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ABSTRACT 

 

ROBUST PARAMETER DESIGN OF PRODUCTS AND PROCESSES WITH 
AN ORDINAL CATEGORICAL RESPONSE USING RANDOM FORESTS 

 

Gülbudak Dil, Seçil 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Gülser Köksal 

 

June 2018, 201 pages 

In industrial organizations, manufacturers aim to achieve target product performance 

with minimum variation. For that reason, finding optimal settings of product and 

process design parameters that make it possible to consistently achieve target product 

performance is an important design problem. In this study, we propose an alternative 

method to solve this problem for the case of an ordinal categorical product/process 

response. The method utilizes Random Forest (RF) for modelling mean and variance 

of the response at a given set of parameter settings. The method uses different 

weighting strategies of Random Forest, and it is applied on three case problems. Two 

of the case problems are of the larger-the-better type, and the other one is of the 

smaller-the-better type. In addition, obtained results are compared with those of 

previous studies that used the same data sets. In comparing the results, classification 

performance, probability of observing target class, and both location and dispersion 

of results are considered. Advantages and disadvantages of the proposed method are 

discussed. 

 

Key words: Robust Parameter Design, Design Parameter Optimization, Random 

Forest, Ordinal Categorical Response 
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ÖZ 

 

SIRALI KATEGORİK YANIT VEREN ÜRÜNLERİN VE SÜREÇLERİN 
RASSAL ORMANLARI KULLANARAK GÜRBÜZ PARAMETRE 

TASARIMI 
 

Gülbudak Dil, Seçil  

Yüksek Lisans, Endüstri Mühendisliği  

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

 

Haziran 2018, 201 sayfa 

Endüstriyel organizasyonlarda, üreticiler ürün performansını hedefte elde ederken 

değişkenliğin de en düşük seviyede olmasını isterler. Bu nedenle, ürün ve süreç 

tasarım parametrelerinin, kararlı bir şekilde her seferinde hedef ürün performansını 

verecek en iyi değerlerini elde etmek önemli bir tasarım problemidir. Bu çalışmada, 

sıralı kategorik yanıtı olan bir ürün veya süreç söz konusu olduğunda bu problemi 

çözmek için alternatif bir yöntem önerilmiştir. Yöntem, belirli parametre değerleri için 

yanıtın ortalamasını ve varyansını modellemek amacıyla Rassal Ormanları 

kullanmaktadır. Yöntem, Rassal Ormanların farklı ağırlıklandırma stratejilerini 

kullanmış ve  üç vaka problemine uygulanmıştır. Bu vakalardan ikisi en büyük-en-iyi; 

diğeri ise en küçük-en-iyi tipindedir. Ayrıca, elde edilen sonuçlar, aynı verileri 

kullanan daha önceki çalışmaların sonuçlarıyla karşılaştırılmıştır. Sonuçların 

karşılaştırmasında, sınıflandırma performansı, hedeflenen kategorinin gözlemlenme 

olasılığı ile konum ve dağılım sonuçları dikkate alınmıştır. Önerilen yöntemin 

yararları ve zayıf olabilecek yanları tartışılmıştır.  

 

Anahtar kelimeler: Gürbüz Parametre Tasarımı, Tasarım Parametre Optimizasyonu, 

Rassal Ormanlar, Sıralı Kategorik Yanıt 
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CHAPTER 1 

 

 

     INTRODUCTION 

 

 

In today's competitive markets, it is crucial for companies to continuously improve the 

design quality of products and processes. Variation in performance of products or 

processes is the main challenge to deal with in product/process design. Variability in 

quality characteristics of products/processes is often due to factors that we cannot 

control. Robust Parameter Design (RPD) approaches have been developed for more 

than forty years to minimize such variations through design. With these approaches, 

parameters of controllable design factors are adjusted so that the product (or process) 

becomes as insensitive as possible to the uncontrollable factors.  

 

A quality characteristic (or response) of a product or process can be either quantitative 

or qualitative. RPD studies are largely focused on quantitative or continuous 

responses. A limited number of studies have been proposed for RPD involving 

qualitative responses, with each of these having their own deficiencies. Hence, there 

is still a need for a superior method to handle qualitative responses.  

 

In this study, a new RPD approach is proposed for the case of a single categorical 

response. The method is based on the Random Forest method. This method can be 

used to predict the value of a response of a product or process when the response is 

continuous or categorical. It is not important for this method whether design 

parameters or factors used in prediction are categorical or continuous. As we are going 

to mention in the following sections, Random Forest is very effective in handling 

various discrepancies caused by the data structure. We also apply certain optimization 

methods that allow us to study both location (mean) effect and dispersion (variance) 

effect of a solution in finding the most preferable solution of the Robust Design 
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problem. Both the Random Forest method and the optimization approaches can be 

implemented with easily accessible and handy software programs, and they are shown 

to be effective on example problems. Advantages and disadvantages of the method are 

explained based on its application on 4 different types of cases. 

 

The main objective of this study is to develop a new robust design method based on 

Random Forests, for a categorical response variable, which might be an alternative to 

the one using Logistic Regression. It is not to compare the Logistic Regression or other 

methods with Random Forest. Accordingly, as the Random Forest method has not 

been developed for these type of studies, application of it for robust design studies is 

not straightforward. In order to study performance of this method, a comparison is 

undertaken with Logistic Regression that is applied to same data sets. 

 

In this thesis, a general review of the RPD and a detailed review of the Random Forest 

method are presented in Chapter 2. In Chapter 3, the proposed method is described 

and its applications on our different types of data are reported. In addition, the results 

are compared with the previous studies and the performance of the method is 

evaluated. Assessment of all the results obtained are given in Chapter 4. In this 

chapter, a general evaluation of the proposed method is made, and its advantages and 

disadvantages are discussed. Finally, in Chapter 5, conclusions are provided about the 

work carried out and suggestions for further studies are given. 
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CHAPTER 2 

 

 

          LITERATURE SURVEY AND BACKGROUND 

 

 

Quality improvement in both industry and service sectors plays an important role in 

increasing market share. As Pham (2006) states, quality improvement activities during 

product design and development stages are both efficient and cost effective. 

Logothesis (1992) also claims that pre-production stages, i.e. designed and analyzed 

so-called off-line stages, can contribute significantly to the effort to accurately identify 

and optimize industrial processes, improve product quality, and reduce cost and waste. 

It is important to improve the quality of product or process at the off-line stages by 

reducing quality variation based on statistical methods, if possible.  

 

In this chapter, a brief background is provided about Robust Parameter Design, 

especially for the case of a qualitative response. In addition, a review of the Random 

Forest method and similar approaches are given. 

 

2.1. Robust Parameter Design 

 

Pham (2006) defines Robust Design as a systematic method to improve the design of 

a product or process by using statistical techniques. While implementing Robust 

Parameter Design, we strive to minimize the sensitivity of the product or process to 

all uncontrollable or noise factors, while keeping the response of the interest on target. 

Myers et al. (2009) say that, with the Robust Parameter Design methodology, it is 

aimed to reduce the variance of products or processes by choosing the levels of 

controllable factors (or parameters) that make the system insensitive (or robust) to 

changes in a set of uncontrollable factors that represent most of the sources of 

variability. Since Robust Parameter Design methodology is an off-line approach to 
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improve quality, it is a cost effective approach (Ardakani et al., 2009). The quality 

response of the interest can be either continuous or categorical. Since continuous 

responses are considered in most cases, many Robust Parameter Design methods have 

been developed for such cases. However, categorical response cases are too many to 

underestimate, yet the studies performed in this area are quite limited.  

 

In industrial processes, categorical responses appear in three different types: binary, 

ordinal and nominal. In binary response cases, quality characteristic is expressed as 

pass or fail (or 0-1). Since examining such cases are easier, Robust Parameter Design 

studies for binary responses are also very common. However, these studies are 

inadequate to understand and analyze the multilevel categorical response cases we 

encounter mostly in daily life. In the case of ordinal and nominal responses, quality 

characteristics assume more than two levels. The ordinal response is a special type of 

categorical response, the levels of which are naturally ordered. In nominal response 

cases, the quality characteristics do not have a realistic degree of order, i.e. they cannot 

be expressed in a certain order.  

 

2.1.1. Robust Design for Categorical Response 

 

One of the important studies about the categorical responses was carried out by 

Taguchi in 1974. The name of the method is Accumulation Analysis (AA). In AA, 

cumulative frequencies of categories are analyzed. For each experimental design, 

frequencies and cumulative frequencies of response categories are determined, then 

ANOVA is applied to these cumulative frequencies. This method is more suitable for 

the data that have only categorical controllable factors. In the case of continuous 

controllable factors, it is necessary to consider only discrete levels of these, which may 

yield suboptimal solutions. Running AA only for continuous response should be 

avoided, since considering the discrete levels of continuous data may cause loss of 

some information (Logothetis, 1992).  The method can also be applied to mixed 

categorical-continuous data. Not allowing the analysis of location and dispersion 

effects separately is the main disadvantage of the AA method. Also, Box and Jones 
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(1986) and Nair (1986) criticize the complexity of the method. Nair (1986) proposed 

a method called Scoring Scheme (SS). In this method, scores are given to the ordered 

categories and ANOVA is applied to these scores. So, this method is also an ANOVA 

based method, and the method can analyze location and dispersion effects separately. 

However, this method has been criticized by some researchers due to its computational 

difficulties. In addition to that, like AA, this method also cannot be used when the 

controllable factors are continuous (Erdural, 2006). 

 

Chipman and Hamada (1996) develop the Bayesian Analysis method for categorical 

response data. For this method, the Gibbs sampling algorithm is used. This method is 

a strong way to analyze a data set for quality improvement, but the need for complex 

computer applications makes this approach difficult to use. 

 

Furthermore, Taguchi develops the Weighted Signal-to-Noise Ratio (WSNR), then 

Wu and Yeh (2006) introduce the method by comparing four different robust 

parameter design methods. Unlike the traditional SNR, in this method, the weights are 

given to the categories according to their quality loss. The SNR value which is used 

to find the optimum levels of the parameters is calculated based on these weights. Like 

the AA method, location and dispersion effects cannot be analyzed separately by the 

WSNR method. 

 

Moreover, Jeng and Guo (1996) develop the Weighted Probability Scoring Scheme 

(WPSS) to overcome the complexity of the Scoring Scheme method. Additionally, 

Asaiabar and Ghomi (2006) develop the Minimization of Expected Loss (MEL) 

method, which gives more accurate results compared to AA. 

 

Erdural (2006) proposes a relatively new method, Logistic Regression Model 

Optimization (LRMO), for categorical response data. In his study, Erdural fits an 

ordinal logistic regression model to the data, and then estimates the probability of each 

category for each experimental design point using logistic regression models. For 

probability estimation, he uses Equations (2.1) and (2.2).  
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where  

xij: Value of factor j at the ith parameter setting, j=1,…,p 
^

k� : Intercept for the response category k, k=1,…,K 

^

j� : Estimated coefficient of factor j, j=1,…,p 

Yi: Quality response of the ith parameter setting 

� �kYP i 

^

: Estimated probability that the response is less than or equal to category k 

                   at the ith parameter setting, k=1,…,K 

 

By using these estimated probabilities, Erdural calculates the estimated expected value 

and variance for each experimental design point i by using Equations (2.3) and (2.4). 
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where 

� �
^
E iY : Estimated expected value of the response at the ith parameter setting 

� �
^
V iY : Estimated variance of the response at the ith parameter setting 

 



7 

 

After calculating the estimated expected value and the variance, Erdural (2006) 

calculates SNR ratios for each experimental design point according to the problem 

type (smaller-the-better and larger-the-better). For that purpose, he uses Equations 

(2.5) and (2.6), respectively. 
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� � � � �� �	 
	 
 	 
	 
� �� � � �� �� �

                                                      (2.6) 

For both types of the problem, the parameter setting which has the maximum SNR 

value among those given as output by the full factorial design can be selected as the 

optimal parameter setting. As the second way to determine the optimal parameter 

setting, estimated probabilities of the categories can be used. In a full factorial design, 

the parameter setting that has the maximum estimated probability, calculated by using 

Equations (2.1) and (2.2), of the desired target category and the minimum variance 

can be selected as the optimum parameter setting, provided that ( )iYV
^

 at the selected 

setting is reasonably small. 

 

Köksal et al. (2006) arrive at the conclusion that the LRMO method provides an easy 

and effective way to find the robust parameter setting for the categorical response. 

This method can be used with both continuous and categorical controllable factors. 

Furthermore, one of the most important advantages of the method is that we can 

formulate the RPD problem as an optimization problem and solve it. It can find not 

only the best design parameter settings among the ones tested in the data collection 

experiment, but also the best settings that have not been tried before. 

 

Logistic Regression has generally shown a satisfactory performance for tried cases. 

However, this method has some disadvantages as well, due to problems associated 

with Logistic Regression modeling, which occur in case of a lot of missing values or 
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imbalanced data. Another disadvantage of the model stems from extremely high 

regression coefficients in the case of multifactor experiments, especially when the 

number of factors in the model is close to the number of runs. Random Forest, on the 

other hand, is shown in the relevant literature to have a better performance than 

Logistic Regression as mentioned in Section 2.1.1.1. 

 

Lastly, Karabulut (2013) compares the methods, LRMO, AA, WSNR, SS, and WPSS 

for five different cases in her M. Sc. thesis study. She finds that LRMO shows the best 

solution performance according to the performance measure which is calculated 

depending on Logistic Regression for all of the selected examples, and AA shows the 

best performance according to the performance measure depending on ANOVA for 

all the examples. In addition to LRMO and AA, the WSNR method also shows a 

satisfactory performance, and the WSNR method is rather practical. For all methods, 

factors are treated as categorical, but Logistic Regression allows analyzing also the 

factors as continuous. Karabulut (2013) has commented that, due to this property, had 

the appropriate factors been set as continuous, the method would yield even better 

results.   

 

For robust design, Köksal et al. (2006) and Karabulut (2013) claim that Logistic 

Regression is one of the best methods for a categorical response case. Nevertheless, 

there are also cases where Logistic Regression is not adequate. We mention these 

deficiencies in Section 2.1.1.1 Random Forest, on the other hand, may overcome these 

problems, which are introduced in Section 2.2.1. 

 

2.1.1.1. Comparing Random Forest with Logistic Regression 

 

Erdural (2006) uses Logistic Regression method as a classifier in Robust Parameter 

Design for a categorical response. We, on the other hand, use Random Forest. 

Comparison of these two classifiers has been performed by many researchers in the 

past. Almost all of them defend that the Random Forest algorithm gives better results 

(in terms of many criteria like accuracy, sensitivity, Area Under the Receiver 
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Operating Characteristics (ROC) curve (AUC)). Lin et al. (2004) compare LR and 

Bayesian Network approaches with Random Forest by using the ROC curve as the 

performance criterion, and they observe that Random Forest shows better performance 

over both. Yoo et al. (2012) report that while using Logistic Regression is not 

recommended, if the number of observations is less than the number of the attributes 

(because of the degrees of freedom), Random Forest can be used with many more 

variables than the number of observations. In addition to these, Lee et al. (2005) 

emphasize that Random Forest always performs much better than Logistic Regression 

and CART in all of their seven data sets. 

  

Logistic Regression is a very popular algorithm and Random Forest is a relatively new 

algorithm. Each one has some advantages over the other. If we want to compare both 

methods; firstly, Random Forest can handle the missing value problem automatically 

(details of the method are explained under Section 2.2.1.5). However, Logistic 

Regression tries to overcome this problem by applying stepwise variable selection and 

in this process, only significance levels of the attributes/variables are taken into 

account over many hypothesis tests. But this may result in a decrease in the predicted 

power. Furthermore, when data contain a large number of variables/attributes, 

overfitting may occur with the Logistic Regression algorithm, but Random Forest 

almost never encounters an overfitting problem (Geng, 2006). Logistic Regression, on 

the other hand, is a parametric method based on some distribution assumptions. This 

is an advantage for making statistical inferences, but a disadvantage if assumptions 

are not satisfied. Unlike Logistic Regression, Random Forest does not require such 

assumptions as a non-parametric method. Moreover, Random Forest can 

automatically handle imbalanced data by giving more weight to the classes that 

contain a smallar number of observations. This property is favorable especially when 

the number of observations in the class of interest is small. However, Logistic 

Regression shows poor performance in such a situation, because it cannot handle this 

problem by itself (Geng, 2006). In addition to these, Geng (2006) reports that 

compared to Logistic Regression, Random Forest performs better in small data, 

because Random Forest does not require splitting to train and test sets, but it makes its 
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own cross validation on its own. For Logistic Regression to make cross validation, a 

test set is needed. Moreover, Random Forest calculates proximities between pairs. It 

makes easy to understand which observations are similar to each other and show 

similar behavior. Logistic Regression does not calculate proximities between any 

pairs. 

 

Geng (2006) specifies that when Logistic Regression and Random Forest are 

compared, each method has some superior properties to the other one. According to 

the results of Geng's study, while the Random Forest method is successful at handling 

the missing value, Logistic Regression shows better performance in terms of correctly 

classified rate for the data set Geng used. Furthermore, Yoo et al. (2012) emphasize 

that Logistic Regression is the most popular method for analyzing the relationship 

between multiple design parameters and categorical response. Also, Muchlinski et al. 

(2016) conclude that if the data set has a linear relationship between the input and 

output, and the data is relatively balanced, Logistic Regression will perform very well. 

When the relationship between the response and the predictor variables is truly linear, 

then Random Forest will only approximate the Logistic Regression model. According 

to Geng (2006), the most important advantage of the Logistic Regression is that odds 

ratios of each design parameter and its confidence intervals, which cannot be achieved 

in Random Forest, can be calculated automatically, so that it can be determined how 

factors affect the response. We can summarize all these comparisons as in Table 2.1. 

 

2.1.2. Optimization of Robust Design Problems 

 

Robust product or process design is an important approach for achieving a high quality 

at a low cost (Phadke and Dehnad, 1988). It can make a product or process insensitive 

to noise (uncontrollable) factors, while achieving quality targets. So, during the 

product and process design, we have two goals: the first one is to achieve the desired 

target value, and the second one is to minimize the variation. For the optimization of 

the product or process design, we use two different methods in this study. One of them 
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is a non-linear multi-objective optimization method; the other one is the maximization 

of SNR method. 

 

Table 2.1. Comparison of Random Forest (RF) and Logistic Regression (LR) 

Features RF LR References 

Automatically handling missing 

values 
+ - 

Geng (2006) 

Muchlinski et al. (2015) 

Automatically determining 

importance levels of variables 
+ - 

Geng (2006) 

Ruiz-Gazen and Villa (2007) 

Yoo et al. (2012) 

Distributional assumptions + - 

Muchlinski et al. (2015) 

Geng (2006) 

Ruiz-Gazen and Villa (2007) 

Yoo et al. (2012) 

Overfitting + - 
Geng (2006) 

Ruiz-Gazen and Villa (2007) 

Handling imbalanced data + - 

Muchlinski et al. (2015) 

Geng (1992) 

Ruiz-Gazen and Villa (2007) 

Good interpretation with small 

data 
+ - Geng (2006) 

Probabilistic output - + Geng (2006) 

Calculating proximities between 

pairs 
+ - 

Geng (2006) 

Muchlinski et al. (2015) 

Ease of interpretation - + Geng (2006) 

Classification of multiple classes + + 
Yoo et al. (2012) 

Muchlinski et al. (2015) 

Calculating confidence intervals - + Geng (2006) 
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2.1.2.1. Non-linear multi-objective optimization method 

 

The aim of Robust Design studies is minimizing the variance of the quality 

characteristics, while achieving the desired quality characteristic at the same time. For 

that, there can be more than one objective in the Robust Design problem such as these. 

These objectives can be expressed mathematically using empirical models of the 

quality characteristic mean and variance in terms of setting of the design parameters. 

 

Therefore, the Robust Design problem can be solved as a multi objective optimization 

problem.  There are lots of methods for solving multi-objective problems. In our study, 

we use ε-Constraint Method, which is one of the most commonly used methods for 

multi-objective optimization problems. The working procedure of the ε-Constraint 

Method is described below: 

 

ε-Constraint Method: This method is developed by Haimes et al. (1971). In this 

method, an objective is selected out of a set of objectives and optimized, and the other 

objectives are converted into constraints by selecting an upper/lower bound for each 

of them (Miettinen, 2012). Thus, the model is transformed into a single objective 

model, and the solution can be obtained by a suitable method and software. So the 

mathematical models of the problems turn into: 

 

� For minimization problems: 
 
Min zi (x)   Min zi (x) 
Min zj (x)   s.t. 
s.t.    zj (x)  ε   j i 
x  S    x  S 
 
where  is the upper bound. 

 

 

 

 

ε
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� For maximization problems: 

Max zi (x)   Max zi (x) 
Max zj (x)   s.t. 
s.t.    zj (x)  ε   j i 
x  S    x  S 
where �  is the lower bound. 

 

To obtain more robust results and avoid favoring in the tradeoff between any 

objectives, the summation of all epsilons (used as both lower and upper bound) can be 

added to the objective function. In our study, we have only two objectives. One of 

them is selected and optimized and the other one is turned to a constraint, resulting in 

only one epsilon value. Correspondingly, we add the objective which is turned to 

constraint to the objective function after multiplying it with a very small coefficient 

instead of adding the summation of epsilon. 

 

2.1.2.2. SNR method 

 

For this method, unlike the non-linear multi-objective optimization method, expected 

value and variance are combined into a single performance criterion. The name of the 

performance criterion is Signal-to-Noise Ratio (SNR). The SNR is calculated by using 

the expected value and variance. Depending on the type of problem, the SNR formula 

also changes. These formulas are given in Table 2.2, for μ: mean, and σ: variance of 

a response. 

 

Table 2.2. SNR Formulas for Different Problem Types 

Problem Types SNR 

Smaller-the-Better 
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Firstly, for an experimental design point, probabilities of all categories are obtained, 

separately, and, then, by using these probabilities, the expected value and the variance 

are estimated. Then, utilizing the expected value and the variance, the SNR is 

calculated for each experimental design point. For the optimal parameter setting, the 

design that has the maximum SNR value is chosen for both smaller-the-better and 

larger-the-better types of problems using ANOVA. 

 

As we mention before, we find the Random Forest method successful in coping with 

situations where LR might be insufficient. The Random Forest method is a special 

case of ensemble techniques for decision trees only. We present ensemble techniques 

and the Random Forest method, in the following. 

 

2.2. Ensemble Techniques  

 

Ensemble is a method, which has been frequently used in Data Mining and Machine 

Learning recently, and which improves the accuracy of individual classification 

methods by combining them (Eldardiry and Neville, 2011). This method also 

decreases the classification errors of individual methods. Classification error contains 

two components: bias and variance. Bias is the tendency of a classifier to estimate 

(overestimate or underestimate), and variance is the sensitivity shown by the classifier 

over the different learning data sets (Sun et al., 2007). There is a trade-off between 

these components. Individual methods can have a low bias and, at the same time, they 

might have a high variance. Having high variance means that being not a sufficiently 

good predictor. In this situation, the combination process decreases the variance. 

Hence, the aim of the ensemble is that while it fixes bias, at the same time, it decreases 

variance by combining such individual methods. 

 

According to Okun and Valentini (2009), ensemble can be carried out in different 

forms based on used models and used data set. One of these, just one classifying 

method is applied to different subsets of a data set. That is called a homogeneous 
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model. Applying different classifying methods to a data set is another ensemble form, 

and that is called a heterogeneous model. 

 

The main idea of the ensemble methodology is to combine many individual models to 

get a classifier model that outperforms every one of these, and also to avoid the 

overfitting that can be seen in a single model. 

 

For the classifiers that have just the class label as output, votes which are given for 

each class by each classifier in the ensemble are determined, and the highest voted 

class is determined as the class of the ensemble method that is voting principle for an 

unseen data (Rokach, 2010). Or weights are given according to the performance of 

each classifier, and votes are evaluated based on these weights. Therefore, sometimes, 

performance of a classifier is better than the other classifiers, and in this case, the 

weight of this better classifier would be higher than the others (Zhou, 2012). For the 

classifiers that have a probability as the output (like Logistic Regression), the results 

of each classifier in the ensemble are combined by weighted or regular averaging that 

is probabilistic principle, and the final result becomes the result of the ensemble 

(Rokach, 2010). 

 

There are two main ensemble approaches: Bagging and Boosting. And also, there is a 

special form of bagging, Random Forest, which is focused on the most in this study. 

 

Bagging (Bootstrap Aggregation) 

 

Bagging (Breiman, 1996), whose name comes from a blending of the words 

“bootstrap” and “aggregation”, is based on two main procedures: Firstly, a desired 

number of bootstrap samples and an aggregation of these are generated. Then, the 

result of this aggregation is combined to get the result of the bagging. Bagging is a 

simple and effective ensemble method. Its application is straightforward: new data 

sets are created randomly from the original data set with replacement (that is each 

observation in the original data is equally likely to be sampled each time an 
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observation is requested) and at the size of N, where N is the size of the original data 

set, and results are combined according to outputs (voting or averaging, etc.). A 

pseudocode of Bagging algorithm, which is described by Rokach (2010), is given in 

Appendix A. 

Since each new train set, which is constructed at size N, is randomly generated with 

replacement, many experiments (In data mining literature, these are called ‘data 

points’ while, in the design of experiment literature, as ‘experimental run’. In this 

study, we use it as experimental run or experiment, interchangeably) are repeated in 

the same subset, while some of the experiments are never seen in a subset. However, 

since each subset is created randomly and many subsets are generated, the probability 

for each experiment to exist in any subset is quite high. 

 

Bagging has a better performance than each individual classifier in itself, as the main 

goal of the ensemble (Breiman, 1996). It reduces the variance of each single model by 

a combining procedure. Therefore, classification error is also reduced. In fact, 

Breiman (1996) observes that, when bagging was tested on real and simulated data 

sets, accuracy was improved prominently both for regression and classification. 

 

Boosting  

 

Boosting was developed by Yoav Freund and Robert E. Schapire in 1996. It is an 

ensemble method which turns a weak classifier into a powerful one. The working 

principle of the Boosting algorithm is based on the principle of step-wise correction 

of the weak classifier. In the algorithm, classifiers are dependent on each other. So, 

the observations which were classified incorrectly by the previous classifier are more 

important for the next classifier. The working procedure of Boosting is a bit more 

complicated than that of the bagging algorithm. The algorithm works as follows: 

Initially, a subset is randomly created from the original data set without replacement. 

After that, this subset is trained on a classifier. The experiments which were wrongly 

classified by the first classifier must definitely be in the subset that is created for the 

second classifier. And remaining part of the data in the second subset are selected from 
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the original data set, except the experiment that has already been used by the first 

subset. This new subset is trained on the second classifier, and incorrectly classified 

observations are used for the third subset. And the process is repeated until a pre-

determined stopping criterion is met. This stopping criterion can be a number of 

iterations or a fixed point in time beyond which accuracy does not increase anymore, 

etc. At the end of the algorithm, the class that has the majority of votes is determined 

as the class of the Boosting. 

 

AdaBoost  

 

AdaBoost is a powerful adaptation of boosting. The main aim of the AdaBoost 

algorithm is to focus on incorrectly classified observations. Unlike Boosting, here, 

weights are given to observations, and focusing is determined according to these 

weights. Initially, all observtions have equal weights (1/N, where N is the number of 

observations). At each iteration, weights of incorrectly classified observations are 

increased, while weights of the correctly classified observations are decreased. The 

process continues in this manner by updating weights each time. Note that equal 

weights are assigned to all incorrectly classified observations for the next classifier. 

Aside from that, weights are also given to each classifier according to their accuracy. 

In this way, after the process is stopped according to desired stopping criteria, weights 

of the classifier are multiplied by the outputs of the classifier (vote or probability), and 

weighted results are obtained. 

 

Boosting algorithm may fail at overfitting. To be able to avoid the overfitting, the 

number of iterations should be set as small as possible (Rokach, 2010). 

 

We compare the bagging and boosting algorithms as summarized in Table 2.3. 
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Table 2.3. Comparison of the Bagging and Boosting 

BAGGING BOOSTING 

Bagging is a random operation Boosting is an adaptive operation 

Bagging reduces the variance Boosting reduces both variance and variance 

(but variance may increase when the classifier 

is stable, like logistic regression, etc.) 

Thanks to randomization, it is fast Due to reweighting, it is slower 

Bagging can work in parallel form 

(simultaneously) 

Boosting is a consecutive method, so it cannot 

work in parallel form 

Probability of selecting of each 

observation for a subset in bagging 

is equal 

Observations are selected according to their 

weights in boosting 

 

 

 

2.2.1 Random Forest as a Type of Bagging 

 

Bagging and boosting, as mentioned in Section 2.2, are ensemble techniques for 

reducing the variance of an estimated prediction function. Random Forest (or Random 

Forests) (Breiman, 2001) is an important modification of the bagging techniques that 

construct a large number of de-correlated decision trees and combine them (Hastie et 

al., 2008). The combination means taking the average of these for regression and 

letting them vote for selecting the most popular class for classification. Hastie et al. 

(2008) explained that the idea of Random Forest is to improve the variance reduction 

of bagging by reducing the correlation between the trees, without increasing the 

variance too much. 

 

In Random Forest, firstly, data must be analyzed by selecting a target class and 

independent variables. Once the target and features are determined, Random Forest 

begins by growing a decision tree to the maximum possible size (Breiman et al. 2012). 

Random Forest-trees differ from standard decision trees in several important ways. 
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Firstly, Random Forest-trees do not use all the available observations in the data set 

for growing the trees. Instead of that, it uses a bootstrap sample that generally includes 

two thirds of the original data set (Geng, 2006, Breiman et al., 2012). This ratio may 

change according to the data set and used software. But it can be difficult to choose 

the best model among different models that come out when this ratio changes. This 

ratio is also proposed by Breiman (1996), who developed the Random Forest. A 

bootstrap sample typically has the same number of records as the original data set, but 

37% of original data records are not included in the bootstrap sample. To fill in the 

size of bootstrap to N (the size of the original data set), the 63% of the records are 

selected more than once. This method is called “sampling with replacement” 

(Breiman, 2001). Each experiment has an equal chance to be within a bootstrap sample 

every time. During this process, every experiments has the possibility to be drawn. So, 

the reason why each observation is not found via bootstrap samples prepared for each 

tree is because the selection is carried out randomly and with replacement, and it 

allows some of the observations to be selected more than once.  It does not matter to 

us whether a record has been drawn in this process, which is why we can see the same 

records being drawn more than once and others not at all. 

 

The second difference is in the splitting part. While growing a tree in a Random Forest, 

selection of a split variable (feature, attribute or controllable factor) in a node is carried 

out partly or wholly random. The number of the variables for splitting at each node 

always must be between 1 and the number of variables. Usually, the number of the 

randomly selected variable is the integer part of the square root of  p, as suggested by 

Hastie et al. (2009), where p is the number of features. Moreover, Breiman (2001 and 

2003) suggests the number of the randomly selected variables for splitting would be 

as well one-half or twice the square root of p, � �2/p  and 2 p� ��� � , even

� �� �1log2 �p , depending on the data set. Furthermore, recommended number of 

variables to split for regression is / 3p� �� �  (Hastie et al. 2008). This random splitting 

process provides that the model be a form of true Random Forest instead of a pure 

bagging. After determining the number of eligible predictors for the node, these 
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numbers of variables are selected randomly. Then the best splitter is chosen from 

among these eligible predictors as in a normal decision tree. Once the data is split, this 

process will be repeated for each node until the growing of the tree is stopped. 

 

Finally, decision trees in the Random Forest are grown as large as possible, and left 

unpruned. In appearance, growing a large tree at random and then leaving it unpruned 

is not a reasonable approach to develop a satisfactory model, ‘in fact, it is not’, 

particularly since it results in overfitting. However, since this process is repeated for 

hundreds or even thousands of times, and the results of these large number of trees are 

combined, more powerful results would be obtained compared with non-random 

methods; such as a solo decision tree, logistic regression, support vector machine or 

neural network. 

 

A question that might come to mind is how this process can yield strong results. The 

key insight is that the individual models tend to be good standalone models, and can 

even build the best possible single models. However, Random Forest method follows 

a different way; according to Random Forest, weaker stand-alone models combine 

more expertly than the powerful standalone model. The first reason for this is when 

powerful individual models are grown, these models are too similar to each other; even 

in the extreme case, all of them are the same. In this case, combining or averaging of 

these similar models do not provide any benefits. The ensemble model also would be 

similar to the individual models. However, it is clear that if the individual models are 

different, it is meaningful to combine them since it would provide benefits in terms of 

accuracy. Selecting a different subset while growing each individual tree, and also 

selecting a different variable for the splitting (two-parts randomization) of all nodes 

provide the individual models (trees in Random Forest) to be quite different from each 

other, and make the correlation between the trees minimum. The other reason for using 

weak models to combine is that it would be a form of “slow learning”, which provides 

considerable benefits regarding the prediction error of the fitted models, as discussed 

by Freidman et al. (2004). The third reason why it is better to use weak models is that 

they have low bias and high variance, and by combining them, low variance is also 
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obtained. At the end of the process, a model with a low bias and a low variance is 

achieved. 

 

Afterwards, the data to be classified is passed down to these all unpruned trees. The 

class which is mostly chosen by trees in the forest is determined as the class of the 

data.  

 

In regression, the situation is different: here, after the data is passed down to the trees, 

the average (or weighted average) of the results of the trees are calculated, and the 

value of the data is found. The algorithm of Random Forest for regression and 

classification, which is written by Hastie et al. (2008), is presented in Appendix A. 

And also an illustration of Random Forest represented by Machado et al. (2015) is 

given in Figure 2.1. 

  

 
Figure 2.1 Illustration of Random Forest for Classification  

(Source: Machado et al. 2015) 

 

 

2.2.1.1. Advantages and Disadvantages of Random Forest 

 

Random Forest is an effective method for prediction. In addition to this, some of many 

advantages of the Random Forest method (compared to the existing methods) are: 
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� Since decision trees are nonparametric methods, Random Forest, too, is a 

non-parametric method. So, the data do not need to be transformed, 

modified, or rescaled. 

� Handles the missing values automatically (by estimating), even if large 

proportions of the data are missing. 

� Random Forest models are usually more accurate than a single decision 

tree and many other algorithm currently available. In addition to this, 

Random Forest predicts unbiased estimates. 

� Since each tree in the forest is different from each other, growing large 

numbers of trees with double randomization tends to remove overfitting.  

� Random Forest has a self-testing procedure; that is, Out-of-Bag (OOB) 

Error, which is a form of cross validation, and it provides a deeply reliable 

evaluation in Random Forest. Due to this self-testing for OOB, there is no 

need to split data into train and test sets.  

� Random Forest estimates which variable is important for the Random 

Forest model by using Gini Index and Accuracy. 

� Random Forest runs very effectively on large data sets, and trees are grown 

very fast (because a small number of variables is used for each time-double 

randomization procedure).  

� Random Forest computes the proximity matrix that shows the proportion 

of how often two experiments (data points/observations) end in the same 

leaf node for different trees. It shows the similarity between a pair 

observation. These proximities might also be used in clustering. 

 

Random Forest also has some minor disadvantages that can be ignored beside its 

advantages. 

 

� Random Forest is a data hungry method like the decision tree it is based on. 

So, Random Forest offers a better solution when the size of the data is large, 

although it shows relatively better performance on small data sets than many 

other methods. 
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� Constructed trees for the forest are never known, so it is hard to understand as 

to what the Random Forest really does. The algorithm is an incomprehensible 

“black box”. 

� In the Random Forest method, some arguments change based on the data type 

and also need to be decided by the user. These are: 

•    Number of the split value: This value is related to parameters used while 

splitting each node. To determine the optimal value of split value, Breiman 

(2001) suggests a general rule, but he also says that this rule can change 

according to the data set used. Using a lower split value provides less 

correlation between trees, but, at the same time, decreases the strength of each 

tree. An optimization between these is needed. 

•    Number of trees: Another parameter to be decided is the number of trees 

used in the forest. This argument also changes depending on the data set. A 

small number of trees decreases the strength of the forest, on the other hand, 

using a very large number of trees means growing similar trees, and it also 

takes too much time. 

•    Weights: The most difficult argument to decide on is the weights to be 

given to the classes. We can grow a Random Forest without giving weights to 

classes, but to obtain more robust results, especially in imbalanced data sets, 

using this property of the Random Forest method increases the performance of 

the model. There is no strategy for giving weights. It depends only on the 

decision maker and her/his purpose. 

 

2.2.1.2. Out-of-Bag samples and errors 

 

Out-of-Bag (OOB) is one of the most important features of the Random Forest 

method, and it is also specific to models utilizing bootstrap aggregating only. OOB is 

used to understand Random Forest correctly. When starting to grow a Random Forest 

tree, not all of the learning data is used. Firstly, a special sampling method is used to 

create new learning data, i.e. a bootstrap sample. Random Forest constructs new 

bootstrap samples for each tree separately and independently. Owing to this and to 
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replacement strategies, bootstrap samples of trees are never exactly the same, even 

though each bootstrap sample is created by using the same original data set. After 

decision trees are grown and Random Forest is completed, OOB samples are used as 

test data to measure the performance and predictive accuracy of the Random Forest 

results. While testing each OOB sample, the trees which do not contain the related 

experiment are used. This process continues until all OOB samples are tested. The 

proportion of the wrong classification of these OOB samples in constructed Random 

Forest gives the OOB error rate of the Random Forest.  Breiman (2001) suggests that 

one-third of the original data set is used for OOB sample, and the remaining two-thirds 

of the data set is used to generate bootstrap samples. 

 

One of the benefits of the OOB is that since it splits the data as train and test sets by 

itself, there is no need to split the data before starting the algorithm. This property 

makes Random Forest quite convenient and effective, especially for analyzing small 

data sets, since the data which is already small would not be smaller. With this feature, 

we can call the OOB a superior version of the cross validation (Breiman et al., 2012). 

 

Generally, the greater the number of trees, the more reliable the Random Forest 

method becomes. When each tree in the forest is grown, a new OOB sample is created; 

by means of that, for each time, a different experiment is used for testing. It brings 

about an increase in the reliability of the method. 

 

2.2.1.3. Importance of variable 

 

During the analysis of a data set, especially in cases with a large number of variables, 

knowing which variable has what kind of an impact -and to what extent- helps us to 

understand the data set under consideration.  Focusing on a certain number of 

variables, instead of a large number of them, simplifies the analyses of data sets. 

 

Random Forest uses two different methods to determine the importance of a variable 

in a data set. For one of them, as in the other tree-based models, the importance is 



25 

 

measured by the role a variable plays during model construction. This is called Gini-

based importance, and Breiman et al. (2012) explain it as “technically, variable 

importance is based on how often a variable is used in a tree (or collection of trees), 

what fraction of the data passes through a given node being split, and how well the 

splitter performs in a node as it separates levels of the target variable.” In a single-

tree model (like CART), variables are examined just once. However, in a Random 

Forest model, the score of a variable is computed for every split the variable generates. 

After all scores are summed, scores are normalized by assigning 100 as the highest 

score. The most important characteristic of Gini-based variable importance is that it 

shows the role of the variable, while Random Forest model is being constructed. 

  

Random Forest also uses another enthralling and original method, accuracy based 

variable importance (Breiman et al, 2012). This method runs as follows: firstly, the 

random forest model is generated, and the accuracy of the forest is calculated. Then, 

all column values of a variable in the training set are “randomly” scrambled; there are 

no changes introduced for the other variables. This new design of the training set is 

passed through the tree, and a new accuracy is calculated. This process continues by 

re-shuffling the same variable for each tree, until no tree that is not passed down in the 

forest. Then, the accuracy obtained from the original data (without shuffling) is 

compared with the one obtained from reshuffling the data. If the accuracy decreases 

significantly, we would consider that the variable is important; on the contrary, if there 

is no significant change in the accuracy, we would consider that the variable is 

insignificant. This process is followed for all variables, and the degree of importance 

of each one of these is determined. By using this property, we can actually see which 

variables affect the performance of the Random Forest more or less. In other words, 

we can observe what would happen when the model is constructed without the variable 

in question. One of the charms of the method is that, although each variable is re-

shuffled for a number of times equal to the number of created trees (for example; if 

we have N tree and M variable, the re-shuffling process is carried out for NxM times), 

the process moves fast. We can see an exemplary variable importance plot (created by 
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using R-studio software) for both measures (Gini-based and Accuracy based), in 

Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1.4. Proximity matrix and plots 

 

Proximity matrices and proximity plots are the most creative outputs of the Random 

Forest method. Proximity measures similarity between a pair of observations. While 

doing so, it considers how often the two observation is located in the same terminal 

node. Proximity works as follows: after a tree in the Random Forest is grown, all data 

(both train and OOB data) are passed through the tree, and pair of observations that 

are in the same terminal node are determined. For each of the two observation set in 

data, this process is repeated until the last tree in the forest. Then, the number of trees 

that were in the same terminal node for each pair is summed, and then this summation 

is divided by the number of trees in the Random Forest. Thereby, each cell in the 

proximity matrix (i,j) shows the proportion of trees for which i and j are located on the 

same terminal node. It is obvious that a higher ratio shows i and j are proximate. 

Figure 2.2. An Example Variable Importance Plot 
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Hence, the maximum number of trees for which a pair of observations is ended up in 

the same terminal node is equal to the number of the trees in the forest, and naturally, 

the minimum value is 0. 

 Since Random Forests consist of trees of maximum size that cannot be split anymore; 

i.e. unpruned trees, their terminal nodes are pure, which means that there might 

possibly be only one single observation in many terminal nodes. For that reason, if the 

observations do not have many features in common, the probability of this pair of 

observations to be within the same terminal node is very low. So, if a certain pair of 

observations is located at the same terminal node among these unpruned trees, their 

many, or even, all features are expected to be the same, and the proximity of these 

would be equal to 1. On the other hand, if any two observations never come together, 

they are probably very different from each other, and the proximity of these would be 

equal to 0. 

 

For a data set which has N number of observations, a NxN proximity matrix is 

accumulated. Therefore, as the number of samples grows, the size of the matrix grows 

exponentially. When the matrix is too large, it becomes difficult and meaningless to 

examine it. Breiman and Cutler (2012) examine how large this matrix is, as shown in 

Table 2.4. 

Table 2.4. The Size of the Proximity Matrices 

Number of Observation  

in the Data (size N) 

Number of Cells in the 

Proximity Matrix (NxN) 

Size 

100 10,000 40 KB 

1,000 1,000,000 4 MB 

10,000 100,000,000 400 MB 

100,000 10,000,000,000 40 GB 

1,000,000 1,000,000,000,000 4 TB 
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From Table 2.4, it is clear that working with the full proximity matrix with more than 

10,000 observations is not practical, and even impossible for many environments. For 

data sets with more than 10,000 observations, it would be more logical to use 

proximity plots. 

 

Proximity plots are drawn by using proximity matrices. In Figure 2.3, there is an 

example proximity plot created by Quach (2012). Proximity plots show similarities 

and distances between the observations. Hastie et al. (2008) point out that proximity 

plots give an indication of which observations are effectively close together in the eyes 

of the Random Forest classifier. This property also provides convenience, especially 

for clustering data sets. Furthermore, proximities are used for filling missing values in 

data sets as mentioned in Section 2.2.1.5. 

 
Figure 2.3. A sample Proximity Plot (Source: Quach, A. T., 2012) 
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2.2.1.5. Missing value handling in Random Forest  

 

During data collection, a great amount of data may be censored, or some missing 

values may exist due to recording errors. These missing values cause some problems 

in statistical analyses, because a lack of information decreases the accuracy of the 

analysis. There are different ways which Random Forest can use to impute missing 

data. He (2006) lists these approaches in his Ph.D. thesis as follows: 

“1. For numerical variables, NAs are replaced with column medians. 
 2. For categorical variables, NAs are replaced with the most frequent 
    levels (breaking ties at random).” 

Random Forest also offers an advanced method for handling missing value problems. 

Missing cells are filled by using values that are obtained from the matrix of proximities 

(He, 2006).  

 

If an observation has continuous-type missing values in its variables, these missing 

values are filled with the weighted average of the observations that do not have any 

missing value. Here, weights are assigned according to proximities between the 

observation in question and the other observations. So, the weight of an observation 

is calculated based on the proximity of the observation to the observation in question. 

If an observation, on the other hand, has categorical-type missing values, these empty 

cells are filled with the most frequent non-missing value of the related variable, where 

frequencies are weighted by proximities. This process is repeated with newly filled 

cells. For each repetition, all empty cells are filled by the new proximities calculated 

with newly filled cells. The process continues until all empty cells are filled. 

According to Breiman and Cutler (2017), usually, repeating this process for 4-6 times 

would be sufficient. Automatically doing this process makes Random Forest a 

preferable method. In addition to this, even if there is a large number of missing values, 

Random Forest can handle these as well. Breiman and Cutler support this information 

with their study of DNA processes. According to them, more interestingly, even when 

50% of the DNA data were deleted, test set error rate was still less than 10%.  
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When missing values are encountered in a test set, two different methods are applied 

for imputing depending on whether labels exist or not (Breiman and Cutler, 2017). If 

the missing value has a label, empty cells are filled by using the training set. If the 

missing value does not have a label, on the other hand, the related observation is 

replicated for a number of times equal to the total number of classes. Then, each 

replicate is matched with class labels one at a time. The obtained test set is passed 

down the Random Forest, then the class receiving the majority of votes is admitted as 

the class of the observation. 

 

2.2.1.6. Random Forest prediction and performance measures 

 

Random Forest makes predictions via voting and averaging for classification and 

regression, respectively. In other words, rather than a single Random Forest-tree 

making a prediction, each terminal node votes for one class for an unseen data. 

According to this, the class that receives the most votes is determined as the class of 

this unseen data. 

 

In Random Forest, a single tree does not have a prediction, because trees in the forest 

are grown to the maximum possible size, and, for that reason, a terminal node 

generally includes only one observation, and generating a prediction with only one 

observation is not suitable. Instead, the common decision of trees is taken into account. 

The prediction is made by calculating the rate of votes given for each class. Since 

double randomization (selection of learning data-bootstrap sample and selection of 

variable for splitting) process is carried out while growing a Random Forest, there is 

voting variability. However, despite this double random growing, if the method 

chooses a class as the class of an observation, it is a powerful indicator that this class 

might indeed be the right class. 

 

For performance measures of the Random Forest method, there are many different 

alternative methods, the most of which are also used by other data mining algorithms. 

The OOB error rate graph can be used as a visual output of the performance of Random 
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Forest method. In addition, as in the other machine learning methods, the confusion 

matrix is obtained, and in parallel with this matrix, Accuracy, Misclassification rate, 

Kappa, F-Measure, G-Mean, Recall, Precision, and Specificity can be calculated. 

Also, AUC (The Area Under the Receiver Operating Characteristic (ROC) Curve) can 

be calculated. Literature offers a number of performance measures, and some of these 

used in our study are given in Appendix B. 

 

Furthermore, there is another important measure, balanced accuracy. As Brodersen et 

al. (2010) said balanced accuracy is used when data is imbalanced. By using balanced 

accuracy, we overcome the possibility of obtaining any wrong indicators as the result 

of imbalancing. For that reason, we calculate both accuracy and balanced accuracy for 

the example problem. 

 

Let us consider the confusion matrix below: 

 

Table 2.5. An Example Confusion Matrix 
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For the equally weighted classes, balanced accuracy formula (Bordersen et. al., 2010) 
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Let wi be the weight (the cost associated with the misclassification) of Class i. Then, 

Bordersen et. al. (2010) suggest that the weighted balanced accuracy is calculated by: 

Weighted Balanced Accuracy= 
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2.2.1.7. Random Forests and overfitting 

 

Overfitting is an interesting subject for the Random Forest method. Although Random 

Forest itself generally cannot overfit, almost all Random Forest-trees are overfitted to 

the bootstrap in which they are grown (Breiman et al., 2017). But, we are concerned 

with the performance of Random Forests on unseen data, not the performance of each 

individual Random Forest-tree. Many studies show that, even though the performance 

of a single Random Forest-tree is poor, the performance of Random Forest formed by 

the ensemble of these individual trees is very powerful on new data (Breiman, 1996). 

As we mentioned in Chapter 2.2.1, while estimating a class of an unseen data, in cases 

where single Random Forest-trees are weak, Random Forest performs better compared 

to the cases where single Random Forest-trees are strong. Our aim to create an 

ensemble is to get the model which has a low bias and no unnecessary variance. But, 

when we prune the tree to prevent the overfitting, bias increases and we cannot 

eliminate this even if  we resort to creating an ensemble (Breiman et al., 2012). 

 

Surprisingly, it is expected that when the number of growing trees in the forest 

increase, Random Forest can overfit, because of the risk of similarity among grown 

trees. However, double randomization and averaging process remove this risk. 

 

2.2.1.8. Random Forests for regression 

 

In classification, the response of the data is a class label (categorical); in regression, 

on the other hand, the response is a numerical value. Therefore, while prediction is 

made by voting in classification, the prediction in regression is obtained from the 

simple or weighted average of each tree (Hastie et al., 2008). Another difference 
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between classification and regression in the Random Forest method is the number of 

the splitting value used in the method. There are different formulas for regression and 

classification to determine the splitting value to be used in a node as mentioned in 

Section 2.2.1. Furthermore, Breiman also pointed out in his study in 1996 that Random 

Forest performs better for regression compared with classification.  
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CHAPTER 3 

 

 

     THE PROPOSED METHOD 

 

 

The proposed method for RPD for the case of an ordinal response variable is described 

in this chapter. Applications of the proposed method on different data sets are also 

given and discussed. Moreover, in this chapter, comparison of our proposed method 

and many other methods that have already been applied on the data sets is made, and 

the strengths and weaknesses of the proposed method are examined based on these 

applications. Three examples are chosen towards this end. One of them are smaller-

the -better type problems, and the two others are larger-the-better type problems. In 

all of them, responses have multi-class outputs. 

 

Many studies associated with the RPD problem have been performed, but the studies 

regarding the problem that has a categorical response are limited. Among the 

researchers in this area; Erdural (2006) studies this type of problem and he uses the 

Logistic Regression as the solution method, and Karabulut (2013) analyzes five 

different cases by using five different methods; namely LRMO, AA, WSNR, SS, and 

WPSS methods (see Section 2.1.1 for details). Comparing the methods, Karabulut 

(2013) has chosen the design parameters as categorical since methods she used are 

ANOVA based. However, some parameters; such as temperature or pressure can be 

treated as continuous, in order to obtain more robust results.  

 

Logistic Regression, which is used by both Erdural (2006) and Karabulut (2013), is a 

very powerful method in many respects. Logistic Regression is powerful not only for 

prediction, but also for analyzing both categorical and continuous design parameters. 

However, there are some cases where Logistic Regression fails, too (see Section 

2.1.1.1). That is why we consider the use of more powerful nonparametric methods, 

and we find the Random Forest method to be appropriate due to the properties of it 
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that are claimed to be superior to Logistic Regression as discussed in Section 2.1.1.1 

in the literature. A flowchart of the proposed algorithm based on Random Forest as a 

classification method is provided in Figure 3.1. In the sequel, we explain our algorithm 

step by step. 
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Figure 3.1. Flowchart of the Proposed Algorithm 

 

 

 



38 

 

3.1. Description of the Algorithm 

 

Let x1, x2,…, xp be controllable product or process design parameters (features, 

attributes or controllable factors). Let also Y be an ordinal response variable that takes 

values in K different categories.   

 

Data sets are prepared as in Table 3.1 to be used in the Random Forest algorithm. 

 

The proposed method enables us to find robust levels (settings) of the design variables 

(parameters) for ordinal categorical responses. 

 

The steps of the proposed method for finding a robust product or process parameter 

design are given in the following part. 

 

Here xij is the setting of variable xj in experiment i. yiK’s are 0 if experiment i is not 

classified as class K and 1 if experiment i is classified as class K. 
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Step 1: Collecting data and overcoming problems caused by missing values 

 

Designing experiments and collecting data from these experiments is the first step of 

the RPD studies. In this phase, the aim of the experiments, inputs and outputs of the 

experiments, and how the data will be analyzed are determined (Montgomery, 2009). 

Montgomery lists the steps of this process as follows: 

1. Identifying the problem 

2. Determining the controllable and uncontrollable factors and their levels 

3. Choosing the response variable  

4. Selection of the experimental design 

5. Performing the experiment and recording the data 

Data analysis and recommendations follow these steps (Montgomery, 2013). 

 

Firstly, the statement of the problem must be expressed clearly. Then, after 

determining the response to be reached and factors that affect these responses, the type 

of the experimental design is chosen. There are many experimental design types in 

literature, such as Factorial Design, Central Composite Design, and Optimal Design 

and so on. Afterwards, experiments are run based on the chosen design method and 

the results are recorded. 

 

In our study, firstly, data that has p different product or process design parameters, 

one single response and N observations are collected according to a proper statistical 

experimental design. After obtaining the data set, it is examined and checked for 

whether there is missing data or not. The data might have some missing values in some 

or all of the variables. Fortunately, Random Forest can overcome the missing value 

problem easily. As mentioned in Section 2.2.1.5, there are three different ways to 

handle the missing value problem for Random Forest: 

1. Imputing with column medians for continuous values 

2. Imputing with the most frequent value for categorical values 

3. Imputing by using proximities for both continuous and categorical values 

(more advanced) 
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The first two methods are faster than the third method. Breiman (2003) suggests that 

if missing values amount to less than 20% of the size of the data set, the best approach 

is to use the appropriate one of the first two methods. The third method works 

relatively slower, and needs up to 6 iterations, but it is more reliable. If there are more 

than 20% missing value, using a proximity-based approach may prove useful for 

getting more accurate results. The third method can be applied only for Random 

Forest, since it uses proximity matrix generated by the Random Forest method 

directly, if a software is used for that. It should be noted that when this method is used, 

the number of iterations needed to be repeated must be specified in the software used. 

Although the number of iterations varies depending on the used data set, Breiman 

(2003) says that, generally, the missing values could be filled in at most 6 replicates. 

 

Step 2: Growing random forest trees and handling imbalanced data 

 

Breiman (2001) explains the process of growing Random Forest trees as follows: The 

simplest random forest with random features is formed by selecting at a random small 

group of input variables at each node to split on. One of the most important points here 

is, while growing, trees are not pruned, and i.e. these are grown to their maximal size.  

  

In our data sets, there are N different parameter settings, and each of these settings, xi, 

contains p different controllable product or process design parameters, xi =(xi1, 

xi2,…,xip), i=1,…,N. When these N different xi settings are repeated r times, they result 

in K number of different Y responses, yi= (Yi1,…,YiK), i=1,…,N. After all replications 

are finished, the size of our data set would be N r� . 

 

Firstly, a bootstrap is created with a size of N, which is equal to the size of the original 

data set by using only 63% of the data set with replacement. Secondly, as explained 

in Section 2.2.1, the numbers of split values are determined. Generally, the square root 

of the number of factors is selected as the attribute number for splitting. These 

attributes are selected in a completely random fashion. Among these randomly 
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selected attributes, the feature that gives the best split is chosen for the considered 

splitting (this procedure is repeated for each split). 

According to this created subsample, a decision tree is grown to its maximum size, 

without pruning, using any tree methodology (CART, C4.5, C5.0, etc. in our study, 

CART methodology is used). In this manner, subsamples with a size of N are created 

as much as the number of trees that is desired to be in the forest, and trees are grown 

according to these subsamples, and, of course, they are independent of each other. 

This subsample randomization scheme is repeated with bagging to resample, with 

replacement, for each time a new individual tree is grown. The data whose class is to 

be decided is passed through each of these trees. Then finally, the predicted class for 

the data is the most frequent class predicted by these trees. In other words, the class 

which has the majority vote is determined as the class of the data. 

 

Sometimes, the classes may not be distributed on a balanced basis in the data, i.e., 

some classes may recur many times, while others might be observed very rarely. In 

such a situation, to eliminate imbalancing, weights can be given to the class while the 

random forest is grown. So, if we have a less observable class in the data, especially 

if this class being of our interest, we can increase the cost of misclassification of this 

class. In this manner, Random Forest enforces the correct classification of the class. 

In addition to that, Random Forest does it automatically, so there is no need for any 

additional processing. 

 

Step 3: Estimating probability of each class, and then calculating expected value 

and variance of each experiment  

 

Estimating the probability of an experimental result is carried out by voting in Random 

Forest.  Let � �� �^ '

1 2P , ,...,i i i ipikp Y k x x x� � �x be the proportion of trees that predict 

the class of experiment xi as k, when the data is passed through the trees in the forest. 

It should be noted that this probability is calculated only in trees where xi is out-of-

bag (Li, 2013). 



 

43 

 

^

ikp =                                             (3.1) 

 

where 
^

0 1ikp
 
 ,       k = 1,…,K.,  i = 1,…,N 

This estimated probability is also used for the calculation of expected value and 

variance for each factor combination. By using the estimated probability of 

experimental results for each class, we calculate the expected class and the variance 

for each observation in the data set, by using the Equations (3.2) and (3.3). 

� � � �
^ ^ ^

1
P

K

i i i
k

E Y k Y k�
�

� � �� x                                                                                   (3.2) 

� � � � � � � �
2 2^ ^ ^ ^ ^ ^

2 2 2

1
P

K

ii i i i i
k

V Y E Y E Y k Y k� �
�

� �� �� � � � � �� �� �� � � �
� x                                     (3.3) 

 

where   

 

  i     = Number of experiment (i = 1,2,…,N) 

 k     = Class number (k =1,2,…,K)         
^

iμ   = Estimator of the mean class for experiment i 
^

iσ 2   = Estimator of the variance of the class for experiment i 

� �
^
P iY k� x   = Estimator of the probability of result of experiment i being k 

 

Step 4: Find the optimal product/process design parameter settings for the 

desired mean and minimum variance  

 

For the purpose of obtaining settings of the controllable factors that ensure desired 

expected value and minimum variance, two different methods can be used. These are 

finding the optimal values of parameters by (1) non-linear multi-objective 

optimization (ε-Constraint method) for both ( )i

^
YE  and ( )i

^
YV , and (2) maximization 

of SNRs. In the ε-Constraint method, the model is analyzed according to the expected 
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value and the variance, separately, while these two are combined into a single 

performance criterion, SNR, in maximization SNR method. 

 

a) Obtain the optimal parameter settings by using ε-Constraint method  

 

The first method uses the ε-Constraint method to obtain the desired expected value 

(one objective) and minimum variance (the other objective) for all possible values of 

the design parameters. We suggest use of the ε-Constraint Method as explained in 

Section 2.1.2.1 to solve the problem. We use the method in our study as follows: At 

first, we try to obtain class probabilities for each experimental design point from the 

Random Forest, and by using these probabilities, we calculate the expected value and 

the variance corresponding to each of these design points. After that, we fit regression 

models for the expected value and the variance. We obtain the mathematical models 

for the expected value and the variance using least squares regression. These models 

include both main and interaction effects of the factors. Then, a mathematical model 

is set, so that the variance is minimized as the objective function, and the expected 

value is set as a constraint in the form of a difference from the desired target value 

being less than or equal to ε. By using these models, the ε-Constraint method is tried 

to be solved with an appropriate algorithm and software (in our study, we use 

MATLAB/BARON).  

 

As a result, we get the parameter values that minimize the variance and also 

simultaneously provide the expected values in the epsilon neighborhood of the target 

value (the best case is obtained when epsilon is equal to 0). 

 

The optimization models for different problem types are as given Table 3.2. 
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Table 3.2. Optimization models for the different problem types 

Problem Types Mathematical Model 

Smaller-the-Better 

� � � �
� � � �

� �

� � 0

0

,...,2,1    , 

21

21

�

�

�



�

�

YV

YE

piuxl
s.t.

x,...,x,xgYVMin

x,...,x,xfYEMin

^

^
iii

p

^

p

^

 

Larger-the-Better 

� � � �
� � � �

� �

� � 0

0

,...,2,1    , 

21

21

�

�

�



�

�

YV

YE

piuxl
s.t.

x,...,x,xgYVMin

x,...,x,xfYEMax

^

^
iii

p

^

p

^

 

 

 

Here, li and ui are lower and upper limits of xi, respectively. 

For both types of the problem, the model with the ε-Constraint Method is as follows: 

� � � �

� � � � � �

� �

� � 0

0

,...,2,1     , 

     ,  21
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�

�

�



��
�
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^

^
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p

^^

p
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(3.4) 
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where t is the target value for the expected value, and ε is the upper bound for the 

difference between target value and estimated expected value.  

 

The general form of the ε-Constraint formulation of the problem is as given in Model 

(3.4). But, to achieve more robust solutions, we also add the difference between the 

expected value and the target value to the objective function after multiplying it with 

a very small coefficient a (to avoid favoring ( )YV
^

in the tradeoff between the variance 

and the expected value). So, the new formulation of the problem for the ε-Constraint 

Method is as given in Model (3.5). 

 

� � � � � �

� � � � � �

� �

� �

^
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E Y

V Y

�
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 �


 
 �

�

�

 

 

We solve the model as described in Section 2.1.2.1 and obtain different solutions based 

on different ε values. Then the most appropriate solution in the direction of our (or the 

decision makers) aims is chosen. 

 

b) Obtain the optimal parameter settings by using SNR  

In an alternative method, Taguchi’s SNR values are calculated by using � �iYE
^  and

� �iYV
^ ,   according to the problem type (smaller-the-better, larger-the-better). The SNR 

formulas are given in Section 2.1.2.2 in Table 2.2. 

 

An ANOVA or regression model is fit to these calculated SNR values. For this 

purpose, one can use stepwise regression. The stepwise regression adds the most 

(3.5) 
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significant factors and significant interactions, if any, to the model, and removes 

relatively insignificant factors from the model. This model can be taken as a good start 

in finding the final model based on adjusted R-squared and predicted R-squared 

measures. After obtaining a satisfactory starting point by using stepwise regression, 

we try to achieve more powerful models by adding or removing factors and their 

interactions from the model. Finally, with Minitab’s response optimizer (Minitab 18 

Statistical Software, 2018) or another appropriate algorithm, the best parameter setting 

can be found by maximization of SNR (both for smaller-the-better and larger-the-

better). Also, in this step, for the response optimizer, different starting points are tried 

in order to achieve the best parameter settings. 

 

Step 5: Confirmation of results and revisiting the problem 

 

In confirmation step, the decision maker has to perform replicated experiments at the 

optimal settings of the design parameters to make sure the solution works as predicted. 

To achieve adequate power for the confirmation test, we want enough replications but 

at the same time, we do not want too many replications to avoid wasting time. Thus, 

the number of replications and power of the confirmation test are important decisions 

for this step. For that, we can apply an appropriate multinomial test as such the chi-

square (χ2) test for Goodness-of-Fit. The χ2 test uses sample data sets to test hypothesis 

about the model used (Gravetter and Wallnau, 2014).  To find the confirmation 

intervals corresponding to any given number of replications while applying χ2 test, 

firstly we test the design parameters which correspond optimal solutions obtained 

from the algorithms for n times. Then we define the observed probability of each class 

k from those replications as pi=(pi1,…,pik), i=1,…,n, and    for each 

replication (Read and Cressie, 1998). After we obtain the observed probabilities, Read 

and Cressie (1988) suggest that a null hypothesis is defined for χ2 test as H0: pi =
^
pi , 

where the vector 
^
pi  is the estimated probabilities obtained from the algorithm. 

Gravetter and Wallnau (2014) define this null hypothesis as there is no difference 

between the observed probabilities and the estimated probabilities. It is obvious that 
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the hypothesis probabilities are not expected to be exactly equal to estimated 

probabilities. Thus, if there are small discrepancies between 
^
pi and pi we obtain a 

small value for χ2 and we conclude that the algorithm works properly for this data set 

(fail to reject H0). On the other hand, when there are large discrepancies between 
^
pi

and pi, H0 is rejected and we conclude that algorithm does not work properly for this 

data set. According to Gravetter and Wallnau (2014), to obtain particular value of χ2, 

we should refer to a chi-square distribution, χ2, which is the most well-known 

goodness-of-fit statistics, introduced by Pearson at 1900, and it is calculated as: 
2^

2
^

1

p p

p

i ik

i
i

n$
�

� ��	 

� �� ��                 (3.6) 

Firstly, the decision maker decides on the desired confirmation significance levels and 

specify the critical value corresponding to these levels via chi-square distribution. If 

the result obtained from Equation 3.6 is less than or equal to this critical value, it is 

concluded we fail to reject H0. If this is not the case, H0 is rejected and it means that 

there is a large difference between the observed and estimated probabilities. Or, to 

decide on the number of replications, n, firstly we decide on the confirmation 

significance level to fail to reject H0 and then find the critical value corresponding 

these levels via chi-square distribution. According to this critical value, the number of 

replications, n, is calculated based on Equation 3.7. 
2

2^

^
1

p p

p

i ik

i
i

n $

�

�
� ��	 

� ��

                 (3.7) 

 

In the case where expected probability (or expected count) of at least one class is 0, 

Chi-Square test cannot be usable. For such cases, Exact Multinomial Test for 

Goodness-Of-Fit Test for Discrete Multivariate Data can be usable. 

 

We can offer some suggestions for the case where the null hypothesis is rejected. 
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1. Firstly, it is checked whether the steps of the algorithm are applied correctly 

or not. If there is no mistake in the steps, new data can be collected not only 

corresponding to the optimal solution but also at different parameter designs, 

if it is possible. New parameter settings can be chosen so as to have an 

orthogonal experimental design. After collecting the new data, the algorithm 

is reapplied on the cumulative data.  

2. The regression models built for EV, Var and SNR should be controlled for R-

sq, R-sq(adj), and R-sq(pred) values and lack-of-fit. 

 

� If the models exhibit lack-of fit, some interactions and quadratic 

terms can be added to the model (Minitab, 2018). 

� If there is no lack-of-fit, but R-sq, R-sq(adj), and R-sq(pred) values 

are less than the desired ones, one can consider adding one or more 

new parameters to the regression model, if it is possible 

(Montgomery, 2013). This, of course may require to do a new set of 

experiments with the new parameters added. 

� If there is no lack-of-fit, and R-sq, R-sq(adj), and R-sq(pred) are at 

satisfactory levels, the regression models can be used in solving the 

problem. 

3. At the optimization step, different starting points can be tried. 

After these suggestions and alternative ways are tried, the algorithm is rerun and 

confirmation tests are performed. If we can obtain desired confirmation values 

after rerunning the algorithm, we can say that the algorithm works properly for 

this data set. On the other hand, if we still do not reach the desired confirmation 

values, we can conclude that the algorithm does not work properly for the data set. 

 

In this study, the results of our proposed model are compared with themselves; 

namely, RF_E, RF_L, RF_P, and RF_X (these stand for different weighting 

approaches), and with Karabulut (2013) results in general. As the comparison criteria 

of the optimal results, the expected value and variance are also used in addition to the 
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estimated probabilities. Because the probability of observing class is not a sufficient 

measure, which can be misleading. In some cases, while the estimated probability is 

high, the variance might be high as well. 

 

 
Figure 3.2. Exemplary situations where the probabilities are the same, but the 

variance is different 

 

 

For example, for the smaller-the-better type problem depicted in the Figure 3.2, the 

two situations are shown with equal probabilities of Class I (desired class) and also 

their expected values are the same. But in the second situation, the variance is higher. 

This is not the preferred case; that is why, to find the best parameter settings, we need 

to consider both the mean and the variance of the results. 

 

To find the estimated probability, expected value and variance for the optimal 

parameter settings, three different methods can be used: 

 

1. If the optimal parameter settings are previously tried at the initial 

experiment, the probability of observing a class can be estimated by 

dividing the number of observations at that class by the total number of 

observations at the optimal parameter settings. After that, by using these 

estimated probabilities for all classes, the expected value and the variance 

can be estimated using Equations (3.2) and (3.3). 
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2. At first, the class probabilities, expected values and variances are estimated 

for all experimental points. Then, regression models are fit for the expected 

value and the variance. Using these regression models, expected value and 

variance at the optimal parameter settings can be estimated. 

3. Estimated probabilities at the optimal parameter settings are obtained from 

the Random Forest results, and the expected values and the variances are 

estimated by using Equation (3.2) and (3.3). 

In this study, we use the second and third method, since the optimal solution may not 

always be among the tested cases, and the probability of the untried experiment cannot 

be calculated with the first method. Since the data that we examine in this study are 

relatively small, using the second and third method can be more appropriate. If the 

data were big, we would have calculated the probability (as well as the expected value 

and the variance) by using only the data itself, as in Method 1. 

 

Now, to test our method, we apply it on three different types of cases. Two of them 

are of the larger-the-better type and the other one is of the smaller-the-better type. 

These cases are also used by Karabulut (2013) to compare different methods, namely 

LRMO, AA, WSNR, SS, and WPSS (see Section 2.1.1). We also want to compare our 

results to those of these different methods to understand the performance of our 

method.  

 

3.2 Illustrative Case Study I: Surface Defects Case 

 

In this section, our proposed method is applied to an example data set, which has been 

used by Phadke (1989) and Karabulut (2013) for RPD of polysilicon deposition 

process, and comparing four different RPD methods, respectively. 

 

Step 1: Collecting data and overcoming problems caused by missing values 

 

The data set presented below has been collected by Phadke (1989) to improve the 

polysilicon deposition process. For that purpose, he uses Taguchi Robust Design in 
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his study. In this data set, there are six controllable factors: Deposition temperature 

(A), deposition pressure (B), nitrogen flow (C), silane flow (D), setting time (E), and 

cleaning method (F).  The level of surface defects on unit area is set as the quality 

characteristic, i.e. the amount of surface defects on the designated area. All 

controllable factors have three different levels (1, 2 and 3), and the quality 

characteristic is categorized as five different, ordered levels. Briefly, the values of all 

factors are defined by Phadke (1989) as in Table 3.3. 

 

Table 3.3. Controllable Factors and Their Levels 

Factors 
Levels 

1 2 3 

A. Deposition temperature (oC) T0-25 T0 T0 +25 

B. Deposition presure (mtorr) P0-200 P0 P0+200 

C. Nitrogen flow (sccm) N0 N0-150 N0-75 

D. Silane flow (sccm) S0-100 S0-50 S0 

E. Setting time (min) t0 t0+8 t0+16 

F. Cleaning methods None CM2 CM3 

 

 

Before starting the study, the order of levels of factor C is changed, since the original 

levels of it were not in any order. The new levels of factor C are reorganized by 

Karabulut (2013) as in Table 3.4, and factor C will be indicated as C' with its new 

level order: 

 Table 3.4. Reorganized Levels of Factor C 

Levels C C' 

N0 1 3 

N0-150 2 1 

N0-75 3 2 
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When the quality characteristic of the product is tested according to these factors at 

their different levels, the numbers of surface defects on the different areas of the 

product are counted, and according to these counted numbers, responses are divided 

into five different classes by Phadke (1989) as shown in Table 3.5. 

 

Table 3.5. Number of Surface Defects for Each Class 

Classes Number of Surface Defects 

I 0-3 defects 

II 4-30 defects 

III 31-300 defects 

IV 300-1000 defects 

V 1001 or more defects 

 

 

In this data set, the aim is to reach the wafers which have the minimum number of 

surface defects, so it is a smaller-the-better type problem. Responses of the data are 

created in a sequential order, Class I refers to the smallest number of surface defects, 

and Class V refers to the highest number of surface defects. So, Class I is the preferred 

class. In other words, while class labels decrease, quality increases. 

 

18 experiments were carried out with factor levels depending on the L18 orthogonal 

array, and each experiment runs for 9 times. Finally, responses of these 9 runs for each 

experiment are classified according to the number of surface defects. The number of 

observations for each class for the eighteen experiments are tabulated in Table 3.6. 
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Table 3.6. Experimental Design and Data Collected for the Surface Defects Case 

Exp. 

No. 

Factors 
Number of Observations by 

Classes 

A B C' C D E F I II III IV V 

1 1 1 3 1 1 1 1 9 0 0 0 0 

2 1 2 1 2 2 2 2 5 2 2 0 0 

3 1 3 2 3 3 3 3 1 0 6 2 0 

4 2 1 3 1 2 2 3 0 8 1 0 0 

5 2 2 1 2 3 3 1 0 1 0 4 4 

6 2 3 2 3 1 1 2 1 0 4 1 3 

7 3 1 1 2 1 3 3 0 1 1 4 3 

8 3 2 2 3 2 1 1 3 0 2 1 3 

9 3 3 3 1 3 2 2 0 0 0 4 5 

10 1 1 2 3 3 2 1 9 0 0 0 0 

11 1 2 3 1 1 3 2 8 1 0 0 0 

12 1 3 1 2 2 1 3 2 3 3 0 1 

13 2 1 1 2 3 1 2 4 2 2 1 0 

14 2 2 2 3 1 2 3 2 3 4 0 0 

15 2 3 3 1 2 3 1 0 1 1 1 6 

16 3 1 2 3 2 3 2 3 4 2 0 0 

17 3 2 3 1 3 1 3 2 1 0 2 4 

18 3 3 1 2 1 2 1 0 0 0 2 7 

 

 

Since there is no missing value in the data, no manipulation is done for that purpose. 

 

 

Step 2: Growing random forest trees and handling imbalanced data 

The data collection experiment is designed so as to run 9 times for 18 different factor 

level combinations, so we have 162 observations in our data set. This data set is 
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analyzed with the Random Forest algorithm by using R-studio software (R Core Team, 

2017). 

 

First of all, Random Forest creates random subsamples each with a size of 162, which 

is equal to the size of the original data set, with replacement. Secondly, the numbers 

of attributes to use at each split are determined.  As mentioned before in Section 2.2.1, 

this number is calculated using � �p , where p is the number of attributes, and for this 

problem, the number is 6� �
� � =2.  Also, in R, the best split value is determined with 

respect to OOB error estimate, and the result is 2 for this value as well. The best split 

value graph in R is shown in Figure 3.3. 

 

 
Figure 3.3. The Best Split Value versus OOB Error Rate for the Surface Defect Case 

 

 

Moreover, the best number of trees in the forest is tested with different values between 

100-10000, and the best value is set as 700 according to both OOB error rate and 

consuming of time. 

For this data set distribution of trials among classes is shown in Figure 3.4. As seen in 

the figure, Class I, our class of interest, has the maximum number of observations, 49, 
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30% of the data set. The other classes constitute 17%, 17%, 14% and 22% of the data 

set, respectively. Since all classes do not have the same number of trials, we can say 

that this data set is imbalanced. By giving weights to the classes, Random Forest 

overcomes this situation; that is, imbalancing. To observe the effect of giving weights 

to the classes, we are going to try Random Forest both with unweighted classes and 

with those having different weights. For that, firstly we apply regular Random Forest 

to the data by giving equal weights to the classes, and then we give more 

misclassification cost to our class of interest, Class I, than the other classes with 

different ratios. Then, we observe the effect of the weight on responses. 

 

 
Figure 3.4. Distribution of the Data to the Classes for the Surface Defects Case 

 

 

Giving the weights to the classes is an important mean provided by Random Forest to 

handle imbalanced data. Determination of the weights is subject to the users. We try 

different weighting approaches to study their effects on the results. 

 

We first give equal weights to the classes, and apply regular Random Forest. Secondly, 

we give linearly distributed weights to the classes in the increasing order of class 

importance. For this example, since it is a Smaller-the-Better type problem, weights 
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of classes change according to a linearly decreasing order. Thirdly, we give fifty 

percent of the total weights to our class of interest, and then, the rest of the weights is 

distributed to the remaining classes equally (this distribution strategy performs a 

piecewise linear function). Lastly, we will give exponential weights which are 

proportional to the order of the classes (for this problem, as it is Smaller-the-Better 

type problem, weights are changed according to an exponentially decreasing order). 

 

The weights created according to these strategies are given in Table 3.7, as well as 

their abbreviations. 

 

Table 3.7. Class Weights of the Random Forest Applications for the Surface Defects 
Case 

Weighting 

Strategies 

RF 

Abbreviation 

Weights of Classes 

I II III IV V 

Equal Weights RF_E 0.20 0.20 0.20 0.20 0.20 

Linear 

Weights 
RF_L 0.33 0.27 0.20 0.13 0.07 

Piecewise Linear 

Weights 
RF_P 0.500 0.125 0.125 0.125 0.125 

Exponential 

Weights 
RF_X 0.64 0.23 0.09 0.03 0.01 

 

 

According to these weights, OOB error graphs of Random Forests formed with 700 

trees and the split value equal to 2 are as given in Figures 3.5-3.8. 
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Figure 3.5. OOB Error Graph of RF_E for the Surface Defects Case 

 

 

According to this graph, the black line is the OOB error estimate line of RF_E with 

48.77% on the average. The red line signs Class I with an average of 29% OOB error 

rate (Class I has the minimum OOB error rate among other classes). The pink line 

refers to Class V, and it has 42% OOB error rate on the average. The blue and green 

lines refer to Class III and Class II with averages of 53% and 59% OOB error rates, 

respectively. Lastly, the cyan line belongs to Class IV, and its average OOB error rate 

is the maximum; that is, 86%. So, we can see that this Random Forest can make a 

satisfactory prediction for Class I, but might not do so for Class IV. For the other class, 

prediction accuracy would be neither good nor bad. 

 

Now, we look at the weighted Random Forest results. First, we examine the OOB 

graph of RF_L. 
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Figure 3.6. OOB Error Rate Graph of RF_L for the Surface Defects Case 

 

 

Here, we see that OOB error estimate of the Random Forests have increased compared 

to those of RF_E. The average OOB error estimate of the Random Forest has changed 

from 48.15% to 53.09% (black line). And the average OOB error rate of Class I does 

not change, it is still 29% (red line). The average OOB error rates of Class II and Class 

IV have decreased (green and cyan lines, respectively), with the OOB error rate of 

Class II changed from 59% to 55%, and that of Class IV changed from 86% and 45%. 

The OOB error rates of Class III and Class V, on the other hand, have increased (blue 

and pink lines, respectively). Their average OOB error rates have increased from 53% 

to 64% for Class III, and from 42% to 92% for Class V. So, we conclude that giving 

linearly decreasing weights does not affect the prediction accuracy of Class I, but 

affect those of the other classes. 
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Figure 3.7. OOB Error Rate Graph of RF_P for the Surface Defects Case  

 

 

When the Figure 3.7 is examined, it is seen that the OOB error estimate of RF_P (black 

line – 48.77%) is equal to the OOB error estimate of RF_E, and better than the OOB 

error estimate of RF_L. And also another good news is that the OOB error rate of our 

class of interest, Class I, is very low (red line - 16%). The average OOB error rate of 

Class V has also decreased compared to RF_L (pink line – 63%). The OOB error rate 

is fixed for Class III (blue line – 64%). While the average OOB error rate of Class IV 

has decreased compared to that of RF_E and it has increased when compared to that 

of RF_L (cyan line – 50%), the average OOB error rate of Class II has increased 

compared to both RF_E and RF_L (green line – 70%). So, we can say that, this 

Random Forest can make better predictions than RF_E and RF_L for Class I; that is, 

our class of interest. 
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Figure 3.8. OOB Error Rate Graph of RF_X for the Surface Defects Case 

 

 

Lastly, we analyze the Random Forest results with exponential weights, RF_X. As we 

expect, the OOB error rate of Class I is relatively low, but those of the other classes 

are high, because we give sixty-four percent of the weight to Class I, and the remaining 

weights are distributed again exponentially among classes according to the class order. 

So, the red line signs the Class I, and its OOB error rate is 18% on the average. 

Actually, this value is higher than the value of RF_P. And also, here, OOB error 

estimate of the Random Forest is the maximum, 61.73% (black line). The green, blue, 

cyan and pink lines show Class II, Class III, Class IV and Class V, respectively, and 

their average OOB error rates are 70%, 79%, 82% and 100%, respectively. 

 

In short, when we evaluate the OOB graphs of these four different weighted Random 

Forests, we observe that both RF_E and RF_P have the minimum OOB error estimate 

(48.77%). Also, RF_P is the Random Forest whose OOB error rate of Class I is the 

minimum. However, the OOB error rate of Class II, which is the class closest to our 

class of interest, is the maximum in RF_P. In RF_X, the OOB error rate of Class I is 

better than those of RF_E and RF_L, but worse than that of RF_P, and the OOB error 

rate of the other classes are quite high. In addition to that, RF_X is the Random Forest 

that has the maximum OOB error estimate (64.2%). In RF_E and RF_L, the OOB 
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error estimate of Random Forests, and the OOB error rate of classes including Class I 

are average. The type of weight we will choose varies according to our aim. We can 

select RF_P, if the performance of Random Forest and prediction performance of our 

class of interest are important. However, if the prediction performance of other classes 

is also essential for us, we can also choose RF_E. If we cannot decide at this stage, we 

have to proceed to the optimization step. 

 

Additionally, we can analyze classification performance of these Random Forests by 

using the most well-known performance measures of classification power (Ferri, 

2009) mentioned in Section 2.2.1.6. Also, we can compare Random Forest and 

Logistic Regression as classification methods by using these performance measures. 

Comparison of Random Forest and Logistic Regression based on some common 

measures is as presented in Table 3.13. Let us give, firstly, confusion matrices of both 

methods. For Random Forests, we give four different confusion matrices in Table 3.8 

– 3.11 according to their weighted schemes.  

 

Table 3.8. Confusion Matrix of RF_E for the Surface Defects Case 

  
Predicted 

 Classes I II III IV V Sum 

A
ct

ua
l 

I  35 3 6 0 5 49 

II 5 12 6 2 2 27 

III 4 3 17 1 3 28 

IV 1 0 3 8 10 22 

V 0 0 4 7 25 36 

Sum 45 18 36 18 45 162 
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Table 3.9. Confusion Matrix of RF_L for the Surface Defects Case 

  
Predicted  

 Classes  I II III IV V Sum 
A

ct
ua

l 
I  40 7 2 0 0 49 

II 6 18 0 2 1 27 

III 6 10 10 1 1 28 

IV 4 0 3 12 3 22 

V 7 1 3 12 13 36 

Sum 63 36 18 27 18 162 

 

 

Table 3.10. Confusion Matrix of RF_P for the Surface Defects Case 

 
 Predicted 

 Classes  I II III IV V Sum 

A
ct

ua
l 

I  47 0 2 0 0 49 

II 16 8 0 2 1 27 

III 15 1 10 1 1 28 

IV 4 0 3 12 3 22 

V 8 0 3 12 13 36 

Sum 90 9 18 27 18 162 
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Table 3.11. Confusion Matrix of RF_X for the Surface Defects Case 

 
 Predicted 

 Classes  I II III IV V Sum 

A
ct

ua
l 

I  48 0 1 0 0 49 

II 16 11 0 0 0 27 

III 19 3 6 0 0 28 

IV 5 9 2 6 0 22 

V 11 13 0 12 0 36 

Sum 99 36 9 18 0 162 

 

 

The data can also be analyzed using by Logistic Regression as shown by Karabulut 

(2013). Table 3.12 show confusion matrix of the Logistic Regression results. 

 

 

Table 3.12. Confusion Matrix of Logistic Regression (LR) for the Surface Defects 
Case 

 
 Predicted 

 Classes I II III IV V Sum 

A
ct

ua
l 

I  35 0 10 0 4 49 

II 11 0 14 0 2 27 

III 5 0 15 0 8 28 

IV 1 0 8 0 13 22 

V 0 0 9 0 27 36 

Sum 52 0 56 0 54 162 
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Confusion matrices are constructed based on testing all of the data set, not the test set. 

Since we use all of the data for learning, do not split them into train and test sets 

(because Random Forest does not need splitting. Random Forest divides the data as 

train and test by itself).  

 

Measures calculated based on the confusion matrices in Table 3.7 - 3.12 are tabulated 

as in Table 3.13. 

 

As it is seen from Table 3.13, the accuracies of all weighted schemes except for RF_X 

are better than the accuracy of Logistic Regression. Since our data is not exactly 

balanced, we use balanced accuracy, and the balanced accuracies of all Random 

Forests are greater than the balanced accuracy of Logistic Regression. Similarly, 

accuracy-based kappa values of Random Forests, except for RF_X, are better than 

Logistic Regression’s Kappa. As we expected, Kappa values, which are calculated 

with the balanced accuracies, are better than Logistic Regression for all Random 

Forests. F-Score of Logistic Regression is better than RF_X, but worse than the other 

Random Forests. AUC is the measure that the Logistic Regression shows better 

performance than weighted Random Forests. When we look at all values, we can say 

that generally Random Forests perform better than Logistic Regression. 

 

In addition to these comparisons, class based measures can also be compared. Class 

based comparison table is given in Table 3.14. Here, we see that, for our class of 

interest, Class I, the method that shows the best performance according to Recall, 

Precision and Specificity are RF_X, RF_E, and RF_E, respectively.  

 

We understand that, by changing the weights, we can increase or decrease the 

performance of a Random Forest. Besides, Random Forest uses this property very 

easily and fast. 
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When we evaluate all these performance measures, the best performing method varies 

according to each performance measure. However, all Random Forests generally 

perform better than Logistic Regression. It may be misleading to choose the best 

method in this stage. But, these performance measures can also be used as an indicator 

in the optimization step, while deciding on the method to be selected. 

 

When we look at the importance of variables (all variable importance charts are given 

in Appendix C1) we see that the order is almost the same for RF_E, RF_L, and RF_P, 

but differs for RF_X. Although there are some differences, the most important variable 

is A and the second important variable is B for all RFs and for both measures (Mean 

Decrease Accuracy and Mean Decrease Gini). Moreover, the least important attribute 

is generally D. We can conclude that in the case where some factors have to be chosen 

for the trials, these important factors can be selected first. 
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Step 3: Estimating the probability of each class, and calculating expected value 

and variance for each experiment  

 

Probabilities that are obtained from RFs (RF_E, RF_L, RF_P, and RF_X) and 

expected value, variance and SNR values that are based on these probabilities are 

given in Appendix C.2. For calculating the SNR, Equation (2.5) is used (since the 

problem is smaller-the-better type). 

 

For all Random Forest trees except RF_E, the first experiment, � �'
1 1 3 1 1 1 1A B C C D E F , is 

the best design among the tested ones according to the probability of our class of 

interest, expected value, variance, and SNR. For RF_E, the tenth experimental design,

� �'
1 1 2 3 3 2 1A B C C D E F , is the best experiment among the tested ones. The tenth 

experiment is also the best design for RF_P and RF_X. Moreover, RF_P has another 

best design; it is the eleventh experiment, � �'
1 1 3 1 1 3 2A B C C D E F . At this parameter 

designs, the probability of Class I is at its highest value, and the expected value is at 

the target value; that is, 1, for all weighted schemes except for RF_E. And also for 

these parameter designs, the variance is the minimum, and the SNR value is the 

maximum for all Random Forest applications. The best parameter designs among the 

ones tested for all Random Forest applications are given in Table 3.15. 
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Actually, if we look at the experimental results, we see that when the 1st and 10th 

experimental design points are replicated for 9 times, all replications are classified as 

Class I. In addition to that, the 11th experimental design point is classified as Class I, 

8 times of the 9 replications. These best designs are among the tested ones, but we are 

seeking the best experimental design also among the ones which have not been tested 

before. For that purpose, we use optimization methods that are mentioned in Section 

2.1.2. 

 

Step 4: Find the optimal product/process design parameter settings for the 

desired mean and minimum variance  

 

To obtain the optimal parameter settings for seeking Class I consistently, we first apply 

the ε-Constraint method, and then, the SNR method is used.  

 

a) Obtain the optimal parameter settings by using ε-Constraint method 

 

In order to develop the mathematical model required by this method, the expected 

value and the variance regression models are generated firstly by using Minitab 18 

(2018). While the regression model is being performed, both main and interaction 

effects of the factors are considered. After an adequate starting point is obtained from 

stepwise regression, by adding the most significant factors and interactions or 

removing the least significant factors and interactions from the model we obtain more 

robust regression models. For the regression, factors A, B, C', D and E are set as 

continuous variables, since these are originally continuous. But, factor F (cleaning 

method) is categorical (nominal), since it has only three levels (None, CM2, CM3). 

 

For all different Random Forests, i.e. weighted schemes, we obtain different expected 

value and variance models. The expected value and the variance models created for 

these Random Forests are given in Figure 3.9-3.12. 
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EV = -3.046+1.268A+1.146B-0.896C'+1.5877E+1.740F_2+1.050F_3 

         +0.4468C'*C'-0.1366A*B-0.3697C'*E+0.1479C'*F_2-0.2466C'*F_3 

          -1.3942E*F_2-0.4579E*F_3 

          R2=99.92%  R2(adj)= 99.64%  R2(pred)= 98.57% 

 

Var = -6.470+2.3549A+4.9774B+0.4653C'+3.5696D-4.0713E+0.0680F_2  

          +0.333F_3-1.3034B*B-0.4256D*D+0.8063E*E-0.9471A*D+0.1329B*D 

          -0.0390A*F_2+0.1150A*F_3+0.1509C'*F_2-0.2862C'*F_3 

          R2=100.00%  R2(adj)= 99.93% R2(pred)= 96.69% 

EV =  1.8872+0.0103A+0.0424B-1.3901C'-0.2119D-0.7302E+1.5424F_2  

          +0.6230F_3+0.45258C'*C'+0.39541A*B-0.29950A*C'+0.31552A*E  

          +0.28371D*E-0.2614D*F_2-0.1427D*F_3-0.48180E*F_2+0.1568E*F_3 

          R2=100.00%  R2(adj)= 99.99% R2(pred)= 88.91% 

 

Var = 1.7842+0.8987A+2.6162B-1.4683C'-1.0229D-1.7512E+0.8124F_2  

         +0.1353F_3-0.57703B*B+0.38719E*E-0.61511A*B+0.19487A*C'  

         +0.38476B*E+0.63268C'*D-0.18262D*E-0.74259E*F_2-0.56201E*F_3 

           R2=100.00%  R2(adj)= 99.99% R2(pred)= 97.54% 

Figure 3.9. Expected Value and Variance Regression Equations of RF_E for the 
Surface Defects Case 

Figure 3.10. Expected Value and Variance Regression Equations of RF_L for the 
Surface Defects Case 
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To determine the best levels of parameters for the desired expected value and 

minimum variance, regression models for the expected value and the variance are used 

to formulate the RPD problem as a Multi Objective Optimization problem as given in 

Eqution 3.5. By using the -Constraint Method, minimization of variance is set as the 

objective function, and the expected value model is transformed into a constraint by 

selecting an upper bound such that the difference from the target value are less than 

EV = -0.83+2.895A-2.666B-1.725C'+2.021E-0.701A*A+0.787B*B +0.725C'*C'  

         +0.294A*B-0.681C'*E 

          R2=95.42%  R2(adj)= 90.27% R2(pred)= 77.75% 

 

Var=0.271+0.317A-0.411E+0.529E*E-0.231A*B+0.319A*C'-0.546A*E 

        -0.319C'*E 

         R2=86.19%  R2(adj)= 76.52% R2(pred)= 52.07% 

EV = -4.2211+1.76487A+0.84209B-0.3269C'+0.08647D+1.4759E-0.3944F_2 

         +0.6844F_3+0.55043C'*C'-0.72497E*E-1.02498A*C'+0.45911A*E  

         +0.04529C'*E +0.28407D*E+0.32112B*F_2-0.12922B*F_3 

          R2=100.00%  R2(adj)= 100.00% R2(pred)= 99.99% 

 

Var = -0.0775+2.0094A+0.11892B-0.1223C'-0.4385D-1.2727E-0.2976F_2 

           -0.3674F_3-0.45314A*A+0.04190D*D+0.46174E*E-0.11205A*D  

           +0.24619C'*D-0.21497C'*E+0.15667B*F_2+0.1602B*F_3 

            R2=100.00%  R2(adj)= 99.96% R2(pred)= 99.69% 

Figure 3.11. Expected Value and Variance Regression Equations of RF_P for the 
Surface Defects Case 

Figure 3.12. Expected Value and Variance Regression Equations of RF_X for the 
Surface Defects Case 
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or equal to ε. Also, the difference between the expected value and target value has 

added to the objective function with a very small coefficient. 

 

For each Random Forest model, we construct a non-linear mathematical model that is 

based on their own expected value and variance models. Respectively, these models 

are as follows: 

 

1. For RF_E: 
^ ^

4

^

^

^

  ( Var ) (| EV-1| 10 )

| EV-1|

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = -3.046 + 1.268×A + 1.146×B - 0.896×C' + 1.5877×E + 0.0×F1 + 1.740×F2 + 

1.05×F3 + 0.4468×C'2 - 0.1366×A×B - 0.3697×C'×E + 0.0×C'×F1 + 0.1479×C'×F2  

- 0.2466×C'×F3 + 0.0×E×F1 - 1.3942×E×F2 - 0.4579×E×F3 

^
Var = -6.47 + 2.3549×A + 4.9774×B + 0.4653×C' + 3.5696×D - 4.0713×E + 0.0×F1 

 + 0.068×F2 + 0.333×F3 - 1.3034×B2 - 0.4256×D2 + 0.8063×E2 - 0.9471×A×D  

 + 0.1329×B×D + 0.0×A×F1 - 0.039×A×F2 + 0.115×A×F3 + 0.0×C'×F1  

 + 0.1509×C'×F2 - 0.2862×C'×F3 

 

F1 + F2  +  F3 = 1 

A, B, C', D, E  0 

F1 , F2 , F3   {0, 1} 
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2. For RF_L: 
^ ^

4

^

^

^

  ( Var ) (| EV-1| 10 )

| EV-1|

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = 1.8872 + 0.0103×A + 0.0424×B - 1.3901×C' - 0.2119×D - 0.7302×E + 0.0×F1  

+ 1.5424×F2 + 0.6230×F3 + 0.45258×C'2 + 0.39541×A×B - 0.2995×A×C'  

+ 0.31552×A×E + 0.28371×D×E + 0.0×D×F1 - 0.2614×D×F2 - 0.1427×D×F3  

+ 0.0×E×F1 - 0.4818×E×F2 + 0.1568×E×F3 

^
Var = 1.7842 + 0.8987×A + 2.6162×B - 1.4683×C' - 1.0229×D - 1.7512×E + 0.0×F1  

+ 0.8124×F2 + 0.1353×F3 - 0.57703×B2 + 0.38719×E2 -0.61511×A×B + 

0.19487×A×C' + 0.38476×B×E +0.63268×C'×D - 0.18262×D×E + 0.0×E×F1  

- 0.74259×E×F2 - 0.56201×E×F3 

 

F1 + F2  +  F3 = 1 

A, B, C', D, E  0 

F1 , F2 , F3   {0, 1} 
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3. For RF_P: 
^ ^

4

^

^

^

  ( Var ) (| EV-1| 10 )

| EV-1|

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = -0.83 + 2.895×A - 2.666×B - 1.725×C' + 2.021×E - 0.701×A2 + 0.787×B2  

+ 0.725×C'2 + 0.294×A×B - 0.681×C'×E 
^

Var = 0.271 + 0.317×A - 0.411×E + 0.529×E2 - 0.231×A×B + 0.319×A×C'2 

 - 0.546×A×E - 0.319×C'2×E 

 

A, B, C', E  0 
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4. For RF_X: 
^ ^

4

^

^

^

  ( Var ) (| EV-1| 10 )

| EV-1|

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = -4.2211 + 1.76487×A + 0.84209×B - 0.3269×C' + 0.08647×D + 1.4759×E  

+ 0.0×F1 - 0.3944×F2 + 0.6844×F3 + 0.55043×C'2 - 0.72497×E2 - 1.02498×A×C'  

+ 0.45911×A×E + 0.04529×C'×E + 0.28407×D×E + 0.0×B×F1 + 0.32112×B×F2  

- 0.12922×B×F3 

^
Var = -0.0775 + 2.0094×A + 0.11892×B - 0.1223×C' - 0.4385×D - 1.2727×E + 0.0×F1  

- 0.2976×F2 - 0.3674×F3 - 0.45314×A2 + 0.0419×D2 + 0.46174×E2 - 0.11205×A×D  

+ 0.24619×C'×D - 0.21497×C'×E + 0.0×B×F1 + 0.15667×B×F2 + 0.1602×B×F3 

 

 

F1 + F2  +  F3 = 1 

A, B, C', D, E  0 

F1 , F2 , F3   {0, 1} 

 

 

We have used MATLAB/BARON (2013) software for solving these problems. 

According to different  values, we have obtained different optimal solutions based 

on the expected value and the variance. These solutions are in Table 3.16. 
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As seen in Table 3.16, in some solutions, variance values that are calculated based on 

their regression models are estimated to be less than 0, but they are very small and 

very close to 0, so we can assume them to be equal to 0. And also for some solutions, 

some factors are not at their fixed levels, since we set these values as continuous. To 

find the original values of these factors, we can use a back transformation from these 

coded levels. 

 

We have a chance to select the best parameter setting according to our purposes. So, 

if our main aim is to have the expected value very close to the target value, we can 

choose the 1st, 5th, 9th or 13th solutions since the expected values, which are calculated 

by using their expected value regression model, under these solutions are at the target 

value. Moreover, the expected values that are calculated by using Equation (3.2) after 

predicting probabilities from related Random Forests are 1, the target value, for these 

solutions. On the other hand, if our main purpose is to have the minimum variance, 

we can select most of the solutions.  

 

As seen in Table 3.16, there are no significant differences between the results of the 

solutions for both the expected value and the variance. All RFs give the solution whose 

estimated expected value is equal to the target value, 1. Moreover, the estimated 

variance values of all RFs are very close or equal to 0. However, we can state that the 

estimated variance values of RF_X are slightly better than the others.  So, since there 

is no significant superiority of a single method over another among all methods, at this 

stage, we can choose the Random Forest that has the best performance by considering 

the classification performance of the Random Forests.  For that, we can take advantage 

of the performance measures mentioned in Step 2. For our class of interest, 1, RF_E 

and RF_X are the models which have satisfactory performance based on the class 

based comparison. For that reason, since optimization performances of all RF models 

are similar, and estimated variance values and the classification performance of RF_X 

are better than those of others, we can choose the exponentially-weighted Random 

Forest, RF_X, as the method. In addition to that, since the OOB error estimate is high 

in RF_X, RF_E can be chosen as an alternative model. 
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According to these ε-Constraint method solutions, D and F do not have a significant 

effect on the mean and variance for RF_P. So, we set their levels to any appropriate 

value, or to the most economical values.  

 

b) Obtain the optimal parameter settings by using SNR  

 

During regression modeling to find the best parameter settings, SNR is used in the 

second optimization method. For that purpose, ordinary least squares and response 

optimization (modified generalized reduced gradient) methods adopted by Minitab 18 

(2018) are used to fit the model. SNR models are developed by stepwise regression 

and further iterations based on p-value. Also, by setting different starting points for 

the response optimizer, we try to achieve the best parameter settings.  

 

Obtained optimal solutions based on SNR values for all Random Forests, weighted 

schemes, are given in Table 3.17. As it is seen from the table, since models have very 

high R-Sq, R-Sq(adj) and R-Sq(pred) values, we can say that these four models, i.e. 

weighted Random Forests, are highly adequate.  

 

Table 3.17. Solution of the SNR model for the Surface Defects Case 

Random 

Forests 

Regression Results Optimizer Results 
^

SNR  R-Sq 
R-Sq  

(adj) 

R-Sq 

(pred) 
A B C' D E F 

RF_E 99.98% 99.87% 98.79% 1 1 2 3 1.990 1 0 

RF_L 99.99% 99.95% 98.96% 1 1.720 3 1 3 1 0 

RF_P 99.95% 99.70% 94.93% 1 1 2.010 3 2.003 1 -0.005 

RF_X 99.97% 99.83% 98.66% 1 1 2 3 2.250 - 0 

 

 

The results show that the estimated values of SNR are 0 (0 is the optimum level for 

this smaller the better case) for  Random Forests RF_E, RF_L and RF_X. Although 
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R-Sq, R-Sq(adj) and R-Sq(pred) values of all models are also high, we can say that 

for RF_L, these values are slightly better than the others. Therefore, it can be logical 

to choose the linearly-weighted Random Forest, RF_L, since weights of other classes 

are not very low, either. In this way, the prediction power of other classes would also 

be high. Looking at both classification and optimization performances of the models, 

we see that RF_P has both the best OOB error estimate of the Random Forest and the 

OOB error rate of Class I, while the SNR value of it is slightly worse than the other 

models.  On the other hand, SNR based optimization performances of the RF_L and 

RF_X are satisfactory, even though the classification performance of these are slightly 

worse compared with RF_P.  If we look at it from another point of view, classification 

and SNR based optimization performances of the RF_E are also satisfactory, and it 

can also be considered of as an adequate model. 

 

Solutions of RF_X has the insignificant factor, F.  For that model, we can set any value 

to this insignificant factor, but, generally, the most economic values are preferred.  

 

We try to find the best parameter settings to have Class I. For that we use two different 

optimization methods, ε-Constraint and SNR. In ε-Constraint method, the expected 

value and variance are taken into consideration separately. On the other hand, in the 

maximization of SNR method, the expected value and variance are combined into a 

single objective function, SNR. One can choose any of these methods. 

 

Step 5: Confirmation of results and revisiting the problem 

 

When we examine results of both methods, it can be stated that while some of their 

results are different from the tested ones, some of the others are very similar to the 

tested ones if we consider that the levels of the parameters are not very sensitive. Since 

we define some appropriate parameters as continuous during setting the models, and 

Phadke (1989) sets these as categorical, we have achieved similar results to his results 

with little differences.  
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Since we borrow the data from Phadke’s study (1989), we do not have the chance to 

replicate the optimal solutions. For solutions that are different from the tested ones, 

different ways mentioned in Section 3.1 (Step 5) can be performed for confirmation. 

On the other hand, for the optimal solutions that are very similar to the tested ones, 

Phadke (1989) has run the parameter design for 9 times, and he has obtained 9 times 

Class I for two of them, and for the other one he has got 8 times Class I and 1 time 

Class II. We have found some optimal solutions with the estimated probabilities of the 

classes are 1,0,0,0 and 0, respectively. When we want to confirm our solution with 

Phadke’s replications, we could not use Chi-square since some of the probabilities of 

the classes are equal to 0. For such cases, the literature suggests the Exact Multinomial 

Test. We have tested the null hypothesis that we established by using the R-studio (R 

Core Team, 2017), R-Studio can use Monte Carlo and Chi-Square methods to measure 

the distance between observed and expected frequencies. Since our case is not suitable 

to use Chi-square, we use Monte Carlo approach. However, the test is not working 

properly when 0 is entered in the related cells. We have entered values of these cells 

very close to 0 instead of 0. In this case, we have found p-value as 1. This means that 

fail to reject the null hypothesis, that is there is no difference between our result and 

Phadke’s replications. Moreover, we have observed that the reliability of the test 

increases when the number of experiments is increased. 

 

Our problem is a Smaller-the-Better type, so we are seeking the parameter designs 

such that the wafer has the minimum number of surface defects. And it means we are 

looking for the Class I with the highest probability and the expected value that is very 

close to 1 with minimum variance and maximum SNR values. As we expect, Random 

Forests whose weights of Class I are higher find the solution with higher SNR values. 

We can conclude that, giving weight to the classes -especially giving more weight to 

our class of interest- increases the prediction power of them, since their SNR values 

are higher than the unweighted Random Forest. 

 

This example data set was also analyzed before by Karabulut (2013), and if we want 

to compare our results with her results, an exact comparison will not be possible, 
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because she assumes that all factors are categorical. She gets as optimal solution 

A1B1(C1)C'3E1 by using Logistic Regression model. She has also found that the 

estimated probability of Class I for that solution is 0.9498, the expected value is 

1.0718, the variance is 0.1248 and the SNR value is -1.053. In our solutions, we obtain 

the parameter designs, whose expected values are 1, and also the estimated probability 

of Class I is 1 for solutions numbers 1, 5, 9, and 13 in Table 3.16 

(A1.244B1.027C'1.514D3E1.749F1, A1.031B1.011C'1.911D2.982E1.98F1, A1.0402B1.7764C'2E2.9865, 

and A1B1C'2.0017D3E2.0155F1, respectively) which is solutions of -Constraint method. 

In addition to that, we obtain the variance values are lower than Karabulut’s results 

for all given optimal solutions and SNR value as 0 for solutions A1B1C'2D3E1.99F1, 

A1B1.72C'3D1E3F1, and A1B1C'2D3E2.25. A proper way of comparing the performances 

of the two approaches would be collecting data at the optimal solutions of these two 

approaches separately and then analyzing which of the two yields closer results to the 

observed mean and variance of the classes. 

 

In Karabulut’s (2013) study, for this problem, the best methods are Logistic 

Regression Model Optimization (LRMO), Accumulation Analysis Method (AA) and 

Weighted Signal to Noise Ratio Method (WSNR).  All three methods give the same 

solution and the same SNR value. Scoring Scheme (SS) and Weighted Probability 

Scoring Scheme Method (WPSS) yield worse solutions compared to the other 

methods. Although Karabulut’s study assumes variables as categorical and our results 

are similar to their results, this may indicate that Random Forest provides meaningful 

solutions. Accordingly if LR was to use variables as continuous similar results could 

have been derived. Although the results are not comparable in the sense that LR 

solutions assume variables as categorical and Random Forest results are based on 

continuous variables, the similarity of outcomes could indicate Random Forest is a 

meaningful alternative. 
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3.3 Illustrative Case Study II: Inkjet Printer Case 

 

In this section, another example data set is used to apply our proposed method. This 

data set has been used by Logothetis (1992) and Karabulut (2013) for the RPD of an 

inkjet printer machine by using Accumulating Analysis, and for comparing five 

different RPD methods, respectively. 

 

Step 1: Collecting data and overcoming the problems caused by missing values 

 

This data set has been collected by Logothetis (1992) to optimize the blending of the 

ink mixture to use an inkjet printer by using Accumulation Analysis. There is a total 

of six substances (factors) affecting this ink mix; these are MeOH, dye, carbiton, PM, 

resin and water. MeOH is the most commonly used ingredient among these substances 

for the ink mixture. For this reason, firstly, the amount of each substance, except 

MeOH, is decided as the ratio of the whole mixture, and then, MeOH is used for the 

remaining part of the mix to complete the ratio of the ink mixture to 100%. Here, 

adhesive ability of the ink mixture for each experimental trial is tested, and parameter 

design is done to reach a high level of adhesiveness. In the experiment phase, ink is 

mixed according to the determined factor levels, then, with this mixture, a code prints 

five times on plastic and five times on metal substrates (here, plastic and metal 

substrates are noise factors). These prints are kept under the same environmental 

conditions for one night. After one night, in the test phase, adhesive ability of the ink 

mixture is evaluated by counting the number of rubbing the print over a suitable 

material until the code becomes unreadable. To sum up, values of all factors and 

quality characteristic are defined by Logothetis (1992) as presented in Table 3.18: 
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Table 3.18. Controllable Factors and Their Levels for the Inkjet Printer Case 

Factors 
Levels 

0 1 

A. Dye 1% 3% 

B. Carbiton 1.5% 2.5% 

C. PM 6.5% 9.5% 

D. Resin 8% 12% 

E. Water 10% 20% 

 

 

If the printed code does not become to unreadable at the end of many rubs, the ink 

mixture is considered to be of a high quality. According to the number of rubs, the 

results are classified into four different groups, and related values are shown in Table 

3.19. Here, the greater the range of rubs, the better the quality. 

 

Table 3.19. Ranges for Numbers of Rubs for Each Class for the Inkjet Printer Case 

Classes 
Range 

Min Max 

I 1 10 

II 11 18 

III 19 25 

IV 26  

  

 

We are looking for an ink mixture for which the code is not readable after at least 26 

rubs, so it is a larger-the-better type problem. Responses of the data are created in a 

sequential order; Class I refers to the smallest number of rubs and Class IV refers to 

the highest number of rubs to keep the prints in a still readable format. Class IV is the 

preferred class. In other words, while class labels increase, quality increases. 
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Eight different experiments were carried out with factor levels depending on the L8 

orthogonal array, and each experiment runs for 10 times. Finally, responses of these 

10 runs for each experiment are classified according to the ranges for number of rubs. 

The numbers of observations for each class for the eight experiments are tabulated in 

Table 3.20. 

 

Table 3.20. Experimental Design and Data Collected for the Inkjet Printer Case 

Exp. 

No. 

Factors 
Number of Observations 

by Classes 

A B C D E I II III IV 

1 0 0 0 0 0 4 3 3 0 

2 0 0 1 1 1 2 5 1 2 

3 0 1 0 1 1 8 1 0 1 

4 0 1 1 0 0 3 4 2 1 

5 1 0 0 0 1 8 0 1 1 

6 1 0 1 1 0 10 0 0 0 

7 1 1 0 1 0 1 0 3 6 

8 1 1 1 0 1 2 1 1 6 

 

 

Because there is no missing value in the data, no manipulation has been made for that 

purpose. 

 

Step 2: Growing random forest trees and handling imbalanced data 

 

The data collection experiment is designed so as to run 10 times for 8 different factor 

level combinations so we have 80 observations in our data set. This data set is analyzed 

with Random Forest algorithm by using the R-studio software (R Core Team, 2017). 
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First of all, Random Forest creates bootstrap subsamples each with a size of 80, which 

is equal to the size of the original data set, with replacement. Secondly, the numbers 

of attributes to use at each split are determined.  As mentioned before in Section 2.2.1, 

this number is calculated by using � �p , where p is the number of attributes, and for 

this problem, this number is � � 25 � .  Also, in R, the best split value is determined 

according to OOB error estimate, and the result is again equal to 2 as is the case with 

the formula above. The best split value graph in R is shown in Figure 3.13.   

 

 
Figure 3.13. The Best Split Value versus OOB Error Rate for the Inkjet Printer Case 

 

 

In addition, the best number of trees in the forest is tested with different values 

between 100-10000, and the best value is set as 200 according to both OOB error rate 

and consuming of time. 

 

The data is not separated equally for all classes. Our class of interest, Class IV, has the 

second highest number of trials, and Class I, which is the least desired class, has the 

maximum number of trials. So, as we mentioned before, we are going to give weights 

to the classes according to four different strategies (Equally, Linearly, Piecewisely and 
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Exponentially distributed weights).  Before giving the weights, firstly, we look at the 

distribution of trials for classes. 

 

 
Figure 3.14. Distribution of the Data among Classes for the Inkjet Printer Case 

 

When Figure 3.14 is observed, it is seen that there are 38 experiments for Class I, 

which is the least desired class, and this is more than twice the number for Class IV, 

which is our class of interest. The other classes (Class II and Class III) have fewer 

experiments than both Class I and Class IV. Briefly, these classes form 48%, 17%, 

14% and 21% of the data set, respectively. 

  

Weights based on specified strategies are given in Table 3.21 with their abbreviations. 

Here, our problem is a Larger-the-Better type problem, and our class of interest is 

Class IV. So, we give higher weights to Class IV.  
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Table 3.21. Class Weights of the Random Forests for the Inkjet Printer Case 

Weighting 

Strategies 

RF  

Abbreviation 

Weights of Classes 

I II III IV 

Equal 

Weights 
RF_E 0.25 0.25 0.25 0.25 

Linear 

Weights 
RF_L 0.10 0.20 0.30 0.40 

Piecewise 

Linear Weights 
RF_P 0.166 0.167 0.167 0.500 

Exponential 

Weights 
RF_X 0.03 0.09 0.24 0.64 

 

 

According to these weights, OOB error rate graphs of the Random Forests formed 

with 200 trees and 2 as the split value are as given in Figures 3.15-3.18. 

 

 
Figure 3.15. OOB Error Rate Graph of RF_E for the Inkjet Printer Case 
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According to the graph, OOB error estimate line for the data set is the black line, which 

is 36.25% on the average. Furthermore, the cyan line is for Class IV with an average 

of 29% OOB error rate, and the red line is for Class I with 21% OOB error rate on the 

average. Class I has the minimum OOB error rate. The green line signs Class II with 

an average of 35% OOB error rate. In addition, the class that has the maximum OOB 

error rate is Class III, and its error rate is 100% (blue line) on the average. As seen 

from the graph, this Random Forest can make satisfactory predictions for Class I, the 

least desired class, and Class IV, the class of interest. For Class II, prediction 

performance of the Random Forest might be sufficient, but for Class III, it is not the 

case. This Random Forest predicts all experiments for Class III incorrectly. 

 

 
Figure 3.16. OOB Error Rate Graph of RF_L for the Inkjet Printer Case 

 

We see that the OOB error estimate of the Random Forest increase (black line) from 

36.25% to 57.5%. Also, average OOB error rates of Class I increase to 73% (red line). 

The OOB error rates of Class IV (cyan line), and Class II (green line) has not changed 

(29% and 35%, respectively). On the other hand, average OOB error rates of Class III 

decrease from 100% to 73% (blue line). So, we conclude that giving linearly 

increasing weights does not affect the prediction accuracy of Class IV and Class II, 

but affects those of the other classes. While the average OOB error rate of Class I 

increases, the average OOB error rate of Class III decreases. Our class of interest is 
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Class IV, and the class closest to our class of interest is Class III. Decreasing error rate 

of Class III can be evaluated as a better result. 

 

 
Figure 3.17. OOB Error Rate Graph of RF_P for the Inkjet Printer Case 

 

When Figure 3.20. is analyzed, we understand that the average OOB error estimate of 

RF_P (black line- 50%) is less (better) than that of RF_L and higher (worse) than that 

of RF_E. The OOB error rate of Class IV still has not changed (cyan line - 29%). The 

OOB error rates of Class II and Class III have increased (green and blue line). The 

OOB error rate of Class II is 71% and that of Class III is 100%. Lastly, the red line 

represents Class I, and its OOB error rate has decreased to 31% on the average. So, in 

general, this Random Forest performs better than RF_L, but worse than RF_E. This 

Random Forest performs similar to RF_E and RF_L for our class of interest; that is, 

Class IV.  
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Figure 3.18. OOB Error Rate Graph of RF_X for the Inkjet Printer Case 

 

 

RF_X is the Random Forest with the maximum OOB error estimate (65% - black line). 

As we expected, the average OOB error rate of Class IV in RF_X (cyan line – 17%) 

is the minimum among all constructed Random Forests; namely RF_E, EF_L, EF_P, 

and RF_X, because we have given 64% weight to Class I, and the remaining weights 

are distributed exponentially among the classes according to a increasing class order. 

The average OOB error rate of the other classes are very high and the rates are 74%, 

100% and 63% for Class I, Class II and Class III, respectively.  

 

In brief, when we evaluate OOB error rate graphs of these four different weighted 

Random Forests, including the unweighted Random Forest, RF_E has the minimum 

average OOB error estimate (36.25%). Average OOB error estimate of the other 

Random Forests are 57.5%, 47.5%, and 65% for RF_L, RF_P, and RF_X, 

respectively. RF_X is the Random Forest the OOB error rate of which for Class IV is 

the minimum (17%). Also, the average OOB error rate of Class III, which is the class 

closest to our class of interest, is minimum (63%) in RF_X. For other Random Forests, 

the average OOB error rate of Class IV is equal (29%) and higher than in RF_X. On 

the other hand, the Random Forest with the maximum average OOB error estimate is 
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RF_X. According to our purpose, we can choose any one of these Random Forests. 

We can select RF_X, if prediction performance of our class of interest (Class IV), and 

the closest class to Class IV is more important. However, if the general performance 

of the Random Forest is crucial to us, we can select RF_E. As an alternative, we can 

choose the appropriate weighted strategy after optimization. 

  

Additionally, we can analyze these Random Forests as a classification method based 

on performance measures mentioned in Section 2.2.1.6. Furthermore, we can compare 

Random Forest and Logistic Regression by using these performance measures. Firstly, 

we examine the confusion matrices of the RFs and Logistic Regression in Tables 3.22-

3.26. 

 

Table 3.22. Confusion Matrix of RF_E for the Inkjet Printer Case 

  Predicted  

 Classes I II III  Sum 

A
ct

ua
l 

I 30 5 0 3 38 

II 4 9 0 1 14 

III 4 3 0 4 11 

IV 2 3 0 12 17 

Sum 40 20 0 20 80 
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Table 3.23. Confusion Matrix of RF_L for the Inkjet Printer Case 

  Predicted  

 Classes I II III IV Sum 

A
ct

ua
l 

I 10 5 12 11 38 

II 0 9 3 2 14 

III 0 3 4 4 11 

IV 0 3 1 13 17 

Sum 10 20 20 30 80 

 

 

Table 3.24. Confusion Matrix of RF_P for the Inkjet Printer Case 

  Predicted 

 Classes I II III IV Sum 

A
ct

ua
l 

I 26 5 4 3 38 

II 1 9 3 1 14 

III 1 3 3 4 11 

IV 2 3 0 12 17 

Sum 30 20 10 20 80 

 

 

Table 3.25. Confusion Matrix of RF_X for the Inkjet Printer Case 

  Predicted 

 Classes I II III IV Sum 

A
ct

ua
l 

I 10 0 7 21 38 

II 0 0 7 7 14 

III 0 0 5 6 11 

IV 0 0 1 16 17 

Sum 10 0 20 50 80 
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Table 3.26. Confusion Matrix of Logistic Regression for the Inkjet Printer Case 

  Predicted 

 Classes I II III IV Sum 

A
ct

ua
l 

I 33 2 0 3 38 

II 8 5 0 1 14 

III 6 1 0 4 11 

IV 3 2 0 12 17 

Sum 50 10 0 20 80 

 

 

Confusion matrices are constructed based on testing all of the data set, meaning that 

there is no test set. Since we use all of the data for learning, do not split them into train 

and test sets. 

 

Measures that are calculated based on these confusion matrices are tabulated in Table 

3.27. 

 

When we look at the table, we see that the accuracy of Logistic Regression is worse 

than that of RF_E, and equal to that of RF_P, but better than those of RF_L and RF_X. 

But, as we mentioned before, since our data is imbalanced, we should use balanced 

values. And all balanced accuracies of weighted Random Forests are better than those 

of the regular Random Forest. As we expected, RF_X, for which we give the highest 

weight to Class IV, has the highest balanced accuracy. Also, balanced accuracy based 

Kappa increases as the weight of Class IV increases. For F- Score and G-Mean, while 

some Random Forests show better performance than Logistic Regression, some of 

them show similar performance. AUC values of all Random Forests (except for RF_X) 

are also better than that of Logistic Regression. 

 

In addition to these comparisons, class-based measures can be compared as well. The 

class-based comparison table is given in Table 3.28. Here, we see that, for our class 
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of interest (Class IV), the method that shows the best performance according to Recall 

is RF_X, and the methods that show the best performance according to Precision and 

Specificity are RF_E, RF_P and LR. We understand that, by changing the weights, we 

can increase or decrease the performance of a Random Forest. When we evaluate all 

these performance measures, the best performing method varies according to each 

performance measure. However, all Random Forests generally perform better than 

Logistic Regression. It may be misleading to choose the best method in this stage. But, 

these performance measures can also be used as an indicator in the optimization step 

while deciding on the method to be selected. 

 

.
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If we want to analyze the importance of attributes/factors, we see that the most 

important factors are A and B for both measures (Mean Decrease Accuracy and Mean 

Decrease Gini). On the other hand, the least important factor is generally D. There are 

some slight differences between variable importance orders of Random Forests, but 

generally, the most and the least important attributes are the same. All variable 

importance charts are given in Appendix D1. We can conclude that in the case where 

some factors have to be chosen for the trials, these important factors can be selected 

firstly. 

 

Step 3: Estimating the probability of each class, and calculating expected value 

and variance for each experiment  

 

The expected value, the variance and the SNR value (Formula 2.6. is used for this 

problem, since this is a larger-the-better problem) are calculated based on the 

estimated probabilities for each constructed Random Forest, and the results are given 

in Appendix D.2. 

 

For all Random Forest trees, except for RF_E, the eighth experiment, A1B1C1D0E1, is 

the best design among the tested ones, according to the probability of our class of 

interest, the expected value, the variance, and SNR. For RF_E, the seventh 

experimental design, A1B1C0D1E0, is the best experiment among the tested ones. At 

the seventh and eighth parameter designs, the probability of Class IV is at its highest 

value, the expected value is very close to the desired value which is equal to 4. 

 

And also for the eighth parameter design, the variance is minimum in RF_L, RF_P, 

and RF_X. But in RF_E, the best design based on the probability of our class of 

interest, the expected value and the SNR is not the best design in respect of the 

variance. Best parameter designs among the ones tested for all Random Forest 

applications, and their probabilities of classes, expected values, variances, and SNRs 

are given in Table 3.29. 
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Step 4: Find the optimal product/process design parameter settings for desired 

mean and minimum variance  

 

In this problem, we want to achieve the maximum range for the number of rubs. In 

other words, we seek a parameter setting with the estimated probability of Class IV at 

its highest value, the expected value close or equal to 4 and minimum variance. To 

solve the problem, as mentioned before in Section 3.1, ε-Constraint and SNR methods 

are applied. 

 

a) Obtain the optimal parameter settings by using ε-Constraint method 

 

To obtain the maximum range for the rubs, firstly, the ε-Constraint method is used. To 

this end, the expected value and the variance regression models that are used for the 

mathematical model are obtained from Minitab 18 (2018). For regression models, 

firstly stepwise regression is performed and then by adding the most significant factors 

and interactions or removing the least significant factors and interactions from the 

model we obtain more robust regression models. While regression models are being 

generated, both main effects of factors and their interactions are taken into 

consideration. Moreover, all factors are set as continuous since these are originally 

continuous. Since we have four different Random Forests, we get four different 

expected value and variance models. These models are shown in Figure 3.19-3.22: 

 

 

 

 

 

 

 

 

 

 

EV = 1.593-0.412A-0.183B+0.568C-0.192E+2.665A*B-0.670A*C 

          R2=99.57%    R2(adj)=97.01%    R2(pred)=72.67%  

 

Var = 0.5686+0.0133A+0.2400B+0.0600C+0.2507A*B+0.0331A*C+0.1282A*E 

          R2=99.91%    R2(adj)=99.37%    R2(pred)=94.24%  

Figure 3.19. Expected Value and Variance Regression Equations of RF_E for the 
Inkjet Printer Case 
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EV = 2.861-0.917A-0.180B-0.297C-0.055E+1.910A*B+0.775A*E 

         R2=96.97%    R2(adj)=78.81%    R2(pred)=0.00%  

 

Var = 0.1815+1.115A+0.5717B-0.2501C+0.9235E-1.675A*B-0.871A*E 

          R2=99.66%    R2(adj)=97.61%    R2(pred)=78.11%  

EV = 2.7038+0.1963A+0.4888B-0.1237D+0.5913A*B-0.2188A*C 

         R2=98.83%    R2(adj)=95.92%    R2(pred)=81.35%  

 

Var = 0.9077-0.1528A-0.2039B-0.2117C-0.5315A*B-0.3474A*D 

          R2=97.90%    R2(adj)=92.65%    R2(pred)=66.42%  

EV = 3.216+0.351B+0.294E+0.394A*B-0.313A*C 

         R2=92.67%    R2(adj)=82.895%    R2(pred)=47.85%  

 

Var = 0.6131-0.1187B+0.2603D-0.4386A*B+0.1428A*C 

          R2=94.42%    R2(adj)=86.99%    R2(pred)=60.35%  

Figure 3.20. Expected Value and Variance Regression Equations of RF_L for the 
Inkjet Printer Case 

Figure 3.21. Expected Value and Variance Regression Equations of RF_P for the 
Inkjet Printer Case 

Figure 3.22. Expected Value and Variance Regression Equations of RF_X for the 
Inkjet Printer Case 
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To find the best level of parameters, which provides an expected value equals to 4 and 

minimum variance, these expected value and variance regression models are used to 

formulate the RPD problem as a Multi Objective Optimization problem using the ad 

hoc ε-Constraint Method model for four Random Forests. For solving these non-linear 

models, MATLAB/BARON (2013) is used. Here, again, the variance is minimized, 

but differently from the problem in Case Study-I, the expected value is tried to be 

maximized (because of larger-the-better problem), and the aimed target value is 4. As 

a result, in our ε-Constraint method, the objective function is to minimize the variance 

(and also to get a more robust solution; the difference between the expected value and 

the target value is added to the objective function after being multiplied by a very 

small coefficient); and the constraint is the difference between the expected value and 

target value (4) being in the ε neighborhood. The non-linear mathematical models for 

the Inkjet Printer Case are as follows: 

 

1. For RF_E: 
^ ^

4

^

^

^

  ( Var ) (| EV- 4 | 10 )

| EV- 4 |

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = 1.593 - 0.412×A - 0.183×B + 0.568×C - 0.192×E + 2.665×A×B - 0.67×A×C 
^

Var = 0.5686 + 0.0133×A + 0.24×B + 0.06×C + 0.2507×A×B + 0.0331×A×C 

 + 0.1282×A×E 

 

A, B, C, E  0 
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2. For RF_L: 
^ ^

4

^

^

^

  ( Var ) (| EV- 4 | 10 )

| EV- 4 |

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = 2.861 - 0.917×A - 0.18×B - 0.297×C - 0.055×E + 1.91×A×B + 0.775×A×E 
^

Var = 0.1815 + 1.115×A + 0.5717×B - 0.2501×C + 0.9235×E - 1.675×A×B  

- 0.871×A×E 

 

A, B, C, E  0 

 

 

3. For RF_P: 
^ ^

4

^

^

^

  ( Var ) (| EV- 4 | 10 )

| EV- 4 |

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = 2.7038 + 0.1963×A + 0.4888×B - 0.1237×D + 0.5913×A×B - 0.2188×A×C 
^

Var = 0.9077 - 0.1528×A - 0.2039×B - 0.2117×C - 0.5315×A×B - 0.3474×A×D 

 

A, B, C, D  0 
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4. For RF_X:  
^ ^

4

^

^

^

  ( Var ) (| EV- 4 | 10 )

| EV- 4 |

EV 0

Var 0

Min
s.t.

�

�� �




�

�

 

 
^

EV = 3.216 + 0.351×B + 0.294×E + 0.394×A×B - 0.313×A×C 
^

Var = 0.6131 - 0.1187×B + 0.2603×D - 0.4386×A×B + 0.1428×A×C 

 

A, B, C, D, E  0 

 

 

We solve these four mathematical model by using MATLAB/BARON (2013). Each 

model gives a different solution according to different   values, as we expected. We 

present some of the best solutions of the RFs according to expected value and variance 

in Table 3.30. 

 

As seen in Table 3.30, for some solutions, some factors are not at their fixed levels, 

since we set all values as continuous. To find the original values of these factors, we 

can use a back transformation from these coded levels. Furthermore, variance values, 

which are calculated by using their variance regression models, of some solutions are 

estimated to be less than 0, but they are very small and very close to 0, so we can 

assume them to be equal to 0. 
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We have been able to achieve better results by using the weighting property provided 

by the Random Forest method. We have obtained highly adequate results regarding 

both the expected value and the variance in the solutions of all weighted Random 

Forests. We obtain the solutions the closest to the target value from RF_L and RF_X, 

but obtained those the furthest to the target value from RF_E. On the other hand, while 

the solutions with minimum variance are obtained from RF_L, RF_P, and RF_X, the 

solutions with maximum variance are yielded by RF_E. It is clear that giving more 

weights to our class of interest allows obtaining better results compared to unweighted 

Random Forest.  

 

For both the expected value and the variance, the worst results are obtained from the 

equal-weighted Random Forest, RF_E. As seen in Table 3.30, 1st, 2nd, and 3th solutions 

are the worst solutions for the variance. For the expected value, results of weighted 

Random Forests are generally better than those of the unweighted Random Forest. 

RF_L and RF_X models obtain epsilon as 0. But, for RF_E, the best value of epsilon 

is 0.337. Therefore, we can suggest choosing one of the weighted Random Forests to 

obtain satisfactory results regarding both expected value and variance. For the 

expected value, there are no significant differences between the results of RF_L and 

RF_X and also RF_P. On the other hand, it is seen that the variance values of RF_L 

and RF_P solutions are minimum. To decide on selecting the suitable model, we can 

also consider the classification performance of the Random Forest mentioned in Step 

2. According to these performance measures, general and class based performance of 

RF_P is slightly better than those of RF_L and RF_X. For that reason, since there are 

no significant differences between optimization performances of the models, and since 

RF_P is superior to the others in the respect of variance we can choose RF_P. On the 

other hand, since both optimization and classification of RF_L and RF_X are 

satisfactory, RF_L and RF_X can also be chosen. 

 

As in the Case Study-1, there are insignificant factors, notated by D for RF_E and 

RF_L while E for RF_P. These factor does not have a significant effect on the mean 
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and variance. Therefore, we can set their levels to any appropriate value, or to the most 

economical value. 

 

b) Obtain the optimal parameter settings by using SNR  

 

To find the best parameter design, we use SNR method as the second way. For this 

purpose, we use ordinary least squares and response optimization (modified 

generalized reduced gradient) methods via Minitab 18 (2018) by considering both p-

value and stepwise regression. Different starting points for response optimizer are also 

tried to achieve the best parameter settings. Since we have four different methods, 

there are four corresponding different SNR solutions. Solutions obtained from these 

different Random Forest models are given in Table 3.31. 

 

As it is seen from Table 3.31, each Random Forest gives a different solution. The 

solutions of RF_L and RF_X are similar to each other. Since these models have very 

high R-Sq, R-Sq(adj) and R-Sq(pred) values (R-Sq(pred) value of RF_X is not high 

enough), we can say that they exhibit quite sufficient performance to fit the regression 

model.  

 

Table 3.31. Solution of the SNR model for the Inkjet Printer Case 

Random 

Forests 

Regression Results Factors 
^

SNR  R-Sq 
R-Sq 

(adj) 

R-Sq 

(pred) 
A B C D E 

RF_E 99.51% 96.56% 68.53% 1 1 0 - 0 10.6544 

RF_L 99.27% 94.87% 53.08% 1 1 0.889 - 1 12.0273 

RF_P 99.85% 99.48% 97.64% 1 1 0.889 0 - 12.0311 

RF_X 81.53% 56.91% 0.00% 0.990 0.996 0.999 - 0.986 12.0410 
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The SNR values of the weighted Random Forests are better than that of the regular 

Random Forest, as we expected. As we can guess, the Random Forests for which we 

gave more weight to Class IV estimate this class better compared to the unweighted 

Random Forest. As can be seen in the table, as the weight of Class IV increases, SNR 

value increases as well. Looking at the classification performance and OOB error 

graphs, RF_P and RF_X seem to be  preferable alternatives to solve this problem with 

SNR method. This example data set also verifies us and the other researchers who 

argue that giving weight to a class in Random Forest is a very useful and important 

property, and that this is very easy to use. In addition, this property is unique for 

Random Forest. 

D is the insignificant factor for RF_E, RF_L, and RF_X while E is insignificant factor 

for RF_P. We can assign any value to these factors, but generally, the most economic 

levels are preferred.  

 

In our study, two different optimization methods, ε-Constraint and SNR methods are 

used to find the best parameter settings to have Class IV for the Inkjet Printer Case. 

As we mentioned before, while in the SNR method, the expected value and variance 

are combined into a single objective function, SNR, in ε-Constraint method, the 

expected value and variance are taken into consideration separately. One can choose 

any of these methods. 

 

Step 5: Confirmation of results and revisiting the problem 

 

When we investigate results of both methods, it can be indicted that while some of 

their results are different from the tested ones, some of the others are very similar to 

the tested ones if we consider that the levels of the parameters are not very sensitive. 

Since we define some suitable parameters as continuous during setting the models, but 

Logothetis (1992) sets these as categorical, we have achieved similar results to his 

results with little differences.  
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Since we quote the data from Logothetis’s study (1992), we do not have the chance to 

replicate the optimal solutions. For solutions that are different from the tested ones, 

different ways mentioned in Section 3.1 (Step 5) can be performed for confirmation. 

On the other hand, for the optimal solutions that are very similar to the tested ones, 

Logothetis (1992) has run the parameter design for 10 times, and he has obtained 6 

times Class IV, 3 times Class III, and 1 time Class I for one of them, and for the other 

one he has got 6 times Class IV, 2 times Class I and 1 time Class II and III. Like Case 

Stuy-I we apply Exact Multinomial Test to confirm our results with Logothetis’s 

replications. During the test R-studio (R Core Team, 2017), which use Monte Carlo 

approach, is used. For aforementioned  experimental designs, we have found p-value 

as 0.67 and 0.65, respectively. This means that there are differences between our 

results and Logothetis’s replications but we can accept these differences because as 

we mention in Section 3.1, we expect that probabilities could not to be exactly equal 

to each other. Moreover, p-value we obtain is at the acceptable level. 

 

 

Our problem is a Larger-the-Better type, so we are looking for an ink mixture such 

that following the printing process, the print is still readable after being rubbed for 

more than 26 times. Therefore, our interest class is Class IV. So, we are seeking the 

parameter design that gives the highest probability of Class IV. And also, in parallel 

with this, the design yields an expected value equal or close to 4, while the variance is 

minimum and the SNR value is maximum. 

 

Karabulut (2013) also tried to find the best parameter settings for this problem by 

using Logistic Regression method to determine the relationship between factors and 

outputs, and set the ANOVA model for the best parameter settings by assuming that 

all factors are categorical, i.e. she set all factors to their fixed levels, which are 0 and 

1. At the end of her study, she finds that the optimal solution is as A1B1C0 and the 

estimated probability for Class IV 0.6836 while the expected value, variance and SNR 

value are 3.4915, 0.7359 and 10.1379, respectively. It is expected that our solutions 

would differ from Karabulut's solution, because while she set all factors as categorical, 
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we set them as continuous, since they are originally continuous. Generally, in our 

solution, especially in weighted Random Forests, estimated probability of Class IV, 

the expected value, the variance, and SNR values are all better than those included in 

Karabulut’s solution. In our ε-Constraint solutions, which is given in Table 3.30, we 

find out the estimated probability of Class IV to be 1, the expected value to be 4 and 

the variance to be 0 in solution numbers 4 and 9. These solutions are 

A0.9975B0.9966C0.9839E0.8726 and A1B1C0D0E0.1327. Furthermore, all SNR values we 

obtain are better (10.6544, 12.0273, 12.0311, and 12.0410 for RF_E, RF_L, RF_P, 

and RF_X, respectively) than Karabulut’s results. These solutions are A1B1C0E0, 

A1B1C0.889E1, A1B1C0.889D0, and A0.99B0.996C0.999E0.986. A convenient way to compare 

the performance of the two approaches would to collect data at the optimal solutions 

of these two approaches and then analyzing which of the two achieve closer results to 

the observed mean and variance. 

 

In addition, Karabulut (2013) found for this problem that all methods she used 

(LRMO, AA, WSNR, SS, and WPSS) give the same solution as the Logistic 

Regression as the optimal one, and she concluded that all these methods show the 

same performance. Although Karabulut’s study assumes variables as categorical and 

our results are similar to their results, this may indicate that Random Forest provides 

meaningful solutions. Accordingly if LR was to use variables as continuous similar 

results could have been derived. Although the results are not comparable in the sense 

that LR solutions assume variables as categorical and Random Forest results are based 

on continuous variables, the similarity of outcomes could indicate Random Forest is a 

meaningful alternative. 

 

3.4 Illustrative Case Study III: Duplicator Case 

 

For Case Study III, our proposed method is applied to a data set that has been used by 

Logothetis and Wynn (1994) to determine the best condition for the paper feeding 

phase of a duplicator machine at a high speed by using Accumulating Analysis. The 

data set is also used by Karabulut (2013) to compare different RPD methods. 
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Step 1: Collecting data and overcoming the problems caused by missing values 

In this case, there is a duplicator, and paper sheets feed it at a high speed, and it is 

intended that the best operating conditions to provide the accomplished feeding 

through duplicator are achieved. Here, there are 12 controllable factors and also an 

interaction between two factors affecting the feeding process. These factors and their 

levels are tabulated in Table 3.32: 

Based on the L16 orthogonal array, for these factors, 16 different combinations are 

obtained, and each design is tested for 4 times. In the test phase, the numbers of sheets 

fed to the duplicator are counted. According to these counts, the categories are 

specified. The ranges for classes are tabulated in Table 3.33: 

 

Table 3.32. Controllable Factors and Their Levels for the Duplicator Case 

Factors 
Levels 

0 1 

A. Vacuum Header Type Normal Lightweight 

B. Feed Cam Type Normal Smoothed 

C. Master Cylinder Cam Smoothed Normal 

D. Air Rifle Setting Normal High 

E. Chain Gripper Release Cam Normal Advanced 

F. Paper Weight Bar Spring Without With 

G. Release Blowdown Spray OFF ON 

H. Buckle Setting Normal High 

I: Paperweight Bar Light Heavy 

J. Paperweight Bar Position Normal Back 

K. Impression Roller Setting Normal High 

L. Vacuum Setting Normal High 
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Table 3.33. Range of the Number of Sheets for Each Class for the Duplicator Case 

Classes Range of Number of Sheets 

I Paper Feeding Failed 

II [1, 168] 

III [169, 336] 

IV [337, ] 

 

 

As seen in the table, Class I indicates the situation where no paper sheets are 

successfully fed through the duplicator; Class IV indicates that 337 or more paper 

sheets successfully pass through the duplicator. It is clear that our class of interest is 

Class IV, i.e. we try to achieve the conditions such that more than or equal to 336 

paper sheets are successfully fed through the machine. So, it is a larger-the-better type 

problem. 

 

Test results that are generated by testing each of these 16 different parameter settings 

for 4 times are classified according to the count of successfully fed paper sheets. 

Numbers of observations for each class for the 16 experiments are tabulated in Table 

3.34: 

 

Since there is no missing value in the data, no manipulation is done for that purpose. 
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Table 3.34. Experimental Design and Class of Response for the Duplicator Case 

 

 

Step 2: Growing random forest trees and handling imbalanced data 

 

The data is designed so as to run each of these 16 different factor level combinations 

for 4 times, so we ultimately have 64 observations in our data set. This data set is 

analyzed with Random Forest algorithm by using R-studio software (R Core Team, 

2017). 

Exp

. 

No 

Factors 

Number of 

Observations by 

Classes 

A B C D E F G H FxI I J K L I II III IV 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 

2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 3 0 0 

3 0 0 0 1 1 1 0 0 0 1 1 1 1 1 3 0 0 

4 0 0 0 1 1 1 1 1 1 0 0 0 0 1 3 0 0 

5 0 1 1 0 0 1 0 0 1 0 0 1 1 0 3 0 1 

6 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 3 

7 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 

8 0 1 1 1 1 0 1 1 0 0 0 1 1 0 2 1 1 

9 1 0 1 0 1 0 0 1 0 0 1 0 1 1 3 0 0 

10 1 0 1 0 1 0 1 0 1 1 0 1 0 2 2 0 0 

11 1 0 1 1 0 1 0 1 0 1 0 1 0 1 3 0 0 

12 1 0 1 1 0 1 1 0 1 0 1 0 1 0 4 0 0 

13 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 2 

14 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 4 

15 1 1 0 1 0 0 0 1 1 1 0 0 1 0 2 0 2 

16 1 1 0 1 0 0 1 0 0 0 1 1 0 1 2 1 0 
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Firstly, the numbers of attributes to use for each split are determined. As mentioned in 

Section 2.2.1, to decide this number, the square root of the number of factors affecting 

the response is taken, and the first integer value of this number is considered to be the 

best split value. So, for this example, it was equal to � � 312 � . But, according to the 

R function, the best split value based on OOB error rate is obtained as 1. When the 

data is run with both these split values, it is seen that if the split value is 1, the OOB 

error estimate is lower. In fact, in his later study, Breiman (2001) specified that the 

best split value can be the first number of half of the square root of the number of 

factors affecting the response ( � �2/p ) according to the data set. Based on this 

assumption, in our example, the best split value is equal to 1 � �12 / 2� �
� � . The OOB 

error rate based best split graph in R is shown in Figure 3.23. 

 

 
Figure 3.23. Best Split Value versus OOB Error Rate for the Duplicator Case 
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Moreover, the best number of trees in the forest is tested with different values between 

100-10000, and the best value is set as 1000 according to OOB error rate and 

consuming of time. 

Our data set is not balanced, i.e. trials in each class are not equal, not even close to 

each other. As seen in the Figure 3.24., while Class II constitutes 55% of the data; our 

class of interest, Class IV, only accounts for 22% of the data set (There are just 14 

observations). The other classes have lower trials. There are 11 experiments for Class 

I (17%) and only 4 experiments for Class III (6%). 

 

Since all classes do not have the same number of trials, we can say that this data set is 

imbalanced. By giving weights to classes, Random Forest can overcome this situation. 

To see the differences, we analyze the data both with unweighted Random Forest (each 

class has equal weight) and Random Forests with different weighted strategies as 

mentioned in Case Studies I and II. 

 

 
Figure 3.24. Distribution of Classes in the Data for the Duplicator Case 

 

 

In this example, our problem is the larger-the-better type, so our class of interest is 

Class IV. We seek the parameter settings that provide Class IV. We try to achieve the 
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best parameter settings for our class of interest, Class IV, by giving more cost to the 

misclassification of Class IV, and in this way, we could obtain the conditions which 

predict Class IV the best way possible. Best of all, Random Forest does it 

automatically, without any extra processing. 

 

Weights of classes and their abbreviations are given in Table 3.35. Weights are given 

equally, linearly, piecewisely linear and exponentially, respectively. The weights are 

actually same as the weights in the Case Study-II (Inkjet Printer Example), because 

both have the same number of classes and both are Larger-the-Better type of problem. 

 

Table 3.35. Class Weights of the Random Forests for the Duplicator Case 

Weighting 

Strategies 
Random Forests 

Weights of Classes 

I II III IV 

Equal Weights RF_E 0.25 0.25 0.25 0.25 

Linear 

Weights 
RF_L 0.1 0.2 0.3 0.4 

Piecewise Linear 

 Weights 
RF_P 0.166 0.167 0.167 0.5 

Exponential 

Weights 
RF_X 0.03 0.09 0.24 0.64 

 

 

According to these weights, OOB error rate graphs of Random Forests formed with 

1000 trees and with the split value equal to 1 are as given in Figures 3.25-3.28. 
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Figure 3.25. OOB Error Rate Graph of RF_E for the Duplicator Case 

 

 

According to this graph, the black line refers to the OOB error estimate of the Random 

Forest with 34.38% on the average. Furthermore, red and blue lines correspond to 

Class I and Class III with average OOB error rates of 100%, respectively; the cyan 

line refers to Class IV with 50% OOB error rate on the average. Lastly, the green line 

refers to Class II with an average OOB error rate of 0%. As it is seen, the OOB error 

rate of Class II is very low, but our class of interest, Class IV, has a quite high OOB 

error rate. To avoid this case, we give more cost to the misclassification of Class IV 

(by giving more weight to Class IV than other classes). The OOB error rate graph of 

the first weighted Random Forest (linearly-weighted RF_L) is as in Figure 3.26. 
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Figure 3.26. OOB Error Rate Graph of RF_L for the Duplicator Case 

 

 

Average OOB error estimate of the Random Forest increased compared to that of 

RF_E. Average OOB error estimate of Random Forest has changed from 34.38% to 

51.56%. And, here again, Class I and Class III have each an average 100% OOB error 

rate (red and blue line). While the average OOB error rate of Class II has increased 

(from 0% to 37% - green line), the average OOB error rate of Class IV has decreased 

(from 50% to 36% - cyan line). So, we conclude that giving linearly increasing weights 

does not affect the correctly classification of Class I and Class III, but affect those of 

Class II and Class IV. By giving more weight to Class IV, we have decreased the 

average OOB error rate of our class of interest. 

 

The OOB error rate graph of the Random Forest created with piecewise linearly 

weights, RF_P, is as shown in Figure 3.27.  
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Figure 3.27. OOB Error Rate Graph of RF_P for the Duplicator Case 

 

 

Here, we give half of the weights to the Class IV, and the remaining half of the weights 

are distributed among other classes equally. This Random Forest has the maximum 

average OOB error estimate (71.88% - Black Line) among the constructed Random 

Forests. This is the first time the average OOB error rate of Class I has ever decreased 

(from 100% to 82% - Red Line), but it is still very high. The average OOB error rate 

of Class II is at its maximum level (86% - Green Line). The average OOB error rate 

of Class III has not changed (still 100%). Despite all these, the average OOB error rate 

of Class IV is at its minimum level (21% - Cyan Line). So, we can say that this 

Random Forest can make satisfactory predictions for Class IV, but not for other 

classes. 

 



 

121 

 

 
Figure 3.28. OOB Error Rate Graph of RF_X for the Duplicator Case 

 

 

Lastly, we analyze the result of the Random Forest with exponential weights (RF_X) 

Average OOB error estimate of the Random Forest is 48.44% (black line). Its 

performance is better than both RF_L and RF_P. The average OOB error rate of Class 

IV is 21% (Cyan Line), and it is equal to the Class I OOB rate of RF_P. The average 

OOB error rate of Class II in this Random Forest is also lower (37% - Green Line) 

than those of RF_L and RF_P. And the OOB error rate of Class I and Class III are 

100% (red and blue lines).  

 

Shortly, when we evaluate the OOB error rate graphs of these four Random Forests, 

we observe that RF_E has the minimum average OOB error estimate (34.38%). The 

Random Forest with the second minimum average OOB error estimate is RF_X.  RF_P 

is the Random Forest whose average OOB error estimate is maximum. The average 

OOB error rate of our class of interest (Class IV) is minimum in RF_P and RF_X 

(21%), but the general performance of the Random Forest is better in RF_X than 

RF_P. Since the number of observations of Class I and Class III is small, it is hard to 

analyze these classes for Random Forest and also for the other methods. Therefore, 

the class error rates of Class I and Class III are always high. On the other hand, the 

number of observations for Class II is the largest, and its average OOB error rate is 

generally low. So, we conclude that if we want to decide on a weighting strategy, we 
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can choose exponentially weighting Random Forest (RF_X), because the general 

performance of RF_X can be sufficient, and, in addition, the prediction performance 

of our class of interest is the best in RF_X. If we cannot decide at this stage, we analyze 

classification performance of these Random Forests and then we can make a decision. 

Alternatively, we have to proceed to the optimization step. 

 

To evaluate the performance measures of Random Forests, we use the performance 

measures mentioned in Section 2.2.1.6. Also, we compare these RFs with Logistic 

Regression by using these performance measures. Firstly, we examine the confusion 

matrices of RFs and Logistic Regression in Tables 3.36-3.40. 

 

Table 3.36. Confusion Matrix of RF_E for the Duplicator Case 

  Predicted 

 Classes I II III IV Sum 

A
ctu

al 

I 0 10 0 1 11 

II 0 35 0 0 35 

III 0 4 0 0 4 

IV 0 7 0 7 14 

Sum 0 56 0 8 64 
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Table 3.37. Confusion Matrix of RF_L for the Duplicator Case 

  Predicted 

 Classes I II III IV Sum 

A
ctu

al 

I 2 6 2 1 11 

II 2 22 6 5 35 

III 0 0 4 0 4 

IV 0 0 4 10 14 

Sum 4 28 16 16 64 

 

 

Table 3.38. Confusion Matrix of RF_P for the Duplicator Case 

  Predicted 

 Classes I II III IV Sum 

A
ctu

al 

I 6 2 1 2 11 

II 14 10 2 9 35 

III 0 0 1 3 4 

IV 0 0 0 14 14 

Sum 20 12 4 28 64 
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Table 3.39. Confusion Matrix of RF_X for the Duplicator Case 

  Predicted 

 Classes I II III  Sum 

A
ctu

al 

I 0 8 1 2 11 

II 0 24 2 9 35 

III 0 0 1 3 4 

IV 0 0 0 14 14 

Sum 0 32 4 28 64 

 

 

Table 3.40. Confusion Matrix of Logistic Regression for the Duplicator Case 

  Predicted 

 Classes I II III IV Sum 

A
ctu

al 

I 0 10 0 1 11 

II 0 32 0 3 35 

III 0 3 0 1 4 

IV 0 3 0 11 14 

Sum 0 48 0 16 64 

 

 

Here again, we create confusion matrices by testing all data sets, not the test set, as 

was the case for the previous examples. Measures which were calculated based on 

these confusion matrices are tabulated in Table 3.41. 

 

As it is understood from Table 3.41, accuracies of RF_E and Logistic Regression are 

equal to each other and these are better than the accuracies of others. Since the data is 

imbalanced, it will be more accurate to use balanced accuracy. Balanced accuracies of 

all weighted Random Forests are better than the regular Random Forest and Logistic 
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Regression. For AUC, the same conclusion is valid. Moreover, Kappa and Balanced 

Kappa of weighted Random Forests are better than those corresponding to the regular 

Random Forest and generally Logistic Regression. For F-Score and G-Mean, results 

are changeable.  

 

In addition to these comparisons, class based measures can also be compared. When 

we examine Table 3.42, for our class of interest (Class IV), recall is at the highest level 

in RF_P and RF_X, while precision and specificity are at the highest levels in RF_E. 

For the other classes, performances of the methods vary, so we could not generalize. 

Therefore, we can say that giving weights to the classes change the performance of 

the Random Forests. Evaluating all these performance measures, we concluded that 

the best performing method varies depending on each performance measure. It may 

be misleading to choose the best method in this stage. But, these performance 

measures can also be used as an indicator in the optimization step while deciding on 

the method to be selected. 
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When we analyze the importance of attributes, although the order of the importance 

of variables changed for each Random Forest, B is the most important attribute for 

each Random Forest for both measures (Mean Decrease Accuracy and Gini Index). 

Moreover, we can say I, F, K and D are the other significant factors. On the other 

hand, generally the least important variable is H. All variable importance plots are 

given in Appendix E.1. We can conclude that in cases where some factors have to be 

chosen for the trials, these important factors can be selected firstly. 

 

Step 3: Estimating the probability of each class, and calculating expected value 

and variance for each experiment  

 

Probabilities obtained from the different weighted Random Forests and expected 

value, variance and SNR values that are calculated based on these probabilities are 

given in Appendix E.2. For calculating the SNR, Equation (2.6) is used (since the 

problem is larger-the-better type).  

 

For all Random Forests, experiment with the best design is the 14th experiment, 

A1B1C0D0E1F1G1H0FxI0I1J0K0L1. In this parameter design, expected values are the 

closest to the desired value (4); 3.463, 3.915, 3.951 and 3.965 for RF_E, RF_L, RF_P, 

and RF_X, respectively. This experiment was previously tested for 4 times, and for all 

times, the experiment was already classified as Class IV. Also, this experiment has the 

maximum SNR values and the minimum variance (except RF_E) for all Random 

Forests. 

 

Step 4: Find the optimal product/process design parameter settings for desired 

mean and minimum variance  

 

In this problem, we want to achieve the best condition for the paper feeding phase of 

a duplicator machine at high speed. In other words, our aim is to find the parameter 

settings such that the maximum number of paper sheets successfully passes through 

the duplicator. So, these parameter settings should have the maximum estimated 
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probability of Class IV, and also, the expected value of these parameter settings are to 

be close or equal to 4, and the variances of them are to be minimum. To solve the 

problem, as mentioned before in Section 3.1, the ε-Constraint and the SNR methods 

are applied. 

 

a) Obtain the optimal parameter settings by using ε-Constraint method 
 

To develop the mathematical model needed by this method, firstly, the expected value 

and the variance regression models are generated by using Minitab 18 (2018). For the 

regression models, both main and interaction effects of factors are considered. For this 

purpose, we perform firstly stepwise regression with both main and interaction of 

factor. After that, by adding the most significant factors and interactions or removing 

the least significant factors and interactions from the model we obtain more robust 

regression models. For the regression, all factors have only two levels, so we set all of 

them as categorical. For all different Random Forests, weighted schemes, we obtain 

different expected value and variance models. The expected value and the variance 

models created for these Random Forests are given in Figure 3.29-32. 
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EV=2.02737+0.0B_0+0.54810B_1+0.0E_0-0.12819E_1+0.0G_0 

+0.07117G_1+0.0A*B_00+0.0A*B_01+0.0A*B_10+0.00833A*B_11 

+0.0A*L_00+0.0A*L_01+0.0A*L_10+0.14754A*L_11+0.0B*E_00 

+0.0B*E_01+0.0B*E_10+0.24371B*E_11+0.0C*FxI_00+0.0C*FxI_01 

+0.0C*FxI_10-0.24379C*FxI_11+0.0D*G_00+0.0D*G_01+0.0D*G_10 

-0.47225D*G_11+0.0E*K_00+0.0E*K_01+0.0E*K_10+0.14533E*K_11 

+0.0F*G_00+0.0F*G_01+0.0F*G_10+0.54517F*G_11+0.0H*I_00 

+0.0H*I_01 +0.0H*I_10-0.03608H*I_11+0.0H*J_00+0.0H*J_01+0.0H*J_10 

-0.04442H*J_11+0.0H*K_00+0.0H*K_01+0.0H*K_10+0.00854H*K_11 

 

         R2=100.00%    R2(adj)=100.00%    R2(pred)=99.98%  

 

Var= 0.28921+0.0B_0+0.6102B_1+0.0C_0+0.05340C_1+0.0E_0-0.06116E_1 

+0.0FxI_0-0.08130FxI_1+0.0K_0+0.11857K_1+0.0B*C_00+0.0B*C_01 

+0.0B*C_10+0.0676B*C_11+0.0B*H_00+0.0B*H_01+0.0B*H_10 

+0.22470B*H_11+0.0B*K_00+0.0B*K_01+0.0B*K_10-0.4791B*K_11 

+0.0C*D_00+0.0C*D_01+0.0C*D_10-0.08861C*D_11+0.0D*H_00 

+0.0D*H_01+0.0D*H_10-0.09360D*H_11+0.0E*FxI_00+0.0E*FxI_01 

+0.0E*FxI_10+0.2534E*FxI_11+0.0F*H_00+0.0F*H_01+0.0F*H_10 

+0.03479F*H_11 

 

         R2=99.97%    R2(adj)=99.87%    R2(pred)=99.30%  

 

Figure 3.29. Expected Value and Variance Regression Equations of RF_E for the 
Duplicator Case 
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EV = 2.39004+0.0B_0+1.01968B_1+0.0A*E_00+0.0A*E_01+0.0A*E_10 

+0.04724A*E_11+0.0B*D_00+0.0B*D_01+0.0B*D_10-0.46235B*D_11 

+0.0B*I_00+0.0B*I_01+0.0B*I_10+0.39848B*I_11+0.0C*D_00+0.0C*D_01 

+0.0C*D_10+0.04944C*D_11+0.0C*FxI_00+0.0C*FxI_01+0.0C*FxI_10 

-0.19368C*FxI_11+0.0D*H_00+0.0D*H_01+0.0D*H_10+0.10692D*H_11 

+0.0D*K_00+0.0D*K_01+0.0D*K_10-0.10452D*K_11+0.0D*L_00 

+0.0D*L_01+0.0D*L_10+0.17110D*L_11+0.0E*J_00+0.0E*J_01+0.0E*J_10 

-0.02012E*J_11+0.0G*L_00+0.0G*L_01+0.0G*L_10+0.05994G*L_11 

+0.0H*I_00+0.0H*I_01+0.0H*I_10-0.00749H*I_11 

 

R2=100.00%    R2(adj)=100.00%    R2(pred)=99.96% 

 

Var = 0.9738+0.0B_0-0.3348B_1+0.0E_0+0.1280E_1+0.0F_0+0.0747F_1 

+0.0A*L_00+0.0A*L_01+0.0A*L_10-.1251A*L_11+0.0B*E_00+0.0B*E_01 

+0.0B*E_10-0.3745B*E_11+0.0C*FxI_00+0.0C*FxI_01+0.0C*FxI_10 

+0.1462C*FxI_11+0.0F*G_00+0.0F*G_01+0.0F*G_10-0.2421F*G_11 

+0.0F*J_00+0.0F*J_01+0.0F*J_10-0.1575F*J_11 

 

R2=99.64%    R2(adj)=99.23%    R2(pred)=97.90% 

Figure 3.30. Expected Value and Variance Regression Equations of RF_L for the 
Duplicator Case 
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Figure 3.31. Expected Value and Variance Regression Equations of RF_P for 
the Duplicator Case 

EV=2.21039+0.0B_0+1.14622B_1+0.0G_0-0.3360G_1+0.0A*C_00 

+0.0A*C_01+0.0A*C_10-0.06480A*C_11+0.0A*D_00+0.0A*D_01 

+0.0A*D_10+0.02067A*D_11+0.0A*F_00+0.0A*F_01+0.0A*F_10 

+0.14443A*F_11+0.0D*G_00+0.0D*G_01+0.0D*G_10-0.28473D*G_11 

+0.0D*H_00+0.0D*H_01+0.0D*H_10-0.03773D*H_11+0.0E*J_00 

+0.0E*J_01+0.0E*J_10-0.19155E*J_11+0.0E*K_00+0.0E*K_01+0.0E*K_10 

+0.27550E*K_11+0.0F*G_00+0.0F*G_01+0.0F*G_10+0.78802F*G_11 

+0.0H*L_00+0.0H*L_01+0.0H*L_10+0.35347H*L_11+0.0FxI*J_00 

+0.0FxI*J_01+0.0FxI*J_10+0.03955FxI*J_11 

 

         R2=100.00%    R2(adj)=99.98%    R2(pred)=99.92% 

 

Var= 1.34133+0.0B_0-0.46810B_1+0.0E_0-0.04494E_1+0.0F_0+0.03145F_1 

+0.0G_0+0.37407G_1+0.0H_0+0.10554H_1+0.0L_0+0.02674L_1 

+0.0A*B_00+0.0A*B_01+0.0A*B_10-0.20476A*B_11+0.0B*H_00 

+0.0B*H_01+0.0B*H_10-0.36689B*H_11+0.0C*J_00+0.0C*J_01 

+0.0C*J_10-0.03134C*J_11+0.0D*FxI_00+0.0D*FxI_01+0.0D*FxI_10 

+0.11262D*FxI_11+0.0F*G_00+0.0F*G_01+0.0F*G_10-0.54187F*G_11 

+0.0G*L_00+0.0G*L_01+0.0G*L_10-0.39874G*L_11+0.0I*K_00 

+0.0I*K_01 +0.0I*K_10-0.02810I*K_11 

 

         R2=100.00%    R2(adj)=100.00%    R2(pred)=99.80% 
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To determine the best levels of parameters, for the desired expected value, 4, and the 

minimum variance, these regression models are used to formulate the RPD problem 

as a Multi Objective Optimization problem using the ε-Constraint Method as 

mentioned in Section 2.1.2. The models for each Random Forest are as follows: 

Figure 3.32. Expected Value and Variance Regression Equations of RF_X for the 
Duplicator Case 

EV=2.54290+0.0A_0+0.01012A_1+0.0B_0+0.40558B_1+0.0F_0 

+0.04993F_1+0.0I_0-0.05625I_1+0.0B*E_00+0.0B*E_01+0.0B*E_10 

+0.12370B*E_11+0.0B*F_00+0.0B*F_01+0.0B*F_10+0.31725B*F_11 

+0.0B*H_00+0.0B*H_01+0.0B*H_10+0.19267B*H_11+0.0B*I_00 

+0.0B*I_01+0.0B*I_10+0.46075B*I_11+0.0B*L_00 

+0.0B*L_01+0.0B*L_10+0.15172B*L_11+0.0C*E_00+0.0C*E_01 

+0.0C*E_10-0.05730C*E_11+0.0E*G_00+0.0E*G_01+0.0E*G_10 

-0.06538E*G_11+0.0E*L_00+0.0E*L_01+0.0E*L_10+0.02428E*L_11 

+0.0H*L_00+0.0H*L_01+0.0H*L_10 +0.07567H*L_11 

 

         R2=100.00%    R2(adj)=100.00%    R2(pred)=99.89% 

 

Var=1.01234+0.0B_0-0.690055B_1+0.0F_0+0.27677F_1+0.0G_0 

+0.32809G_1+0.0A*E_00+0.0A*E_01+0.0A*E_10-0.096087A*E_11 

+0.0B*FxI_00+0.0B*FxI_01+0.0B*FxI_10+0.11807B*FxI_11 

+0.0D*I_00+0.0D*I_01+0.0D*I_10+0.06336D*I_11+0.0E*F_00+0.0E*F_01

+0.0E*F_10+0.01085E*F_11+0.0F*G_00+0.0F*G_01+0.0F*G_10 

-0.62482F*G_11+0.0F*J_00+0.0F*J_01+0.0F*J_10-0.207278F*J_11 

+0.0H*I_00+0.0H*I_01+0.0H*I_10-0.00822H*I_11+0.0H*J_00+0.0H*J_01 

+0.0H*J_10+0.09425H*J_11+0.0H*K_00+0.0H*K_01+0.0H*K_10 

-0.238980H*K_11+0.0I*L_00+0.0L_01+0.0I*L_10-0.151301I*L_11 

 

         R2=100.00%    R2(adj)=100.00%    R2(pred)=99.99% 
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1. For RF_E: 

0≥V

0≥E

  ≤ |4-E|

s.t.
)10|4-E(|)V(  Min

^

^

^

4
^^

�

�� �

 

^
E = 2.02737 + 0.0×B0 + 0.5481×B1 + 0.0×E0 - 0.12819×E1 + 0.0×G0 + 0.07117×G1 

+ 0.0×A0×B0 + 0.0×A0×B1 + 0.0×A1×B0 + 0.00833×A1×B1  + 0.0×A0×L0  

+ 0.0×A0×L1 + 0.0×A1×L0 + 0.14754×A1×L1 + 0.0×B0×E0 + 0.0×B0×E1  

+ 0.0×B1×E0 + 0.24371×B1×E1 + 0.0×C0×FxI0 + 0.0×C0×FxI1 + 0.0×C1×FxI0  

 - 0.24379×C1×FxI1 + 0.0×D0×G0 + 0.0×D0×G1 + 0.0×D1×G0 - 0.47225×D1×G1  

+ 0.0×E0×K0 + 0.0×E0×K1 + 0.0×E1×K0 + 0.14533×E1×K1 + 0.0×F0×G0  

+ 0.0×F0×G1 + 0.0×F1×G0 + 0.54517×F1×G1 + 0.0×H0×I0 + 0.0×H0×I1  

+ 0.0×H1×I0 - 0.03608×H1×I1 + 0.0×H0×J0 + 0.0×H0×J1 + 0.0×H1×J0  

- 0.04442×H1×J1 + 0.0×H0×K0 + 0.0×H0×K1 + 0.0×H1×K0 + 0.00854×H1×K1 

 

^
V = 0.28921 + 0.0×B0 + 0.6102×B1 + 0.0×C0 + 0.0534×C1 + 0.0×E0 - 0.06116×E1 

+ 0.0×FxI0 - 0.0813×FxI1 + 0.0×K0 + 0.11857×K1 + 0.0×B0×C0 + 0.0×B0×C1 

+ 0.0×B1×C0 + 0.0676×B1×C1 + 0.0×B0×H0 + 0.0×B0×H1 + 0.0×B1×H0 

+ 0.2247×B1×H1 + 0.0×B0×K0 + 0.0×B0×K1 + 0.0×B1×K0 - 0.4791×B1×K1 

+ 0.0×C0×D0 + 0.0×C0×D1 + 0.0×C1×D0 - 0.08861×C1×D1 + 0.0×D0×H0  

+ 0.0×D0×H1 + 0.0×D1×H0 - 0.0936×D1×H1 + 0.0×E0×FxI0 + 0.0×E0×FxI1  

+ 0.0×E1×FxI0 + 0.2534×E1×FxI1 + 0.0×F0×H0 + 0.0×F0×H1 + 0.0×F1×H0  

+ 0.03479×F1×H1 

 

A0, A1,  B0, B1, C0, C1, D0, D1, E0, E1, F0, F1, G0, G1, H0, H1, FxI0, FxI1, I0, I1, J0, J1, 

K0, K1, L0, L1   {0, 1} 
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2. For RF_L: 

0≥V

0≥E

  ≤ |4-E|

s.t.
)10|4-E(|)V(  Min

^

^

^

4
^^

�

�� �

 

 
^
E = 2.39004 + 0.0×B0 + 1.01968×B1 + 0.0×A0×E0 + 0.0×A0×E1 + 0.0×A1×E0 

+ 0.04724×A1×E1 + 0.0×B0×D0 + 0.0×B0×D1 + 0.0×B1×D0 - 0.46235×B1×D1 

+ 0.0×B0×I0 + 0.0×B0×I1 + 0.0×B1×I0 + 0.39848×B1×I1 + 0.0×C0×D0  

+ 0.0×C0×D1 + 0.0×C1×D0 + 0.04944×C1×D1 + 0.0×C0×FxI0 + 0.0×C0×FxI1  

+ 0.0×C1×FxI0 - 0.19368×C1×FxI1 + 0.0×D0×H0 + 0.0×D0×H1 + 0.0×D1×H0  

+ 0.10692×D1×H1 + 0.0×D0×K0 + 0.0×D0×K1 + 0.0×D1×K0 -0.10452×D1×K1  

+ 0.0×D0×L0 + 0.0×D0×L1 + 0.0×D1×L0 + 0.1711×D1×L1 + 0.0×E0×J0  

+ 0.0×E0×J1 + 0.0×E1×J0 -0.02012×E1×J1 + 0.0×G0×L0 + 0.0×G0×L1  

+ 0.0×G1×L0 + 0.05994×G1×L1 + 0.0×H0×I0 + 0.0×H0×I1 + 0.0×H1×I0  

- 0.00749×H1×I1 

 
^
V = 0.9738 + 0.0×B0 - 0.3348×B1 + 0.0×E0 + 0.128×E1 + 0.0×F0 + 0.0747× F1  

+ 0.0×A0×L0 + 0.0×A0×L1 + 0.0×A1×L0 - 0.1251×A1×L1 + 0.0×B0×E0   

+ 0.0×B0×E1 + 0.0×B1×E0 - 0.3745×B1×E1 + 0.0×C0×FxI0 + 0.0×C0×FxI1  

+ 0.0×C1× FxI0 + 0.1462×C1×FxI1 + 0.0×F0×G0 + 0.0×F0×G1 + 0.0×F1×G0  

- 0.2421×F1×G1 + 0.0×F0×J0 + 0.0×F0×J1 + 0.0×F1×J0 - 0.1575×F1×J1 

 

A0, A1,  B0, B1, C0, C1, D0, D1, E0, E1, F0, F1, G0, G1, H0, H1, FxI0, FxI1, I0, I1, J0, J1, 

K0, K1, L0, L1   {0, 1} 
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3. For RF_P: 

0≥V

0≥E

  ≤ |4-E|

s.t.
)10|4-E(|)V(  Min

^

^

^

4
^^

�

�� �

 

 
^
E = 2.21039 + 0.0×B0 + 1.14622×B1 + 0.0×G0 - 0.336×G1 + 0.0×A0×C0  

+ 0.0×A0×C1 + 0.0×A1×C0 - 0.0648×A1×C1 + 0.0×A0×D0 + 0.0×A0×D1  

+ 0.0×A1×D0 + 0.02067×A1×D1 + 0.0×A0×F0 + 0.0×A0×F1 + 0.0×A1×F0  

+ 0.14443×A1×F1 + 0.0×D0×G0 + 0.0×D0×G1 + 0.0×D1×G0 - 0.28473×D1×G1  

+ 0.0×D0×H0 + 0.0×D0×H1 + 0.0×D1×H0 - 0.03773×D1×H1 + 0.0×E0×J0  

+ 0.0×E0×J1 + 0.0×E1×J0 - 0.19155×E1×J1 + 0.0×E0×K0 + 0.0×E0×K1  

+ 0.0×E1×K0 + 0.2755×E1×K1 + 0.0×F0×G0 + 0.0×F0×G1 + 0.0×F1×G0  

+ 0.78802×F1×G1 + 0.0×H0×L0 + 0.0×H0×L1 + 0.0×H1×L0 + 0.35347×H1×L1  

+ 0.0×FxI0×J0 + 0.0×FxI0×J1 + 0.0×FxI1×J0 + 0.03955×FxI1×J1 

 

 
^
V = 1.34133 + 0.0×B0 - 0.4681×B1 + 0.0×E0 - 0.04494×E1 + 0.0×F0 + 0.03145×F1 

+ 0.0×G0 + 0.37407×G1 + 0.0×H0 + 0.10554×H1 + 0.0L0 + 0.02674×L1  

+ 0.0×A0×B0 + 0.0×A0×B1 + 0.0×A1×B0 - 0.20476×A1×B1 + 0.0×B0×H0  

+ 0.0×B0×H1 + 0.0×B1×H0 - 0.36689×B1×H1 + 0.0×C0×J0 + 0.0×C0×J1  

+ 0.0×C1×J0 - 0.03134×C1×J1 + 0.0×D0×FxI0 + 0.0×D0×FxI1 + 0.0×D1×FxI0  

+ 0.11262×D1×FxI1 + 0.0×F0×G0 + 0.0×F0×G1 + 0.0×F1×G0 - 0.54187×F1×G1  

+ 0.0×G0×L0 + 0.0×G0×L1 + 0.0×G1×L0 - 0.39874×G1×L1 + 0.0×I0×K0  

+ 0.0×I0×K1 + 0.0×I1×K0 - 0.0281×I1×K1 

 

A0, A1,  B0, B1, C0, C1, D0, D1, E0, E1, F0, F1, G0, G1, H0, H1, FxI0, FxI1, I0, I1, J0, J1, 

K0, K1, L0, L1   {0, 1} 
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4. For RF_X: 

0≥V

0≥E

  ≤ |4-E|

s.t.
)10|4-E(|)V(  Min

^

^

^

4
^^

�

�� �

 

 
^
E = 2.54290 + 0.0×A0 + 0.01012×A1 + 0.0×B0  + 0.40558×B1 + 0.0×F0  

+ 0.04993×F1 + 0.0×I0 - 0.05625×I1 + 0.0×B0×E0 + 0.0×B0×E1 + 0.0×B1×E0  

+ 0.1237×B1×E1 + 0.0×B0×F0 + 0.0×B0×F1 + 0.0×B1×F0 + 0.31725×B1×F1  

+ 0.0×B0×H0 + 0.0×B0×H1 + 0.0×B1×H0 + 0.19267×B1×H1 + 0.0×B0×I0  

+ 0.0×B0×I1 + 0.0×B1×I0 + 0.46075×B1×I1 + 0.0×B0×L0 + 0.0×B0×L1  

+ 0.0×B1×L0 + 0.15172×B1×L1 + 0.0×C0×E0 + 0.0×C0×E1 + 0.0×C1×E0  

- 0.0573×C1×E1 + 0.0×E0×G0 + 0.0×E0×G1 + 0.0×E1×G0 - 0.06538×E1×G1  

+ 0.0×E0×L0 + 0.0×E0×L1 + 0.0×E1×L0 + 0.02428×E1×L1 + 0.0×H0×L0 + 0.0×H0×L1   

+ 0.0×H1×L0 + 0.07567×H1×L1 

 
^
V = 1.01234 + 0.0×B0 - 0.690055×B1 + 0.0×F0 + 0.27677×F1  + 0.0×G0  

+ 0.32809×G1 + 0.0×A0×E0 + 0.0×A0×E1 + 0.0×A1×E0 - 0.096087×A1×E1  

+ 0.0×B0×FxI0+ 0.0×B0×FxI1 + 0.0×B1×FxI0 + 0.11807×B1×FxI1 + 0.0×D0×I0  

+ 0.0×D0×I1 + 0.0×D1×I0 + 0.06336×D1×I1  + 0.0×E0×F0 + 0.0×E0×F1  

+ 0.0×E1×F0 + 0.01085×E1×F1 + 0.0×F0×G0 + 0.0×F0×G1 + 0.0×F1×G0  

- 0.62482×F1×G1 + 0.0×F0×J0 + 0.0×F0×J1 + 0.0×F1×J0 - 0.207278×F1×J1  

+ 0.0×H0×I0 + 0.0×H0×I1 + 0.0×H1×I0 - 0.00822×H1×I1 + 0.0×H0×J0 + 0.0×H0×J1 

+ 0.0×H1×J0 + 0.09425×H1×J1 + 0.0×H0×K0 + 0.0×H0×K1 + 0.0×H1×K0  

- 0.23898×H1×K1 + 0.0×I0×L0 + 0.0×I0×L1 + 0.0×I1×L0 - 0.151301×I1×L1 

 

A0, A1,  B0, B1, C0, C1, D0, D1, E0, E1, F0, F1, G0, G1, H0, H1, FxI0, FxI1, I0, I1, J0, J1, 

K0, K1, L0, L1   {0, 1} 
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We have used MATLAB/BARON (2013) software to solve models based on different 

 values. The optimal solutions according to different  values are in Table 3.43. 

 

We have an opportunity to select the best parameter setting suitable for our purposes. 

So, if our main aim is to have the expected value to be very close to the target value, 

we can choose the 5th or 7th solutions since the expected values, which are calculated 

by using their expected value regression model, under these solutions are 3.9926 and 

3.9894, respectively. However, when the expected values of the 5th or 7th are calculated 

by using Equation (3.2) after predicting the probabilities from related Random Forests 

are 3.9430 and 3.3800, respectively. On the other hand, if our main purpose is to have 

the minimum variance, we can select 8th or 9th solutions since variance values, which 

is calculated with their regression model, of these solutions is lower than the others, 

they are 0.0163 and 0.0055 respectively. But, when we calculate the variance values 

of these solutions by using Equation (3.3) after predicting the probabilities from 

related Random Forests are 0.8693 and 0.8209, respectively. These analyses show that  

repeating the algorithm after collecting new data would increase the reliability of the 

model.
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One of the points to pay attention to here is that the worst results for both the expected 

value and the variance are in the solutions of the equal-weighted Random Forest; that 

is, RF_E. As seen in Table 3.43, solution numbers 1 and 2 are the worst solutions in 

terms of both the variance and the expected value. Furthermore, some of weighted 

Random Forests results could obtain epsilon very close to 0, while the best result of 

epsilon in RF_E is equal to 0.3915. As it is seen on Table 3.43, we have achieved 

satisfactory results based on both the expected value and the variance in the solution 

of all weighted Random Forests. Therefore, it would be more logical to choose one of 

the weighted Random Forests. By considering both optimization and classification 

performance of forests, we can determine which forest has to be selected. RF_X shows 

a slightly better performance than other Random Forests. So, we can select the 

exponentially-weighted Random Forest; that is, RF_X, as the method. Alternatively, 

RF_P also has satisfactory results and can be considered as another preferable one. 

RF_L can be considered as another alternative because the predicted probability of 

Class IV, the expected value, and the variance of one of the best solution of it result 

in good way. 

 

b) Obtain the optimal parameter settings by using SNR  

 

We also solve the problem to achieve the best parameter design by using SNR method. 

For that purpose, ordinary least squares and response optimizer in Minitab 18 (2018) 

is used to fit the model. During fitting the SNR models stepwise regression is used for 

the starting point and for further iterations is generated based on p-values. Different 

starting points for response optimizer are also tried to achieve the best parameter 

settings. Since we have four different Random Forest models, we also have four 

different SNR solutions. According to these different Random Forest models, SNR-

based solutions are given in Table 3.44. 

 

As it is seen from the table, each Random Forest gives a different solution. Since the 

models have very high R-Sq, R-Sq(adj), and R-Sq(pred) values, we can say that these 

four models are highly adequate. 
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The SNR values of the weighted Random Forests are better than that of the regular 

Random Forest, as we expected. It shows that giving weight to the classes is the 

important issue for the Random Forest method. Moreover, when we look at the 

classification performance of the models, OOB error estimate of Random Forest and 

also OOB error of Class IV (our class of interest) are better in RF_X than other 

weighted models. Therefore, it might be logical to choose the exponentially weighted 

Random Forest, RF_X. On the other hand, performance of RF_L and RF_P are also 

satisfactory.  

 

As it is observed, there are some insignificant factors for the solutions. Factor C, D, 

and H are insignificant for RF_E; factors E, J and K for RF_L; factors E, FxI, and K 

for RF_P; factor A for RF_X. We can set any appropriate values to these factors, but 

generally, economic levels are preferred.  

 

Two different optimization method, ε-Constraint and SNR methods are carried out to find 

the best parameter settings to have Class IV for the Duplicator Case. As we mentioned 

before, while in the SNR method, the expected value and variance are combined into a 

single objective function, SNR, in ε-Constraint method the expected value and variance 

are taken into account separately. One can choose any of these methods. 

 

Step 5: Confirmation of results and revisiting the problem 

 

When we examine results of both methods, it can be stated that most of their results 

are different from the tested ones while some of the others are same as the tested one. 

 

Since we borrow the data from study of Logothetis and Wynn (1994), we do not have 

the chance to replicate the optimal solutions. For solutions that are different from the 

tested ones, different ways mentioned in Section 3.1 (Step 5) can be performed for 

confirmation. On the other hand, for the optimal solution that are same the tested one, 

Logothetis and Wynn (1994) have run the parameter design for 4 times, and they have 

obtained 4 times Class IV. Like Case Study-I and II, we apply Exact Multinomial Test 

to confirm our results with Logothetis and Wynn’s replications. During the test R-
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studio (R Core Team, 2017), which use Monte Carlo approach, is used. For 

aforementioned experimental design, we have found p-value as 1. This means that fail 

to reject the null hypothesis, that is there is no difference between our result and 

Logothetis and Wynn’s replication. Moreover, we have observed that the reliability of 

the test increases when the number of experiments is increased. 

 

Our problem is the Larger-the-Better type, so we are seeking the parameter designs 

that feed maximum number of sheets to a duplicator, and this case refers to Class IV. 

So, our aim is to find the parameter designs that give the highest probability of Class 

IV, and also, we would like to have an expected value that is as close as possible to 4, 

minimum variance and maximum SNR values. As we expected, Random Forests, 

whose weights of Class IV are higher, find the solution with higher SNR values. We 

can conclude that, while giving weights to the classes, especially giving more weight 

to our class of interest increases the prediction power of the class, since their SNR 

values are higher than those of the unweighted Random Forest. The results show that 

the estimated values of SNR are higher in weighted Random Forests than the regular 

Random Forest. 

 

This example data set is also analyzed before by Karabulut (2013) by using Logistic 

Regression method, and she obtains the best parameter design as B1F1K0L1. In her 

solution estimates the probability of Class IV is 0.99, while the estimated expected 

value, variance and SNR value were 3.9841, 0.0765 and 11.9835, respectively. 

 

In our solutions, we obtain the parameter designs whose expected value is equal to 

3.9926 and the variance equals to 0.0055, which are two of the optimal solution of  

ε-Constraint method of RF_P and RF_X given in Table 3.43 with solution numbers 5 

and 9 ( A1B1C0D0E0F1G1H0FxI1I1J1K1L1 and A1B1C0D1E0F1G1H1FxI0I1J1K1L0), 

respectively. In SNR method, we obtain the best SNR value as 11.9070 in RF_X 

solution B1C0D0E1F1G1H0FxI0I1J0K0L1. So, we can say that we achieved some better 

solutions as well as some worse ones compared with Karabulut’s solutions. Common 

factors of Karabulut’s and our results are generally at the same level. An appropriate 

way to compare the performance of the two approaches is to collect the data at the 
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optimal solutions of these two approaches separately and then analyze which of the 

two data obtain closer to the mean and variance of the classes. 
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CHAPTER 4 

 

 

       DISCUSSION 

 

 

In the light of this study, we focus on obtaining optimal parameter settings of a 

product/process the responses of which are ordered as categorical values. Our 

proposed method has been tested on three case problems, and for all cases, the best 

solutions, i.e. parameter designs, have been found. By means of the weighting property 

of the Random Forest method, it has been possible to achieve the desired target values 

or values very close to those targets for each case. It has also been possible to obtain 

desirable results in terms of the response variance. Since each case is different than 

each other, the method shows different performance for each case.  

 

Optimal solutions for all cases are given in Table 4.1. The table provides results of 

performance measures EV, Var and SNR at the optimal solutions obtained according 

to optimization of each of them separately. In other words, each EV value in the table 

is the EV at the optimal solution of the ε-Constraint method that gives the best EV; 

similarly each Var value in the table is the variance values at the optimal solution of 

the ε-constraint method that gives the minimum Var value; and each SNR value in the 

table is the SNR values at the optimal solution of maximization of SNR problem for 

related cases. Making general inferences from this table is not easy but if we are to 

make an evaluation for only our cases: 

 

• The optimal solutions according to the expected value generally emerge from the 

models whose weights are exponentially distributed, 

• The optimal solutions according to the variance are generally observed in the models 

whose weights are exponentially distributed, 

• The optimal solutions according to SNR values generally appear from the models 

whose weights are exponentially distributed.    
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As mentioned before, we can give weights according to our preference, but these 

weights would always change depending on problems or the decision maker. 

Furthermore, it is not the right approach to make generalizations based only on these 

results. These results are valid only for the cases we used. To be on the safe side, for 

our cases, to choose exponentially weighted Random Forests might be logical since 

the optimal results emerge from generally in that. 

 

When we want to analyze the relation between weighting strategies and differences 

between the expected value and target, we can give a graph (Figure 4.1) of the 

differences between the expected value and target value for each case and each 

weighting strategy.  

 

 
Figure 4.1. Differences Between Target Value and the Expected Value for Each Case 

 

 

According to the Figure 4.1, it is clearly seen that giving weights to the classes, 

especially giving the highest weight to our class of interest, helps us converge to our 

target in a more precise fashion. 
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The graph of variance is given in Figure 4.2. According to this graph, while we give a 

higher weight to our class of interest, the variance value of the model decreases (Here, 

in some cases, variances are sometimes negative, but since they are very close to zero, 

we can assume these values to be equal to zero). 

 

 
Figure 4.2. The Best Variance Value for Each Case 

 

 

Furthermore, when the results of the cases are examined, it is seen that all Random 

Forest models (RF_E, RF_L, RF_P, and RF_X) in the Surface Defect case achieves 

the optimal expected value, that is 1. Also, optimal variance values are generally very 

close to optimal value, that is 0, for all Random Forest models in the Surface Defect 

case compared with the other cases. The Inkjet Printer Case exhibits a slightly better 

performance than the Duplicator Case, since, in the Inkjet Printer case, the estimated 

expected values are obtained at its optimal value, that is 4, for some weighted models, 

while in Duplicator Case, the estimated expected value has approached to 4 but not 

exactly attained this value. To find the reason of this situation, we analyze some 

features of data sets; sizes, the number of factors and classes, etc., and the results of 

the analysis is given in Table 4.2. When we examine the table, it is seen that the data 

size of the Surface Defect Case is larger than other cases. Also, in this case, the data 
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has a relatively more balanced distribution with regard to classes. In addition to that, 

in this case, the largest number of observations are under our class of interest. On the 

other hand, the Inkjet Printer case has the second largest number of observations, while 

this number is minimum for the Duplicator Case. Moreover, the distribution of the 

observations on classes is slightly more balanced in the Inkjet Printer case than in the 

Duplicator Case. 
 
From these views, we can say that the size of data and distribution of the classes have 

a considerable importance for the Random Forest method. In other words, the Random 

Forest method runs efficiently, when the size of data is large and data is balanced. 

 

One of the questions that arises while using Random Forest is how to decide the 

weights. Indeed, weights are determined according to the opinion of the decision 

makers. Based on each problem and who the decision maker is, the importance of the 

classes and, in parallel, weights of the classes are changed. However, in our study, 

there are no decision makers, but we choose three (total four different strategies when 

we add the Random Forest with equal weight, i.e. RF_E) different methods that are 

based on different distributions (linear, piecewise linear and exponential). However, 

if you need advice as to how to determine the weights of classes, you can follow one 

of the methods below: 

 

1. The decision maker can specify the importance of the classes by using AHP 

(Analytic Hierarchy Process), and then he/she can use the results of it. 

2. The decision maker can decide the weights of the classes according to 

sensitivity levels of the weights. So, if the result changes significantly, even 

if the weights of classes exhibit small changes, the decision maker can decide 

on weights according to these critical points. 

3. If weights are very sensitive, by doing confirmation tests, the decision maker 

can decide on weights by conducting confirmation tests, if possible.
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In addition, non-linear multi-objective optimization is one of the methods we used 

while finding optimal parameter design of products (or processes). For this method, 

we apply the ε-Constraint Method. By using this approach, we could solve our 

problems by converting our two-objective problem (desired expected value and 

minimum variance) to a one-objective problem. We try to minimize the variance at 

the objective function, and in the constraint, we try to provide a difference between 

the desired target value and the expected value as small as possible (in our study, to 

get more robust solutions, we added the constraint related to the expected value to the 

objective function with a very small coefficient). However, there emerges yet one 

more parameter to decide on, and this parameter is ε. This situation changes from case 

to case. In cases where we have to get the adequate fits, ε becomes 0; in our study, ε 

reaches about 0.7 for some cases. In that stage, to decide on the value of ε, firstly, we 

try to obtain the smallest value of ε, where the model is feasible (here, ε is considered 

as the decision variable instead of the parameter). Then, we try to choose the smallest 

ε value and the closest values to it. Here, a new question may arise: why do not we 

take ε as the decision variable from the beginning of the study, instead of taking as the 

parameter? The answer to this question is, as we mentioned at the beginning of the 

study, to obtain different solutions for our different aims (desired expected value and 

minimum variance) and to compare them, in order to provide different solutions for 

the decision maker for his/her different targets. 

 

Furthermore, after applying the method, we also need to check the performance of the 

method. If the method we use were a parametric method, data would be expected to 

fit a distribution. So, the prediction power of the model could be tested by using 

prediction intervals, confidence intervals, and confirmation intervals. However, since 

our method is non-parametric, the data do not have to fit a certain distribution, and for 

that reason, we cannot use these intervals for evaluation. But, we should test the power 

of the method.  In the study, before examining all cases, we use some performance 

indicators that are commonly used in almost all data mining techniques.  However, for 

an unseen data, we can also analyze the power of the model in the following ways: 
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1. Firstly, the model is controlled; whether there are some mistakes or training 

is done properly. After that, by changing the weights, it is controlled again 

and its prediction power is evaluated.  

2. Cross validation measures can be used. We can look at the power of train and 

test sets separately (this power value could be an indicator of accuracy which 

gives the correctly classified percentage of classes). And, the value below is 

expected to be smaller than or equal to a threshold value that is decided on by 

the decision maker. If the value is worse than this threshold value, we can 

make changes on weights until reaching the desired threshold value. 

 

PTrain −PTest

PTrain

*100 ≤ THRESHOLD  

 

3. We can insert this unseen data to the train set, and we train again; after that, 

we can change the weights until achieving the desired threshold value. 

4. For the cases where  PTrain −PTest
 value is very large, Steinberg (2017) 

suggested the following: 

o We can change the threshold value 

o We can grow a smaller forest 

o We can remove some predictors that affect the model very strongly 

 

Moreover, we can develop the model, and if it is possible, we can make the data bigger. 

These manipulations can decrease the differences between the train and test set and, 

accordingly, it can strengthen the model. 

 

Finally, the method we use; that is Random Forest, is, as a matter of fact, a method 

that is easy to implement in many ways. It is applied to all types of data, because of 

being a non-parametric method. This is one of the features that facilitates our work. 

Being applicable to data both the responses and the parameters of which are 

continuous or categorical is another important feature of our method. Removing the 
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imbalance by giving weights allows us to test the cases for different situations easily. 

Moreover, to be able to make analyses, many software packages enable us to compare 

the cases in a different environment. 

 

Within the scope of this study, R-Studio, which gives us probability values, weights, 

images, graphs, etc., is preferred to provide integrity for all analyses. Also, during the 

study, Random Forest is tested with Rapid Miner, Salford System, WEKA, and 

MATLAB for testing. However, there have been difficulties encountered in 

implementing the method. For example, the number of trees that should be in the forest 

does not have a certain rule, so the best number is obtained as a result of many 

experimentations. It sometimes takes too much time, and there is no mechanism to test 

whether it reaches the best value. Secondly, as pointed out, weights are a decision that 

should be made by the decision maker. Since they can be quite varied, many different 

strategies can be developed. These changes may affect the results. Lastly, since 

Random Forest contains hundreds or even thousands of independent trees, it does not 

give all single trees as an output. This causes us not to be able to follow the developed 

algorithm behind the method completely. 
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CHAPTER 5 

 

 

  CONCLUSION AND FURTHER STUDIES 

 

 

In this study, we propose a new Robust Parameter Design method for products and 

processes with a single ordered categorical response. For that, we try to find the best 

parameter settings based on the ε-Constraint and the SNR methods by using the 

probabilities, expected values, and variances obtained from Random Forests. The 

method is investigated by applying it on three cases. After that, we have compared our 

results with those of Karabulut (2013) obtained by using Logistic Regression and other 

four different ANOVA-based methods. Moreover, now that our proposed method is 

based on a data mining technique, we analyze the performance of our method with the 

common criteria which is used to observe the performance of almost all data mining 

techniques. According to our aim, we are able to give the weights to classes as a result 

of the advantage that is provided to us by the Random Forest method. Three different 

weighting strategies other than equal weighting strategies are applied to all cases, and 

then their results are compared with those of the unweighted Random Forest. 

 

In every case used in our study, we observe that when we use the exponential 

distribution strategy for our class of interest to which we assign the largest weight 

among other classes, we can estimate our class of interest with the highest probability, 

and obtain an expected value that is very close (or equal) to the value we desire. With 

this weighting method, we are able to reduce the misclassification rate of our class of 

interest as much as possible. 

 

The proposed method is tested on three different cases. One of them is Smaller-the-

Better type problem, and the other two are Larger-the-Better type problems. There is 

no evidence whether the method performs better for any type of problem. The number 

of classes and the distribution of these are also different for each case. In some cases, 
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classes have a closer number of observations (slightly more balanced data set), while 

in some cases there are considerable differences in the number of observations among 

the classes. We apply the same weighting strategies to all cases, and then, observe the 

differences of the strategies and how these differences affect the performance of the 

method. We realize that the Random Forest shows better performance in slightly more 

balanced data sets. In addition, in the cases we used, it is seen that the number of trees 

used in the forest does not affect the results significantly. However, for the sake of 

further research, the number of trees that should be used in the forest can be studied. 

Moreover, for the data sets which have the missing value, the internal properties of 

the Random Forest algorithm can be used. It must be underlined that we chose not to 

exhaust the hypothesis in our study. Moreover, data sizes, the number of parameters, 

the number of classes and the number of experimental runs used in data are different 

from each other as well. But there are no signs regarding the effect of these factors on 

the performance of the method to make an overall assessment. Also, since Random 

Forest is a random algorithm, it can be possible to obtain different results for different 

runs. In our study, Random Forest has been rerun numerous times to obtain better 

(low) OOB error. Furthermore, we could obtain different alternative solutions by 

changing the value of ε in the ε-constraint method. According to the types of problems, 

no performance difference has been observed in either optimization method (ε-

Constraint and SNR methods). Therefore, the proposed method can be analyzed with 

more problems, and the performance of all these properties and methods against the 

problem types can be examined. Both of our optimization methods are important, 

because they evaluate both the location (mean) and the dispersion effect (variance) 

separately. In addition to that, these optimization methods are applicable to many 

common software programs. 

 

Moreover, our proposed method is a strong approach in many ways. There is no 

importance of parameters and responses being categorical or continuous, and the 

method is applicable to all sorts of the data types. Since our method is a tree-based 

method, it is a data hungry method as is the case for Decision Tree. Therefore, a more 

accurate prediction requires more trees which might result in the slower model and 
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require more memory. However, it can also show satisfactory performance for small 

data (the method split the data as the train and test by itself. This is the usable property 

for the small data sets). But, of course, it performs better in large data sets. Conducted 

experiments prove that the accuracy of the Random Forest method reaches 97-98% in 

large data sets. In most real-world applications the Random Forest algorithm is fast and 

simple enough, but there can certainly be situations for which it is hard to use Random 

Forest. For example, there is no rule to decide some parameters that are used during 

applying Random Forest. These parameters are number of split value, number of trees 

used in the algorithm, and weights that are given to classes. The values of these 

parameters are change based on data type and decision maker. For the number of split 

value, Breiman (2001) offers some rules, but he also emphasizes that these rule can be 

changeable according to data set used. For the number of trees used in the forest and 

weights that are given to classes, there is no rule to decide. These parameters are based 

on the data set and also need to be decided by the user. Because of these properties, one 

can prefer to not use the Random Forest method. 

 

Our study, which offers a new method for Robust Parameter Design problems, is not 

a comparative study. Instead of showing that Random Forest algorithm can give better 

results than the other algorithms, the main objective of the study is to show that 

Random Forest use can also provide meaningful results. The sample cases for which 

LR shows significant results are selected. Moreover, by selecting the cases where LR 

shows a relatively weak performance, it can be shown whether the Random Forest 

algorithm performs better or not. Furthermore, the performances of the methods can 

be compared using the examples where the Random Forest can be weak and LR can 

be more successful. For a meaningful comparison, the variables can be accepted on 

the original scales in both approaches because both methods are suitable for both types 

of variables. Since we do not aim to make comparisons, we have set the variables in 

their original values using the properties of Random Forest. 

 

Furthermore, we apply our proposed method to only Smaller-the-Better and Larger-

the-Better types of problems, which have the ordinal responses, but there also exists 
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Nominal-the-Best types of problems. We did not have the opportunity to investigate 

such problems in our study, but Erdural (2006) gives some advice for such types of 

problems. First, we can set our class of interest as the preferred class, and the others 

can be set as non-preferred ones. That way, we can convert a nominal case to a binary 

case. The other suggestion is to convert the nominal case to an ordinal case by ranking 

the responses upon our wish. For both cases, our method would work; so, in further 

studies, our method can be applied to Nominal-the-Best cases. 

 

Finally, Random Forest is an ensemble method which is unique to the decision tree. 

The software we use (R-Studio) generates the trees in the forest according to CART 

algorithm. In further studies, other decision tree methods (ID3, C4.5, C5.0) can be 

used, and whether or not the type of tree affects the performance of the method can be 

investigated. For Robust Design studies, different data mining techniques can be 

applied to the ensemble. The ensemble of Random Forest and different data mining 

techniques can even be a double ensemble. 

 

As a result, Robust Design studies about categorical responses are few, albeit they are 

increasing in number day by day. Since the Random Forest method has not been used 

before in such problems, our study contributes to the area of Robust Parameter Design.
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APPENDIX A 

PSEUDOCODE OF ALGORITHMS 

 

 

 

      T is number of iteration 

      S is the original data set 

      L is the sample size 

      M is the class that is the result of a used classification method 

 

      Step 1: t � 1 

      Step 2: St a sample of L instances from S with replacement 

      Step 3:  Construct classifier Mt with St as the training set 

      Step 4: t � t+1 

      Step 5: until t � T 

 

     Let, 

     x is an instance to be classified 

     C is predicted class 

 

1. Initially, set votes for all class as 0 

2. For i=1 to T 

3. votei � Mi (x) {get predicted class from member i} 

4. Increase by 1 the counter of corresponding class 

5. C � the class with the largest number votes 

Figure A.1. Pseudocode of Bagging Algorithm 
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1. For b = 1to B ; number of trees: 

 

(a) Draw a bootstrap sample Z* of size N from the training data 

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively 

repeating the following steps for each terminal node of tree, until the 

minimum node size nmin is reached. 

 

i. Select m variables at random from the p variables. 

ii. Pick the best variable / split-point among the m. 

iii. Split the node into two daughter nodes. 

 

where p is the total number of variables (parameters) of the product/process 

2. Output the ensemble of trees {Tb}. 

To make a prediction at a new point x:  

 

Regression: � � � �
^

1

1B B

brf
b

f x T x
B �

� � .    

Classification: Let � �
^

bC x  be the class prediction of the bth random 

forest tree when x is passed down the bth random forest tree. 

Then  � � � �& '^ ^
majority vote 

BB

rf bC x C x�  

Figure A.2. Pseudocode of Algorithm of Random Forest for Regression and 
Classification 
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APPENDIX C 
 

RESULTS FOR THE SURFACE DEFECTS CASE 

 

C.1. Variable Importance Plots of Different Random Forests for the Surface 

Defects Case  

 

 
Figure C.1. Variable Importance Plot of RF_E for the Surface Defects Case 

 

 

 
Figure C.2. Variable Importance Plot of RF_L for the Surface Defects Case 
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Figure C.3. Variable Importance Plot of RF_P for the Surface Defects Case 

 

 

  
Figure C.4. Variable Importance Plot of RF_X for the Surface Defects Case 
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APPENDIX D 
 

RESULTS FOR THE INKJET PRINTER CASE 

 

D.1. Variable Importance Plots of Different Random Forests for Inkjet Printer 

Example  

 

 
Figure D.1. Variable Importance Plot of RF_E for the Inkjet Printer Case 
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Figure D.2. Variable Importance Plot of RF_L for the Inkjet Printer Case 

 

 

 
Figure D.3. Variable Importance Plot of RF_P for the Inkjet Printer Case 
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Figure D.4. Variable Importance Plot of RF_X for the Inkjet Printer Case 
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APPENDIX E 
 

RESULTS FOR DUPLICATOR EXAMPLE 

 

E.1. Variable Importance Plots of Different Random Forests for the Duplicator 

Case  

 

 
Figure E.1. Variable Importance Plot of RF_E for the Duplicator Case 
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Figure E.2. Variable Importance Plot of RF_L for the Duplicator Case 

 

 

 
Figure E.3. Variable Importance Plot of RF_P for the Duplicator Case 
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Figure E.4. Variable Importance Plot of RF_X for the Duplicator Case 
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