 

constraints are not functions and they are required for defining the limit 

boundaries of each design variables Xi, in other words they are required for 

specifying the design space. On the other hand, objective and constraint functions 
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are the functions and they can be linear or nonlinear functions. Furthermore, their 

calculations may be made by analytically or numerically.  

Noting that, constraint functions are defined as inequality condition, and if the 

equality is desired, it must be defined in terms of defining two inequality 

constraints.  

 

The optimization procedure starts from an initial set of design variables, X0 [30]. 

After starting the optimization, design variables are modified in each iteration 

until the optimum design point is reached.  

 

 𝑋𝑞 = 𝑋𝑞−1 + 𝛼∗𝑆𝑞 (56) 

 

In the Eqn. 56, q in the superscript denotes the iteration number, S denotes the 

search direction vector and α* denotes the distance in the search direction. 

 

5.1. Optimization Procedure 

 

Stardust’s front face optimization has been conducted, considering drag force, 

maximum heat flux value, total heating energy and volume of the re-entry. These 

four functions were specified initially and assigning them as objective and 

constraint functions varyingly, various optimization cases were obtained. Stardust 

geometry was defined as the initial geometry and various geometries were 

produced with B-spline subroutine.  

 

As stated in the Chapter 2, B-spline subroutine had been written as producing the 

geometries by means of geometry change. So, the required base geometry 

coordinates were read as an input vector to the subroutine (Fig. 18). After reading 

base geometry vector, it produces geometry according to the geometry parameters 

(B-spline control points) that come from EVAL subroutine.  
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Figure 18 Optimization scheme 

 

EVAL subroutine works as the manager of the optimization (Fig. 18). It evaluates 

the volume of the re-entry geometry by integrating the geometry coordinates from 

B-spline subroutine. Furthermore, it receives the pressure, shear stress and heat 

flux distributions from POD-RBF-P, POD-RBF-S and POD-RBF-H subroutines 

respectively and integrates these distributions over the surface of the geometry for 

calculating the total values of pressure, shear stress and heat energy. It evaluates 

the drag force by summing up the total pressure and total shear stress. Also, it 

evaluates the maximum value of heat flux. Thus, the all of the pre-defined 

functions such as: total drag, total heating energy, maximum heat flux value and 

volume of geometry are evaluated and are sent to OPT program for the next step.  

 

OPT program takes these values and transfers to DOT tool and takes the 

information of next step. The mentioned information holds the geometry 

parameters of new geometry in terms of design variables. Noting that, design 

variables are composed of specified number of B-spline control points. However, 
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the geometry parameters in Fig. 18 contain the all of 15 B-spline control points. 

As stated in the Chapter 2 the parameterization had been made by total of 15 

control points. On the other hand, as being design variables 7 control points 

corresponding to the front face of re-entry were chosen out of 15 control points. 

Due to this, design variables and geometry parameters were defined separately. In 

this manner, 7 of the geometry parameters were defined from the design variables, 

and the rest of them were assigned as zeros.  

 

DSMC snapshot pools were composed of 90 different geometries’ DS2V 

simulations. Since the flow field solutions are not required, they contain the 

surface distributions of pressure, shear stress and heat flux. Each distribution 

solution is defined as column vector and they compose matrix together. These 

matrices are read from POD-RBF subroutines. 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 

 

 

 

6.1. DSMC Flow Simulation Validation 

 

Before going into optimization, the flow field solution of Stardust body was 

compared with analogous CFD and DSMC studies.  

 

6.1.1. Simulation Conditions 

 

The freestream conditions of the trajectory point can be found from the available 

spectral measurements during Stardust entry and are presented in Table 1. 

Corresponding Knudsen number of the flow lies in a region where the continuum 

breakdown occurs. This lets us the comparison of the study with both CFD and 

DSMC calculations in the literature.  

 

Table 1 Freestream conditions at 81 km altitude [24] 

Freestream temp, K 217.6 

Freestream number density, molecules/m3 2.64E+20 
Freestream velocity, m/s 12385 

Freestream O2 mole fraction % 23.67 
Freestream N2 mole fraction % 76.23 

Freestream Knudsen number 0.005 

 

Eleven species real air model was used for including the effects of nonequilibrium 

aerothermodynamics. The chemical reaction set with 41 equations (Table 2) was 

used. Recombination of particles (atoms, ions and molecules) in the flow-field 

and ablation of surface were neglected; however, the dissociation, exchange and 

ionization reactions were implemented in the calculations. While forebody surface 

of the re-entry was assumed as fully catalytic to recombination of atoms, ions and 
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electrons, the aft body was assumed as noncatalytic. The constant wall 

temperature of 2000 K was attended for the forebody surface while 900 K was 

attended for the aft body surface.  

 

Table 2 List of chemical reactions [31] 

No Reaction (Energy in J)  Rate Coefficient (m3/molecule s) 

1. 𝑂2 + 𝑁 + 8.197𝑥10
−19 → 2𝑂 + 𝑁  1.375𝑥10−10𝑇−1exp (−59370 𝑇⁄ ) 

2. 𝑂2 + 𝑁𝑂 + 8.197𝑥10
−19 → 2𝑂 +𝑁𝑂  4.58𝑥10−11𝑇−1exp (−59370 𝑇⁄ ) 

3. 𝑂2 + 𝑁2 + 8.197𝑥10
−19 → 2𝑂 + 𝑁2  4.58𝑥10−11𝑇−1exp (−59370 𝑇⁄ ) 

4. 2𝑂2 + 8.197𝑥10
−19 → 2𝑂 + 𝑂2  4.58𝑥10−11𝑇−1exp (−59370 𝑇⁄ ) 

5. 𝑂2 + 𝑂 + 8.197𝑥10
−19 → 3𝑂  1.375𝑥10−10𝑇−1exp (−59370 𝑇⁄ ) 

6. 𝑁2 +𝑂 + 1.561𝑥10
−18 → 2𝑁 + 𝑂  1.85𝑥10−8𝑇−1.6𝑒𝑥𝑝(−113000 𝑇⁄ ) 

7. 𝑁2 +𝑂2 + 1.561𝑥10
−18 → 2𝑁 + 𝑂2  6.17𝑥10−9𝑇−1.6𝑒𝑥𝑝(−113000 𝑇⁄ ) 

8. 𝑁2 +𝑁𝑂 + 1.561𝑥10
−18 → 2𝑁 + 𝑁𝑂  6.17𝑥10−9𝑇−1.6𝑒𝑥𝑝(−113000 𝑇⁄ ) 

9. 2𝑁2 + 1.561𝑥10
−18 → 2𝑁 +𝑁2  6.17𝑥10−9𝑇−1.6𝑒𝑥𝑝(−113000 𝑇⁄ ) 

10. 𝑁2 +𝑁 + 1.561𝑥10
−18 → 3𝑁  1.85𝑥10−8𝑇−1.6𝑒𝑥𝑝(−113000 𝑇⁄ ) 

11. 𝑁𝑂 + 𝑁2 + 1.043𝑥10
−18 → 𝑁 + 𝑂 + 𝑁2  3.83𝑥10−13𝑇−0.5𝑒𝑥𝑝(−75550 𝑇⁄ ) 

12. 𝑁𝑂 + 𝑂2 + 1.043𝑥10
−18 → 𝑁 + 𝑂 + 𝑂2  3.83𝑥10−13𝑇−0.5𝑒𝑥𝑝(−75550 𝑇⁄ ) 

13. 𝑁𝑂 + 𝑁𝑂 + 1.043𝑥10−18 → 𝑁 +𝑂 +𝑁𝑂  3.83𝑥10−13𝑇−0.5𝑒𝑥𝑝(−75550 𝑇⁄ ) 

14. 𝑁𝑂 + 𝑂 + 1.043𝑥10−18 → 𝑁 + 2𝑂  7.66𝑥10−13𝑇−0.5𝑒𝑥𝑝(−75550 𝑇⁄ ) 

15. 𝑁𝑂 + 𝑁 + 1.043𝑥10−18 → 2𝑁 + 𝑂  7.66𝑥10−13𝑇−0.5𝑒𝑥𝑝(−75550 𝑇⁄ ) 

16. 𝑁𝑂 + 𝑂 + 2.19𝑥10−19 → 𝑁 + 𝑂2  3.6𝑥10−22𝑇1.29𝑒𝑥𝑝(−19700 𝑇⁄ ) 

17. 𝑁2 +𝑂 + 5.175𝑥10
−19 → 𝑁 + 𝑁𝑂  5.3𝑥10−17𝑇0.1𝑒𝑥𝑝(−37500 𝑇⁄ ) 

18. 𝑂2 + 𝑁 → 2.19𝑥10−19 + 𝑂 + 𝑁𝑂  5.2𝑥10−22𝑇1.29𝑒𝑥𝑝(−3600 𝑇⁄ ) 

19. 𝑁𝑂 + 𝑁 → 5.175𝑥10−19 + 𝑂 +𝑁2  2.02𝑥10−17𝑇0.1 

20. 𝑁 + 𝑂 + 4.442𝑥10−19 → 𝑁𝑂+ + 𝑒−  2.55𝑥10−20𝑇0.37𝑒𝑥𝑝(−32030 𝑇⁄ ) 

21. 𝑂 + 𝑒− + 2.18𝑥10−18 → 𝑂+ + 2𝑒−  3.00𝑥10−12𝑒𝑥𝑝(−157900/𝑇) 

22. 𝑂 + 𝑂 + 1.12𝑥10−18 → 𝑂2
+ + 𝑒−  6.42𝑥10−22𝑇0.49𝑒𝑥𝑝(−81100 𝑇⁄ ) 

23. 𝑂2
+ + 𝑒− → 1.12𝑥10−18 +𝑂 +𝑂  3.83𝑥10−9𝑇−1.51 

24. 𝑂 + 𝑂2
+ + 2.57𝑥10−19 → 𝑂+ + 𝑂2  1.89𝑥10−16𝑇−0.52𝑒𝑥𝑝(−18760 𝑇⁄ ) 

25. 𝑂+ +𝑂2 → 2.57𝑥10−19 +𝑂 +𝑂2
+  1.89𝑥10−16𝑇−0.52 

26. 𝑁+ +𝑁2 + 1.67𝑥10
−19 → 𝑁 + 𝑁2

+  1.67𝑥10−17𝑇−0.18𝑒𝑥𝑝(−12100 𝑇⁄ ) 

27. 𝑂 + 𝑁𝑂+ + 7.04𝑥10−19 → 𝑂+ + 𝑁𝑂  4.58𝑥10−17𝑇0.01𝑒𝑥𝑝(−51000 𝑇⁄ ) 

28. 𝑁 + 𝑁 + 9.34𝑥10−19 → 𝑁2
+ + 𝑒−  2.98𝑥10−20𝑇0.77𝑒𝑥𝑝(−67650 𝑇⁄ ) 

29. 𝑁 + 𝑒− + 2.33𝑥10−18 → 𝑁+ + 2𝑒−  1.00𝑥10−14𝑒𝑥𝑝(−168800 𝑇⁄ ) 

30. 𝑂+ +𝑁𝑂 → 7.04𝑥10−19 +𝑂 +𝑁2
+  1.97𝑥10−17𝑇0.01 

31. 𝑂+ +𝑁2 + 3.06𝑥10
−19 → 𝑂 + 𝑁2

+  1.06𝑥10−16𝑇−0.21𝑒𝑥𝑝(−22160 𝑇⁄ ) 

32. 𝑁2
+ + 𝑒− → 9.34𝑥10−19 + 𝑁 + 𝑁  8.88𝑥10−10𝑇−1.23 

33. 𝑁𝑂+ + 𝑒− → 4.42𝑥10−19 + 𝑁 + 𝑂  4.03𝑥10−9𝑇−1.63 

34. 𝑁2
+ +𝑁 → 1.66𝑥10−19 +𝑁+ + 𝑁2  2.37𝑥10−18𝑇−0.52 

35. 𝑁2
+ +𝑂 → 3.15𝑥10−19 +𝑂+ + 𝑁2  1.77𝑥10−17𝑇−0.21 

36. 𝑁 + 𝑁𝑂+ + 8.43𝑥10−19 → 𝑁+ + 𝑁𝑂  1.84𝑥10−15𝑇−0.02𝑒𝑥𝑝(−61060 𝑇⁄ ) 

37. 𝑁+ +𝑁𝑂 → 8.43𝑥10−19 +𝑁 +𝑁𝑂+  1.84𝑥10−15𝑇−0.02 

38. 𝑂2 + 𝑁𝑂
+ + 4.47𝑥10−19 → 𝑁𝑂 +𝑂2

+  1.72𝑥10−14𝑇−0.17𝑒𝑥𝑝(−32400 𝑇⁄ ) 

39. 𝑁𝑂 + 𝑁+ → 4.47𝑥10−19 +𝑁𝑂+ + 𝑁  4.47𝑥10−15𝑇−0.17 

40. 𝑁 + 𝑁𝑂+ + 4.9𝑥10−19 → 𝑂 + 𝑁2
+  2.83𝑥10−17𝑇0.4𝑒𝑥𝑝(−35500 𝑇⁄ ) 

41. 𝑂 + 𝑁2
+ → 4.9𝑥10−19 +𝑁 +𝑁𝑂+  4.1𝑥10−18𝑇0.4 
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6.1.2. Validation of Simulation 

 

Thermodynamic temperature is the measure of energy in all flow regimes. 

However, in molecular regime, temperature is quantized and is split into 

translational, rotational, vibrational and electronical partitions. In this manner, 

translational temperature becomes the measure of kinetic energy associated with 

thermal velocities, while the rotational, vibrational and electronical temperatures 

become the measure of internal energies [4]. To this end, translational temperature 

was regarded rather than temperature on the contour graphs.  

 

  

  a) Pressure contours                b) Translational temperature contours 

Figure 19 Contour plots of Stardust 

 

  

   a) Pressure distribution plot                    b) Heat flux distribution plot 

Figure 20 Comparison of pressure and heat flux distributions [24] 
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Fig. 19 shows the pressure and translational temperature contours of Stardust re-

entry from DS2V, and Fig. 20 shows the comparison of pressure and heat flux 

distributions. Pressure and heat flux distributions were compared with the ref. 

[24]’s CFD and DSMC solutions. According to Fig. 20 a and b, very good 

agreement was achieved on pressure distributions, and heat flux distributions lie 

on the averaged line of the ref’s DSMC and CFD solutions. Thus, the results’ 

validity has been found as sufficient to continue the optimization process. 

 

6.2. Optimization Results 

 

Optimization studies were conducted on four cases such as: maximizing drag 

force, minimizing heating energy, minimizing maximum heat flux and 

maximizing the volume. These four objectives were used as constraints also by 

leaving alone the objective function. In other words, for the first case, while 

maximization of drag was the objective function, heat energy, maximum heat flux 

and the volume were implemented as constraints. Constraints’ limit values were 

held as equal to Stardust’s values and side constraints were implemented for 

constraining the region of design variables.  

 

In all the cases, the front surface of the body was aimed to be optimized so the 7 

control points out of total 15 control points were defined as the design variables. 

These 7 points are those that are responsible for the shape of the front surface. All 

the cases were initialized from the base Stardust geometry. Additionally, the 

maximum diameter of the geometry and the location were bounded in a tight 

space in terms of side constraints, by restricting significant changes in the shape 

due to the concerns of the snapshot pool scope. When the all four optimized 

geometries were obtained, they were simulated with DS2V for validation and the 

results were plotted for comparison.  
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6.2.1. Optimized Geometry Solutions Validation 

 

Optimized geometries and their flow variable distributions were given in figures 

(Fig. 21 to Fig. 24). The plots contain the DS2V results also for seeing the 

extrapolation capability of POD-RBF. Additionally, comparative integrated 

values were expressed in tabulated form in Table 3 to Table 6. Noting that, DS2V 

flow variable distribution results were filtered via MATLAB’s curve fitting tool 

before taking their integrations due to noise. This procedure was not required for 

ROM solutions since they are not noisy. For information, filtration process was 

indicated on the tables. 

 

  

  a) Optimized geometry          b) Heat flux distribution validation 

  

  c) Pressure distribution validation           d) Shear stress distribution validation 

Figure 21 Case 1 maximizing drag optimization results validation (Opt. geom. 1) 
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Table 3 Validation of case 1 maximizing drag on tabulated results (Opt. Geom. 1) 

METHOD 

PRES. 

FORCE 

(N) 

SHEAR 

FORCE 

(N) 

TOT. 

DRAG 

FORCE 

(N) 

MAX. 

HEAT 

FLUX 

(W/m2) 

TOT. HEAT 

ENERGY 

(W) 

VOLUME 

(m3) 

POD-RBF 782.48 44.10 826.58 4035206 1376951 0.14483 

DS2Vfiltered 774.20 36.49 810.69 4050300 1273461 0.14483 

% ERROR 1.07 20.86 1.96 0.37 8.13 - 

 

For the first case, total drag force was defined as objective function to be 

maximized. On the other hand, volume, maximum heat flux and total heating 

energy values were defined as constraints, and the Stardust re-entry’s values were 

assigned to these constraints. Fig. 21 shows the optimization results in terms of 

optimized geometry and comparative flow variable distributions over the surface. 

And Table 3 shows the integrated values in comparison.  

 

According to Fig. 21 b heat flux distribution plot, very good agreement was 

achieved at the region from nose to mid front face. Supporting this agreement, the 

error percentage in maximum heat flux value was found as 0.37 % (Table 3). 

However, the agreement starts deviation while approaching to shoulder. And this 

inconsistency results the error percentage in total heating energy reach up to 8.13 

% (Table 3). 

 

On the other hand, very good agreement was able to be achieved in the pressure 

distribution in Fig. 21 c and the error percentage was found as 1.07 % in pressure 

force (Table 3). Additionally, good agreement was achieved in shear stress 

distribution except the region between 150th and 250th intervals of surface (Fig. 

21 d). This region corresponds to the same shoulder region where the 

disagreement of heat flux distribution is present (Fig. 21 b). However, this region 

affects the integrated value of shear stress more than the integration of heat flux. 

Shear stress’s very low numerical values relative to heat flux, is responsible for 

the bigger error percentages in comparison (Table 3).  
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  a) Optimized geometry                            b) Heat flux distribution validation 

  

  c) Pressure distribution validation           d) Shear stress distribution validation 

Figure 22 Case 2 minimizing heat energy optimization results validation  

(Opt. Geom. 2) 

 

Table 4 Validation of case 2 minimizing heat energy on tabulated results  

(Opt. Geom. 2) 

METHOD 

PRES. 

FORCE 

(N) 

SHEAR 

FORCE 

(N) 

TOT. 

DRAG 

FORCE 

(N) 

MAX. 

HEAT 

FLUX 

(W/m2) 

TOT. HEAT 

ENERGY 

(W) 

VOLUME 

(m3) 

POD-RBF 736.96 37.75 774.71 4314062 1243186 0.14561 

DS2Vfiltered 738.43 37.75 776.19 4316500 1245550 0.14561 

% ERROR 0.20 0.01 0.19 0.06 0.19 - 

 

In this second case, total heating energy was defined as objective function to be 

minimized. And volume, maximum heat flux and total drag values were defined 
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as constraints, and the Stardust re-entry’s values were assigned to these 

constraints.  

 

According to Fig. 22 b, c and d and Table 4, excellent agreement was achieved 

between DS2V and POD-RBF model. And the results consistency can be seen 

without the requirement of comment. Interpretations may be made on why the 

same consistency was not able to be achieved in the first optimization case while 

the both optimized geometries look similar (Fig. 21 a and Fig. 22 a). This may be 

explained through the conditions which ROM’s accuracy is dependent.  

 

Remembering that, the approximation accuracy of ROMs had been dependent on 

the scope of the snapshot pool and on the uniqueness of the samples. However, 

any well accepted method was not implemented in this study while forming the 

solution pool, and the sampling was made arbitrarily. Possibly, relatively more 

concave region (just before the shoulder) of opt. geom. 1, takes its geometry 

parameters out of the scope of the snapshot pool and this reduces the 

approximation accuracy. 

 

  

  a) Optimized geometry                            b) Heat flux distribution validation 
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  c) Pressure distribution validation           d) Shear stress distribution validation 

Figure 23 Case 3 minimizing maximum heat flux optimization results validation 

(Opt. Geom. 3) 

 

Table 5 Validation of case 3 minimizing maximum heat flux on tabulated results 

(Opt. Geom. 3) 

METHOD 

PRES. 

FORCE 

(N) 

SHEAR 

FORCE 

(N) 

TOT. 

DRAG 

FORCE 

(N) 

MAX. 

HEAT 

FLUX 

(W/m2) 

TOT. HEAT 

ENERGY 

(W) 

VOLUME 

(m3) 

POD-RBF 728.28 48.78 777.07 3618034 1376139 0.14532 

DS2Vfiltered 719.18 47.19 766.37 3680700 1358001 0.14532 

% ERROR 1.27 3.37 1.40 1.70 1.34 - 

 

In the third case, objective function was changed to minimization of the maximum 

heat flux. And volume, total heating energy and total drag values were defined as 

constraints, and the Stardust re-entry’s values were assigned to these constraints. 

 

By looking at Fig. 23, almost very good agreement was achieved in heat flux, 

pressure and shear stress distribution plots. However, there is a concave region 

near shoulder of opt. geom. 3, similar to opt. geom. 1. And the distribution plots 

deviate in this region like as they do in the first case (Fig. 21 and Fig. 23). This 

deviation validates the comment made about the scope of snapshot pool. 

 

On the other hand, slighter concave region of opt. geom. 3 relative to opt. geom. 1 

(Fig. 21 a and Fig. 23 a) provides itself be inside of the scope of snapshot pool. 
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Consequently, the error percentages were remained at the acceptable levels (Table 

5). 

 

  

  a) Optimized geometry                            b) Heat flux distribution validation 

  

  c) Pressure distribution validation           d) Shear stress distribution validation 

Figure 24 Case 4 maximizing volume optimization results validation  

(Opt. Geom. 4) 

 

Table 6 Validation of case 4 maximizing volume on tabulated results  

(Opt. Geom. 4) 

METHOD 

PRES. 

FORCE 

(N) 

SHEAR 

FORCE 

(N) 

TOT. 

DRAG 

FORCE 

(N) 

MAX. 

HEAT 

FLUX 

(W/m2) 

TOT. HEAT 

ENERGY 

(W) 

VOLUME 

(m3) 

POD-RBF 727.91 48.33 776.24 4302083 1374997 0.14519 

DS2Vfiltered 727.94 48.29 776.22 4308100 1373604 0.14519 

% ERROR 0.004 0.083 0.003 0.140 0.101 - 
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In the fourth case, objective function was changed to maximization of the volume 

while the Stardust re-entry’s max heat flux, total heating energy and total drag 

force values were defined as the constraint functions. However, under these 

conditions there was not a change in the shape of the geometry (Fig. 24 a). In 

addition to this, having the same geometry solution in the snapshot pool provided 

an excellent approximation accuracy of ROM model. The agreement quality can 

be seen from Fig. 24 b, c and d and also from Table 6.  

 

6.2.2. Comparison of Stardust and Optimized Geometries 

 

In this section of the Chapter 6, the optimized geometries’ DS2V results were 

compared with the Stardust re-entry’s DS2V results. Pressure and translational 

contours of optimized geometries were plotted in mirrored form with Stardust 

(Fig. 25 to Fig. 27 a and b). Pressure, heat flux and shear stress distributions of 

both Stardust and optimized geometries were also plotted in the same graphs for 

comparison (Fig. 25 to Fig. 27 c, d and e). And their integrated values were also 

given in tables (Table 7 to Table 9). Objective and constraint functions were 

indicated on the tables. Fourth case was not given due to having the same 

geometry with the Stardust re-entry. The noisy distributions were filtered with 

MATLAB curve fitting tool before integration.  

 

  

  a) Pressure contours                                 b) Translational temperature contours 
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  c) Pressure distribution                            d) Shear stress distribution 

 

e) Heat flux distribution 

Figure 25 Comparison of Stardust and Opt. geom. 1 

 

Table 7 Tabulated results of Stardust and Opt. geom. 1 

GEOMETRY 
PRES. 

FORCE(N) 

SHEAR 

FORCE(N) 

TOT. DRAG 

FORCE(N) 

OBJ. FUNC. 

(max.) 

MAX. HEAT 

FLUX(W/m2) 

CONST. 

TOT. HEAT 

ENERGY(W) 

CONST. 

VOLUME 

(m3) 

CONST. 

STARDUST 727.94 48.29 776.22 4308100 1373604 0.14519 

OPT.GEOM.1 774.20 36.49 810.69 4050300 1273461 0.14483 

 

By aiming the maximization of drag force, Opt. geom. 1 was found. Constraints 

and the objective function were indicated on the Table 7. The drag force was 

increased, maximum heat flux and total heating energy were decreased, and the 

volume was preserved.  
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According to Fig. 25 a and b, the shock core is split into three regions, due to 

wavy front surface. It is realizable from Fig. 25 a, c and d that, concavities 

increase pressure and decrease shear stress dramatically. In Fig. 25 c, these 

increments can be seen from the second and third peaks. Similarly, sudden 

decrements in the shear stress can be seen over the same intervals in Fig. 25 d. 

 

Due to stagnation points at the nose and at the concave regions pressure 

distribution makes peaks (Fig. 25 c). Inversely, shear stress makes opposite peaks 

at the stagnation points (Fig. 25 d). Considering the inverse relation between flow 

speed and pressure, and the expression of shear stress (𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
), the relation 

between pressure and shear stress can be understood clearly. Since the flow speed 

increases while passing over convexities and, decreases while passing over 

concavities, sudden increments and decrements occur in pressure and shear stress 

distribution plots (Fig. 25 c and d). 

 

On the other hand, by the help of blunter nose, thermal shock core is slightly 

pushed further (Fig. 25 b) in comparison with Stardust’s. This results the lower 

maximum heat flux value at the nose of the geometry (Fig. 25 e and Table 7). 

Wavy surface of the geometry causes splitting at the shock core (Fig. 25 b). And 

these split shock cores preserve the high temperature in their core (red regions in 

Fig. 25 b). These high temperature effects cause the peaks in the heat flux 

distribution (Fig. 25 e). However, despite these peaks, thermal shock cores are 

located far from geometry surface and as a result, the total heating energy is 

reduced (Table 7). 
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  a) Pressure contours                                 b) Translational temperature contours 

  

  c) Pressure distribution                            d) Shear stress distribution 

 

e) Heat flux distribution 

Figure 26 Comparison of Stardust and Opt. geom. 2 
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Table 8 Tabulated results of Stardust and Opt. geom. 2 

GEOMETRY 
PRES. 

FORCE(N) 

SHEAR 

FORCE(N) 

TOT. 

DRAG 

FORCE(N) 

CONST. 

MAX. HEAT 

FLUX(W/m2) 

CONST. 

TOT. HEAT 

ENERGY(W) 

OBJ. FUNC. 

(min.) 

VOLUME 

(m3) 

CONST. 

STARDUST 727.94 48.29 776.22 4308100 1373604 0.14519 

OPT.GEOM.2 738.43 37.75 776.19 4316500 1245550 0.14561 

 

In the second optimization case, the objective function was changed to 

minimization of total heating energy while constraining the drag, maximum heat 

flux and volume. At the end of the optimization, Opt. geom. 2 was found. Total 

drag force, maximum heat flux value and volume were preserved, total heating 

energy was decreased. 

 

Similar to Opt. geom. 1, wavy surface was obtained. Therefore, the distribution 

graphs were obtained as similar to Opt. geom. 1’s (Fig. 25-26 c, d and e).  

However, the concavity of the Opt. geom. 2’s surface near shoulder region is 

slighter than Opt. geom. 1’s. This causes lower pressure values over there (Fig. 26 

a), in other words the red region disappears (Fig. 25-26 a). So, the resulting drag 

force is not as high as the Opt. geom. 1’s (Table 7 and Table 8). Besides, Opt. 

geom. 2’s blunt nose height is shorter than Opt. geom. 1’s. Thus, the thermal 

shock core cannot be pushed further that much (Fig. 25 b and Fig. 26 b). 

Therefore, the maximum heat flux value is not reduced as much as it is in Opt. 

geom. 1 (Table 7 and 8).  

 

  

  a) Pressure contours                                 b) Translational temperature contours 
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  c) Pressure distribution                            d) Shear stress distribution 

 

e) Heat flux distribution 

Figure 27 Comparison of Stardust and Opt. geom. 3 

 

Table 9 Tabulated results of Stardust and Opt. geom. 3 

GEOMETRY 
PRES. 

FORCE(N) 

SHEAR 

FORCE(N) 

TOT. 

DRAG 

FORCE(N) 

CONST. 

MAX. HEAT 

FLUX(W/m2) 

OBJ. FUNC. 

(min.) 

TOT. HEAT 

ENERGY(W) 

CONST. 

VOLUME 

(m3) 

CONST. 

STARDUST 727.94 48.29 776.22 4308100 1373604 0.14519 

OPT.GEOM.3 719.18 47.19 766.37 3680700 1358001 0.14532 

 

In the third case, the objective function was changed to minimization of maximum 

heat flux. The total drag, heating energy and volume was constrained to the values 

of Stardust. At the end of the optimization, Opt. geom. 3 was found. Total heating 

energy and volume were preserved, and maximum heat flux value was decreased. 

Total drag was also supposed to be preserved but it decreased a bit. According to 
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the POD-RBF result, it was preserved (Table 5 and Table 9). However, an 

acceptable disagreement was found between DS2V and POD-RBF results.  

 

Being different than the other two cases, optimized geometry was found in convex 

form except the region close to shoulder. By the effect of dominant convexity, the 

thermal shock core is pushed further significantly (Fig. 27 b). Thus, significant 

decrement can be achieved in maximum heat flux value (Table 9). At the same 

time, convexity also decreases the pressure as stated before, however this 

decrement is balanced with concavity which is close to shoulder region (Fig. 27 

a).  

 

The similarity of the pressure and shear stress distributions (Fig. 27 c and d) 

between Opt. geom. 3 and Stardust, are the result of having similar nose regions 

(Fig. 27 a). Supportively, pressure and shear distribution plots show the same 

trend up to 100th interval (Fig. 27 c and d). They both have blunt noses and have 

flatty regions after turning the corner. The flatty region similarity can also be seen 

from heat flux plot (Fig. 27 e) between 50th and 150th intervals. The difference up 

to 50th interval is sourced by the relatively blunter nose of Opt. geom. 3. 
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CHAPTER 7 

 

 

CONCLUSION 

 

 

 

In this study, two dimensional aerothermodynamic shape optimization study were 

conducted on Stardust reentry in near continuum regime. One of the trajectory 

points was chosen and axisymmetric calculations were conducted. Design of 

experiment was designated arbitrarily and developed step by step. Cubic B-spline 

curves were utilized in the geometry parameterization innovatively. Thus, the 

number of design variables was able to be reduced, and curve fitting cancelled. 

Two dimensional axisymmetric DSMC solver DS2V was utilized as the physics 

solver, and flow variable distribution (pressure, shear stress and heat flux) results 

along the geometry, were implemented in the POD-RBF network. In this manner, 

success of POD-RBF network was investigated on hypersonic flow conditions.  

 

Extrapolation capability of the method was found as successful and can provide 

almost excellent agreement with the simulation results if the prospective geometry 

is in the scope of the snapshot pool. Despite arbitrarily sampled snapshot pool, the 

method’s extrapolation accuracy shows that it is an appropriate method while 

reducing the orders of highly nonlinear hypersonic flows. The extrapolation 

accuracy can be developed further by means of sampling methods (e.g. Latin 

Hypercube sampling) while forming the design of experiment and it may be the 

subject of the future works.  

 

POD-RBF network was used as the solver of the optimization; thus, it provides 

efficient reduction in the optimization time. Noting that, while any of DSMC 

solution requires at least 4 hours of computation time on an intel core i7-6700 HQ 

CPU 2.60 GHz, any response solution vector can be obtained in seconds by ROM. 
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Besides, although the solution pool of the ROM requires a considerable amount of 

time to simulate the all of 90 different geometries that compose the design of 

experiment, once this pool is obtained, the POD-RBF network provides response 

solutions by means of linear algebra. This makes possible to reduce the 

optimization time. In addition to this, since the solution pool is composed of high 

fidelity solutions of different geometries, they may be used for different purposes 

for the future studies.  
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