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ABSTRACT

PHOTONIC INTEGRATED CIRCUIT COMPONENTS WITH
AMORPHOUS STRUCTURES

Sarıhan, Murat Can
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Serdar Kocaman

July 2018, 71 pages

In this thesis work, amorphous photonic materials, which are an alternative to pho-

tonic crystals and offering flexibility and comparable performance, are designed for

photonic integrated circuits and analyzed. A design guideline is presented for the first

time with experimental verification in telecommunication wavelengths. Amorphous

photonic materials are artificially designed materials that possessing random refrac-

tive index distributions and has photonic band gaps due to the inherent short-range

order. For the amorphous photonic materials, a Monte Carlo method is proposed

which is taking natural crystalline-amorphous semiconductor transitions as an ex-

ample and the affecting design parameters are analyzed. The generated amorphous

structures are analyzed numerically and experimentally for verification. Furthermore,

the factors affecting band gap is scrutinized. The band gap asymmetry which is one

of the basic properties of amorphous photonic materials are explained theoretically,

with the help of electronic amorphous semiconductors.

Keywords: Photonic crystals, Amorphous materials, Photonic integrated circuits
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ÖZ

AMORF YAPILAR İLE FOTONİK ENTEGRE DEVRE ELEMANLARI

Sarıhan, Murat Can
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Ü. Serdar Kocaman

Temmuz 2018 , 71 sayfa

Bu tez çalışmasında fotonik tümleşik devreler için fotonik kristal yapılara alterna-

tif, esneklik ve yeterli performans sağlayan amorf fotonik materyaller tasarlanmış

ve incelenmiştir. İlk defa, telekomünikasyon dalgaboylarında bir tasarım yol hari-

tası deneysel sağlamaları ile birlikte sunulmuştur. Amorf fotonik malzemeler yapay

tasarımlı rastgele kırıcılık indisi dağılımlarına sahip materyaller olup, bünyelerinde

barındırdıkları kısa menzilli duzenden dolayı fotonik bant aralıklarına sahiplerdir.

Amorf fotonik malzemeler için doğal kristal-amorf dönüşümlerini örnek alan bir

Monte Carlo yöntemi tanıtılmış, tasarım parametreleri incelenmiştir. Üretilen amorf

yapılar sayısal ve deneysel olarak incelenmiş ve teyit edilmiştir. Ayrıca, bant aralı-

ğını etkileyen faktörler incelenmiştir. Amorf fotonik malzemelerin temel özellikle-

rinden olan bant aralığı asimetrisi, elektronik amorf yarıiletkenlerden yararlanarak

teorik olarak açıklanmıştır.

Anahtar Kelimeler: Fotonik kristaller, Amorf malzemeler, Fotonik entegre devreler
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CHAPTER 1

INTRODUCTION

1.1 Overview

Photonic crystals are artificially designed periodic structures that can control the prop-

agation of light in a way like semiconductor crystals affecting electrons in electronic

devices, through band gap. Thus, they become prominent candidates as the building

blocks of the emerging photonic integrated circuit technologies for optical computing

and communications. With the invention of the first photonic crystal having a com-

plete bandgap [1], tremendous efforts of research are put to meet the demands of our

age in terms of computing power and data throughput [2, 3, 4, 5].

The core of photonic crystals lies in their periodicity. In order to utilize band gaps

to control light propagation, the satisfaction of Bloch’s theorem is essential [2]. For-

mation of photonic bands that ensure complete band gaps are disturbed when Bloch’s

theorem is violated through imperfections in the periodicity of structural refractive

index variations. Nevertheless, it is very hard to preserve the periodic order through

practical applications, especially during their fabrication. Due to this fact, effect of

disorder on photonic crystal operations is being addressed since a long time [6, 7, 8,

9, 10]. Another issue is, for some applications, the creation of defects inside photonic

crystal lattice is essential, especially for some cavity and waveguide applications. To

achieve that without disturbing photonic crystal operation, it is mandatory to follow

the periodicity axes inside the structure. Thus, flexible designs are not possible.

To overcome these limitations, considering disorder as an advantage instead of an

imperfectness which is required to be eliminated is an interesting idea. Amorphous

photonic materials are originated from this concept. Like the relationship between
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crystalline and amorphous semiconductors, amorphous photonic materials are still

able to control light propagation in the absence of periodicity, which is counterin-

tuitive to Bloch’s theorem. This ability is due to the inherent short range order in

the refractive index variations among the structure even in the absence of long-range

periodicity.

1.2 Previous Studies on Amorphous Photonic Materials

The study of disorder and randomness on amorphous photonic materials has started

around the same time that the photonic crystals have postulated by Yablonovitch [1].

First, Sajeev John has theorized the existence of a frequency regime for EM waves to

undergo Anderson localization in three dimensions which causes the formation of a

mobility edge in the 1980’s. Later, he proved the existence of a band gap consisting

localized states which is marked by two mobility edges separating higher and lower

frequency extended states in artificially designed disordered superlattices [11, 12].

These studies have been validated for the random two-component medium with a di-

electric constant contrast by demonstrating localization of classical waves in medium

[13]. In the 90’s, the research on periodic dielectric structures like photonic crystals

intensified. Experimental verification of amorphous photonic materials has only been

done in 2001 by Jin [14]. In this study, amorphous materials is designed by randomly

rotating square unit cells of a 2-D photonic crystal to demonstrate a S-polarized band

gap at microwave regime. Later, the first guidelines for flexible waveguides on pho-

tonic integrated circuit applications are shown by Miyazaki et.al. [15] and Kwan

et.al. [6]. In these studies, the most efficient waveguide design are shown by placing

one line of equally distanced scatterers to each side of opened waveguide defect. It

is followed by the demonstration of a photonic amorphous diamond structure with

a complete 3-D gap [3]. For amorphous structures with 2-D random index varia-

tions, different design methods are proposed. Among them, Florescu et. al. [16] has

proposed an optimization algorithm that produces a pseudo-random network which

is based on hyperuniformity concept . In another study, the transition of photonic

material structure from crystalline to amorphous is analyzed by following polycrys-

talline formations as an intermediary [17]. Furthermore, natural methods based on
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mimicking amorphous semiconductor glass formation utilizing molecular simulation

methods are used. Rechtsman et. al. conducted a Monte Carlo simulation by consid-

ering 2-D rod scatterers as particles in liquid-like structure and evolved the positions

of scatterers inside the medium via Metropolis method. With this way, existence of

a band gap around visible optical regime is demonstrated [18]. With a similar tech-

nique, Kocaman et.al. [19] put some efforts to design an amorphous structure that has

a band gap at near-infrared around telecommunication frequencies to be directly used

in optical telecommunication circuits.

This thesis study aims to demonstrate first time, an amorphous photonic slab with air

hole scatterers operating at near-infrared telecommunications regime in detail, with

experimental verifications. A design guideline for such structures is also proposed

first time by examining variables affecting amorphous configuration generation and

the band gap properties. The differences between band-gap characteristics of pho-

tonic crystals and amorphous counterparts are identified and explained by establishing

an analogy with amorphous glassy semiconductors. With this way, the thesis offers

a comprehensive guideline for the utilization of such materials in growing number

of photonic integrated circuit applications. The study is submitted to be presented

at high-impact conferences and a manuscript is prepared for peer-review in a high-

reputation journal.

1.3 Thesis Organization and Research Focus

The focus of this thesis work is presenting amorphous photonic materials for flexible

photonic integrated circuit applications. For this purpose, a design guideline will be

presented and properties of the photonic band gap of the material will be analyzed in

every aspect. The existence of such materials is demonstrated experimentally through

conventional Si fabrication and analysis methods. The distinctive properties of the

band gap are explained in analogy with the crystalline-amorphous semiconductor dif-

ferences.

In the first chapter, the problem and previous studies on the topic are briefly presented.

In the second chapter, the theoretical foundations and governing functions of amor-
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phous materials are explained with the addition of general photonic crystal theory.

The third chapter presents the main numerical analysis methods for photonic material

design, FDTD and eigenmode solvers. In the fourth chapter, the wave propagation is

analyzed inside amorphous electronic and photonic materials theoretically and com-

mon analogies are drawn. In the fifth chapter, the generation of random refractive

index distributions for amorphous photonic materials via Monte Carlo simulations is

explained and affecting design parameters are analyzed. In the sixth chapter, numeri-

cal analysis results are presented for amorphous photonic materials and the dominant

gap characteristics are explained in analogy with electronic semiconductor materials

In the seventh chapter, the device fabrication, and experimental verification steps are

explained with measurement method.
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CHAPTER 2

THEORY OF PHOTONIC CRYSTALS

2.1 Functions Governing Photonic Materials

For macroscopic systems, scattering of electromagnetic fields in a dielectric medium

is governed by the four equations of Maxwell [20], which are given at (2.1).

~∇ · ~B = 0

~∇ · ~D = ρ

~∇× ~E = −∂
~B

∂t

~∇× ~H = ~J +
∂ ~E

∂t

(2.1)

In this case, the aforementioned medium is a mixed dielectric, which has spatially

varying dielectric constant. In order to solve the wave behavior in the medium, a

unified equation to solve fields is needed. To achieve that, the following assumptions

are made: First, the effective permittivity of the medium is linear and isotropic; i.e.,

does not change with field intensity and it is a scalar identity. Second, unless specified,

there is not any source of light present in the medium. In this case, charge and current

densities ρ = 0 and J = 0. Third, the medium is assumed to be non-magnetic; that is,

µr = 1. Finally, if it is considered that the medium is non-dispersive and transparent

for the solution of the problem, a positive-real and frequency-independent dielectric

constant is obtained [2]. This is useful to model the eigenvalue problem determining

the propagating electromagnetic modes over the system.
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As a result of these assumptions, the Maxwell equations in (2.1) become:

~∇ · ~B = 0

~∇ · ~D = 0

~∇× ~E = −µ0
∂ ~H

∂t

~∇× ~H = ε0εr(r)
∂ ~E

∂t

(2.2)

Based on these assumptions, since the Maxwell’s equations are linear; separation

of spatial and temporal variables can be achieved to solve the system. Moreover, the

solution can be expressed as the superposition of harmonic solutions (modes) through

Fourier analysis for each frequency component. The harmonic expression of fields are

provided as:

H(r, t) = H(r)e−jωt (2.3)

E(r, t) = E(r)e−jωt (2.4)

By inserting the solutions (2.3) and (2.4) into the equations of (2.2), in the absence of

external sources, the time-harmonic equivalents of Maxwell’s equation are obtained.

~∇ · ~H = 0 (2.5)

~∇ · (ε ~E) = 0 (2.6)

~∇× ~E = jωµ0
~H (2.7)

~∇× ~H = −jωε0εr(r) ~E (2.8)

In order to obtain a complete solution for the eigenproblem, it is needed to combine

equations (2.7) and (2.8). Multiplying (2.7) by ε−1
r and taking the curl of it, the two

equations could be combined. The resulting equation is the master wave equation for

magnetic field.

~∇× (
1

εr
~∇× ~H) = (

ω

c
)2 ~H (2.9)

Analogous of the equation (2.9) for the electric field is:

1

εr
~∇× (~∇× ~E) = (

ω

c
)2 ~E (2.10)

These two equations are capable of providing every information required to describe

behavior of light in the media. Furthermore, an important property of the solutions of
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these equations is that there is not any fundamental length scale in contrast with quan-

tum mechanics [2]. All the solutions can be scaled in terms of wavelength, frequency

and lattice dimensions. In order to demonstrate, assume that the medium dimensions

are scaled such that ~r′ = s~r , εr(~r) = εr(~r
′) and ~∇′ = 1

s
~∇. Applying these conditions

to the master wave equation, the following (2.11) is obtained.

~∇′ × (
1

εr(~r′)
~∇′ × ~H(~r′/s)) = (

ω

sc
)2 ~H(~r′/s) (2.11)

It can be deduced from (2.11) that, when the dimensions of the medium is scaled

by "s", the field amplitude and eigenfrequency of the modes are scaled by the same

amount,"s"; i.e., ~H ′(~r′) = ~H(~r′/s) and ω′ = ω/s.

For the procession of thesis, it will be essential to identify the parallelism between

quantum mechanics and electromagnetics. Thus, it could be beneficial to define (2.9)

as an operator providing the eigenvalue of the system as a result. This will make the

wave equation similar to Schrödinger’s equation of quantum mechanics.

Θ̂H = ~∇× 1

εr
~∇× (2.12)

Θ̂E =
1

εr
~∇× ~∇× (2.13)

Considering the Hamiltonian operator of Schrödinger’s equation, Ĥ = − ~2
2m
∇2 +

V (r) (V is the potential energy), both equations become similar in terms of form and

properties.

Θ̂ ~H
~H = (

ω

c
)2 ~H (2.14)

ĤΨ = EΨ (2.15)

Both equations indicate an eigenvalue problem that determines the energy, E (i.e.

frequency, ω for light) level the wave function can exist. In order to summarize the

similarities; both operators are linear and Hermitian (except Θ̂E). The eigensolu-

tions for the corresponding wavefunctions can be shown as linear combinations of

harmonic modes. The resultant eigenvalues of Hermitian operators are real and their

eigenvectors form a complete and orthogonal set [2]. In quantum mechanics, the

wave functions of harmonic modes are complex scalar fields, while in electromag-

netics, they are real vector fields with assigned complex exponentials. In quantum

mechanics, the spatial energy distribution is concentrated in low potential regions for

7



lowest eigenstates, while electromagnetic fields are more confined into the regions

with high dielectric constant for low-frequency modes [2]. The difference is, the

Hamiltonian of quantum mechanics is separable if the potential energy operator V (r)

is separable, while it is not possible for classical wave equation for most of the time.

Still, the behaviors are same under periodic media for quantum mechanical and elec-

tromagnetic cases. As it will be mentioned in chapter four, they are both subjected to

Bloch’s theorem and can form degenerate states under various wavevectors according

to periodicity of the medium [2]. The importance of this relations is that the postu-

lates applied to electronic properties of semiconductors can be mostly carried to the

electromagnetic regime for photonic crystal dynamics.

2.2 Structure of Photonic Crystals

The smallest indivisible element of a photonic crystal is unit cell, which contains

the irreducible refractive index variation repeated periodically over an infinite space

[2]. The crystal structure possesses discrete translational symmetry; that is, refractive

index distribution is invariant over distances that are multiples of a fixed length called

lattice constant, a. For both electromagnetics and quantum mechanics, symmetries

play a big role and provide a convenient intuition about the supported modes of the

system. The unit cell is duplicated over the space according to the primitive lattice

vectors of the system. The subset of these vectors, ~a1, ~a2, ~a3, forms the basis of the

crystal. Any unit cell along the lattice can be defined as linear combination of these

vectors, e.g. ~R = n1 ~a1 + n2 ~a2 + n3 ~a3. Thus, the refractive index variation over the

system can be defined in terms of the unit cell as indicated by (2.16).

εr(~r) = εr(~r + ~R) (2.16)

Since the permittivity of the lattice is periodic, it is logical to analyze the distribution

by Fourier transform.

εr(~r) =

∫
d3f(~G)ej

~G·~r (2.17)

Repeating it for εr(~r + ~R) due to equation (2.16);

εr(~r + ~R) =

∫
d3f(~G)ej

~G·~rej
~G·~R (2.18)
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In order to make the equation true, f(~G) = f(~G)ej
~G·~R must be satisfied. It is possible

when the applied Fourier transform must be zero everywhere, except the values of ~G

satisfying ~G · ~R = 2πk, ∀~R and k ∈ N [21].

The vectors ~G satisfying the transform form the "reciprocal lattice" of the crystal.

In principle the lattice and reciprocal basis vectors of the crystal are convertible vice

versa. They are kind of inverses, when the lattice constant of the lattice increases; the

reciprocal vectors shrink in reciprocal domain. Similarly, the unit cell of the lattice

has an equivalent in reciprocal domain, which is called as the "Brillouin zone" The

irreducible element of a reciprocal lattice divided into Brillouin zones is called the

first Brillouin zone. The first Brillouin zone possesses all the information about the

behavior of an infinite photonic crystal under electromagnetic field. Since the planar

photonic crystals slabs is under the scope, the most important Brillouin zone configu-

rations for us are triangular (hexagonal) and square lattices. These configurations are

identified with following basis vectors given in Table 2.1.

Table 2.1: The principal symmetry axes (basis) in primitive and reciprocal domain

for common 2-D photonic crystal lattice configurations.

Square Lattice Hexagonal Lattice

Primitive Vectors: â1 ax̂ a(x̂+
√

3ŷ)/2

â2 aŷ a(x̂−
√

3ŷ)/2

Reciprocal Vectors: b̂1 (2π
a

)x̂ (2π
a

)(x̂+
√

3ŷ)

b̂2 (2π
a

)ŷ (2π
a

)(x̂−
√

3ŷ)

2.3 Bloch’s Theorem, Symmetries and Photonic Bands

Due to discrete translational symmetry in primitive and reciprocal lattices, the Her-

mitian operators Θ̂H and Θ̂E must be commutative with the translation operator,

T̂Rf(~r) = f(~r + ~R) which is applied along the lattice vectors. The commutativ-

ity provides that for the two unit cells, which one of them is the translated version of

the other, the eigenfield solution of the wave equation is as follows:

~H(~r + ~R) = ej
~k·~R ~H(~r) (2.19)
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It can be inferred that, the solution over the primitive domain of the lattice can be

expressed with a periodic solution restricted in the unit cell and the translations along

the translation vector ~R. This theorem is called Bloch’s theorem, and its eigenso-

lutions are called as Bloch modes [22, 23]. The eigensolutions can be expressed as

linear combinations of the Bloch modes. In order to do that, the wave equation is

solved over the first Brillouin zone in the reciprocal domain via Fourier transform.

Let the ~k be the wave-vector corresponding to eigensolution within the first Brillouin

zone, then;

~H(~r) =
∑
G

HGe
j(~k+ ~G)·~R (2.20)

Bloch’s theorem states that, the modes identified by ~k and the iterations over the

reciprocal domain ~k + ~G are the equivalent modes. These modes can be interpreted

as the superpositions of plane waves characterized over the reciprocal domain. Let

the periodic part of the mode is identified as ~uk(r) and insert the Bloch mode to find

a solution.

Θ̂ ~H
~H = (

ω(~k)

c
)2 ~H (2.21)

~∇× 1

εr
~∇× ~uk(r)ej

~k·~r = (
ω(~k)

c
)2uk(r)e

j~k·~r (2.22)

(j~k + ~∇)× 1

εr
(j~k + ~∇)× ~uk(r) = (

ω(~k)

c
)2~uk(r) (2.23)

The left hand side of the last equation forms a new operator depending on the wave-

vector ~k. Due to the periodic boundary conditions imposed on the field function

~uk(r), it can be indicated that the eigenvalue problem is now restricted to the unit

cell of the photonic crystal lattice [21]. As a result of the restriction, for each ~k, the

frequencies of the modes that are supported by the lattice are discretely distributed.

Moreover, the k values over the lattice are continuous. Thus, the frequency of each

mode should vary with the ~k vector. Based on these information, the dispersion rela-

tion ω(~k) indicating the supported modes for a photonic crystal lattice is comprised

by discretely spaced bands continuously varying with the ~k vector. The overall struc-

ture is named as the band structure of the photonic crystal and every discrete band is

indicated by the band index, n.

In addition to the discrete translational symmetry, the photonic crystal lattices are
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invariant under rotational symmetry and the mirror symmetry. The rotational sym-

metry allows folding the first Brillouin zone itself into its irreducible zone. Solving

the eigenvalue equation over the wave-vectors at the edge of the irreducible Brillouin

zone provides the complete solution of the whole lattice. Furthermore, with the help

of mirror symmetry, the modes can be interpreted as the superposition of polarizations

TE and TM [2].

While solving photonic band structure for a given configuration, the symmetries play

a huge role to restrict the problem into a very compact, irreducible zone. The dis-

crete translational symmetry has examined before, and enabled the restriction to the

Brillouin zone. There are other symmetries in a photonic crystal lattice to fold the

Brillouin zone. First symmetry type is rotational symmetry that indicates the invari-

ance of the mode under rotation [2, 21]. The rotation operator is given as ÔR.

ÔR · f(~r) = Rf(R−1~r) (2.24)

and R indicates the amount of rotation. The operator should be commutative in order

to make the mode invariant.Thus,the following arrangements can made.

Θ̂(ÔR
~Hkn) = ÔR(Θ̂ ~Hkn) = (ωn(~k)/c)2(ÔR

~Hkn) (2.25)

From the equation above, it can be inferred that applying rotation to a wave vector ~k,

do not change the eigensolutions, i.e., ωn(R~k) = ωn(~k).

Another symmetry is time-reversal symmetry. Since the Maxwellian wave equation

is Hermitian, the resultant eigenvalues are real for lossless media. Thus, the complex

conjugate of the field H∗kn can be identified by the wave-vector −~k. The result is,

ωn(~k) = ωn( ~−k) (2.26)

The last symmetry form that is affecting the eigenvalue problem is the mirror sym-

metry. It allows the separation of solution into its polarization components of the

field. By defining a mirror reflection operator ÔM assumed as commutative with

Maxwellian operator, Θ̂, the following can be shown.

ÔM
~Hk(~r) = M ~H(M~r) = ejφ ~HM~r (2.27)
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Due to the condition above, the eigenvalue equation must satisfy,

ÔM
~Hk(~r) = ± ~Hk(~r) = M ~HM~r (2.28)

The conditions also apply to electric fields, and indicates that the electric and mag-

netic fields should be even or odd in order to satisfy the operation. However, this

separation operation is applicable only if M~k = ~k to obey [Θ̂, ÔM ] = 0 com-

mutativity check. In particular, it is possible to satisfy these conditions for a two-

dimensional photonic crystal lattice. Such crystals have discrete translational sym-

metry throughout a plane xy; however, uniform along the perpendicular axis z. It

enables that the modes of the lattice can be separated into two polarizations due to

symmetry in z-axis. The first polarization is transverse-electric (TE),which the elec-

tric field propagates along the xy plane with components (Ex, Ey, Hz) and the sec-

ond is transverse-magnetic (TM) with a confined magnetic field along xy plane with

components (Hx, Hy, Ez). This polarization scheme can be preserved for a photonic

crystal slab which has finite thickness along z-axis, and identified as TM- or TE-like.

2.3.1 Properties of Photonic Band Diagrams

Band diagram is calculated by solving (2.23) over the ~k points encompassing the

irreducible Brillouin zone edge. This edge is passing through the symmetry axes of

the lattice and contains the extrema information for all bands. These symmetry axes

are expressed by ~k vectors and named according to the lattice type. For example,

hexagonal lattices have three symmetry axes named as Γ,M and K. For hexagonal

and square lattices, the symmetry axes are shown at Figure 2.1.

The bands are independent of lattice constant, a and frequency values are normal-

ized to satisfy f · λ = 1 Thus the normalized frequency can be converted to actual

wavelength values by dividing a to the frequency.

In the band diagram which is given in Figure 2.2, there are some frequency intervals

that has no corresponding allowed state through the ~k over the irreducible Brillouin

zone. These intervals are called as photonic band gaps (PBG). It is desired for the

photonic crystals to have a complete band gap over all directions and polarizations.

3-D photonic crystals having complete band gaps are demonstrated before [3, 1].
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Figure 2.1: The lattice configurations and Brillouin zone with principal symmetry

axes for 2-D square and hexagonal lattices are given.

However, such configurations are hard to fabricate. The most common photonic crys-

tal configurations are planar photonic crystal slabs, which combine the properties of

2-D photonic crystals and index guiding along the third dimension.

Index guiding relies on one of the best-known properties of geometrical optics, total

internal reflection. Once light is coupled inside the high-dielectric medium, it remains

confined for steeper incidence angles. The threshold is named as critical angle and

predicted by the Snell’s law, ndielectric ∗ sin θc = nbackground ∗ sinπ/2. The Snell’s

law has two important property that are conservation of frequency (i.e. energy) and

momentum, (i.e. wavevector, ~k) along the interface. Since there is continuous trans-

lational symmetry along the z-axis, the wavevector component along the boundary

should be conserved. The dispersion relation between frequency and wavevector is

identified as given below and can be decomposed accordingly [2].

|k| = nω

c
=

√
k2
‖ + k2

⊥ (2.29)

k‖ must be conserved to be confined inside the medium while k⊥ can take arbitrary

values. Different combinations of those components create superpositions of plane

waves for every possible frequency. However, not all the possible modes are sup-

ported by the medium. The limit that defines the supported modes are along the

ω = ck‖ when k⊥ = 0. This limit is known as light line and the region of the band

structure that possesses unsupported modes, i.e. modes that ω > ck‖ is defined as the

13



Figure 2.2: A sample TE band diagram of a photonic crystal slab is given. Blue region

indicates the light cone. The parts of bands residing in blue region is unsupported

because of index guiding.

light cone. The modes that are below the light line have imaginary k⊥ as it can be

calculated from (2.29) undergo total internal reflection. This enables that planar slab

structures can have pseudo-complete band gaps.

2.3.2 Density of States

Another measure of the photonic crystals is density of states. The density of states in-

dicates the number of allowed modes in the lattice per unit frequency. This measure is

very important to understand localization effects of defects, transmission spectra and

some nonlinear effects on the lattice such as Purcell effect [24, 25]. The mathematical

definition of the DoS is given at equation (2.30) [26].

ρ(ω) =
∑
n

∫
IBZ

d3kσ(ω − ωn(~k)) (2.30)

For a periodic lattice, it is possible to compute DoS over the irreducible Brillouin

zone. The intervals with zero density along the DoS spectra indicate the photonic

band gaps of the lattice. However, in the analyses over real photonic crystals it can
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Figure 2.3: The local density of states (LDoS) spectrum of a sample photonic crystal

is given as example. The band gap region is easily identifiable. The finite states at

gap region is caused by finiteness of simulation region, which is conducted by finite-

difference time-domain method.

be observed small, nonzero amount of states due to the finiteness. In the Figure 2.3,

these states can be observed. At the boundaries separating band gap and transmission

regions, which is called as mobility edge, there are some singularities which is stated

before by Van Hove for electronic band gaps [27].

A generalized density of states function is undefinable for disordered and amorphous

lattices. For this purpose, local density of states (LDoS) functions are defined to

study the transmission properties and localization. It can be measured indirectly from

the power radiated by a unit dipole inside the crystal through finite-difference time-

domain simulations [24].

ρl(~x0, ω) =
−2

π
ε(~x0)

Re[Êl(~x0, ω)p̂(ω)∗]

|p̂(ω)|2
(2.31)

The density of states spectrum can be used to get information about the light transmis-

sion, defect and localized modes, resonant enhancements etc. Furthermore, photonic

band gap locations can easily be verified through DoS spectrum.
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CHAPTER 3

NUMERICAL METHODS FOR PHOTONIC MATERIALS

In this chapter, the common computational methods for photonic crystal analysis are

described, which are also frequently used in this study for numerical design, analysis

and verification. They are essentially different ways to solve Maxwell’s equations

over the domain. In this study, the methods that have been used are finite-difference

time-domain (FDTD) for transmission and field spectra analyses and plane-wave

eigensolvers to compute the photonic band diagrams.

3.1 Finite Difference Time Domain Method (FDTD)

The FDTD method is one of the most effective methods to solve complex devices. It

provides direct solutions to the Maxwell equations over a domain with a straightfor-

ward method. It is possible to conduct spectral analysis over a large bandwidth since

it is a time domain method. The formulation of FDTD method has been done by Yee

in 1966 [28]. His algorithm is capable of handling both electric and magnetic fields

simultaneously and constructs a geometrical approach to sample over spatial domain.

The accuracy of the method is second order and some precautions have been taken in

order to increase numerical stability [29]. In order to increase numerical stability, the

features of the meshing over the domain should be around λ/20 and λ/30.

For a linear, non-dispersive and isotropic material, the Maxwell equations that need

to be solved can be written as (3.1) and (3.2). In this case, effect of electrical and

magnetic losses (conductivity) is taken into account by σ and σ∗.
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Figure 3.1: The positions of field components of a gridded domain in FDTD accord-

ing to Yee’s algorithm.

∂ ~H

∂t
= −1/µ∇× ~E − 1/µσ∗ ~H (3.1)

∂ ~E

∂t
= 1/ε∇× ~H − 1/εσ ~E (3.2)

These equations can be expanded to six coupled equations for each vectoral com-

ponent, Ex, Ey, Ez and Hx, Hy, Hz. The system of equations are capable of solving

any arbitrary medium in three-dimensions. The Yee’s algorithm is offering a way to

discretize the equations and solve by approximation in time and spatial domain.

The FDTD algorithm discretizes the fields by placing them over the grid in a way that

each E-field component are surrounded by four H-field components, which is shown

in Figure 3.1. The partial derivatives are written as finite differences centering the

corresponding grid point. The resultant form of the equation is that,

∂Ey
∂z
|(i+1/2,j,k) ≈

Ey(i+ 1/2, j, k + 1/2)− Ey(i+ 1/2, j, k + 1/2)

∆z
(3.3)
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Similarly, in time domain, center difference method is used to discretize time. With a

leapfrogging approach, the fields can be update in two time steps completely. First;
∂Hx

∂t
|n∆t ≈

Hx((n+ 1/2)∆t)−Hx((n− 1/2)∆t)

∆t
(3.4)

When the equations (3.3) and (3.4) are placed into (3.1), a discretized form of the

Maxwell’s equation which can be solved by FDTD algorithm is obtained. The FDTD

solves it in two steps: First, ~E is computed using previous value of E and current value

of H. Then H is updated by using its previous value and the recently updated value

of E. Thus, in two time steps, whole field distribution gets updated. The numerical

stability of this operation necessitates a maximum value on time step ∆t. For a 3-D

simulation domain, the criterion is as follows:

∆t ≤ 1

c
√

(1/δx)2 + (1/δy)2 + (1/δz)2
(3.5)

For cubic gridding, this criterion becomes ∆t ≤ ∆x,y,z/c
√

3. In practical applica-

tions, in order not to exceed this limitation a constant named as Courant factor is

chosen. Courant factor is used to compute a time step according to grid resolution

[29].

Another important aspect of FDTD computations is choosing a suitable boundary

condition. Since the computational domains must be finite for effectiveness, the

medium must be truncated suitably to obtain correct solutions. Such conditions may

be reflectors or absorbers. One of the most common and effective boundary condi-

tions is perfectly matched layers (PML) described by Berenger in 1994 [30].

According to PML model, the Maxwell’s six curl equations in 3-D is changed with

12 direction dependent equations. This enables that, any plane wave with normal

incidence to the domain boundary can pass through the PML layer with no reflection.

Another boundary condition is periodic boundary condition (PBC). It is very suitable

to reduce computational domain to the smallest element in infinite periodic lattices.

The fields are obtained over the unit cell by FDTD and can be duplicated over the

whole lattice by applying phase equivalent to lattice constant variation exp(jka) with

the help of Bloch’s theorem [29].

There are some variations of FDTD method proposed for faster computation of prob-

lems. First of all, it is possible to shorten simulation time by restricting the problem
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Figure 3.2: Example electric field distributions simulated by FDTD method show-

ing a photonic crystal that modes are transversely excited. Perfectly matched layers

(PML) are used as boundary conditions. The laser beam width is shown for Left:

dielectric band mode and Right: band gap. The excited Bloch mode can be observed

for dielectric band mode while the beam remains confined due to lack of modes in

the gap.

into lower dimensions by eliminating invariant ones. 2-D FDTD method is such one

that restricts the problems such as one dimension is either constant or infinite com-

paring the others, into two dimensions. For similar structures, there is another hybrid

approach called 2.5-D FDTD. This method is mostly used for planar photonic in-

tegrated circuit calculations. The 3-D simulation domain is projected into 2-D via

effective-index method by calculating effective index along the nearly-invariant di-

rection given that there is little coupling between different slab modes [31].

In this study, a commercial FDTD package named MEEP is used [32]. It is capa-

ble of solving Maxwell equations in 1-D, 2-D and 3-D. The solved medium can be

anisotropic, dispersive or nonlinear. The boundary conditions can be used are PML,

absorbers, PEC’s and periodic boundaries. It is capable of computing transmission

spectra whose example given in Figure 3.3, resonant modes and field distributions

in Figure 3.2. In order to increase numerical stability and handle smooth edges of
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Figure 3.3: An example TM transmission spectrum of a Si photonic crystal with

220 nm thickness 110 nm hole radius and 670 nm lattice constant is given. Here,

the crystal is excited with a line source having Gaussian spectral linewidth. The

transmissivity for each frequency is obtained internally with an Fourier operation

[32].

structures such as curves, it employs subpixel averaging, which is assigning permit-

tivities on each grid point by averaging the permittivity composition inside that grid

cell. This enables the gradual change at the dielectric-contrast interfaces instead of

step-index changes.

3.2 Plane-wave Eigensolvers

The second method used in this study is plane-wave eigensolvers. Solving eigen-

modes of a photonic crystal is a frequency-domain problem in its nature. Thus, this

method approaches to the problem in a plane-wave basis. The periodic lattice can be

decomposed as Fourier series with a period of a. The result of the analysis is the sum
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of the components at every reciprocal lattice vector ~G, as it is shown at Section 2.3.

fk(~r) =
∑
G

aG(~k)ej
~G·~r (3.6)

In this problem, it is important to compute coefficients aG for each reciprocal vector.

In our problem, the periodic function ~fk(~r) is corresponding to E and H vector fields.

Thus, the coefficients should also be vectors. The periodic functions should also

satisfy the transversality constraint, (j~k + ∇) · ~fk = 0. The form of the constraint

applied to the case above provides the following equations [2].

(~k + ~G) · ~aG = 0 (3.7)

This condition is satisfied by constructing the fields as plane waves. In that way, two

coefficient vector can be chosen and their superposition can be inserted to eigenvalue

equation. Inserting the necessary elements to the eigenvalue equation and Fourier

transform the both sides of it, it is obtained that;∑
G

[−ε−1
G′−G · (~k + ~G

′
)× (~k + ~G)×]~aG = (

ω

c
)2~aG (3.8)

The left hand side of the equation is an infinite sum for infinite set of reciprocal vec-

tors. In order to compute numerically, the number of the vectors must be truncated. In

order to exclude larger terms of reciprocal vectors, the permittivity distribution over

the medium undergoes discrete Fourier transform for discretization and approxima-

tion. This helps reducing the sum to a finite set. With the help of FFT and iterative

methods, the eigenvalues for each component are computed [2].

The package used in this study as eigensolver is MIT Photonic Bands (MPB) [33]. It

is capable of simultaneously solving eigenfrequencies and eigenmodes with a direct,

frequency domain approach. It is capable of computing the modes around a specified

frequency or solving iteratively for each wavevector. It offers easier generation of

band (Figure 2.2) or equifrequency diagrams (Figure 3.4).

3.3 Further Methods to Solve Photonic Circuits

There are other methods for photonic integrated circuit simulations that are not in the

scope of this study. However, such methods are very essential for the progress of

these efforts in future.
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Figure 3.4: TM equifrequency contour diagram of the second band of a photonic crys-

tal with h/a = 0.744 and r/a = 0.279. It allows us to analyze possible wavevectors

at symmetry axes of the lattice for each frequency.

3.3.1 Beam Propagation Method

The first one of such methods is beam propagation method. It is most suitable for

solving slowly varying structures that paraxial approximation can be applied [31].

In this method transverse electric field at a given position is decomposed into its

constituents through Fourier transform as monochromatic plane waves in the form

of φ(k) = Ai · ejki·r. Each constituent is propagated by a finite step for an average

refractive index. Then, the decomposition is multiplexed through inverse Fourier

transform, in order to obtain superposition in time domain [34]. In order to correct

computational errors on the phase front in the earlier stage, spatial perturbations are

applied in proportion to local refractive index variance in the form of ∆Φ(x, y, z) =

ejk0(n−n̄)∆z at every finite step.

It can be expressed that the form of wave function at the end of each finite step ∆z as

given in (3.9) [34].

Ψ(x, y,∆z) =
ejn̄k0∆z

2π

∫
β>0

Φ(kx) exp [
−jk2

x

¯nk0 +
√
n̄2k2

0 − k2
x

∆z]dkx (3.9)
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3.3.2 Eigenmode Expansion Method

A similar method is eigenmode expansion, which decomposes local field into con-

stituent modes. These modes are propagated individually for further superposition.

When field reaches a section having different properties, interfacing is done through

S-parameter calculation between two sections [31] .

24



CHAPTER 4

WAVE PROPAGATION IN AMORPHOUS MEDIA

4.1 Electron Behavior in Amorphous Semiconductors

4.1.1 Electronic Band Theory

The behavior of electrons inside the semiconductor crystal are very similar in nature

to the photon behavior inside photonic crystals. It is known that, electrons show

wave-like properties, thus the rules of wave mechanics apply [2]. Since the governing

Schrödinger equation (4.1) has a very similar form to the wave-equations that are

given in (2.9) and (2.10), postulates on Schrödinger’s equation can be implemented

on photonic crystal structures. This section is important because studying amorphous

semiconductors may provide insight for our amorphous photonic material studies.

[
−~
2π
∇2 + V (r)]ψE = ĤψE = EψE (4.1)

It was discussed earlier that, for the solution of Maxwell’s wave equation, the lattice

can be reduced with respect to symmetries in the periodic refractive index variations.

Bloch’s theorem is very essential in reducing the dispersion relation to the irreducible

Brillouin zone. The periodic function for the Schrödinger’s equation, lattice potential

also can be reduced in to IBZ with the help of Bloch’s theorem. The analysis of lattice

is the same as photonic crystals’; however the IBZ’s are mostly three dimensional for

semiconductors. In these crystals, the electron wave propagations are subjected to

Bragg reflection phenomenon [2]. The Bragg condition inside the crystal is:

(~k + ~G)2 = ~k2 (4.2)
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This condition expresses that the different wavevectors must be degenerate over the

Brillouin zones. Solutions of Bragg condition provide standing waves over the zone,

whose interference creates forbidden states, i.e. band gaps. The extent of band gap

can be inferred from optical absorption spectra, carrier concentrations, Fermi level

and temperature dependency of the lattice conductivity [23].

In order to compute the band structure of a semiconductor crystal, two models can be

used. As a first approach, the nearly free electron model is suitable. In this model,the

electrons in the lattice have eigenvalues of a free electron, but are perturbed weakly

by a periodic potential V(r). This perturbation causes the formation of band gaps

around the Bragg scattering planes [3].

As a second approach, tight binding approximation can be utilized [35]. It is based

on the assumption that wave functions of neutral separated atoms overlap inside the

lattice. According to this approximation, the electrons must have limited interaction

with the energy states of the surrounding atoms. This enables electron behavior to be

expressed by atomic behavior. The linear combination of overlapping wave functions

forms two new wave functions, an attractive and a repulsive one. When multiple

atoms get closer enough, the energy states start to split into bonding and antibonding

states. Among them, the degenerate ones form bands in the band structure which

also create a band gap between two consecutive bands [23].If this approximation is

explained mathematically, the wave function can be identified as:

ψk(r) =
∑
i

Ck,iϕi(r −Ri) (4.3)

Ck,i = N−1/2eikRi (4.4)

where N−1/2 is the normalization factor for a N-atom crystal. Ck,i here is making

the wavefunction as Bloch-type. The energy eigenvalues for the structure can be

computed by the Hamiltonian [23].

E(k) = 〈k|H|k〉 = N−1
∑
i

∑
j

ejkRi−Rj ×
∫
ϕ · (r −Ri)Hϕ(r −Ri)d

3r (4.5)
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Let us simplify the equation by considering relative distances Rm = Ri −Rj

E(k) =
∑
m

ejkRm

∫
ϕ(r −Rm)ϕ(r)d3r (4.6)

Further simplification can be done by considering only the terms which Rm = 0 and

the contribution of nearest neighbors with Rn. This reduces the problem only to the

nearest overlapping functions instead of the whole lattice.∫
ϕ∗(r)Hϕ(r)d3r = −A (4.7)∫

ϕ∗(r −Rn)Hϕ(r)d3r = −B (4.8)

E(k) = −A−B
∑
n

ejkRn (4.9)

4.1.2 Effect of Disorder and Band Tail Characteristics on Amorphous Semi-

conductors

For a semiconductor lattice, the band gap and extended modes are separated by the

mobility edge. The density of available electronic states are zero in the band gap

region for an infinite lattice. The mobility edge can easily be identified by the Van

Hove singularities in the density of states [27]. When disorder or defects are induced

into the lattice, the periodicity is disturbed. Thus, the postulates of Bloch’s theorem

becomes invalid. As a result, the defect modes are introduced into the band gap, which

are also localized. The singularities at mobility edges of valence and conduction

bands disappear. Enough accumulation of such localized modes creates tail states

that enable the electron presence inside the band gap region. These are called as band

tail [36, 37].

For a complete amorphous semiconductor such as a-Si, the density of states at band

gap region is nonzero. The mobility edges here have the duty to separate the localized

and extended modes, i.e. bands and band tails. These band tails have exponential

characteristics and affect the electrical and optical properties of the semiconductor,

which are largely dependent on the density of states. The absorption spectra and

DC conductivity are some of the examples [37]. The optical absorption edge of the

semiconductors are governed by the Urbach rule [38]. The general rule specifying

absorption characteristics are provided in (4.10) [37]. Here, α0 and E0 are material
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specific constant, while EU is called as Urbach energy which the main parameter

determining the slope of the absorption edge.

α(hν, T ) = α0 · exp[
hν − E0

EU
] (4.10)

The Urbach energy EU is highly depending on different disorder factors. This depen-

dence can be summarized as,

EU = (EU)T + (EU)X + (EU)C (4.11)

The equation (4.11) relates the Urbach energy with temperature disorder (T), struc-

tural disorder (X) and compositional disorder (C). The temperature disorder origi-

nates from the thermal fluctuations, while structural disorder is due to defects and

randomness in the lattice and compositional disorder is valid for mixed lattices with

various atomic compositions [37].

For amorphous materials, the main characteristic is a smeared and extended tail with

exponential behavior. In this case, localizations due to randomness in the structure

cause the slope of the optical absorption to be structural-randomness dominant and

less reliant on the temperature-dependent fluctuations especially in the materials that

at lower temperatures and having only short-range order [37]. Another important

property is for the valence and conduction band tails, the slope parameter EU is dif-

ferent. This means that two band tails on the opposite sides of the band gap are

affected by randomness by different degrees.

The importance of Urbach tails is that the optical absorption edges are one of the

most obvious observables for state densities. They possess an intuition to analyze

the effects of randomness. In order to analyze the density of states directly, the

Schrödinger equations need to be solved. The analysis of the density of states on

amorphous semiconductors is done using tight-binding approximation, whose princi-

ples are explained briefly before. The initial studies of Drabold et.al. [39] describe

the localized-to-extended state transitions which are known as Anderson transitions,

based on the seminal work of Anderson [40] examining the electron localization in

a disordered medium. An a-Si model with 512 atoms generated by Djordjevic et.

al. [41], is used to calculate the density of states via tight-binding approximation and

verified by DC conductivity analysis and inverse participation ratio calculation, which
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Figure 4.1: The density of states spectrum for amorphous silicon simulated from

a model with 100k atoms [41, 42]. The conduction and valence band tails are

fitted exponentially. It can be seen that valence band tail slope is smoother

than conduction band tail slope. Reprinted figure with permission from [42]

(doi:10.1103/PhysRevB.83.045201). Copyright (2018) by the American Physical So-

ciety.

is an indicator of degree of localization. In this work, the localization of the states

at the energies around the band tails are shown as decreasing while approaching the

mobility edge. This is due to the formation of weakly overlapped states of the same

energy which form the extended states at enough overlap, which is also the indicator

of the mobility edge. Moreover, it is shown that there is a slope difference between

exponential characteristics of valence and conduction band tails.

A theoretical study with same model shows that the band tail states are in fact, very

delocalized [43]. Such state functions cover a couple of atoms which are weakly cou-

pled with each other. In this work, the valence tail states are shown to be statistically

identified with short bonds inside the lattice while the conduction tail states are lying

over longer interactions. It is known before that, the Urbach energy determining the

tail slope for the valence tail is more structural disorder dependent, while the con-

duction tail slope is less affected by structural variations but more affected by the

temperatural effects [44]. In a later work over the bond dynamics in a-Si with a larger
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model, the reason of this tendency is connected with the bond length [42]. Since the

valence band tail is associated with the short bonds, such bonds are more susceptible

to structural variations in a short range, while conduction tail states are overlapping

over a longer range and thus, less affected by the disorder. In order to get a better

idea, the band tails of a-Si generated through tight-binding simulations of a domain

with 100k atoms is given in Figure 4.1 [42].

The importance of this conclusion is that it suggests the asymmetry between band

tails is related to the connectivity of tail states. The overlap range between the states

of similar energy affect their susceptibility to disorder and structural variations. Since

localization is a result of wave-mechanical nature, it is not just confined to Hamil-

tonian. Such a correlation can be searched in other domains such as a classical EM

wave, as will be attempted in later sections.

4.2 Wave Propagation in Disordered Lattices

The waves in free space can be described as a plane wave having a definite frequency

and propagation direction. However, when the wave encounters a disordered medium

consisting of independent scatterers, this behavior is altered by the multiple scatter-

ings. Two types of scatterings are capable of altering the wave propagation. Elastic

scatterings are the events where the energy (or frequency) is preserved, however the

propagation direction (i.e. its wave-vector, k̃ ) changes. On the other hand, inelas-

tic scatterings have destructive effects on both the frequency and the wave-vector.

Depending on the scattering medium, the mean length at which the coherence of

the wavefront is preserved changes. This scattering-free mean length is heavily de-

pendent on the R/λ ratio, which is the ratio of scatterer size to wavelength. If the

wavelength is a lot larger than scatterers, the wave undergoes weak scattering, since

scatterers are at sub-diffraction length. Thus, the wave sees a homogeneous effective

medium. On the contrary, when wavelength is significantly smaller than scatterers,

the wave is capable of resolving the medium, so it cannot sense the variations in the

lattice. The important case is when both the scatterers and the wave are comparable.

In this case, multiple scatterings accumulate over distances longer than scattering-free

length and disturb the wavefront. This kind of wave transport is known as diffusive
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transport. This behavior is very similar to the Brownian motion of a classical particle.

Nevertheless, there are some characteristic differences between classical and wave

diffusion due to different natures [45].

When the waves undergo multiple scattering, it is expected that the phase front is

lost after a distance greater than scattering-free length. From a classical perspective,

smooth variations of the intensity at the phase front are expected. Nevertheless, this

is not the case. In the event of wave scattering, a speckle pattern with bright and dark

spots is observed due to mutual interference of the scattered wave. This pattern is

dominant when there is no inelastic scattering. The reason of this difference is the

phenomenon of "coherent backscattering". As a result of this phenomenon, under the

presence of disorder in a medium, the wavefront that undergoes multiple scattering is

still phase coherent, however in the opposite direction. Due to this coherence, there

is a constructive interference among the wave, so the backscattering probabilities

increase further. As a result of coherent backscattering, the diffusion constant of the

wave decreases, so a need to renormalize the diffusion constant arises. Coherent

backscattering effect is evidenced by multiple studies in 1980’s and well accepted

now [46, 47, 48].

The angular profile of the backscattering is heavily influenced by the rules of wave

interference [45]. This profile can be obtained by averaging the field amplitudes

at different configurations with the same level of disorder, since the phase of the

wave will be different for each configuration, which causes them to cancel themselves

out, leaving only the backscattering effect. The angular profile is independent of

time and has time reversal symmetry for appropriate media, which means there is

a reciprocity between incident and scattering wave vectors. Furthermore, coherent

backscattering is independent of the path taken between initial and final scatterings,

and the intermediate steps cancel out. The path evolution for a scattered light can

be expressed as equations 4.12 and 4.13 and shown in Figure 4.2. Here n denotes

scatterers while G is the scattering strength on the phase relation. Notice that for

another wave B0 along the same route with inverse order is capable of canceling the

former [45].
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Figure 4.2: The scattering path of a wavefront inside a random media is given as an

example. If the media has time reversal symmetry, the intermediate paths for two

scattered waves A0 and B0 destructively interferes with each other. Coherence of

waves are only dependent on initial and final wavevectors.

A0 = AiG exp[jki · (r1 −R0) + jk1,2 · (r2 − r1) + ...

+ jkn−1,n · (rn − rn−1) + jkf · (r0 − rn)] (4.12)

B0 = BiG exp[jki · (rn −R0) + jkn,n−1 · r1) + ...

+ jkn−1,n · (rn − rn−1) + jkf · (r0 − rn)] (4.13)

Examining the equations and Figure 4.2, one can say that the coherence of the inci-

dent and scattered wave is only depending on the wave vectors ki and kf . In the case

of ki = −kf these waves are perfectly coherent. For a lattice, there are many scat-

tering paths between r1 and rn. So, the assumption of time reversal symmetry inside

the lattice postulates that for every scattering path, there is a time-reversed version

of that path with same scattering order. So, in the presence of disorder, the phase

difference between two scattered waves A0 and B0 is only depending on initial and
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final wavevectors. Thus, for a coherent incident wave, the backscattering will also be

coherent [45]. This relation is given below in (4.14).

A0

B0

= exp[j(ki + kf ) · (r1 − rn)] (4.14)

The angular profile of backscattering depends on the incident and final scattering

wavevectors. For the basic two path system, it can be summarized as in (4.15).The

angle between incident and scattered waves diminishes the backscattering probability

i.e. intensity, but is not become zero immediately. The backscattering profile can

be obtained by averaging over many different configurations with same statistical

properties. Since the phenomenon is path independent, the exact configurations of

scatterers are not important due to the cancellation of other terms in the interference

formula [45].

|A0 +B0|2 = |A0|2 · {1 + cos[(ki + kf ) · (r1 − rn)]} (4.15)

There are some important points in coherent backscattering regarding to sample size.

In order for backscattering to occur, the minimum sample size should be at least one

scattering free length. When the lattice length is increased beyond it, the scatterings

accumulate and increase the coherent backscattering probability,since the possible

intermediate paths that light can scatter will be much more.

The coherent backscattering is seen as a precursor of wave localization. When backscat-

tering probabilities are too high under strong disorder, the diffusion constant of the

wave will become zero. In this case, the wave can be considered as ’localized’. This

phenomenon was first explained by Anderson in 1958 to describe the disappearance

of electron diffusion under strong randomness of lattice potentials in the absence of

electron-electron interactions [40]. Later Anderson localization model was extended

to classical waves by analyzing photon transport inside GaAs powders [49].

Classical waves are very beneficial in understanding the localization phenomenon

stemming from absence of inelastic scattering in contrast to electrons. It is explained

further by the scaling theory of localization, which postulates that the localization

model is independent of lattice type and properties. The most important indicator is

dimensionless conductance, which is a measure of how the wave state extent changes
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with sample size. Another issue is that the localization is dependent on the dimensions

of the lattice. It is postulated that, all waves are localized in one and two dimensional

systems without taking into account the degree of randomness when sample size goes

to infinity [50]. This means that an extent can always be found for the state that

can be considered as localized, except three-dimensional cases. In 3-D, the extended

and localized states can occur together but at different frequencies. The limit that

separates this two behavior is named as mobility edge, in this context.

The dimensionless conductance γ is defined as the ratio of eigenvalue change due

to the variances in boundary condition to the average difference between two con-

secutive eigenvalues, γ = δω/∆ω. Here, the average difference ∆ω should change

with L−d, with d is dimension and L is sample size [45]. However the sensitivity of

eigenvalue to boundary changes such as increase in sample size, δω ,is depending on

the localization. If the mode is localized, the state can sense the boundary changes

up to extent of its exponential tail, while the extended states would always sense the

change. Due to this, there is a scaling function defined to analyze the relation of

conductance with the change in sample size, which is β = d ln γ
d lnL

.

β ∝


d− 2, γ >> γc

lnγ, γ > γc

0, γ = γc

This shows that, at critical conductance level γc, the state becomes independent on the

sample size, which one expect from the localized states. However, in this formula,

the scaling function seems only dependent on dimensionless conductance, but the

effect of the randomness of scatterers is ignored. For this, the change in randomness

of the lattice, which is indicated by the localization length normalized by the sample

size ξ/L. It means that, for every degree of randomness, there is an extent that the

wave becomes localized [45, 50]. The localization length can be calculated for 2-D

materials with the formula ξ = l ∗ exp(κelπ/2) that has an exponential behaviour,

which causes large increase at lower level of randomness. For three-dimensional

random lattices, the condition determines the mobility edge and signaling localization

is given as κel ≤ 1 and known as Ioffe-Regel condition. It means that if scattering

free mean path is comparable to wavelength, wave lost its wavefront and bound to

localization [45, 51].
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Another form of explanation for the localization phenomenon of light in 2-D lattices

is proposed by Raedt et.al. in 1989 [52]. According to this transverse scheme of

light localization, if the refractive index variations are random over x-y plane but it is

constant in the z direction, the diameter of light beam propagating at z direction may

only increase until localization length scale and remains confined. In the transverse

localization regime, the wave evolution is explained by paraxial approximation.Here

ψ is envelope of the propagating field with ω and k. ∆n indicates the local refractive

index variations over average index. The equation is very similar to time-varying

Schrödinger’s equation, thus it can be said that the wave is like a quantized particle

inside random potential. Transverse localization is addressed later in 2-D photonic

materials with random index variations by Schwartz et.al. [53]. Later, it is used to

control light propagation at sub-wavelength scale to ensure hyper-collimation [54].

j
∂ψ

∂z
= [−1/2k(

∂2

∂x2
+

∂2

∂y2
)− k

n0

∆n]ψ = Hψ (4.16)
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CHAPTER 5

GENERATION OF AMORPHOUS CONFIGURATIONS

5.1 Theory of Importance Monte Carlo Sampling

Monte Carlo simulations are basically simulations that involves random numbers in

the algorithm. These algorithms do not follow a predefined, deterministic flow along

the simulation; rather, the system is evaluated in a stochastic way. They have a very

wide range of applications from chemistry and physics to finance and biology. The

stochastic nature of Monte Carlo simulations are very suitable to checking hypothesis

via some random inputs or making efficient calculations with lesser statistical error.

Moreover, Monte Carlo simulations are one of the two methods that are used to ana-

lyze thermodynamic properties of molecules with molecular-dynamics simulations.

Different from Molecular Dynamics simulations, Monte Carlo algorithms do not re-

quire any force calculation and thermostats to control thermodynamic properties.The

only thing matters is the energies of the constituents of domain. Moreover, the time

progression in such algorithms are not linear and sequential; rather the progression is

random. Thus, there is no numerical inaccuracy due to discrete time approximations

[55].

One of the basic applications for Monte Carlo method is sampling to compute an

integration. In a molecular simulation, the statistical thermodynamic properties of a

system is considered to be extracted from a partition function in equilibrium, which

is given at (5.1). H, stands for Hamiltonian or total energy of the system at each

state, while kB is Boltzmann constant and T is temperature [56]. This function is the

sum of all possible states in a system and scales by the degrees of freedom. Once

the partition function is determined, it is possible to compute all observables of the
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system as specified in (5.2) .

Q =

∫
e−H(rN ,pN )/kBTdrNdpN (5.1)

〈A〉 = 1/Q ·
∫
A(rN , pN)e−H(rN ,pN )/kBTdrNdpN (5.2)

Normally, numerical computation of such a N-dimensional integral given in (5.2) is

done via sampling the equation in an equidistant manner. In this method, in order

to decrease the numerical errors, the grid must be as fine as possible with very high

sampling rates. For small dimensions, this may seem as efficient; however the com-

putational complexity scales with mesh, exponentially. Moreover, the contributions

to integral at the sampled points have a good chance to be negligible along a uniform

mesh, due to the differences in concentration of the function [56]. To solve these

inefficiencies and decrease numerical errors, Monte Carlo sampling is proposed [57].

Via Monte Carlo sampling, instead of a fixed grid, the function is sampled at ran-

dom points in the configurational space, which is the matrix of all possible states. In

this way, it is possible to calculate the observable with lesser amount of samples and

smaller error. However, in this case the distribution of random samples is very im-

portant so that the result is very accurate. So, an optimized algorithm to an efficient

random sampling which minimizes the numerical error is proposed by Metropolis in

1953 [58]. The algorithm is basically assigns importance to every sample according

to contribution of it to the result of the integral. The most important samples are

included in the result while the samples with least contribution is discarded, with a

probability in both cases.

It is indicated before that, the partition functionQ, possesses all the information about

all possible configurations. To calculate the probability of occurrence of a given con-

figuration, first the configuration is separated into dependent parts of Q with the no-

tation of Z =
∫
e−H(rN )/kBTdrN [56]. Among whole states, occurrence probability

of a particular state can be identified as,

N(rN) =
exp (−H(rN)/kBT )

Z
(5.3)
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In the Metropolis algorithm, a random walk is conducted to determine the samples

with largest contribution to the result. Let us take into account two states, 1 and 2.

Their occurrence probabilities are specified by Boltzmann factors as N(1) and N(2),

calculated via (5.3). The walk is done between two states by trial and error; i.e. at

every transitional move, the effect of move on the state is examined and the move is

accepted with a transition probability π(1 → 2) according to the result. In order to

preserve the equilibrium along the configuration, the movements must be in balance.

Thus, the average effect of the large number of accepted moves must be negated by

reverse movements from state 2 to 1. This condition is named as "detailed balance

condition" which is given at (5.4) [56].

N(1)π(2→ 1) = N(2)π(1→ 2) (5.4)

The transition probability specified in detailed balance condition has two components,

the probability of occurrence for such a trial move between states 1 and 2, and the

acceptance probability of this trial move. The random nature of both is considered

as essential for Metropolis method. Regarding the occurrence probability, for the

Metropolis method, the given matrix is selected as symmetric, which means equal

probabilities for selection of a move from state a to b and vice versa [56]. Thus, the

detailed balance condition can be reduced to the (5.5).

N(1)acc(1→ 2) = N(2)acc(2→ 1) (5.5)

acc(1→ 2)

acc(2→ 1)
=
N(2)

N(1)
= e−[H(2)−H(1)]/kBT (5.6)

The rewritten form of the equation (5.5) in (5.6) indicates that the ratio of acceptance

probabilities is depending on the ratio of Boltzmann factors describing the corre-

sponding states. To satisfy the detailed balance condition, it is essential to select a

suitable acceptance probability distribution. Metropolis algorithm defines this proba-

bility as given below. According to definition, when the new state 2 has more energy

then the current state 1, there is a probability to accept such a movement which is

given in (5.7). However, when the reached state 2 possesses less energy than the ini-

tial state 1, this kind of movements are always accepted, with a probability of 1. So,

the system tends to relax itself to lower energy levels [56]. This kind of processes are
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known as Markov processes, or Markov chains, which are stochastic processes that

the future move is only depending on the present state, no matter how was the past.

acc(1→ 2) =

N(2)/N(1), N(2) < N(1)

1, N(2) ≥ N(1)
(5.7)

For molecular simulations, in order to construct the Markov chain, the algorithm of

Metropolis method is as follows [56].

1. First, an element in the configuration is selected randomly and its present energy

H(1) is computed.

2. The element is displaced by a random amount, and the energy in the new state,

H(2) is computed.

3. The acceptance probability of the move is calculated according to (5.7). A random

number from uniform distribution between zero and one is selected and if it is smaller

than the calculated probability, the move is accepted and added to the end of the

Markov chain.

The algorithm and the underlying principles are explained previously. The simula-

tions with Metropolis algorithm for importance sampling over a thermodynamic sys-

tem need some mechanisms that enable replication of real-world conditions. First of

all is determination of a simulation boundary condition to restrict the problem to a fi-

nite and solvable cell without introducing errors. The size of simulation cell depends

on the purpose of generated amorphous configuration. Here, the choice is using peri-

odic boundary conditions [56]. By applying periodic conditions, an infinite domain is

created by duplicating the initial system. This new domain is immune to the boundary

effects. For example, when a random displacement is applied, if the particle goes out

of the computed domain, its image will be entered to the system from the opposite

wall due to periodicity. This property is very useful to conserve number of particles

inside the domain.

Another issue in this case is, one particle does not only interacts with the other par-

ticles in the cell, but also interacts with their images at other periodic cells, which is

a drawback that makes the sampling an infinite sum. To handle that, a truncation is
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applied to interactions that neglects the ones that has least amount of impact. This

can be done in two ways. The most basic way is to use a piecewise function taking

zero value outside a radius rc. Assuming this will create a discontinuity at the cutoff

value, which may or may not be important depending on application. If it is wished to

avoid discontinuities, another method is used that involves both truncation and shift-

ing of the potential with respect to the cutoff radius rc. In that case, the discontinuity

is eliminated by subtracting the excess amount of energy to make potential vanish at

cutoff [56].

U(r) =

H(r)−H(rc), r ≤ rc

0, r ≥ rc

An important thing when Metropolis sampling is done over a thermodynamical sys-

tem is, in order to compute system properties, some assumptions and idealizations are

done to predict equilibrium conditions. These are called as thermodynamic "ensem-

bles" and play huge role during computations. Basically, while conducting Monte

Carlo simulations, some properties of the simulation domain such as particle count,

volume, temperature pressure, density etc. are considered as constants at equilibrium.

Among the most common thermodynamic ensembles, the canonical ensemble (con-

stant particle count N, volume V, and temperature T, known as NVT), microcanonical

ensemble (constant N, V and energy E), isobaric-isothermal (constant N, pressure P

and T) and grand canonical ensemble (constant chemical potential µ, V and T) can

be counted. The Metropolis algorithm is subjected to changes according to selected

ensemble for different types of simulation domains [56].

The most widely used ensemble is canonical ensemble, which is also the case for

amorphous configuration generation in this study. In a canonical ensemble of amor-

phous material, the number of scatterers is constant throughout the Metropolis sam-

pling process. This is ensured by the application of periodic boundary conditions.

During the simulation, the volume of the domain and the equilibrium temperature is

kept constant.

Another important issue is the calculation of Boltzmann factors for acceptance prob-

ability. It is indicated that the Boltzmann factors are directly proportional with the

Hamiltonian of the configurations. Thus, it is essential to find the best model that

imitates the properties of simulated system. Thus, potential energy function models
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Figure 5.1: Curves of Lennard-Jones and Yukawa potential energy functions with

generic coefficients are provided.

(PEF) are widely used for this purpose [59]. These models enable the computation of

pairwise interactions in a lattice approximately and the determination of the equilib-

rium conditions. There are various potential energy functions defining pair or multi-

body interactions which are taking the lattice angles into account additionally. Most

of them are parametrized empirically for different case studies. For example, one of

the most popular potential energy functions is Lennard-Jones potential, which is a

simple pairwise function that incorporates both attractive and repulsive forces. The

function is given at (5.8), while the potential curve is provided at Figure 5.1. The

main characteristics of the potential profile is determined by two parameters, ε and σ.

The former is determining the absolute minimum of the potential energy, while the

latter is the point that the pair potential between two scatterers is zero [56].

ULJ(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (5.8)

Another type of potential that is also extensively used in this study is Yukawa poten-

tial, whose characteristics are given at (5.9) and Figure 5.1 [60]. It is first proposed

by Hideki Yukawa in 1935 to model mesonic interactions and the nuclear forces in-
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volved [61]. The utilization of Yukawa potential then extended to particles in plasmas

and charge-stabilized colloids [62]. The Yukawa potential has a very short effective

range, so it is beneficial to generate long-range uncorrelated, stabilized structures.

The form of Yukawa potential is given at (5.9). Here, ν0 is a scaling constant, which

is often normalized, and l is screening length of the potential. The cutoff length r0 is

an important parameter determining equilibration speed and accuracy. It is concluded

that at the reduced length value of 3.5, i.e. 3.5 times of lattice constant is sufficient

for accurate results [61].

UY ukawa(r) =
ν0

r
exp(
−r
l

), r < r0 (5.9)

5.2 Implementation of Metropolis Algorithm to Generation of Amorphous Con-

figurations

In the scope of this study, it is essential to generate an equilibrated configuration of

scatterers which does not possess a long range order, i.e. periodicity, but a short-

range relation. For an amorphous slab comprising scatterers like holes or rods, it is

convenient to take them as 2-D hard disks or point particles over x-y plane, since

z-plane is invariant. The flow of the simulation for a 2-D amorphous photonic slab is

similar to mentioned in previous section and provided below.

1- An initial configuration is given. It can be a periodic photonic crystal slab config-

uration with hexagonal or square lattice. This helps to predict the transport proper-

ties of the resulting structure. Alternatively, a previously generated amorphous con-

figuration can be inserted for quicker equilibration. The distribution of the initial

configuration is not important for the equilibrium. Here, the important point is, the

configuration is considered as a distribution of particles over a liquid-like structure

[18], which resembles a colloidal interaction. Calculate the potential energy of the

configuration. While conducting potential energy calculations, it is essential to pick

the correct ensemble. In this case, canonical ensemble (constant NVT) is used.

2- Select a scatterer randomly from the distribution, and apply a random displacement

on it. The maximum extent of the displacement is adjusted by trial to get an optimum

acceptance rate. Acceptance rate is the determining factor for the time required for
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equilibration. In this study, it is preferred as 40% - 60%. Calculate the new potential

energy.

3- The acceptance of the displacement depends on the probability calculated from

Metropolis criterion: acc(1→ 2) = min(1, e−[U(2)−U(1)]/kBT )

Repeating the random displacements over a large amount of steps equilibrates the

structure. There are some measures of equilibrium statistics. First, along the simu-

lation, checking the overall energy of the configuration at every specified step may

be an indicator. When the simulation is reached equilibrium, the overall energy is to

reach a steady-state.

In the next section, the generation parameters are analyzed in terms of their effects on

amorphous configurations. To achieve that, the Monte Carlo simulation is conducted

through an open-access molecular dynamics package, LAMMPS [63, 64]. The ben-

efit of this package is that it offers an efficient and faster calculation of pair potential

interactions through predefined potential functions.

5.3 Assessment of Final Configuration

In order to assess the quality and correlation levels of the final configuration, there

are some statistical analyses. First of them is known as pair correlation function or

radial distribution function, g(R). This is the indicator of scatterer distributions along

the configuration. Specifically, it indicates the number of scatterers within distance

of (R, R+dR) from a predefined point (or scatterer) as a histogram. The periodicity of

scatterers presents itself in g(R) as high peaks at specified distances. When disorder

is induced or periodicity is lost, the peaks start to smear out and tend to reach at a

steady state value at longer distances. For amorphous photonic materials, observed

initial peaks around a couple of unit distances are indicative to short range order,

while the g(R) value reaches equilibrium without persisting a peak around the value

of 1, for long distances. This shows that the distribution of scatterers at long range is

uniform and there is no order.

Second indicator is the spatial Fourier transform of the final configuration. The trans-
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Figure 5.2: Examples of periodic, disordered and amorphous lattice configurations

are given. a, Refractive index distribution (n(x,y)) of a photonic crystal with hexag-

onal lattice. Black regions represent the silicon (Si) slab and white ones are the air

holes etched in the slab. b, n(x,y) for the lattice when randomized perturbation is

added to each hole position. c, n(x,y) for an amorphous structure where the holes

are distributed as a snapshot of atoms in a liquid by the use of the Metropolis Monte

Carlo method [11,27] d-f, Fourier transforms of the structures shown in a-c. While

the long-range order in the disordered lattice leads to Bragg peaks in the Fourier trans-

form similar to the purely periodic case, there are no peaks shown in the amorphous

case. g-i, Radial distribution functions g(R) for the structures a, b, and c. Presence

of the peaks over long unit distances is a proof of long-range order. The peaks that

are disappearing after a couple of unit distances as provided in i indicate that there is

only short-range order.
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form is very indicative to recurring patterns along the 2-D plane. Thus, when a peri-

odic lattice is given as input, the periodic pattern which lies inside will present itself

in Fourier transform as an array of peaks, which is known as Bragg peaks [18]. The

array is identical to the reciprocal lattice of the crystal, which is the basis of photonic

band theory. Even a disorder induced photonic crystal lattice shows the underlying

long-range order on its Fourier transform. So, for a complete amorphous configura-

tion, the Bragg peaks must not exist. When the equilibrium configuration is verified

for lack of long-range order, lack of Bragg peaks is indicative.

There are various parameters that affecting the final configuration. For a simulation

utilizing Yukawa potential, these parameters are normalized temperature T ∗, screen-

ing length l, cutoff radius and number of steps for equilibration. The normalized

temperature value is the main factor that determines the degree of randomness along

the structure. It is presented before that the acceptance probabilities of moves are de-

pending on Boltzmann factor, which is directly proportional to kBT . The form of the

Boltzmann factor when Yukawa potential is inserted to Metropolis criterion is given

at (5.10). The constant in the exponential is used to normalize temperature in the

following form of 1/T ∗ = ν0
kBT

.

N(r) ∝ exp(
ν0

kBT
∗ e
−r/l

r
) (5.10)

In Figure 5.3, it can be seen that while at very high T ∗, short range order is lost due

to the lack of g(R) peaks, which means the transport of light is halted; at very low T ∗,

the long range order still persists and one cannot talk about an amorphous structure.

In this case, light propagation is still dependent on photonic band structure, which is

heavily disturbed by introduced defect modes. For desired transport characteristics,

the normalized temperature levels should be at an intermediate level that enables short

range order while disperses the long-range periodicity.

Second impacting factor affecting randomness of configuration is screening length

l. Screening length is the determining factor that the effective extent of Yukawa po-

tential. In the Figure 5.4, it is shown that the screening length decides how far the

order should exist between particles. For lower values, the interaction between two

particles become very limited while with increasing screening length, the reach of the
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Figure 5.3: At lower bound, disappearance of long range order is shown with gradual

increase in normalized temperature parameter, T ∗.

Figure 5.4: Effect of screening length parameter on g(R) is provided. Screening

length heavily influences the pair potential between individual scatterers.
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potential extends. For an homogeneous configuration, it is the best to use a length

comparable to average distance between scatterers of the configuration.

Figure 5.5: The disappearance of long range order with increasing number of steps

is analyzed. A step size over two million is shown to be enough to get an amorphous

configuration.

The last factor is the number of equilibrating steps. Equilibration time is a combina-

tion of various factors such as temperature, acceptance rate and screening length. An

indicator for equilibrium can also be obtained through examining evolution of total

potential energy of configuration. When the overall energy reaches a plateau, it can

be inferred that equilibrium is reached. In this study, it has been observed that the

step size over two million is enough to reach equilibrium. The detailed comparison is

given in Figure 5.5.
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CHAPTER 6

DESIGN AND NUMERICAL ANALYSIS OF AMORPHOUS PHOTONIC

MATERIALS

6.1 Design Approach

In order to design an amorphous photonic lattice, a periodic lattice of photonic crystal

is an important reference. It is shown before that, the first band gap of an amorphous

material and photonic crystal is shared since the first band gap is originated from

the short range order of the structure [14]. To preserve short range order, the basic

parameters of amorphous material is kept nearly same as photonic crystal. These

parameters include lattice constant – a (i.e. average distance between holes in amor-

phous configuration), and the thickness h and radius r of scatterers. By changing

the ratio of radius and thickness versus lattice constant, r/a and h/a, it is possible

to play with band gap properties. Here, by scaling the lattice constant, i.e. average

spacing of scatterers, the band gap can be shifted to various wavelength regimes. The

anticipated change can be easily calculated from obtained band diagram of the cor-

responding photonic crystal structure. The structure that is modeled is a slab with

refractive index of
√

12 which has hexagonal lattice of drilled air holes with refrac-

tive index 1 on it. The slab is suspended on air to create an ’air-bridge’ structure,

which makes the slab waveguide symmetric. So, 1550 nm is targeted as the band

gap center and simulated proposed parameters by using the plane-wave eigensolver

MPB [33]. The results are analyzed for both TE and TM polarizations and given in

Figure 6.1. It is found that, there is a wide band gap around 1550 nm for TE polar-

ization, for the parameters of r/a = 0.25, h/a = 0.55, while a equals to 400 nm.The

blue region indicates the light cone that the modes are no longer supported inside the

slab. The frequency values are normalized with respect to c and a, so that λ = a/f .
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The wavevector indices are along the first Brillouin zone boundaries of the hexagonal

lattice.

Figure 6.1: Left: TE and Right: TM band diagram of the proposed photonic crystal

with r = 0.10µm, h = 0.22µm and a = 0.4µm where there is a TE band gap at

around 1550 nm.

To verify the band diagram, the transmission spectrum is also computed via FDTD

solver, MEEP [32]. The results are normalized with transmission data of a Si slab

without any scatterers, to get the transfer function. The simulations are conducted at

two different lattice directions Γ−M and Γ−K , since as it can be seen from Figure

6.1, there is a directional dependence on the band gap of the photonic crystal. The

overlapping gap wavelengths constitute the real band gap of the structure. Figure 6.2

shows that variation between two direction. It can be seen that the results of trans-

mission analysis is largely fit to the band gap shown by Figure 6.1. The overlapping

gap is stretching from 1.37µm to 1.6µm. Theoretically, the transmission in the gap

should be zero for a crystal lattice of infinite extent because there is not any allowed

states for propagation. This is not the case for this FDTD simulation, since the sim-

ulated domain is finite whose boundaries are defined by PMLs. Thus, it is logical to

expect some states to arise due to boundaries, surface etc.

50



Figure 6.2: TE transmission spectra of the proposed photonic crystal with r =

0.10µm, h = 0.22µm and a = 0.4µm for Γ−M and Γ−K directions.

6.2 Numerical Analysis

Based on this reference, an amorphous photonic material configuration having same

dimensions of h = 0.22µm and r = 0.10µm is implemented. The lattice constant is

not exactly applicable for amorphous materials, so to match that, the scatterer coordi-

nates are scaled to have an average pair distance of 0.4µm. The amorphous configura-

tions are generated by Metropolis algorithm that explained before. Yukawa potential

is used to model the pair interactions. The screening length is taken as 2.8µm and at

different randomness values to see the effect on band gap. The transmission spectra

of the generated configuration is given at Figure 6.3. The band gap approximately

spans between 1.36µm and 1.58µm. It can be seen that, different from photonic crys-

tals, the light propagation is similar for both directions of the lattice, which proves

isotropy. Another difference is the presence of dielectric and air band tails enter-

ing into the band gap. These tails are comprised of localized states that light can be

present but cannot propagate.

Furthermore, the effect of design parameters on the band gap is analyzed. The first

parameter is the scatterer size, which is identified by hole radius in this design. The
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Figure 6.3: The isotropy of the band gap is demonstrated at a specified configuration

of T ∗ = 0.4, r = 0.10µm, h = 0.22µm and a = 0.4µm.

hole radius is mainly affecting the fill-factor of the scatterers inside the material, so

also highly related to average refractive index of the whole medium, since the per-

centage of air regions will change. Since the modes of air band is confined to air

regions, a change at air band is expected [2]. Figure 6.4 provides that the band gap

shifts to higher frequencies and enlarges with the increase in radius. Moreover, a de-

crease in the slopes of both band tails is observed. This trend is given at Figure 6.6. In

the Figure 6.6, the dotted line shows the wavelength of the least transmission, while

the errorbars around indicates the extent between two mobility edges.

Regarding the effect of normalized temperature which defines the randomness among

the scatterers, there is not a clear trend as it is given in Figure 6.5 and 6.6. For with

increasing disorder up to moderate levels, the preservation of bandgap is observed,

with introduction of band tails. In these cases, at least when T ∗ < 0.5, amorphous

photonic materials are very suitable to be used in place of photonic crystal band gaps.

At higher randomness levels, the short range order becomes damaged, so it is seen that

the band gap disappears while transmission halts. Increasing disorder will introduce

more localized modes into bandgap, while decreasing overall transmission at other
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Figure 6.4: The variation of the band gap with hole radius at a specified configuration

of T ∗ = 0.4, h = 0.22µm and a = 0.4µm.

parts of spectrum due to increased rate of scattering and decrease in mean free paths.

Furthermore, to understand the field properties of the amorphous material, a cavity

and a waveguide structure is simulated and given in Figure 6.7. The cavity simulated

is a L1 cavity with one hole missing [2], while the waveguide is prepared by lining a

straight array of holes around the line defect in material. This approach is shown as

increasing mode confinement and propagation [15].

6.3 Source of Band Tail Asymmetry

In previous sections, the band tail mechanics for the electronic band structure of amor-

phous semiconductors are explained. Since, Anderson localization is a phenomenon

due to general wave mechanics, the analogy between Schrödinger’s equation for elec-

trons and the classical wave equation governing light behavior could be exploited. In

the case of electronic band tails, the electron states located on bonds between atoms
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Figure 6.5: The variation of band gap with the normalized temperature - i.e. degree

of randomness, for a structure h = 0.22µm, r = 0.10µm and a = 0.4µm

are modeled according to tight-binding approximation. It is proven that the valence

tail states is lying on shorter bonds between atoms, while the conduction band tail

states is extending via interactions between atoms with longer distance. Thus, it is

explained that the valence tail states is affected more due to local potential variations

at short distances [42]. Using same methodology with the help of the abovemen-

tioned analogy. In fact, the tight-binding formulation for photonic crystals is done

before, by modelling individual scatterers like atoms having overlapping wave func-

tions working with Mie scattering mechanism [65, 66, 17]. It is indicated before that,

the properties that affect Urbach parameter are structural, thermal and compositional

disorder [37]. Since the amorphous lattices are artificial and static configurations, the

slope of the band tail is only depending on the structural disorder. The band tails of

a TE gap for an amorphous slab with air holes are observed. As shown in Figure 6.4,

the air band tail is smoother with lower slope, while the dielectric band tail preserve

its steepness and affected less by randomness. For a TE mode, magnetic field in the

air band is confined to the air holes. Since the holes are isolated due to our con-

figuration, it can be postulated that the overlap between mode fields are lower, only

between the decaying tails of the field. On the other hand, the dielectric band states
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Figure 6.6: The trendlines for variation of band gap with hole radius (blue) and nor-

malized temperature(orange)

in a slab with holes are interconnected through “veins” between the holes. In this

case, the wave function is capable of traverse more through the medium and there is

a higher overlap between modes. This explanation according to tight-binding model

for the amorphous Si, can lead that the air band tail is more susceptible to changes in

randomness of the hole configuration as a result. Furthermore, Figure 6.4 reveals that

with increasing hole radii, there is a general decrease in the slopes of both dielectric

and air band tails. This trend can be attributed to the increase in fill-factor of the

holes throughout medium [7]. When the hole radius is increased, the air to dielectric

ratio becomes higher; thus the center frequency has begun to increase towards the air

band. Simultaneously, the dielectric veins become tighter and reduce the scattering-

free length for the traversing fields that make the dielectric band tail more susceptible

to the increasing randomness. Another thing to consider is that there is a difference of

peak transmission levels between the dielectric mobility edge and air mobility edge.

A possible explanation for this may lie in scattering theory [12]. The wavelengths

which the dielectric band reside are much longer than the hole feature size; thereby

the variations in the refractive index do not affect the fields much, causing high trans-
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Figure 6.7: A L1 cavity excited with TE mode at Left: bandgap (1550 nm) and Right:

band (2000 nm). While mode is remained localized in the band gap of amorphous

material, it is largely dissipating outside the band gap, where transmissivity is near

unity. Bottom: A waveguide structure is shown to propagate a TE-excited field at

bandgap frequency, 1550 nm. To increase confinement, a wall of holes are fabricated

alongside direction [15].
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mission. This behavior of transmission can also be predicted from Rayleigh scattering

behavior [12]. However, the transmission may be disturbed at the wavelengths that

are more comparable to the feature size.

Figure 6.8: The local density of states characteristics for the amorphous slab with air

holes at T ∗ = 0.4,h = 0.22µm, a = 0.4µm and r = 0.10µm in comparison with the

photonic crystal structure with same properties.

In the Figure 6.8, the local density of states characteristics for the T ∗ = 0.4 con-

figuration with r = 0.13µm hole radii is provided in comparison with the photonic

crystal. With such a comparison, the mobility edges separating band tails are identifi-

able. Here, the air band tail is stretching from 1.15µm to 1.35µm while the dielectric

tail states diminish much sharper, between 1.35 − 1.5µm.The relation between den-

sity of states and band tails are shown before with a progress from polycrystalline to

amorphous distribution of scatterers [17].

To prove the tight-binding analogy, the density of states analysis is repeated for the

same amorphous configuration, but reversing the refractive index contrast by using

dielectric rods as scatterers instead of air holes . In this case, a TM band gap forms

as expected [2]. The electric field of TM mode, which is confined inside the rods,
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should have less overlap for dielectric band edge, while the scattering-free length of

air band edge modes is larger. Thus, it is expected that the slope of dielectric band tail

is smoother than the air band tail due to tight-binding model used for the lattice with

air holes. In the Figure 6.9, the local density of states and transmission analyses are

Figure 6.9: LDoS analysis and TM transmission spectrum for a rod configuration

with h = 1.68µm, r = 0.139µm and a = 0.336µm, at the same level of randomness

, T ∗ = 0.4.

provided for the rod structure. The band gap regions are stretching from 1.5µm to

1.65µm and overlapping in both cases. The air band tail is between 1.5 and 1.55µm

wavelengths, while the dielectric band has a lower slope that decays to the same level

as air band tail at only from 1.65µm to 1.55µm. This proves that the modes confined

in the scatterers are more susceptible to randomness, whether they are TE modes in

holes or TM modes in rods .
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CHAPTER 7

EXPERIMENTAL VERIFICATION

7.1 Fabrication

To verify the existence of band gap in the designed amorphous configurations, test

wafers are prepared with different hole radii and randomness. The wafer used is a

SOITEC SOI wafer with 220 nm Si layer and 1000 nm Si oxide thickness as insu-

lator. The fabrication is conducted via e-beam lithography. E-beam lithography is

particularly useful for prototypes since it does not require a mask. It allows accu-

rate patterning of nanometer features. The mechanism is illuminating an electron-

sensitive photoresist material through a focused beam of electrons [67]. The beam

width mainly determines the resolution of structure. The photoresist used is poly-

methyl methacrylate (PMMA), which is a positive resist whose bonds are broken

under electron incidence. These broken bonds are cleared through solvent developer,

which leaves a positive pattern [68]. This process is followed by inductively coupled

plasma (ICP) - reactive ion etching (RIE) to open homogeneous hole structures. The

method involves inductively coupling of plasma ions to the substrate via an RF field

applied to it. The advantage of this RIE method is that it enables high density plasma

while enabling control of ion flux and energy. With this way, it is possible to ad-

just ion beam for isotropic and anisotropic etching [69]. This patterning is followed

by suspension with buffered oxide etchant (BOE) etching to create the "air bridged"

structure around the devices shown at Figure 7.1. This membrane-like structure is

applied through another photolithograpic step, in which a photoresist mask layer is

created. Then, the BOE is infused through the holes of lattice for under-etching for

twenty minutes.
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Figure 7.1: An amorphous photonic material configuration with r = 130nm and

t∗ = 0.4.

The configurations are placed into fabricated ridge waveguides that are adiabatically

tapered at the port sides and around device, which the taper thickness varies between

450 nm to approximately 6000 nm with a slope of 1 degree angle [70]. The taper is

shown at Figure 7.2. Furthermore, for some configurations, there is a S-shaped bent

waveguide region is added to separate input and output laterally to avoid interference

while measuring which is shown at Figure 7.2.

7.2 Experimental Procedure and Results

To characterize the amorphous configurations, a transmission analysis setup is estab-

lished. The setup comprises a fiber-output amplified spontaneous emission (ASE)

source with a spectrum between 1530-1610 nm wavelengths. The polarization state

is linearized with a three-paddle polarization controller and propagated in free-space

with the help of a collimator lens. The measured polarization is adjusted by a further

free-space polarizer that can be rotated by 360 degrees. To align the laser to the chip,

a combination of mirrors and focusing lenses mounted on 3-axis translational stages.
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Figure 7.2: Left: Adiabatically designed input taper. The width is decreasing with

a very small angle of 1 degrees. Right: The S-shaped bent waveguides added to

laterally separate input and output.

The chip is placed on a similar adjustable stage and monitored by a 10x microscope

and InGaAs IR focal plane array to observe the position where laser is focused for

easier collimation. The output laser is collected by a symmetric path of focusing

lens-mirror-collimator lens and fed to the optical spectrum analyzer via fiber. Since

the ASE spectrum is non-uniform, experimental data is normalized by ASE spectrum

itself which is also measured through one of the waveguides that does not contain any

amorphous configuration.

In the Figure 7.4, the experimental data is provided for two different randomness

levels and two different hole radii. The measurement is done in the regime of C and

L bands, which are the common fiber optical communication bands.The data is fitted

to the predicted spectrum and suits well. It can be observed that, there is a 10 dB

decrease along dielectric band tail to the midgap as expected from simulations. For

a measurement with a supercontinuum bandwidth, all aspects of the spectrum can be

resolved.
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Figure 7.3: The setup diagram for transmission spectral analysis. It is capable of

getting measurements at TE and TM polarizations via adjustable polarizer.

Figure 7.4: The experimental data obtained via an ASE input for the configuration

having 130 nm hole radius, at two different randomness levels, 0.4 and 1. The dotted

lines in the background are showing the numerical prediction for the actual fabricated

structure.
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CHAPTER 8

CONCLUSION

In this thesis work, an amorphous photonic material model is proposed and verified

experimentally. Amorphous photonic materials are prominent alternatives to photonic

crystals by utilizing disorder instead of disturbed by it. In the presence of short-range

order, it is shown that photonic band gap still persists and can be used for photonic

integrated circuit applications.

In order to design the random refractive index variations, a Metropolis Monte Carlo

method based equilibration method is used by considering scatterers as particles in a

liquid-like, colloidal medium. The purpose of this approach is to mimic crystalline to

amorphous semiconductor conversion. By utilizing Yukawa potential energy function

to model particle interactions, the given initial configuration is quenched into a ran-

dom array of scatterers having only short-range order. The parameters governing the

distribution of scatterers; screening length, truncation cutoff and normalized temper-

ature are analyzed, with the increasing number of steps. The generated amorphous

configurations are used to form band gaps in air-bridged Si photonic slabs around

telecommunication wavelengths of 1550 nm. To determine main parameters of scat-

terers, a reference photonic crystal is used because of the fact that the first band gap

of a photonic material originates from short range order without periodicity require-

ment. The effect of design parameters on photonic band gap is analyzed to establish

a guideline. It is found that for an amorphous slab structure with hole scatterers, in-

crease in the ratio of air to dielectric ratio enlarges the gap bandwidth and shifts the

gap center to upper frequencies. Furthermore, the effect of randomness is scrutinized

and found that the medium levels of randomness offer the best performance in terms

of flexibility and band gap properties. This behavior is demonstrated experimentally
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via transmission spectrum measurements for the first time for telecommunications.

The main difference between periodic and random photonic media shows itself in

the band tails introduced to band gap. The band tails are a well-studied phenomenon

in amorphous semiconductors and related to the electronic density of states. The

occurrence of similar states introduced by the localization due to randomness has

different characteristics leading to an asymmetry in the bandgap. In this study, the

asymmetry of band tails at the band edges are explained with an analogy of tight

binding representation of electronic tail states. The reason of asymmetry is regarded

to the susceptibility of states to disorder. It is provided that for the slab structure, the

air tail states confined in air holes have lesser overlap, which leads to more variation

with disorder, while dielectric tail states have more overlap along the slab and less

affected by disorder. To prove this postulate, a structure of Si rods as scatterers is used

and numerically verified that the case is opposite as expected; that is, the dielectric

tail states confined in rods are more susceptible to the disorder.

To sum up, this work presents a guide for amorphous photonic materials to be used

for flexible photonic integrated circuit applications. Engineering of amorphous distri-

butions of refractive index and band gaps are analyzed in every aspect. The configu-

rations are verified experimentally and main properties of band gap such as tail asym-

metry are theorized through an analogy with electronics of amorphous semiconduc-

tors. For future work, the wave propagation in such random media may be explored

in depth analytically to understand underlying dynamics further. The demonstration

of advanced photonic devices such as ring resonators, filters and modulators can be

achieved with the design guidelines presented in this thesis.
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