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ABSTRACT 

 

 

APPLICATION OF RECENT OPTIMIZATION ALGORITHMS ON 

SLOPE STABILITY PROBLEMS 

 

 

 

Azizi, Sadra 

M.Sc., Department of Civil Engineering 

Supervisor: Assist. Prof. Dr. Onur Pekcan 

 

 

July 2018, 107 pages 

 

 

Stability analysis of earth slopes in general involves determining the minimum 

factor of safety (FS) associated with the most critical failure surface. This objective 

is too challenging to accomplish considering the broad diversity of slope problems 

in geometry, geotechnical parameters of the soil, location of the groundwater table, 

and condition of the external loadings. Robust optimization techniques, however, 

have recently performed well in determining safety factors of various man-made 

and natural slopes of different complexities simultaneous with fast and confidently 

locating the corresponding slip surfaces. 

In this study, three recently developed optimization methods, Hybrid Artificial Bee 

Colony algorithm with Differential Evolution (HABCDE), Grasshopper 

Optimization Algorithm (GOA) and improved harmony search algorithm (LHS), 

are combined with a non-circular surface generation scheme to identify location of 

the slip surface. To evaluate the safety factor along each slip surface, a concise 

algorithm of the Morgenstern-Price method is employed in the analyses. Results 

obtained through application of the proposed methods into three case studies 

including different layers and geometries indicates that HABCDE outperforms the 

two other methods both on fast convergence and accuracy in the minimization 
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procedure which makes it comparable to the best methods implemented in slope 

stability analysis to date.   

Keywords: Geotechnical Engineering, Slope Stability, Critical Slip Surface, 

Metaheuristic Methods, Factor of Safety 
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ÖZ 

 

 

ŞEV STABILITE ANALIZLERININ OPTIMIZASYON 

TEKNIKLERI KULLANILARAK DEĞERLENDIRILMESI 

 

 

 

Azizi, Sadra 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Dr. Öğr. Üyesi Onur Pekcan 

 

 

Temmuz 2018, 107 sayfa 

 

 

Şevlerin duraylılık analizi, en kritik kayma yüzeyi ile en düşük güvenlik faktörünün 

(GF) belirlenmesini içerir. Bu amaçla yapılan çalışmalar, geometrik eğim çeşitliliği, 

toprağın geoteknik parametreleri, yeraltı suyu seviyesinin yeri ve harici yüklerin 

durumu göz önünde bulundurulduğunda oldukça zor bir problem haline 

gelmektedir. Bununla birlikte son zamanlarda, güçlü optimizasyon teknikleri farklı 

kayma yüzeylerinin çeşitli insan yapımı ve doğal eğimlerin güvenlik faktörlerinin 

belirlenmesinde, hızlı ve güvenli bir şekilde belirlenmesinde iyi bir performans 

sergilemiştir.  

Bu çalışmada, şev kayma yüzeyi ve güvenlik faktörünü belirlemek için Ayırıcı 

Evrimli Hibrit Yapay Arı Kolonisi algoritması (AEHYAKA), Çekirge 

Optimizasyon Algoritması (ÇOA) ve Geliştirilmiş Uyum Arama Algoritmasını 

(GUAA) içeren üç yeni optimizasyon yöntemi dairesel olmayan bir yüzey 

oluşturma algoritması ile birleştirilmiştir. Her bir kayma yüzeyi boyunca güvenlik 

faktörünü değerlendirmek için yapılan analizlerde Morgenstern-Price metodu 

algoritması kullanılmıştır. Önerilen metotların, farklı katmanlar ve geometri içeren 

3 örnek çalışma ile uygulanması sonucu elde edilen sonuçlar, AEHYAKA 'nin, hem 

hızlı yakınsama hem de doğruluk açısından diğer iki yöntemi geride bıraktığını ve 
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bu durumun şev stabilitesi analizinde bugüne kadar uygulanan en iyi yöntemlerle 

karşılaştırılabilir olduğunu göstermektedir. 

Anahtar Kelimeler: Geoteknik mühendisliği, Şev Stabilitesi, Kritik Kayma Yüzeyi, 

Sezgi Ötesi Yöntemler, Güvenlik Faktörü 
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CHAPTER 1 

 

 

1.INTRODUCTION 

 

 

1.1. Background 

Recent growth in human population has led to an increasing demand on major 

infrastructure projects such as constructions of roads and railways or buildings, 

which generally involve ground disturbance in the area of construction. In many 

cases, large-scale earthwork activities require forming engineered cut and fill slopes 

prior to any further developments. Therefore, the stability of slopes needs to be 

assessed in advance to construction to gain insights about the site conditions as well 

as to decrease the risk of having potential property damages and more importantly 

human losses. 

Slope failures are commonly investigated type of geo-hazards, triggered by 

different major causes including intense rainfalls, inadequate drainage, sudden 

ground vibrations, loss of vegetation, etc., which eventually result in either an 

increase in the stress applied, or cause a reduction in the shear strength of the soil 

in situ. The incidence of slope failures may potentially lead to considerable 

environmental, financial and human losses, most notably in populated urban areas. 

Such ground instabilities may also hinder further progress in the construction 

activities and challenge the engineers in charge of the construction.  

Two examples of catastrophic landslides, which were responsible for major 

economic loss as well as serious injuries and fatalities, are illustrated in Figures 1 

and 2. Figure 1 corresponds to a slope failure, which occurred on April 25, 2010, 

in Taiwan (Chen et al., 2015). As a result of this ground failure, the National 

Freeway No.3 was blocked for one month due to a massive debris flow that had 

covered the road section at the downstream. A comprehensive investigation of the 



 

 2 

area demonstrated that weathering had occurred at the upper layers which had 

increased the water infiltration into the soil and consequently had led to water 

accumulation between the layers. As a result, the decline in interface friction 

resulted in slope instability in this area (Chen et al., 2015).  

 

Figure 1 - Taiwan freeway landslide (Taiwan National Freeway Bureau) 

Figure 2 represents another devastating landslide occurred on December 13, 2014, 

in Indonesia. As a result of this disaster, a large number of houses in the area were 

heavily damaged and the total number of fatalities and injuries was considerable. 

Comprehensive site investigations revealed that heavy rainfall in a short period of 

time (11 days) in addition to the steep configuration of the slope were the major 

causes and the triggering factors of the ground failure (Nur, 2014). 

Considering the possible outcomes, in regions of high failure risks, large amounts 

of money are yearly invested in the proper maintenance of major geotechnical 

structures such as embankments or dams and in the design of man-made facilities 

adjacent to slopes. Therefore, studies related to better understanding of the stability 

of slopes play a crucial role especially from economy and sustainability point of 

view.  
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Figure 2 - Banjarnegara, Indonesia landslide (Nur, 2014) 

To date, considerable efforts have been made to evaluate the stability of earth slopes 

of different configurations under various loading conditions prior to major 

constructions adjacent to slopes, and to take necessary actions to improve the 

stability of slopes in areas of high failure risk. For this purpose, different numerical 

and analytical methods including, limit analysis method, limit equilibrium method 

(LEM), finite difference method or finite element method, have been so far 

developed by the researchers in order to properly assess the stability of slopes. 

However, studies indicate that LEM is as yet the most popular approach among the 

researchers for stability analyses. Over the past few years, a set of LEM based 

techniques that vary in their underlying assumptions has been widely utilized in 

different stability assessment problems.  

Stability of slopes in LEM is precisely quantified using a term so-called “Factor of 

Safety” (“FS”), which indicates the ratio between the existing shear strength and 

the shear stress acting on the sliding body. However, an accurate safety assessment 

by using LEMs requires a number of trial slip surfaces to be initially generated 
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followed by calculation of the value of factor of safety corresponding to each slip 

surface and finally indicating the surface with the lowest FS value as the surface of 

highest failure probability for the entire slope. However, indicating the most critical 

slip surface would remain challenging for engineers, as far as the accuracy of the 

approximations along with the time required for the completion of the computations 

are concerned.  

This objective can be achieved following a trial and error approach. Although 

useful, this method lacks precision particularly in the case of nonhomogeneous soil 

slopes. The incompetency in this method is however associated with its dependency 

on the adequacy of the preliminarily generated trial failure surfaces within the slope 

profile. Considering the fact that the critical slip surface identified by using the 

approach is not necessarily the most vulnerable surface, inappropriate values are 

therefore likely to be obtained in the analyses. 

Alternatively, available evidence from published case studies, have demonstrated 

the capability of optimization techniques in the reliable assessment of the stability 

of slopes. To date, different classical optimization methods have been implemented 

in the analyses. These techniques, considering their inherent limitations, are also 

proved to be dependent on the proper selection of trial solutions and thus might also 

overestimate the value of safety factor and consequently fail to acquire a precise 

measure in the analyses. However, recent advances in computing science have 

paved the way for the development of enhanced computing schemes such as 

metaheuristics, which have proved successful in solving various real problems. 

Successful application of such optimization techniques has recently, gained 

significant attention by geotechnical researchers worldwide (Yung Ming Cheng et 

al., 2012). To date, a broad range of novel optimization methods has been used in 

the literature to explore the most vulnerable failure surface as well as to determine 

the factor of safety against instabilities in the case of study. Review of the results 

obtained for these methods testify their competence in better evaluating the stability 

of earth slopes given the improvements made in the obtained results. Particularly 

when applied to a multi-layered slope with a complex geometry, the optimization 
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technique is required to accurately locate the geological slip surface, over a short 

period with relatively less computational efforts. Consequently, this objective 

necessitates the use of alternative optimization techniques in order to obtain 

superior results, especially for complex case studies. 

In this study, an effective analysis framework is developed implementing three 

recently developed metaheuristic methods, combined with a simplified 

Morgenstern-Price approach so as to determine the minimum factor of safety 

pertaining to the most critical slip surface within the soil profile. Subsequently, the 

proposed framework is utilized in stability analysis of four slope problems with 

various complexities and its performance is benchmarked against its conventional 

competitors. 

1.2. Research Objective 

This study primarily intends to develop a functional analysis framework to assess 

the factor of safety of earth slopes on the basis of limit equilibrium methods. 

However, the formulation derived for the factor of safety in an advanced LEM, such 

as Morgenstern-Price method, suffers from specific drawbacks, i.e. discontinuity 

and the existence of several local minima (Chen et al. 1988, Cheng et al. 2007) that 

make slope stability analysis a challenging problem to solve. To successfully deal 

with this problem, limit equilibrium methods coupled with various metaheuristic 

optimization techniques are employed in the analyses. In this regard, the factor of 

safety equation is generally considered as the objective function of the optimization 

problem and a thorough minimization process is performed to explore the optimum 

solution in the search space. An overall evaluation regarding the safety of the case 

of study can be reached after the analyses are completed. 

Another major objective of this study is the fast and accurate localization of the 

critical slip surface that yields the minimum factor of safety of the entire slope. 

Having determined the zone with high failure risk, necessary actions need to be 

taken to reinforce the vulnerable surface with its surroundings.  
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1.3. Scope 

Studies thus far have firmly indicated the significance of the meticulous 

geometrical modeling of the soil in situ, on the validity of the slope stability 

assessments. A number of major factors found to be influencing the analyses 

include: the geometry of the slope, consideration of the existence of water table 

along with the external loadings in the analyses, and above all the validity of the 

values assumed for the soil parameters. Accordingly, these aspects are required to 

be considered in the calculations for more realistic results to be acquired. 

Investigations have established the direct role undesirable conditions within the soil 

profile, e.g., the presence of a weak layer, play in activating the failure mechanism 

of the slopes. In this study, various case of studies from simple homogeneous to 

multi-layered heterogeneous earth slopes with varied geometries and stratifications 

are considered, in order to better investigate the impact of variation in ground 

conditions on the overall stability of slopes. Furthermore, a deterministic approach 

is adopted for the analyses considering constant values for the key parameters of 

the soil medium, namely coefficient of cohesion, unit weight, friction angle, and 

pore water pressure ratio within each of the layers. 

Available evidence of ground failures in areas with high precipitation rate has 

indicated the adverse influence of the pore water pressure on the soil strength. In 

this study, the destabilizing effects of external loadings and ground water table as 

well as the combined effects of these parameters on the stability condition of two 

case studies, are efficiently investigated. 

Other slope stability evaluation techniques including finite element method (FEM) 

are kept out of the scope of this study. Although powerful, FEM is generally not 

adopted for the analysis of typical geotechnical problems owing to the difficulties 

involved in an accurate modeling of the problem along with a large number of 

parameters required to be initialized in the analysis. 
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1.4. Thesis Outline 

This study consists of five themed chapters, starting with this introductory chapter. 

Subsequent chapters are organized as follows: The second chapter is devoted to 

literature work associated with slope stability analysis methods, current challenges, 

and optimization techniques. In the third chapter, the main work of the study, 

including the method used for generating trial slip surfaces and the adopted 

optimization algorithms are explained in details. In the fourth chapter, the 

application of the proposed method on benchmark case studies have been 

exemplified and the last chapter includes the conclusions of this study and identifies 

areas for the future work. 
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CHAPTER 2 

 

 

2.LITERATURE WORK 

 

 

This chapter provides an overview of the practical methods introduced thus far for 

the stability analysis of earth slopes in a two-dimensional space. In this regard, 

formulation of a number of widely-known techniques that are developed on the 

basis of limit equilibrium methods (LEM) or finite element methods (FEM) is 

detailed. Furthermore, recent challenges and essential considerations in an 

exhaustive slope stability assessment are briefly addressed in this chapter. Finally, 

a summary of the techniques used in the literature for tackling the difficulties in 

identifying the most vulnerable failure surface within the slope is provided. 

2.1 Slope Stability Analysis Methods 

To date, considerable efforts have been made to evaluate the stability of earth slopes 

of different configuration under various loading conditions prior to major 

constructions adjacent to slopes, and to take necessary actions to improve the 

stability of slopes in areas of high failure risk. For this purpose, different numerical 

and analytical methods including, limit analysis method, limit equilibrium method 

(LEM), finite difference method or finite element method, have been so far 

developed by the researchers in order to properly assess the stability of slopes. 

However, studies indicate that LEM is as yet the most popular approach among the 

researchers for stability analyses. Over the past few years, a set of LEM based 

techniques that vary in their underlying assumptions. In the following subsection, 

a number of most commonly used techniques pertaining to limit equilibrium 

methods are described in detail. 
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2.1.1 Limit Equilibrium Methods (LEM) 

Despite the potential drawbacks in each of the methods, LEM is as yet the most 

adopted approach since it can be confidently applied to slopes of diverse geometric 

shapes comprising different soil characteristics and water content, subjected to 

external loading conditions of different kinds. Besides, overall attitude toward LEM 

has become favorable due to its relatively straightforward implementation. Limit 

equilibrium methods are, for the most part, formed on the basis of the methods of 

slices which enjoys the following features as in the study by (D. Y. Zhu et al., 2003):  

1. The sliding mass of the soil is ordinarily divided into multiple vertical, 

inclined or horizontal slices; however, vertical slices approach is the most 

commonly employed technique in the research works to date. 

2. The sliding mass above the failure surface is brought into the limiting state, 

by evenly mobilizing the strength along the entire surface.  

3. Simplifying assumptions concerning inter-slice forces need to be made in 

order to solve this statically indeterminate problem.  

4. The safety factor is calculated according to the moment and/or force 

equilibrium equations. 

In order to properly quantify the chance of failure in slopes, an index which is 

referred to as factor of safety (FS) is introduced. Factor of safety, in general, is 

identified by evaluating the ratio between sum of the forces which resist the 

slippage of the soil mass over the failure surface ( resistingF )−friction between soil 

particles for instance−and the forces driving the soil mass down the slope ( drivingF

)−such as gravitational forces and external forces, as presented in Equation (1). 

 

 
( )

( )

resisting

driving

sumof the resisting forces F
F

sumof the driving forces F
  (1) 
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Safety of the earth slopes is determined by comparing the calculated FS values with 

a target value which equals unity when the forces acting on the soil mass are 

balanced and the slope is in the state of equilibrium. However, a FS value less than 

unity indicates a state in which the failure is likely to occur (driving forces > 

resisting forces), and in contrast, a value greater than unity for factor of safety, 

corresponds to a slope in which the resisting forces outperform the driving forces 

and thus, the slope remains stable under the given loading conditions (Duncan et 

al., 2014).  

As mentioned previously, in limit equilibrium analysis, sliding mass of the soil is 

ordinarily divided into multiple vertical slices, so as to specify the forces applied 

on each of the slices, i.e., internal and external forces, which are then utilized in 

evaluating the safety factor of the case of study. Furthermore, in limit equilibrium 

method the value of safety factor is considered to be constant along the failure 

surface according to the study by (Y. M Cheng & Lau, 2008); thus, factor of safety 

for a single slice represents the safety factor of the whole slope.  

Further to the features outlined earlier, limit equilibrium method is regarded as a 

statically indeterminate problem and thus far several methods that vary depending 

on the simplifying assumptions that are made in modeling the inter-slice forces are 

introduced. Among the methods developed for the slope stability analysis, a number 

of relatively rigorous ones that has found widespread application in the literature 

are briefly outlined below.  

2.1.1.1 Ordinary method of slices  

The ordinary method of slices which is also known as, Swedish method of slices, 

is the primary method of slices introduced for slope stability analysis. The inter-

slice normal and forces in this method are neglected and a surface of circular 

geometry is considered for the expected failure surface. Additionally, moment 

equilibrium condition is merely met for the body of soil above the slip surface, and 

the factor of safety is obtained summing all moments about the center point of the 

circle corresponding to the slip surface. This method, while simple, is not precise 
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owing to the conservative values obtained for the factor of safety. Figure 3 

represents a schematic view of the forces considered in the ordinary method of 

slices:  

 

Figure 3 - Forces applied on the sample slice 

2.1.1.2 Simplified Bishop Method 

The simplified Bishop method is commonly used for slope stability analysis in the 

literature. Inter-slice normal forces are considered in this method, whereas the inter-

slice shear forces are ignored (Abramson et al., 2002). Furthermore, for any 

individual slice of the body of the soil, the vertical force equilibrium condition is 

met. In this method also, a circular shape is considered for the expected failure 

surface and, moment equilibrium condition is satisfied for the mass of soil above 

the slip surface. Besides, in order for the factor of safety to be calculated an iterative 

procedure needs to be followed since the equation derived for the safety factor- by 

summing moments about the center point of the slip surface- has the FS on both 

sides. Although not all static equilibrium conditions are satisfied in this method, the 

factor of safety values evaluated through following this procedure are relatively 

accurate and are comparable with those obtained using much thorough LEM 

techniques as will be discussed in the following. A schematic view of the forces 

considered in simplified Bishop method is represented in Figure 4:  
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Figure 4 – Forces applied on the sample slice 

2.1.1.3 Janbu’s Simplified Method 

In the Janbu’s Simplified method, similar to the Bishop’s Simplified method, while 

the normal inter-slice forces are considered, inter-slice shear forces are neglected. 

However, in this method, unlike Bishop’s simplified method, moment equilibrium 

condition is not satisfied and instead, the factor of safety equation is derived from 

the horizontal force equilibrium of an individual slice. In addition, a non-circular 

geometry is considered for the expected failure surface in this method. In order to 

include the influence of inter-slice shear forces on the factor of safety, a correction 

factor is introduced which is dependent on the friction angle, the shape of the slip 

surface and the cohesion (Janbu, 1975). A schematic view of the forces considered 

in simplified Bishop method is represented in Figure 5:  

 

Figure 5 - Forces applied on the sample slice 
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2.1.1.4 Morgenstern-Price Method 

In the Morgenstern‐Price method (M‐P) both the inter-slice normal and shear 

forces, as presented in Figure 6, are considered. Besides, a slip surface of non-

circular shape is considered and for each individual slice of the entire mass of the 

soil above the slip surface, two conditions of equilibrium, namely moment as well 

as the force equilibrium are satisfied. An inter-slice force function which represents 

the ratio of normal forces over shear inter-slice forces is proposed in the M-P 

method. This ratio, however, is dependent on a scaling factor λ and, a prescribed 

function f(x) that may be assumed of any form such as constant, trapezoidal, half-

sine or a user-defined function.  

 

Figure 6 - Forces applied on the sample slice 

Due to nonlinearity and complexity of the equilibrium equations, the original M-P 

method is highly nonlinear and sophisticated. An alternative formulation which is 

easier to implement is developed by (Fredlund & Krahn, 1977). In this regard, two 

equations for factor of safety one principally based on the force equilibrium and 

another based on the moment equilibrium conditions are derived. Following an 

iterative procedure, the corresponding factor of safety can be evaluated. In this 

study, a concise and reformulated form of Morgenstern-Price method is adopted for 

the slope stability analyses which will be outlined in detail in what follows.  
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2.1.1.5 Spencer’s Method 

Spencer’s method also, as presented in Figure 7, considers both normal and inter-

slice shear forces during the analysis. Besides, fulfilling the two necessary 

conditions for static equilibrium helps this method to rigorously assess the overall 

stability of slopes. Key assumptions made in Spencer’s method are similar to those 

of M-P method and the difference lies in the type of inter-slice force function, where 

a constant ratio is considered in Spencer’s method. 

As in the M-P method, two equations for factor of safety, principally based on the 

overall force and the overall moment equilibrium, are derived. Following an 

iterative procedure, the corresponding factor of safety can be evaluated.  

 

Figure 7 - Forces applied on the sample slice 

2.1.1.6 Sarma’s Method 

This advanced method of slope stability analysis considers both inter-slice shear 

and normal forces acting on non-vertical slices of the sliding body and, fulfills the 

force and moment equilibrium conditions necessary to the static equilibrium of the 

entire mass of soil (Abramson et al., 2002; Sarma, 1973). Besides, in this method, 

a non-circular geometry is considered for the slip surfaces. These specific features 

make the Sarma’s method an ideal technique for analyzing soils slopes of different 

geometries.  
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The procedure followed in the Sarma’s method is different from that of other 

methods in that a value is initially assumed for the factor of safety and, efforts are 

made to assess the magnitude of a horizontal acceleration which is applied to the 

mass of soil above the slip surface to bring it to the point of failure. Consequently, 

a relationship between the acceleration and the presumed factor of safety is 

developed using which, the static FOS corresponding to a horizontal acceleration 

of zero magnitude, is determined (Abramson et al., 2002). Table 1 below, represents 

an overview of the limit equilibrium methods that are developed to date. 

Table 1 - Summary of Limit equilibrium methods (Pockoski & Duncan, 2000) 

 

2.1.2 Numerical Methods 

Despite the extensive use of limit equilibrium methods in slope stability analysis in 

practice, many efforts have been made to find alternative schemes which mostly 
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eliminate the need for initial assumptions prior to evaluations, such as the 

consideration of probable location and shape for the slip surface in LEM. Another 

drawback of these methods, however, is the type of inter-slice forces considered for 

each slice within the soil mass (Griffiths & Lane, 1999).  

Successful application of numerical in solving various problems in different fields 

of engineering has recently drawn increasing attention from geotechnical engineers 

worldwide. In the following sections, three numerical approaches that are widely 

adopted in the literature, particularly for analyzing complex engineering problems, 

are detailed: 

2.1.2.1 Finite Element Method (FEM) 

Traditional limit equilibrium methods, according to Stead et al. (2001), might fail 

to adequately evaluate the slope instabilities, particularly in the case of complex 

failure mechanisms, such as internal deformations, brittle fractures, and progressive 

failure phenomenon, etc. The reason for this inadequacy lies in the fact that the 

stress-strain relationship within the soil medium is not considered in the limit 

equilibrium analysis. Adoption of the finite element method, in contrast, provides 

important insights into the stress distribution and strain conditions within the soil, 

and thus anticipates the deformations in the slope. The soil medium in the FEM 

analysis is discretized into small elements that are connected together by nodal 

points. The overall distribution of the stresses within the soil can then be completely 

determined by calculation of the stresses and strains in these elements, followed by 

application of the superposition theorem. Factor of safety in a slope stability 

analysis with FEM is commonly calculated by using strength reduction method 

(SRM), in which soil strength parameters, namely friction angle (𝜑) and cohesion 

(c), are reduced concurrently until the sliding occurs. 

2.1.2.2 Finite Difference Method (FDM) 

In this approach, like in the finite element method, the soil medium is initially 

discretized into various small zones which are connected by the points called 
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Gridpoints. However, stress and deformations in finite difference method can be 

merely determined at these gridpoints, while these results are available for any point 

within the medium in the finite element method. To date, FDM methods have been 

widely implemented in the design process of various geotechnical engineering 

infrastructures, as an adequate alternative to traditional limit equilibrium methods, 

however, FEM methods are preferred when high accuracy is demanded.  

2.1.2.3 Distinct Element Method (DEM) 

This numerical method provides geotechnical engineers with important insights 

into the mechanism of failure by simulating the stepwise movements of the sliding 

body over the course of analysis. In this method, the model used for the soil medium 

consists of a large number of arbitrarily shaped discrete particles in which both the 

interparticle interactions and the finite movements of the elements are efficiently 

considered (Hart, 1995), However, as noted by Cheng et al.(2014), slope stability 

analysis using DEM requires much computation time and its sensitivity to 

parameters involved in the analysis might hinder its broad application in typical 

engineering problems. 

2.2 Current Challenges  

The appropriate method for analyzing the stability of slopes is, in general, adopted 

on the basis of the geometry and classification of the soil mass within the earth 

slope, as well as on the basis of the shape expected for the failure surface 

(Abramson et al., 2002). Available evidence in the literature reveals that adoption 

of different limit equilibrium analysis techniques might result in slight differences 

in the value of factor of safety, owing to the variations in the simplifying 

assumptions made in each method. Also, in their study of the application of finite 

element methods in analyzing a special case of slope problem, Cheng et al. (2014) 

demonstrated the deficiency of this method in a reliable assessment of the factor of 

safety. Consequently, for a better stability evaluation in challenging construction 

projects the use of various analysis methods is recommended. 



 

 19 

One of the main challenges involved in a reliable slope stability analysis is the 

assumption of a realistic mechanism of failure for the slope. As noted by Cheng et 

al. (2014), all slope instabilities in nature occur three-dimensionally. Consequently, 

adoption of two-dimensional models can affect the reliability of slope stability 

analyses and therefore, degrade the accuracy of the factor of safety. However, the 

two-dimensional analysis is usually conducted for typical slope stability problems, 

considering the drawbacks of the three-dimensional slope modeling which includes 

the requirement of huge computational efforts and difficulties in identifying the 

slope sliding direction and etc. (Y Cheng & Lau, 2014). 

2.3 Determination of the Critical Failure Surface 

The most challenging step in a complete slope stability analysis is the fast and 

accurate localization of the critical geological slip surface in order to estimate the 

corresponding factor of safety in an earth slope of high failure probability. Although 

the accurate determination of the failure surface in case of homogeneous soil 

conditions may not be essential, high sensitivity of the safety factor to even slight 

changes in the location of the failure surface has been proven (Y Cheng & Lau, 

2014). To achieve this purpose, formerly, several trial slip surfaces based on the 

personal judgment of the researchers were initially generated and the associated 

factors of safety were subsequently calculated through the implementation of the 

limit equilibrium methods. Thus, the critical slip surface of the problem was the 

surface with the lowest FS value. Although useful, this approach lacks the ability 

to determine the most critical failure surface (minimum safety factor), particularly 

in the case of multi-layered nonhomogeneous slope problems. 

Specific features of the FS function, i.e. discontinuity and the existence of several 

local minima (Z. Chen & Shao, 1988; Y. M. Cheng, Li, Chi, et al., 2007) have made 

slope stability analysis a challenging problem to solve. To successfully deal with 

this problem, limit equilibrium methods coupled with various optimization 

techniques are employed in the analyses including conventional optimization 

methods such as calculus of variation by Baker and Gaber (1978), dynamic 



 

 20 

programming by Baker (1980) and Yamagami and Jiang (1997), alternating 

variable methods by Celestino and Duncan (1981) and Li and White (1987), 

simplex method together with steepest descent method and the Davidson-Fletcher-

Powekk method by Chen and Shao (1988), simplex method by Nguyen (1985), 

conjugate-gradient method by Arai and Tagyo (1985). Furthermore, Yamagami and 

Ueta (1988) used simplex, Powell, Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

and Davidon-Fletcher-Powell (DFP) algorithms in slope stability analysis. Greco 

(1996) solved this problem by adopting Monte Carlo and pattern search methods. 

later, Malkawi et al. (2001) applied Monte Carlo simulation to several slope 

stability problems. 

Considering these problem-specific difficulties, using such classical methods which 

are proved to be dependent on the preliminarily selected trial solutions, might fail 

to obtain a reliable measure of the safety factor. However, recent advances in 

computing science have enabled the development of advanced computing schemes 

such as metaheuristics, which have found their way into solving various real 

problems. These methods are generally developed by imitating the creatures’ 

behavior and by studying nature as the source of inspiration. 

Successful application of such optimization techniques has recently, gained 

significant attention by geotechnical researchers worldwide. The applicability of 

numerous recently developed metaheuristics, for the slope stability assessment, 

have been studied thus far such as the implementation of Genetic Algorithms (GA) 

in the studies conducted in different years by Goh (2000), McCombie and 

Wilkinson (2002), Das (2005), Zolfaghari et al. (2005), Sun et al. (2008), Sengupta 

and Upadhyay (2009) and Li et al. (2010). Particle Swarm Optimization (PSO) 

which is well implemented in the study of different problems, has been employed 

by Cheng et al. (2007), and Khajehzadeh et al. (2012) in locating critical slip 

surfaces. Other optimization methods adopted in slope stability analysis include 

Simulated Annealing (SA) and Tabu Search methods by Cheng et al. (2007), 

Harmony Search (HS) algorithm by Cheng et al. (2008), Fish Swarm Algorithm by 

Cheng et al. (2008), Leap Frog Optimization by Bolton et al. (2003), ACO by 
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Kahatadeniya et al. (2009), Gravitational Search Algorithm (GSA) by Khajehzadeh 

et al. (2012) and Artificial Bee Colony (ABC) by Kang et al. (2013). In recent years, 

various innovative optimization techniques have been utilized in order to assess the 

stability of different earth slopes such as chaos optimization in the study by Hu et 

al. (2013), swarm intelligence techniques by Gandomi et al. (2015), Immunised 

evolutionary programming and meeting ant colony method by Gao(2015; 2016), a 

modified genetic algorithm proposed by Jurado-Pi~na and Jimenez (2015), 

premium-penalty ant colony optimization (PPACO) by Gao (2016) and 

imperialistic competitive algorithm (ICA) by Kashani et al. (2016). 

Considering the fact that not all the optimization algorithms are able to perform 

well under benchmark problems of all kind (Wolpert & Macready, 1997), the use 

of alternative novel techniques becomes an indispensable part of the analyses in the 

hope of acquiring superior results for each case study.  

This study evaluates the efficacy of three recently developed metaheuristic 

techniques, namely hybrid artificial bee colony with differential evolution 

(HABCDE), improved harmony search algorithm (LHS), and Grasshopper 

optimization algorithm (GOA) in stability analysis of multiple slope problems. 

Detailed implementation procedure of each method is further explained in the 

following chapter. Furthermore, in order to reach a valuable conclusion, 

performance of the proposed techniques is benchmarked against several widely-

used optimization methods. In the following section, detailed information about the 

optimization algorithms adopted in this study for the sake of comparison is 

provided. 

2.3.1 Differential evolution (DE) 

Differential evolution (DE) is a stochastic population-based optimization algorithm 

developed by storn and price (1995). Successful applications of this method on 

various global optimization problems have helped make DE a highly desirable 

method. DE is categorized as evolutionary algorithms which take advantage of 

using three evolutionary operations such as mutation, crossover and selection in 
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order to enhance the performance of multiple solutions over a predefined number 

of iterations. Multiple variants of DE have been introduced in the literature. The 

method DE/best/1/bin  is employed in this study which demonstrates that (1) the 

best candidate solution with the minimum fitness is selected for mutation, (2) one 

differential vector is merely used and (3) the binomial crossover scheme is 

employed. DE algorithm is made up of the following steps: 

2.3.1.1 Initialization 

In this step, multiple individuals containing n number of control variables are 

generated randomly to form a population of size N. Each individual can be defined 

as follows: 

In Equation (2), iX corresponds to the 
thi individual in the population and the 

subscripts of each element represent the current number of population and 

dimension, respectively. 

2.3.1.2 Evaluation of the individuals 

In this step, the value of objective function (factor of safety) for each of the 

candidates are evaluated. 

2.3.1.3 Mutation  

Initial position vectors are likely to need improvements before they can yield fitness 

values close to the global optimum. Equation (3) represents a mutation vector 

produced by adding the best vector - the individual with the lowest fitness – to the 

weighted difference of two randomly selected vectors. Presence of the best 

individual in the mutation vector helps the candidate solutions move towards the 

design vector with the minimum fitness. In Equation (3), F is an arbitrary scaling 

 1  ,..., , ...,       i i ij in

T

X x x x   (2) 
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factor between [0,1] and 1r , 2r  are two discrepant integer numbers selected 

randomly. 

2.3.1.4 Crossover 

A trial vector 
1  ,..., ,..., i ij inUi u u u    is then introduced by applying the crossover 

operation, as presented in Equation (4), to combine the current individual’s design 

variables with those of mutant vector. 

In Equation (4), jrand is a uniformly distributed random number between [0,1], 

irand represents a random number chosen from the set  1,2, , N and CR is a user-

defined crossover constant within [0,1]. 

2.3.1.5 Selection 

Applying selection operator, Equation (5), individuals with better fitness values – 

lower safety factor–are selected comparing the corresponding fitness values of trial 

and current individuals. 

In Equation (5), 
( )t

iU and 
( )t

iX are trial and current individuals in 
tht iteration, 

respectively, and 
( 1)t

iZ 
denotes the current individual chosen for the next iteration.  

 1 2     ( )i best r rP X F X X  
 (3) 
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2.3.1.6 Termination 

The procedure will be terminated if (1) a predefined number of iterations is reached 

or (2) no improvement seen in the value of the best individual over a pre-assigned 

number of iterations. 

2.3.2 Harmony Search (HS) 

Harmony Search algorithm (HS) which is introduced by Geem et al. (2001), 

pertains to evolutionary algorithms, an important subset of metaheuristics. HS is a 

stochastic population-based optimization method which is developed based on the 

process of improvising the most pleasing harmony by the orchestra, i.e., evaluating 

the optimum value of the objective function in an optimization problem. Due to the 

advantages of this method, including simplicity along with requiring only a few 

parameters to be adjusted, HS has been widely implemented in the literature to 

solve problems of different difficulties. The initial set of random solutions, namely 

harmony memory (HM), which consists of a predefined number of harmonies, so 

called HMS, gets improved in successive iterations through replacing a newly 

improvised harmony of better state with the worst harmony in the memory. To 

achieve this goal, three operations are utilized which includes (1) harmony memory 

consideration, (2) pitch adjustment and (3) randomization. The implementation 

procedure of the harmony search algorithm is summarized as follows: 

2.3.2.1 Initialization of the optimization problem and algorithm parameters 

In this step, dimension of candidate solutions D, lower and upper bounds of each 

solution’s control variables and maximum generation number G, are determined. It 

is also necessary to specify the harmony memory size (HMS), harmony memory 

consideration rate (HMCR) and pitch adjusting rate (PAR) in this step. 
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2.3.2.2 Initialization of the harmony memory (HM) 

An initial memory of HMS candidate solutions,  1 2 ,  , , HMSHM X X X  , is 

constituted wherein the variables of each solution is initialized using Equation (6), 

as follows: 

where ,i jx denotes the 
thj decision variable of the 

thi individual, jl and ju

represent the lower and upper limits for the corresponding variable, respectively. 

()rand is a uniformly distributed random number in [0,1] interval. 

2.3.2.3 Improvisation of a new harmony from the HM 

Three major operations, namely memory consideration, pitch adjustment and 

randomization, are required to be implemented in improvising a new harmony in 

HS algorithm.  In memory consideration operation, each decision variable in the 

new harmony is derived from the corresponding element in a randomly selected 

harmony in the memory with the probability of HMCR percent, otherwise Equation 

(7) is used to complete the harmony through generating a valid random value. 

where k is a randomly selected index which refers to the 
thk harmony in the 

memory. Additionally, the variables of the new harmony which were selected from 

the harmony memory, need to be modified by pitch adjustment operator, as in 

Equation (8): 

 , ().( )i j j j jx l rand u l    (6) 

 
,

,
().( )

()rnd j

j j

i j

j

x rand HMC

l rand u

R
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l else 


 


 
(7) 



 

 26 

where jbw is a user-specified pitch bandwidth for the 
thj component of the new 

candidate solution. 

2.3.2.4 Update the HM 

Finally, the newly improvised harmony is substituted for the worst component of 

the harmony memory, if it results in a lower objective function value. 

2.3.2.5 Repeat 

The procedure will be repeated until (1) a predefined number of iterations is reached 

or (2) no improvement seen in the value of the best individual over a pre-assigned 

number of iterations. 

2.3.3 Artificial Bee Colony (ABC) 

ABC is a nature-inspired population based algorithm which was introduced by 

Karaboga (2005) that imitates the social behavior of a swarm of bees in locating 

food sources. The application of ABC to various optimization problems in 

obtaining the optimum solution (a rich source of food) has demonstrated the 

flexibility and efficacy of this method. However, previous studies have shown a 

clear need for improvement in ABC, since it lacks an efficient exploitation of the 

search space which instead performs well in exploration (G. Zhu & Kwong, 2010). 

Bees swarm is classified into three categories: (1) Employed bees, (2) Onlooker 

bees and (3) Scout bees; Sharing the information acquired by exploring the food 

sources (initial solutions) in the neighborhood, leads the forager bees to the most 

promising source of food, i.e. optimum solution for the given problem. Exploration 

of the feasible food resources in the vicinity of the hive and collecting requisite 

information are thoroughly performed by employed bees, while the onlooker bees 

 
,

,

,

(). ()i j j

i j

i j

v rand bw rand PAR
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elsev

 
 

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serve the swarm in the assessment of collected information and selecting a food 

source of high extraction capability. Scout bees are responsible for discovering new 

food sources to replace with the exhausted ones. Three major phases of the ABC 

method are described as follows: 

2.3.3.1 Initialization  

First, a population of potential solutions containing SN randomly initialized 

individuals is generated using Equation (9). Each individual   1,2,...,  iX i SN can 

be initialized as follows:  

where idX is the 
thd design parameter of the 

thi solution in the population, mindX

and maxdX denote the boundary limitations for the 
thd variable of iX , and rand [0,1] 

is a uniformly distributed random number between [0,1]. 

2.3.3.2 Employed bee phase 

At this step, employed bees attempt to locate a new source of food in the vicinity 

of the current sources. To accomplish this objective Equation (10) is adopted, as 

follows: 

where, the subscript i denotes the index number of the current solution, k refers to 

a randomly chosen solution from the population and i k , and j is a random 

index. id is a random number between [0,1]. Finally, the solutions with better 

fitness values are selected, applying the greedy selection between updated solutions 

and the old ones. 

 0,1[ ]( )id mind maxd mindX X rand X X  
 (9) 

 ( )     id id id id kdV X X X  
 (10) 
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2.3.3.3 Onlooker bee phase 

Onlooker bees evaluate the information collected by employed bees to select a rich 

source of food in order to search for better sources in their vicinity. This selection 

is performed based on a probability which is proportional to the fitness value of the 

solution (nectar amount of food source), as shown below: 

where ifitness is the fitness value associated with the 
thi solution. Once an 

appropriate candidate is selected, Equation (10) is then used to generate a new 

candidate solution in the neighborhood. As in the previous phase, a greedy selection 

between the updated solution and the old one is applied in order to select the 

solution of the optimal value.  

2.3.3.4 Scout bee phase 

In ABC algorithm, a control parameter, namely limit, is defined in order to indicate 

which of the solutions is abandoned (i.e. food sources exhausted). As a result, an 

alternative food source is required to be located by a scout bee using Equation (9) 

and replaced with the exhausted one. 
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CHAPTER 3 

 

 

3.MAIN WORK 

 

 

In this chapter, a complete description of the framework proposed for a reliable 

slope stability evaluation with the application of optimization techniques is 

provided. This procedure embraces three major steps, which include (1) generating 

a number of trial slip surfaces, (2) evaluating safety factors corresponding to the 

generated surfaces and lastly, (3) looking for the most critical failure surface 

possessing the minimum safety factor. Following the procedure explained in the 

first step, several non-circular failure surfaces composed of a predefined number of 

slices can be generated. The value of safety factor is then required to be calculated 

for each trial surface. Finally, in the third step, the optimization technique intends 

to locate much critical surfaces within the slope, through making admissible 

changes in the initial geometry of the surfaces. Detailed information about each step 

is given in the following subsections. 

3.1  Trial Slip Surface Generation Method 

Initial trial surfaces can have either circular or non-circular geometry. A number of 

slope stability studies have demonstrated that circular failure surfaces can be 

successfully used where the case of study consists of a homogeneous soil layer; 

however, the stability of slopes with multi-layered soil profile can be more precisely 

evaluated through generating non-circular trial failure surfaces within the analysis 

(Zolfaghari et al., 2005). Various methods have so far been implemented in the 

literature for generating trial slip surfaces, and as noted by Cheng et al. (2008) the 

results obtained in the analysis is highly dependent on the slip surface generation 

method, and therefore different outcomes may be expected for the same slope in 

this regard. 
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Amongst the methods proposed for generating trial slip surfaces to date, the method 

recommended in the study by Cheng et al. (2008) is taken as the base for the 

procedure followed in this study, through which admissible slip surfaces, i.e. 

concave upward surface, can be formed as further outlined below. An example of 

the generated surfaces is represented in Figure 8. The function g(x) indicates the 

ground surface and h(x) marks the boundary separating different soil layers in the 

slope. The n-slice nonlinear slip surface T is readily formed by connecting 1n  

vertices 1 2 1( , ,..., )nV V V  specified by the coordinates 1 1 2 2 1 1( , ), ( , ),..., ( , )n nx y x y x y   . 

The following steps are followed to generate a valid trial slip surface:  

 Initially, the x-coordinates of the start and endpoint of the surface along with 

the inclination of the first 1( ) and last 1( )n  slices are randomly determined 

within their respective pre-defined ranges. Using the ground surface 

function g(x), corresponding vertical coordinates can then be specified. 

Care is required when defining the boundary limitations of the 1( )  and 

1( )n   in order to generate admissible surfaces. 

 Two lines are drawn through two end points of the surface with the specified 

angles and the intersection point, i.e.V  , is determined. 

 Equation (12) and (13) are employed to determine the coordinates of two 

new vertices, i.e. second vertex 2V and a temporary vertex 7V 
 
.  

where r   is a randomly generated number between -0.5 and 0.5. 

 Subsequent points corresponding to the third and fourth vertices, 3V
 and 

4V respectively, are placed at two neighboring line segments of the largest 

 2 1 2 1( )(0.5 ( 0.5,0.5))nx x x x r
    

 (12) 

 2 1 2 1 1( ) tan( )y y x x   
 (13) 



 

 31 

horizontal lengths using equations similar to those of the previous step. This 

procedure is followed in order to indicate the coordinates of all vertices 

which simply constitute a trial surface of n slices described by the vector

1 1 5 2( , , , , ,..., )end end nV x x     . The slip surface generation procedure is 

then followed by safety factor evaluation of the respective surfaces, which 

is further explained in the succeeding section.  

 

Figure 8- Geometric Description of the Surface Generation Method 

3.2 Calculation of Factor of Safety 

As outlined in the previous chapter, several limit equilibrium methods that vary 

depending on the inter-slice forces assumptions are introduced thus far, within them 

the M-P method (Morgenstern & Price, 1965) in which all the equilibrium 

conditions are perfectly met, has been exhaustively used in various studies in the 

literature. This method, however, suffers from the difficulty to suggest appropriate 

equations for the factor of safety and the scaling factor due to the non-linearity of 

the force and moment equilibrium equations.  

To overcome these difficulties, in this study a reformulated Morgenstern-Price 

method is adopted for the slope stability analysis, which is developed by Zhu et al. 
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(2005). The changes made in this improved technique contributes to its simplicity 

and facilitates the implementation of this algorithm into a computer program (D. Y. 

Zhu et al., 2005).  

As proposed in the original M-P method, the ratio of the normal forces over shear 

inter-slice forces is calculated as follows: 

where T and E refer to the inter-slice shear and normal forces, respectively. In 

addition, f(x) in this equation is a prescribed function that may be in the form of a 

constant, a trapezoidal, a half-sine or a user-defined function. λ is a scaling factor 

that is to be determined when calculating the factor of safety. 

Prior to the evaluation of the safety factor, the soil mas above the failure surface, 

like other methods of slices, is divided into a number of slices which is then 

followed by determination of the forces imposed on each individual slice. Figure 9 

below illustrates the geometry of a simple slope along with the inter-slice forces on 

a representative slice. The symbols ℎ𝑖, 𝑏𝑖 and 𝛼𝑖 denote the slice height, slice width 

and inclination of the slice base, respectively. Furthermore,  𝑊𝑖 denotes weight of 

the slice,  𝐾𝑐 refers to seismic coefficient in the horizontal direction, 𝑤𝑖 is the 

inclination of the external loading  𝑄𝑖 . Resultant pore water force is represented by  

𝑈𝑖 , while  𝑢𝑖 denotes the mean water pressure. In addition,  𝑁′𝑖 corresponds to the 

effective normal force on the slice base,   𝑐𝑖 is the effective cohesion, 𝜑′𝑖 is the 

effective internal friction angle, 𝐹𝑠 is the safety factor and   𝑆𝑖 represents the slice 

base mobilized shear resistance. 𝐸𝑖 and 𝐸𝑖−1are the normal inter-slice forces exerted 

on the slice, while 𝑍𝑖 and 𝑍𝑖−1 denote the distances from the bottom of the slice to 

the point of application of the corresponding normal inter-slice forces.  

 ( ). .T f x E  (14) 
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(a) (b) 

Figure 9 - (a) Slope Geometry and General Failure Surface,  (b) Inter-Slice Forces 

in Slice Number (i) 

In Figure 9 (b), N is the normal force acting on the base of the slice, W denotes the 

slice weight, and U represents the resultant water force at the base. In addition, T 

denotes the shear force on the base, α is the angle of base inclination and finally, X 

and E denote the inter-slice shear and normal forces, respectively. 

In an effort to derive an expression for the factor of safety, Zhu et al. (2005) 

considered the condition of equilibrium to the forces both perpendicular and 

parallel to the slice base, which yielded the following Equation: 

where, 𝑅𝑖 represent the sum of the forces resisting the slippage, Equation (16), and 

𝑇𝑖 corresponds to the sum of the forces which may lead to failure of the slope, 

Equation (17).  

 [ cos sin cos( ) ] tani i i h i i i i i i i i iR W K W Q U c l           
  (16) 
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 [ sin cos sin( )i i i h i i i i iT W K W Q      
 (17) 

 1 1 1[i i i i i s i iE E F T R       
  (18) 

 (sin cos ) tan (cos sin )i i i i i i i i sf f F          
  (19) 

 1 1 1 1[(sin cos ) tan (cos sin ) ] /i i i i i i i i s if f F          
    

 (20) 

where parameter E refers to the inter-slice forces on the vertical sides of slices. 

From the Equation (15), it can be inferred that an iterative procedure needs to be 

followed so as to determine the factor of safety since the equation has the FS on 

both sides. 

Likewise, resolving moments about a point in the center of the slice, an explicit 

Equation is developed for the scaling factor: 

where parameter E refers to the inter-slice forces on the vertical sides of slices 

which is determined as follows: 

It is important to note that at the lower and upper bounds of the slope, 𝐸0 and 𝐸𝑛 

respectively, the inter-slice forces are neglected, (𝐸0=𝐸𝑛=0). 

The complete iterative procedure for the factor of safety calculation is illustrated in 

Figure 10. As shown, once the value of 𝑅𝑖 and 𝑇𝑖 are determined, it is then required 
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to define the type of inter-slice function f(x), a constant function (f(x) = 1) is adopted 

in this study, as well as to initialize the factor of safety and the scaling factor. Zhu 

et al. (2005) proposed initial values of 1 and 0 for 𝐹𝑠 and 𝜆, respectively. Next step 

is to calculate the value of FS using Equation (15), followed by evaluation of 𝜆 for 

which the Equation (21) is utilized. These updated values are then substituted for 

the prescribed FS and 𝜆 values, and an iterative procedure is continued until the 

absolute differences in FS value as well as the value of 𝜆 in successive iterations is 

less than predefined parameters 𝜀1 and  𝜀2; a value of 0.0001 is proposed for both 

of these limits.  
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Figure 10 - Flowchart of FS Algorithm (D. Y. Zhu et al., 2005) 
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3.3 Optimization Methods 

As has been pointed out in the previous sections, the main goal of a slope stability 

assessment is to evaluate the minimum safety factor corresponding to a geological 

surface along which the soil is more prone to slide down the slope. This objective 

can be reliably achieved by an optimization process formulated as follows:  

where V is a trial solution vector containing control variables of the sliding surface 

and ( )FS V is the safety factor of the generated failure surface. minix and maxix denote 

the boundary limitations of the starting and end points of the surface and nVar

indicates the number of control variables within the solution vector. The 

minimization procedure starts with the construction of a population of randomly 

generated solution vectors followed by evaluation of the corresponding objective 

function values, factors of safety, by using the method proposed in the previous 

section. The search for solutions with huge potential for further improvement in the 

objective value is continued through updating the variables of solution vectors over 

the successive iterations. Once the predefined termination criteria are met, the 

optimum objective value of the problem, pertaining to the best candidate solution 

is finally achieved. Detailed information about the implementation process of the 

proposed optimization methods is given in the following subsections. 

Find 1 1 5 2( , , , , ,..., )end end nV x x    
 (23) 

To minimize ( )FS V  (24) 

Subjected to min max , 1,i i ix x x i nVar  
  (25) 

 0.5 0.5, 5,6,...,j j nVar     (26) 
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3.3.1 Improved harmony search algorithm (LHS) 

Review of the available evidence on the application of the harmony search method 

establishes its limitations in exploring the optimum solution, particularly in the case 

of complicated optimization problems and demonstrates the need for further 

refinements in its algorithm. In this regard, Ouyang et al. (2017) proposed an 

improved harmony search algorithm (LHS) which enhances the ability of HS 

algorithm both in exploring the search space thoroughly in order to discover a 

region of better candidate solutions, along with locating new promising solutions 

in the neighborhood of the current optimum solution. Three major alteration to the 

harmony search algorithm is made which includes the incorporation of (1) local 

opposition-based learning, (2) self-adaptation global pitch adjusting, and (3) 

competition-selection strategies into the original HS method. The implementation 

procedure of LHS is outlined and a brief overview of the selection of appropriate 

parameters for this method is given, as follows: 

3.3.1.1 Definition of the Algorithm 

In opposition-based learning scheme, a candidate solution and its opposing solution 

are generated simultaneously in order to explore the search space more 

comprehensively. Exploitation ability in harmony search method, however, is 

mainly influenced by the pitch adjusting operation. Consequently, employing a self-

adapting pitch adjustment concept can improve the efficacy of the harmony search 

method in problem solving. Adoption of the competition-selection approach helps 

the algorithm update the existing harmony memory over the successive iterations. 

The implementation procedure of the LHS is summarized as follows: 

3.3.1.1.1 Initializing algorithm and problem parameters 

In this step, harmony memory size (HMS), harmony memory consideration rate 

(HMCR), the maximum dimension of candidate solutions D, lower and upper 

bounds for the control variables and maximum generation number G, are required 

to be specified. 
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3.3.1.1.2 Initializing harmony memory  

To construct an initial population of randomly generated candidate solutions, the 

same procedure, as explained in the initialization step of the HS method, is followed 

in this subsection.  

3.3.1.1.3 Improvisation 

Unlike harmony search, LHS improvises two new harmonies in the course of 

memory consideration process as illustrated in Equations (27) and (28): 

where newx is a newly generated candidate solution and newx is its opposite estimate. 

The subscript r is a member of the set  1,2, , HMS denoting the index number of 

a randomly selected harmony in the memory. HMCR represents the probability of 

deriving 
thj decision variable in the new solution vector from the corresponding 

component of the 
thr individual in the memory, while the remaining components 

are determined randomly, as in Equation (27). In opposition solution vector, 

however, HMCR refers to the probability of selecting 
thj component within the 

opposite estimate of the new candidate solution to fill the corresponding element in 

the new opposite candidate solution and  1 HMCR demonstrates the probability 

of assigning random values to the remaining components of the solution. A self-

adaptation pitch adjustment is subsequently made to the new candidate solutions, 

as in Equation (29): 
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where ,best jx and ,worst jx  represent the index number of selected components within 

the best and worst individuals in the memory, respectively. Incorporation of the 

best and worst individuals helps the algorithm approach the global optimum over 

the successive generations. The parameter  represents a dynamic factor where its 

value is dependent on the number of the current iteration along with the maximum 

iterations number, as expressed in Equation (30): 

where k  denotes the current iteration’s number, and the maximum iterations 

number is depicted with K . 

3.3.1.1.4 Updating  

In this step, fitness value for both the new solution and its opposite estimate is 

compared and the better solution is substituted for the worst individual in the 

population. 

3.3.1.1.5 Termination 

The procedure will be continued until the maximum number of iterations is reached 

and the best solution will be reported. Figure 11 and Figure 12, illustrate the 

implementation process of the proposed method. 

. 
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3.3.1.2 Parameter Selection  

Appropriate determination of the key parameters involved in any optimization 

method requires an extensive research effort. In this regard, Ouyang et al. (2017) 

carried out a number of investigations into the impacts of the values assigned to 

HMS and HMCR on the performance of LHS; according to their study, selection 

of a small value for HMS would yield much promising results while, in contrast, a 

large value is recommended for the HMCR (HMCR > 0.90) for a better 

performance.  

In an effort to determine the appropriate parameter values in this study, slope 

stability analysis using LHS method is repeated several times, with varied values 

assumed for the HMS and the HMCR. Based on the results obtained, the selected 

values for these parameters are as follows: HMCR= 0.99 and HMS = 40.  
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Figure 11 - Two main branches about the improvisation process (Ouyang et al., 

2017) 
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1. Initializing algorithm and problem parameters. 

Harmony memory size HMS, maximum dimension D, maximum generation G, 

𝑃𝐴𝑅min and 𝑃𝐴𝑅max 

 

2. Initializing harmony memory 

 For i=1 to HMS do 

 For j=1 to D 

  𝑥𝑖,𝑗 = 𝑥𝑗,𝐿 + 𝑟𝑎𝑛𝑑. (𝑥𝑗,𝑈 − 𝑥𝑗,𝐿); 

End For 

Calculate f (𝑥𝑖) 

End For 

 

3. Improvisation 

g=0, while the stopping criteria is not adequate (g<G) do 

For j=1 to D do 

If rand () ≤ HMCR 

𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑟,𝑗  (𝑟 ∈ 1,2,3, … 𝐻𝑀𝑆)   % memory consideration 

�̃�𝑛𝑒𝑤,𝑗 = 𝑥𝑗,𝑈 + 𝑥𝑗,𝐿 − 𝑥𝑛𝑒𝑤,𝑗 

Calculate the parameter 𝜂 

 

If rand () ≤  𝜂 then % pitch adjustment 

𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑛𝑒𝑤,𝑗 + 𝑟𝑎𝑛𝑑. (𝑥𝑏𝑒𝑠𝑡,𝑗 − 𝑥𝑛𝑒𝑤,𝑗) 

Else 

𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑛𝑒𝑤,𝑗 − 𝑟𝑎𝑛𝑑. (𝑥𝑤𝑜𝑟𝑠𝑡,𝑗 − 𝑥𝑛𝑒𝑤,𝑗) 

End If 

Else 

𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑗,𝐿 + 𝑟𝑎𝑛𝑑. (𝑥𝑗,𝑈 − 𝑥𝑗,𝐿)   % random selection 

�̃�𝑛𝑒𝑤,𝑗 = 𝑥𝑗,𝐿 + 𝑟𝑎𝑛𝑑. (𝑥𝑗,𝑈 − 𝑥𝑗,𝐿) 

End If 

End For 

 

4. Updating 

Select the worst harmony vector 𝑥𝑤𝑜𝑟𝑠𝑡 in the current harmony memory and 

calculate f (𝑥𝑛𝑒𝑤) and f (�̃�𝑛𝑒𝑤) 

If f (𝑥𝑛𝑒𝑤) < f (�̃�𝑛𝑒𝑤) 

𝑥𝑤𝑜𝑟𝑠𝑡 = 𝑥𝑛𝑒𝑤 

f (𝑥𝑤𝑜𝑟𝑠𝑡) = f (𝑥𝑛𝑒𝑤) 

Else 

𝑥𝑤𝑜𝑟𝑠𝑡 = �̃�𝑛𝑒𝑤 

f (𝑥𝑤𝑜𝑟𝑠𝑡) = f (�̃�𝑛𝑒𝑤) 

End If 

g=g+1 

End While 

 

5. Algorithm stops and the best solution is obtained 

 Figure 12 - LHS Algorithm (Ouyang et al., 2017) 
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3.3.2 Grasshopper optimization algorithm (GOA) 

Grasshopper optimization algorithm (GOA) is a recent nature-inspired stochastic 

optimization method proposed by Saremi et al. (2017). Mathematical theorem of 

the GOA is thoroughly formed on the basis of the natural behavior of grasshopper 

swarm in foraging the farms for adequate sources of food. Each grasshopper in this 

method relocates from its current position according to the location of the best 

forager, a grasshopper possessing the optimal objective value, and remaining 

agents’ position. Simulation of the social interaction, i.e. repulsion and attraction 

forces, between the grasshoppers which is balanced with a decreasing coefficient 

help GOA thoroughly explore the design space in order to discover the most 

adequate food source, i.e. the optimum value of the objective function. Successful 

application of the proposed method on several test functions of various 

complexities as well as design optimization of multiple real problems has 

demonstrated the accuracy and applicability of GOA in obtaining the optimum 

solutions. The implementation process of the GOA is summarized as follows: 

3.3.2.1  Definition of the Algorithm 

The initial position of N number of potential solutions (grasshoppers) in the search 

space is randomly determined prior to the formation of the foraging swarm. Control 

parameters of GOA, including maxC , minC as well as the number of maximum 

iterations are also required to be specified in this phase. Objective value of each 

candidate solution is then evaluated and the one owning the optimum objective 

value – best candidate solution – is subsequently determined. A successful 

optimization process, however, requires the entire search space to be 

comprehensively explored. In this regard, Equation (31) is introduced in GOA 

which helps the grasshoppers update their current position, and thus discover new 

regions in the neighborhood. It also can be inferred from the Equation (31) that in 

addition to the position of both the current grasshopper and the best individual thus 

far, the remaining members of the swarm play a considerable role in updating the 

current positions. 
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where 
d

i
X indicates the updated position of the thi individual in the thd dimension, 

N refers to the number of individuals, dlb and dub define the boundary limits in 

dimension d ,  d d

j i
x x represents the distance separating the individuals i and j. In 

addition, ( )
j i ij

x x d  indicates a vector of magnitude 1, from individual i to 

individual j. d
T  is the th

d component of the best candidate solution in the swarm, and 

subscripts i and j refer to the th
i and 

th
j grasshopper, respectively. In Equation (31), 

c is a coefficient balancing the attraction and repulsion forces between the search 

agents, which contributes to the improvement of the results through guiding the 

search agents towards the best solution within the swarm. Value of the coefficient 

c varies over the successive iterations and it can be determined by using Equation 

(32) as follows: 

where 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛 refer to the boundary limitations for the coefficient c, 

parameter l denotes the current iteration, and L is the maximum iterations number. 

In addition, s in the Equation (31) is a function which measures the interactive 

forces between the grasshoppers. Equation (33) is proposed for this purpose, as 

follows:  

where parameter f  denotes the attraction intensity and l refers to the scale of the 

attractive length. 
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The search for regions with huge potential for further improvement in the objective 

value is continued through updating the position of search agents over the 

successive iterations. Once the predefined termination criteria are met, the optimum 

fitness value of the problem, corresponding to the best target is finally achieved. 

Figure 13, illustrates the pseudo codes of the proposed method. 

3.3.2.2  Parameter Selection  

In an effort to determine appropriate values for the key parameters of the GOA, 

Saremi et al. (2017) carried out a number of investigations into the impacts of the 

values assigned to f and l on the performance of function s. According to their study, 

the function s would yield much promising results when assuming l=1.5 and f=0.5. 

In addition, as for the parameters 𝑐𝑚𝑎𝑥and 𝑐𝑚𝑖𝑛, the values 1 and 0.00001 are 

recommended, respectively,  

In an effort to determine the appropriate parameter values in this study, slope 

stability analysis using GOA method is repeated several times, with varied values 

assumed for the boundary limitations of the parameter c – 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑎𝑥. Based 

on the results obtained, the selected values for these parameters are as follows: 

𝑐𝑚𝑎𝑥= 2 and 𝑐𝑚𝑖𝑛 = 0.001. It is worth mentioning that the values proposed in the 

original study are used for the parameters l and f.  
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3.3.3 Hybrid Artificial Bee Colony with Differential Evolution (HABCDE)  

Recent studies have consistently shown that basic ABC, as mentioned earlier, lacks 

the ability to exploit better solutions as it lacks the capability of taking advantage 

of the information collected by the forager bees swarm. So far, however, there has 

been made considerable attempts to get around the above-mentioned drawbacks. 

Jadon et al. (2017) hybridized Artificial Bee Colony and Differential Evolution 

methods to develop a new algorithm, namely HABCDE, which benefits both from 

the advantages of ABC, such as (1) straightforward implementation and (2) few 

parameter adjustment requirements, and from the fast-converging feature of the 

differential evolution algorithm. Various modifications are carried out on each 

phase of ABC to enhance its efficiency and convergence speed as well as to obtain 

results of high accuracy. In HABCDE, employed bees utilize an updated equation 

Initialize the swarm 𝑋𝑖, (i= 1,2,…,n) 

Initialize 𝑐𝑚𝑎𝑥, 𝑐𝑚𝑖𝑛 and maximum number of iterations 

Calculate the fitness of each search agent 

T= the best search agent  

While (l < Max number of iterations) 

Update c using Equation (32) 

For each search agent 

Normalize the distances between grassoppers in [1,4] 

Update the position of the current search agent by the Equation (31) 

Bring the current search agent back if it goes outside the boundaries 

End for 

Update T if there is a better solution 

l= l+1 

End while  

Return T 

Figure 13 - GOA Algorithm (Saremi et al., 2017) 
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while exploring food sources. Besides, onlooker bees in HABCDE exploit the 

current solutions by the means of DE’s evolutionary operations, and the entire scout 

bees in this method are required to look for new alternative food sources to replace 

exhausted ones.  

3.3.3.1  Definition of the Algorithm 

In the following subsections, the implementation process of the proposed HABCDE 

method is outlined in three phases. Also, a brief overview of the parameter selection 

for this method is provided, as follows: 

3.3.3.1.1 Initialization  

First, a population of potential solutions containing SN randomly initialized 

individuals is generated using Equation (34). Each individual ( 1,2,..., )iX i SN  

can be generated as follows:  

where idX is the thd design parameter of the thi solution in the population, min dX

and max dX denote the boundary limitations for the thd variable of iX , and rand [0,1] 

is a random number selected from a uniform distribution between [0,1]. 

3.3.3.1.2 Employed bee phase 

At this step, employed bees attempt to locate a new source of food surrounding the 

current sources. To accomplish this objective, a search equation similar to the one 

proposed in gbest-guided ABC (G. Zhu & Kwong, 2010) is adopted, which 

contributes to the improvement in exploitation ability of the employed method 

through the incorporation of the position of the best candidate solution into 

Equation (35), as follows: 

 min max min    rand[0.1]  ( )id d d dX X X X  
 (34) 
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where, the subscript i indicates the index number of the current solution, k refers to 

a solution selected randomly from the population and i≠ 𝑘, and j is a randomly 

selected index. 𝜑𝑖𝑑  is a random number in the interval [0,1], 𝑦𝑑  is the 𝑑𝑡ℎ variable 

within the best individual. Ψ is a random number in the interval  0, C and C is a 

positive user-defined constant. Finally, the solutions with better fitness values are 

selected by using the greedy selection mechanism between updated solutions and 

the old ones. 

3.3.3.1.3 Onlooker bee phase 

Onlooker bees evaluate the information collected by employed bees to serve the 

purpose of selecting rich sources of food in an effort to search for better sources in 

their vicinity. This selection is performed on merit based on a probability iprob , 

which is proportional to the solution’s fitness value, as shown below:  

where ifitness  is the calculated fitness value associated with the 𝑖𝑡ℎ solution. To 

generate new candidate solutions, DE’s evolutionary operations, i.e. mutation, 

crossover, and selection, are utilized. This process starts with generating a mutated 

vector according to the best food source position as well as the position of two other 

sources which are selected randomly from the population as presented in Equation 

(3) in the previous chapter. Following this, a crossover operation, as in Equation 

(4), is applied and current solution’s design variables are merged with those of 

mutated vector to produce a trial vector. Finally, selection operator, Equation (5), 

is applied in the last phase so as to determine the solution of the optimal value. 

       ( ) ( )id id id id kd id d idv x x x y x     
 (35) 

  (36) 
0.9

( ) 0.1i

i

fitness
prob G

maxfit
 
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3.3.3.1.4 Scout bee phase 

Typically, available nutrients of the food sources get exhausted due to the continued 

exploitation by the forager bees. A candidate solution in ABC is called abandoned 

if its corresponding control parameter reaches a predefined value, namely limit, 

after a number of successive iterations. In basic ABC, a scout bee identifies an 

alternative source of food, by using Equation (34), to replace the exhausted one. 

However, in the proposed method, all the exhausted solutions update their current 

position to lead to an improvement in the exploration capability of HABCDE. 

Consequently, the optimum solution for the problem can be discovered by 

performing this three-step iterative procedure until a certain termination criterion is 

met. Figure 14 and Figure 15, illustrate the implementation process of the proposed 

method. 

3.3.3.2  Parameter Selection  

In an effort to determine the appropriate setting for the key parameters of the 

HABCDE, Jadon et al. (2017) carried out a number of investigations into the 

impacts of the values assigned to F and CR – key parameters of DE method – on 

the performance of proposed method. According to their study, the method would 

yield much promising results with the values F=0.7 and CR=0.6 assumed in the 

analyses.  

In an effort to determine the appropriate parameter values in this study, slope 

stability analysis using HABCDE method is repeated several times, with varied 

values assumed for the parameters F and CR. Based on the results obtained, the 

selected values for these parameters are as follows: F = 0.7 and CR = 0.9.  

  



 

 51 

Figure 14 - HABCDE Algorithm (Jadon et al., 2017) 

Initialize the swarm and control parameters;  

While !Termination criteria do  

  Employed bee phase: generate neighborhood solutions for each solution in 

  the swarm using position update Equation (35) 

  Onlooker bees phase: generate neighborhood solutions for the solutions 

  selected based on their probabilities as follows:  

for (each onlooker’s solution x𝑖) do  

      if (U (0, 1) < prob𝑖) then  

Apply mutation (as in Equation(3)) to generate the trial solution u𝑖  

Apply binomial crossover (as in Equation(4)) to generate an offspring x′𝑖  

if (f (x′𝑖) is better than f (x𝑖)) then   

x𝑖 =x′𝑖 

end if  

      end if  

end for  

  Scout bee phase: randomly reinitialize all the exhausted solutions in the 

  search space.  

end while  

Output the best solution. 
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Figure 15 - Flowchart for HABCDE Algorithm (Jadon et al., 2017) 

Initialize solutions

Calculate Fitness

Employed bee phase

(Determine neighbor of the solutions  using Eq. 35)

Onlooker bee phase

( Select solutions based on probabili ty using Eq. 36 )

Apply DE/best/1/bin proces s:

2. generate new solution using crossover operator (Eq. 4)

3. select new or old solution base d on fitness using selection operator (Eq. 5)

Memorize the best solution

(produce new solutions in pla ce of all exhausted solutions using Eq. 34 )

Final solutions

Yes

No
Is termination 

     criteria 

    satisfied ?

Calculate Fitness

1. generate trial solution using mutation operation (Eq. 3)

Scout bee phase:
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CHAPTER 4 

 

4.CASE STUDIES 

 

 

In this section capability and efficacy of the proposed methods in determination of 

the expected failure surface and the relating factor of safety are thoroughly revealed. 

In this regard, four case studies of varying computational complexity are 

considered. Selected numerical examples consist of a set of three complex layered 

slopes of diverse geometries and a simple homogeneous slope problem, subjected 

to different external loading conditions. Furthermore, computer codes developed in 

MATLAB software are used for the implementation of the optimization methods in 

the analyses. The analyses are performed with 40 randomly initialized individuals 

and 3000 generations. Each of the case studies is solved 30 times to reduce the 

possible statistical errors which may arise in association with the stochastic 

behavior of the optimization techniques. Also, in this study, the slice number is set 

equal to 20 in all the case studies. 

Analyses results in this study are compared with those obtained in previous studies 

carried out by different researchers and summarized in tables. A comprehensive 

comparison of the results necessitates the use of identical assumptions and analysis 

methods for the same slope problem. Available results in the literature are, however, 

obtained by using different limit equilibrium method. This consequently might 

adversely affect the reliability of the comparison; however, it is believed that 

adequate comparisons of different metaheuristic methods can be made in terms of 

their accuracy as well as the overall performance. In the following sections, 

available information about the geometry of the case studies along with the 

characteristic of the soil in situ is provided in details. 
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4.1 Case study 1 

As the first test case, a homogeneous earth slope with a simple geometry as 

presented in Figure 16 is considered. Information about the soil parameters of this 

slope is, for effective cohesion c =9.8 kN 𝑚3⁄ , unit weight γ =17.64 kN 𝑚3⁄ , 

residual friction angle φ =10° and the water table is not observed within the slope. 

 

 

Figure 16 - Slope geometry—Example 1 

Various optimization schemes are used to solve this problem, where the comparison 

of the results allows researchers to benchmark the performance of one optimization 

technique against other methods. Classical optimization methods such as the 

Davidon-Fletcher-Powell (DFP) method, the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) method, the Powell method and the simplex method, integrated with the 

Morgenstern-Price method (assuming interslice function, f(x)=1) are used by 

Yamagami and Ueta (1988) in their study to locate the noncircular failure surface 

in this problem. Additionally, Greco (1996) adopted the Mont-Carlo and pattern 

search methods to determine the minimum safety factor. This problem has also been 
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studied with several metaheuristic algorithms including, genetic algorithms as in 

Sun et al. (2008), harmony search and particle swarm techniques in Cheng et al. 

(2007; 2008), and ant colony optimization algorithm in the work by Kahatadeniya 

et al. (2009). Table 2 provides an overview of the optimum results obtained in the 

literature by applying different methods on this problem. It is worth mentioning that 

NOF in the table below refers to the overall number of evaluations performed 

during the analyses. 

Table 2 - Result Comparison – Example 1 

Study Method 
Optimization 

Method 
FS NOF 

Yamagami 

(1988) 
Spencer BFGS,DFP,Powell 1.338 NA 

Greco  

(1996) 
Spencer Monte Carlo 1.327-1.333 NA 

Cheng et al.  

(2008) 
MP Modified HS 1.3379 10568 

Cheng et al.  

(2006) 
Spencer PSO 1.3249 54022 

Cheng et al.  

(2007) 
Spencer Modified PSO 1.3273 20021 

Sun et al.  

(2008) 
Spencer GA 

1.324 (line) 

NA 

1.321(spline) 

Kahatadeniya et al 

(2009) 
MP ACO 1.311 NA 

Khajezadeh et al. 

 (2012) 
MP 

PSO 1.321 NA 

MPSO 1.308 NA 

Kashani et al.  

(2014) 
MP ICA 1.3206 NA 
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In this study, the methods introduced in the previous chapters are properly 

implemented to assess the stability of this case study. While the application of the 

most popular optimization methods on this problem results in reasonable 

approximations for the factor of safety against failure, lower FS value for HABCDE 

proves its superiority over other techniques (Table 3). According to the Table 3, an 

optimum safety factor of 1.328 is obtained in 50th iteration. More critical slip 

surface can be located by continuing the analyses up to a higher number of 

iterations, say 250, in which a failure surface possessing a FS value of 1.324 is 

obtained. 

Table 3 - Results of this study—Example 1 

 Iteration 

Method 50 250 750 3000 

ABC 1.364786 1.336126 1.328142 1.325433 

DE 1.354253 1.339867 1.334564 1.327605 

GA 1.333774 1.32692 1.326453 1.325885 

GOA 1.339832 1.336682 1.32741 1.325197 

HABCDE 1.32883 1.324999 1.324212 1.324108 

HS 1.443136 1.391691 1.33782 1.326653 

LHS 1.331135 1.327289 1.326331 1.325309 

PSO 1.342849 1.338558 1.3288 1.325527 
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Comparison of the rates at which the implemented methods converge to their 

optimum values demonstrate that almost all the methods reach nearly similar values 

at the end of the analyses (Figure 17a). However, both the HS and the DE methods 

represent a relatively weaker performance resulting in higher factor of safety values 

for the case of study. Convergence to near-optimal values within a few successive 

iterations is the feature which distinguishes the best optimization method from 

others. For better illustration, consider the convergence rate of the PSO and LHS 

methods in Figure 17a; while no significant difference is observed in the obtained 

FS values, fast convergence of the LHS method makes it a more favorable method 

of analysis. 

In addition, a closer look into the convergence history of the three recent 

optimization methods proposed in this study indicates that HABCDE outperforms 

the competition in terms of both convergence rate and precision, as illustrated in 

Figure 17b. Furthermore, GOA ranks second according to the factor of safety value, 

although in the earlier iterations, LHS demonstrates better performance in terms of 

rate of convergence considering its capability in obtaining comparatively better 

optimized values within less computational efforts. 

In order to gain a better insight into the performance of the optimization algorithms, 

convergence history of each method is also illustrated in separate figures (see 

Appendix A). 
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Figure 17 - Comparison of the convergence rates -- Example 1 (a) all the methods 

(b) proposed methods  
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Furthermore, in Figure 18, the critical slip surfaces associated with the implemented 

methods are displayed graphically. From this figure, the sensitivity of the safety 

factor to slight changes in the location of the failure surface can be readily inferred. 

 

Figure 18 - Critical Slip Surfaces -- Example 1 

4.2 Case study 2 

In the second case, a non-homogeneous earth slope comprising four layers of 

different soil properties which is first proposed by Zolfaghari et al. (2005), is 

considered. Figure 19 illustrates the slope geometry and Table 4 indicates the soil 

parameters of each layer, independently. Presence of the low-resistant soil layer in 

the slope profile makes it a challenging optimization problem attributable to various 

local optimum points existing in the search space, and consequently, determination 

of the expected slip surface entirely depends on the ability of the optimization 

techniques in evading these local minima. 
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Table 4 - Soil Parameters – Example 2 

Soil Parameters Layer 1 Layer 2 Layer 3 Layer 4 

C (𝑘𝑁/𝑚2) 14.7 16.7 4.9 34.3 

φ (𝑑𝑒𝑔𝑟𝑒𝑒𝑠) 20 21 10 28 

γ (𝑘𝑁/𝑚3) 18.63 18.63 18.63 18.63 

 

Figure 19 - Geometry of Slope – Example 2 

Various optimization algorithms are employed to solve this test problem, including 

a simple form of genetic algorithm combined with Morgenstern-Price method in 

Zolfaghari et al. (2005), modified PSO and modified HS, Ant Colony Optimization 

method and Real-coded GA in the studies done by Cheng et al. (2007) and Cheng 

et al. (2008) and Kahatadeniya et al. (2009) and Li et al. (2010), respectively.  

Table 5 provides an overview of the optimum results obtained in the literature by 

applying different methods on this problem. 
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Table 5 - Result comparison—Example 2 

Study Method Optimization Method FS NOF 

Zolfaghari et al. 

 (2005) 
MP Simple GA 1.24 NA 

Cheng et al. 

 (2006) 
Spencer PSO 1.1095 119,940 

Cheng et al.  

(2006) 
Spencer MPSO 1.1174 15,925 

Cheng et al.  

(2006) 
Spencer SA 1.1789 54,326 

Cheng et al.  

(2006) 
Spencer SHM 1.2512 29,692 

Cheng et al.  

(2006) 
Spencer MHM 1.1509 32,418 

Cheng et al.  

(2006) 
Spencer Tabu 1.4714 30,418 

Sarma and Tan 

 (2006) 
Sarma Sarma’s(2000) Program 1.091 NA 

Cheng et al. 

(2007b) 
Spencer Modified PSO 1.1139 24330 

Cheng et al.  

(2008a) 
MP Modified HS 1.24 16968 

Khajezadeh et al. 

(2014) 
MP 

Imperialistic competitive 

algorithm 
1.0642 NA 

Gandomi  et al.  

(2014) 
MP Levy-flight krill herd 1.0579 150000 
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In this study, the methods introduced in the previous chapters are also utilized in 

evaluating the FS value for this slope problem. Table 6 and Figure 20 represent a 

summary of the obtained results and the rate of convergence corresponding to the 

implemented methods, respectively.  

Table 6 - Results of this study—Example 2 

 Iteration 

Method 50 250 750 3000 

ABC 1.195945 1.143791 1.130091 1.096879 

DE 1.146035 1.107374 1.099355 1.090039 

GA 1.146816 1.130846 1.1037 1.098585 

GOA 1.118573 1.100305 1.093879 1.091733 

HABCDE 1.119918 1.093996 1.093067 1.088924 

HS 1.425048 1.367045 1.166839 1.104455 

LHS 1.136886 1.135185 1.120741 1.095613 

PSO 1.145621 1.132767 1.100862 1.100862 

Comparison of the results obtained in this optimization problem indicates that 

HABCDE outdoes its conventional counterparts in terms of accuracy and 

convergence rate. According to the Table 6, an optimum safety factor of 1.119 is 

obtained in 50th iteration. Continuing the analyses up to a higher number of 

iterations, say 250 and 3000, yields failure surfaces possessing safety factors equal 

to 1.093 and 1.088, respectively.  
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Comparison of the rates at which the implemented methods converge to their 

optimum values demonstrate that not all the implemented methods are capable of 

determining the lowest factor of safety (most critical slip surface) for this case of 

study (Figure 20a). Investigation of the results indicate that the HS and the PSO 

methods represent a relatively weaker performance resulting in higher factor of 

safety values for this case of study. The LHS, the ABC and the GA methods yield 

nearly similar values at the end of the analyses. Although fast convergence of the 

GA method makes it a more favorable method, optimized factor of safety value 

obtained by using LHS method proves its superior performance in a reliable slope 

stability analysis.  

In addition, a closer look into the convergence history of the three recent 

optimization methods proposed in this study indicates that HABCDE outperforms 

the competition in terms of both convergence rate and precision, as illustrated in 

Figure 20b. In this comparison, GOA ranks second according to the factor of safety 

value, and the LHS method demonstrates the worst performance in terms of both 

convergence rate and the factor of safety value. 

In order to gain a better insight into the performance of the optimization algorithms, 

convergence history of each method is also illustrated in separate figures (see 

Appendix A). 
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(a) 

 

(b) 

Figure 20 - Comparison of the convergence rates -- Example 2 (a) all the methods 

(b) proposed methods  
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Additionally, the critical slip surfaces associated with the implemented methods are 

depicted graphically in Figure 21. From this figure, it can be observed that the 

failure surface extends to a surface at the weakest layer in the soil profile. 

 

Figure 21 - Critical Slip Surfaces -- Example 2 

4.3 Case study 3 

The third test problem concerns a three-layered heterogeneous earth slope with a 

non-horizontal stratification, which is first introduced in ACADS (Donald & Giam, 

1989) study. The slope profile consists of soils with different properties which are 

detailed in Table 7 below. This problem is analyzed with and without considering 

the destructive effect of earthquake (case (1) and case (2), respectively) on the 

stability in two separate cases. In this regard, a value of 0.1 is considered for the 

horizontal seismic coefficient of the earthquake loading acting on the soil mass. 
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Table 7 - Soil parameters—Example 3 

Soil Parameters Layer 1 Layer 2 Layer 3 

C (𝒌𝑵/𝒎𝟐) 0.0 5.3 7.2 

𝛗 (𝒅𝒆𝒈𝒓𝒆𝒆𝒔) 38 23 20 

𝛄 (𝒌𝑵/𝒎𝟑) 19.5 19.5 19.5 

 

Figure 22 - Geometry of Slope—Example 3 

Multiple optimization methods have been confidently applied to this problem, 

which includes GAs as in the study by Goh (2000) and the Leap-Frog method which 

was employed by Bolton et al. (2003) to the same problem. Later, several well-

applied techniques including Simple Harmony Search algorithm (SHM), Modified 

Harmony Search algorithm (MHM), Tabu Search method, Simulated Annealing 

algorithm (SA), Genetic Algorithms, Particle Swarm Optimization algorithm 

(PSO) and Ant-Colony algorithm were tested in the study by Cheng et al. (2007). 
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Table 8 provides an overview of the optimum results obtained in the literature by 

applying different methods on this problem. 

Table 8 - Result comparison—Example 3 

Study Method Optimization 

Method 

FS NOF 

Cheng et al.  

(2006) 

Spencer SA 1.3569 74120 

Cheng et al.  

(2006) 

Spencer GA 1.3582 39088 

Cheng et al.  

(2006) 

Spencer PSO 1.3591 60000 

Cheng et al. 

 (2006) 

Spencer SHM 1.3596 106237 

Cheng et al.  

(2006) 

Spencer MHM 1.3587 41059 

Cheng et al.  

(2006) 

Spencer Tabu search 1.3762 44168 

Cheng et al.  

(2006) 

Spencer Ant-Colony 1.3931 76200 

Bolton et al.  

(2002) 

Spencer Leap-frog 1.359 Unknown 

Goh  

(2000) 

Spencer GA 1.387 Unknown 

Wei Gao  

(2015) 

Spencer Meeting Ant 

Colony 

1.348 Unknown 
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Besides, the results in Table 9 and Table 10 represent the safety factors obtained by 

applying the proposed methods of optimization on cases (1) and (2), respectively. 

Rate of the convergence corresponding to the implemented methods are also 

represented graphically in separate figures (see Appendix A). For both of the cases, 

amongst the methods used in both cases, HABCDE proved very powerful in terms 

of overall performance, i.e. rate of convergence and precision.  

Table 9 - Results of this study—Example 3, Case (1) 

 Iteration 

Methods 50 250 750 3000 

ABC 1.380262 1.366905 1.362523 1.359061 

DE 1.381753 1.372657 1.365299 1.35807 

GA 1.365557 1.359677 1.358434 1.358153 

GOA 1.392262 1.369703 1.365632 1.358615 

HABCDE 1.363444 1.358358 1.357979 1.357765 

HS 1.487626 1.443304 1.370094 1.361191 

LHS 1.365658 1.359866 1.359753 1.359157 

PSO 1.404648 1.393505 1.375095 1.375095 

According to Table 9, an optimum safety factor of 1.363 is obtained in 50th iteration. 

In successive iterations, the value of safety factor decreases continuously, where 

performing 250 and 750 iterations of this process yields failure surfaces possessing 

safety factors equal to 1.358 and 1.357, respectively.  

Comparison of the rates at which the implemented methods converge to their 

optimum values demonstrate that for both the case (1) and case (2), all the methods 
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except the PSO and the HS reach nearly similar values at the end of the analyses 

(Figure 23a and Figure 25a). The PSO method for both of the cases fails to obtain 

an appropriate value. Similarly, HS method represent a relatively weaker 

performance resulting in higher factor of safety values, particularly in the case (2) 

where relatively high computational efforts is required to reach a reasonable result 

for the case of study.  

For the remaining methods, however, no significant difference is observed in the 

obtained FS values and therefore, performance of the methods can be evaluated in 

terms of their rate of convergence. For better illustration, consider the convergence 

rate of the ABC and the DE methods in Figure 25a. Lower FS values obtained over 

the same number of iterations proves the superiority of the ABC method over the 

DE algorithm.  

In addition, a closer look into the convergence history of the three recent 

optimization methods proposed in this study indicates that HABCDE outperforms 

the competition in terms of both convergence rate and precision for both of the 

cases, as illustrated in Figure 23b and Figure 25b. Similarly, for both of the cases, 

GOA ranks second according to the factor of safety value, and the LHS method 

demonstrates the worst performance. In terms of convergence rate, however, LHS 

performs better in the case (1) while for the case (2) GOA proves successful.  

In order to gain a better insight into the performance of the optimization algorithms, 

convergence history of each method is also illustrated in separate figures (see 

Appendix A). 
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(a) 

 
(b) 

Figure 23 - Comparison of the convergence rates -- Example 3, Case (1) 

 (a) all the methods (b) proposed methods  
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Additionally, the critical slip surfaces associated with the implemented methods are 

depicted graphically in Figure 24. From this figure, it can be observed that the 

critical failure surfaces determined by using LHS and GOA methods are almost 

identical. 

 

Figure 24 - Critical Slip Surfaces —Example 3, Case (1) 

Likewise, Table 10 represents the safety factors obtained by applying the proposed 

methods of optimization on case (2). As with the case (1), HABCDE method yields 

more optimal results for this problem. According to Table 10, an optimum safety 

factor of 1.002 is obtained in 50th iteration. In successive iterations, the value of 

safety factor decreases continuously, where performing 750 and 3000 iterations of 

this process yields failure surfaces possessing safety factors equal to 0.977 and 

0.976, respectively. 
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Furthermore, visual comparison of the critical failure surfaces from applied 

methods is also represented in Figure 26.  As can be inferred from this figure the 

failure surface passes through the weakest soil layer in the slope profile.     

  

Table 10 - Results of this study—Example 3, Case (2) 

 Iteration 

Methods 50 250 750 3000 

ABC 0.99717 0.980165 0.979288 0.979288 

DE 1.020548 0.991459 0.98603 0.979214 

GA 1.011537 0.983481 0.978353 0.977911 

GOA 0.995375 0.978401 0.977525 0.977525 

HABCDE 1.002134 0.978964 0.977046 0.976773 

HS 1.05532 1.047549 1.010335 0.984624 

LHS 1.043134 1.02188 1.02188 0.981427 

PSO 1.023048 1.00648 1.003268 0.992467 
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Figure 25 - Comparison of the convergence rates -- Example 3, Case (2) 

 (a) all the methods (b) proposed methods 

 

(a) 

  

(b) 
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Figure 26 - Critical Slip Surfaces —Example 3, Case (2) 

4.4 Case Study 4 

Details of the cross-section of a multilayered earth slope is given in the Figure 27. 

Stability of this slope against sliding was primarily investigated by Zolfaghari et al. 

(2008) using Morgenstern-Price method integrated with GA optimization 

technique, given the soil strength parameters outlined in Table 11. In this regard, 

four different loading conditions involving water table and earthquake forces were 

considered: 

 Case (1): No water pressure, No earthquake  

 Case (2): Water pressure, No earthquake  

 Case (3): No water pressure, Earthquake 

 Case (4): Water pressure, Earthquake 

 In addition, a value of 0.1 is considered for the horizontal seismic coefficient of 

the earthquake loading acting on the soil mass. 

In an effort to enhance the accuracy of stability assessment various optimization 

methods have been acceptably applied to this problem; in a study which set out to 
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identify the critical slip surface in the slope, Cheng et al. (2006) used particle swarm 

optimization (PSO) method in the analyses. 

 

Figure 27 - Geometry of the slope – Example 4 

Table 11 - Soil Parameters – Example 4 

Soil Parameters Layer 1 Layer 2 Layer 3 Layer 4 

C (𝒌𝑵/𝒎𝟐) 14.7 16.7 4.9 34.3 

𝛗 (𝒅𝒆𝒈𝒓𝒆𝒆𝒔) 20 21 10 28 

𝛄 (𝒌𝑵/𝒎𝟑) 18.63 18.63 18.63 18.63 

In another major study, Cheng et al. (2007) adopted six different global 

optimization approaches to evaluate their performance in locating the surface with 

the smallest safety factor. Likewise, Kahatadenya et al. (2009) and Khajezadeh et 

al. (2012) applied the ant colony optimization (ACO) and a modified particle swarm 
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optimization method (MPSO) to this case problem, respectively. Table 12 provides 

an overview of the optimum results obtained in the literature by applying different 

methods to this problem.  

Table 12 - Result Comparison – Example 4 

Study Method 
Optimization 

Method 

Case 

(1) 

Case 

(2) 

Case 

(3) 

Case 

(4) 
 

Zolfaghari et 

al. 

 (2005) 

Spencer GA 

1.48 1.36 1.37 0.98 FS 

--- --- --- --- NOF 

Cheng et al. 

(2006) 
Spencer 

SA 

1.3961 1.2837 1.1333 1.0081 FS 

135560 106742 108542 111386 NOF 

GA 

1.3733 1.2324 1.0675 0.9631 FS 

63562 77178 98332 84272 NOF 

PSO 

1.3372 1.2100 1.0474 0.9451 FS 

62800 83400 69600 68600 NOF 

SHM 

1.3729 1.2326 1.0733 0.9570 FS 

172464 126445 99831 212160 NOF 

MHM 

1.3501 1.2247 1.0578 0.9411 FS 

32510 40697 40476 33236 NOF 

Tabu search 

1.4802 1.3426 1.1858 1.0848 FS 

58588 59790 63796 65398 NOF 

Ant-colony 

1.5749 1.4488 1.3028 1.1372 FS 

100200 102600 109800 112200 NOF 

Cheng et al.  

(2007) 
Spencer 

Modified 

PSO 

1.3490 1.2203 1.0592 0.9441 FS 

14874 20722 14227 16835 NOF 

PSO 

1.3323 1.1985 1.0465 0.9225 FS 

143919 114865 122744 160060 NOF 

Kahatadeniya 

et al.  

(2009) 

MP ACO 

1.501 1.377 1.091 0.846 FS 

--- --- --- --- NOF 
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Table 12 (Continued) 

Khajezadeh 

et al. (2012) 
MP 

PSO 
1.334 1.203 1.065 0.932 FS 

--- --- --- --- NOF 

MPSO 

1.331 1.171 1.051 0.897 FS 

--- --- --- --- NOF 

In this study, the methods introduced in the previous chapters are also utilized in 

evaluating the FS value for this slope problem. Table 13 and Figure 28 to Figure 31 

represent a summary of the obtained results and the rate of convergence 

corresponding to the implemented methods, respectively.  

 Table 13 - Results of this study—Example 4 

Optimization 

Method 

Factor of Safety 

Iteration 

Case (1) Case (2) Case (3) Case (4) 

ABC 

1.410720429 1.681255441 1.364932736 1.389854816 50 

1.362293174 1.253603878 1.124045665 1.072036673 250 

1.351134965 1.234987359 1.064676496 0.957927888 750 

1.339492869 1.229526378 1.047751462 0.954245906 3000 

DE 

1.403957332 1.269518087 1.124766231 0.998863957 50 

1.345473285 1.241309334 1.066128511 0.970215949 250 

1.339745834 1.23362373 1.05269343 0.95569369 750 

1.334658849 1.227916373 1.044939892 0.952351134 3000 
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Table 13 (Continued) 

GA 

1.39091611 1.295484271 1.111094569 1.131368189 50 

1.344271501 1.234649087 1.06342718 0.962517243 250 

1.338035169 1.231938028 1.049864132 0.954462111 750 

1.336644983 1.22971306 1.047404092 0.953760567 3000 

GOA 

1.375194098 1.269721422 1.07882198 0.98383909 50 

1.365378812 1.245432284 1.068523814 0.97747544 250 

1.344094069 1.231486596 1.058259522 0.955586733 750 

1.3358016 1.227739857 1.047504959 0.953976631 3000 

HABCDE 

1.342845108 1.345520116 1.055651254 0.969561665 50 

1.334481215 1.229676026 1.044547922 0.953873421 250 

1.333239328 1.227534324 1.043263764 0.95236442 750 

1.332841264 1.22604568 1.043026851 0.950764072 3000 

HS 

2.446834253 1.692717901 2.130021617 2.165308293 50 

1.656123408 1.572059319 1.153395619 1.757718165 250 

1.361398095 1.270347238 1.151045628 1.027528563 750 

1.339921034 1.234730702 1.056873855 0.967521291 3000 

LHS 

1.357693435 1.239245752 1.248068043 1.076767521 50 

1.351693315 1.233903188 1.065324551 0.965141849 250 

1.351170637 1.232030396 1.049893843 0.951786266 750 

1.336827587 1.230801909 1.042758288 0.950457457 3000 
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Table 13 (Continued) 

PSO 

1.365115673 1.27629403 1.101792138 1.007369006 50 

1.365115673 1.27629403 1.082553274 0.976929267 250 

1.365115673 1.274486391 1.076631359 0.973040128 750 

1.36168701 1.254869993 1.065205964 0.969434701 3000 

Comparison of the results obtained in this optimization problem indicates that 

HABCDE and LHS outdo their conventional counterparts in terms of accuracy and 

convergence rate. In this regard, HABCDE method yields the best results for the 

cases (1) and (2). In the third and fourth case, however, the optimum solution is 

obtained by LHS method, although HABCDE represents more satisfactory 

performance over the earlier iterations. 

For better illustration, let us consider the values obtained by the HABCDE method 

in the stability analysis of the case (1). According to the Table 13, an optimum 

safety factor of 1.3428 is obtained in 50th iteration. Continuing the analyses up to a 

higher number of iterations, say 250 and 3000, yields failure surfaces possessing 

safety factors equal to 1.3344 and 1.3328, respectively.  

In this case of study as well, comparison of the rates at which the implemented 

methods converge to their optimum values demonstrate that for both the case (1) 

and case (2), the PSO method yields the worst solution for the problem. Similarly, 

ABC and HS methods fail to obtain an appropriate factor of safety value, 

particularly in the case (1) where relatively high computational efforts are required 

to reach a reasonable result for the case of study. Nevertheless, ABC shows a better 

performance in the case (2) resulting in a value close to the optimum solution.  

For the remaining methods, however, no significant difference is observed in the 

obtained FS values and therefore, performance of the methods can be evaluated in 
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terms of their rate of convergence. For better illustration, let us consider the 

convergence rate of the ABC and the GA methods in the case (2). As represented 

in Figure 29a, for both ABC and GA the ultimate factor of safety values are of 

similar quantity, while obtaining lower values at the earlier iterations of the GA 

method proves its superiority over the ABC algorithm. 

In addition, a closer look into the convergence history of the three recent 

optimization methods proposed in this study indicates that HABCDE outperforms 

the competition in terms of both convergence rate and precision for both case (1) 

and (2), as illustrated in Figure 28b and Figure 29b. Additionally, GOA ranks 

second according to the overall performance of the methods, i.e. accuracy of the 

factor of safety value and the rate of convergence, although LHS performs more 

favorably during the initial assessments. 
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(a) 

 

(b) 

Figure 28 Comparison of the convergence rates -- Example 4, Case (1) 
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(a) 

 

(b) 

Figure 29 - Comparison of the convergence rates -- Example 4, Case (2) 
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In the case (3) and (4), likewise, comparison of the rates at which the implemented 

methods converge to their optimum values demonstrate that the PSO method yields 

the worst solution for the problem. Similarly, HS method fails to obtain an 

appropriate factor of safety value, particularly in the case (3) where relatively high 

computational efforts are required to reach a reasonable result for the case of study.  

For the remaining methods, however, no significant difference is observed in the 

obtained FS values and therefore, performance of the methods can be evaluated in 

terms of their rate of convergence. For better illustration, let us consider the 

convergence rate of the ABC and the GA methods in the case (4). As represented 

in Figure 31a, for both ABC and GA the ultimate factor of safety values are of 

similar quantity, while obtaining lower values at the earlier iterations of the GA 

method proves its superiority over the ABC algorithm. 

In addition, a closer look into the convergence history of the three recent 

optimization methods proposed in this study indicates that LHS outperforms the 

competition in terms of the accuracy, as illustrated in Figure 30b and Figure 31b. 

Even though LHS yields a relatively better optimized solution at the end of the 

analyses, overall HABCDE represents more satisfactory performance as far as the 

convergence rate of the methods is considered. Additionally, GOA method results 

in relatively higher objective values and thus cannot function appropriately for both 

case (3) and (4). 

In order to gain a better insight into the performance of the optimization algorithms, 

convergence history of each method is also illustrated in separate figures (see 

Appendix A). 

Additionally, for each case study the critical slip surfaces associated with the 

implemented methods are depicted graphically in Figure 32. From this figure it can 

be observed that the failure surface extends to a surface at the weakest layer in the 

soil profile.   
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(a) 

 

(b) 

Figure 30 - Comparison of the convergence rates -- Example 4, Case (3) 
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(a) 

 

(b) 

Figure 31 - Comparison of the convergence rates -- Example 4, Case (4) 

 (a) all the methods (b) proposed methods 

0.95

0.97

0.99

1.01

0 500 1000 1500 2000 2500 3000

Sa
fe

ty
 F

ac
to

r

Iteration

HABCDE GOA LHS



 

 86 

 

(a) Case (1) 

 

(b) Case (2) 
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(c) Case (3) 

 

(d) Case (4) 

Figure 32 – Critical Slip Surfaces – Example 4 
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CHAPTER 5 

 

 

5.SUMMARY AND CONCLUSION 

 

 

5.1 Summary 

Investigating the safety of infrastructures against instabilities is a continuing 

concern in civil engineering, which necessitates comprehensive slope stability 

analyses to be conducted prior to major construction activities. This helps the 

engineers identify the vulnerable zone within the slope profile, providing crucial 

insights into the earth condition in the construction site. As a result, realistic 

quantification of the safety of the structure against potential failures is of great 

importance in the slope stability analysis. 

In this study, an effective analysis framework is developed to evaluate the factor of 

safety of earth slopes on the basis of limit equilibrium methods. Stability analyses 

in this framework are performed in three main steps, which include (1) generating 

a number of trial slip surfaces, (2) evaluating safety factors corresponding to the 

generated surfaces and lastly, (3) looking for the most critical failure surface 

possessing the minimum safety factor. A non-circular surface generation technique 

that is capable of forming admissible slip surfaces, i.e. concave upward surfaces, is 

efficiently adopted for this purpose. In addition, Among the methods developed for 

the slope stability analysis a simplified form of Morgenstern-Price approach that 

has found widespread application in practice is implemented in evaluating the 

corresponding safety factors along each failure surface. However, the most 

challenging step in a complete slope stability analysis is the fast and accurate 

localization of the potential failure surface within the slope concurrent with the 

determination of the relating FS value, which reflects the minimum factor of safety 

of the case study. This objective is too challenging to accomplish considering the 

broad diversity of slope problems in geometry, geotechnical parameters of the soil, 
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the depth of the groundwater table, and condition of the external loadings. Robust 

optimization techniques, however, have recently performed well in tackling such 

difficulties. In this regard, the factor of safety equation is generally considered as 

the objective function of the optimization problem and a thorough minimization 

process is performed to explore the optimum solution in the search space. In this 

study, three recently developed metaheuristic methods that has shown satisfactory 

performance on various real-world optimization problems in terms of both 

reliability and validity, are implemented.  

The applicability of the proposed analysis framework for the slope stability 

assessments is subsequently investigated considering several widely-used 

numerical examples. Furthermore, in order to gain a better understanding of the 

impact of variations in ground conditions on the overall stability of slopes, four case 

studies, from simple homogeneous to multi-layered heterogeneous earth slopes 

with varied geometries and stratifications, are thoroughly analyzed. 

5.2 Findings of the Study 

The significance of the quantitative stability analysis of earth slopes as well as the 

determination of the surface along which failure is expected has been widely 

acknowledged. To date, optimization techniques of different kinds have helped 

researchers evaluate how stable is the case of study through completing a fast and 

relatively simple procedure. In this study, three recent optimization algorithms, 

namely hybrid artificial bee colony with differential evolution, (HABCDE), 

grasshopper optimization algorithm (GOA) and improved harmony search 

algorithm (LHS) are implemented so as to calculate the lowest FS value pertaining 

to the surface of high failure probability. This objective is achieved by minimizing 

an objective function (factor of safety) which is defined based on a concise form of 

Morgenstern-Price algorithm. Slip surface of the slope is considered to be of non-

circular geometry to provide a better approximation to the actual failure. A set of 

three numerical examples with varying geometry and loading conditions are studied 

to measure the computational performance of the proposed methods, as well as to 
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benchmark the results against their competitors, as illustrated in the respective 

tables. Besides, several illustrative figures for each case study are provided to give 

a deeper understanding of the accuracy and convergence rate of the methods along 

with a schematic visualization of the expected sliding surfaces, respectively. The 

obtained results indicated acceptable and comparable performance for the proposed 

method relative to common optimization techniques already used in the analysis of 

the same problems. However, when accuracy and convergence rate are used to 

evaluate performance, HABCDE outperformed its counterparts, yielding more 

optimal results with less computational effort. Consequently, HABCDE proved to 

be a suitable scheme in assessing the stability of slopes. Furthermore, it offers 

researchers the chance to discover new solutions, hopefully, improved ones, to a 

number of challenging optimization problems in their field of study. 

5.3 Future Works 

The framework proposed in this study proved successful for the stability evaluation 

of various slope problems. However, the following key recommendations are 

proposed to improve the functionality of the method:  

Results indicate that the methods used for generating trial slip surfaces have a direct 

influence on the factor of safety evaluations and thus, different results might be 

obtained for the same slope problem in this regard. Furthermore, development of 

alternative techniques can offer researchers the opportunity to explore new 

solutions, hopefully, improved ones. 

The efficiency of the framework developed in this study depends heavily on the 

rigorousness of the limit equilibrium method and the robustness of the optimization 

methods. In future studies, finite element methods can be used in the analyses which 

eliminate the need for preliminary assumptions, e.g. consideration of initial trial 

slip surfaces and the inter-slice forces in each slice. In addition, certain 

modifications can be made to the algorithms of the optimization methods in order 

to enhance their performance in acquiring superior results for each benchmark 

problem. 
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The reliability of slope stability assessments relies entirely on the validity of the 

values assumed for the soil parameters. In this study, key parameters of the soil 

medium, namely friction angle, the coefficient of cohesion, unit weight, and pore 

water pressure ratio are considered to be constant throughout the soil mass and 

therefore, a deterministic analysis is conducted. However, inherent variabilities and 

the errors resulting from improper site investigations can also be taken into account 

to quantify the probability of slope failures. 

Two-dimensional models are adopted in this study for investigating the failure 

mechanism of the slopes. However, available evidence demonstrates that all slope 

instabilities in nature are virtually in three-dimensional forms. Consequently, in 

order to obtain more realistic and accurate results in the analysis, three-dimensional 

models can be adopted. This, however, requires huge computational efforts 

compared to conventional two-dimensional assessments.
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APPENDIX A 

A: CONVERGENCE RATE COMPARISON 

 

In order to gain a better insight into the performance of the optimization algorithms, 

convergence history of each method is illustrated in separate figures as follows. A 

closer look into the convergence history of the three recent optimization methods 

proposed in this study indicates that overall HABCDE represents more satisfactory 

performance in the analyses in terms of both convergence rate and accuracy. 
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Figure 33- Convergence Rate Comparison – Example 1 
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Figure 34 - Convergence Rate Comparison – Example 2 
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Figure 35 - Convergence Rate Comparison – Example 3, Case (1) 
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Figure 36 - Convergence Rate Comparison – Example 3, Case (2) 
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Figure 37 - Convergence Rate Comparison – Example 4, Case (1) 
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Figure 38 - Convergence Rate Comparison – Example 4, Case (2) 
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Figure 39 - Convergence Rate Comparison – Example 4, Case (3) 
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Figure 40 - Convergence Rate Comparison – Example 4, Case (4) 
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