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ABSTRACT

DOMAIN ADAPTATION ON GRAPHS BY LEARNING ALIGNED GRAPH
BASES

Pilancı, Mehmet
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Elif Vural

May 2018, 70 pages

In this thesis, the domain adaptation problem is studied and a method for domain
adaptation on graphs is proposed. Given sufficiently many observations of the label
function on a source graph, we study the problem of transferring the label information
from the source graph to a target graph for estimating the target label function. Our
assumption about the relation between the two domains is that the frequency content
of the label function, regarded as a graph signal, has similar characteristics over the
source and the target graphs. We propose a method to learn a pair of coherent bases
on the two graphs, such that the corresponding source and target graph basis vectors
have similar spectral content, while “aligning” the two graphs at the same time so that
the reconstructed source and target label functions have similar coefficients over the
bases. We formulate the basis learning problem as the learning of a linear transfor-
mation between the source and target graph Fourier bases so that each source Fourier
basis vector is mapped to a new basis vector in the target graph obtained as a linear
combination of the target Fourier basis vectors. One synthetic dataset, two image
datasets and one book review dataset are used to test the performance of the proposed
algorithm. Besides, baseline machine learning methods and recent domain adapta-
tion algorithms are utilized to compare the performance of the proposed algorithm
with the methods in the literature. Experiments on several types of data sets suggest
that the proposed method compares quite favorably to reference domain adaptation
methods. To the best of our knowledge, our treatment is the first to study the domain
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adaptation problem in a purely graph-based setting with no need for embedding the
data in an ambient space. This feature is particularly convenient for many problems
of interest concerning learning on graphs or networks.

Keywords: Domain adaptation, data classification, graph Fourier basis, graph Lapla-
cian, spectrum transfer.

vi



ÖZ

HİZALANMIŞ GRAF TABANLARI ÖĞRENEREK GRAFLAR ÜZERİNDE
ALAN UYARLAMA

Pilancı, Mehmet
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Elif Vural

Mayıs 2018 , 70 sayfa

Bu tezde, alan uyarlaması problemi üzerine çalışılmıştır ve graflar üzerinde alan uyar-
laması için bir metot önerilmiştir. Kaynak graf üzerinde yeterli miktarda gözlem bu-
lunduğunda, hedef etiket fonksiyonunu kestirmek için kaynak graf üzerindeki etiket
bilgisini hedef grafa taşıma problemi çalışılmıştır. Graf sinyali olarak adlandırılan eti-
ket fonksiyonunun frekans içeriğinin, kaynak ve hedef alanlarda benzer karakteristiğe
sahip olduğuna dair bir varsayımımız bulunmaktadır. Önerilen yöntemde iki graf aynı
anda hizalanarak kaynak ve hedef etiket fonksiyonları graf tabanları üzerinde benzer
katsayılara sahip olacak şekilde kestirilmektedir. Graf tabanları öğrenilirken birbirle-
rine karşılık gelen kaynak ve hedef vektörlerin benzer spektral içeriğe sahip olmasına
dikkat edilmektedir. Taban öğrenme problemi kaynak ve hedef Fourier tabanları ara-
sında lineer bir dönüşüm olarak formüle edilmiştir. Buradaki formülasyonda her bir
kaynak Fourier taban vektörü, hedef Fourier taban vektörlerinin lineer kombinasyon-
larından elde edilen yeni bir hedef taban vektörüne eşlenmiştir. Önerilen algoritmanın
performansını test etmek için bir sentetik veri kümesi, iki ayrı görüntü veri kümesi ve
bir adet kitap yorumu veri kümesi kullanılmıştır. Ayrıca, önerilen algoritmanın per-
formansı temel yapay öğrenme algoritmaları ve güncel alan uyarlama algoritmaları
ile karşılaştırılmıştır. Farklı tipteki veri kümeleri üzerinde uygulanan deneyler, öneri-
len metodun referans alan uyarlama metotlarından daha iyi performans gösterdiğini
ortaya koymuştur. Bildiğimiz kadarıyla, bizim yaklaşımımız alan uyarlaması proble-
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minde, verileri bir ortam uzayına yerleştirme ihtiyacı olmadan, tamamen graf tabanlı
yapılan ilk çalışmadır. Bu özellik, graflar ve ağlar üzerinde öğrenmeye dayalı prob-
lemler için bilhassa uygundur.

Anahtar Kelimeler: Alan uyarlama, veri sınıflandırma, graf Fourier tabanı, graf Lap-
lacian, spektrum aktarma.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the last decades, the amount of available data in multimedia, social network, trade,

shopping and many other fields has increased enormously with the help of Internet

and mobile technologies. There is a stream of data which is being uploaded on Inter-

net at each second, which consists of images, sound records, videos. Besides, there is

another type of data growing on Internet each moment, which is user experience data.

People make comments on what they bought, used, experienced in order to inform

others.

There are various efforts in the machine learning field so as to extract useful informa-

tion out of this huge amount of data. In machine learning problems, a large number

of training data is needed to learn the intrinsic features of the data. However, the

amount of available labeled data is limited in many cases and getting labeled data

is an expensive work. Therefore, it is helpful to utilize unlabeled data as well, and

domain adaptation comes into play at this stage. In domain adaptation, it is aimed

to transfer the information gained in one domain, which is called the source domain,

to another domain which is called the target domain. In a typical domain adaptation

task, there are many labeled instances in the source domain and there are a few or no

labeled instances in the target domain. Domain adaptation is accepted as a sub-field

of Transfer Learning whose setting is demonstrated in Figure 1.1

In classical machine learning algorithms, training parameters are used to model the

probabilistic distribution models of the data and it is assumed that test data also share
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Figure 1.1: Transfer Learning Setting [1]

the same probabilistic distribution. Therefore, if there are a few or no labeled samples

in one domain, T , it is not possible to apply traditional machine learning algorithms.

However, if there are enough labeled samples in another but related domain, S, do-

main adaptation techniques can be applied to label the instances in domain T .

A widely known example in domain adaptation is spam filtering in e-mail box. Spam

filtering parameters for one specific person are inferred from other public spam e-

mailing data. Although public spam e-mail data and the spam e-mails in one specific

person’s inbox belong to different domains, spam prediction can be applied success-

fully by using the public data. Another famous example is from natural language

processing. Processing text in English can help to process text in German by the help

of domain adaptation methods. There are many other domain adaptation applications

such as image classification, semantic analysis, etc.

Graph theory models have been used in machine learning and data retrieval researches

recently [2]. In machine learning, a graph is used to represent the distribution of data

points in a space and how each data point is related to its neighbours. To put it

another way, graphs in machine learning provide us an overview of the structure of a

dataset. All the points in a graph which was constituted from data points of a dataset

have a label. The label change across a graph contains some valuable information.

The change characteristics of labels across a graph is retrieved by using graph Fourier

transform, which resembles the Fourier Transform in signal processing. That is, graph
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Fourier transform is used to identify how fast the label function changes across the

graph, which captures the spectral characteristics of the label function.

In this thesis, we propose a new domain adaptation method, where we consider a

source graph and a target graph representing the source and target data. We consider

the problem of estimating a function, such as a label function, especially on the target

graph where very few observations are available. Our assumption about the relation

between the source and target domains is that the spectrum, i.e., the frequency con-

tent, of the label function has similar characteristics over the source and the target

graphs. Then, given the observations of the label function on the source graph, we

estimate the label function on the target graph under the prior that its frequency spec-

trum resembles that of the source graph. Frequency analysis on graph domains is

now a well-established framework, thanks to the recent advances in the field of graph

signal processing. The convergence of the graph Laplacian operator to the contin-

uous Laplace-Beltrami operator on manifolds has been studied in several previous

works [3], [4]. Then, characterizing the Fourier basis vectors as the eigenvectors of

the Laplacian operator, the Fourier transform and Fourier bases can be extended to

graph domains via the eigenvalue decomposition of the graph Laplacian matrix [5],

[6], [7]. In fact, the notion of smoothness, or smoothly-varying functions on graphs

has been essential to many dimensionality reduction and semi-supervised learning

methods [8], [9], [10] for a long time. Graph-based semi-supervised learning algo-

rithms in a single domain typically rely on the assumption that the label function

to be estimated has a smooth variation, i.e., is a slowly changing function, on the

graph. This assumption has also been employed in several domain adaptation algo-

rithms benefiting from a graph model, such as in [11], [12], [13]. Meanwhile, the

validity of the smoothness assumption is questionable in the general sense. For in-

stance, in Figure 1.2, a generic face manifold is illustrated, where the face images of

different individuals may get arbitrarily close to each other due to extreme lighting

conditions. It can then be observed that the label function to be estimated has fast

variation along certain directions on the data graph, therefore, its spectrum contains

some non-negligible high-frequency content as well. While the assumption that the

label function should vary slowly on the graph is reasonable especially in a single

domain where no information about its spectral content is available, the spectrum can

3



Figure 1.2: Illustration of a generic face manifold. Face images of three different
individuals are indicated with different colors. While the class label function varies
slowly along the direction shown in blue, it has a relatively fast variation along the
red direction. (Face images from Extended Yale face database [14])

actually be learnt in a setting with more than one domain. Our work is then based on

the idea of learning the spectral content of the label function from the source graph,

and transferring it to the target graph for more accurate estimation.

In this thesis, we propose a novel method for graph domain adaptation that learns a

relation between the source and target graphs without assuming any prior information

of node correspondences or high similarity between the two graphs. Given a source

and a target graph that are independently constructed, we propose to learn a pair of

“aligned” bases on the two graphs through which information can be transferred or

shared between the two graphs. In particular, the “aligned” source and target bases

are such that the coefficients of the source and target label functions when represented

in the corresponding bases must be similar. We formulate the basis learning problem

as the learning of a linear transformation between the source and target graph Fourier

bases so that each source Fourier basis vector is mapped to a new basis vector in the

target graph obtained as a linear combination of the target Fourier basis vectors. The

learning of this transformation then becomes a key problem of the proposed scheme.

In particular, the linear transformation to be learnt must be sufficiently flexible to

indeed “align” the two graphs even if they are independently constructed, while re-

taining the capability of transferring the spectral content of the label function between
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the two graph bases. In order to achieve this, we impose suitable priors on the linear

transformation, and then learn the transformation matrix jointly with the source and

target label functions under the constraint that the source and target label functions

must have similar coefficients over the learnt bases. The resulting objective function

is not jointly convex in the coefficients and the transformation matrix; nevertheless, it

is separately convex in one when the other is fixed. We minimize the objective with

an alternating optimization procedure.

1.2 Thesis Outline

The goal of this thesis is to study the domain adaptation problem for graph domains,

and propose a domain adaptation solution that allows the transfer of knowledge be-

tween graph domains.

In Chapter 2, domain adaptation literature is overviewed. The possible solutions to

the investigated problems in this work are described. Recent domain adaptation algo-

rithms are introduced and the logic behind them are stated.

In Chapter 3, the technical background for this thesis is provided. At this point,

the essential points in graph signal processing are introduced. Firstly, graph Fourier

analysis is presented since this is the basics of spectral graph applications. Then,

signal representations in the vertex and spectral domains, which are counterparts of

the time and frequency domains in traditional signal processing, are described. And

then, some useful operators in graph signal processing such as the Laplace operator

are defined.

After overviewing the existing solutions in domain adaptation and providing the tech-

nical background for graph signal processing in Chapters 2 and 3, our novel algorithm

for graph domain adaptation problems is defined in Chapter 4. At this point, the

derivation and solution of our optimization problem are stated in details.

In Chapter 5, the performance of our algorithm is tested and compared to other do-

main adaptation techniques and classical machine learning methods in four different

datasets. The first dataset is a synthetic dataset, which is generated for this study in
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order to examine the baseline performance of the algorithms. Two of the datasets

consist of images; one of them aims face recognition and the other one aims ob-

ject classification. The last dataset consists of user ratings for purchased products in

Amazon website.

Lastly, the thesis is summed up in Chapter 6 by stating the important results obtained

throughout this study via conducted experiments and the points that can be improved

in the future.
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CHAPTER 2

RELATED WORK

2.1 Introduction

Firstly, transfer learning and domain adaptation concepts are introduced and some

background information for these fields are provided in this chapter. Since the pro-

posed algorithm in this thesis is based on aligning spectral bases of source and target

graph domains, which is a novel approach in the literature, there are no studies which

address exactly the same problem as in this thesis. Therefore, a brief overview of the

domain adaptation literature is presented in this chapter.

In the machine learning literature, there are some inconsistencies about the use of

the domain adaptation and the transfer learning terms. Some authors even use them

interchangeably. However, the prevalent acceptance is used throughout this study

as defined in [15] and [16]. A domain D has a feature space with dimension of d,

X ⊂ Rd and a marginal probability distribution P (X) where X = {x1, x2, . . . , xn}
is a random vector and xi’s are data samples. A task T is defined on X by a label

space denoted as Y with the conditional probability function P (Y |X) where Y =

{y1, y2, . . . , yn} is a random vector. The main aim of machine learning problems is

to find a function, f , which maps each sample to a label in Y . That is, the goal is to

find a function which satisfies f(xi) = yi ,∀i.

As mentioned above, there are two domains in domain adaptation problems; the

source domain and the target domain. Therefore, the idea in the previous para-

graph can be extended to these two domains. Let us denote the source domain as

Ds = {X s, P (Xs)} and a task on the source domain as T s = {Ys, P (Y s|Xs)}. Sim-
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ilarly, we can define a target domain as Dt = {X t, P (X t)} and a task on the target

domain as T t = {Y t, P (Y t|X t)}. In classical machine learning problems, the source

and target domains are accepted to be the same, which implies that Ds = Dt and

T s = T t.

In the cases where the source domain and the target domain are not the same, Ds 6=
Dt, or the source task and the target task are not the same, T s 6= T t, classical ma-

chine learning approaches cannot be applied successfully. In such situations, it may

be possible to learn P (Y t|X t) by leveraging the information in {Ds, T s} and this

process is called transfer learning (TL) [17].

In domain adaptation, which is classified as a particular application of transfer learn-

ing [16], the source and target tasks are assumed to be the same, i.e., T s = T t.
However, domain adaptation is expanded to the case where only the Ys = Y t re-

quirement holds, that is, the second requirement, P (Y |X t) = P (Y |Xs), is relaxed

generally. The taxonomy of transfer learning methods presented by Pan et al. is given

in Figure 2.1.

Figure 2.1: An overview of transfer learning settings [16]

In domain adaptation literature, the unsupervised notion is used for the situation

8



where the labels are only available from the source domain and the semi-supervised

notion is used for the situation where the labels are available from both the source

and the target domains. Note that these concepts are not the same as their usage in

traditional machine learning literature.

2.2 Overview of Domain Adaptation Literature

Domain adaptation methods can be discussed under two subtopics; homogeneous

domain adaptation and heterogeneous domain adaptation. In section 2.2.1, homoge-

neous domain adaptation methods are introduced in which source and target data rep-

resentations are the same, X s = X t, [18], [19], [20]. In section 2.2.2, heterogeneous

domain adaptation methods are stated in which source and target data representations

are different, X s 6= X t.

2.2.1 Homogeneous Domain Adaptation Techniques

A group of domain adaptation methods are based on instance re-weighting in which,

it is assumed that conditional distributions are shared between the source and tar-

get domains, P (Y |Xs) = P (Y |X t), [18], [21]. Since P (X t) 6= P (Xs) in many

cases, direct application of a source model cannot provide succesful results. One of

the methods that addresses this problem is Selective Transfer Machine (STM) which

tries to optimize instance weights and classifier parameters jointly [22]. A classifi-

cation example of the STM algorithm is illustrated in Figure 2.2. Another instance

re-weighting method is Adaptive Boosting (AdaBoost) [23] which is proposed to im-

prove the performance of a classifier by increasing the weights of misclassified target

samples. AdaBoost is improved by Transfer Adaptive Boosting (TrAdaBoost) [24],

which decreases the weights of misclassified source samples so as to lower their effect

on the classifier.

Trying to adapt classifier parameters is stated as another approach for domain adap-

tation [25], [26], [27], [28], [29], [30]. Joachims [25] improved the performance of

classical SVM through leveraging information from the target domain in the opti-

mization of SVM. Yang et al. proposed a method called Adaptive Support Vector
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Figure 2.2: Selective Transfer Machine Algorithm Overview [22]

Machines (A-SVMs) to obtain an ensemble classifier from auxiliary classifiers which

are optimized for different domains [31]. Jiang et al. proposed another approach

in order to increase the performance of SVM, which is called Cross-Domain SVM

(CDSVM) [29]. In CDSVM, an SVM classifier is found for the source domain, and

then, support vectors obtained for the source domain are included in the target do-

main data. Finally, a new SVM classifier is obtained for the dataset, which consists

of target samples and support vectors from source samples.

Feature augmentation methods are also utilized for domain adaptation purposes [32],

[33], [34], [35], [36], [37]. In [32], Daumé proposed a practical method called Easy

Adapt(EA) to adapt the source and target domains. He augmented source domain

features as
[ xs
xs
0

]
and target domain features as

[ xt
0
xt

]
. And then, classical SVM steps

are applied on the augmented source and target datasets. EA algorithm is enhanced

by Daumé et al. with Easy Adapt++ (EA++) in [33]. As an improvement on EA,

EA++ utilizes also unlabeled data samples via mapping them as
[ 0
xu
−xu
]
.

Geodesic Flow Sampling (GFS) is another feature augmentation based algorithm,
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which was proposed in [35], [36]. In GFS, the source and target spaces are initially

found by PCA, then, they are viewed as points on a Grassmann manifold. After

that, a geodesic path is found out between these two points. The found geodesic

path is sampled at some finite points by which intermediate subspaces are obtained.

Finally, labeled and unlabeled data are projected on these intermediate subspaces for

classification. The GFS algorithm is illustrated in Figure 2.3. The Geodesic Flow

Kernel (GFK) algorithm enhanced GFS by sampling an infinite number of points on

the geodesic path [37].

Figure 2.3: Geodesic Flow Sampling Algorithm. Sampling of intermediate points on
geodesic path and sample mapping. [36]

Aligning the source and target feature spaces is used as another idea for domain adap-

tation [38], [39], [40], [41], [42]. Fernando et al. proposed the Subspace Alignment

(SA) algorithm, which applies feature space alignment, in [42]. In SA, source and

target subspaces are computed by a PCA and the subspaces are aligned via learning

a transformation matrix. Since projecting each sample to another domain is not nec-

essary in SA, its implementation is very straightforward. Sun et al. proposed the

Correlation Alignment (CORAL) method which uses the idea of feature space align-

ment as well [43]. In CORAL, second order statistics of source and target data are

utilized. Firstly, source data is whitened with the source covariance matrix and then

the whitened source data is re-coloured with target covariance. Sun et. al claims that

their algorithm is more "frustratingly easy" than Easy Adapt (EA) introduced in [32]

since it does not require any labeled data in target domain.

Unsupervised feature transformation is also stated as an idea for domain adaptation

[44], [45], [46], [47], [48]. Pan et al. proposed to map features instead of subspaces
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in the Transfer Component Analysis (TCA) method [44]. TCA algorithm tries to

discover a latent space in which the marginal distributions of the source and target

domains do not change. A mapping from source and target features to the latent

space is found out, and then, classical machine learning algorithms can be applied.

Long et al. proposed the Transfer Joint Matching (TJM) method which applies feature

matching in a reproducing kernel Hilbert space and instance reweighting jointly [48].

2.2.2 Heterogeneous Domain Adaptation Techniques

Heterogeneous domain adaptation (HDA) is similar to heterogeneous transfer learn-

ing (HTL). However, data from different domains which have different representa-

tions are available both in the training and test stages of HDA while one data rep-

resentation is available in the training stage of HTL and another data representation

is used in its test stage. Both HDA and HTL notions are associated with multi-view

learning, which enables us to learn better representations from multiple source do-

mains [49], [50]. Multiple domains can come, for instance, from image and text

representations [51], [52], [53], or text belonging to different languages [54, 55].

One of the approaches developed for heterogeneous domain adaptation problems is to

use auxiliary domains [56], [57], [58], [59], [60], [61]. Tan et al. proposed to find an

auxiliary domain that contains features of source and target domains in their algorithm

Transitive Transfer Learning (TTL) [56]. For instance, if the source domain consists

of image data and target domain consists of images, TTL algorithm uses another

domain which includes both text and image data, e.g., crawled Web page data, in

order to combine the source and target domains. The TTL algorithm is demonstrated

in Figure 2.4. Mixed-Transfer method obtains a model of relation between the source

and target domains by a joint transition probability graph of mixed instances and

features [58]. A text to image heterogeneous transfer learning set-up is illustrated in

Figure 2.5.

Symmetric feature transformation is another approach used for heterogeneous domain

adaptation [36], [62], [63], [64], [65], [13], [11]. The goal of feature transformation

for HDA is to map source and target spaces into a common latent feature space.

Duan et al. proposed to transform source and target domains into a common latent
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Figure 2.4: Transitive Transfer Learning Algorithm. [56]

Figure 2.5: Text-to-image heterogeneous learning example. [58]

space, and then apply feature augmentation for the problem of HDA in their algorithm

Heterogeneous Feature Augmentation (HFA) [63]. Wang et al. stated a method called

Domain Adaptation Manifold Alignment (DAMA) in which they map source and

target spaces into a latent space such that the underlying structure of each domain is

preserved and the samples having the same label are located close [62]. DAMA

does not require the domains to have common features, it utilizes the common labels

instead. Besides, DAMA can be used for the case where there are multiple source

domains. The rationale behind DAMA is illustrated in Figure 2.6.

The last approach for heterogeneous domain adaptation is asymmetric feature trans-

formation in which source features are projected into the target space so as to decrease

the distribution difference for data coming from the source and target domains [66],

[67], [68]. Kulis et al. proposed a method which learns an asymmetric non-linear

transformation to map the source domain into the target domain in [67]. Harel et al.

developed a method called Multiple Outlook MAPping (MOMAP) whose goal is to

map a domain with a large number of labeled data to another domain with a small

13



Figure 2.6: DAMA Algorithm. Different colors represent different classes. [36]

number of labeled data [68]. MOMAP learns a transformation from labeled data by

the singular value decomposition process which aims to match marginal distributions

of classes and preserve the data structure.
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CHAPTER 3

AN OVERVIEW OF GRAPH SPECTRAL PROPERTIES

3.1 Introduction

Graphs are frequently used to visualize high dimensional data. They help to under-

stand relational structure of the available data, therefore they are used in many fields

such as transportation, social networking, energy and neural networks. A graph con-

sists of vertices and edges, G = {V , E}. Vertices present data samples in a dataset

and edges define the relationship between two data samples.

Graph signal processing employs techniques on graphs so as to extract intrinsic in-

formation of the data. In this chapter, firstly, graph signals are introduced. And then,

graph Laplacian operator and Fourier transform on graphs are defined.

3.2 Weighted Graphs and Graph Signals

In weighted graphs, there is a quantity assigned to the edges, which indicates the sim-

ilarity of the vertices at the two ends of that edge. The main interest of this thesis

is undirected and weighted graphs, therefore, the graph is represented by three com-

ponents: G = {V , E ,W} where V = {xi}Ni=1 denotes vertices, E denotes edges and

W ∈ RN×N denotes the weight matrix of the graph. If there is an edge between the

nodes xi and xj , then the (i, j)-th element of Wij is the weight of this edge. If the

nodes xi and xj are not connected with an edge, then Wij = 0.

If the edge weights are not defined in the nature of the data, the weights can be
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computed using Gaussian kernel weighting function:

Wij =

exp
(
− [dist(i,j)]2

2θ2

)
if dist(i, j) ≤ K

0 otherwise
, (3.1)

for pre-defined parameters θ andK. dist(i, j) is the distance between two nodes, e.g.,

Euclidean distance can be used. Moreover, k-nearest neighbours method can be used

as well for edge limitation.

A graph signal is a function f : V → R taking a real value on each vertex of the

graph, which can equivalently be represented as an N -dimensional vector f ∈ RN .

An example of graph function is demonstrated in Figure 3.1.

Figure 3.1: A random positive graph signal on the vertices of the Petersen graph. The
height of each blue bar represents the signal value at the vertex. [6]

A set {vk}Nk=1 ⊂ RN of linearly independent graph signals forms a graph basis, so

that any graph signal f can be represented as

f =
N∑
k=1

αkvk

in terms of the graph basis vectors vk with coefficients αk. Representing the basis as a

matrix V = [v1 . . . vN ] ∈ RN×N and the coefficient vector as α = [α1 . . . αN ]T ∈ RN ,

the graph signal can be expressed as f = V α.
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3.3 Graph Laplacian and Graph Fourier Transform

The graph Laplacian matrix is defined as L = D − W , where D is the diagonal

degree matrix given by Dii =
∑

jWij . The graph Laplacian is an essential element

of spectral graph theory, since its application to a graph signal f as an operator via

the matrix multiplication

(Lf)(xi) =
N∑
j=1

Wij(f(xi)− f(xj))

is the graph equivalent of applying the Laplacian operator to a signal in classical

signal processing [3], [4], [6]. This analogy allows the extension of Fourier analysis

to graph domains as follows. First recall that the complex exponentials ejΩt defining

the Fourier transform of one dimensional signals in classical signal processing are

given by the eigenfunctions of the Laplacian operator ∆ for one-dimensional signals

−∆(ejΩt) = Ω2ejΩt. (3.2)

The eigenvalue Ω2 of the Laplacian operator increases with the frequency of the com-

plex exponential ejΩt. Characterizing the Fourier transform via the eigenfunctions of

the Laplacian operator, the graph counterpart of complex exponentials are then the

eigenvectors of the graph Laplacian given by

Luk = λkuk.

The set of eigenvectors {uk}Nk=1 of the graph Laplacian corresponding to the eigen-

values λ1 = 0 ≤ λ2 ≤ · · · ≤ λN thus defines a graph Fourier basis. In analogy

with (3.2), the eigenvalues λk bear a notion of frequency over the graph domain. The

eigenvectors uk for increasing values of k indeed have an increasing speed of vari-

ation over the graph when regarded as graph signals [6]. This phenomenon can be

observed in Figures 3.2 and 3.3. As can be seen in Figure 3.3, as the eigenvalue

increases, the number of zero crossings in the associated eigenvectors also increases.

In particular, a common measure for the speed of variation of a graph signal f over

the graph is

fTLf =
1

2

N∑
i,j=1

Wij(f(xi)− f(xj))
2,
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Figure 3.2: Three graph Laplacian eigenvectors of a random sensor network graph.
The signals’ component values are represented by the blue (positive) and black (neg-
ative) bars coming out of the vertices [6]

Figure 3.3: The number of zero crossings of the graph Laplacian eigenvectors for the
random sensor network graph of Figure 3.2. [6]

which takes larger values if a function f varies more abruptly between neighboring

graph vertices. The above term becomes the corresponding eigenvalue λk of the graph

Laplacian when the graph signal is taken as a Fourier basis vector f = uk

uTkLuk = λk.

Once the Fourier basis {uk}Nk=1 for graph signals is found, the graph Fourier transform

f̂(λk) of a graph signal f is simply given by its inner product with the basis vectors

f̂(λk) = 〈f, uk〉 =
N∑
i=1

f(xi)uk(xi),

or simply as f̂ = UTf in matrix notation, where f̂ = [f̂(λ1) . . . f̂(λN)]T and U =

[u1 . . . uN ]. Here f̂(λk) is the Fourier coefficient of f corresponding to the basis
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vector uk with frequency λk. The inverse Fourier transform is then obtained as the

reconstruction of the signal from its representation over the Fourier basis as

f =
N∑
k=1

f̂(λk)uk = Uf̂.

3.4 Conclusion

In this chapter, graph operators, which will be essential to conceive the rest of the

thesis, are introduced. The structure of a weighted graph, graph Laplacian and graph

Fourier transform notions, which are the bases of this thesis, are defined. In fact, there

are numerous signal processing methods on graphs such as filtering and convolution

which can be observed in [6] in details.
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CHAPTER 4

DOMAIN ADAPTATION VIA SPECTRAL GRAPH

ALIGNMENT

4.1 Introduction

A novel domain adaptation method called Domain Adaptation via Spectral Graph

Alignment (DASGA) is introduced in this chapter. Firstly, the problem formula-

tion for domain adaptation on graphs is given in details. And then, the derivation

of DASGA is presented step by step by stating the optimization processes. Finally,

complexity analysis of the proposed method is provided in this chapter.

4.2 Problem Formulation for Domain Adaptation on Graphs

In this section, we propose our problem formulation for domain adaptation in graph

settings. We consider a source graph Gs = (Vs, Es,W s) that consists of Ns vertices

Vs = {xsi}Ns
i=1 and edges Es, and a target graph Gt = (V t, E t,W t) with Nt vertices

V t = {xti}Nt
i=1 and edges E t. The weighted edges of the source and target graphs are

respectively represented in the weight matrices W s, W t.

Consider a set of available observations ysi = f s(xsi ) of a function f s on the source

graph for a subset of source data indexed by i ∈ Is ⊂ {1, . . . , Ns}, and a set of

available observations yti = f t(xti) of a function f t on the target graph for a subset of

target data indexed by i ∈ I t ⊂ {1, . . . , Nt}. The functions f s and f t take discrete

label values in a classification problem and continuous values in a regression problem.
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Domain adaptation methods often focus on a setting with many labeled samples in the

source domain and much fewer labeled samples in the target domain, i.e., |I t| � |Is|.

Let V s and V t denote a pair of bases for the functions on the source and target graphs

respectively. We can then decompose the label functions f s and f t to be predicted in

the source and target graphs over the bases V s and V t as

f s =
Ns∑
k=1

αskv
s
k = V sαs, f t =

Nt∑
k=1

αtkv
t
k = V tαt.

Here V s ∈ RNs×Ns and V t ∈ RNt×Nt correspond to the matrix representations of the

bases consisting of the basis vectors {vsk}, {vtk}; and αs ∈ RNs and αt ∈ RNt are the

coefficient vectors.

Domain adaptation methods assume the presence of a relationship between the source

and the target domains and aim to transfer the knowledge in the source domain to the

target domain in order to better predict the target label function. In the following, we

consider a domain adaptation setting where a relationship can be established between

the source and target domains via a “coherent” pair of bases V s, V t for the space

of functions on the source and the target graphs. In particular, if V s and V t are a

“coherent” pair of bases, then one can transfer the label information from the source

graph to the target graph based on the representations of the label functions on these

bases. We can then formulate the following problem:

Problem 1.

min
αs,αt
‖SsV sαs − ys‖2 + ‖StV tαt − yt‖2 + µ‖αs − αt‖2 (4.1)

Here ys and yt are vectors consisting of the available labels {ysi }, {yti} in the source

and target domains; Ss and St are binary selection mask matrices that enforce the

label prediction functions f s, f t to match the given labels ys, yt on the subsets Is, I t

of labeled data in the source and target domains; and µ > 0 is a weight parameter.

The coefficients αs and αt of the source and target label functions must be found such

that the resulting estimation of the label predictions correspond to the given labels,

while αs and αt (or their appropriately restricted versions αs, αt in the case that the

graph sizes are different Ns 6= Nt) are close over the source and target graphs.
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Then, an important question is what properties a “coherent” pair of bases V s and V t

should have, and how such bases can be found in practice. If a one-to-one match

between the source and target graphs exists, e.g., as in a problem where each source

node has a known corresponding target node, then one can simply select the bases as

the source and target graph Fourier bases V s = U s, V t = U t, so that the spectra of

the source and target label functions can be directly matched by solving the problem

in (4.1). However, in a realistic setting such a one-to-one match often does not exist.

In this work, we propose to learn V s, V t relying on the available observations of the

label function, in a manner that allows the transfer of the spectral content between the

graphs as well. In particular, we propose to choose V s as the source Fourier basis,

and V t as a target basis expressed as

V s = U s, V t = U tT.

Here the matrix T ∈ RNt×Nt represents a transformation between the target bases U t

and V t. In the formulation in Problem 1, one can observe that such a transformation

matches the source basis vector vsi = usi to the following target basis vector

vti =
Nt∑
j=1

Tjiu
t
j (4.2)

obtained as the linear combination of the target Fourier basis vectors utj via trans-

formation T , where (·)ij denotes the element of a matrix at the ith row and the jth

column.

When learning the transformation T , our purpose is to learn a representation that is

flexible enough to properly “align” the two individually constructed graphs, while

also preserving the spectral relation between the two graphs. The rate of variation

of the i-th source Fourier vector vsi = usi is proportional to the i-th eigenvalue λsi of

the source graph Laplacian Ls. In order to preserve the spectral relation between the

graphs, the corresponding target vector vti in (4.2) must have a similar rate of variation

on the target graph, so that slowly (or rapidly) varying source label functions are

matched to slowly (or rapidly) varying target label functions when solving (4.1). In

order to achieve this, we propose to learn T such that the weight Tji of the j-th target

Fourier vector utj in the representation of vti is encouraged to be higher for j values

close to i, and to decay as j deviates from i. In this way, the source Fourier vector
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usi = vsi is mapped to a target vector that is mainly composed of the target Fourier

vectors utj having frequencies close to that of usi . This can be achieved by penalizing

high magnitudes for the entries of T distant from the diagonal, by including a term

‖M � T‖2 in the overall objective, where M ∈ RNt×Nt is a symmetric weight matrix

of the form

Mij = exp

(
(i− j)2

σ2

)
, (4.3)

the scale parameter σ adjusts the width of the window of allowed target frequencies

{λtj} to be matched to a given frequency λsi , and � denotes the Hadamard (element-

wise) product between two matrices. The overall objective function to minimize then

becomes the following:

Problem 2.

min
αs,αt,T

‖SsU sαs − ys‖2 + ‖StU tTαt − yt‖2

+ µ1‖αs − αt‖2 + µ2‖M � T‖2
F

subject to
Nt∑
i=1

T 2
ij = 1, for j = 1, . . . , Nt.

(4.4)

Here µ1 > 0, µ2 > 0 are weight parameters, and ‖ · ‖F denotes the Frobenius norm

of a matrix. The purpose of the equality constraints in the above problem is to ensure

that the columns of the transformation matrix T have unit norm, in order to avoid

approaching the trivial solution T = 0 which also causes ambiguous solutions for αt.

While Problem 2 aims to learn a pair of matched full bases on the two graphs, it is

often not necessary to use all basis vectors in order to obtain a good reconstruction of

the label function: The basis vectors usi , u
t
i with very high frequencies (eigenvalues)

λsi , λ
t
i, have a quite rapid variation over the graph, and discarding some of these not

only reduces the complexity of the problem, but also serves the important purpose of

regularization. For these reasons, it is often useful to select a subset of the basis vec-

tors {usi}Ri=1, {uti}Ri=1, corresponding to the smallest R eigenvalues in both domains,

where R < Ns and R < Nt. Let U
s ∈ RNs×R, U

t ∈ RNt×R denote the reduced

source and target Fourier bases consisting of the first R basis vectors. When label

functions are reconstructed with the reduced bases, we can reformulate the problem

in (4.4) as
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Problem 3.

min
αs,αt,T

‖SsU s
αs − ys‖2 + ‖StU t

Tαt − yt‖2

+ µ1‖αs − αt‖2 + µ2‖M � T‖2
F

subject to
R∑
i=1

T
2

ij = 1, for j = 1, . . . , R.

(4.5)

Here, the matrix T ∈ RR×R is the submatrix of T consisting of its first R rows and

columns, which match the source vectors {usi}Ri=1 to linear combinations of {uti}Ri=1.

The reduced weight matrix M ∈ RR×R has entries as defined in (4.3). The vectors

αs, αt denote the coordinates of the label functions in the reduced bases U
s
, U

t
such

that the source and target label functions f s and f t are reconstructed as

f s = U
s
αs, f t = U

t
Tαt

once the problem in (4.5) is solved. Note that, although the main focus in domain

adaptation is to estimate the target labels, the above formulation also allows the esti-

mation of the missing source labels in case of interest.

Estimating the label functions by solving Problem 3, one may then wonder how well

the variations of the source and target label functions on the two graphs agree. In the

following, we provide an upper bound on the difference between the rates of change

of the source and target label functions f s and f t. Let 0 = λs1 ≤ λs2 ≤ · · · ≤ λsR and

0 = λt1 ≤ λt2 ≤ · · · ≤ λtR respectively denote the smallestR eigenvalues of the source

and target graph Laplacians Ls and Lt. Let the similarity of the source and target

graph topologies be so that the deviation between the corresponding eigenvalues of

the two graph Laplacians are bounded as |λsi − λti| ≤ δ, for all i = 1, . . . , R. Let

us define λR = max(λsR, λ
t
R), which indicates a spectral upper bound (bandwidth)

for the frequencies of the first R source and target Fourier basis vectors. Let the

coefficients αs, αt and the transformation matrix T obtained by solving Problem 3

be such that the difference between the source and target coefficients is bounded as

‖αs − αt‖ ≤ ∆α, and the deviation between the transformation T and the R × R

identity matrix I is bounded as ‖T − I‖ ≤ ∆T , with ‖ · ‖ denoting the operator norm

for matrices. Finally let C be a bound for the norms of the computed coefficients with

‖αs‖, ‖αt‖ ≤ C. We then have the following result.
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Proposition 1. Assume that the constants λR > 0, δ ≥ 0, ∆T ≥ 0, ∆α ≥ 0, and

C > 0 are such that the above conditions hold for the solution αs, αt , T of Problem

3. Then, the difference between the rates of variation of the estimated source and

target label functions f s, f t on the source and target graphs is bounded as

|(f s)TLsf s − (f t)TLtf t| ≤ C2δ + 2CλR∆α + C2λR(2∆T + ∆2
T ).

The proof of Proposition 1 is given in Appendix A. In the light of this theoretical

bound, the formulation proposed in Problem 3 can be interpreted as follows. In the

considered setting, due to the assumption of the similarity of their spectra, the source

and target label functions must have similar rates of variation over the two graphs.

The bound in Proposition 1 shows that the source and target label functions have

similar rates of variation if the constants δ, λR, ∆α, ∆T are sufficiently small. The

constant δ depends on the topological similarity between the two graphs and cannot be

controlled by the learning algorithm. Meanwhile, the constant λR in the above bound

suggests that preventing λR from taking very large values should have a positive effect

on the learning. This is in line with the choice of representing the label functions with

a relatively small number R of basis vectors in Problem 3, in contrast to Problem

2. Then, another objective of Problem 3 is to minimize the difference between the

coefficient vectors αs and αt, which reduces ∆α. Finally, the term ‖M � T‖2
F in the

learning objective aiming to discourage large off-diagonal entries will eventually help

reduce the constant ∆T in the above bound. Note, however, that we deliberately avoid

imposing T ≈ I in Problem 3, which would restrict the flexibility of the learnt bases

in aligning the two graphs to account for the differences in the graph topologies. This

is discussed in more detail in Section 4.3.3.

4.3 Proposed Method: Domain Adaptation via Spectral Graph Alignment

In this section, we present the proposed domain adaptation method, which we call

Domain Adaptation via Spectral Graph Alignment (DASGA). Our algorithm aims to

learn a pair of “aligned” bases on the source and target graphs based on Problem 3.

The problem in (4.5) is not jointly convex in all optimization variables αs, αt, T . Nev-

ertheless, it is convex separately in the overall coefficient vector α = [(αs)T (αt)T ]T ,
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and the transformation matrix T . Hence, we propose to minimize the objective (4.5)

with an iterative and alternating optimization approach, by first fixing T and optimiz-

ing αs, αt; and then fixing the coefficient vectors αs, αt and optimizing T in each

iteration. We describe these two optimization steps in the sequel.

4.3.1 Optimization of the Coefficient Vectors

In the first step of an iteration, the transformation matrix T is fixed, and the coefficient

vectors αs and αt are optimized. Fixing T , the optimization problem in (4.5) becomes

the following unconstrained problem in αs and αt

min
αs,αt

G(αs, αt) = min
αs,αt

‖SsU s
αs − ys‖2

+ ‖StU t
Tαt − yt‖2 + µ1 ‖αs − αt‖2.

(4.6)

The functionG(αs, αt) is convex in the coefficients αs and αt and its global minimum

can be found by setting its derivatives to 0:

∂G(αs, αt)

∂αs
= 2Asαs − 2Bsys + 2µ1α

s − 2µ1α
t = 0

∂G(αs, αt)

∂αt
= 2Atαt − 2Btyt + 2µ1α

t − 2µ1α
s = 0

where

As = (U
s
)T (Ss)TSsU

s
, Bs = (U

s
)T (Ss)T

At = (U
t
T )T (St)TStU

t
T , Bt = (U

t
T )T (St)T .

This gives the coefficient vectors as

αs = (µ−1
1 AtAs + At + As)−1(µ−1

1 AtBsys +Bsys +Btyt)

αt = (µ−1
1 Asαs + αs − µ−1

1 Bsys).
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4.3.2 Optimization of the Transformation Matrix

In the second step of an iteration, the coefficient vectors αs and αt are fixed and the

transformation matrix T is optimized. Then the minimization of the objective in (4.5)

becomes equivalent to the following problem

min
T
H(T ) = min

T
‖StU t

Tαt − yt‖2 + µ2 ‖M � T‖2
F

subject to
R∑
i=1

T
2

ij = 1, for j = 1, . . . , R.
(4.7)

The above problem involves the minimization of a quadratic convex function H(T )

in T subject to R equality constraints that are also quadratic and convex in T . We

solve the problem in (4.7) using the Sequential Quadratic Programming (SQP) algo-

rithm [69], which is a method to numerically solve constrained nonlinear optimization

problems. The SQP algorithm is based on iteratively approximating the original prob-

lem with a Quadratic Programming problem, where the objective function is replaced

with its local quadratic approximation, and the equality and inequality constraints

are replaced with their local affine approximations. In our problem (4.7), the objec-

tive function H(T ) is already a quadratic function of T and we only have equality

constraints.

The first and second order derivatives to be used in the solution of (4.7) are found as

follows. Let t ∈ RR2 denote the column-wise vectorized form of the matrix T , such

that its k-th entry is given by tk = Tij , with k = (j − 1)R + i, for i, j = 1, . . . , R.

We denote by h(t) = H(T ) the objective in (4.7) when considered as a function of t.

The objective function h(t) = H(T ) can then be rewritten in terms of t as

h(t) = ‖At− yt‖2 + µ2‖Ft‖2. (4.8)

Here A ∈ RLt×R2 is a matrix with entries given by Alk = (StU
t
)li α

t
j and F ∈

RR2×R2 is a diagonal matrix with entries given by Fkk = M ij, where l = 1, . . . , Lt

and k = R(j − 1) + i, for i, j = 1, . . . , R. The variable Lt here is the number of

labeled target samples. Next, the j-th equality constraint of the problem (4.7) can be

written in terms of t as

gj(t) =
R∑
i=1

T
2

ij − 1 = 0 (4.9)
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for j = 1, . . . , R.

The problem (4.7) is then solved by forming the Lagrangian function

(t, η) = h(t)− g(t, η)

where

g(t, η) =
R∑
j=1

ηjgj(t), (4.10)

ηj > 0 are the Lagrange multipliers, and η = [η1 . . . ηR]T . From (4.8), we obtain the

gradient of the objective h(t) as

∇th = 2(ATA+ µ2F
TF )t (4.11)

and its Hessian as

∇2
tth(t) = 2(ATA+ µ2F

TF ). (4.12)

Next, from (4.9), the k-th entry of the gradient of gj(t) is found as

(∇t gj)k =

2tk , if (j − 1)R + 1 ≤ k ≤ jR

0, otherwise
(4.13)

for k = 1, . . . , R2. From (4.13), the Hessian ∇2
tt
g(t, η) of the second term g(t, η) of

the Lagrangian in (4.10) is obtained as a diagonal matrix with entries given by

[∇2
tt g(t, η)]kk = 2ηj (4.14)

for R(j − 1) + 1 ≤ k ≤ Rj. Putting (4.12) and (4.14) together, we get the Hessian

of the Lagrangian as

∇2
tt(t, η) = ∇2

tth(t)−∇2
ttg(t, η).

The SQP algorithm optimizes objectives with equality constraints by iteratively up-

dating the solution (t, η), where a linear system representing the approximate solution

of the KKT conditions with the Newton’s method is solved in each iteration [69, Algo-

rithm 18.1]. The linear system is constructed from the objective h(t), the constraints

gj(t), their gradients, and the Hessian of the Lagrangian.
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4.3.3 Overall Optimization Procedure

We now overview the overall optimization procedure employed in the proposed DASGA

method. First, the optimization variables T , αs, and αt are initialized as follows.

Since the objective in Problem 3 aims to find a transformation that aligns the source

and target Fourier bases, a natural choice would be to initialize T as the identity ma-

trix, so that each source vector usi is mapped to the target vector uti. However, even in

a simple scenario where the source and target graphs are very similar, as the eigen-

value decomposition determines eigenvectors up to a sign, mapping each usi to uti

might in fact constitute a bad initialization; e.g., consider the very simple case where

the source and target graphs are identical but uti = −usi . An unfavorable initialization

of the transformation matrix may consequently influence the estimates of the coef-

ficient vectors αs, αt and affect the overall solution of the alternating optimization

procedure.

In order to obtain a more favorable initialization, we propose to set the initial T matrix

with a strategy that corrects the sign of each target vector according to its best match

among the source basis vectors. This strategy is based on the method presented in

our work [70], where the best match of a target vector uti among the source vectors is

determined by finding

max
j
|〈ũsj , ũti〉|. (4.15)

Here ũsj , ũ
t
i are subvectors of the basis vectors usj , u

t
i obtained by restricting them

to a subset of their entries indexed by some {si}Ki=1 and {ti}Ki=1. It is difficult to

directly compare the vectors usj , u
t
i as the nodes of the source and target graphs are

ordered arbitrarily and independently of each other. If a set of corresponding source

and target node pairs N = {(xssi , x
t
ti

)}Ki=1 is known, then this set can be used for the

restriction of the basis vectors to a subset of their entries in the problem (4.15), so

that the vectors usj , u
t
i can be compared throughout their chosen entries. However, in

our method we do not rely on the availability of a set of corresponding node pairs and

propose to form the set N = {(xssi , x
t
ti

)}Ki=1 based on the class labels, such that each

pair of matched nodes (xssi , x
t
ti

) is formed randomly among the source and target
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nodes having the same class labels. We then compare the vectors usj , u
t
i over their

entries ũsj , ũ
t
i corresponding to these nodes. Although very few labeled target nodes

are typically available in a domain adaptation application, we have observed that only

a few pairs is often sufficient to determine the correct signs for initializating T , which

is next done as follows

T ii = sgn(〈ũsJi , ũ
t
i〉), Ji = arg max

j
|〈ũsj , ũti〉|. (4.16)

Here sgn denotes the sign function and T is initialized as a diagonal matrix with

−1’s or 1’s on the diagonals that matches the sign of each target vector uti to the

source vector usj best corresponding to it. Note that this initialization respects the

normalization constraint on the entries of the T matrix in (4.5).

Once the transformation matrix T is initialized in this way, the alternating optimiza-

tion procedure starts, where the coefficient vectors αs and αt are computed by fixing

T first, and then T is optimized by fixing αs and αt in each iteration, as described in

Sections 4.3.1 and 4.3.2. In each iteration, both the updates on αs and αt, and the up-

date on T either reduce or retain the value of the objective function in (4.5). Since the

objective function is nonnegative and thus bounded from below, it converges through-

out the proposed iterative alternating optimization process. We continue the iterations

until the convergence of the objective function. The proposed Domain Adaptation via

Spectral Graph Alignment (DASGA) algorithm is summarized in Algorithm 1.

4.3.4 Complexity Analysis

We now present the complexity analysis of the proposed method. The overall com-

plexity is mainly determined by the complexity of Steps 4 and 5 of Algorithm 1

executed iteratively until convergence. Let Ls and Lt denote the number of labeled

samples respectively in the source and the target domains.

We first derive the complexity of Step 4. In the solution of (4.6), the matrices Bs

and As are respectively computed with O(LsNsR) and O(LsNsR + LsR
2) opera-

tions. Meanwhile, these are constant matrices that do not depend on T and they are

computed only once; hence, we may ignore their calculation in the overall complex-

ity. Next, O(NtR
2 + LtNtR) and O(NtR

2 + LtNtR + LtR
2) operations are needed
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Algorithm 1 Domain Adaptation via Spectral Graph Alignment (DASGA)
1: Input:

W s, W t: Source and target graph weight matrices

ys, yt: Available source and target labels

2: Initialization:

Set the transformation matrix T as in (4.16).

3: repeat

4: Update coefficients αs, αt by solving (4.6).

5: Update transformation matrix T by solving (4.7).

6: until the objective function (4.5) converges

7: Output:

f t = U
t
Tαt: Estimated target label function

f s = U
s
αs: Estimated source label function

to compute the matrices Bt and At respectively. The matrices µ−1
1 AtAs + At + As

and µ−1
1 AtBsys + Bsys + Btyt in the expression of αs are computed respectively

with O(R3) and O(LsR
2 + LtR) operations. Considering also the matrix inversion

in its expression, αs is computed with O(R3) operations. The target coefficients

αt are then obtained from αs with O(R2) operations. From the complexities of

all these computations, we get the overall complexity of Step 4 of Algorithm 1 as

O(R3 + (Ls +Nt)R
2 + LtNtR).

Next, we examine the complexity of executing Step 5 with the SQP algorithm. The

complexity of the evaluation of h(t) in (4.8) is of O(LtR
2 + R4). From (4.11), we

observe that the gradient ∇th is computed with O(R4) operations as well. Finally,

since the Hessian ∇2
tt
h(t) of the objective in (4.12) is a constant matrix that does not

depend on t, we can exclude it from the complexity of the iterative SQP algorithm.

Next, from (4.9), the complexity of computing all R gradients is obtained as O(R2).

From (4.13) and (4.14), we observe that the gradients ∇tgj(t) of the constraints and

the Hessian∇2
tt
g(t, η) are obtained directly from t and η without any operations. We

thus conclude that the Hessian ∇2
tt

(t, η) of the Lagrangian can also be obtained with

negligible complexity. Finally, the optimization variables are updated by solving the

linear system given in [69, Algorithm 18.1] withO(R6) operations in a single iteration

of the SQP algorithm. Putting together the complexities of all these operations, we
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conclude that the complexity of solving Step 5 with the SQP algorithm is of O(R6 +

LtR
2).

Finally, considering together the Steps 4 and 5 of Algorithm 1, we get the overall

complexity of the DASGA algorithm as O(R6 + (Ls +Nt)R
2 + LtNtR).
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CHAPTER 5

EXPERIMENTAL RESULTS

In the following, we first evaluate the performance of the proposed method with com-

parative experiments. We then study the behavior of the algorithm throughout the

iterative optimization procedure and examine its sensitivity to the choice of the algo-

rithm parameters.

5.1 Evaluation of the Algorithm Performance

The proposed algorithm is tested on several real and synthetic datasets. The perfor-

mance of the proposed DASGA method is compared to the domain adaptation meth-

ods Heterogeneous Domain Adaptation using Manifold Alignment (DAMA) [62],

Easy Adapt++ (EA++) [71], Subspace Alignment (SA) [42] and Geodesic Flow Ker-

nel for Unsupervised Domain Adaptation (GFK) [37]; as well as the baseline classi-

fiers Support Vector Machine (SVM), Nearest-Neighbor classification (NN), and the

graph-based Semi-Supervised Learning with Gaussian fields (SSL) algorithm [10].

The baseline classifiers are evaluated under the “source+target” setting, using the la-

beled samples from both the source and the target domains as the training set, which

has been observed to give better results than the “source only” and “target only” set-

tings in general due to the limited number of target labels. When using the SA and

GFK algorithms, once the source and target domains are aligned in an unsupervised

way as proposed in [42] and [37], the known source and target labels are both used

in the final classification of test samples. In the application of DASGA algorithm, the

weight matrices W s, W t are constructed with a Gaussian kernel using the local scal-
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ing strategy introduced in [72]. It is proposed to calculate a local scaling parameter

instead of using a single scaling parameter for the entire graph in this local scaling

strategy. In each of the following experiments, the source labels are assumed to be

known and the ratio of known target labels are varied gradually. The class labels of

the unlabeled target samples are then estimated with the tested algorithms and the

classification performances are compared.

5.1.1 Experiments on synthetic data sets

The first set of experiments are conducted on synthetic data sets with two classes. In

the source domain, 100 samples are drawn for each class from a normal distribution

in R3, with different means for the two classes. The target domain samples are then

obtained by rotating the source domain samples by 90◦ around the x-axis. The three

data sets shown in Figures 5.1, 5.2 and 5.3 are generated by varying the variances

of the normal distributions, where the variance gradually increases from synthetic

dataset-1 to synthetic dataset-3. The difficulty of classification increases with the

variance of the distribution.
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36



-20
20

-10

20

0Z

10 10

10

Y X

0

20

0
-10

-10 -20

Source Class-1
Source Class-2
Target Class-1
Target Class-2
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Figure 5.3: Synthetic dataset-3
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As can be seen in Figure 5.1, the variances of data are low enough so that a straight

plane can separate the data classes. As demonstrated in Figures 5.2 and 5.3, these two

datasets are more challenging.

The proposed DASGA algorithm is used with the parameters µ1 = 0.001, µ2 = 1,

R = 10. In the graphs constructed for DASGA algorithm, each vertex corresponds to

a different data sample, i.e., a different feature vector. The source and target graphs

are constructed by connecting each data sample to their 20 nearest neighbors, and a

Gaussian kernel is used for forming the weight matrices.

In Figures 5.4, 5.5 and 5.6 the misclassification rates of unlabeled target samples in

percentage are plotted with respect to the ratio of labeled target samples in percentage

for the three synthetic data sets. The results are averaged over 100 repetitions of the

experiment with random selections of the labeled samples. As expected, the misclas-

sification rates of the algorithms have the general tendency to decrease as the ratio of

known target labels increases.
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Figure 5.5: Synthetic Dataset-2 Errors
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Figure 5.6: Synthetic Dataset-3 Errors
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The proposed DASGA algorithm is observed to outperform the compared methods in

all three experiments. As the variance of the distributions increases from Figure 5.4

to 5.6, the performance gap between DASGA and the other methods increases. The

baseline SVM, NN, and SSL classifiers give a relatively small error (less than 10%)

in the Synthetic dataset-1, where the two classes are better separated from each other

due to the small variance of the distributions. However, the performances of these

baseline classifiers degrade in the Synthetic datasets 2 and 3 where the data variance

increases.

The domain adaptation methods tend to perform better than the baseline classifiers

in general. In particular, the DAMA algorithm [62] follows the proposed DASGA

algorithm in all experiments. DAMA is a supervised method aiming to preserve the

topology of the data set via a graph model when learning a discriminative projection.

This feature of DAMA seems to bring an advantage over the SA and GFK meth-

ods, which align the two domains in an unsupervised way. The proposed DASGA

method is the least affected by the challenges in the data distributions such as large

variance and poor separation between the classes. As DASGA is purely based on a

graph representation of data, it detaches the ambient space properties of data from its

representation to some extent. The misclassification rate of the graph-based DASGA

method degrades in Figure 5.6 compared to Figure 5.4 by around 15%, whereas the

degradation in the misclassification rates of the subspace-alignment-based SA and

GFK methods, or the feature-augmentation-based EA++ method is around 25%.

5.1.2 Experiments on image data sets

We next evaluate the performance of the proposed algorithm on two image data sets.

The first set of experiments are done on the MIT-CBCL face recognition database

[73]. The data set consists of a total of 3240 face images rendered from the 3D head

models of 10 subjects under varying illumination and poses. The images of each

subject are rendered under 9 different poses varying from the frontal view (Pose 1)

to a nearly profile view (Pose 9), and 36 illumination conditions at each pose. Some

sample images are shown in Figure 5.7. We downsample the images to a resolution

of 100 × 100 pixels. In our experiments, we consider the images taken under each
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Figure 5.7: Sample images from the MIT-CBCL face data set for three different sub-
jects [73]. Leftmost two, middle two, and rightmost two images are rendered respec-
tively under poses 1, 2, 5, and 9 for various illumination conditions.

pose as samples from a different domain. That is, the experiments are conducted

by selecting one pose as the source domain and another pose as the target domain.

Hence, each domain consists of the images of all 10 subjects rendered under varying

illumination conditions at a certain pose.

Figure 5.8: A face graph consisting of 9 images from 3 people

Three experiments are conducted by taking source domain as Pose 1. The target

domain is taken as Pose 2 in the first experiment, Pose 5 in the second experiment and

Pose 9 in the third experiment. In the construction of graphs for DASGA algorithm,

the images are regarded as nodes of the graphs as illustrated in Figure 5.8. Source and

target data graphs are constructed independently in the source and target domains,

by connecting each image to its nearest 38 neighbors with respect to the Euclidean

distance. The parameters of the proposed DASGA method are set as µ1 = 0.01,

µ2 = 0.85, and R = 9, which are selected based on trials over the images from

the other poses in the data set (6 and 8) that are not used in the experiments. The

experiment is repeated over 50 realizations with random selections of the labeled
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Figure 5.9: Misclassification rates obtained with the proposed SDA and reference
methods. Source domain: Pose 1, Target domain: Pose 2

samples and the results are averaged.

The misclassification rates of the unlabeled target images are plotted with respect

to the ratio of labeled target images in Figures 5.9, 5.10 and 5.11, where the target

domain is respectively taken as Pose 2, Pose 5 and Pose 9. The misclassification errors

of all algorithms are seen to be larger in Figure 5.11 compared to Figure 5.10, which

is due to the fact that the similarity between the source and target domains is weaker in

Figure 5.11 as the source and target poses differ more significantly. Misclassification

rates in Figure 5.9 are generally observed to be lower compared to 5.10 due to the

same reason. However, a noticeable difference in Figure 5.9 is that domain adaptation

methods DASGA, DAMA and EA++ performs worse than baseline classifiers such

as SVM and NN especially when the ratio of known target labels is lower than 5%.

The reason for this difference is that Pose 1 and Pose 2 images are very similar,

which enables SVM and NN to use pyhsical coordinates of images efficiently. In

Figures 5.10 and 5.11, the misclassification rate of the proposed DASGA method is

relatively high when the ratio of known target labels is below 5%, which quickly

approaches 0, when at least 5% of the target samples are labeled. The only methods
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Figure 5.10: Misclassification rates obtained with the proposed SDA and reference
methods. Source domain: Pose 1, Target domain: Pose 5

that outperform the proposed DASGA algorithm are the GFK and the SA domain

adaptation methods. The performance of these two algorithms is particularly good in

this experiment. The idea underlying these unsupervised methods is to align the low-

dimensional subspaces approximating the source and target domains via geometric

transformations. This approach is particularly appropriate for this face data set, as

the PCA basis vectors of the face images of the same subjects captured from different

poses can be easily aligned. The proposed graph-based DASGA algorithm does not

use the pixel intensity values of image data samples once the source and target graphs

are constructed, hence, it does not employ the same type of information as the GFK

and SA methods. Nevertheless, its performance catches up with those of GFK and SA

much quicker than the other methods in comparison as the number of known target

labels increases.

The second image data set that is used in the evaluation of the proposed method is the

COIL-20 object database [74]. The dataset consists of a total of 1440 images of 20

objects. Each object has 72 images taken from different viewpoints rotating around
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Figure 5.11: Misclassification rates obtained with the proposed SDA and reference
methods. Source domain: Pose 1, Target domain: Pose 9

it. In this setup, images are initially masked with base mask images provided in the

database such that the backgrounds of the images are set to black. This is a significant

step because the distance between the images are needed to construct the graph and

the background information can give misleading information. Original COIL-20 data

set has images in 128× 128 resolution but we downsample the images to a resolution

of 32 × 32 pixels in our set-up. This reduction in the resolution is critical because

algorithms such as SVM could consume an enormous amount of time when the data

dimension is too high. Finally, the images are normalized in order to get rid of lighting

effects. This is because the aim in this setup is to focus on the objects.

In order to build a transfer learning set-up with this database, a fictional scenario must

be created because different domains do not exist in the original data set naturally.

Therefore, we focus on a transfer learning scenario by dividing the 20 objects in

the data set into two groups and matching each object in the first group to another

object in the second group. The grouping is done by maximizing the similarity of the

object pairs matched across the two groups based on the pairwise distances between

the image samples of the objects. The distance of all objects in source domain to
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Figure 5.12: Sample images from the COIL-20 data set. The upper and lower rows
show the objects respectively in the source domain and the target domain. Each source
domain object is matched to the target domain object right below it. Matched object
pairs are considered to have the same class label in the experiments.

the objects in the target domain are calculated in order to find the similarity between

source and target objects. Let A and B be two classes and a1, a2, . . . , aN ∈ A and

b1, b2, . . . , bN ∈ B be data samples drawn from these classes. The closest distance

of all a′is to b′is are calculated and then summed to find the total distance between

class A and class B. The most similar 2 objects are found and they are matched to

each other. In this matching, the label of the source object is directly assigned as the

label of target object, that is, the matched objects are regarded as belonging to the

same class for the rest of the experiment. After obtaining a matched pair, the current

pair is removed from the set of objects and the most similar objects from different

domains are found in the remaining set by applying the same procedure. This process

is repeated until all objects have a corresponding object in the other domain. At the

end of this process, the matches given in Figure 5.12 are obtained.

The parameters of the proposed DASGA algorithm are set as µ1 = 0.01, µ2 = 1 and

R = 10, in accordance with the typical values used in the previous experiments. In

this experiment, images are regarded as nodes of the graphs which are constructed

for DASGA algorithm as in the previous experiment. The source and target graphs

are constructed by connecting each sample to its 3 nearest neighbors. This small

value is chosen deliberately to be coherent with the small intrinsic dimension of the

data set as the images are formed by rotating the camera around each object in only

one direction. The class labels are represented with multidimensional one-hot label

vectors.

The misclassification rates of the algorithms are plotted with respect to the ratio of

known target labels in Figure 5.13. The proposed DASGA method is observed to
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Figure 5.13: Misclassification rates of target samples for the COIL-20 object data

yield the best classification performance. The misclassification rate of the proposed

algorithm reaches zero when about 5% of the samples are labeled in the target do-

main. The graph-based semi-supervised learning algorithm SSL follows the proposed

method. The regular sampling of the images on the image manifold in this data set

allows the construction of well-organized graphs, which can be successfully exploited

by graph-based learning methods. The SVM algorithm also performs relatively well

in this setup. Although the number of labeled samples in the target domain is limited,

SVM can successfully make use of the labeled data samples in the source domain.

Setting the object matches so as to minimize the pairwise distances causes the source

and target domain samples from the same class to have relatively small distance,

which contributes positively to the performance of SVM. The performances of the

domain adaptation methods SA, GFK, and DAMA fall behind that of the baseline

classifiers in this experiment. Relying on the alignment of the source and target do-

mains via transformations or projections, these methods fail in the transfer learning

problem considered in this experiment as the source and target images belong to dif-

ferent objects and hence they are difficult to align via projections or transformations.

46



5.1.3 Experiments on online book ratings data

The proposed algorithm is finally evaluated on the Amazon product ratings data set

[75] for the prediction of the user ratings on books. The data set contains the scores

from users who purchased a book from Amazon, where the scores are integers in the

range [1, 5]. The experiment is conducted on the first 150000 ratings in the data set.

The users who rated less than three books are excluded from the experiment.

In each repetition of the experiment, two bestsellers are chosen from the book cata-

logue of Amazon. The source graph consists of the users who read the first bestseller,

and the target graph consists of the users who read the second bestseller. Each graph

node corresponds to a user, and the scores of the users for the first and second best-

sellers are regarded as signals (label functions), respectively on the source and the

target graphs. The purpose of the experiment is to predict the user scores for the sec-

ond bestseller on the target graph. The source and target graphs are constructed with

respect to the similarities between the users, where two users are considered similar

if their past reading records agree. Thus, if two users have read books in common,

they are connected with an edge in the graphs. The edge weights are determined as

inversely proportional to the average difference of the scores the users assigned to the

same books, in order to capture the similarity of their literary preferences.

Given the scores on the source bestseller, and the available scores on the target best-

seller, we estimate the unavailable scores on the target bestseller with the compared

algorithms. The parameters of the proposed DASGA algorithm are set as µ1 = 0.001,

µ2 = 0.8, R = 10, which are selected by trials on a test setup with two arbitrarily

chosen bestsellers that are not used in the experiments. Being a purely graph-based

method, the proposed DASGA algorithm requires only the source and the target user

graphs and the available ratings. Meanwhile, the other algorithms in comparison re-

quire as input the coordinates of the data samples; thus, need an embedding of the data

in an ambient space. Unlike the image data and synthetic data used in the previous

experiments, the data samples do not have a physical embedding in this experiment.

One could possibly regard the user ratings given to previously read books as feature

vectors. However, due to the very large number of books in the Amazon catalogue

and the small number of books users typically read, such feature vectors are very
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sparse in a very high-dimensional ambient space. This increases the complexity and

impairs the performance and feasibility of most of the compared methods. In order to

test the compared methods, we follow an alternative approach and embed the source

and target graphs into an Euclidean domain of optimal dimension using the Multidi-

mensional Scaling Algorithm (MDS) [76]. The coordinates learnt for each user with

MDS are then used as training features by the compared algorithms.
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Figure 5.14: RMS errors of target user score predictions for Amazon book ratings

The experiment is conducted over 10 different pairs of source and target bestsellers,

with 10 repetitions of the experiment for each bestseller pair by randomly selecting

the labeled nodes. Figure 5.14 shows the root mean square (RMS) error of the pre-

dictions of user scores on the target bestseller, with respect to the ratio of available

scores for the target bestseller. The misclassification rates of the score predictions

(considering each score from 1 to 5 as a different class label) are also plotted in Fig-

ure 5.15. The errors are averaged over all experiments. The results in Figure 5.14

show that the proposed DASGA method provides the smallest RMS prediction er-
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Figure 5.15: Misclassification rates of target user score predictions for Amazon book
ratings

ror among the compared algorithms, except for the EA++ algorithm. On the other

hand, the misclassification rates in Figure 5.15 show that the EA++ method gives a

considerably higher misclassification rate than most domain adaptation methods in

comparison. The reason for this discrepancy between the RMS error and the misclas-

sification rate is that, in this data set, users tend to assign scores to books within a

rather limited range, where most scores vary within 3 and 5. For this reason, although

an algorithm does not predict the score labels correctly, its RMS prediction error may

remain relatively small. Hence, the results in Figures 5.14 and 5.15 should be consid-

ered together when assessing the performances of the algorithms. The overall results

suggest that the performance of the DASGA method is quite satisfactory compared to

the other algorithms when both the RMS error and the misclassification rate are taken

into account. The RMS prediction error of DASGA is seen to decrease at a very slow

rate with the increase in the known target labels. This behavior is somewhat different

from that observed in the previous experiments, and might possibly be explained with

the properties of the data set. Due to the small number of ratings each user provides
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within a large book catalogue, there are relatively few pairs of users who read suf-

ficiently many books in common. This causes the source and target graphs to have

a sparse topology with a limited number of edges in this experiment; thus, the util-

ity of the information of the known target labels in the prediction of the unavailable

target labels is more limited compared to the denser graph topologies considered in

the previous experiments on synthetic and image data. A significant amount of infor-

mation regarding the spectral content of the label function is readily transferred from

the source domain to the target domain via the proposed algorithm. This already al-

lows the prediction of the target scores with a certain performance level even when

there are few target labels, which does not improve significantly with the increasing

availability of target labels.

5.2 Stabilization and Sensitivity Analysis of the Proposed Algorithm

We now study the behavior of the proposed DASGA algorithm throughout the iter-

ative optimization procedure, as well as its sensitivity to the choice of the algorithm

parameters.

We first examine the variations of the objective function and the misclassification

rate of unlabeled target samples in percentage during the iterations. The value of the

objective function (4.5) is evaluated in each iteration of the alternating optimization

procedure, as well as the misclassification rate given by the solution computed in each

iteration. The evolutions of the objective function and the misclassification rate are

shown for the COIL-20 in Figures 5.16 and 5.17, and for the MIT-CBCL data sets

in Figures 5.18 and 5.19. The results confirm that the objective function decreases

monotonically throughout the iterations and converges as discussed in Section 4.3.3.

The misclassification rate also has the general tendency to decrease during the iter-

ations. The rate of decrease of the misclassification error follows closely that of the

objective function in both data sets. This suggests that the objective function (4.5) un-

derlying the proposed method captures well the actual performance of classification.
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Figure 5.16: Evolution of the objective function throughout the iterations for the
COIL-20 data
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Figure 5.17: Evolution of the misclassification rate throughout the iterations for the
COIL-20 data
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Figure 5.18: Evolution of the objective function throughout the iterations for the MIT-
CBCL data
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Figure 5.19: Evolution of the misclassification rate throughout the iterations for the
MIT-CBCL data
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Next, we study the sensitivity of the proposed method to the choice of the algorithm

parameters. The experiments on the different types of data sets in Section 5.1 suggest

that choosing the weight parameter µ1 as around 0.001 − 0.01 and µ2 as around

1 yields reasonable performance in general. Here we focus on the other algorithm

parameters that might also have an influence on the algorithm performance; namely,

the number of nearest neighbors K used when constructing the source and target

graphs, and the number of graph basis vectors R used in the objective (4.5). The

variations of the misclassification rate of unlabeled target samples with the number

of nearest neighbors K and the number of basis vectors R are shown respectively in

Figures 5.20 and 5.21 for the synthetic data sets of Section 5.1.1, and in Figures 5.22

and 5.23 for the COIL-20 data set.
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Figure 5.20: Variation of the misclassification rates of target samples with the number
of neighbors K for the synthetic data set
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Figure 5.21: Variation of the misclassification rates of target samples with the number
of basis vectors R for the synthetic data set

In Figure 5.20, the algorithm performance is seen to be stable over a relatively wide

range of K values for the synthetic data set. It can be observed that the proposed

method tends to favor smaller K values for the Synthetic dataset-3, compared to the

other synthetic data sets. This may be explained with the fact that samples from the

two classes are closer to each other in Synthetic dataset-3 due to the high variance

of the normal distribution. This causes a larger portion of the nearest neigbors of a

sample to be from the other class when K is high, which has a negative effect on the

classification performance. Meanwhile, the results on the COIL-20 data set given in

Figure 5.22 show that the proposed method is more sensitive to the choice of the K

parameter in this data set. In particular, the optimal value of K is quite small and

around 3− 4. In fact, this result is quite in line with the intrinsic geometric properties

of this data set: As the images of the objects are taken by rotating the camera around

the object by varying a single camera angle parameter, the intrinsic dimension of

this data set is quite low. The best performance is then achieved when the graph

is constructed with a small number of neighbors, which conforms to the geometric

structure of data.
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Figure 5.22: Variation of the misclassification rates of target samples with the number
of neighbors K for the COIL-20 data set
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Figure 5.23: Variation of the misclassification rates of target samples with the number
of basis vectors R for the COIL-20 data set
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The results in Figure 5.21 suggest that the variation of the misclassification rate is

quite stable over a relatively large range of R values for the Synthetic dataset-1 and

the Synthetic dataset-2. The performance is observed to be higher when a smaller

number of basis vectors is used. Since the variance of the normal distributions is

rather small in these two synthetic data sets, the nearest neighbors of samples in the

constructed source and target graphs tend to belong to the same class. Then, the la-

bel function has a slow variation on the graph, and consequently, a small number of

low-frequency Fourier basis vectors approximate the label function well. The opti-

mal value of R is seen to be higher for the Synthetic dataset-3, where the number of

neighboring samples from different classes increases due to the high variance of the

distributions. Then the label function has stronger high-frequency components com-

pared to the first two synthetic data sets, so that a slightly higherR value is preferable.

Comparing these results to those on the COIL-20 data given in Figure 5.23, one can

see that the optimal number of basis vectors R is higher for the COIL-20 data set.

The misclassification rate decreases as R increases for small R values, which is due

to increase in the capability of representing the label function when more basis vec-

tors are used. The optimal value of R is around 10-12, and the performance tends to

degrade when R is increased beyond these values. This is because increasing R too

much results in poor regularization and increases the misclassification error, which is

also consistent with the theoretical bound in Proposition 1. This observation is also

confirmed on the other real data sets by the results in Section 5.1, where it has been

seen that setting R around 10 yields reasonable performance in general.
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CHAPTER 6

CONCLUSION

Extracting useful information from available data is at the focus of popular research

fields such as machine learning and data mining. In this thesis, we have addressed the

problem of domain adaptation for learning with graph data, whose aim is to extract

information from one domain so as to leverage it in another domain.

Domain adaptation and transfer learning terms are introduced and domain adaptation

literature is reviewed in Chapter 2. Homogeneous domain adaptation, where source

and target data representations are the same, and heterogeneous domain adaptation,

where source and target data representations are different, are defined. Moreover,

homogeneous and heterogeneous domain adaptation algorithms proposed in the liter-

ature are introduced.

Graph signal processing is reviewed in Chapter 3. Graph signal processing notions

such as graph label function, graph Laplacian and graph Fourier transform are defined

and spectral properties of graphs are introduced. This chapter is a critical part of this

study because the thesis is based on spectral properties of graphs. As the Fourier

transform in traditional signal processing gives information about how fast a signal

varies with time, the Fourier transform in graphs gives information about how fast a

graph function changes over the vertices of the graph. In this thesis, it is proposed

that the spectral content of a graph signal acquired using the graph Fourier transform,

can be utilized to obtain useful information about a similar graph signal on another

graph. Moreover, it is shown that the eigenvectors of the graph Laplacians of two

different graphs can be used as basis vectors and information from one graph can be

transferred to the other one using these basis vectors.
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In order to deal with the aforementioned domain adaptation problem, a novel algo-

rithm, which is based on graphs, is proposed in this thesis. The motivation and deriva-

tion of our algorithm, DASGA, is presented in Chapter 4. Given a source graph with

sufficiently many labeled nodes and a target graph, our graph-based domain adapta-

tion algorithm estimates a label function on the target graph, relying on the assump-

tion that the frequency content of the source and target label functions have similar

characteristics. Our method is based on the idea of learning a pair of coherent bases

on the source and target graphs not only resembling in terms of their spectral content,

but also “aligning” the two graphs such that the label functions over the two graphs

can be reconstructed with similar coefficients. The proposed domain adaptation algo-

rithm is completely graph-based and is particularly applicable in learning problems

defined purely on graph domains where no physical embedding of data samples is

available. The proposed method can potentially be applied to many machine learning

problems of interest concerning graph domains.

Four data sets consisting of synthetic data, COIL-20, MIT-CBCL face recognition

database and Amazon book reviews are used to test the performance of our algorithm

in Chapter 5. The performance of DASGA is compared to the performance of DAMA,

SVM, Nearest Neighbor, EA++, SA and GFK algorithms. DASGA showed a notable

performance in all experiments. DASGA performed best in the COIL-20 data set

since the data consists of rotating images of objects, which makes graph-based meth-

ods advantageous. Moreover, algorithms using physical coordinates of the data are

not successful in COIL-20 since matched objects in source and target domains are

not the same object. This suggests that the proposed algorithm may have some poten-

tial in transfer learning applications where the relation between the tasks is weaker.

DASGA also performs best in synthetic datasets and its performance gets superior to

other algorithms as the data gets complicated. In MIT-CBCL dataset, DASGA be-

comes the third successful algorithm behind SA and GFK when the ratio of known

target labels is under 5%. DASGA catches up their performance when the ratio of

known target labels is higher than 5%. This is because GFK and SA are unsupervised

algorithms and they are based on finding low dimensional subspaces approximating

the source and target domains, which is appropriate for the face dataset. In Amazon

book reviews dataset, DASGA performs best when RMS and misclassification errors

58



are taken into account. Consequently, DASGA reveals its best performance when

the graph models of source and target domains are related only although source and

target samples are not similar in terms of the values of their features. That is, the per-

formance of DASGA is superior to other methods when there cannot be found direct

matches between source and target domain samples but there is a similarity between

domains in terms of graph models as in the COIL-20 dataset. Besides, another advan-

tage of DASGA algorithm is that it can be utilized for the datasets which do not have

physical coordinates, e.g., Amazon book reviews dataset, since constructing consis-

tent graphs in both domains are sufficient for DASGA without the need of physical

coordinates of data.

Finally, the methodology proposed in this thesis uses Fourier basis in order to align

source and target domains. The performance of DASGA may be improved by using

various bases instead of the Fourier basis. Moreover, the construction of the graphs

have a significant effect in the performance of the algorithm since the only informa-

tion DASGA uses is the topology of the graph. In this thesis, Euclidean distance is

used to determine the distances between data samples and Gaussian kernel weighting

function is used to assign a similarity value for adjacent vertices in the graph with

the K-NN approach. Different distance functions such as Manhattan distance and

Canberra distance can be utilized to observe their effect on the performance of the

algorithm. Another important parameter of the proposed algorithm is K in the K-NN

method because it also has a significant effect in the topology of the resultant graph.

Therefore, some effort might be spent in future studies in order to assign an optimalK

value as an input to the algorithm. Besides, the performance of the algorithm can be

improved by proposing new methods to determine the number of eigenvectors to be

used,R, in the algorithm depending on the dataset. Lastly, the effect of having sparser

graphs on the performance of DASGA may be investigated in the future works.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof. The solution αs, αt, T of Problem 3 gives the estimated source and target label

functions as f s = U
s
αs and f t = U

t
Tαt. The rates of variation of f s and f t on the

source and target graphs are given by

(f s)TLsf s = (αs)T (U
s
)TLsU

s
αs = (αs)TΛsαs

(f t)TLtf t = (Tαt)T (U
t
)TLtU

t
Tαt = (Tαt)TΛtTαt

where Λs and Λt are the diagonal matrices consisting of the R smallest eigenvalues

of respectively Ls and Lt, such that Λs
ii = λsi and Λt

ii = λti, for i = 1, . . . , R.

The difference between the rates of variations of f s and f t can then be bounded as

|(f s)TLsf s − (f t)TLtf t| = |(αs)TΛsαs − (Tαt)TΛtTαt|

= |(αs)TΛsαs − (αs)TΛtαs + (αs)TΛtαs − (αt)TΛtαt + (αt)TΛtαt − (Tαt)TΛtTαt|

≤ |(αs)T (Λs − Λt)αs|+ |(αs)TΛtαs − (αt)TΛtαt|+ |(αt)TΛtαt − (Tαt)TΛtTαt|.

(A.1)

In the following, we derive an upper bound for each one of the three terms at the right

hand side of the inequality in (A.1). The first term is bounded as

|(αs)T (Λs − Λt)αs| ≤ ‖αs‖2‖Λs − Λt‖ ≤ C2δ.

Here the first inequality is due to the Cauchy-Schwarz inequality, and the second in-

equality follows from the fact that the operator norm of the matrix Λs−Λt is given by

the magnitude of its largest eigenvalue, which cannot exceed δ due to the assumption

|λsi − λti| ≤ δ for all i.
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Next, we bound the second term in (A.1) as

|(αs)TΛtαs − (αt)TΛtαt| = |(αs)TΛtαs − (αs)TΛtαt + (αs)TΛtαt − (αt)TΛtαt|

≤ |(αs)TΛt(αs − αt)|+ |(αs − αt)TΛtαt|

≤ ‖αs‖‖Λt‖‖αs − αt‖+ ‖αs − αt‖‖Λt‖‖αt‖ ≤ 2CλR∆α

where the last equality follows from the fact that the matrix norm ‖Λt‖ is bounded by

the largest eigenvalue of Λt, which is smaller than λR by our assumption.

Lastly, the third term in (A.1) can be bounded as

|(αt)TΛtαt − (Tαt)TΛtTαt| ≤ |(αt)TΛtαt − (αt)TΛtTαt + (αt)TΛtTαt − (Tαt)TΛtTαt|

≤ |(αt)TΛt(αt − Tαt)|+ |(αt − Tαt)TΛtTαt|

≤ ‖αt‖2‖Λt‖‖I − T‖+ ‖αt‖2‖I − T‖‖Λt‖‖T‖.

(A.2)

Bounding the norm of T as

‖T‖ = ‖I + T − I‖ ≤ ‖I‖+ ‖T − I‖ ≤ 1 + ∆T

and using also the assumption ‖T − I‖ ≤ ∆T in (A.2), we get

|(αt)TΛtαt − (Tαt)TΛtTαt| ≤ C2λR∆T + C2λR∆T (1 + ∆T ).

Finally, putting together the upper bounds for all the three terms in (A.1), we get the

stated result

|(f s)TLsf s − (f t)TLtf t| ≤ C2δ + 2CλR∆α + C2λR(2∆T + ∆2
T ).
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