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ABSTRACT

NEIGHBORHOOD CONSTRUCTION-BASED MULTI-OBJECTIVE
EVOLUTIONARY CLUSTERING ALGORITHM WITH FEATURE

SELECTION

Alakuş, Cansu

M.S., Department of Operational Research

Supervisor : Prof. Dr. Nur Evin Özdemirel

Co-Supervisor : Assoc. Prof. Dr. Cem İyigün

July 2018, 119 pages

In this study, we address the clustering problem with unknown number of clusters

having arbitrary shapes, intracluster and/or intercluster density differences, no outliers

or noise. The data set may be high-dimensional with a number of redundant features.

This study consists of two parts. In the first part, we propose a multi-objective evolu-

tionary clustering algorithm, namely MOCNC, with three fundamental objectives of

the clustering problem: compactness, separation, and connectivity. We use the multi-

objective framework and nondominated sorting property of the well-known evolution-

ary algorithm NSGA-II to simultaneously optimize the compactness and separation

objectives. To handle the connectivity objective, a special Neighborhood Construc-

tion (NC) algorithm is used as a preprocessor.

In the second part, we extend the MOCNC algorithm as MOCNC-F for the feature

selection problem where the data sets may contain an unknown number of redundant

features. In this algorithm, different subsets of features are selected in solutions and

clustering is performed using the selected features. The output of MOCNC-F is a set
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of nondominated clustering solutions each with different compactness and separation

values, and possibly with different feature subsets.

Our algorithms are unique in that they solve the feature selection and clustering prob-

lem simultaneously using the three fundamental objectives, which are compactness,

separation, and connectivity, explicitly. The proposed algorithms do not need any

user-defined problem parameters. We have experimented with the algorithms on gen-

erated and benchmark data sets, and obtained promising results based on selected

performance criteria.

Keywords: Multi-Objective Clustering, Feature Selection, Evolutionary Algorithm,

Neighborhood Construction
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ÖZ

KOMŞULUK KURMA BAZLI ÇOK AMAÇLI EVRİMSEL KÜMELEME VE
ÖZNİTELİK SEÇİMİ

Alakuş, Cansu

Yüksek Lisans, Yöneylem Araştırması Bölümü

Tez Yöneticisi : Prof. Dr. Nur Evin Özdemirel

Ortak Tez Yöneticisi : Doç. Dr. Cem İyigün

Temmuz 2018 , 119 sayfa

Bu çalışmada, gerçek küme sayısının bilinmediği, kümelerin gelişigüzel şekillere,

küme içi ve/veya kümeler arası yoğunluk farklarına sahip olduğu, aykırı nokta ve

gürültü içermeyen veri setleri üzerinde çalışılmıştır. Veri kümeleri çok boyutlu olup

gereksiz öznitelikler içerebilir.

Bu çalışma iki kısımdan oluşmaktadır. İlk kısımda, kümeleme probleminin sıkılık,

ayrıklık ve bağlantılılık temel amaçları ile çalışan MOCNC isimli çok amaçlı ev-

rimsel bir algoritma önerilmiştir. Sıkılık ve ayrıklık amaç fonksiyonlarını aynı anda

eniyilemek için NSGA-II algoritmasının çok amaçlılık ve baskın olmayan sıralama

özellikleri kullanılmıştır. Bağlantılılık amaç fonksiyonu için ise NC komşuluk kurma

algoritması ön işleme aşaması olarak kullanılmıştır.

İkinci kısımda, MOCNC algoritmasını, anlamsız öznitelik sayısının bilinmediği öz-

nitelik seçimi problemi için MOCNC-F olarak genişlettik. Bu algoritmada farklı öz-

nitelik alt kümeleri seçilir ve kümeleme seçilen özniteliklerle uygulanır. MOCNC-F

algoritmasının çıktısı farklı sıkılık ve ayrıklık amaç fonksiyonu değerlerine sahip ve
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muhtemelen farklı özniteliklerle oluşturulmuş domine edilmeyen kümeleme çözüm-

leridir.

MOCNC-F sıkılık, ayrıklık ve bağlantılılık amaç fonksiyonlarını kullanarak öznitelik

seçimi ve kümeleme problemini aynı anda çözen özgün bir algoritmadır. Kullanıcı ta-

rafından tanımlanması gereken problem paremetresine ihtiyaç duymamaktadır. Algo-

ritmalarımızı üretilmiş ve bilinen veri kümeleri üzerinde test ettik ve başarılı sonuçlar

elde ettik.

Anahtar Kelimeler: Çok Amaçlı Kümeleme, Öznitelik Seçimi, Evrimsel Algoritma,

Komşuluk Kurma
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CHAPTER 1

INTRODUCTION

Data mining is the process of extracting interesting and useful patterns from large

amounts of raw data. These interesting and useful patterns are the knowledge ob-

tained from the data. Data mining is an interdisciplinary field that makes use of tools

and techniques from computer science statistics, operational research, and machine

learning. The data mining techniques are used in a wide variety of application areas.

As the amount of data collected increases, the need to extract valuable information

from data gains more importance. Hence, the need for developing new techniques

increases considering the requirements of different application areas.

The main data mining problems are classification, clustering, prediction, association

rule learning, and outlier analysis. In this study, we focus on a clustering problem.

The clustering problem is concerned with dividing a data set into groups of data points

according to their similarities. The main aim of the clustering algorithms is to put

similar data points into the same group and dissimilar points into different groups.

Clustering helps the decision maker to summarize data points by grouping them into

a smaller number of groups.

Clustering is an unsupervised learning method which aims to discover natural group-

ings in a data set without any external knowledge. It has important real life applica-

tions in different fields such as marketing, biology, bioinformatics, social sciences,

climatology, security, and so on.

The clustering problem has some challenging characteristics. Firstly, the similar-

ity measure should be selected considering the data type (numerical or categorical),

which affects the choice and the calculation of the similarity measure. Secondly, the
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choice of the objective function(s) is not straightforward. Conceptually clusters in a

solution should be compact and connected, and well-separated from each other. How-

ever, it is difficult to find suitable measures that satisfy all three requirements. Dif-

ferent choices of objective functions may result in different groupings of data points.

Thirdly, as the true cluster labels of data points are not known a priori, evaluation of

the resulting clustering is not straightforward and identification of a good clustering

solution is not simple. Moreover, data sets may contain density differences and arbi-

trary shapes. Most traditional clustering algorithms fail to discover arbitrary shaped

clusters and clusters having density differences. Connectivity-based objective func-

tions and neighborhood definitions may be required in such cases. Also, data sets may

have outliers and/or noise, which may mask the underlying clustering structure and

mislead the clustering algorithm. Finally, the dimensionality (the number of features)

and size (the number of points) of the data set affect the performance of the cluster-

ing algorithm. Some algorithms perform well on low dimensional data sets but show

poor performance on high dimensional data sets. The size of the data set increases

the computational challenges where the fast extraction of information from the data

becomes more important steadily.

Due to these issues, several clustering algorithms are proposed in the literature. Each

algorithm has different objectives, strengths and weaknesses. For example, partitional

clustering algorithms and most of the metaheuristic approaches are mainly distance-

based. The goal of these approaches is to divide the data set into clusters so that the

points in the same cluster are gathered around a centroid and the clusters are disjoint.

The main disadvantage of the partitional clustering algorithms is the need for defining

the number of clusters a priori. Moreover, these traditional clustering algorithms

mostly consider only a single objective of the clustering problem. On the other hand,

hierarchical clustering algorithms construct a hierarchical decomposition of a data

set. Different clustering solutions can be obtained by cutting the decomposition at

different levels. The main disadvantage of these algorithms is that the merging or

splitting decisions cannot be undone. Hence, once an incorrect decision is made at

any level of the decomposition, it cannot be reversed.

The choice of clustering algorithm is affected from the application domain, the clus-

tering goal, and the requirements of the specific area. After clarifying them, the
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requirements should be matched with the clustering algorithms considering their as-

sumptions, strengths, and weaknesses.

In this study, considering the challenging issues of clustering, we study the clus-

tering problem in which features are numerical, there may be density differences

between and/or within clusters, there are no outliers or noise, clusters may have ar-

bitrary shapes, and the data set may be high-dimensional. We also assume that the

number of clusters is not known a priori.

This study has two parts. In the first part, we propose a multi-objective evolution-

ary clustering algorithm that can handle three objectives of the clustering problem,

compactness, separation, and connectivity in a two-phase approach. We handle the

compactness and separation objectives by using them as the objective functions of

the evolutionary algorithm. Our proposed approach uses the multi-objective frame-

work and nondominated sorting property of the well-known algorithm NSGA-II (Deb

et al. 2002) to simultaneously optimize these two conflicting objectives. For the third

objective, which is the connectivity of data points, we use a special Neighborhood

Construction (NC) algorithm (İnkaya et al. 2015a) as the preprocessor of our evolu-

tionary algorithm. NC uses the underlying connectivity and density information in

the data set to construct neighborhoods specific to data points. It then forms closures

considering overlaps of these neighborhoods. These closures ensure the connectivity

of data points.

In the second part of the study, we extend the problem to feature selection and a new

feature selection algorithm is proposed based on our multi-objective clustering algo-

rithm. A data set may contain irrelevant (redundant) features. The redundant features

may mask the clustering pattern and make it difficult to extract clusters. They may

even distort the data such that data points become indistinguishable. Feature selec-

tion methods aim at detecting relevant features and reducing the dimensionality of the

data set. In our extension to feature selection, the clustering problem defined above

remains the same, but now the data sets may contain redundant features. In our sec-

ond multi-objective evolutionary algorithm, it is aimed to select subsets of features

and clustering is performed using the selected features. The output of the proposed al-

gorithm is a set of nondominated clustering solutions each with different compactness
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and separation values, and possibly resulting from different feature subsets.

Our approach for feature selection and clustering is unique in that it addresses the

compactness, separation, and connectivity objectives explicitly. Our algorithms are

the only ones in literature, which can solve the feature selection and clustering prob-

lems simultaneously using these three fundamental objectives. The proposed algo-

rithms do not need any user-defined problem parameters. To the best of our knowl-

edge, there is no algorithm that takes into account the feature selection and clustering

problems simultaneously in a multi-objective perspective, where both the number of

clusters and the number of redundant features are unknown. Experimental results

show that our approach is successful in selecting the relevant features and finding the

target clustering.

Outline of the thesis is as follows. In Chapter 2, we give a background for the general

clustering problem and its characteristics. We classify the clustering algorithms in the

literature and describe their assumptions, advantages, and disadvantages. Then, we

explain the general feature selection problem and the feature selection methods in the

literature by discussing their strengths and limitations. Finally, we provide a detailed

literature review on the multi-objective clustering and feature selection algorithms.

We classify the studies in literature concerning our problem and present them by

explaining their goals, underlying assumptions, strengths, and limitations.

In Chapter 3, we give the detailed problem definition by referring to the character-

istics of the clustering problem and the related literature. Then, we introduce our

proposed solution approach for the multi-objective clustering problem. Finally, we

briefly describe the extension of our multi-objective clustering algorithm for the fea-

ture selection problem.

The proposed multi-objective clustering algorithm (MOCNC) is explained in detail in

Chapter 4. The experimental results of the algorithm are presented and discussed in

Chapter 5. Chapter 6 describes the feature selection extension of the multi-objective

clustering algorithm (MOCNC-F) in detail. The experimental results for the feature

selection problem is given in Chapter 7. Chapter 8 summarizes the main findings of

this study and concludes with future research directions.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

The clustering problem is a well-known problem in the literature studied by different

disciplines. Each discipline constructs its own terminology for the clustering problem

on hand. Hence, it is hard to construct a generally accepted definition of the cluster-

ing problem. Jain et al. (1999), Xu and Wunsch (2005), Berkhin (2006) and Jain

(2010) review the terminology and techniques of clustering as well as its widely used

application areas. They classify the studies in literature based on a similar scheme.

Following this classification, in this chapter we firstly present the clustering problem

and its characteristics in Section 2.1. Then, we briefly describe the traditional single-

objective clustering algorithms in the literature in Section 2.2. In Section 2.3, we

describe the problem of feature selection in clustering and present a brief literature

review for feature selection algorithms for clustering. After giving a background and

brief review for the clustering problem and the feature selection problem, Section 2.4

is dedicated to the literature of our specific problem of multi-objective clustering and

feature selection.

2.1 The Clustering Problem and Its Characteristics

The machine learning techniques can be grouped into two main categories namely

supervised learning and unsupervised learning. In supervised learning, the labels of

the data are available and used to train the algorithm. Then, the trained algorithm

is used to classify new data points. For instance, in classification there is a set of

labeled data and this data set is used to classify newly observed unlabeled data points.

On the other hand, in unsupervised learning, the labels are unknown and cannot be
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used during the learning process. Hence, unsupervised learning algorithms try to

extract meaningful information from the unlabeled data (Witten et al. 2016). From

the machine learning point of view, the unlabeled data has some hidden patterns and

the aim of clustering is to understand the structure of the data and find the hidden

patterns to summarize the data to obtain valuable information (Berkhin 2006).

Clustering groups the data set based on the similarities of the data points. The main

aim of the clustering algorithms is to put similar data points into the same group and

dissimilar points into different groups. Clustering helps to summarize data points

by grouping them into a smaller number of groups. Representing the data by fewer

groups has a great impact on data sets with a large number of points and attributes.

Hence, clustering is related with various disciplines that deal with large data sets

(Berkhin 2006).

To give a formal definition of the clustering problem, consider a data set D including

N data points each having d attributes. A clustering algorithm tries to partition data

set D into k groups (clusters) by using a similarity measure so that the data points in

the same cluster are more similar to each other than the points in different clusters.

A data set may consist of points with continuous, binary or categorical attributes.

The type of the attributes affects the calculation of similarity measure during cluster-

ing. The similarity between data points with all quantitative attributes is measured

with distance metrics such as Manhattan, Euclidean, or Minkowski distances. The

similarity between a pair of points having categorical or binary features is calculated

with measures such as Hamming distance, Jaccard coefficient, simple matching coef-

ficient, Rand Index, and so on (Xu and Wunsch 2005).

Clustering problem has some challenging issues in its nature. Due to these chal-

lenging issues, there is no single clustering algorithm applicable to all kinds of data

sets. Since clustering algorithms have some assumptions on the structure of data set,

similarity measures used in the algorithms, and objective functions, clustering in a

specific application area and properties of the data set may lead to selecting different

clustering algorithms and so obtaining different clustering solutions. For example,

data sets may have arbitrary shaped cluster structures and/or density variations within

and between clusters. These properties require special treatment. Moreover, one of
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the major difficulties in a clustering problem is defining a “good” clustering solution.

Conceptually, a cluster should be compact, well-separated, and connected. However,

mostly it is difficult to find appropriate measures for compactness, separation and

connectivity of a clustering solution. Moreover, combining these objectives to obtain

numerically comparable objective function values is not straightforward. Since the

data set is unlabeled, the number of clusters is not known a priori. Without know-

ing the true labels, evaluating a clustering solution is vague. There are some validity

indices to measure the quality of a clustering solution, but there is no consensus on

a unique way to measure a clustering solution’s quality. Moreover, clustering large

data sets requires long computing times and large storage requirements.

Objective Functions

Clustering aims to group data points into clusters in order to achieve three objec-

tives: compactness, separation and connectivity. Compactness is achieved by putting

similar data points into the same cluster whereas separation is achieved by putting

dissimilar data points into different clusters. As the third objective connectivity is

achieved by putting a point and its closest neighbors into the same cluster. Although,

the objectives of clustering are conceptually clear, defining appropriate measures for

these objectives is not straightforward.

In the literature, several compactness measures are proposed for different cluster-

ing algorithms. These measures can be grouped into two categories as representa-

tive point based and individual pointwise compactness measures (Celebi and Aydin

2016). Representative point based compactness measures rely on finding a represen-

tative point for a cluster such as centroid or medoid. Calculating the similarity or

dissimilarity between the data points in a cluster and the corresponding representa-

tive is given in Equation 2.1. These type of compactness measures perform well on

spherical and homogenous data sets. However, they are not appropriate for the arbi-

trary shaped clusters. On the other hand, individual pointwise compactness measures

use either the sum or the maximum of all pairwise point similarities within a cluster

as in Equations 2.2 and 2.3.

CCrA: centroid-based, average of distances between cluster centroids and points within
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clusters
1

N

K∑
k=1

∑
i∈Ck

dick (2.1)

CPA: pointwise, average of all pairwise distances between points within clusters

1∑K
k=1

(
nk

2

) K∑
k=1

∑
i∈Ck

∑
j∈Ck
j>i

dij (2.2)

CPM: pointwise, maximum of pairwise distances between points within clusters

max{dij : ∀i, j ∈ Ck, i 6= j,∀k} (2.3)

where Ck and nk denote the set of points and the number of points in cluster k,

respectively. ck represents the centroid of cluster k. N is the number of points in the

data set, and K is the total number of clusters. dij is the Euclidean distance between

points i and j.

Similar to compactness, there are several separation measures used as an objec-

tive function. In the literature, distances between cluster representatives i.e. cen-

troids or medoids of the clusters as in Equation 2.4. Linkage metrics such as single-

link, average-link or complete-link are the most commonly used separation measures.

Complete-link calculates the distance between the farthest points belonging to two

different clusters. Average-link takes into account all pairwise point distances be-

tween two clusters, see Equation 2.5. Single-link calculates the distance between the

closest points belonging to two different clusters as in Equation 2.6.

SCrA: centroid-based, average of all pairwise distances between cluster centroids

1(
K
2

) K−1∑
k=1

K∑
l=k+1

dckcl (2.4)
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SPA: pointwise, average of all pairwise distances between points in different clusters

1∑K−1
k=1

∑K
l=k+1(nk ∗ nl)

K−1∑
k=1

K∑
l=k+1

∑
i∈Ck

∑
j∈Cl

dij (2.5)

SPM: pointwise, minimum of pairwise distances between closest points in different

clusters

min{dij : ∀i ∈ Ck,∀j ∈ Cl,∀k, l, k 6= l} (2.6)

Here dckcl refers to the Euclidean distance between the centroids of clusters k and l.

Connectivity is achieved by putting a point and its closest neighbors into the same

cluster. Since connectivity considers the neighbors of data points, there is a need for

a neighborhood definition for a data set. Some clustering algorithms construct the

neighborhood by using a single similarity measure and some use special neighbor-

hood definitions to measure the connectivity such as ε-neighborhood and k-nearest

neighborhood (kNN). In ε-neighborhood, when the distance between two points is

smaller than a prespecified distance ε, then these points are called as neighbors. In

kNN, a fixed number of closest data points form the neighborhood of a data point.

Connectivity performs well in detecting arbitrary shaped clusters.

As mentioned earlier, each objective has advantages and disadvantages on different

data sets. Hence, there is no single objective function that performs well for all data

sets and all clustering algorithms. The data set properties is critical for choosing the

appropriate objective function. Using only one of these objective functions is not

sufficient to obtain a good clustering solution for most data sets. There are some

clustering algorithms using a combination of multiple objective functions as a single

objective, e.g. maximizing the ratio between separation and compactness. However,

reducing multiple objectives to a single objective results in information loss and does

not provide good clustering solutions.

The Number of Clusters

The clustering problem is classified as unsupervised learning due to lack of prior

knowledge of the true data labels. In addition to not knowing the true labels, most
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of the time the number of clusters is unknown as well. Hence, clustering algorithms

are not provided the true number of clusters in grouping data points. Most of the

traditional clustering algorithms assume the number of clusters are known a priori.

However, in most real world data sets this information is not available before the

clustering process. One way of estimating the number of clusters is to apply the clus-

tering algorithm with a different number of clusters and select the solution that results

with the best performance. In general, as the number of clusters increases, compact-

ness gets better but separation gets worse. Also, applying the clustering algorithm

for a wide range of number of clusters is time consuming. Moreover, evaluating the

clustering performance for different number of clusters and selecting the best solution

may be subjective or becomes harder as the size and dimensionality of the data set

increases.

Arbitrary Shapes and Density Differences

Up to three dimensions one can plot the data set and assess the shape of the clusters

and the density differences. Most commonly clusters may have spherical shapes but

there are arbitrary shaped clusters as well. Detection of different shapes of clusters

in a data set may need different objective functions. For example, in spherical clus-

ters the similarity between data points can be measured as the distance to the cluster

centroid since the spherical clusters are compactly dispersed around the cluster cen-

troid. On the other hand, an arbitrary shaped cluster may not be detected with this

compactness objective but needs a connectivity based objective.

In addition, the data set may contain between cluster and within cluster density dif-

ferences. Between cluster density difference means that clusters are homogeneous

in themselves but their densities are different from each other. On the other hand, a

cluster may contain density difference in itself which is called within cluster density

difference. Some data sets contain both types of density differences which makes

extracting clusters difficult.

Outliers and Noise

An outlier is a point which is dissimilar from all other points in the data set. Outliers
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distort the clustering structure of the data set. Hence, most clustering algorithms are

not successful in extracting clusters from data sets with outliers. In literature, some

outlier detection mechanisms are proposed and used before applying the clustering

algorithms. Also, there are some clustering algorithms that can handle outliers while

clustering the data points.

Some data sets contain noise which is different from outliers. In this case, there are

many points in the data set that do not belong to any of the clusters. Presence of noise

creates similar problems as in the case of outliers.

High Dimensionality

In many application areas, data sets have many features or attributes. As the number

of features increases, the data points become sparse in feature space and become

more indistinguishable, hence the curse of dimensionality. Most of the traditional

clustering algorithms use a distance measure to calculate the similarity between data

points. However, when the dimensionality increases the distance measure becomes

ineffective or less powerful to distinguish data points as the distance values become

close together.

Moreover, all features may not be meaningful in the clustering process. Possibility

of containing redundant (irrelevant) features increases as the dimension increases.

The redundant features sometimes prevent the clustering algorithm from extracting

the clusters. Also, dealing with many features is time consuming for most of the

clustering algorithms.

Scalability

As the size of the data set and the number of clusters increase, the computing time and

memory requirements increase. Therefore, clustering algorithms should be scalable

for execution within a reasonable time while the size of the data sets increases.
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2.2 Traditional Single Objective Clustering Algorithms

The variety of the clustering algorithms makes the classification of algorithms into

distinct groups complicated. Each algorithm has different assumptions, strengths

and weaknesses. According to some comprehensive reviews for clustering algo-

rithms, traditional single objective clustering algorithms are mainly divided into three

groups namely partitional clustering algorithms, hierarchical clustering algorithms,

and metaheuristic algorithms for clustering (Jain et al. 1999, Xu and Wunsch 2005,

Berkhin 2006).

2.2.1 Partitional Clustering Algorithms

Partitional clustering algorithms take the clustering problem as an optimization prob-

lem. These algorithms divide the data set into disjoint clusters by optimizing a cri-

terion and end up with a single partition. The objective function is mostly selected

as the total distance or variation (squared distance) between the data points and the

cluster representatives. Hence, the algorithms tend to work well on data sets having

well-separated and compact clusters. The main advantage of the partitional clustering

algorithms is the relatively lower time and memory requirements. They are advan-

tageous especially when dealing with large data sets. The main problem of these

algorithms is choosing the number of clusters to give as an input to the algorithm.

Also, the performance of these algorithms depends on initial selection of cluster rep-

resentatives. Besides, these algorithms are limited with data sets having numerical

features. The most commonly used partitional clustering algorithm is k-means (Mac-

Queen et al. 1967).

2.2.2 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms produce nested series of partitions. These parti-

tions are generally represented with tree-like structures called dendrograms. Each

leaf node in a dendrogram represents a data point and the root node represents the

whole data set. At each level of the tree there is a different partitioning of the data set.
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Hierarchical clustering algorithms can be categorized into two according to the direc-

tion of processing the tree: agglomerative and divisive. In agglomerative methods,

clusters with single points are merged according to a criterion until obtaining a single

cluster including all points. On the other hand, the divisive methods start with a sin-

gle cluster of the whole data set and continue dividing it into subsets until obtaining

single point clusters.

Hierarchical clustering algorithms use linkage metrics to merge or split the clusters.

The most commonly used linkage metrics are single-link, average-link and complete-

link. In single-link, the splitting or merging is based on the minimum distance be-

tween different clusters. Similarly, average-link and complete-link use the average

and maximum of the inter-cluster distances, respectively.

In hierarchical clustering algorithms the errors made in previous iterations cannot be

corrected. Since the hierarchical clustering algorithms are greedy, if a wrong merging

or splitting decision is made in an iteration, its effects last until the end. Moreover,

the usage of above linkage metrics leads hierarchical clustering algorithms to gener-

ate spherical clusters. These algorithms are not successful at finding arbitrary shaped

clusters. Besides, these algorithms are sensitive to noise and outliers. Another dis-

advantage of hierarchical clustering algorithms is the excessive memory requirement.

The main advantage of the hierarchical algorithms is that there is no need to know

the correct number of clusters a priori. However, extra methods may be required to

obtain the best partition from the dendrogram. The well-known algorithms of this

type are CURE (Guha et al. 1998), BIRCH (Zhang et al. 1996), and CHAMELEON

(Karypis et al. 1999).

2.2.3 Metaheuristic Algorithms for Clustering

The clustering problem is an NP-hard problem. Searching for all possible cluster-

ing partitions is computationally expensive. Hence, solution space must be searched

efficiently. Some heuristic approaches such as k-means are developed to solve the

clustering problem. However, these conventional heuristics may get stuck at local

optima. Metaheuristics have exploratory properties to search the solution space and

to find the global optimum by avoiding the local optima. There are several types
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of metaheuristics applied to the clustering problem such as Evolutionary Algorithms,

Simulated Annealing, and Tabu Search. Among these, Evolutionary Algorithms (EA)

are the most commonly used ones. Rayward-Smith (2005) provides a brief review of

metaheuristic implementations for the clustering problem. Hruschka et al. (2009) fo-

cuses on the evolutionary algorithm applications on clustering. This study covers tra-

ditional EA applications, multi-objective clustering algorithms, and cluster-ensemble

clustering applications.

2.3 Feature Selection

Each data point has a number of features (attributes) representing properties of that

point. The number of features determines the dimensionality of the data set. As the

dimensionality of the data set gets high, the distances between the pairs of data points,

as measured by various dissimilarity measures, get close together. Then, the power

of understanding the underlying patterns and obtaining useful information decreases,

hence the curse of dimensionality (Bellman 1961). The data sets may have both

relevant and irrelevant (redundant) features. The relevant features are the necessary

ones to obtain information from the data sets. However, the irrelevant features do

not add valuable information to the data. Moreover, sometimes, they may prevent

us from recognizing the underlying patterns. Besides, containing redundant features

might increase the computational time and storage requirements and decrease the

prediction performance of the learning algorithm. To avoid the effects of the curse of

dimensionality and obtain more generalizable models from data sets, dimensionality

reduction techniques can be applied (Tang et al. 2014, Saeys et al. 2007).

The dimensionality reduction techniques can be grouped into two main categories:

feature extraction and feature selection. Feature extraction techniques decrease the

dimensionality by projecting the original features into a new feature space with lower

dimensionality. The new features are the linear or nonlinear combinations of the

original features (Tang et al. 2014). The well-known examples of feature extrac-

tion techniques are Principal Component Analysis, Canonical Correlation Analysis,

Multidimensional Spacing, and Linear Discriminant Analysis (Guyon and Elisseeff

2006). On the other hand, feature selection techniques start with all original fea-
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tures, eliminates redundant features during the process and end up with a subset of

the original features.

Recent comprehensive reviews are provided by Tang et al. (2014), Chandrashekar and

Sahin (2014), and Saeys et al. (2007). The feature selection methods are generally

grouped into two main categories, namely filtering and wrapper methods. Filter-

ing methods are applied before the unsupervised or supervised learning algorithms,

i.e. they eliminate the redundant features as a pre-preprocessing step and give the

selected feature subset as input to the algorithms. Filtering methods consider the in-

herent properties of the data to filter out the redundant features. They mostly rank the

features based on the information of correlation or dependency between features and

then remove the ones below the predefined thresholds. Some examples of the filtering

methods are Relief (Kira and Rendell 1992) and Mutual Information (Shannon 2001),

and Fisher score (Duda et al. 2012).

On the other hand, wrapper methods evaluate the subsets of features by using the

learning algorithms. In other words, wrapper methods search the feature space to

find the best feature subset and eliminate the redundant ones. Each feature subset is

given as input to the learning algorithm and the decision to eliminate or keep a feature

is given by using the objective function value of the algorithm. The feature subset

with the best objective function value is chosen. The number of possible solutions for

an N dimensional data is 2N . Since full enumeration is computationally expensive

and time consuming, deterministic or randomized search algorithms are used. The

common ones are Branch and Bound method, Hill-Climbing, Genetic Algorithms

and Best-First Search.

Both filtering and wrapper methods have some advantages and disadvantages. The

main advantage of filtering methods is their independence from the data mining al-

gorithm. Hence, these methods are more scalable and faster than wrapper methods.

However, filtering methods might not discover the dependencies and interactions be-

tween the features, which may lead to loss of information and poor performance.

Besides, filtering methods ignore the interaction with the data mining algorithm. On

the contrary, since wrapper methods interact with the data mining algorithm in eval-

uating the feature subsets, mostly they show good performance on extracting feature

15



dependencies and eliminating redundant features. Main drawback of wrapper meth-

ods is high time and the memory requirements.

So far we provide a brief background for the clustering problem and its characteris-

tics, and the feature selection problem. Rest of this chapter is for the literature review

related to our problem.

2.4 Literature Review for Multi-Objective Clustering and Feature Selection

In literature, there are many single objective clustering algorithms having different

clustering objectives. While some clustering objectives lead to good clustering solu-

tions for a specific data set, they may perform poorly for others. Since data sets may

have different shapes, densities and sizes, no single objective clustering algorithm

can find good solutions for all data sets. Furthermore, there are some data sets for

which single objective clustering algorithms lead to particularly poor solutions. For

these reasons, using multiple clustering objectives together helps to explore tradeoffs

between objective functions and may result in better clustering solutions (Handl and

Knowles 2005a).

Freitas (2004) reviews the multi-objective clustering approaches in literature by re-

ferring to their advantages and disadvantages. There are three approaches named as

weighted approach, lexicographic approach, and Pareto approach. In the weighted

approach, multiple objectives are transformed to a single objective. User defined

weights are assigned to the objectives, and these objectives are combined based on

their weights. Then, the problem becomes a single-objective optimization problem.

The main advantage of this approach is its simplicity. However, as the cost of its

simplicity, it loses information by combining multiple and generally different kind

of objectives into one. Also, setting the weights is not straightforward. In the sec-

ond approach, priorities are given to the objective functions by the decision maker,

and objectives are solved one by one as a single-objective optimization problem in

the order of their priorities. Although this approach does not mix different kinds of

objectives, it needs some parameters to be specified. In the last approach, a set of

nondominated solutions are obtained by considering multiple objectives simultane-
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ously. This approach is more advantageous than the others since the objectives are

not combined, hence there is not loss of information. Also, there is no need to define

weights, priorities, or thresholds.

The main aim of the multi-objective clustering algorithms is to simultaneously opti-

mize different and mostly conflicting objectives in a single clustering algorithm. This

enables considering the tradeoffs between different objectives. The output of a multi-

objective clustering algorithm is nondominated clustering solutions on a Pareto front,

each having different objective function values. Taking a broad view, based on the

objectives of the studies, we group the literature on multi-objective clustering and

feature selection into three, namely clustering, feature selection, and simultaneous

feature selection and clustering. The classification of these studies is presented in

Table 2.1.

Table 2.1: Classification of multi-objective clustering and feature selection studies

Clustering Feature Selection Simultaneous Feature
Selection and Clustering

Chen and Wang (2005) Handl and Knowles (2006b) Dutta et al. (2013)
Demirtaş (2011) Handl and Knowles (2006c) Saha et al. (2014)
Du et al. (2005) Kim et al. (2002) Saha et al. (2016a)
Garza-Fabre et al. (2017) Mierswa and Wurst (2006)
Handl and Knowles (2004) Morita et al. (2003)
Handl and Knowles (2005a)
Handl and Knowles (2005b)
Handl and Knowles (2006a)
Handl and Knowles (2007)
Handl and Knowles (2012)
İnkaya et al. (2015b)
Martínez-Peñaloza et al.
(2017)
Matake et al. (2007)
Özyer et al. (2004)
Prakash and Singh (2015)
Ripon et al. (2006)
Saha and Bandyopadhyay
(2010)
Saha et al. (2016b)
Santos et al. (2009)
Tsai et al. (2012)
Won et al. (2008)
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2.4.1 Multi-Objective Metaheuristic Algorithms for Clustering

The clustering problem is NP-hard, and when the problem has multiple objectives it

becomes even harder. To find good solutions to the multi-objective clustering prob-

lem mostly heuristic approaches are proposed in the literature (Ferligoj and Batagelj

1992).

In the literature, metaheuristic approaches to the unsupervised clustering problem

consist of evolutionary algorithms (EA), simulated annealing (SA), particle swarm

optimization (PCO), and ant colony optimization (ACO). However, most of the multi-

objective metaheuristic approaches to the clustering problem are based on evolution-

ary algorithms.

Handl and Knowles (2004) present VIENNA (Voronoi Initialised Evolutionary Al-

gorithm) which is based on multi-objective evolutionary algorithm PESA-II (Corne

et al. 2001) for the unsupervised clustering problem. Their objective functions are

minimizing compactness and maximizing connectivity. The second objective func-

tion enables the algorithm to be applied to arbitrary shaped clusters. However, VI-

ENNA needs the number of clusters to be known a priori. Decision variables (genes)

of the algorithm are the cluster labels of the data points. In the initialization step, they

use Voronoi representation to construct the initial population. After generating the

members of the initial population, they continue with direct representation.

Chen and Wang (2005) present a clustering algorithm based on a well-known multi-

objective evolutionary algorithm, NSGA-II (Deb et al. 2002). The objective functions

of the proposed algorithm are similar to those of VIENNA. The main difference be-

tween these two algorithms is the decision variables. The genes in the proposed algo-

rithm represent the cluster centroids and the number of clusters. Hence, the number

of clusters need not be known a priori.

To avoid fixing the number of clusters beforehand, Özyer et al. (2004), Du et al.

(2005), and Won et al. (2008) use the number of clusters as one of the objective

functions in their algorithms. They find a Pareto front such that each nondominated

solution represents the total within cluster variation for the corresponding number of

clusters.
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The multi-objective clustering with automatic k-determination (MOCK) is proposed

by (Handl and Knowles 2005a,b, 2007). MOCK mostly uses the idea presented in

VIENNA (Handl and Knowles 2004). The objective functions are again compact-

ness and connectivity with little modification in their calculations. MOCK is again

based on PESA-II (Corne et al. 2001). The main differences between VIENNA and

MOCK are in the representation schemes, the evolutionary operators, and the initial-

ization procedure. In MOCK, because the number of clusters is unknown in advance

the locus-based adjacency representation is used. This representation scheme also

enables using standard crossover operators of evolutionary algorithms. Therefore,

uniform crossover is used in MOCK. The mutation operator is the neighborhood-

biased mutation which tends to increase the probability of mutation of the link to the

farther neighbor. The major disadvantage of this mutation operator is the need for a

user defined parameter, neighborhood size, since the value of this parameter affects

the performance of clustering with different data set structures. The members of ini-

tial population are generated from two different single objective algorithms namely

minimum spanning tree and k-means. With this initialization, the algorithm starts

generations with either compact or connected solutions.

There are some studies to analyze the computational time and the search capabil-

ity of the original MOCK algorithm. Matake et al. (2007) investigate the algorithm

when the size of the data set is large. Tsai et al. (2012) use various crossover and

mutation operators to increase the search diversity. Furthermore, the adopted multi-

objective evolutionary algorithm of MOCK is analyzed as a source of improvement

by Martínez-Peñaloza et al. (2017). For comparison SPEA-2 (Zitzler et al. 2001),

NSGA-II (Deb et al. 2002) and MOEA/D (Zhang and Li 2007) are tried as the under-

lying evolutionary algorithm and NSGA-II is found the most successful one.

Garza-Fabre et al. (2017) propose an improved version of MOCK with major changes

in the underlying evolutionary algorithm, initialization procedure and representation

scheme. Due to the elitist behavior of PESA-II, they use NSGA-II in the improved

version. To generate members of the initial population, they only use the minimum

spanning tree based solutions since the benefit of solutions obtained from k-means to

the clustering performance is negligible. Furthermore, in order to reduce the compu-

tational cost of the algorithm they propose two new reduced length representations.
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They fix some of the links in the chromosomes by a user-defined parameter in the ini-

tialization process and continue generations with these reduced length chromosomes.

Choice of objective functions in multi-objective clustering algorithms affects the be-

havior of the algorithm. The objective functions can be grouped into three categories,

namely objective functions related with compactness, separation, and connectivity.

Although the objective functions under these groups fundamentally focus on intra-

cluster similarity and inter-cluster dissimilarity, they have some differences. Some

clustering objective functions take into account all data points whereas others include

only representatives of the clusters or some portion of the data. Using partial data

may cause information loss but improves the computational cost. On the other hand,

using all data points in calculating clustering objective functions may yield more in-

formation about the underlying data structure (Handl and Knowles 2012).

Besides compactness and connectivity as the objective functions, compactness and

separation are also used as two conflicting objectives in multi-objective clustering

(Ripon et al. 2006, Demirtaş 2011). Furthermore, some clustering validity indices are

used as objective functions for this purpose (Saha and Bandyopadhyay 2010, Saha

et al. 2014, 2016a,b).

In addition to the evolutionary algorithms, there are ACO-based multi-objective clus-

tering algorithms presented in Santos et al. (2009) and İnkaya et al. (2015b). PCO

and SA-based algorithms are presented in Prakash and Singh (2015), and Saha and

Bandyopadhyay (2010), respectively.

Handl and Knowles (2006a) and Saha et al. (2016a) focus on extensions of multi-

objective unsupervised clustering to semi-supervised clustering by adding a super-

vised objective function, namely Adjusted Rand Index (ARI), to the current objective

function set.

Table 2.2 presents a summary of the algorithms discussed here. The table includes

the type of the clustering problem, objectives, whether or not the number of clusters

is known beforehand, capability to detect different shaped clusters, and the meta-

heuristic approach. For the problem column, “U” and “SS” stand for unsupervised

clustering and semi-supervised clustering, respectively. “K” in the number of clusters
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column means that the number of clusters is known a priori whereas “U” means that

it is unknown. In the shape column “S” is an abbreviation for spherical clusters, “A”

is for arbitrary shaped clusters and “PS” is for point symmetric clusters.

2.4.2 Multi-Objective Metaheuristic Algorithms for Feature Selection

The proposed solution approaches to the multi-objective feature selection problem

in literature are similar to the approaches for the clustering problem. Transforming

multiple approaches to a single objective, giving priorities to objectives and solving

them in that order, and finding the set of nondominated solutions by using multiple

objectives simultaneously. The most advantageous approach is finding the Pareto

solutions by using multiple objectives separately. Due to the problem complexity,

heuristic approaches are proposed to find good solutions (Pappa et al. 2004).

Similar to the clustering problem, multi-objective metaheuristic approaches are also

applied to the feature selection problem. Almost all multi-objective algorithms for

feature selection in clustering use wrapper feature selection methods. The algorithms

use binary representation to encode feature subsets. Some of them define the num-

ber of clusters as a decision variable and include it in the chromosome. Since the

clustering problem is basically unsupervised, the multi-objective feature selection al-

gorithms evaluate a feature subset by the ability to identify the underlying clustering

pattern. For this purpose, the algorithms use clustering validity indices. To evaluate

each feature subset, a clustering algorithm such as k-means or expected maximization

clustering is used. Objective functions for obtained clustering solutions are calculated

and used as the fitness values.

Handl and Knowles (2006b) use MOCK for feature selection where the decision

variables are features to be used for clustering and the number of clusters. In the

algorithm the feature subsets are evaluated by k-means where the number of clusters

is taken from the chromosome. They compare four pairs of objective functions in

which one is the number of features. The number of features is used as a bias to

affect the other objective function’s behavior. The same authors extend the problem

to the semi-supervised feature selection problem by adding an external validity index

for clustering (Handl and Knowles 2006c).
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Kim et al. (2002), Morita et al. (2003) and Mierswa and Wurst (2006) have also stud-

ied multi-objective evolutionary algorithms for unsupervised feature selection. They

all use k-means to evaluate candidate clustering solutions. Their differences come

from the underlying evolutionary algorithm, and the number and choice of the objec-

tive functions. Kim et al. (2002) take into account four objective functions simultane-

ously, which are compactness, separation, the number of features, and the number of

clusters. The output of the algorithm is a Pareto front in four dimensions, which is dif-

ficult to interpret. Also, their compactness and separation metrics cause dependencies

with the number of features and clusters. The proposed approach use ELSA as the

multi-objective evolutionary algorithm. Morita et al. (2003) and Mierswa and Wurst

(2006) use a different multi-objective evolutionary algorithm, NSGA-II, with the ob-

jective functions normalized DB-Index and the number of features. These objective

functions eliminate the interdependencies and also make interpretation of outputs eas-

ier.

Table 2.3 summarizes the multi-objective metaheuristic algorithms for the feature se-

lection problem. “U” in the problem column stands for unsupervised feature selection

whereas “SS” for semi-supervised feature selection.

2.4.3 Simultaneous Multi-Objective Feature Selection and Clustering

Decomposition of feature selection and clustering as two problems and solving them

separately usually cause loss of information. Hence, solving them simultaneously in

a single algorithm leads to better solutions. Including cluster and feature information

in the representation enables evaluating the solution by using both sources of infor-

mation. Most common representation in the literature is using centroids for clusters

and binary coding for features (Saha et al. 2014, 2016a).

Another solution representation for this problem is defining the decision variables as

cluster centroids but computing the centroids by using only the selected features for

a single solution (Dutta et al. 2013). Therefore, the feature information is kept indi-

rectly in their solution representation. The main disadvantage of such representations

is the need for defining the number of clusters in advance.
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The details of these algorithms are given in Table 2.4. The problem column presents

the type of the clustering problem where “U” stands for unsupervised clustering and

“SS” for semi-supervised clustering.
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CHAPTER 3

PROBLEM DEFINITION AND SOLUTION APPROACH

In Chapter 2, the background for the clustering and the feature selection problems

were given, and the related literature for our problem was reviewed. In this chap-

ter, we firstly define our problem by referring to the characteristics of the clustering

problem stated in Section 2.1. Then, we introduce our proposed solution approach.

The Clustering Problem

As discussed earlier, clustering is the aggregation of similar objects into the same

group and separation of dissimilar objects into different groups. The similarity be-

tween objects can be found using various similarity measures. In the literature, there

are many clustering algorithms proposed for different problem instances. However,

there is not a single clustering algorithm applicable to all kinds of data sets.

Clustering is an ill-posed data mining problem due to its challenging properties.

Firstly, the similarity measure should be selected based on the data type. Features

can be quantitative (numerical) or qualitative (categorical). Data sets may include

only quantitative features, only qualitative features, or a mixture of them. The data

type affects the choice and the calculation of the similarity measure.

Secondly, the choice of the objective function(s) is not straightforward. Conceptually

clusters in a solution should be compact, well-separated, and connected. However,

it is difficult to find measures suitable to satisfy all three properties for a specific

problem instance. The choice of objective functions may lead to different groupings

of the data points. For example, some objective functions use centroid information

whereas some use information of all points. Similarly, some objective functions use
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the explicit information from the entire data set whereas some use aggregated mea-

sures (internal validity indices, combination of multiple objective functions, etc.) to

calculate the performance of the clustering solution.

Thirdly, as the true cluster labels of data points are not known a priori, comparison

of the resulting clustering labels with the true labels is not possible. Hence, iden-

tification of a good clustering solution is not simple. The number of clusters is also

unknown beforehand. In literature, some of the clustering algorithms take the number

of clusters as given but in most real world problems we do not know the true number

of clusters.

Moreover, data sets may contain density differences and arbitrary shapes. Most tra-

ditional clustering algorithms fail to extract clusters from data having density differ-

ences and arbitrary shapes. Connectivity based objective functions and neighborhood

definitions may be required. Also, some data sets have outliers and/or noise, which

may mask the underlying clustering structure and result in bad clustering solutions.

Finally, the dimensionality and size of the data set affects the performance of the

clustering algorithm. Some algorithms perform well on low dimensional data sets but

show poor performance on high dimensional data sets. The size of the data set in-

creases the computational requirements where the fast extraction of information from

the data becomes more important steadily.

Considering all these issues, in this work, we study the clustering problem having the

following properties.

• The data sets have numerical features.

• The similarity between data points is measured with Euclidean distance.

• The number of clusters is unknown.

• There may be density differences between clusters.

• There may be density differences within clusters.

• The data set does not contain outliers or noise.

• The data set may be high-dimensional.
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• Clusters may have arbitrary shapes.

In our problem we take into account the three objectives of compactness, separation,

and connectivity. In order to consider these three objectives simultaneously, we use

a multi-objective evolutionary algorithm and a special neighborhood construction al-

gorithm. We handle the compactness and separation objectives by using them as the

objective functions of the evolutionary algorithm. Specifically, the objectives are min-

imizing the intra-cluster distances (compactness) and maximizing the inter-cluster

distances (separation). Our proposed approach uses the multi-objective framework

of the well-known algorithm NSGA-II (Deb et al. 2002) to simultaneously optimize

these two conflicting objectives.

For the third objective, which is connectivity of data points, we use a special Neigh-

borhood Construction (NC) algorithm (İnkaya et al. 2015a). NC uses the underlying

connectivity and density information in the data set to construct neighborhoods spe-

cific to data points. It then forms closures considering overlaps of these neighbor-

hoods. These closures may also be regarded as subclusters. In our approach, the links

between data points within a closure are assumed to be fixed i.e., they are assumed

to be connected. The closures are then given as input to the evolutionary algorithm,

which further combines them throughout the generations and forms the final clusters.

Hence, NC is used as a preprocessor for the proposed evolutionary algorithm.

We call our proposed solution approach for the clustering problem defined above

MOCNC, which stands for Multi-Objective Evolutionary Clustering with Neigborhood

Construction. The algorithm details are provided in Chapter 4 and experimental re-

sults are given in Chapter 5.

Using NC closures within the algorithm provides two benefits: (i) connectivity of

data points in a closure is ensured and (ii) the problem becomes more scalable as

the closures are fixed. The output of MOCNC is a set of nondominated clustering

solutions. The nondominated solutions consider different tradeoffs between two con-

flicting objectives (compactness and separation) and may have different number of

clusters.

In Table 2.1, a classification of studies in the literature is presented. In this classifica-
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tion, there are three categories namely clustering, feature selection, and simultaneous

feature selection and clustering. Following this classification, MOCNC can be placed

in the clustering category.

The Feature Selection Problem

One may notice that there are only a few studies on simultaneous feature selection and

clustering. After finalizing experimental work with MOCNC, we extend the MOCNC

algorithm for the feature selection problem. Each data point in a data set has a number

of features. The number of features defines dimensionality of the data set. The data

set may contain both relevant and irrelevant (redundant) features. The redundant

features may mask the clustering structure and make it difficult to extract clusters.

They may even distort the data such that data points become unseparable. Feature

selection methods aim to detect relevant features and reduce the dimensionality of

the data set.

In our extension for the feature selection problem, the clustering problem defined

above remains the same, but now the data sets may contain redundant features. The

extended approach for feature selection is called MOCNC-F. MOCNC-F is again a

multi-objective evolutionary algorithm, which searches through different feature sub-

sets. For each feature subset MOCNC finds the nondominated clustering solutions.

Fitness of the selected feature subset is defined by the fitness (compactness and sepa-

ration) of the clustering solution. Then, MOCNC-F analyzes the dominance between

different clustering solutions resulting from different feature subsets. The output of

MOCNC-F is a set of nondominated clustering solutions each with different com-

pactness and separation values, and possibly with different feature subsets.

The details of MOCNC-F are presented in Chapter 6 and experimental results are

given in Chapter 7.
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CHAPTER 4

MOCNC : MULTI OBJECTIVE EVOLUTIONARY CLUSTERING WITH

NEIGHBORHOOD CONSTRUCTION

In this chapter, we describe our multi-objective evolutionary clustering algorithm

MOCNC in detail. As stated in Chapter 3, we use the Neighborhood Construction

(NC) algorithm and a multi-objective evolutionary algorithm (NSGA-II) in our pro-

posed approach. Before giving the details of MOCNC, we introduce the NC algorithm

in Section 4.1 and the underlying multi-objective evolutionary algorithm, NSGA-II,

in Section 4.2. In Section 4.3, we present a flowchart of the proposed algorithm and

briefly introduce the algorithm steps. We present the notation used for the cluster-

ing problem and in the proposed algorithm, and give the details of the algorithm in a

bottom-up approach in Section 4.4.

4.1 The Connectivity-Based Neighborhood Construction (NC) Algorithm

İnkaya et al. (2015a) proposes a special neighborhood construction algorithm based

on the density and connectivity information of points in a data set. Most neighbor-

hood construction algorithms require some user specified parameters, and selection

of these parameters is not straightforward. The NC algorithm has the advantage that

it does not require any such parameters. No specific information about the data set is

needed beforehand, and the algorithm uses only the local characteristics of the data

set to construct the neighborhood. It uses the Gabriel graph to extract the proximity

relations of data points. From the constructed Gabriel graph, NC calculates the den-

sity of each data point. Density between two points is defined as the number of points

in the closed ball of diameter Euclidean distance between the these points. The data
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Figure 4.1: Example for the NC algorithm (from İnkaya et al. 2015a)

points are identified as having direct or indirect connectivity with each other based

on their density values. The output of the NC algorithm is a unique neighborhood

for each data point. Moreover, NC forms closures (subgroups) of data points based

on overlapping neighborhoods. Those data points that share the same neighbors in

their final neighborhoods belong to the same closure. Since NC uses the connectivity

information, the data points in each closure are connected.

An example from İnkaya et al. (2015a) for neighborhood construction part of the

NC algorithm is illustrated in Figure 4.1. In the example, there is a data set with

ten points. For data point 1, the points are ordered based on the distance as T1 =

{2, 3, 4, 5, 6, 8, 9, 7, 10}. As can be seen in Figure 4.1(a)-(b), the density with respect

to points 2 and 3 are zero since there is no point in the ball of diameter Euclidean

distance between points 1 and 2, so they are ’direct’ neighbors of point 1. The closest

’indirect’ neighbor of point 1 is point 4 with a density of 2 as shown in Figure 4.1(c).

Here, the indirect connection is established through points 2 and 3. The density values

for the ordered set T1 are 0, 0, 2, 1, 2, 0, 1, 2, 2. As we move in the ordered set T1,

density should be the same or increase for respective points to be true neighbors of

point 1. Hence, point 5 is the break point where the density decreases, as seen in

Figure 4.1(d). Up to the break point, the points 2, 3, and 4 are the neighbors of
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(a)    (b)

(c)    (d)

Figure 4.2: Example for the closure construction of the NC algorithm

point 1. In NC, the break points may either indicate a direction change or a different

density region. To extend the neighborhood, the two sets including direct and indirect

neighbors of points 1 and 5 are compared. If their intersection is not empty, then

points 1 and 5 are indirectly connected. Otherwise, they do not belong to each others’

neighborhoods. The direct and indirect neighbors of point 5 are 6, 3, 1, 4, 2. Points

1 and 5 have 3 neighbors in common, so point 5 is in the neighborhood of point 1.

Going back to point 1, since the density of the next member in T1 increases, point

6 is also in its neighborhood. Hence, the neighborhood of point 1 begins with its

direct and indirect neighbors, and then extends. In the last step, NC applies a mutual

connectivity test to members of the neighborhoods to find the final neighborhood for

each point. The final neighborhood of point 1 is {2, 3, 4, 5, 6}.

The closure construction step of NC algorithm is illustrated in Figure 4.2. The final

neighborhood of point 2 is {1, 3, 4, 5, 6} as can be seen in Figure 4.2 (a), and the

neighborhood of point 6 is {1, 2, 3, 4, 5} as in Figure 4.2 (b). Since the neighborhoods

have common points Figure 4.2 (c), these neighborhoods are merged and a closure is

obtained as in Figure 4.2 (d).

The main advantage of the NC algorithm is to be a parameter-free neighborhood
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construction algorithm. NC works well on spatial data sets having arbitrary shapes,

density differences within and between clusters. Our proposed evolutionary algo-

rithm uses closures as input. We assume that, as the points in a closure are connected,

they belong to the same cluster. Then, instead of individual points, the evolutionary

algorithm links the closures to find the clusters. There are two main contributions

that NC provides to our proposed algorithm. Firstly, since NC uses connectivity in-

formation of data points to construct closures, the resulting clustering solutions are

also connected. Therefore, as one of the multiple objectives of clustering, the con-

nectivity objective is achieved by using NC as a preprocessor for MOCNC. Secondly,

the problem becomes more scalable since the number of closures is much less than

the number of data points.

Further details of NC including its pseudocode can be found in İnkaya (2011) and

İnkaya et al. (2015a).

4.2 The Nondominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II (Deb et al. 2002) is an improved version of Nondominated Sorting Ge-

netic Algorithm (NSGA) proposed by Srinivas and Deb (1994). NSGA-II is a multi-

objective evolutionary algorithm, which finds the nondominated solutions. In each

generation, a mating pool is constructed from the current population. Then, offsprings

are generated by applying crossover to the mating pool, followed by mutation of off-

springs. The algorithm evaluates the parent and child populations together. It finds

subsets of solutions that belong to a number of successive nondominated fronts and

ranks them accordingly (hence the name nondominated sorting). The rank of an indi-

vidual corresponds to the rank of the front it belongs. Moreover, NSGA-II uses a kind

of density measure of the front. The crowding distance of each individual solution

is the average of the distances between the individual and its closest neighbors in the

front. Individuals that have better ranks are transferred to the next generation until the

population is filled. For the final front, in case of equal ranks, the individual that has

a larger crowding distance enters the population. The algorithm uses the crowding

distance to provide diverse solutions in the front.
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4.3 Overview of the MOCNC Algorithm

The MOCNC algorithm has six steps. The flowchart of the algorithm is presented in

Figure 4.3. In Step0, the data set is read and the algorithm parameters are initialized.

Then, the NC closures are generated and their compactness values are calculated in

Step1. In MOCNC the genes in a chromosome (decision variables) are the links con-

necting pairs of closures instead of pairs of points. The points in closures are assumed

to form subclusters, which are fixed. Hence, the compactness values of closures are

also fixed and can be used to calculate compactness of the clustering solution. Step2

is the preprocessing step for the main loop of MOCNC. The pairwise distances be-

tween closures are calculated and the nearest neighbors of each closure are found. In

Step3 the initial population is generated. Step4 is the evolution step of the algorithm.

In this step, for each generation the following evolutionary algorithm operations are

applied. The mating pool is formed. Crossover is applied to the mating pool and

the offspring population is generated. Then, mutation is applied to offsprings. The

fitness calculations are made for the two objectives, namely compactness and sepa-

ration. Then, the nondominated sorting is applied to the union of parent and child

populations to obtain the new population. Finally, in Step5 a simple improvement

process is applied to the final population.
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Figure 4.3: Flowchart of the MOCNC algorithm
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4.4 Description of the MOCNC Algorithm

In this section, first the notation used for the clustering problem and the MOCNC

algorithm are presented. Then, the steps summarized in the overview of the algorithm

will be explained in detail.

4.4.1 Notation for the Clustering Problem and the Objective Functions

We use the following notation to represent the clustering problem and the objective

functions.

D set of data points

Ck set of points in cluster k

B set of closures

Bk set of closures in cluster k

Em set of points in closure m

F set of features

N number of data points in set D

numK number of clusters found in a solution

numB number of closures in set D

numF number of features in set D

i,j indices for data points, i, j = 1, ..., N

k,l indices for clusters, k, l = 1, ..., numK

m,n indices for closures, m,n = 1, ..., numB

f indice for features, f = 1, ..., numF

dij Euclidean distance between points i and j

ck centroid of cluster k

cm centroid of closure m

nm number of points in closure m

compm compactness of closure m

compk compactness of cluster k

37



4.4.2 Notation for the Evolutionary Algorithm

We use the following notation to describe our evolutionary algorithm.

cpop population size of clustering solutions

cgen number of generations in evolution

s indice for individual solutions, s = 1, ..., cpop

t indice for generations, t = 1, ..., cgen

P t parent population at generation t

P t
s solution (chromosome) s of parent population at generation t

P t
s(m) mth gene in solution s of parent population at generation t

M t mating pool at generation t

Ot offspring population at generation t

Ot
s solution (chromosome) s of offspring population at generation t

Ot
s(m) mth gene in solution s of offspring population at generation t

inds individual solution (chromosome) s

cpcross crossover probability for clustering solutions

cpmut mutation probability for clustering solutions

fcomps compactness of clustering solution s

fseps separation of clustering solution s

4.4.3 Fitness Functions Used for the Clustering Problem

For the clustering problem, we select the two fundamental objectives of clustering,

compactness and separation of clusters. The selected compactness measure is a rep-

resentative based compactness measure. It is computed as the overall average of dis-

tances between data points in clusters and the corresponding cluster centroids. The

compactness measure is referred to as CCrA throughout the study where C stands

for compactness, Cr for centroid-based, and A for the average. The compactness

measure is formulated as follows.

CCrA =
1

N

numK∑
k=1

∑
i∈Ck

d2
ick

(4.1)

38



The closures and their compactness values are fixed throughout the algorithm. There-

fore, the original compactness measure in Equation 4.1 can be calculated using Equa-

tion 4.2. The proof of equivalence of the two Equations (4.1 and 4.2) is given in

Appendix A.

CCrA =
1

N

(
numK∑
k=1

∑
m∈Bk

nm ∗ (compm + d2
ckcm

)

)
(4.2)

where compm denotes the compactness of closure m and is calculated as follows.

compm =
1

nm

nm∑
i=1

d2
icm

Computation of compactness of a clustering solution has two steps: (i) the compact-

ness values of closures are calculated, and (ii) the overall compactness of the clus-

tering solution is calculated by using the compactness of closures and the distances

between pairs of closures. The calculation steps of closure compactness are shown

in Algorithm 1. The data points in closures are given. The distance between each

data point and the closure centroid is calculated and summed (lines 2-3). Then the

summed distance is divided by the number of points in the closure. The output is the

compactness of a closure.

Algorithm 1: Computation of closure compactness
Procedure pre CCrA()

input : cm, nm

output: compm
1 for i = 1, ..., nm

2 Calculate d2
icm

3 compm = compm + d2
icm

4 end for
5 compm = compm/nm

end

To calculate the overall compactness, the number of clusters in the solution, the set

of closures in clusters, and closure compactness values are given as input to Algo-

rithm 2. For each cluster, firstly the cluster centroid is calculated (lines 2-5), then the

compactness of the cluster is calculated by using the compactness of closures in that
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cluster and the distances between cluster and closure centroids (lines 6-8). Compact-

ness values of all clusters are summed and divided by the total number of data points.

The output is the compactness measure for a given clustering solution.

Algorithm 2: Computation of compactness objective function
Procedure CCrA()

input : numK, Bk ∀k, cm, nm, compm ∀m
output: fcomp

1 for k = 1, ..., numK
2 for m = 1, ..., |Bk|
3 ck = ck + nm ∗ cm
4 end for
5 ck = ck/|Ck|
6 for m = 1, ..., |Bk|
7 compk = nm ∗ (compm + d2

ckcm
)

8 end for
9 fcomp = fcomp+ compk
10 end for
11 fcomp = fcomp/N

end

The separation objective function is the single-link linkage metric. It calculates the

minimum distance between the closest points belonging to two different clusters. The

separation measure is named as SPM where S stands for separation, P for pointwise

and M for minimum. Similar to the compactness measure, separation is also calcu-

lated using closures in MOCNC. The separation measure is formulated as follows.

SPM = min{dij : ∀i ∈ Em,∀j ∈ En,∀m ∈ Bk,∀n ∈ Bl, k 6= l} (4.3)

The calculation steps of separation measure are shown in Algorithm 3. The number of

clusters in a solution and the set of closures in each cluster are given as input. For each

cluster pair, the distance between points of closures in those clusters is calculated. The

minimum of these distances is the separation for the clustering solution. The output

of the separation function is the separation value and the cluster pair that gives the

separation value. The cluster pair will then be used in the mutation operator.
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Algorithm 3: Computation of separation objective function
Procedure SPM()

input : numK,Bk ∀k
output: fsep, k∗, l∗

1 Let min = a very large number
2 for k = 1, ..., numK − 1
3 for l = k, ..., numK
4 for m = 1, ..., |Bk|
5 for n = 1, ..., |Bl|
6 Calculate dmn

7 if dmn < min then
8 min = dmn

9 k∗ = k
10 l∗ = l
11 end
12 end for
13 end for
14 end for
15 end for
16 fsep = min

end

4.4.4 Chromosome Representation

Our chromosome structure consists of two parts: (i) the decision variables (genes) and

(ii) the fitness values (compactness and separation). In our chromosomes, the genes

correspond to the links between pairs of NC closures. We use the adjacency-based

representation (Park and Song 1998). The number of genes is the number of NC

closures in the data set to begin with. The mth gene corresponds to the mth closure

and it can take a value between 1 and numB. Let the value of the mth gene be n.

Then, the mth closure is linked (or connected) to the nth closure, and these closures

are in the same cluster. The adjacency-based representation is decoded to obtain the

clustering solution. In the resulting clustering solution, all connected closures will be

in the same cluster. The unconnected groups of closures form different clusters. An

example of adjacency-based representation decoding is illustrated in Figure 4.4.

In the example, there is a chromosome with six genes representing closures 1-6. In

Figure 4.4(a) the genotype of the chromosome is represented. The first closure is

linked to closure 2, the second closure to closure 3, and so on. The phenotype of the
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Figure 4.4: Illustration of the adjacency-based representation

chromosome is represented in Figure 4.4(b). After the decoding process, the resulting

clustering solution is shown in 4.4(c). In the solution, closures 1, 2 and 3 are in the

same cluster. Similarly, closures 5 and 6 are in the same cluster. Closure 4 forms a

cluster on its own.

This representation is advantageous for the clustering problem since it does not re-

quire the number of clusters a priori. During the decoding process, without knowing

the number of clusters the resulting clustering solution is constructed. Moreover, this

enables to compare different clustering solutions with different number of clusters at

the end of the algorithm.

4.4.5 Initial Population Generation

Our initialization routine consists of two types of solutions, random solutions and

seed solutions. We generate almost all the initial solutions randomly, and to improve

the performance of the algorithm, we generate one or two seed solutions depending

on the dimension of the data set.

In all data sets, we generate a seed solution in which each closure is connected to its

closest neighbor closure. When the dimensionality of the data set is greater than or

equal to 10, we generate an additional seed solution. In this seed solution, all closures

are connected to themselves.

The main aim of these seed solutions is to give the algorithm the chance to visit every

solution in the search space, i.e. increase the reachability. Since the mutation operator
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of MOCNC behaves towards merging the closest clusters, the seed solutions enable

to increase the percentage of searched space.

The steps of the initialization routine is shown in Algorithm 4. If the number of

features is less than 10, the first solution of the population is generated by connecting

each closure to its nearest neighbor (lines 2-4). Remaining solutions of the initial

population are generated randomly (lines 5-10). Otherwise, if the dimensionality is

greater than or equal to 10, the first solution of the initial population is generated by

assigning each closure to itself (lines 12-14). The second solution is generated by

assigning each closure to its nearest neighbor (lines 15-17). Finally, the remaining

ones are generated randomly (lines 18-23).

Algorithm 4: Initial population generation
Procedure generate initial population()

input : numF, numB, cpop
output: P 0

1 if numF < 10 then
2 for m = 1, ..., numB
3 P 0

1 (m) = nearest neighbor of closure m
4 end for
5 for s = 2, ..., cpop
6 for m = 1, ..., numB
7 P 0

s (m) = discrete uniform [1, numB]
8 end for
9 end for

10 else
11 for m = 1, ..., numB
12 P 0

1 (m) = m
13 end for
14 for m = 1, ..., numB
15 P 0

2 (m) = nearest neighbor of closure m
16 end for
17 for s = 3, ..., cpop
18 for m = 1, ..., numB
19 P 0

s (m) = discrete uniform [1, numB]
20 end for
21 end for
22 end

end
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4.4.6 Parent Selection and Mating Pool Construction

In NSGA-II the selection of parents to construct a mating pool is based on ranks and

crowding distances of individual solutions. The rank of an individual in the popula-

tion is the rank of the nondominated front it belongs to. Moreover, the individuals

have crowding distance values. Crowding distance is a kind of a density measure

for a given solution in its front. As in NSGA-II, MOCNC uses binary tournament

selection to form the mating pool. Algorithm 5 represents the pseudocode of the se-

lection process. From the current population, two individuals are selected randomly

and compared firstly using their ranks. If the rank of one of the individuals is smaller

than the other (indicating a better front), then this solution is put into the mating pool.

If the ranks are equal, then the crowding distances of individuals are compared. The

individual with the larger crowding distance is placed in the mating pool.

Algorithm 5: Parent selection and mating pool construction
Procedure binary tournament selection()

input : P t, cpop
output: M t

1 for s = 1, ..., cpop
2 Select ind1 randomly from P t

3 Select ind2 randomly from P t

4 if rank of ind1 < rank of ind2 then
5 M t = M t ∪ {ind1}
6 else if rank of ind2 < rank of ind1 then
7 M t = M t ∪ {ind2}
8 else if crowding distance of ind1 < crowding distance of ind2 then
9 M t = M t ∪ {ind2}
10 else
11 M t = M t ∪ {ind1}
12 end
13 end for

end
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4.4.7 The Crossover Operator

As the crossover operator, we choose the uniform crossover. Uniform crossover is

an unbiased operator since it is not affected from the ordering of genes in the chro-

mosome. It randomly generates two offsprings from a pair of selected parents. The

pseudocode of uniform crossover is provided in Algorithm 6. Crossover is applied

with a certain crossover probability. If crossover is applied, two parents are selected

from the mating pool and a binary mask for reproduction is generated randomly (lines

5-7). According to the mask, two offsprings are generated and placed in the offspring

population (lines 8-16). Otherwise, if crossover is not applied, then the selected two

parents will be copied as the offsprings (lines 18-19). The selected crossover operator

randomly searches the solution space which has numBnumB solutions for a data set

with numB closures.

Algorithm 6: Crossover
Procedure uniform crossover()

input : M t, cpop
output: Ot

1 s = 1
2 while s < cpop do
3 rnd = U [0, 1]
4 if rnd ≤ cpcross then
5 Create a mask of size numB consisting of randomly generated 0s

and 1s
6 for m = 1, ..., numB
7 if mask(m) = 0 then
8 Ot

s(m) = P t
s(m)

9 Ot
s+1(m) = P t

s+1(m)
10 else
11 Ot

s(m) = P t
s+1(m)

12 Ot
s+1(m) = P t

s(m)
13 end
14 end for
15 else
16 Ot

s = P t
s

17 Ot
s+1 = P t

s+1

18 end
19 s = s+ 2
20 end

end
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4.4.8 The Mutation Operator

In our algorithm, we propose a mutation operator for the clustering problem, which is

named as mutation SPM . The main objective of the mutation operator is to search

for a nondominated solution by merging the two closest closures (or subclusters ob-

tained by previous merging of closures). With the uniform crossover new clustering

solutions are obtained randomly by combining or dividing subclusters. The mutation

operator is used to selectively combine the subclusters, providing the convergence of

the algorithm.

Mutation is applied to an offspring with a mutation probability. The proposed muta-

tion operator is deterministic. If the mutation is to be applied, the two closest subclus-

ters are merged. The pair of subclusters to be merged is determined by the separation

objective function.

The mutation steps are outlined in Algorithm 7. The closest subclusters are given as

input to the mutation operator. If the mutation probability is realized, the given sub-

clusters are merged by constructing a link between two closures in the corresponding

subclusters. The important point here is to not divide the subclusters while construct-

ing a new link between two closures from two different subclusters. To avoid unin-

tentional division of clusters by the mutation operator, during the decoding process,

in each cluster one of the closures is linked to itself. Then, in mutation the closure

that is linked to itself from the first subcluster is connected to a closure in the second

subcluster. This way, merging two subclusters without dividing them is ensured.

Algorithm 7: Mutation
Procedure mutation SPM()

input : Ot
s, k
∗, l∗, Bk∗ , Bl∗

output: mutated Ot
s

1 for m = 1, ..., |Bk∗|
2 if Closure m is linked to itself then
3 Connect closure m to closure n ∈ Bl∗

4 break
5 end
6 end for

end
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4.4.9 Improvement

Compactness objective function improves as the number of clusters increases. Hence,

it has a bias towards the larger number of clusters. On the other hand, separation ob-

jective function is not directly affected from the number of clusters. However, it has

a tendency to merge the closest clusters to improve its value. Therefore, two cluster-

ing solutions may have the same separation value but slightly different compactness

values due to different number of clusters. In such a case the solution with fewer

clusters is dominated. Moreover, sometimes the additional clusters contain only a

few data points. To merge these small clusters to their nearest clusters, we apply an

improvement process to the population at the last generation of the algorithm. This

improvement is useful in counteracting the bias of the compactness objective.

The improvement process is presented in Algorithm 8. The final population and the

closure centroids are given as input. If a solution has a cluster with fewer than three

data points, the closures inside this cluster are assigned to their nearest clusters. The

distances between the centroid of the closure and the other clusters are calculated.

The closure is then assigned to its nearest cluster.

4.4.10 The MOCNC Algorithm

The pseudocode of MOCNC is given in Algorithm 9. The steps are named as ini-

tialization, finding NC closures and their compactness values, pairwise distance cal-

culation and finding nearest neighbors, initial population generation, evolution, and

improvement. The step numbers are the same as in Figure 4.3.

Before starting the main loop of the algorithm in Step0, the data set is given and the

algorithm parameters (the population size, the number of generations, probability of

crossover and probability of mutation) are initialized (lines 1-3).

After the initialization process, the next step is finding NC closures and their com-

pactness values (Step1). The NC algorithm takes the data set and generates the NC

closures. After finding the closures, their compactness values are calculated based on

the compactness objective function, CCrA. Since the closures are fixed throughout
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Algorithm 8: Improvement
Procedure Improvement()

input : P cgen, cm ∀m
output: P cgen

1 Let min = a very large number
2 for s = 1, ..., cpop
3 numK = number of clusters in P cgen

s

4 for k = 1, ..., numK
5 if |Ck| < 3 then
6 for m = 1, ..., |Bk|
7 for l = 1, ..., numK(k 6= l)
8 Find cl
9 Calculate dcmcl

10 if dcmcl < min then
11 min = dcmcl

12 l∗ = l
13 end
14 end for
15 Connect closure m to cluster l∗

16 end for
17 end
18 end for
19 end for

end

the algorithm, their compactness values are also fixed. Hence, to increase the effi-

ciency of the algorithm we use the compactness of closures in calculating the overall

compactness of a clustering solution instead of using individual points.

The next step (Step2) is a preprocessing step for the evolutionary algorithm. The pair-

wise distances between closures are calculated to be used afterwards in the separation

objective function calculations. The nearest neighbor for each closure is also found

to be used in the initial population generation.

Step3 and Step4 are the evolutionary algorithm steps. In Step3 the initial population

is generated (line 14). The initial population consists of mostly randomly generated

solutions and oner or two seed solutions. The seed solutions are generated to increase

the reachability for the evolutionary algorithm. After initial population generation,

the fitness values of each individual is calculated (lines 15-18).

In Step4 the generations of the algorithm evolve starting with the initial population.
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In each generation, firstly the parent selection procedure is applied. We use the binary

tournament selection as the selection operator (line 21). The output of the selection

process is the mating pool. Next, the uniform crossover is applied to the parents in the

mating pool and the offsprings are generated (line 22). The output of the crossover

process is the offspring population. For each individual in the this population the sep-

aration objective function is calculated to find the cluster pair that gives the separation

value of the clustering solution (line 24). The offsprings is then subjected to the muta-

tion process. The mutation operator merges the clusters that give the separation value

(line 25). After the mutation, compactness and separation of the offspring are recal-

culated (lines 26-27). After fitness values are found for all offsprings, nondominated

sorting is applied to the union of parent and offspring populations (line 29). At the

end of nondominated sorting a new population is generated and the next generation

starts.

The last step (Step5) of the proposed algorithm is the improvement step. The im-

provement process is applied to the final population. The clustering solutions having

clusters with fewer than three data points are connected to their nearest clusters (line

32).
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Algorithm 9: The MOCNC Algorithm
Procedure MOCNC()

input : Data set D
output: Nondominated clustering solutions

1 Step0. Initialization

2 Set cpop, cgen, cpcross, cpmut
3 Read data set

4 Step1. Find NC closures and their compactness

5 Call NC()→ B
6 for m = 1, ..., numB
7 Find cm, nm

8 Call pre CCrA()→ compm
9 end for

10 Step2. Find pairwise distances and nearest neighbors of closures

11 Calculate pairwise distances between closures
12 Find the nearest neighbor of each closure

13 Step3. Initial population generation

14 Call generate initial population()→ P 0

15 for s = 1, ..., cpop
16 fcomps ← CCrA()
17 fseps ← SPM()
18 end for

19 Step4. Evolution

20 for t = 1, ..., cgen
21 Call binary tournament selection() for P t−1 →M t

22 Call uniform crossover() for M t → Ot

23 for s = 1, ..., cpop
24 Call SPM() for Ot

s → (fseps, k
∗, l∗)

25 Apply mutation SPM() to Ot
s using k∗ and l∗

26 fcomps ← CCrA()
27 fseps ← SPM()
28 end for
29 Apply nondominated sorting to (P t−1 ∪Ot) to obtain P t

30 end for

31 Step5. Improvement

32 Call improvement() for P cgen → P cgen

end
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CHAPTER 5

COMPUTATIONAL RESULTS OF MOCNC

In this chapter, we give the empirical results obtained with MOCNC. In Section 5.1,

we describe the data sets used in the computational study. Section 5.2 gives the pa-

rameter settings and performance measures. We introduce the benchmark approaches

used for comparison in Section 5.3. Finally, the experimental results and related dis-

cussion are given in Section 5.4.

5.1 Data Sets

In our computational experiments, we used two different groups of data sets. For

the first group we generated 2- or higher dimensional data sets using the Gaussian

data set generator proposed in Handl and Knowles (2005b). We preserved the main

principles of the data generator but except modifying the trial-and-error scheme con-

sidering our problem. In the original data set generator, the data sets are generated

from multivariate normal distributions. Given the number of clusters, the mean and

the size of each cluster are generated uniformly in a user defined range. Then, the

variance-covariance matrix for feature values of each cluster is constructed, which

needs to be symmetrical and positive definite. By using the mean, the size of the

cluster, and the variance-covariance matrix, the data points for a cluster are generated

from the multivariate normal distribution. The generator iteratively generates clus-

ters until reaching the user defined number of clusters, and rejects a newly generated

cluster if it has an overlap with previously generated clusters.

We preserved the random generation principles of the mean, the size of the cluster,

and the variance-covariance matrix. However, we changed the rejection condition of
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a newly generated cluster. Since we use the NC closures in our algorithm as an input,

data sets should fit the principle of the NC algorithm, namely the clusters should be

crisply separated. In the NC algorithm, by using the ordered set of points for a data

point a unique neighborhood for this point is formed. If this neighborhood includes

points from different clusters, then the resulting closures may also contain points from

different clusters. Hence, the clustering solutions of the MOCNC algorithm also have

the characteristics of the closures. Therefore, the data generator checks clusters for

their compatibility with the NC algorithm. To guarantee pure NC closures, each

direct neighbor of a point should be from the same cluster. Hence, when a cluster

is generated, firstly the data points in this cluster are checked to see if their direct

neighbors belong to the same cluster. If this condition is not satisfied, then the cluster

is rejected and a new cluster generation begins. Otherwise, if the condition for the

new cluster holds, the previously generated clusters are checked for this condition. In

the care of the condition does not hold for any of the previously generated clusters,

then the newly generated cluster is again rejected and a new cluster generation begins.

Generation continues until the valid set of clusters are generated.

Using this data generator, 150 different data sets were generated with 15 different

problem settings, each problem setting has 10 different instances. The problem set-

tings are various combinations of the number of clusters and the number of features.

Data sets have 5, 10, or 20 clusters. The number of features is 2, 5, 10, 20, or 40.

The number of points in each cluster is generated from Uniform [50, 500]. The cluster

means are generated within a range that is proportional with the number of features

and the number of clusters.

The data set properties are summarized in Table 5.1. Each row in the table corre-

sponds to a problem setting for a combination of dimensionality and the number of

clusters. The third column of the table presents the range for cluster means. The last

three columns are for the minimum, the average, and the maximum number of data

points across 10 instances for a problem setting.

Some examples from the first group of data sets are given in Figure 5.1. For example,

2d-10c-7 refers to the 7th data set instance having 2 features and 10 clusters. It is

shown Figure 5.1(b).
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Table 5.1: Summary of randomly generated data sets

Number of
Features

Number of
Clusters

Range for
Cluster Means

Number
of Data Points

Min Avg Max
2 5 [-10, 10] 942 1467.1 1921
2 10 [-20, 20] 2305 3095.2 3627
2 20 [-40, 40] 4235 5657.5 6810
5 5 [-10, 10] 1097 1561.2 1999
5 10 [-20, 20] 2403 2822.8 3687
5 20 [-40, 40] 4615 6073.2 6947

10 5 [-10, 10] 725 1460.4 2070
10 10 [-20, 20] 2285 3114.5 4121
10 20 [-40, 40] 4634 5964.0 7039
20 5 [-15, 15] 804 1405.3 2402
20 10 [-20, 20] 2490 2971.5 3609
20 20 [-40, 40] 4757 5752.1 6582
40 5 [-15, 15] 947 1557.0 2039
40 10 [-20, 20] 2253 3098.1 3878
40 20 [-40, 40] 5283 5973.1 6746

(a) 2d-5c-5 (b) 2d-10c-7

(c) 2d-10c-8 (d) 2d-20c-10

Figure 5.1: Examples of randomly generated data sets
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Table 5.2: Parameter setting of the MOCNC algorithm

Parameter Value
Dimension {2, 5} {10, 20, 40}

Population size 100 100
Number of generations 100 200
Crossover probability 1 1
Mutation probability 1 1

The second group of data sets contains 2-dimensional data sets. These include clusters

with inter-cluster and intra-cluster density differences, and arbitrary shapes. These

data sets are from the literature that were also used in İnkaya (2011), İnkaya et al.

(2015a), and Handl and Knowles (2007). Some of the data sets from this group are

shown in Figure 5.2.

5.2 Parameter Settings and Performance Measures

The parameter list of MOCNC are the same as those of NSGA-II (Deb et al. 2002).

We give the parameter settings used for MOCNC in Table 5.2. These final values

are determined based on numerous pilot runs. To set the number of generations, we

ran the algorithm up to 400 generations, and at every 50 generations we analyzed the

convergence behavior of the algorithm. We observed that the dimensionality hence

the number of seed solutions affected the convergence of the algorithm. Therefore,

we set different number of generations for different dimensions.

To evaluate the clustering performance of our algorithm, we use the Rand Index (RI)

and the Adjusted Rand Index (ARI), which are widely used external validity indices

that measure the clustering quality. These two measures mainly penalize the mixing

and the division of clusters. The RI takes two partitionings as input, which are the

resulting clustering solution and the true cluster labels, and evaluates the similarity

between them. In ARI a statistical correction is introduced to RI to exclude the effect

of randomness in successful clustering. The RI can take values in the range [0, 1],

whereas the ARI can also take negative values. The larger the RI and ARI values,

the closer the solution to the target clustering. As the ARI value gets close to 0, the

clustering solution essentially becomes a random partition. A negative value of ARI
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(a) data_66 (b) data-c-cc-nu-n_v2

(c) data-oo_v2 (d) data-uc-cc-nu-n_v2

(e) train3_v1 (f) dataX_v2

(g) size5 (h) square4

Figure 5.2: Examples of benchmark data sets
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means that the solution is worse than a random partition. The RI is defined as in

Equation 5.1, following the notation.

Let A be the resulting clustering solution and B be the true cluster labels of the data

set.

a: number of point pairs that are in the same cluster in A and the same cluster in B

b: number of point pairs that are in different clusters in A and different clusters in B

c: number of point pairs that are in the same cluster in A but different clusters in B

d: number of point pairs that are in different clusters in A but the same cluster in B

RI =
a+ b

a+ b+ c+ d
(5.1)

The ARI is defined as in Equation 5.2 based on the contingency table of the two

partitions A and B.

ARI =

∑
kl

(
nkl

2

)
−
[∑

k

(
nk.

2

)
∗
∑

l

(
n.l

2

)]
/
(
N
2

)
1
2

[∑
k

(
nk.

2

)
+
∑

l

(
n.l

2

)]
−
[∑

k

(
nk.

2

)
∗
∑

l

(
n.l

2

)]
/
(
N
2

) (5.2)

where nkl is the number data points that are in common in cluster k of partition A

and cluster l of partition B, and N is the number of data points in the data set. A

period used as a subscript means that the numbers of points are summed up across

that index.

5.3 Benchmark Clustering Methods Used for Comparison

In our experiments, we compare our algorithm with two traditional single-objective

clustering algorithms, k-means and single-link clustering, and a multi-objective ge-

netic algorithm for clustering, ∆-MOCK, which was proposed by Garza-Fabre et al.

(2017).

k-means (MacQueen et al. 1967) and single-link clustering (Voorhees 1985) are well-
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known single-objective clustering algorithms. k-means is a partitional clustering algo-

rithm that aims to minimize the sum of intra-cluster distances. Single-link clustering

is a hierarchical clustering algorithm aiming to maximize the minimum distance be-

tween the closest points from two different clusters in every iteration of the algorithm.

These two clustering algorithms are selected intentionally for comparison since their

objectives are one of the objective functions of our algorithm. Comparing MOCNC

with these two clustering algorithms shows the advantages of multi-objective cluster-

ing.

k-means is run for a range of different number of clusters. Similarly, the resulting

dendrogram of single-link clustering is cut at different number of clusters. The range

for the number of clusters for both algorithms is set as {1, 2, ..., 2k∗} where k∗ is the

true number of clusters. For each data set, the clustering solution that has the best RI

and ARI values and the corresponding number of clusters are reported.

∆-MOCK is an improved version of MOCK proposed by Handl and Knowles (2007).

Similar to our algorithm, ∆-MOCK uses the nondominated sorting of NSGA-II, but

with different objective functions for clustering, namely compactness and connectiv-

ity. Their compactness objective function is the same as the one used in this thesis.

As the second objective, they use a penalization based connectivity objective function

as in Equation 5.3. In this objective function, a user-defined neighborhood parameter,

L is used. If a point and its lth nearest neighbor, where l ≤ L, are in different clusters,

then the amount of penalty added to the connectivity objective function is 1
l
.

N∑
i=1

L∑
l=1

xinni
l

(5.3)

where nni
l is the lth nearest neighbor of point i, and

xinni
l

=

 1
l

if i and nni
l are in different clusters

0 otherwise.

∆-MOCK uses adjacency-based chromosome representation to represent the cluster-
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ing solutions as in MOCNC, but their genes correspond to individual data points. To

decrease the computation time, it uses a reduced length chromosome throughout the

genetic algorithm. A user-defined parameter, δ determines the length of the chro-

mosome. As a preprocessing step, a minimum spanning tree (MST) is constructed

for the entire data set, and the resulting links are sorted in descending order of their

’interestingness’ values. Then, the top (1 − δ)% of the links are assumed to be rel-

evant links, and the remaining δ% of the links are assumed to be non-relevant and

fixed throughout the algorithm. The relevant links form the chromosomes, and the

genetic operators are only applied to these links. This reduced chromosome length

also decreases the computation time of the objective function calculations.

This algorithm uses a MST based initial population generation scheme. In the initial

population, individual clustering solutions are generated by randomly breaking (k−1)

relevant links from the constructed full MST, where k = 1, ..., kmax and kmax is also

a user-defined parameter. The value of kmax is taken as twice the true number of

clusters. This may be regarded as the major disadvantage of ∆-MOCK. For parent

selection and crossover operators, ∆-MOCK uses the same operators as in MOCNC.

It has a neighborhood-biased mutation operator, in which neighborhood parameter, L,

needs to be defined. In the mutation, if a link is broken with the mutation probability,

then the point is linked to a point within its L nearest neighborhood.

Since both ∆-MOCK and MOCNC are based on the NSGA-II algorithm, they are

comparable in terms of different objective function pairs, chromosome representa-

tions, initialization routines, and genetic operators. However, ∆-MOCK has more

parameters to be set by the user. The parameters used for ∆-MOCK are set as in

Table 5.3 as proposed in Garza-Fabre et al. (2017).

5.4 Computational Results for Generated Data Sets

The NC and MOCNC algorithms were coded in C and all the experiments were con-

ducted on a PC with a 3.6 GHz 4-Core Intel Core i7-4790 processor and 8GB of

RAM.

MOCNC, ∆-MOCK, k-means, and single-link clustering algorithms are applied to
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Table 5.3: Parameter setting of the ∆-MOCK algorithm

Parameter Value
Population size 100
Number of generations 100
Crossover probability 1

Mutation probability 1
Γ

+ (
nni

l

Γ
)2

kmax 2k∗
Neighborhood parameter (L) 10
Encoding-length parameter (δ) 80
k∗ is the true number of clusters in the data set.
Γ is the number of relevant links hence the chromosome length.

both groups of data sets described in Section 5.1. The detailed results for generated

data sets are given in Tables B.1 - B.5 see Appendix B. The summary of computa-

tional results for generated data sets is given in Table 5.4.

The first column of the Table 5.4 presents the problem settings. The problem settings

are named based on the number of features and the number of clusters in the data

set. For example, 2d-5c refers to the data sets having 2 features and 5 clusters. For

each problem setting the values in the respective rows are the averages of 10 problem

instances. For each problem instance, from the final population of nondominated

solutions, the one that gives the best RI and ARI values is taken as the solution.

For MOCNC and ∆-MOCK algorithms, the averages of the RI and ARI values in

the final population across 10 instances are reported, as well as the corresponding

average number of clusters (k). Since k-means and single-link clustering algorithms

require the number of clusters to be known, a range of number of clusters are run for

each data set. Then, the clustering solution that gives the best RI and ARI values is

taken as the solution for the data set, and the average of 10 problem instances for each

problem setting is reported.

As we expect, k-means and single-link clustering could not find the target clustering

solutions in most of the problem settings. Out of 15 problem settings, single-link

clustering has the worst RI and ARI performance in 9 settings, and k-means shows

the worst performance in the remaining 6 settings. Although RI and ARI values of

k-means and single-link clustering are not very low, the number of clusters found are

not close to the target number of clusters. Mostly, the resulting number of clusters
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are higher than the target number of clusters. In all the problem settings, the best per-

formers are the MOCNC and ∆-MOCK algorithms (in 2 problem settings single-link

clustering also finds the target clustering as MOCNC and ∆-MOCK). We performed

the 2-sample t-test at 5% significance level to see if the differences in average RI and

ARI values between the two algorithms are statistically significant. When we com-

pare the RI and ARI values of 150 data sets, ∆-MOCK shows better performance

compared to MOCNC. Moreover, we analyzed the individual problem settings for

the significance of difference between mean values of RI and ARI values (10 in-

stances for each problem setting are compared for statistical significance). MOCNC

and ∆-MOCK find the target clusters in 9 and 13 problem settings, respectively. The

problem settings that ∆-MOCK finds target clusters covers those that MOCNC find.

Out of the remaining 6 problem settings for which MOCNC could not find the target

clusters, except the problem settings 5d-10c and 5d-20c, there is no statistically sig-

nificant difference between the two algorithms. The ∆-MOCK algorithm performs

slightly better in 5d-10c and 5d-20c problems.

The computational times of the MOCNC algorithm and the clustering methods used

for comparison are summarized in Table 5.5. We present both the total execution time

of MOCNC and its components which are NC and the genetic algorithm (GA). As

the dimension increases, the shares of the two components in the total time begin to

change. In 2, 5 and 10 dimensional data sets more than 90% of the total comput-

ing time is for the NC execution whereas in 20 dimensional data sets almost 60%

of the total time is for the NC execution and the remaining computing time is for

the GA execution. In 40 dimensional data sets, the NC constitutes only 13% of the

total computing time whereas the remaining is due to GA. The NC execution times

increase proportional to the size of the data set and the dimensionality. The GA times

are mainly affected by the number of closures since the chromosome length is deter-

mined by the number of closures. Moreover, as the dimensionality increases, the GA

execution times increase due to the number of features used in fitness calculations.

The contribution of the final improvement process is negligible.

In problem settings, the execution time of ∆-MOCK is less than the computing time

of MOCNC. The ∆-MOCK algorithm uses two significant user-defined parameters to

increase the efficiency and reduce the computation time, which are encoding-length
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parameter, δ, and neighborhood size parameter, L. The chromosome length is deter-

mined by the δ value. As δ increases, the chromosome length hence the computation

time significantly decreases, because the number of genes that are crossed and mu-

tated decreases. The decrease in time depending on the selection of δ, is demonstrated

in Garza-Fabre et al. (2017). The neighborhood size shows its affect on the connec-

tivity computations. The connectivity function for a solution is updated only if the

two points are in different clusters and the intersection of their neighborhoods is not

empty. Hence, as the neighborhood size decreases, the connectivity computations

require less time. As opposed to the ∆-MOCK algorithm, MOCNC does not need

any user-defined parameters. It is evident that the choice of the parameters defined

above decreases the computation time of ∆-MOCK. Furthermore, using a fixed value

for L and δ, ∆-MOCK times do not increase much as the data set size and dimen-

sionality increase. However, choice of these parameters requires a preliminary study.

On the other hand, we propose a parameter-free algorithm, in return for the higher

computation time.

k-means and single-link clustering algorithms are simple and fast clustering algo-

rithms. Their computational times are less than MOCNC and ∆-MOCK. However,

their clustering solution qualities are poorer than the multi-objective clustering algo-

rithms.

5.5 Computational Results for Benchmark Data Sets

We also experimented our algorithm on 20 arbitrary shaped data sets described in

Section 5.1. The results for benchmark data sets are presented in Table 5.6. In most of

the data sets, k-means does not result in good partitions; it results in mixes the clusters.

Single-link clustering finds the target clusters for 14 problem settings in which the

clusters are well-separated. In 19 data sets, except the square4 data set, MOCNC and

∆-MOCK find good clustering solutions. However, in square4 data set, the clusters

are overlapped. Hence, the separation and connectivity objectives fail to detect the

clustering. MOCNC and ∆-MOCK find the target clusters for 15 and 12 data sets,

respectively. We perform the 2-sample t-test on 20 data sets at 5% significance level

to test if the differences in average RI and ARI values are statistically significant. The
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performances of the algorithms are not significantly different from each other.

∆-MOCK fails to detect true clusters in data_66, data-oo_v2, and train3_v1 since the

user-defined neighborhood size causes to include points from different clusters in the

neighborhoods. For example, two of the clusters in data_66 include 6 and 9 points.

The default neighborhood size for ∆-MOCK proposed in Garza-Fabre et al. (2017) is

L = 10. Hence, the points in these small clusters include neighbors from a different

cluster, which leads to mixed clusters.

On the other hand, MOCNC fails on size5 and square4 data sets since these data sets

are not well-separated, e.g. MOCNC combines the right two clusters of size5 data set

into one cluster. The reason behind this is that the NC closures include points from

different clusters. For data sets named as twenty and fourty, the closures produced by

NC are already the clusters themselves. Hence, these data sets are solved by including

a seed chromosome that links each closure to itself.

For benchmark data sets, the computational times of the MOCNC algorithm and the

clustering methods used for comparison are summarized in Table 5.7. All four algo-

rithms find clustering solutions in a reasonable time.
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CHAPTER 6

MOCNC-F : MOCNC WITH FEATURE SELECTION

In this chapter, we present MOCNC with Feature Selection (MOCNC-F). In Section

6.1, we present the flowchart of the proposed approach and briefly introduce the algo-

rithm steps. In Section 6.2, the additional notation used in MOCNC-F is introduced

and the algorithm is presented in detail.

6.1 Overview of MOCNC-F

A data set has a number of features, which may be relevant or irrelevant (redundant).

Redundant features may mask the clustering structure and make it difficult to extract

clusters, or they may just be noninformative. They may even distort the data such that

data points become unseparable. MOCNC-F aims to detect the relevant features in a

data set.

MOCNC-F is a multi-objective evolutionary algorithm, which searches through dif-

ferent feature subsets. MOCNC-F makes use of MOCNC in feature selection. Specif-

ically, using the features selected according to a MOCNC-F chromosome, MOCNC

generates the clustering solutions. For each feature subset MOCNC finds the non-

dominated clustering solutions. The compactness and separation objective values of

these clustering solutions are also used to assess the fitness of the respective MOCNC-

F chromosome. Then, MOCNC-F evaluates the dominance among different cluster-

ing solutions resulting from different feature subsets. The output of MOCNC-F is a

set of nondominated clustering solutions each with different compactness and sepa-

ration values, and possibly with different feature subsets.
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Figure 6.1: Interaction of feature selection and clustering stages

The interaction between the feature selection and clustering stages is illustrated in

Figure 6.1. For each offspring feature chromosome generated from the parent feature

population, MOCNC is applied and a clustering population is obtained. The unique

set of clustering solutions selected from this population are added to the global pop-

ulation together with their corresponding compactness and separation values. Non-

dominated sorting is applied to the global population to construct a new feature pop-

ulation, which is then mixed with the previous parent population. Finally, nondom-

inated sorting is applied to the union to form the next generation’s parent feature

population.

The MOCNC-F algorithm includes four main steps. The flowchart of the algorithm

is presented in Figure 6.2. In Step0, the data set is read and the algorithm parame-

ters for MOCNC and MOCNC-F are initialized. Then, to be able to compare fitness

of different selected feature subsets, values of each feature are normalized between

0 and 1 as a preprocessing in Step1. Step2 is the initial population generation pro-

cess for MOCNC-F. Initially, a fully random population for features is generated.

Each individual feature chromosome is evaluated by calling MOCNC. After the fit-

ness calculations, duplicating clustering solutions in the final MOCNC population are
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eliminated and unique solutions are gathered in a global population of clustering solu-

tions. Nondominated sorting (based on compactness and separation) is applied to the

global population to obtain the initial feature population. Then, MOCNC-F evolution

starts with the initial population in Step3. For each generation, firstly the mating pool

for feature chromosomes is formed. Then, offsprings are generated from the mating

pool and inserted into the child population. After crossover, mutation is applied to

the child population. Each offspring is evaluated by MOCNC. The resulting set of

unique clustering solutions for each feature chromosome enter the global population.

Then, nondominated sorting is applied to the global population and the new feature

population for the next generation is obtained.

6.2 Description of the MOCNC-F Algorithm

In this section, the steps of MOCNC-F algorithm are presented.

6.2.1 Additional Notation Used in MOCNC-F

While describing MOCNC-F we use the same notation given in Section 4.4.1 and

Section 4.4.2 for the clustering problem and the evolutionary algorithm, respectively.

The following additional notation is used in MOCNC-F.

fpop population size of feature solutions

fgen number of generations in evolution in MOCNC-F

fpcross crossover probability for feature solutions

fpmut mutation probability for feature solutions

globP set of clustering solutions in global population

6.2.2 Fitness Functions Used for the Feature Selection Problem

The fitness functions of MOCNC are the compactness and separation of a clustering

solution. In MOCNC-F, we basically use the same fitness functions, but now we take

the average of the fitness values by dividing the original fitness values with the number

of features selected. The compactness and separation measures are formulated as
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Figure 6.2: Flowchart of MOCNC-F
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follows.

avgCCrA =
CCrA

d

avgSPM =
SPM

d

where d is the number of features selected in a solution.

6.2.3 Chromosome Representation

In MOCNC-F, the feature chromosomes consist of three types of information: (i) the

feature selection decision variables, (ii) the corresponding clustering solution, and

(iii) the fitness values. The feature selection is represented with binary genes. If

the f th feature is selected, then 1 is assigned to the f th gene of the chromosome.

Otherwise, 0 is assigned. The chromosome structure is illustrated in Figure 6.3. This

is a chromosome with eight features and six closures. The selected features in this

chromosome are features 1, 4, 6, and 7. In the clustering solution part, there are six

closures linked to each other and resulting in three clusters, C1 = {1, 2, 3}, C2 = {4},
C3 = {5, 6}.

 Feature selection    Clustering

Feature:    1       2      3      4      5      6      7     8            Position:   1      2      3      4      5      6

2 3 3 4 6 51 0 0 1 0 1 1 0 ...........

Figure 6.3: Illustration of the MOCNC-F chromosome structure

6.2.4 Initial Population Generation

In our algorithm, the initial feature population is generated randomly. No special

technique is applied for initial population generation. With equal probability, a feature

is either selected in a chromosome or not. The pseudocode of the initial population
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generation is given in Algorithm 10.

Algorithm 10: Initial population generation for features
Procedure generate initial population for features()

input : numF, fpop
output: P 0

1 for s = 1, ..., fpop
2 for f = 1, ..., numF
3 rnd = U [0, 1]
4 if rnd < 0.5 then
5 P 0

s (f) = 1
6 else
7 P 0

s (f) = 0
8 end
9 end for
10 end for

end

6.2.5 Genetic Operators

The selection and crossover operators of MOCNC-F are the same as the ones in

MOCNC. The binary tournament selection is used for mating pool construction and

the uniform crossover is applied. The mutation operator for feature chromosomes is

naturally different from the mutation operator in MOCNC. The bit-flip mutation oper-

ator is used. This mutation operator chooses a gene randomly and changes its current

binary value with a certain mutation probability. The bit-flip mutation operator is

presented in Algorithm 11.

6.2.6 The MOCNC-F Algorithm

The MOCNC-F has four main steps. The steps are initialization of parameters, nor-

malization of the feature values, initial population generation, and evolution. The

pseudocode of the MOCNC-F algorithm is presented in Algorithm 12.

In the initialization step, the data set is read, and the evolutionary algorithm param-

eters, which are the population size, the number of generations, the probability of

crossover, and the probability of mutation, for MOCNC-F are initialized.
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Algorithm 11: Mutation for features
Procedure bit-flip mutation()

input : numF,Ot
s

output: mutated Ot
s

1 rnd = U [0, 1]
2 if rnd < fpmut then
3 f = discrete uniform [1, numF ]
4 if Ot

s(f) = 1 then
5 Ot

s(f) = 0
6 else
7 Ot

s(f) = 1
8 end
9 end

end

Step1 is a preprocessing step before the main loop of MOCNC-F. In this step the data

set is normalized. Features may have different ranges and distributions. In order to

compare different feature subsets, feature values should be in the same range. Hence,

values of each feature are normalized between 0 and 1 by using the maximum and the

minimum value of that feature across the data set.

In Step2, initial population for feature chromosomes are generated. For each individ-

ual of the initial feature population, MOCNC is applied to evaluate the corresponding

feature subset, (see line 11). The output of the MOCNC is a population of non-

dominated clustering solutions for the given feature subset. However, this population

may contain identical clustering solutions which may cause premature convergence

for MOCNC-F. To avoid this, identical solutions are eliminated and only the unique

clustering solutions are kept for each feature chromosome. In the elimination pro-

cess, it is assumed that the clustering solutions with equal fitness values are the same.

The set of unique solutions obtained from MOCNC for each feature chromosome are

added to the global population of MOCNC-F, (see lines 12-13). In the global pop-

ulation there can be at most fpop ∗ cpop solutions. Each chromosome in the global

population includes a feature subset, a corresponding clustering solution, and fitness

values. Nondominated sorting is applied to the global population to construct the

initial feature population having fpop individuals, (see line 15).

Step3 is the evolution process of the MOCNC-F. In each generation, firstly the mating
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pool is constructed with binary tournament selection. Then, uniform crossover is

applied to the parent population to generate the child population. Next, the bit-flip

mutation is applied to each offspring in the child population. The child population

consists of fpop solutions. To evaluate each feature offspring, MOCNC is called,

(see line 22). The unique clustering solutions obtained for each feature offspring

are added to the global population, (see lines 23-24). Then, nondominated sorting

is applied to the global population and the child feature population is generated in

line 26. Then, the new feature population is constructed by applying nondominated

sorting to the union of the parent and child populations in line 27. At the end of

fgen generations the final feature population, which has at most fpop nondominated

clustering solutions with different feature subsets is obtained.
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Algorithm 12: The MOCNC-F Algorithm
Procedure MOCNC-F()

input : Data set D
output: Nondominated clustering solutions obtained with different feature

subsets

1 Step0. Initialization

2 Set fpop, fgen, fpcross, fpmut, cpop, cgen, cpcross, cpmut
3 Read data set

4 Step1. Normalization of the data set

5 for f = 1, ..., numF
6 Normalize feature f between 0 and 1
7 end for

8 Step2. Initial population generation for features

9 Call generate initial population for features()→ P 0

10 for s = 1, ..., fpop
11 Call MOCNC() for feature subset in P 0

s to obtain nondominated
clustering solutions

12 Eliminate identical clustering solutions
13 Add unique clustering solutions to globP
14 end for
15 Apply nondominated sorting to globP to obtain P 0

16 Step3. Evolution

17 for t = 1, ..., fgen
18 Call binary tournament selection() for P t−1 →M t

19 Call uniform crossover() for M t → Ot

20 for s = 1, ..., fpop
21 Apply bit-flip mutation() for Ot

s

22 Call MOCNC() for feature subset in Ot
s to obtain nondominated

clustering solutions
23 Eliminate repeated clustering solutions
24 Add unique clustering solutions to globP
25 end for
26 Apply nondominated sorting to globP to obtain Ot

27 Apply nondominated sorting to (P t−1 ∪Ot) to obtain P t

28 end for
end
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CHAPTER 7

COMPUTATIONAL RESULTS OF MOCNC-F

In this chapter, we report the computational results of MOCNC-F. In Section 7.1,

we describe the generation of redundant features and give the data set properties. In

Section 7.2 we give the parameter settings of the algorithm and performance measures

used for evaluation. Then, the benchmark method used for comparison is introduced

in Section 7.3. Finally, we present the computational results and discuss them in

Section 7.4.

7.1 Data Sets

In our computational experiments, we used the generated data sets previously de-

scribed in Section 5.1. There were 15 different problem settings with 2, 5, 10, 20, 40

features and 5, 10, 20 clusters. We generated 10 data sets for each problem setting.

In new experimental study for feature selection, extra features called redundant fea-

tures are generated in addition to the original features. If the original dimensionality

(number of features) is d, 0.2d, 0.5d, and d redundant features are added to the data

sets and new data sets are generated. Hence, with each original data set, three new

data sets are generated having a different number of redundant features. The data set

properties are summarized in Table 7.1. 2-dimensional data sets are excluded from

our experiments. Since the number of possible feature selection solutions with 2 orig-

inal and 2 redundant features is only 24, the correct selection can be found by simple

enumeration. In total, there are 360 data sets consisting of 4 x 3 x 3 = 36 different

problem settings each having 10 different instances.

Values of redundant features are generated from uniform distribution using the ranges
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Table 7.1: Summary of feature selection data sets

Number of
Original
Features

Number of
Clusters

Range of Values
of Redundant

Features

Number of
Redundant

Features
5 5 [-10,10] {1,3,5}
5 10 [-20,20] {1,3,5}
5 20 [-40,40] {1,3,5}
10 5 [-10,10] {2,5,10}
10 10 [-20,20] {2,5,10}
10 20 [-40,40] {2,5,10}
20 5 [-15,15] {4,10,20}
20 10 [-20,20] {4,10,20}
20 20 [-40,40] {4,10,20}
40 5 [-15,15] {8,20,40}
40 10 [-20,20] {8,20,40}
40 20 [-40,40] {8,20,40}

of original features. We assume that the feature values generated from uniform distri-

bution behave as noise in the data sets and do not contribute to the clustering process.

To show the redundancy of uniformly distributed values, an example is provided in

Figure 7.1. In Figure 7.1(a), an original 2-dimensional data set having 2 clusters is

shown. Both of the features are required to separate the clusters. In Figure 7.1(b), a

new feature generated from uniform distribution is added to the original features. The

new feature does not provide any additional information for detecting the clusters, so

it is a redundant feature.

Figure 7.1: An example for a redundant feature
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Table 7.2: Parameter setting of the MOCNC-F algorithm

Parameter Value
Population size for features 20
Number of generations for features 15
Crossover probability for features 1
Mutation probability for features 0.5

7.2 Parameter Settings and Performance Measures

The parameters of MOCNC-F are those that are used in NSGA-II. We give the addi-

tional parameter settings used in MOCNC-F in Table 7.2. The MOCNC parameters

are kept as the same, and the final parameter values for MOCNC-F are set after pilot

runs. To set the feature population size, we analyze the number of nondominated

clustering solutions in each generation, and set its value large enough to cover all

nondominated solutions. To set the number of generations for feature solutions, we

run the algorithm up to 20 generations, and we analyze the convergence behavior of

the algorithm at each 5 generation interval. For the mutation probability, first two

extreme values are tried. When the mutation probability is 0, the exploration capabil-

ities of the algorithm decrease. On the other hand, when the mutation probability is

1, a good feature solution that may be found with crossover is changed and finding

this solution again may take along time. Hence, the mutation probability is set as 0.5

after trying some other levels between 0.5 and 1.

To evaluate the clustering performance for different feature subsets, we again use the

Rand Index (RI) and Adjusted Rand Index (ARI) as described by Equations 5.1 and

5.2, respectively.

7.3 Benchmark Method Used for Comparison

In Section 5.4, we presented the experimental results of MOCNC and the methods

used for comparison. Among these methods, ∆-MOCK shows slightly better perfor-

mance than MOCNC on a few problem settings. However, in most of the problem set-

tings, there is no significant difference between MOCNC and ∆-MOCK. For this rea-

son, we use ∆-MOCK as a benchmark algorithm to MOCNC in the feature selection
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algorithm. In the MOCNC-F algorithm, we replace MOCNC with ∆-MOCK, hence

we evaluate the clustering performance for a selected feature subset by ∆-MOCK. To

make it easier to follow, this adapted algorithm is referred to as ∆-MOCK-F.

As mentioned earlier, MOCNC and ∆-MOCK have one objective in common, which

is the compactness measure. Their second objectives are different; MOCNC uses

the separation whereas ∆-MOCK uses the connectivity. Both the compactness and

separation objectives are distance-based measures, so they are affected by the number

of features selected in the solution. However, the connectivity objective of ∆-MOCK

is based on penalizing neighbors and is not affected by the number of features selected

since the neighborhoods are constructed from scratch for each feature subset.

In MOCNC-F, to remove the effect of the number of features, we divide the original

compactness and separation values by the number of features selected. In ∆-MOCK-

F, we also apply this but only for the compactness objective. The connectivity objec-

tive is calculated as in ∆-MOCK.

7.4 Computational Results

To test the performance of the MOCNC-F algorithm, we ran our algorithm on 360

data sets, in which there are 36 different problem settings each having 10 instances.

The MOCNC-F algorithm was coded in C and all the experiments are run on a PC

with a 3.6 GHz 4-Core Intel Core i7-4790 processor and 8GB of RAM.

MOCNC-F and ∆-MOCK-F are applied to the data sets described in Section 7.1.

We use the same parameter settings for both algorithms to ensure that the number of

solutions visited are basically the same. The detailed results for individual problem

instances are given in Tables C.1 - C.12 in Appendix C. The summary of computa-

tional results are given in Table 7.4.

The first column of Table 7.4 presents the names of the problem settings. The names

of the problem settings are the original names of the data sets as explained in Chapter

5. The names reflect the number of original features and the number of clusters

in the data set. For example, 5d-10c represents the data problem setting having 5
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original features and 10 clusters. For each problem setting, there are three additional

settings depending on the number of redundant features added. The third column

represents the number of redundant features added to the data set. For each pair of

problem setting and the number of redundant features there are 10 instances, and the

values in each row represents the averages across these 10 instances. As in the case

of MOCNC, nondominated solution in the final population that gives the best RI and

ARI values is taken as the solution for each problem instance. For the MOCNC-F and

∆-MOCK-F algorithms, the averages of the RI and ARI values across 10 instances,

the average number of clusters found, the average number of original and redundant

features selected are reported. It should be noted that, since this is a multi-objective

problem, the nondominated solutions may have the same clustering solution with

different feature subsets hence different objective function values. We report one of

the solutions when there are alternative solutions with the same RI and ARI values.

According to Table 7.4, in 34 out of 36 problem settings, MOCNC-F shows bet-

ter performance than ∆-MOCK-F. In two problem settings, ∆-MOCK-F performs

slightly better in terms of RI and ARI values. When we analyze the performance of

the algorithms on individual data sets, MOCNC-F finds the target clustering solution

in 284 data sets. The worst-case ARI performance of MOCNC-F is 0.452 with only

one data set, which is 40d-5c-3 which has 40 redundant features. However, when we

run the MOCNC-F algorithm until 20 generations for this data set, the ARI perfor-

mance is increased to 0.999. The second worst-case ARI performance of MOCNC-F

is 0.907 for 20d-10c-5 with 20 redundant features. On the other hand, ∆-MOCK-F

could not find the target clustering solution in any of the 360 data sets. Moreover, the

worst-case ARI performance of ∆-MOCK-F is 0.196 for 5d-5c-9 with only 1 original

feature selected. In fact, in ∆-MOCK-F solutions, ARI is below 0.3 for 31 problem

instances and below 0.5 for 76 problem instances.

We again perform the 2-sample t-test at 5% significance level to see if the differ-

ences in RI and ARI values between the two algorithms are statistically significant.

When we compare the RI and ARI values of all 360 data sets, MOCNC-F shows

significantly better performance compared to ∆-MOCK-F. Moreover, we analyze the

individual problem settings for the significance between mean values. MOCNC-F

has significantly better performance in 26 problem settings. The performance gap
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between the two algorithms decreases as the number of original features increases.

MOCNC and ∆-MOCK perform equally well for the clustering problem. When it

comes to the feature selection problem, however, MOCNC-F clearly outperforms ∆-

MOCK-F. We believe that the main reason for this is the choice of objectives.

The objective functions of MOCNC-F are the averaged versions of the original MOC-

NC objective functions with the selected number of features. When the compactness

objective function is as in MOCNC, the compactness value naturally increases as the

number of features increases. However, after dividing this by the number of features

selected, the compactness function does not follow an increasing or decreasing trend.

On the other hand, the relationship between the separation objective function and the

number of features selected is not straightforward. The original separation objective

function of MOCNC has a tendency to improve as the number of features selected

increases, but not strictly as in the original compactness function. As the number of

features increases, the clusters mostly become more separated, but this behavior is

not always observed. It happens only when the additional selected features increase

the separation of clusters. As the selected feature subset is changed, the closest points

between the pairs of clusters may change, which may cause a decrease or increase

in the separation function value. Because of this, the separation function can also be

normalized with the number of features.

It should be noted that, as the number of features selected does not result in an in-

creasing or decreasing trend in compactness and separation objective functions of

MOCNC-F, the multi-objective optimization becomes truly effective since it reveals

the tradeoffs between these two objectives.

The connectivity objective of ∆-MOCK replaces our separation objective. It sums

the penalties assigned to points when they are not in the same cluster as their near-

est neighbors for a fixed neighborhood size. This only takes into account the rank

of the nearest neighbor within the neighborhood, not the actual distances. Since the

neighborhood is constructed from scratch for each feature subset, the connectivity

objective is not directly affected by the number of features selected. However, as the

number of features selected decreases, although the clusters may become overlapped,

their compactness objective may be improved in the reduced space. Hence, compact-
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ness favors fewer features, but connectivity does not have a significant counteracting

effect to increase the number of features and to force clusters to be separated from

each other. It was stated in Handl and Knowles (2007) that "the concept of spatial

separation is intrinsic (opposite) to that of connectedness" meaning that maximizing

separation corresponds to minimizing their connectedness measure. However, we ob-

serve that in feature selection problem these objectives are not substitutes for each

other.

The compactness and separation measures tend to counteract or balance each other in

selecting the right features. However, the connectivity measure in ∆-MOCK-F has no

significant counteracting effect against the compactness measure. In fact, as the num-

ber of features decreases, when the clusters become overlapped in fewer dimensions,

multi-objective optimization leads to merging clusters so that the compactness is de-

creased and hence the connectivity is improved. Therefore, in most problem settings,

∆-MOCK-F selects fewer original and redundant features compared to MOCNC-F.

We can conclude that the objective functions in MOCNC-F is more suitable for the

feature selection problem. This choice facilitates finding different and better nondom-

inated clustering solutions for different feature subsets.

To illustrate this situation with an example, we present the Pareto fronts of MOCNC-

F and ∆-MOCK-F final populations for 5d-5c-1 with 1 redundant feature in Figure

7.2. In the figure the points represent the nondominated solutions. The number next to

each point stands for the number of features selected in that solution. In Figure 7.2(a),

the Pareto front of MOCNC-F is presented. The target clustering solution is one of

the nondominated solutions. On the other hand, the target clustering solution could

not be found by ∆-MOCK-F since it is dominated with compactness and connectivity

objectives. The compactness and connectivity values of the target clustering solution

are 0.007 and 0.621, respectively. However, in ∆-MOCK-F this solution is dominated

by three solutions whose compactness and connectivity values are (0.003, 0.590),

(0.005, 0.379), (0.006, 0.322). Moreover, the Pareto front of ∆-MOCK-F shows that

the number of features selected in nondominated solutions are mostly 1, whereas

there are different numbers of features selected in MOCNC-F solutions.

In our experiments, we expected both MOCNC-F and ∆-MOCK-F algorithms to se-
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(a) Pareto front of MOCNC-F (b) Pareto front of ∆-MOCK-F

Figure 7.2: Pareto fronts of MOCNC-F and ∆-MOCK-F for 5d-5c-1 with 1 redundant
feature

lect the original features and eliminate the redundant features in the best solutions.

Since ∆-MOCK-F could not find the target clustering solution in any of the data sets,

reaching conclusions on the redundancy of features based on ∆-MOCK-F results is

difficult. However, this can be done for MOCNC-F results. There are many instances

for which MOCNC-F finds the target clustering solution with fewer than the original

features. For example, for 5d-5c-5 MOCNC finds the target clustering with 5 fea-

tures, but MOCNC-F finds the same clustering with only 4 original features, after

adding 3 redundant features. This indicates that one of the original features is not in-

formative. As another example, MOCNC finds the target clustering solutions for all

10 data sets in 10d-5c problem setting with 10 original features, whereas MOCNC-F

again finds the target clusterings with an average of 7.6, 7.8, and 8.8 original features

when there are 2, 5, and 10 redundant features, respectively. We may conclude that

especially when the dimensionality increases, some of the original features may also

be redundant.

In some data sets, a few redundant features are also selected in addition to the original

features and the target clustering is found. When we run the MOCNC-F algorithm for

more generations for these data sets, some of the redundant features are eliminated

while the clustering solution remains the same. This means that as the number of

generations increase, the chance of eliminating the redundant features increases. For

instance, 20d-10c-8 with 20 redundant features has an ARI value of 1 with 18 original

and 6 redundant features selected at generation 15. When we run this data set for 5
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Table 7.3: Solution quality of MOCNC-F and ∆-MOCK-F for high dimensional data
sets from literature

Data Set # of Points MOCNC-F ∆-MOCK-F
RI ARI k OF RI ARI k OF

100d-10c-1* 2892 1.000 1.000 10 37 0.999 0.994 10 40
100d-10c-2** 1951 0.999 0.996 10 36 0.998 0.991 10 49
100d-20c-1** 5485 0.999 0.999 20 38 0.999 0.989 21 51
200d-10c-1** 2666 1.000 0.999 10 95 0.999 0.993 10 110
* From Handl and Knowles (2007)
** From Garza-Fabre et al. (2017)
k : Number of clusters found in the solution
OF : Number of redundant features selected in the solution

more generations, the number of original features selected becomes 19 whereas the

number of redundant features selected decreases to 4.

We also experimented with MOCNC-F on three data sets from Garza-Fabre et al.

(2017), and one data set from Handl and Knowles (2007). These data sets are ex-

tremely high-dimensional data sets and we aim to see whether there are redundant

features in these data sets. The experimental results of MOCNC-F and ∆-MOCK-F

are given in Table 7.3. Although MOCNC-F selects only a portion of the features, it

finds good clustering solutions. Therefore, we can conclude that in such high dimen-

sions there can be redundant features with the multivariate normal data set generator

used.

The computing times of the MOCNC-F and ∆-MOCK-F algorithms are summarized

in Table 7.5. After analyzing the computational time results of MOCNC and ∆-

MOCK for the clustering problem in Section 5.4, we expected the execution time

of MOCNC-F to be longer than ∆-MOCK. Indeed, the computational times of ∆-

MOCK-F are significantly shorter than MOCNC-F. Although the computational times

of MOCNC-F are long, feature selection is not a problem to be solved frequently and

long times can be afforded. Hence, considering its solution quality, MOCNC-F is a

promising algorithm for simultaneous feature selection and clustering.
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Table 7.4: Solution quality of MOCNC-F and ∆-MOCK-F for generated data sets

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

5d-5c 1561.20
1 0.996 0.991 5.1 4.7 0.0 0.784 0.477 3.8 1.7 0.0
3 0.997 0.991 5.0 4.6 0.1 0.792 0.488 4.0 1.7 0.0
5 0.996 0.991 5.0 4.7 0.1 0.808 0.509 4.7 1.5 0.0

5d-10c 2822.80
1 0.998 0.989 9.9 5.0 0.0 0.830 0.386 8.2 1.4 0.0
3 0.997 0.988 9.8 5.0 0.0 0.872 0.546 8.7 2.7 0.0
5 0.998 0.990 9.8 5.0 0.0 0.866 0.509 8.4 2.5 0.0

5d-20c 6073.20
1 0.997 0.977 18.7 4.6 0.0 0.972 0.777 21.0 3.7 0.0
3 0.998 0.981 19.1 4.7 0.0 0.995 0.961 19.3 4.7 0.0
5 0.998 0.987 19.2 4.7 0.0 0.981 0.849 19.6 4.0 0.0

10d-5c 1460.40
2 1.000 1.000 5.0 7.6 0.0 0.717 0.352 3.9 1.0 0.0
5 1.000 1.000 5.0 7.8 0.0 0.778 0.489 3.7 2.7 0.0

10 1.000 1.000 5.0 8.8 0.0 0.943 0.868 4.9 6.9 0.0

10d-10c 3114.50
2 1.000 1.000 10.0 9.4 0.0 0.878 0.575 7.6 4.3 0.0
5 1.000 1.000 10.0 9.2 0.0 0.936 0.769 8.6 6.5 0.0

10 1.000 1.000 10.0 9.6 0.0 0.945 0.807 8.6 7.4 0.0

10d-20c 5964.00
2 1.000 1.000 20.1 8.4 0.0 0.999 0.994 20.0 6.8 0.0
5 1.000 1.000 20.0 9.5 0.0 0.999 0.994 20.0 6.9 0.0

10 1.000 1.000 20.2 9.1 0.0 0.999 0.994 20.0 6.9 0.0

20d-5c 1405.30
4 1.000 1.000 5.0 12.9 0.0 0.993 0.982 4.9 11.9 0.0

10 1.000 1.000 5.0 15.8 1.0 0.997 0.991 5.0 12.4 0.1
20 1.000 1.000 5.0 17.5 4.6 0.997 0.991 5.0 16.7 0.9

20d-10c 2971.50
4 1.000 1.000 10.0 13.8 0.0 0.978 0.919 9.6 10.9 0.0

10 1.000 1.000 10.0 17.0 1.0 0.999 0.994 10.0 12.4 0.0
20 0.996 0.983 9.5 18.1 4.8 0.998 0.992 10.9 16.9 0.7

20d-20c 5752.10
4 1.000 1.000 20.0 11.6 0.0 0.999 0.994 20.0 7.8 0.0

10 1.000 1.000 20.0 15.9 0.1 0.999 0.994 20.0 9.5 0.0
20 1.000 1.000 20.0 18.5 0.6 0.999 0.994 20.0 19.3 1.0

40d-5c 1557.00
8 1.000 1.000 5.0 30.0 0.9 0.997 0.993 5.0 18.0 0.0

20 1.000 1.000 5.0 30.3 5.4 0.997 0.992 5.0 24.4 0.8
40 0.972 0.945 4.8 30.0 12.6 0.996 0.990 5.2 31.2 5.7

40d-10c 3098.10
8 1.000 1.000 10.0 28.4 0.4 0.999 0.994 10.0 20.3 0.0

20 1.000 1.000 10.0 33.0 3.7 0.999 0.994 10.0 27.9 1.2
40 1.000 0.999 10.2 32.9 17.1 0.993 0.968 9.3 30.9 5.4

40d-20c 5973.10
8 1.000 1.000 20.0 28.4 0.1 0.999 0.994 20.0 14.6 0.0

20 1.000 1.000 20.0 33.5 2.1 0.999 0.994 20.0 30.5 1.4
40 1.000 1.000 20.0 31.4 13.5 0.999 0.994 20.0 30.5 4.9

RdF : Number of redundant features added to the original data set
k : Average number of clusters found in the solutions
OF : Average number of original features selected in the solutions
RF : Average number of redundant features selected in the solutions
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Table 7.5: Computational times (in seconds) of MOCNC-F and ∆-MOCK-F for gen-
erated data sets

Problem # of Points RdF MOCNC-F
∆-MOCK-FNC GA Total

5d-5c 1561.20
1 2321.26 1132.40 3453.65 252.78
3 2424.51 583.19 3007.70 245.92
5 2531.49 306.08 2837.57 243.89

5d-10c 2822.80
1 11348.63 3041.38 14390.01 866.16
3 11515.98 690.50 12206.48 821.93
5 12581.55 311.69 12893.24 795.82

5d-20c 6073.20
1 82487.38 19605.81 102093.20 6212.19
3 83191.97 1419.97 84611.94 5671.92
5 89122.54 1153.68 90276.22 5459.11

10d-5c 1460.40
2 2245.25 169.19 2414.44 228.63
5 2402.92 171.58 2574.51 227.47

10 2500.18 216.17 2716.35 232.21

10d-10c 3114.50
2 16118.97 563.09 16682.05 1035.69
5 16743.13 514.93 17258.05 1020.92

10 17474.28 502.57 17976.85 965.98

10d-20c 5964.00
2 76938.29 2231.81 79170.11 5616.11
5 83481.88 2027.15 85509.02 5308.02

10 84112.95 2035.38 86148.32 4995.39

20d-5c 1405.30
4 2316.52 727.43 3043.95 231.55

10 2571.91 850.66 3422.57 250.65
20 2937.44 1769.79 4707.23 254.32

20d-10c 2971.50
4 13226.35 3623.23 16849.58 839.75

10 15012.64 2392.63 17405.27 893.72
20 19907.94 3431.57 23339.51 816.01

20d-20c 5752.10
4 71377.06 13981.53 85358.59 4474.69

10 74755.90 7464.67 82220.57 4157.74
20 80169.18 1952.98 82122.16 3673.09

40d-5c 1557.00
8 3800.12 15583.15 19383.27 312.17

20 4368.99 24757.39 29126.39 332.46
40 5088.76 37899.13 42987.89 377.33

40d-10c 3098.10
8 18060.42 47172.35 65232.77 1038.11

20 19984.65 56927.08 76911.73 997.46
40 23324.60 142247.27 165571.86 978.36

40d-20c 5973.10
8 90719.91 131276.52 221996.43 4550.86

20 90923.81 12865.42 103789.23 4264.77
40 106561.52 71078.24 177639.76 3580.02

RdF : Number of redundant features added to the original data set
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CHAPTER 8

CONCLUSIONS

In this study, we address the clustering problem for data sets that have all numerical

features. There may be density differences between and/or within arbitrary shaped

clusters, and there are no outliers or noise. Data sets may be high-dimensional with

a number of redundant features. Moreover, the number of clusters is unknown. Each

of these characteristics needs special treatment and makes the clustering problem

difficult.

In addition to the data set characteristics, the choice of the objective function(s) for

the clustering algorithms is not straightforward. This choice may result in completely

different clustering solutions. For the defined clustering problem, we propose a multi-

objective evolutionary clustering algorithm, namely MOCNC. The MOCNC algo-

rithm takes into account the three objectives of clustering: compactness, separation,

and connectivity. MOCNC uses the multi-objective framework and nondominated

sorting property of the well-known evolutionary algorithm NSGA-II (Deb et al. 2002)

and simultaneously optimizes two conflicting objectives of clustering. The objective

functions are minimizing the intra-cluster distances (compactness) and maximizing

the inter-cluster distances (separation).

To handle the third objective, which is the connectivity of data points, MOCNC uses a

special Neighborhood Construction (NC) algorithm (İnkaya et al. 2015a) as a prepro-

cessor. NC uses the underlying connectivity and density information in the data set

to construct unique neighborhoods for data points. It then forms closures considering

overlaps of these neighborhoods. The data points within a closure are connected and

assumed to be in the same cluster. The closures are then given as input to the evo-

lutionary algorithm. Throughout the generations of MOCNC, the final clusters are
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searched by combining these closures.

There are two advantages of using the NC closures: (i) connectivity of data points in

closures is ensured and (ii) the problem becomes more scalable as the points within

closures are fixed. The output of MOCNC is a set of nondominated clustering so-

lutions. The nondominated solutions represent different tradeoffs between two con-

flicting objectives (compactness and separation) and may have different numbers of

clusters.

We used two groups of data sets to test the solution quality of MOCNC. The first

group consists of randomly generated data sets having different number of clusters

and features. The second group includes 2-dimensional data sets having arbitrary

shaped clusters with density differences. We also conducted a comparison analysis

with two well-known single-objective clustering objectives (k-means and single-link)

and a recent multi-objective clustering algorithm (∆-MOCK). The empirical results

show that both MOCNC and ∆-MOCK are capable of finding target clustering so-

lutions for most of the data sets, whereas k-means and single-link are not nearly as

successful. The MOCNC algorithm has limited success on data sets having larger

intra-cluster distances than inter-cluster distances. When this is the case, the NC clo-

sures contain data points from different clusters, which results in mixed clusters and

poor solutions.

The computation time of MOCNC consists of mainly two parts, NC and GA. The

shares of NC and GA computation times change as the dimensionality increases. The

NC times increase proportional to the size of the data set and the dimensionality. The

GA times are mainly affected by the number of closures and the number of features

since the chromosome length is determined by the number of closures and the number

of features affect fitness calculation times.

The computation times of MOCNC are longer than those of the algorithms used for

comparison. The k-means and single-link algorithms are simple and fast clustering al-

gorithms. However, their clustering performances are poorer than the multi-objective

clustering algorithms. The ∆-MOCK algorithm uses two significant user-defined

parameters to increase the efficiency and reduce the computation time, which are

encoding-length parameter that determines the chromosome length, and neighbor-
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hood size parameter that affects the connectivity objective function computations. As

opposed to the ∆-MOCK algorithm, MOCNC does not need any user-defined prob-

lem parameters. It is evident that the choice of the parameters defined above decreases

the computation time of ∆-MOCK. However, choice of these parameters requires a

preliminary study. On the other hand, we propose a parameter-free algorithm, in

return for the higher computation time.

After obtaining empirical results for MOCNC, we extend it for the feature selection

problem and propose a new algorithm, namely MOCNC-F. In MOCNC-F, the cluster-

ing problem defined above remains the same, but the data sets may contain redundant

features. The number of redundant features is unknown. MOCNC-F finds the set

of nondominated clustering solutions each with different compactness and separation

values, and possibly with different selected feature subsets.

To the best of our knowledge, there is no algorithm that takes into account the feature

selection and clustering problems simultaneously in a multi-objective perspective,

where the number of clusters and the number of redundant features are unknown.

Hence, to compare the solution quality of MOCNC-F, we adapt the ∆-MOCK algo-

rithm to the feature selection problem, namely ∆-MOCK-F. We apply both of the

algorithms to randomly generated data sets used in MOCNC experiments by adding

different number of redundant features. MOCNC-F provides better results than ∆-

MOCK-F in almost all data sets. The empirical results prove that the choice of objec-

tive functions in MOCNC-F increases the simultaneous feature selection and cluster-

ing solution quality.

The computation time of MOCNC-F is directly affected by that of MOCNC. The

main limitation of the MOCNC-F algorithm is the long computation times. There is a

need for the improvements to make the algorithm run more efficiently and reduce the

execution times. However, considering that feature selection problem is not solved

frequently, MOCNC-F has a very good performance. Hence, MOCNC-F is a new and

promising algorithm for clustering with feature selection.

In order to prevent MOCNC from mixing clusters due to fixed NC closures, some

evaluation measures can be defined for the NC closures and based on these measures

division techniques can be applied to the NC closures as well as combining them as
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in the currently used mutation operator.

In this study, all attributes of the data set are numerical and the Euclidean distance

is used to evaluate the similarity between data points. Another future research issue

may be analyzing the algorithms using different compactness and separation mea-

sures based on the Euclidean distance. Also, different multiple objectives can be

defined to perform clustering for data sets having categorical or mixed features.

Focus of this study is on the unsupervised clustering problem. Both MOCNC and

MOCNC-F can be adapted for the semi-supervised version of the problem. Given

that some of the data points are in the same cluster (which correspond to must-link

constraints) and others are in different clusters (which correspond to cannot-link con-

straints), it may be possible to preprocess the NC closures accordingly. The evolution-

ary algorithm operators may also be updated to handle such additional information.
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APPENDIX A

PROOF OF EQUIVALENCE OF COMPACTNESS MEASURES

In this appendix, we give the proof of equivalence of the equation 4.1 and 4.2. The

notation used is as follows.

Ck set of points in cluster k

Bk set of closures in cluster k

N number of data points in set D

numK number of clusters found in a solution

i,j indices for data points, i, j = 1, ..., N

k indices for clusters, k, l = 1, ..., numK

m indices for closures

f indice for features

dij Euclidean distance between points i and j

ck centroid of cluster k

cm centroid of closure m

nm number of points in closure m

compm compactness of closure m
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APPENDIX B

EXPERIMENTAL RESULTS OF THE MOCNC ALGORITHM

In this appendix, we give the detailed experimental results of the MOCNC algorithm

for individual problem instances.

Some of the column headings used in all tables are explained below.

RI : Rand Index for the solution

ARI : Adjusted Rand Index for the solution

k : Number of clusters found in the solution
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APPENDIX C

EXPERIMENTAL RESULTS OF THE MOCNC-F ALGORITHM

In this appendix, we give the detailed experimental results of the MOCNC-F algo-

rithm for individual problem instances.

Some of the column headings used in all tables are explained below.

RdF : Number of redundant features added to the original data set

RI : Rand Index for the solution

ARI : Adjusted Rand Index for the solution

k : Number of clusters found in the solution

OF : Number of original features selected in the solution

RF : Number of redundant features selected in the solution
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Table C.1: Solution quality of MOCNC-F and ∆-MOCK-F for 5d-5c problem setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

5d-5c-1 1408 1 1.000 1.000 5 5 0 0.819 0.608 3 3 0
5d-5c-2 1999 1 0.999 0.998 5 5 0 0.815 0.538 4 1 0
5d-5c-3 1097 1 1.000 0.999 5 5 0 0.740 0.488 2 3 0
5d-5c-4 1502 1 0.969 0.919 5 3 0 0.829 0.628 3 2 0
5d-5c-5 1538 1 0.999 0.998 5 5 0 0.701 0.208 6 1 0
5d-5c-6 1682 1 1.000 1.000 5 5 0 0.727 0.400 3 1 0
5d-5c-7 1351 1 0.999 0.996 6 5 0 0.806 0.488 4 1 0
5d-5c-8 1426 1 0.999 0.998 5 4 0 0.976 0.935 4 3 0
5d-5c-9 1664 1 1.000 1.000 5 5 0 0.685 0.196 4 1 0
5d-5c-10 1945 1 0.999 0.998 5 5 0 0.746 0.278 5 1 0
5d-5c-1 1408 3 1.000 1.000 5 5 0 0.819 0.608 3 3 0
5d-5c-2 1999 3 0.999 0.998 5 5 0 0.802 0.521 3 1 0
5d-5c-3 1097 3 1.000 0.999 5 5 0 0.740 0.488 2 3 0
5d-5c-4 1502 3 0.969 0.921 5 3 0 0.829 0.628 3 2 0
5d-5c-5 1538 3 1.000 1.000 5 4 0 0.701 0.208 6 1 0
5d-5c-6 1682 3 1.000 1.000 5 5 0 0.749 0.419 4 1 0
5d-5c-7 1351 3 1.000 1.000 5 5 1 0.806 0.488 4 1 0
5d-5c-8 1426 3 0.999 0.998 5 4 0 0.976 0.935 4 3 0
5d-5c-9 1664 3 1.000 1.000 5 5 0 0.685 0.196 4 1 0
5d-5c-10 1945 3 0.999 0.998 5 5 0 0.814 0.388 7 1 0
5d-5c-1 1408 5 1.000 1.000 5 5 0 0.819 0.608 3 3 0
5d-5c-2 1999 5 0.999 0.998 5 5 0 0.815 0.538 4 1 0
5d-5c-3 1097 5 1.000 0.999 5 5 0 0.737 0.457 3 1 0
5d-5c-4 1502 5 0.969 0.919 5 3 0 0.829 0.628 3 2 0
5d-5c-5 1538 5 0.999 0.998 5 5 0 0.703 0.205 7 1 0
5d-5c-6 1682 5 1.000 1.000 5 5 0 0.749 0.419 4 1 0
5d-5c-7 1351 5 0.999 0.999 5 5 1 0.806 0.488 4 1 0
5d-5c-8 1426 5 0.999 0.998 5 4 0 0.976 0.935 4 3 0
5d-5c-9 1664 5 1.000 1.000 5 5 0 0.832 0.429 8 1 0
5d-5c-10 1945 5 0.999 0.998 5 5 0 0.814 0.388 7 1 0
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Table C.2: Solution quality of MOCNC-F and ∆-MOCK-F for 5d-10c problem set-
ting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

5d-10c-1 2780 1 1.000 0.999 10 5 0 0.757 0.252 5 1 0
5d-10c-2 3350 1 1.000 1.000 10 5 0 0.889 0.259 27 1 0
5d-10c-3 2456 1 0.997 0.988 9 5 0 0.788 0.369 4 1 0
5d-10c-4 2403 1 1.000 0.999 10 5 0 0.797 0.386 5 1 0
5d-10c-5 3687 1 1.000 1.000 10 5 0 0.818 0.331 6 1 0
5d-10c-6 2667 1 1.000 1.000 10 5 0 0.998 0.993 10 5 0
5d-10c-7 2602 1 0.997 0.987 10 5 0 0.854 0.445 7 1 0
5d-10c-8 3099 1 0.983 0.923 9 5 0 0.819 0.297 6 1 0
5d-10c-9 2627 1 1.000 0.999 11 5 0 0.768 0.263 5 1 0
5d-10c-10 2557 1 1.000 0.999 10 5 0 0.813 0.267 7 1 0
5d-10c-1 2780 3 0.999 0.998 10 5 0 0.813 0.495 4 4 0
5d-10c-2 3350 3 1.000 1.000 10 5 0 0.889 0.259 27 1 0
5d-10c-3 2456 3 0.991 0.961 9 5 0 0.983 0.931 9 5 0
5d-10c-4 2403 3 1.000 0.999 10 5 0 0.797 0.386 5 1 0
5d-10c-5 3687 3 1.000 1.000 10 5 0 0.843 0.343 9 1 0
5d-10c-6 2667 3 1.000 1.000 10 5 0 0.998 0.993 10 5 0
5d-10c-7 2602 3 0.999 0.997 10 5 0 0.827 0.428 5 1 0
5d-10c-8 3099 3 0.983 0.924 9 5 0 0.774 0.274 5 1 0
5d-10c-9 2627 3 1.000 1.000 10 5 0 0.833 0.495 5 3 0
5d-10c-10 2557 3 1.000 1.000 10 5 0 0.963 0.855 8 5 0
5d-10c-1 2780 5 0.995 0.980 9 5 0 0.813 0.495 4 4 0
5d-10c-2 3350 5 1.000 1.000 10 5 0 0.889 0.259 27 1 0
5d-10c-3 2456 5 0.997 0.986 9 5 0 0.998 0.993 10 5 0
5d-10c-4 2403 5 1.000 0.999 11 5 0 0.797 0.386 5 1 0
5d-10c-5 3687 5 1.000 1.000 10 5 0 0.818 0.331 6 1 0
5d-10c-6 2667 5 0.997 0.987 10 5 0 0.816 0.375 5 1 0
5d-10c-7 2602 5 0.999 0.996 10 5 0 0.947 0.789 8 5 0
5d-10c-8 3099 5 0.990 0.954 9 5 0 0.819 0.297 6 1 0
5d-10c-9 2627 5 1.000 1.000 10 5 0 0.797 0.310 5 1 0
5d-10c-10 2557 5 1.000 0.999 10 5 0 0.963 0.855 8 5 0
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Table C.3: Solution quality of MOCNC-F and ∆-MOCK-F for 5d-20c problem set-
ting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

5d-20c-1 4615 1 0.997 0.978 18 4 0 0.999 0.993 20 5 0
5d-20c-2 6947 1 0.996 0.966 18 5 0 0.990 0.913 19 5 0
5d-20c-3 5895 1 1.000 1.000 20 5 0 0.999 0.994 20 5 0
5d-20c-4 5998 1 0.999 0.988 19 5 0 0.999 0.994 20 5 0
5d-20c-5 6664 1 0.993 0.942 18 4 0 0.999 0.994 20 5 0
5d-20c-6 5153 1 0.997 0.979 17 5 0 0.999 0.994 20 5 0
5d-20c-7 6613 1 0.999 0.990 19 5 0 0.891 0.315 10 1 0
5d-20c-8 5646 1 0.997 0.974 18 4 0 0.937 0.241 47 1 0
5d-20c-9 6370 1 0.995 0.957 19 4 0 0.915 0.382 15 1 0
5d-20c-10 6831 1 1.000 1.000 21 5 0 0.994 0.946 19 4 0
5d-20c-1 4615 3 0.999 0.993 19 5 0 0.999 0.993 20 5 0
5d-20c-2 6947 3 0.997 0.972 18 5 0 0.990 0.913 19 5 0
5d-20c-3 5895 3 1.000 1.000 20 5 0 0.999 0.994 20 5 0
5d-20c-4 5998 3 1.000 1.000 20 5 0 0.992 0.930 18 4 0
5d-20c-5 6664 3 0.993 0.942 18 4 0 0.999 0.994 20 5 0
5d-20c-6 5153 3 0.997 0.979 17 5 0 0.999 0.994 20 5 0
5d-20c-7 6613 3 0.999 0.991 19 5 0 0.983 0.866 18 4 0
5d-20c-8 5646 3 0.997 0.972 19 4 0 0.998 0.982 19 5 0
5d-20c-9 6370 3 0.995 0.957 19 4 0 0.999 0.995 20 5 0
5d-20c-10 6831 3 1.000 0.999 22 5 0 0.994 0.946 19 4 0
5d-20c-1 4615 5 0.997 0.978 18 4 0 0.999 0.993 20 5 0
5d-20c-2 6947 5 0.996 0.967 18 5 0 0.990 0.913 19 5 0
5d-20c-3 5895 5 1.000 1.000 20 5 0 0.999 0.994 20 5 0
5d-20c-4 5998 5 1.000 0.999 20 4 0 0.996 0.962 19 4 0
5d-20c-5 6664 5 1.000 1.000 20 5 0 0.999 0.994 20 5 0
5d-20c-6 5153 5 0.999 0.991 18 5 0 0.999 0.994 20 5 0
5d-20c-7 6613 5 1.000 0.998 20 5 0 0.929 0.312 28 1 0
5d-20c-8 5646 5 0.997 0.977 18 5 0 0.906 0.389 11 1 0
5d-20c-9 6370 5 0.995 0.957 19 4 0 0.999 0.995 20 5 0
5d-20c-10 6831 5 1.000 1.000 21 5 0 0.994 0.946 19 4 0
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Table C.4: Solution quality of MOCNC-F and ∆-MOCK-F for 10d-5c problem set-
ting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

10d-5c-1 1564 2 1.000 1.000 5 8 0 0.697 0.275 3 1 0
10d-5c-2 1277 2 1.000 1.000 5 8 0 0.719 0.255 5 1 0
10d-5c-3 2070 2 1.000 1.000 5 6 0 0.717 0.383 3 1 0
10d-5c-4 1357 2 0.999 0.998 5 10 0 0.635 0.219 3 1 0
10d-5c-5 1579 2 1.000 1.000 5 7 0 0.569 0.265 2 1 0
10d-5c-6 1898 2 1.000 1.000 5 8 0 0.787 0.399 6 1 0
10d-5c-7 1336 2 1.000 1.000 5 8 0 0.868 0.675 5 1 0
10d-5c-8 1370 2 1.000 1.000 5 8 0 0.724 0.226 6 1 0
10d-5c-9 1428 2 1.000 1.000 5 7 0 0.709 0.429 2 1 0
10d-5c-10 725 2 1.000 1.000 5 6 0 0.746 0.393 4 1 0
10d-5c-1 1564 5 1.000 1.000 5 8 0 0.997 0.992 5 8 0
10d-5c-2 1277 5 1.000 1.000 5 9 0 0.736 0.324 4 1 0
10d-5c-3 2070 5 1.000 1.000 5 7 0 0.717 0.383 3 1 0
10d-5c-4 1357 5 0.999 0.998 5 10 0 0.635 0.219 3 1 0
10d-5c-5 1579 5 1.000 1.000 5 7 0 0.997 0.992 5 10 0
10d-5c-6 1898 5 1.000 1.000 5 8 0 0.738 0.275 4 1 0
10d-5c-7 1336 5 1.000 1.000 5 6 0 0.837 0.634 3 1 0
10d-5c-8 1370 5 1.000 1.000 5 8 0 0.724 0.226 6 1 0
10d-5c-9 1428 5 1.000 1.000 5 9 0 0.709 0.429 2 1 0
10d-5c-10 725 5 1.000 1.000 5 6 0 0.691 0.419 2 2 0
10d-5c-1 1564 10 1.000 1.000 5 8 0 0.998 0.993 5 9 0
10d-5c-2 1277 10 1.000 1.000 5 9 0 0.997 0.990 5 8 0
10d-5c-3 2070 10 1.000 1.000 5 9 0 0.998 0.994 5 8 0
10d-5c-4 1357 10 1.000 1.000 5 9 0 0.997 0.992 5 10 0
10d-5c-5 1579 10 1.000 1.000 5 10 0 0.997 0.992 5 10 0
10d-5c-6 1898 10 1.000 1.000 5 8 0 0.787 0.399 6 1 0
10d-5c-7 1336 10 1.000 1.000 5 7 0 0.997 0.992 5 8 0
10d-5c-8 1370 10 1.000 1.000 5 8 0 0.997 0.994 5 8 0
10d-5c-9 1428 10 1.000 1.000 5 10 0 0.997 0.993 5 6 0
10d-5c-10 725 10 1.000 1.000 5 10 0 0.668 0.342 3 1 0
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Table C.5: Solution quality of MOCNC-F and ∆-MOCK-F for 10d-10c problem
setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

10d-10c-1 2960 2 1.000 1.000 10 10 0 0.999 0.994 10 10 0
10d-10c-2 2890 2 1.000 1.000 10 9 0 0.783 0.271 5 1 0
10d-10c-3 3654 2 1.000 1.000 10 9 0 0.999 0.995 10 9 0
10d-10c-4 3877 2 1.000 1.000 10 10 0 0.999 0.995 10 9 0
10d-10c-5 2937 2 1.000 1.000 10 7 0 0.839 0.250 11 1 0
10d-10c-6 2604 2 1.000 1.000 10 10 0 0.782 0.346 4 1 0
10d-10c-7 2285 2 1.000 1.000 10 10 0 0.742 0.309 4 1 0
10d-10c-8 3006 2 1.000 1.000 10 10 0 0.845 0.376 7 1 0
10d-10c-9 4121 2 1.000 1.000 10 9 0 0.815 0.296 7 1 0
10d-10c-10 2811 2 1.000 1.000 10 10 0 0.980 0.916 8 9 0
10d-10c-1 2960 5 1.000 1.000 10 9 0 0.999 0.994 10 8 0
10d-10c-2 2890 5 1.000 1.000 10 8 0 0.999 0.994 10 10 0
10d-10c-3 3654 5 1.000 1.000 10 9 0 0.968 0.859 9 9 0
10d-10c-4 3877 5 1.000 1.000 10 10 0 0.999 0.995 10 9 0
10d-10c-5 2937 5 1.000 1.000 10 9 0 0.999 0.994 10 8 0
10d-10c-6 2604 5 1.000 1.000 10 9 0 0.782 0.346 4 1 0
10d-10c-7 2285 5 1.000 0.999 10 8 0 0.998 0.992 10 9 0
10d-10c-8 3006 5 1.000 1.000 10 10 0 0.808 0.229 6 1 0
10d-10c-9 4121 5 1.000 1.000 10 10 0 0.815 0.296 7 1 0
10d-10c-10 2811 5 1.000 1.000 10 10 0 0.999 0.993 10 9 0
10d-10c-1 2960 10 1.000 1.000 10 10 0 0.999 0.994 10 9 0
10d-10c-2 2890 10 1.000 1.000 10 8 0 0.783 0.271 5 1 0
10d-10c-3 3654 10 1.000 1.000 10 10 0 0.999 0.995 10 9 0
10d-10c-4 3877 10 1.000 1.000 10 10 0 0.999 0.995 10 10 0
10d-10c-5 2937 10 1.000 1.000 10 10 0 0.956 0.830 9 8 0
10d-10c-6 2604 10 1.000 1.000 10 10 0 0.999 0.994 10 10 0
10d-10c-7 2285 10 1.000 1.000 10 8 0 0.998 0.992 10 9 0
10d-10c-8 3006 10 1.000 1.000 10 10 0 0.923 0.705 6 7 0
10d-10c-9 4121 10 1.000 1.000 10 10 0 0.800 0.304 6 1 0
10d-10c-10 2811 10 1.000 1.000 10 10 0 0.999 0.993 10 10 0
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Table C.6: Solution quality of MOCNC-F and ∆-MOCK-F for 10d-20c problem
setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

10d-20c-1 5870 2 1.000 1.000 20 6 0 0.999 0.994 20 7 0
10d-20c-2 6722 2 1.000 1.000 20 7 0 0.999 0.995 20 7 0
10d-20c-3 6674 2 1.000 1.000 20 7 0 0.999 0.995 20 7 0
10d-20c-4 5935 2 1.000 1.000 20 10 0 0.999 0.994 20 8 0
10d-20c-5 4634 2 1.000 1.000 20 10 0 0.999 0.993 20 7 0
10d-20c-6 7039 2 1.000 1.000 20 7 0 0.999 0.995 20 7 0
10d-20c-7 4846 2 1.000 1.000 20 10 0 0.999 0.993 20 6 0
10d-20c-8 6283 2 1.000 1.000 20 10 0 0.999 0.994 20 6 0
10d-20c-9 6569 2 1.000 1.000 20 7 0 0.999 0.995 20 6 0
10d-20c-10 5068 2 1.000 0.999 21 10 0 0.999 0.994 20 7 0
10d-20c-1 5870 5 1.000 1.000 20 10 0 0.999 0.994 20 7 0
10d-20c-2 6722 5 1.000 1.000 20 10 0 0.999 0.995 20 7 0
10d-20c-3 6674 5 1.000 1.000 20 10 0 0.999 0.995 20 7 0
10d-20c-4 5935 5 1.000 1.000 20 10 0 0.999 0.994 20 7 0
10d-20c-5 4634 5 1.000 1.000 20 10 0 0.999 0.993 20 7 0
10d-20c-6 7039 5 1.000 1.000 20 8 0 0.999 0.995 20 7 0
10d-20c-7 4846 5 1.000 1.000 20 10 0 0.999 0.993 20 6 0
10d-20c-8 6283 5 1.000 1.000 20 7 0 0.999 0.994 20 7 0
10d-20c-9 6569 5 1.000 1.000 20 10 0 0.999 0.995 20 6 0
10d-20c-10 5068 5 1.000 1.000 20 10 0 0.999 0.994 20 8 0
10d-20c-1 5870 10 1.000 0.998 21 10 0 0.999 0.994 20 7 0
10d-20c-2 6722 10 1.000 1.000 20 10 0 0.999 0.995 20 8 0
10d-20c-3 6674 10 1.000 1.000 20 8 0 0.999 0.995 20 6 0
10d-20c-4 5935 10 1.000 1.000 20 10 0 0.999 0.994 20 7 0
10d-20c-5 4634 10 1.000 1.000 20 8 0 0.999 0.993 20 6 0
10d-20c-6 7039 10 1.000 1.000 20 5 0 0.999 0.995 20 7 0
10d-20c-7 4846 10 1.000 1.000 20 10 0 0.999 0.993 20 6 0
10d-20c-8 6283 10 1.000 0.999 21 10 0 0.999 0.994 20 8 0
10d-20c-9 6569 10 1.000 1.000 20 10 0 0.999 0.995 20 6 0
10d-20c-10 5068 10 1.000 1.000 20 10 0 0.999 0.994 20 8 0
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Table C.7: Solution quality of MOCNC-F and ∆-MOCK-F for 20d-5c problem set-
ting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

20d-5c-1 1297 4 1.000 1.000 5 12 0 0.997 0.991 5 10 0
20d-5c-2 1381 4 1.000 1.000 5 12 0 0.997 0.993 5 13 0
20d-5c-3 1623 4 1.000 1.000 5 15 0 0.998 0.993 5 11 0
20d-5c-4 1315 4 1.000 1.000 5 14 0 0.956 0.891 4 14 0
20d-5c-5 1425 4 1.000 1.000 5 15 0 0.997 0.992 5 11 0
20d-5c-6 1104 4 1.000 1.000 5 12 0 0.996 0.992 5 10 0
20d-5c-7 2042 4 1.000 1.000 5 15 0 0.998 0.994 5 16 0
20d-5c-8 804 4 1.000 1.000 5 10 0 0.995 0.986 5 11 0
20d-5c-9 1645 4 1.000 1.000 5 12 0 0.998 0.993 5 10 0
20d-5c-10 1417 4 1.000 1.000 5 12 0 0.997 0.992 5 13 0
20d-5c-1 1297 10 1.000 1.000 5 18 1 0.997 0.993 5 13 0
20d-5c-2 1381 10 1.000 1.000 5 15 0 0.994 0.984 5 6 0
20d-5c-3 1623 10 1.000 1.000 5 15 1 0.998 0.993 5 12 0
20d-5c-4 1315 10 1.000 1.000 5 17 3 0.997 0.993 5 16 0
20d-5c-5 1425 10 1.000 1.000 5 17 2 0.997 0.991 5 11 0
20d-5c-6 1104 10 1.000 1.000 5 14 0 0.996 0.992 5 11 0
20d-5c-7 2042 10 1.000 1.000 5 17 1 0.998 0.994 5 14 0
20d-5c-8 804 10 0.999 0.998 5 11 0 0.995 0.986 5 12 0
20d-5c-9 1645 10 1.000 1.000 5 16 0 0.998 0.994 5 13 0
20d-5c-10 1417 10 1.000 1.000 5 18 2 0.997 0.992 5 16 1
20d-5c-1 1297 20 1.000 1.000 5 17 3 0.997 0.993 5 17 1
20d-5c-2 1381 20 1.000 1.000 5 19 2 0.996 0.991 5 15 1
20d-5c-3 1623 20 1.000 1.000 5 17 6 0.998 0.993 5 17 1
20d-5c-4 1315 20 0.999 0.997 5 17 3 0.997 0.993 5 18 1
20d-5c-5 1425 20 1.000 1.000 5 18 7 0.997 0.991 5 19 1
20d-5c-6 1104 20 1.000 1.000 5 19 7 0.996 0.991 5 15 1
20d-5c-7 2042 20 1.000 1.000 5 19 2 0.998 0.994 5 17 1
20d-5c-8 804 20 1.000 1.000 5 16 8 0.995 0.985 5 16 1
20d-5c-9 1645 20 1.000 1.000 5 18 6 0.997 0.991 5 14 0
20d-5c-10 1417 20 1.000 1.000 5 15 2 0.997 0.992 5 19 1
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Table C.8: Solution quality of MOCNC-F and ∆-MOCK-F for 20d-10c problem
setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

20d-10c-1 2531 4 1.000 1.000 10 13 0 0.998 0.993 10 11 0
20d-10c-2 2988 4 1.000 1.000 10 14 0 0.999 0.994 10 12 0
20d-10c-3 3546 4 1.000 1.000 10 12 0 0.999 0.994 10 15 0
20d-10c-4 2727 4 1.000 1.000 10 12 0 0.997 0.989 10 7 0
20d-10c-5 2720 4 1.000 1.000 10 14 0 0.999 0.994 10 15 0
20d-10c-6 2553 4 1.000 1.000 10 14 0 0.790 0.256 6 1 0
20d-10c-7 3609 4 1.000 1.000 10 16 0 0.999 0.994 10 13 0
20d-10c-8 2993 4 1.000 1.000 10 15 0 0.999 0.994 10 11 0
20d-10c-9 3558 4 1.000 1.000 10 16 0 0.999 0.994 10 13 0
20d-10c-10 2490 4 1.000 1.000 10 12 0 0.998 0.992 10 11 0
20d-10c-1 2531 10 1.000 1.000 10 14 0 0.998 0.993 10 13 0
20d-10c-2 2988 10 1.000 1.000 10 19 2 0.999 0.994 10 11 0
20d-10c-3 3546 10 1.000 1.000 10 15 0 0.999 0.994 10 15 0
20d-10c-4 2727 10 1.000 1.000 10 12 0 0.999 0.994 10 10 0
20d-10c-5 2720 10 1.000 1.000 10 19 4 0.998 0.994 10 15 0
20d-10c-6 2553 10 1.000 1.000 10 19 1 0.998 0.993 10 9 0
20d-10c-7 3609 10 1.000 1.000 10 17 1 0.999 0.994 10 13 0
20d-10c-8 2993 10 1.000 1.000 10 16 0 0.999 0.994 10 12 0
20d-10c-9 3558 10 1.000 1.000 10 19 0 0.999 0.994 10 13 0
20d-10c-10 2490 10 1.000 1.000 10 20 2 0.998 0.992 10 13 0
20d-10c-1 2531 20 1.000 1.000 10 19 6 0.996 0.983 19 10 0
20d-10c-2 2988 20 1.000 1.000 10 19 5 0.999 0.993 10 19 1
20d-10c-3 3546 20 1.000 1.000 10 19 3 0.999 0.993 10 13 0
20d-10c-4 2727 20 0.979 0.919 8 16 4 0.998 0.994 10 19 1
20d-10c-5 2720 20 0.976 0.907 7 18 9 0.998 0.994 10 15 0
20d-10c-6 2553 20 1.000 1.000 10 18 4 0.998 0.993 10 19 1
20d-10c-7 3609 20 1.000 1.000 10 16 2 0.999 0.994 10 19 1
20d-10c-8 2993 20 1.000 1.000 10 18 6 0.999 0.994 10 18 1
20d-10c-9 3558 20 1.000 1.000 10 18 7 0.999 0.994 10 18 1
20d-10c-10 2490 20 1.000 1.000 10 20 2 0.998 0.992 10 19 1
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Table C.9: Solution quality of MOCNC-F and ∆-MOCK-F for 20d-20c problem
setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

20d-20c-1 5891 4 1.000 1.000 20 10 0 0.999 0.994 20 8 0
20d-20c-2 6582 4 1.000 1.000 20 10 0 0.999 0.994 20 8 0
20d-20c-3 4904 4 1.000 1.000 20 12 0 0.999 0.994 20 8 0
20d-20c-4 6058 4 1.000 1.000 20 10 0 0.999 0.994 20 7 0
20d-20c-5 6332 4 1.000 1.000 20 10 0 0.999 0.994 20 8 0
20d-20c-6 5800 4 1.000 1.000 20 13 0 0.999 0.994 20 8 0
20d-20c-7 6229 4 1.000 1.000 20 12 0 0.999 0.994 20 8 0
20d-20c-8 5233 4 1.000 1.000 20 13 0 0.999 0.994 20 7 0
20d-20c-9 5735 4 1.000 1.000 20 13 0 0.999 0.994 20 9 0
20d-20c-10 4757 4 1.000 1.000 20 13 0 0.999 0.994 20 7 0
20d-20c-1 5891 10 1.000 1.000 20 16 0 0.999 0.994 20 13 0
20d-20c-2 6582 10 1.000 1.000 20 13 0 0.999 0.994 20 10 0
20d-20c-3 4904 10 1.000 1.000 20 16 0 0.999 0.994 20 10 0
20d-20c-4 6058 10 1.000 1.000 20 16 0 0.999 0.994 20 9 0
20d-20c-5 6332 10 1.000 1.000 20 16 0 0.999 0.994 20 8 0
20d-20c-6 5800 10 1.000 1.000 20 18 0 0.999 0.994 20 7 0
20d-20c-7 6229 10 1.000 1.000 20 16 0 0.999 0.994 20 12 0
20d-20c-8 5233 10 1.000 1.000 20 15 0 0.999 0.994 20 9 0
20d-20c-9 5735 10 1.000 1.000 20 16 1 0.999 0.994 20 8 0
20d-20c-10 4757 10 1.000 1.000 20 17 0 0.999 0.994 20 9 0
20d-20c-1 5891 20 1.000 1.000 20 18 0 0.999 0.994 20 20 1
20d-20c-2 6582 20 1.000 1.000 20 16 0 0.999 0.994 20 20 1
20d-20c-3 4904 20 1.000 1.000 20 19 1 0.999 0.994 20 19 1
20d-20c-4 6058 20 1.000 1.000 20 19 0 0.999 0.994 20 19 1
20d-20c-5 6332 20 1.000 1.000 20 19 2 0.999 0.994 20 19 1
20d-20c-6 5800 20 1.000 1.000 20 20 1 0.999 0.994 20 20 1
20d-20c-7 6229 20 1.000 1.000 20 18 1 0.999 0.995 20 20 1
20d-20c-8 5233 20 1.000 1.000 20 20 1 0.999 0.994 20 19 1
20d-20c-9 5735 20 1.000 1.000 20 18 0 0.999 0.994 20 18 1
20d-20c-10 4757 20 1.000 1.000 20 18 0 0.999 0.994 20 19 1
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Table C.10: Solution quality of MOCNC-F and ∆-MOCK-F for 40d-5c problem
setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

40d-5c-1 1649 8 1.000 1.000 5 26 0 0.998 0.994 5 19 0
40d-5c-2 1580 8 1.000 1.000 5 34 2 0.997 0.994 5 19 0
40d-5c-3 1926 8 1.000 1.000 5 29 3 0.998 0.994 5 17 0
40d-5c-4 1416 8 1.000 1.000 5 29 1 0.997 0.993 5 16 0
40d-5c-5 1935 8 1.000 1.000 5 26 1 0.998 0.994 5 18 0
40d-5c-6 947 8 1.000 1.000 5 29 0 0.995 0.988 5 13 0
40d-5c-7 2039 8 1.000 1.000 5 31 0 0.998 0.994 5 19 0
40d-5c-8 1681 8 1.000 1.000 5 29 0 0.998 0.993 5 18 0
40d-5c-9 1273 8 1.000 1.000 5 35 1 0.997 0.992 5 17 0
40d-5c-10 1124 8 1.000 1.000 5 32 1 0.997 0.991 5 24 0
40d-5c-1 1649 20 1.000 1.000 5 34 7 0.998 0.994 5 24 1
40d-5c-2 1580 20 1.000 1.000 5 27 6 0.997 0.993 5 23 1
40d-5c-3 1926 20 1.000 1.000 5 30 5 0.998 0.994 5 27 1
40d-5c-4 1416 20 1.000 1.000 5 29 4 0.997 0.992 5 26 0
40d-5c-5 1935 20 1.000 1.000 5 30 6 0.998 0.994 5 25 0
40d-5c-6 947 20 1.000 1.000 5 31 8 0.995 0.988 5 19 1
40d-5c-7 2039 20 1.000 1.000 5 29 3 0.998 0.994 5 27 1
40d-5c-8 1681 20 1.000 1.000 5 31 5 0.998 0.993 5 22 0
40d-5c-9 1273 20 1.000 1.000 5 30 3 0.997 0.992 5 27 2
40d-5c-10 1124 20 1.000 1.000 5 32 7 0.997 0.991 5 24 1
40d-5c-1 1649 40 1.000 1.000 5 34 12 0.997 0.993 5 33 8
40d-5c-2 1580 40 1.000 1.000 5 29 14 0.997 0.992 5 30 5
40d-5c-3 1926 40 0.720 0.452 3 29 13 0.990 0.973 7 29 5
40d-5c-4 1416 40 1.000 1.000 5 28 10 0.996 0.990 5 33 6
40d-5c-5 1935 40 1.000 1.000 5 33 14 0.997 0.992 5 30 8
40d-5c-6 947 40 1.000 1.000 5 26 10 0.996 0.991 5 34 7
40d-5c-7 2039 40 1.000 1.000 5 31 14 0.998 0.993 5 30 4
40d-5c-8 1681 40 1.000 1.000 5 30 12 0.998 0.993 5 32 4
40d-5c-9 1273 40 1.000 1.000 5 31 17 0.996 0.990 5 29 5
40d-5c-10 1124 40 1.000 1.000 5 29 10 0.995 0.988 5 32 5
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Table C.11: Solution quality of MOCNC-F and ∆-MOCK-F for 40d-10c problem
setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

40d-10c-1 3365 8 1.000 1.000 10 30 0 0.999 0.995 10 21 0
40d-10c-2 3381 8 1.000 1.000 10 31 2 0.999 0.994 10 25 0
40d-10c-3 2929 8 1.000 1.000 10 29 0 0.999 0.994 10 17 0
40d-10c-4 3093 8 1.000 1.000 10 25 0 0.999 0.995 10 21 0
40d-10c-5 3308 8 1.000 1.000 10 27 0 0.999 0.994 10 23 0
40d-10c-6 2253 8 1.000 1.000 10 29 0 0.998 0.992 10 18 0
40d-10c-7 3678 8 1.000 1.000 10 27 1 0.999 0.994 10 19 0
40d-10c-8 2656 8 1.000 1.000 10 31 0 0.999 0.994 10 20 0
40d-10c-9 3878 8 1.000 1.000 10 24 0 0.999 0.995 10 20 0
40d-10c-10 2440 8 1.000 1.000 10 31 1 0.998 0.993 10 19 0
40d-10c-1 3365 20 1.000 1.000 10 35 3 0.999 0.994 10 29 1
40d-10c-2 3381 20 1.000 1.000 10 31 3 0.999 0.995 10 32 2
40d-10c-3 2929 20 1.000 1.000 10 32 3 0.999 0.994 10 23 1
40d-10c-4 3093 20 1.000 1.000 10 37 3 0.999 0.994 10 22 0
40d-10c-5 3308 20 1.000 1.000 10 36 5 0.999 0.994 10 30 2
40d-10c-6 2253 20 1.000 1.000 10 33 3 0.998 0.992 10 28 1
40d-10c-7 3678 20 1.000 1.000 10 33 4 0.999 0.994 10 26 1
40d-10c-8 2656 20 1.000 1.000 10 29 4 0.998 0.993 10 27 1
40d-10c-9 3878 20 1.000 1.000 10 31 2 0.999 0.995 10 33 2
40d-10c-10 2440 20 1.000 1.000 10 33 7 0.998 0.993 10 29 1
40d-10c-1 3365 40 1.000 1.000 10 31 26 0.990 0.954 9 31 6
40d-10c-2 3381 40 1.000 1.000 10 35 14 0.994 0.975 9 33 6
40d-10c-3 2929 40 0.998 0.992 11 35 24 0.990 0.958 9 28 4
40d-10c-4 3093 40 1.000 1.000 10 33 19 0.999 0.995 10 32 4
40d-10c-5 3308 40 0.999 0.994 11 32 12 0.999 0.994 11 31 6
40d-10c-6 2253 40 1.000 1.000 10 31 16 0.998 0.992 10 31 6
40d-10c-7 3678 40 1.000 1.000 10 35 11 0.999 0.994 10 31 5
40d-10c-8 2656 40 1.000 1.000 10 33 14 0.988 0.949 8 28 5
40d-10c-9 3878 40 1.000 1.000 10 31 19 0.993 0.967 9 31 6
40d-10c-10 2440 40 1.000 1.000 10 33 16 0.975 0.900 8 33 6
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Table C.12: Solution quality of MOCNC-F and ∆-MOCK-F for 40d-20c problem
setting

Problem # of
Points

RdF MOCNC-F ∆-MOCK-F
RI ARI k OF RF RI ARI k OF RF

40d-20c-1 6746 8 1.000 1.000 20 29 0 0.999 0.995 20 13 0
40d-20c-2 6022 8 1.000 1.000 20 27 0 0.999 0.995 20 17 0
40d-20c-3 5561 8 1.000 1.000 20 27 0 0.999 0.994 20 18 0
40d-20c-4 6334 8 1.000 1.000 20 25 0 0.999 0.994 20 11 0
40d-20c-5 6318 8 1.000 1.000 20 37 1 0.999 0.995 20 15 0
40d-20c-6 6457 8 1.000 1.000 20 27 0 0.999 0.994 20 11 0
40d-20c-7 5501 8 1.000 1.000 20 25 0 0.999 0.994 20 15 0
40d-20c-8 5882 8 1.000 1.000 20 28 0 0.999 0.994 20 12 0
40d-20c-9 5283 8 1.000 1.000 20 32 0 0.999 0.994 20 17 0
40d-20c-10 5627 8 1.000 1.000 20 27 0 0.999 0.994 20 17 0
40d-20c-1 6746 20 1.000 1.000 20 31 0 0.999 0.995 20 31 2
40d-20c-2 6022 20 1.000 1.000 20 34 2 0.999 0.995 20 33 2
40d-20c-3 5561 20 1.000 1.000 20 36 1 0.999 0.994 20 31 2
40d-20c-4 6334 20 1.000 1.000 20 33 1 0.999 0.994 20 29 1
40d-20c-5 6318 20 1.000 1.000 20 35 3 0.999 0.995 20 31 1
40d-20c-6 6457 20 1.000 1.000 20 34 3 0.999 0.994 20 28 1
40d-20c-7 5501 20 1.000 1.000 20 32 2 0.999 0.994 20 29 1
40d-20c-8 5882 20 1.000 1.000 20 34 4 0.999 0.994 20 31 1
40d-20c-9 5283 20 1.000 1.000 20 32 3 0.999 0.994 20 29 1
40d-20c-10 5627 20 1.000 1.000 20 34 2 0.999 0.994 20 33 2
40d-20c-1 6746 40 1.000 1.000 20 29 14 0.999 0.995 20 30 5
40d-20c-2 6022 40 1.000 1.000 20 32 18 0.999 0.995 20 30 3
40d-20c-3 5561 40 1.000 1.000 20 34 14 0.999 0.994 20 28 3
40d-20c-4 6334 40 1.000 1.000 20 32 11 0.999 0.994 20 31 6
40d-20c-5 6318 40 1.000 1.000 20 33 11 0.999 0.994 20 29 5
40d-20c-6 6457 40 1.000 1.000 20 28 16 0.999 0.994 20 32 4
40d-20c-7 5501 40 1.000 1.000 20 33 15 0.999 0.994 20 33 6
40d-20c-8 5882 40 1.000 1.000 20 34 14 0.999 0.994 20 31 5
40d-20c-9 5283 40 1.000 1.000 20 28 13 0.999 0.994 20 30 7
40d-20c-10 5627 40 1.000 1.000 20 31 9 0.999 0.994 20 31 5
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