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ABSTRACT

SYNTHESIS OF CYCLOHEPTADIENE ANNELATED DIHYDROFURANE
DERIVATIVES AND DESIGN OF PYRROLO-PYRROLO-PYRAZINES AND
a-ALKYLIDYN-y-BUTYROLACTONES VIA ALKYNE CYCLIZATION

Aslanoglu, Furgan
PhD, Department of Chemistry
Supervisor: Prof. Dr. Metin Balci
March 2018, 206 pages

Owing to fascinating regiochemistry and controversial reaction mechanism, the
oxidative free radical cyclization reaction of unsaturated bicyclic endoperoxides is an
interesting area. In the first part of the thesis, we reacted various 1,3-dicarbonyl
compounds with cycloheptatriene in the presence of Ce(NH,4)2(NO3)s to obtain
dihydrocyclohepta[b]furan derivatives. Then, the formed 1,3-cycloheptadiene unit of
dihydrocyclohepta[b]furan derivatives was reacted with singlet oxygen to give the
corresponding bicyclic endoperoxides. Bicyclic endoperoxides which include acetyl
group were reacted with CoTPP, AuCl; and NEt;. Dihydrocyclohepta[b]furan
derivatives were oxidized with SeO, to tropone derivatives, biologically interesting

molecule.

In the second part of the thesis, a new synthetic method for the synthesis of pyrrolo-
pyrrolo-pyrazine derivatives was developed. Firstly, pyrrole was reacted with 2-
pyrrolidinone to generate 2,2'-(1'-pyrrolinyl)pyrrole, which was reacted with
propargyl bromide derivatives to afford propargylated compounds which were
further derivatized via Sonogashira cross coupling reaction. Pd/C-supported
cyclization reactionof propargylated compounds and their derivative with Pd/C,

afforded pyrrolo-pyrrolo-pyrazine derivatives.

In the last part of the thesis, we examined the reaction of bicyclic endoperoxides with
gold salt for the first time. Firstly, we synthesized bicyclic endoperoxide, 2,3-

dioxabicyclo[2.2.2]oct-5-ene by the reaction of cyclohexa-1,3-diene with singlet
Y%



oxygen. Reaction of unsaturated bicyclic endoperoxide with alkynes in the presence
of Au(L)/AgOTf resulted in the formation of a-alkylidine-y-butyrolacton derivatives.

Keywords: dihydrocyclohepta[b]furans, bicyclic endoperoxides, tropone, pyrrolo-

pyrrolo-pyrazines, a-alkylidine-y-butyrolactons.
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SIKLOHEPTADIENE KONDENZE DiHIDROFURAN TUREVLERININ
SENTEZI VE PIROLO-PIROLO-PIRAZINLERIN VE
a-ALKILIDIN-y-BUTIROLAKTONLARIN ALKIN
SIKLIZASYONU iLE TASARIMI

Aslanoglu, Furgan
Doktora, Kimya Boliimii
Tez Yoneticisi: Prof. Dr. Metin Balc1
Mart 2018, 206 sayfa

Oksidatif radikal halkalasma reaksiyonu ve doymamis bisiklik endoperoksitlerin
etkileyici yerse¢imli reaksiyonlar1 ve tartismali mekanizmalart nedeniyle ilgi ¢ekici
bir alandir. Tezin birinci kisminda, 1,3-dikarbonil bilesiklerini sikloheptatrien ile
Ce(NH4)2(NO3)s varhiginda reaksiyona sokarak dihydrocyclohepta[b]furan tiirevleri
elde edildi. Sonrasinda, olusan 1,3-sikloheptadien birimini singlet oksijen ile
reaksiyona sokup ilgili bisiklik endoperoksitler olusturuldu. Asetil grubu igeren
bisiklik endoperoksit CoTPP, AuCl; ve NEt; ile reaksiyona sokuldu.
Dihydrocyclohepta[b]furan tiirevlerini SeO; ile biyolojik olarak ilging molekiiller
olan troponlara yiikseltgendi.

Tezin ikinci kisminda, pirol-pirol-pirazin tiirevlerinin sentezinde yeni bir sentetik
metod gelistirdik. Baslangicta, pirol ile 2-pirolidinon 2,2'-(1'-pirolinil) pirol bilesigini
olusturmak i¢in reaksiyona sokuldu. Sonrasinda, 2,2'-(1'-pirolinill) pirol ile bromo
proponil bilesikleri propargilenmis bilesikleri elde etmek igin reaksiyona sokuldu.
Propargillenmis bilesik Sonogashira ¢apraz eslesme reaksiyonu ile tiirevlendirildi.
Propargilenmis bilesikler ve bunlarin tiirevlerinin Pd/C ile reaksiyonu olan Pd/C
destekli halkalasma reaksiyonu ile pirol-pirol-pirazin tiirevlerini elde edildi.

Tezin son kisminda, bisiklik endoperoksitlerin altin tuzlari ile reaksiyonlarini ilk
olarak biz arastik. Ilk olarak, bisiklik endoperoksit, 2,3-diokzabisiklo[2.2.2]okt-5-en
bilesigini siklohekza-1,3-dien singlet oksijen ile reaksiyona sokarak sentezledik.

vii



Doymamis bisiklik endoperoksitlerin Au(L)/AgOTTf varliginda alkinlerle reaksiyonu

a-alkilidin-y-buturolakton tiirevlerinin olusumuna neden oldu.

Anahtar Kelimeler: dihidrosiklohepta[b]furan, bisiklik endoperoksid, tropon, pirol-

pirol-pirazine, a-alkilidine-y-butorolakton.
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CHAPTER 1

SYNTHESIS OF CYCLOHEPTADIENE ANNELATED DIHYDROFURANE
DERIVATIVES AND STUDIES OF SYNTHETIC POTENTIAL OF THE
FORMED COMPOUNDS

1.1 INTRODUCTION

1.1.1. Oxidative Free Radical Cyclization

Free radical cyclization reaction has emerged as an important reaction for the
construction of carbon-carbon and carbon-heteroatom bonds in recent years.'
Especially, metal salts such as Mn(lll), Ce(IV), V(V), Co(lll), and Cu(ll) have been
used for radical cyclization reactions. In this group, Mn(OAc)s; has been used most
widely.? But, there are two limitation for Mn(OAc)s; poor solubility in organic
solvents and the formation of byproducts especially by intermolecular reactions. This
limitation and the other reagents drawbacks show that Ce (IV) reagents are more

proper as one-electron oxidant.

Cerrium ammonium nitrate (CAN) is an oxidant discovered by Smith group.® CAN
exist in pure form and includes cerium atom in the center surrounded by six nitrate
groups around. CAN is valuable chemical reactive because it has a low toxicity, ease
of handling, experimental simplicity and solubility in a number organic solvent.
Furthermore, CAN as an electron oxidant like Mn(OAc); has a large electron

potential (+1.61 V). CAN undergoes different oxidative transformation reactions.

Carbon-carbon bond forming reaction in presence of CAN is an important reaction in
organic chemistry and they are divided into two classes; intermolecular and
intramolecular reactions. Intermolecular carbon-carbon forming reaction in the

presence of CAN is widely used by researchers.



Intermolecular reactions of olefins 2 and 3 with dimedon (1) mediated by CAN
mainly result in the formation of dihydrofuran and spirodihydrofuran derivatives 4

and 5 as shown in Scheme 1.*

o O
Ph
.\ CAN
7@ O/ MeOH, 5 °C, 15 min
0] @)
1 2 4 Ph
o o
CAN _
7@ * MeOH, 5 °C, 15 min S Ph
O
Ph
1 3 5

Scheme 1

Addition of acyclic alkene 7 to Meldrum's acid (6) mediated by CAN gave a-
methylene lactone 8.> Spirocyclopropyl dihydrofurane derivative 11 was synthesized

via the similar procedure (Scheme 2).°

Q o} 1.CAN, MeCN, 0 °C O _o
>< + j/ 2 Et,NH, HCHO, NaOAc, HOAG
(0]
(0]
6 7

8
(0]
I> _ iR1 o Q CAN, MeOH, 0 °C R4
+ M . > \
R, R3 R4 0 °C, 30 min R4 R
9 10 R, O 3
11

R1=R2=Ph, R3=CH3’ R4=0Et

Scheme 2

A procedure for the synthesis of furo-p-quinones 14 as well as o-quinone 15 was
developed by the reaction of 2-hydroxynaphthalene-1,4-dione (12) and with
cyclopentadiene (13) in the presence of CAN.” Furthermore, CAN mediated reaction
of t-butyl 2-(2-hydroxytetrahydrofuran-2-yl)acetate(16) with alkene 17 gave
tetrahydrofuro[3,2,-c]oxepin-4(6H)-one (18) (Scheme 3).2



O
O

15

O 0]
OH 0)
CAN
O‘ * MeCN, 0 °C ¥
0] o
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(@] OH o Me MeCN, 0 °C / Ph
o)
16 17 18 Me
Scheme 3

Ce(IV) mediated intramolecular carbon-carbon bond forming reaction was reported
for the first time by Hansel et al.? According to the procedure described by Snider et
al.’® unsaturated silyl enolether 19 underwent oxidative cyclization reaction in the
presence of CAN affording tricyclic ketone 21. Citterio et al.™* reported the oxidative
cyclization of 5-aryl-3-oxo-pentanoic acid ester (22) by CAN leading to 2-hydroxy-
1-naphthoic acid ester (24) (Scheme 4).

OTBDMS (0] (0]
H H
= -
CAN, NaHCO3 KOH
MeCN, 25 °C <:'it(> MeOH Céij
\ - Y
H : H =
AN AN
19

20 21

CAN silica gel OO
o) MeOH, 20 °C o) benzene OH
MeO,C OMe

COMe CO,Me
22 23 24
Scheme 4

Takemoto et al."*3 presented that oxaspiro undeconone 26 and cis-fused chlorinated
bicyclic ether 28 were obtained in good yields by the reaction of bicyclo[4.1.0]heptyl



sulfide having an hydroxyl group in the side chain 25 and cyclopropyl sulfides of the
type 27 with CAN, respectively (Scheme 5).

o)
\\SToI o
CAN, K,CO;
% _~_OH MeOH0°C
25 26
OCH, ?
iéi: CAN, NH,CI Cljfj?/\o) N %ii\
CoHs™ "o on o CoHs” "0 CoHs™ "o OH
27 28 29
Scheme 5

14
l.

Jamie et al.”" reported CAN mediated intermolecular cyclization to benzene ring. 6-

Aryl-B-dicarbonyl 30 can undergo 6-endo cyclization mediated by CAN affording -

|.15

tetralone 31. Kim et al.” reported that 6-endo cyclization reaction of phenethylamide

32 provided dihyroisoquinoline 33 (Scheme 6).

OMe
CAN
9) MeOH, rt 0) OMe
OMe OMe
o (6]
1

30 3

MeO MeO
e rNCOPh dry MeCN, rt NCOPh

MeO
TMS
32 33

Scheme 6

In 1971, Trahanovsky et al.*® discovered for the first time, azidonitration reaction in
presence of CAN. According to this method, oxidation of olefin 34 in the presence of

NaN3 and CAN provided a-azido--nitro alkanes 35. Magnus et al.'’

reported that
the reaction of triisopropyl silyl enol ether 36 with CAN and sodium azide gave -
azido keton 37. A procedure for the synthesis a-azido ketone 39 starting from styrene

(38) and sodium azide was also developed in the presence of CAN (Scheme 7).
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Scheme 7

CAN is also used as a catalytic oxidant in reactions such as regioselective ring
opening and transformation of epoxides into dicarbonyl compounds.* Salehi et al.°
reported the conversion of epoxides to the corresponding B-halohydrines 41 mediated
by catalytic amount of CAN (Scheme 8). Iranpoor and coworkers synthesized 1,2-
azidoalcohols 44 and 45 by the reaction of 40 with NaNj; in presence of catalytic
amount of CAN.? CAN and ammonium thiocyanate were used to convert epoxide

40 to thiiranes 42 (Scheme 8).%
Br
©)\/OH
41

}CAN(O.B eq), NH4Br

'BUOH, rt, 2h
S OH
2 OH
CAN(0.2 eq), NH4SCN CAN(0.2 eq)
'BUOH, rt, 30min H2O, rt, 10 min
42 40 43

CAN(0.2 eq), NaN3

'BUOH, rt, 8h
N3 OH
OH
©/\/ . ©)\/N3
44 45
Scheme 8

5



CAN is an effective catalyst for using condensation reactions to synthesize diazepine
and quinoaxiline derivatives. For example, o-phenyldiamine (46) was reacted with
ketone 47 in presence of catalytic amount of CAN to give 1,5-benzodiazepine
derivative 48.2 The reaction of a-hydroxyketone 49 and benzene-1,2-diamine46
leading to the synthesis of quinoaxiline derivative 50 was also catalyzed by CAN
(Scheme 9).%

o H Ph
NH; CAN(10 mol %) N
* MeOH, rt, 3.5h _
NH, N
Ph
46 47
NH, o CAN(10 mol %) Ph
Cen - O
Ph air-H,0, rt, 50 min
NH, OH Ph
46 49 50

Scheme 9

CAN was also used in organocatalyzed reactions as a single electron oxidant
composing transient radical species from enamine. Vinylation of aldehyde,?® carbo-
oxidation of styrene?® and enantioselective a-enolation’” are example for this
strategy. As a result of these reaction, compound 53, 54 and 56 were obtained,

respectively. These reactions are shownin (Scheme 10).

O (e]
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H /\/@ NaHCO, 9y J\/\/Ph N//gﬁ
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51 53 H 1
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H H™ 2
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R R Ph
54
OTMS fe)
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R R O
56
R= n-hex
Scheme 10
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CAN has also been used by several protection and deprotection reactions such as
deprotection of acetals, TBDMS, THP, t-Boc, Benzyl, PMB and PMPE groups and

protection of benzyl and t-Boc group.

CAN plays an important role in deprotecting acetal groups. Nair et al.?® reported that
1.2 eqiv. CAN removed acetal groups in 57 and 59 in aqueous methanol (Scheme
11).

! : O
o. O
CAN (1.2 eqv)
é aq MeOH, rt, 10 min é
57 58

O/w o)
@) CAN (1.2 eqv)
aqg MeOH, rt, 10 min

59 60

Scheme 11

Singh et al.” employed CAN in methanol for the deprotection of TBDMS ethers 61.
Otherwise, C-Si bond was broken with CAN in methanol to obtain B-lactam

derivatives 62 (Scheme 12).%

o)

o u 1

O
H o~ 1 H
Ph/S/Nj;knPr CAN (5 eqv) Ph/S/Nj;rnPr
MeOH, rt, 24h NH
SiMe3
61 62

OTBDMS CAN (3 mol %) OH
> MeCN-borate buffer, rt, 2.5h' ',,/T

T

63 64

Scheme 12

Hakemelahi et al.* reported an efficient procedure for removal of t-Boc-group using
catalytic amount of CAN in acetonitrile (Scheme 13).



C j "///O\/ Ph

., Ph
N CAN (cat.) N
MeCN, reflux, 2 h

65 66
Scheme 13

Examples of protection method; allylic alcohol 67 and tertiary benzylic alcohol 69

were converted to the corresponding allyl ethers by using a catalytic amount of CAN

(Scheme 14).%
CAN (0.2 mol %)
. tBuOH,t, 24h

H
HO N

67 68

OBu!

Ph CAN (0.2 mol %) Ph A~
Pghi OH allylic alcohol,reflux, 2 h Pgh; o

69 70

Scheme 14

1.1.2 Photogenerated Singlet Oxygen

Photogenerated singlet oxygen (*0,) has been discussed in synthetic organic
chemistry since 1924.% It is a very short lived species in a exited state, but it easily
oxidizes carbon-oxygen and heteroatom-oxygen bonds. Bicyclic endoperoxides
synthesized by cycloaddition of singlet oxygen to diene systems are important
compounds for the chemical and biological transformations. Especially, biochemists
and biologists pay particular attention to singlet oxygen because of biochemical role
of the photogenarated singlet oxygen such as free radical aging mechanism, cancer

inducing mechanism etc.3* %

1.1.2.1 Generation of Singlet Oxygen
A. Chemical Methods

There are a plenty of laboratory methods to obtain singlet oxygen. These are;

a. Reaction of chlorine with hydrogen peroxide to generate singlet oxygen®® 3" %

8



Cly + H,0, — 10, + 2HCI

b. Reaction of bromine with hydrogen peroxide to generate singlet oxygen®

Br, + H,O, '0, + 2HBr

c. Reaction of peracids with hydrogen peroxide®®

Q Q
2R-C-OOH —» '0,+2R-C-OH

0 0
I
R-C-00H + Hy0, — '0,+ R—C-OH + H,0

d. Reaction of nitriles with hydrogen peroxide to generate singlet oxygen®®

NH
RCN + H,0, ——= R-G-OO0H

N 2
R-C-OCH + H,0, —> 0, + R—(Il,—NH2+ H,O

e. Decomposition of triphenyl phosphite ozonide at -35 °C to generate singlet

oxygen®

03 /O\
CeHsO)sP ———>—»
(CeHs0)3 T (CeH50)3P\O,O

-35°C

/O\
(C6H50)3P\O,O 3o |02+ (CeHs0)sP=0

f. Decomposition of potassium peroxychromate with water to generate singlet

oxygen®®

4CrOg™ + 2H,0 7 10, + 4CrO,2 + 40H

g. Decomposition of 9,10-diphenylantracene at high temperatures™

Ph Ph
120 °C
()%= o (LD
Ph Ph



B. Photosensitizing Methods

Researchers used different photosensitizers to synthesize singlet oxygen on a
laboratory scale.®® Popular photosensitizers are dyes such as; meso-

tetraphenylporphin, rose bengal, eosin Y, methylene blue, toluidine blue etc.

TPP: meso-tetraphenylporphyrin Rose Bengal Erosin Y

Firstly, singlet oxygen mechanism was examined by Kautsky. This mechanism
includes the excitation of a sensitizer with visible light to form corresponding excited
single state. After intersystem crossing, the excited triplet state of the sensitizer
undergoes an energy transfer with triplet oxygen to generate singlet oxygen and the

ground state sensitizer.*

. h
Sensitizer — > 1Sensitizer*
1Sensitizer15C - 3Sensitizer*

3
3Sensitizer—22 > 1Sensitizer + o,
1.1.2.2 Reactions of Singlet Oxygen

There are three types of singlet oxygen reactions which are cycloadditon reaction,
ene reaction and heteroatom oxidation reaction. Cycloaddition of singlet oxygen is
divided into two classes; 1,3 dien compounds 71 undergo[4+2] cycloaddition
reaction to form cyclic peroxides called as endoperoxides such as 72 and ethylene
compounds 73 undergo [2+2] cycloaddition reaction to form dioxetan 74.%° Alkenes
75 and phenols 77, including allylic hydrogen are reacted with singlet oxygen (called
ene reaction) to form hydroperoxides 76 and 78.* Singlet oxygen oxidizes sulfides
79 and phosphines 81 to generate sulfoxides 80 and phosphine oxides 82,
respectively. These reactions are called heteroatom oxidation reaction (Scheme 15).**
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Scheme 15

1.1.2.3 Chemical Transformation of Bicyclic Endoperoxides

Diimide reduction is an important reaction for a bicyclic endoperoxide because
diimide reduces only the C=C double bond not the peroxide linkage. When catalytic
hydrogen is used instead of diimide, double bonds as well as peroxide bond are
reduced. Diimide is generated by the reaction of potassium azodicarboxylate and
acetic acid. Solomon et al. used diimide reduction to synthesize prostaglandin
substructure 85 (Scheme 16).%

R
10 R _ R
2 7 /O HN=NH /O
O (0]
R R
R

83 84 85

Scheme 16

There are three types of reduction reactions of bicyclic endoperoxides. These are
LiAlH,4, thiourea and catalytic reduction reactions. LiAIH, and thiourea are used to
generate 2-ene-1,4-diols 87. One the other hand, catalytic reduction is applied to
obtain 1,4-diols 88. Thiourea reduction has some advantages compared to catalytic

reduction and lithium aluminum hydride reduction. This advantage is that thiourea

11



reduces only oxygen-oxygen bond and thus preserves other functional groups. For
example, reaction of endoperoxide 86 synhesized by addition of singlet oxygen to
cyclopentadiene, was reduced by thiourea, to 2-ene-1,4-diols 87.%° On the other hand,

catalytic hydrogenation reaction of endoperoxide 86 generates, 1,4-diols 88 (Scheme

17).

LiAIH,
| b on
0, LIE\O thiourea Q
o) o gl e
0]
13 86 87 OH
nglcat
OH
88 OH
Scheme 17

Endoperoxide 86 was reacted with triphenylphosphine to give unsaturated epoxide
90. Mechanism of triphenylphosphine deoxygenation; trivalent phosphorus atom
provides the reductive extrusion of one oxygen atom then ensure the unsaturated

epoxide 90 (Scheme 18).%

(e 0
1
R e

( O~pph,
13 86 89 90

Scheme 18

There are two types of decomposition reactions in the thermochemical reaction of
endoperoxide 86; loss of molecular oxygen or cleavage of the O-O bond (Scheme

19). 44, 45

12
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cleavge
of the \ 0)
92

) (@]
86 0O-0O bond 91 -

Scheme 19

Example for loss of molecular oxygen; Wasserman and Larsen studied decompositon
of alkyl-substituted naphthalene 1,4-endoperoxides 94 to obtain the starting material
and singlet oxygen (Scheme 20).%® Thermal fragmentation of bicyclic endoperoxides

is an important reaction for singlet oxygen generation.

_ A
+10,

93 94

Scheme 20

Example for cleavage of the O-O bond; thermal isomerization of bicyclo[4.2.0]octa-
2,4-diene endoperoxide 95 in CCl4 at 110 °C provides bicyclo[4.2.0]octa-2,4-diene
diepoxide (96) (Scheme 21).%

Scheme 21
Adam and Erden reported that warming of (1R,4S)-2,3-dioxabicyclo[2.2.1]heptan-7-

one (97) up to -10 °C gave succinaldehyde (98) and carbonmonoxide (Scheme 22).%2

O
A§\O A(~78 °C—>-10 °C)‘ o
O/ _0 + CO

97 98

Scheme 22
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Base catalyzed decomposition of bicyclic endoperoxides is a rearrangement reaction
and used to obtain cyclic hydroxy ketones. First base abstracts a hydrogen atom from
the bridgehead carbon atom then the rearrangement occurs. For example, 2,3-
dioxabicyclo[2.2.1]heptane derivative (99) was reacted with NEt; and it was

converted to cyclic hydroxy ketone 100 (Scheme 23).%

O NEt3 _ HO O
o CH,Cly, 0 °C
99 100
Scheme 23

1.1.3 Troponoids

Troponoids are natural compounds having seven membered aromatic rings, tropone
and tropolone. Tropone is not present in the nature, but many natural compounds
have tropone in their structures. Troponoids having these skeleton have a wide range
of pharmacological activities. Trust et al.*® studied that tropolidine and tropone
posses bactericidal and bacteriostatic activities, but don’t have sporicidal activity

against gram positive and gram negative species (Scheme 24).

O O

aXefes

tropilidine tropone tropolone

Scheme 24

Further studies showed that tropolone for instance benzotropolone and thujaplicins
exhibit strong antimicrobial and antifungal activity.® According to Inamori groups,
tropolones such as PB-dolabrin, y-thuiaplicin showed strong antimicrobial activity
(Scheme 25).**
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Cron Lo
Pr

benzotropolone y—thujaplicin B—dolabrin
101 102 103
Scheme 25

To synthesize tropone (106), firstly cycloheptanone (104) was reacted with bromine
under acidic condition to give 105, then the adduct was reduced with catalytic
hydrogen to give 106.°* According to the Collington’s method, a-position of
cycloheptanone (104) was firstly brominated with bromine. Then the product 107

was reacted with lithium chloride to obtain tropone (106) (Scheme 26).>®

O Q Br N

@ Brz, AcOH Br\@ Pd-BaSO4 / H2 @
Br

104 105 106

0 Q Br Q
@ Br\@ Br @

Bry, hv LiCI/DMF
—_— —_—
104 107 106

Scheme 26

For a general synthesis for tropolone (110), cycloheptanone (104) was first oxidixed

with SeO; to a-diketone 108. Bromination of 108 followed by debromination and

catalytic reduction resulted in the formation of tropolone (110) (Scheme 27).*°

Q Q@ o Q@ oH ®  oH
@ SeO, ix:/; Br,, Base (\:\g Hy, Pd-C @
/\Br
104 108 109 110

Scheme 27
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Oxidation reaction is used to synthesize tropone (106) and tropolone (110) most
widely. Nozoe®® and Radlick®” oxidized cycloheptatriene (111) to tropone (106) with
SeO, or CrOj in pyridine. On the other hand, for the synthesis of tropolone (110)

Doering et. al.>® used KMnOj, as oxidation reagent (Scheme 28)

@ 8802 @ @ CrOg3-pyridine @

111

Scheme 28

Cycloaddition reaction is also a method to synthesize tropone or tropolones. Stevens

et. al.>®

reported that cycloaddition of dichloroketene (112) to cyclopentadiene
afforded cyclobutanone derivative 113. Then the adduct 113 underwent a ring

enlargement reaction to form tropolone (110) (Scheme 29).

0
) °
CLC=C=0 —— =~ Clm KORAOR @OH
cl
113 110

112

Scheme 29

Birch, et al.®

reduced anisole derivatives 114 to 1-methoxycyclohexa-1,4-diene 115
by the Birch reduction. Addition of dibromocarbene to 1,4-dienes 115 followed by
the reaction with aqueous AgNO; afforded corresponding tropone derivatives 117

(Scheme 30).
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NH;- EtOH

11
a, R=H
b, R=OMe

~

Scheme 30

Weitz, et al.”* synthesized benzotropone 120 by a condensation reaction. According
to this synthetic pathway, firstly, commercially available phthalaldehyde (118) was
reacted with 1,3-acetonedicarboxylates. Condensation product 119 was hydrolyzed
to afford benzotropone 120 (Scheme 31).

CO,R
O et ‘G
CHO
CO,R
118
Scheme 31

An alternate pathway to synthesize benzotropone 124 was the reaction of a,a’-
dibromo-o-xylene (121) with 1-[(1Z)-1-ethylprop-1-enyl]pyrrolidine (122) to afford
desired compound 123. Bromination of 123 followed by dehydrobromination gave

benzotropone derivative 124 (Scheme 32) 2

1-i-ProNEt .
AN 2 1°Bry
Br . /\N/\ 2.Hy0 2. DMF, CaCOs LiCl
Br < 7 dioxane o o
121 122 123 124

Scheme 32

Balci et al.®®

synthesized benzotropolone (129) using an unusual endoperoxide
rearrangement. Firstly, benzotropone (127) was synthesized by the Collington’s
method. Then, benzotropone (127) was reacted with singlet oxygen to form
benzotropone endoperoxide 128. Thiourea reduction of 134 followed by water

elimination gave benzotropolone (129) (Scheme 33).
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Scheme 33

1.1.4 Aim of the Study

The aim of this part was the synthesis of cycloheptadiene-fused dihydrofurane
derivatives and searching further reactions of dihyrofuranes 130. We were interested
in the construction of these type of skeletons due to their important mechanistic
properties and as well as pharmacological properties. In this project,
cycloheptatriene (111) will be reacted with 1,3-dicarbonyl compounds in the
presence of cerium ammonium nitrate to generate dihydrofurane-fused
cycloheptadiene 130. The diene system in 130 will be submitted to photoxygenation
reaction to obtain endoperoxides 131 and 132. Furthermore, compound 130 will be

converted to furan-fused tropone derivatives 133 (Scheme 34).

0 o)
\ \
0~ "R? 0~ “R2
111 130 131
| o)

Scheme 34
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In addition, we are also interested in the transformation reactions of endoperoxide
131. Firstly, we will examine reaction of endoperoxide 131 with CoTPP to form 134.
After that, gold-catalyzed oxidative ring-opening reaction of endoperoxide 131 will
be studied to generate 132a. The reaction of endoperoxide 131 with triethyl amine is

also planned to form 157

Q. o)
| R =0T @ R New R
~ | \
S O R 0" R

132a

Scheme 35
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1.2 RESULTS AND DISCUSSION

1.2.1 Synthesis of Dihydrocyclohepta[b]furan (130)

Commercially available cycloheptatriene (111) was treated with 1,3-diketones 137 in
the presence of CAN to obtain dihydrocyclohepta[b]furan derivatives 130. The
reaction proceded cleanly, no side products were formed during this addition reaction
(Scheme 36).

4
0O O CAN 6 s 3 1
- T - R
R! R2 MeOH,0°C,2h 7 \
8 807 2 R2
;
111 137 a-d 130 a-d
. R1= 2_
a: R1 CHs R - CHg a: 95%
b: R'=OCHjg, R?>=CHj b: 86%
c: R'= OC,H5, R?=CHjg c: 74%
d: R'= OCH3;, R?= CH,(CO)OCHj; d: 68%
Scheme 36

The characterization of compound 130a was performed by using 'H and **C NMR
spectra (Fig 3 and Fig 4 - p. 109-110). In the *H NMR spectrum of compound 130a,
the methine proton H-8a resonates as a broad doublet at 5.01 ppm with a coupling
costant of J = 8.7 Hz. The value of of coupling costant is in agreement with the cis-
configuration of the annulated five-membered ring. Furthermore, this peak is a
characteristic peak for this kind of compounds. Inspection of the Dreiding models
shows that the dihedral angle between the protons H-8 and H-8a is approximately 80-
90°. Due to the lack of a coupling between those protons, the doublet splitting arises
from the coupling with the neighboring proton H-3a. Olefinic protons for these
compounds resonate between 6.21-5.97 ppm. The other methine proton H-3a
resonates as a broad triplet at 3.27 ppm due to the coupling with the proton H-8a and
one of the methylene protons H-4. The fact that this proton couples only with one of
the methylene protons H-4 can be ascribed to the dihedral angels formed between the
relevant protons. The other signals in the *H NMR spectrum are in agreement with

the proposed structure.
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The signal at 193.6 ppm in the *C NMR spectrum of 130a belongs to the carbonyl
carbon. The olefinic carbon resonances appear at 167.1, 134.6, 129.8, 127.2, 126.9,
and 118.2 ppm. There are five aliphatic carbons and they resonate at 84.6, 51.8, 30.0,
29.1 and 15.3 ppm. The NMR spectra of the other derivatives 130b-d were also in
agreement with the proposed structures (p. 109-116).

The addition of dicarbonyl compounds is a regiospecific reaction. The radical
generated from dicarbonyl compounds 137 can attack two different double bonds
(C1-C2 or C3-C4) in cycloheptatriene. The final structure of the compounds 130
shows that the radical exclusively attacks the terminal double bond (C1-C2) in
cycloheptatriene. Even in this case there are two different routes for the attacks so
that two different products can be formed. The dicarbonyl radical can attack the
carbon atom C-1 as well as C-2. In the case of Route A (Scheme 35) the generated
carbocation formed after oxidation will be in conjugation with the diene system and
will be stabilized. However, in the case of an attach on C-2 carbon atom, the formed
carbocation cannot be stabilized. Therefore, the route A will be preferred. Careful
examination of the reaction products did not reveal the formation of any trace of

compound having the structure 138 (Scheme 37).

o

0} (0]
—r = . \
CAN R' Oxidation R' \
(0]

MeOH, rt HO (6] R'
5 & R R' Route A 130

2 (0] ®) o]
111 137 MeOH, rt R R
~e . . R
NS Oxidation \ R \
R .
o

HO (6] R

Scheme 37

In the light of this result, we decided to react cycloheptatriene with 3-
cyclohexanedione (139a) and dimedone (139b), with more enolizable characters than

acetyl acetone and derivatives to check the generality of this reaction (Scheme 38).
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Scheme 38

The *H NMR spectrum (Fig 19 - p. 118) of 140a exhibits four olefinic proton signals
in the range of 6.5 to 5.6 ppm. The observed coupling constants between the olefinic
protons are in the usual range. Additionally, alkoxy methine proton resonates as
doublet of doublets of triplets at the 4.90 ppm due to double bond in the a-position
and the oxygen atom. Other methine proton for compound 140a resonates as a broad
triplet at 3.39 ppm with a coupling constant of J = 6.3 Hz. The other signals of *H

NMR spectrum were coherent with the proposed structure.

For the compound 140a, in the *C NMR spectrum (Fig 20 - p. 118) there are three
characteristic groups which are carbonyl group resonating at 197.5 ppm, tertiary
carbon atoms appearing at 169.9 and 114.5 ppm and olefinic carbon resonances at
139.1, 129.6, 128.8 and 123.2 ppm. The remaining carbon resonances appear in the
aliphatic area at 72.4, 36.7, 28.4, 28.3, 27.4, 20.6 ppm.

The NMR spectra of compounds 14la and 141b looked similar to the NMR

spectrum of compounds 130 a-d.

We propose the following mechanism for the formation of these products. CAN
firstly abstract acidic proton in a cyclo-1,3-carbonyl compound 139 to form carboxyl
methyl radical 142 which adds to double bond of cycloheptatriene (111) to afford
new radical 143 on the cycloheptariene. Oxidation of 143 by CAN results in the
formation of 144 that can undergo two different ring closure reaction to form 140
and 141(Scheme 39).
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Scheme 39
1.2.2 Photooxygenation of the Dihydrocyclohepta[b] (130)

Tetraphenylporphyrin sensitized photooxgenation of dihydrocyclohepta[b]furan
derivatives 130 a-d in methylene chloride at room temperature for 15 h produced
endoperoxides 131 a-d which are stable at room temperature for many days (Scheme
40).

O 0

R! O, TPP, hv @ R
—_—_—
\ CH,Cly 1,15 h \ 5
0~ "R? o R
130 a-¢c a:R'= 2- 131 a-c
a: R1 CHs, R 2CH3 s 79%
b: R'=0CHj3, R*= CHj; b: 76%
c: R'=0C,H5, R?= CHj,4 c: 69%

d: R'= OCHj, R?= CH,(CO)OCH3 d: 66%

Scheme 40

Comparison of the NMR spectra of the products 131a with those of the starting
material shows that one double bond is missing and two new bridgehead protons are
formed instead. In the *H NMR spectrum (Fig 35 - p. 126) of 131a olefinic protons
resonate as an AB-system. A-part of this systems appears at 6.57 ppm as doublet of
doublets (J = 9.10 and 7.1 Hz) whereas the B-part resonate at 6.47 ppm as doublet of
doublets (J =9.10 and 6.8 Hz). Bridgehead protons of 131a resonate at 5.11 and 4.64
ppm. The other signals of *H NMR spectrum were in agreement with the proposed

structure.

In the **C NMR spectrum (Fig 36 - p. 126), the carbonyl carbon resonates at 192.6

ppm. Olefinic carbons appear at 168.4, 134.1, 124.3, 118.8 ppm. The other carbon
23



signals were coherent with the structure. The NMR spectra of the other derivatives

were also in agreement with the proposed structures.

When, dihydrocyclohepta[b]furan derivatives 130 were submitted to the
photooxygenation reaction under the same reaction conditions; in methylene chloride
at room temperature. However the reaction time was increased up to 96 h to give
endoperoxide 132 (Scheme 41).

o] 0]
Qﬁx\m 0, TPP, hv R1
o R? CH.Cl, rt, 96 h 0O
130 a-c 132 a-c
a:R'= CHg, R2:CH3 a: 82%
b: R'=0CH3, R?= CHj b: 78%
c: R'=0C,Hs, R?= CHj c: 69%
Scheme 41

Endoperoxide 132a was characterized on the basis of the 'H and **C NMR spectra,
which were in agreement with the proposed structure. There are three olefinic
protons in *H NMR spectrum (Fig 51 - p. 134) of 132a. Neighbouring olefinic
protons resonate as an AB system. The A-part resonates at 6.73 as broad doublet of
triplets (J = 8.0 and 0.9 Hz). The B-part appears at 6.51 as doublet of triplets (J = 8.7
and 1.0 Hz). The other olefinic proton resonates at 7.32 as doublet of triplets (J = 6.8
and 1.7 Hz). Methylenic protons of 132a also resonate as an AB system. A-part
resonates at 3.13 ppm as doublet of doublets of triplets with coupling constants of J =
19.4, 4.5 and 2.0 Hz and B-part resonates at 2.70 ppm as doublet of triplets with
coupling constant J= 19.4 and 1.3 Hz. Bridgehead protons resonate as multiplet at
5.02-4.94 ppm.

The *C NMR spectrum (Fig 52 - p. 134) of 132a shows ten different signals. The
resonance signals at 200.1 and 193.3 ppm belong to two carbonyl groups. Four of the
resonances appear in the range of sp? hybridized carbon atoms, at 146.5, 136.6, 131.8
and 128.5 ppm. Bridgehead carbons signal appear at 75.0 and 72.3 ppm. Aliphatic
carbons resonate at 33.2 and 26.6 ppm. The NMR spectra of the other derivatives

were also in agreement with the proposed structures.
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For this reaction, we proposed the following reaction mechanism. Singlet oxygen
first undergoes a [4+2] cycloaddition reaction with the diene unit of cycloheptadiene.
We assume, that singlet oxygen undergoes a [2+2] cycloaddition reaction with the
double bond present in the five-membered ring during the increased reaction time to
form a dioxetane 146. Thermal decomposition of dioxetane unit in 146 gives ester
intermediate 147 which undergoes an elimination reaction upon treatment with silica
gel to form the final produt 132. (Scheme 42).

X (@)
O 1 @
| R 0,, TPP, hv R
O‘\/ \ >
CH,Cl, rt, 96 h
o R2 2Cla, (0]
132
I SiO,

145 146 147
Scheme 42

1.2.3 SeO, Oxidation Reaction for Dihydrocyclohepta[b]furans (133)

Because of the biological importance of tropones and structural suitability of
synthesized compounds, we decided to synthesize tropone derivatives. Dihydro
cyclohepta[b]furan derivatives 130 were submitted to oxidation reaction with SeO..
This method includes forceful reaction conditions such as high temperatures.
Reaction of 130 with SeO, in anisole at 154 °C for 18-20 h provided the

corresponding tropone derivatives 133 in acceptable yields (Scheme 43).
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Scheme 43

Comparison of the *H NMR spectra (Fig 55 - p. 136) of 130a with those of (Fig 62 -
p. 139) 133a clearly shows that the resonances of methylene, methine protons in
seven-membered ring and the methyl protons attached to the double bond are
disappeared. Appearing of olefinic proton resonances in the *H NMR spectrum of
133a, clearly indicates the formation of tropone unit. One of the five olefinic protons
resonates at 9.14 ppm as doublet with a coupling constant of J = 11.2 Hz. The proton
resonance at 7.64 ppm appears as doublet of doublets (J = 11.2 and 8.9 Hz). The
double bond proton in the five-membered ring resonates as singlet at 7.52 ppm. The
other protons appear at 7.54-7.49 ppm as multiplet and 7.36 ppm as doublet of
doublets of doublets (J = 11.5, 8.5 and 4.0 Hz). Methyl proton resonance appears at
2.58 ppm as singlet.

In the **C NMR spectrum (Fig 56 - p. 136), carbonyl carbons resonate at 195.1 and
167.6. The signal of eight olefinic carbons appear in a range of 159.2 to 103.6.
Methyl protons group resonate at 30.1 ppm. The NMR spectra of the other

derivatives were also in agreement with the proposed structures.

For the formation of this interesting product 133, we propose the following reaction
mechanism. In the first step SeO, undergoes an ene reaction. The allylic seleninic
acid 149 formed as an intermediate undergoes a [2,3]-sigmatropic rearrangement to
form 150 that may decompose to an allylic alcohol or an allylic carbonyl compounds
as shown below. In the case of formation of an allylic alcohol, oxidation may
continue to give an a,B-unsaturated carbonyl product.

The methyl group attached to the double bond may also be oxidized to the

corresponding carboxylic acid. The decarboxylation at high temperature results in
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removal of the methyl group. These two oxidation reactions can take place one after
one or at the same time (Scheme 44).
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Scheme 44

1.2.4 Reaction of Endoperoxide (130a) with Co-TPP (153 and 134)

To examine the behavior of synthesized endoperoxide 130a against CoTPP,
endoperoxide 130a was treated with CoTPP in CH,CIl, at room temperature.
Surprisingly, the compound 134 was formed instead of the expected product 154
(Scheme 45).

Careful inspection of the NMR spectra indicated the formation of the epoxide-rings
beside the opening the dihydrofurane ring and formation of two new carbonyl groups
in compound 134. For this oxidative transformation reaction, the addition of oxygen
molecule to the double bond in the five-membered ring is necessary. The mechanism
of formation of this product is not clear and will be searched in the future. For
purification of 153, silica gel column chromatography was used. We noticed that the
ester functionality in 153 was eliminated during purification to give 134 where newly

formed double bond is conjugated with the carbonyl group (Scheme 45).
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Comparison of the *H NMR spectrum of 131a with those of 153 (Fig 77 - p. 147)
showed disappearance of the olefinic proton and bridgehead proton resonances. The
epoxide proton resonances were formed instead. Four epoxide protons resonate at
3.50 ppm as a broad triplet (J = 3.1 Hz), 3.40 ppm as doublet of doublets (J = 3.9 and
2.0 Hz) and other two epoxide protons epoxide signals appear at 3.20-3.11 ppm as
multiplet. There are two methine protons in the structure. The methine proton next to
the oxygen atom resonates at 5.46 as doublet of doublets with coupling constants of J
= 4.7 and 2.2 Hz. The other methine proton resonates at 3.78-3.73 ppm as multiplet.
In addition to methylene proton resonances at 2.19 ppm as triplet (J = 6.7 Hz), two

methyl groups resonate at 2.30, 1.99 as singlets.

13C NMR spectrum (Fig 78 - p. 147) of 153 includes twelve different signals. Three
of them are arising from the carbonyl groups which appear at 197.5, 196.0 and 170.3
ppm. Methine carbons of 153 resonate at 69.5 and 43.3. Epoxide carbons resonate at
58.1, 53.8, 51.6 and 50.4 ppm. Additionally, methylene carbon resonates at 23.5 and
two methyl groups appear at 24.0 and 20.8 ppm.

The presence of four epoxide protons and methylenic protons in the *H NMR
spectrum (Fig 86 - p. 151) of 134 showed that this part of the molecule was not
changed during column chromatography. However, the presence of an olefinic
proton resonance at 6.86 ppm as doublet of doublets (J = 4.2 and 1.8 Hz) indicated
the elimination of the ester group.
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3C NMR spectrum (Fig 87 - p. 152) of 134 was much more informative. The signal
of one of the carbonyl groups was disappeared and the remaining carbon resonances
appear at 200.5 ppm and 191.8 ppm. The formation of C=C double bond carbons at
141.5 and 136.5 ppm further confirmed the elimination of the ester group. Four
epoxide carbon resonances were found at 52.8, 52.8, 49.7, and 48.1 ppm.
Additionally methyl carbon and methylene carbon resonances were observed at 26.8

ppm 22.4 ppm, respectively.
1.2.5 AuCl;-Catalyzed Reaction of Endoperoxide (130a)

To examine the reaction of endoperoxides with gold salt, we treated compound 131a
with gold trichloride at the room temperature under the oxygen atmosphere. We
expected that endoperoxide unit in 131a would undergo some kind of reaction with
Au(Cl)s. However, we noticed that the endoperoxide unit was intact. On the other
hand, five-membered ring underwent an oxidative ring-opening reaction to give 147
(Scheme 46).

For this transformation, we suggest the following reaction mechanism. We assume
that the double bond in the five-membered ring is activated with Au®* ions upon
complexation so that the oxygen can atact this bond and form perepoxide 156 which
has tedency to rearange to corresponding dioxetane 146a. Cleavage of the dioxetane
146a will provide dicarbonyl compound 147. Elimination of CH3COOH group on

silica gel may funish 132a.
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The characterization studies of compound 147 were done with the help of *H and **C
NMR spectra. In the *C NMR spectrum (Fig 96 - p. 156) two new carbonyl carbons
were formed that resonate at 196.7 and 170.7 ppm the other carbonyl carbon
resonates at 197.1 ppm. At the same time two olefinic carbon resonances of
dihydrofuran ring disappeared. The other signals of *C NMR spectrum were in

accordance with the proposed structure.

In the 'H NMR spectrum (Fig 95 - p. 156) of 147, two bridgehead protons resonate at
4.95 ppm as triplet of triplets (J = 6.4 and 1.0 Hz) and at 4.81 ppm as doublet of
triplets (J = 6.7 and 1.2 Hz) . Olefinic proton resonates as multiplet between 6.56 to

6.45 ppm.
NMR spectra of 132a were discussed above.
1.2.6 Reaction of endoperoxide (130a) with NEt;

It is well established that the unsaturated bicyclic endoperoxides reacts with bases to
give the rearranged a,B-unsaturated enones. For further functionalization,
endoperoxide 131a was treated with triethyl amine in dichloromethane at 0 °C.

Contrary to our expectation, compound 160 was formed instead of 157 (Scheme 47).

We propose the following mechanism for the formation of compound 160. We

assume that the expected product enone 157 is formed in the first step. Then,
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triethylamine abstracts the proton from the hydroxyl group generating an alkoxy
anion that attacks the p-carbon atom of enone forming an epoxide ring. The formed

carbanion can easily be protonated to generate final compound 160 (Scheme 45).

0]
@ NEL
o | CH,Cl, 0 °C, 1h

Scheme 47

When we compare *H NMR (Fig 35 - p. 126) spectrum of the starting compound
131a with the *H NMR spectrum (Fig 104 - p. 160) of product 160, we observe that
bridgehead protons and olefinic protons signals are disappeared and epoxide protons
signals are formed instead. Epoxide protons appear as a doublet of doublets of
doublets at 4.79 ppm (J = 8.1, 5.8, 2.3 Hz) and doublet of doublets at 4.55 ppm (J =
7.9, 5.8 Hz). Methine protons signal shows a broad doublet at 5.38 (J = 2.1 Hz) and
multiplet in the range of 2.76 to 2.71 ppm. The other protons were coherent with the
structure.

In the **C NMR spectrum (Fig 105 - p. 161), there are two carbonyl carbon signals
resonating at 201.9 and 197.3 ppm and two olefinic carbon signals at 169.3 and

104.2 ppm. Epoxide carbon signals appear at 76.7 and 70.9 ppm.
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CHAPTER 2

DESIGN OF PYRROLO-PYRROLO-PYRAZINES VIA Pd/C-CATALYZED
CYCLIZATION OF N-PROPARGYL PYRROLINYL-PYRROLE
DERIVATIVES

2.1 INTRODUCTION
2.1.1 Pyrrole

Pyrrole, from Greek meaning red, is an attractive azaheterocyclic compound. Pyrrole
and its derivatives show interesting biological and pharmacological properties such
as antitumor,®* antibacterial,®® antioxidative,®® anti-inflammatory,®’ antifungal
activities.®® These properties show that pyrrole is an important pharmaceutical
compound. For instance, antrovastatin, marketed name is Lipitor®,®® (1) posseses a

cholesterol-lowering properties.

Pyrrole ring was used to synthesize non-steroidal anti-inflammatory drugs, which are

called tolmetin (Rumatol®) (2) and ketorac (Ketorac®) (3).”

33



o

/\ /\
|
Me
Rulmatol® Ketorolac®
2 3

Recently, anticancer drugs having pyrrole ring have been used by treatment of cancer
diseases. Sunitinib (4) is an important example, this marketing drug, is used for
treatment of renal cancer.” The other example of synthetic anticancer drug including

pyrrole ring is a tallimustine (5)."

Cl
NH,
HN Cl
NEt.
o
(0]
/ \ - HN
N~ Me N/
Z4
NH N O Me
B Me
Sunitib Tallimustine
4 5

Optoelectronic materials having pyrrole ring, such as OLED (Organic Light-Emitting
Diodes), PLED (Polimeric Light-Emitting Diodes), polypyrrole-latex materials,
polypyrrole, hexa(N-pyrrolyl)benzene (6) are important for the material science. In
addition to, BODIPY (4,4-difluoro-4-boradipyrrin system) (7) is an important pyrrole
derivative used by many scientist because it posseses strong absorption properties in

the UV and emit very intense fluorescence.”

N. B N
Fa
A pyrrole based semiconductor BODIPY dyes
6 7
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2.1.2 Pyrazines

Pyrazine (8) is a heterocyclic compound having two nitrogen atoms with a six
membered aromatic ring. Compounds including the pyrazine skeleton represent
important role in materials science’ and drug chemistry.” In other words, they show
a greate range of biological activities, such as antihypersensetive,” antiarrhythmic,”’

psychotropic,”® antihypoxic.”

pyrazine

8

Pyrazine is found in many natural products but larger part of natural pyrazines are
found in amino acids such as, terezine A® (9), barrenazine A and B® (10),
actinopolymorphol C% (11), 2,5-diisopropylpyrazine® (12), botryllazine A (13) and
botryllazine B* (14).

phl O,
barrenazine A, R= (CH,)3Me

(-)-terezine A barrenazine B, R= (CHz)zCH—CHz actinopolymorphol C
9 11

N ; ]\©\
| AN
pZ
N
O O
2,5-diisopropylpyrazine botryllazine A botryllazine B

12 13 14

2.1.2.1 The Synthesis of Pyrazines

Cyclocondensation reaction is an important and most common way to synthesize

al.®

pyrazine ring. Masuda et synthesized 2,3-dihydropyrazine 17 by

cyclocondensation reaction of 1,2-dicarbonyl compound 15 with 1,2-diaminoethane
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(16). Oxidation of 2,3-dihydropyrazine 17 with copper chromite gave pyrazine 18
(Scheme 1).

N
Me Et02 0°C _copper chromite chromite Me | \]
I T s0°c P
Et N

Et
15 16 17 18

Scheme 1

Darkins et al.®

reported that N-protected 1,2-dicarbonyl compound 19 was
condensed with 1,2- diaminoethane to generate dihydropyrazine which is oxidized to

pyrazine 20 by MnO; in the presence of KOH (Scheme 2).

CbzHN O NHCbz
Y /\ )\[N
1. HoN NH» | \]
H
5 2. MnO,, KOH N
19 20

Scheme 2

1,4-Diazine scafold 23 was generated by the reaction of bicyclo[2.2.1]hept-5-ene-
2,3-dione (21) with 1,2-diaminoethan followed by oxidation in the presence of NiO;
(Scheme 3).%

(0] / N\
7 HoN NH; NiO,
O p-TsOH
21 22 23

Scheme 3

According to a new synthetic methodology developed by Kamitori,®
dialkylhydrazone 24 was first reacted with TFAA (trifluoroacetic acid) followed by
hydrolysis with H,SO, to generate a-diketohydrate 25 which was condensed with
diamines to obtain pyrazine derivative 26 (Scheme 4).
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Kano and coworkers demonstrated the direct synthesis of pyrazine by the reaction of
diaminomalononitrile 27 with B-keto sulfoxide 28 to form 2,3-dicyanopyrazine 29
(Scheme 5).%°

Ho,N__CN Oj/Ph con
I + \S reflux I j/
H,N~ “CN I
o)
27 28 29
Scheme 5
Bradbury et al.® synthesized new pyrazinone derivatives 32 starting from 1,2-
dicarbonyl compound 30 and o-amino malonamides 31 in the presence of

NaOH/NaHSOj3; (Scheme 6).

H
Me. O H,N__O Me N
NaOH, NaHSO; |
\/E * f 80 °C } \[ I
N

H™ 0 H,N~ “CONH, CONH;

0]

30 31 32

Scheme 6

In 2003, Taylor and coworkers developed a highly efficient and novel route for the
synthesis of quinoxaline derivative 35 by a tandem oxidation procedure, where o-

hydroxyketone 33 was reacted with 1,2-diamines 34 in presence of MnO, (Scheme

7.2
H2N N
0 =, L0
Ph CHzCIZ reflux Ph N/

33 34 35

Scheme 7
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Lindsley et al.** designed a practical and general method under the microwave
irradiation conditions to synthesize functionalized pyrazine 38 that are important

class of heteroaromatic compounds (Scheme 8).

0 / Q
N\ \ NH N V4
o = 2 MeOH:ACOH S/\i[ ~
0 HEENG 60°C,5min  \==N F o)

o) NH,
\ ! /

36 37 38

Scheme 8

An alternate way to synthesize pyrazine ring is the cyclodimerization of a-amino
carbonyl compounds. Firstly, a-amino ester 39 undergoes a self-condensation
reaction to form 2,5-dihydropyrazine 40. Treatment of 40 with trialkloxonium salt
followed by oxidation with DDQ resulted in the formation of 3,6-dialkoxypyradazine
41 (Scheme 9).%

OMe H,N EtO_ _N
\I\: k T _ 1(EGO)BF, | N
om0 “2pp@ _

N~ "OEt

39 39 40 41

Scheme 9

Meier et al.®

reported a new procedure to synthesize trisubstituted 1H-pyrazine-2-
ones. Boc-protected amino acid 43 was treated with a-aminoalcohol 42 or with a-
amino ketone followed by oxidation with DMP (Dess—Martin periodinane) to obtain
coupling adduct 44. Reaction of 44 with HCI in pyridine at 80 °C afforded 1H-

pyrazin-2-one 45 in good yield (Scheme 10).

1.HBTU,DIPEA
JiNHg Oj\:OH CTorCht )J\/ \H)\ _Boc 1. HCI, MeOH
+
2. DMP 2. Pyr 80 °C Ji :/[
Me” SOH  HN” O Ph

Boc
42 43 44 45

Scheme 10

38



Schulz and coworkers designed a practical and alternative method for the synthesis
of pyrazine derivatives via aza-Witting cyclization reaction. Their synthetic strategy
includes firstly the formation of o-phosphazinyl ketone 47 starting from o-
azidoketone 46 and triphenylphosphine. After that, aza-Witting cyclization reaction

of a-phosphazinyl ketone 47 formed dihydropyrazine derivative 48 (Scheme 11).%

iPr__Ns iPr<_ _N. Pr _N_ _iPr
PhsP “PPhj X
——2 . -
' N2 ' o) 2PhPO b SN NP

iPr O iPr

46 47 48

Scheme 11

Janda et al.%

presented that pyrazine-6-one 51 was obtained in good yields by the
reaction of a-diazo-B-ketoester 49 with Boc-protected a-aminoamide 50 mediated by
rhodium octanoate catalyst. Pyrazine-6-one 51 was treated with POBr; to afford 6-
bromopyrazine 52, which was reacted with biphenyl boronic acid under the Suzuki

coupling conditions to obtain 6-arylpyrazine 53 (Scheme 12).

O Me
0] O
)HHJ\ HoN Rh,Oct, TFA EtO N
+ H2 _—
EtO Me NHBoC  gicH,cH,cl HN.
N, 0
@]
49 50 51
POBr;
') Me O Me
EtOJ\%\ N Pd(dppfClp, Cs,CO5 EtOJ\%\lN
HN, ! 4-Ph-PhB(OH), HN
Ph Br
53 52

Scheme 12

An interesting and straightforward method for the synthesis of tetrasubstituted
pyrazine is the thermal Beckmann rearrangement. Firstly, thermally deprotonated

oxime hydrocloride 54 affords the nitrile ylide that undergoes dimerization to give
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the dihydropyrazine derivative intermediate. Air oxidation of this intermediate

furnishes tetrasubstituted pyrazine 55 (Scheme 13).%’

Phwe Bn
HO\N 110°C ) & Ph._Ng_Bn (0] Ph__N._Bn
| HCl ———— ®N i“() — S |
20 h C NS N
Bn~ "Bn , @k Bn”™ "N” "Ph Bn” "N” "Ph
Bn Ph
54 55
Scheme 13

Biichi et al.”® showed that a-hydroxyimino ketone 56 reacts with allylamine to give

imine derivative 57. Base-catalyzed isomerization of 57 with K'OBu followed by O-

acylation and finally electrocyclization reaction provides pyrazine derivative 60

(Scheme 14)
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The another and interesting way to synthesize pyrazine ring is a [4+2] cycloaddition

99
I

reaction. Sato et al.”™ benefited this way to synthesize lumuzines (63) starting from

61 and 62 which is an important biological active compound (Scheme 15).

Y O — |~ iﬁ/@ posas

Scheme 15

Recently, Balci et al. reported a new synthetic methodology for the construction of
novel pyrazine derivatives using alkyne cyclization reactions.’® They synthesized a
number of pyrazolo-pyrrolo-pyrazine derivatives 65 by the cyclization of N-
propargyl pyrroles derivatives 64 either by AuCls-catalyzed or NaH supported
reactions (Scheme 16).

e
AUC|3

or NaH _
2
64 a-c 65 a-c
a: R'=H, R*=H
b: R'=Ph, R?=H
c: R1=n-Bu, R2=H
Scheme 16

Furthermore, Balci et al. developed a synthetic methodology for pyrazine oxides 67.
Oxime derivatives of N-propargy pyrroles and N-propargy indols 66 were reacted

with AuCl;to obtain pyrazole or indol fused pyrazine oxides 67 (Scheme 17).1%
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2.1.3 Aim of the Study

The aim of this part was development of a new synthetic methodology for the

synthesis of pyrrolo-pyrrolo-pyrazine derivatives via cyclization of N-propargyl 2,2’-

(1’-pyrrolinyl) pyrroles.

pyrazine

68

Firstly, 2,2'-(1'-pyrrolinyl)-pyrrole (70) should be synthesized starting from pyrrole
(69). N-propargyl 2,2’-(1’-pyrrolinyl) pyrrole (71) which is key compound of this
study, will be obtained by the reaction of 2,2'-(1'-pyrrolinyl)-pyrrole (70) with
propargyl bromide. The Sonogashira cross-coupling reaction of N-propargyl 2,2°-(1’-
pyrrolinyl) pyrrole (71) with various aromatic bromides will result in the formation
of further substituted derivatives 72 (Scheme 18).

/ \ ----- -»/ \ ~ R / \ N i / \ N\

\% \

69 70 7 72 R
Scheme 18

After getting compound 72, we planned aromatization of 72 followed by ring-
cyclization reaction to obtain the target compound pyrrolo-pyrrolo-pyrazine
derivatives 73 (Scheme 19).
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2.2 RESULTS AND DISCUSSION

2.2.1 Synthesis of 2,2"-(1'-pyrrolinyl)pyrrole (70)

Firstly, we synthesized starting compound, 2,2'-(1-pyrrolinyl)pyrrole (70). To
synthesize this compound, pyrrole (69) was treated with 2-pyrrolidinone (74) in the
presence of phosphoryl chloride. Reaction must be done carefully because
polymerization take place very quickly (Scheme 20).

Iy + [ dgroo, [ <]
N N 0°C, 66% N
H H

N
H
69 74 70

Scheme 20

There are three pyrrole hydrogens and six methylene hydrogens in the structure of
70. In the *H NMR spectrum (Fig 111 - p. 164) of 70, pyrrole protons resonate at
6.93 ppm as doublet of doublets (J = 2.4 and 1.1 Hz), at 6.54 ppm as doublet of
doublets (J = 3.5 and 1.1 Hz), and at 6.21 ppm as doublet of doublets (J = 3.5 and
2.4 Hz). In addition, methylene protons resonate at 4.02 ppm as a broad triplet (J =
7.0 Hz), at 2.90 ppm as a triplet of triplets (J = 8.2 and 1.4 Hz) and at 2.00 ppm as a
quintet (J = 8.2 Hz).

In the *C-NMR spectrum (Fig 112 - p. 164) of 70, we observe five olefinic carbons
signals resonating at 166.5, 127.8, 122.2, 113.2 and 109.1 ppm. Other remaining
signals are arising from the methylene carbons appearing at 60.5, 35.0 and 22.7 ppm.

2.2.2 Synthesis of 1-Prop-2-ynyl-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (71)

To synthesize target molecules, we had to attach propargyl group on the pyrrole
nitrogen atom in 70. In order to synthesize compound 71, 2,2’-(1'-pyrrolinyl)pyrrole
(70) was reacted with propargyl bromide derivatives in the presence of sodium

hydride in dry DMF to give the expected propargylated compounds 71 (Scheme 21).
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The characterization of compounds 71a and 71b was done on the basis of *H NMR
(Fig 113-117 - p. 165-167) and *C NMR (Fig 114 118 - p. 165-167) spectra. When
we compare the structures of 70 and 71a, compound 71a has an additional methylene
group and alkyne group. In the *H NMR spectrum of 71a, this methylene protons
resonate at 5.41 ppm as doublet (J = 2.5 Hz) due to long range coupling with the
alkyne proton. Acetylenic proton appears at 2.37 ppm as triplet (J = 2.5 Hz).

The *C NMR spectrum shows eleven distinct signals. Acetylenic carbons resonate at
79.3 and 73.1 ppm whereas the olefinic carbons appear at 165.9, 127.3, 125.8, 115.4
and 108.3 ppm. In addition aliphatic carbons resonate at 61.8, 38.3, 36.6, and 21.8.

The NMR spectra of compound 71b is also in agreement with the proposed structure.

2.2.3 Intramolecular Pd/C-catalyzed Cyclization Reaction of N-propargyl
Pyrrole-Pyrrolinyl Derivative (71a)

For the synthesis of target molecule 73, first the dihydropyrrole unit should be
aromatized followed by cyclization. For aromatization we decided to use Pd/C as
catalyst. When compound 71 was reacted with Pd/C in diglyme, surprisingly, the
cyclization product 73 was formed. This result was very important because two step

reactions were completed in one pot (Scheme 22).

We propose the following mechanism for the formation of compound 73. Pd/C firstly
dehydrogenates the methylene protons of pyrrolinyl unit to afford compound 75. The
© coordination of alkynyl group with Pd produces the alkyne m complex. After that,
nitrogen atom of pyrrole attacks the activated alkyne © complex to occur 6-exo-dig
cyclization product 77 followed by isomerization to release the compound 73
(Scheme 22).
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Comparison of the *H NMR spectra(Fig 113-137 - p. 165-177) of 71a and 73a show
that the resonances of acetylenic proton and methylene protons are disappeared in the
NMR spectrum of 73a (Fig 137- p. 177) and a methyl and olefinic proton resonances
appeared. Furthermore, methylene protons of pyrrolinyl group also disappeared and
pyrrole protons are observed instead. In the *H NMR spectrum of compound 73a,
formed olefinic proton of the pyrazine ring resonates at 6.89 ppm as a broad singlet.
On the other hand, methyl protons appear as a doublet at 2.35 ppm (J =1.2 Hz).
Additionally, six pyrrole protons resonate at 6.98, 6.92, 6.56, and 6.42 ppm.

In the **C NMR spectrum (Fig 138- p. 177), methyl protons appear at 15.62 ppm. On
the other hand, olefinic carbons signals appear at 124.8, 123.9, 118.9, 113.7, 111.9,
111.3, 110.8, 109.1, 99.8, 98.6.

The NMR spectra of compound 73b is similar to the NMR spectra of compound 73a.
2.2.4 Derivatization of Compound 71a with Sonagashira coupling reaction (79)

To test the scope of this cyclization and to show the generality of this reaction, we
decided to synthesize compound 79 having aromatic groups attached to the terminal
carbon atom of acetylene unit. The most suitable methodology for derivatization of
compound 71a was a Sonagashira coupling reaction. There are many variation of
Sonogashira cross-coupling reaction in the literature.'® ** We preferred copper-
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cocatalyzed Sonogashira coupling reaction which uses Pd catalyst and Cul cocatalyst
in dry DMF in the presence of a base.

We applied Sonogashira cross coupling reaction to 1-prop-2-ynyl-4',5-dihydro-
1H,3'H-2,2'-bipyrrole (71a) to form 79 by using iodobenzene derivatives 78 (Scheme
23).

B | Pd(OAc),, Cul B
\ \N . /©/ PPh;, dry DIPA \
R

dry THF, reflux, 24 h

R
71a 78 a-d 79 a-d
a: R=H a: 87%
b: R=CHj3 b: 74%
c: R=OCHj; c: 77%
d: R=ClI d: 78%
Scheme 23

Comparison of the *"H NMR spectra (Fig 113 - p. 165) of (71a) with those of
compounds 79 clearly showed that acetylenic proton resonance at 2.37 ppm was
missing and benzene protons were formed instead. In the 'H NMR spectrum (Fig 121
- p. 169) of 79a benzene protons resonate between 7.38 and 7.20 ppm as multiplet.
Pyrrole protons resonate at 7.11 ppm as doublet of doublets (J = 2.9 and 1.6 Hz),
6.46 ppm as doublet of doublets (J = 3.6 and 1.6 Hz), and 6.12 ppm as doublet of
doublets (J = 3.6 and 2.9 Hz). Methylene protons (next to the alkyne) resonate at

5.55 ppm as singlet. The other signals were consistent with the proposed structure.

The *C NMR spectrum (Fig 122 - p. 169) of 79a show acetylenic carbon resonances
at 85.0 and 84.6 ppm. Aliphatic carbons resonate at 61.8, 39.2, 36.6, and 21.9. The

other carbon signals are in agreement with the proposed structure.

The NMR spectra of compounds 79b-79d are also in agreement with the proposed

structures.

Compounds 79 synthesized via Sonogashira cross coupling reaction were submitted
to the cyclization reaction with Pd/C in diglyme under the nitrogen atmosphere to

give cyclization products 80 (Scheme 24).
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In the *H NMR spectrum (Fig 145 - p. 181) of 80a, the methylene proton resonance
appears at 4.05 ppm and olefinic proton resonance at 6.75 ppm clearly indicating that
cyclization reaction occurred. Six pyrrole protons resonate at 6.96, 6.91, 6.55 and

6.50 ppm. Benzene protons resonate in a range of 7.37 to7.28 ppm.

The NMR spectra of compounds 80b-80d are also in agreement with the proposed

structure.
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CHAPTER 3

THE SYNTHESIS OF a-ALKYLIDYN-y-BUTYROLACTONES VIA GOLD-
CATALYZED CLAISEN REARRANGEMENT

3.1 INTRODUCTION

Syntheses of a-alkylidine-y-butyrolactone derivatives have drawn the attention of

researcher in recent years. The first a-alkylidine-y-butyrolacton, pyrethrosin (1), was

1.102

extracted from Tanacetum cinerariifolium by Toms in 189 a-Alkylidine-y-

butyrolactone is a five-membered cyclic ester. Its derivatives show anticancer,

antiviral, antibacterial, antiinflammatory activities. %

H5;COCO

I
-

pyrethrosin

1

For example, Chang and coworkers reported that Taiwainin A (2) isolated from

> is an interesting molecule to use in the treatment of

Taiwania cryplomeriides'®
human tumor inhibition. Kotolactone A% (3) extracted from Cinnamomum ketones,
subamolides D and E'®’ (4) extracted from Cinnamomum subavenium, were found
that these molecule have an activity against colon cancer. The other example of
natural compound including a-alkylidine-y-butyrolactone ring is a Hispitolide A (5),

showing activity against HCV (hepatitis C virus).'*
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3.1.1. The Synthesis of a-Alkylidine-y-Butyrolactones

For the synthesis of substituted a-alkylidine-y-butyrolactone derivatives, there are
many strategic ways which are alkylidenation of y-butyrolactons, lactonization
approach, the Dreiding-Schmidt approach, radical cyclization, Diels-Alder and retro-
Diels-Alder reaction, Baeyer-Villiger reaction on cyclobutanones, Pd-catalyzed

cross-coupling and tandem intramolecular C-H insertion.

Alkylation of y-butyrolactons is most commonly used method to synthesize a-
methylene-y-butyrolactons. To synthesize (-)-eriolanin (8) and (-)-eriolangin (9), y-
butyrolacton derivative 6 was reacted with NaH then adduct was treated with

paraformaldehyde to give 7 (Scheme 1).%°
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Lactonization approaches were used to design a-methylene-y-butyrolactons. In 1999,
Ballini et al.**® demonstrated the reaction of nitro alkene 10 with enone 11 to give
12. Treatment of adduct 12 with NaBH, mediated by Na,HPO, gave a-alkylidine-y-
butyrolactone 13 (Scheme 2).

o]

Me O o
NO OMe X N
2 M peu  Me OMe  NaBH, Na,HPO, o
Me~ "Me © Me -
O e} Me
10 1 12 13
Scheme 2

Dreiding-Schmidt organometalic method, as the name implies that Dreiding and
Schmidt groups improved this method for the first time to synthesize a-methylene-y-
butyrolactones. There are various variations of this reaction. In one of these, Chu et
al.™*! reacted 3-phenylallyl bromine (15) with propanal (14) in the presence of zinc
and diiodoethane to afford 3,4-disubstituted-a-methylene-y-butyrolacton (16)

(Scheme 3).
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The important pathway to synthesize a-alkylidine-y-butyrolactons is a radical
cyclization method. Bosch et al.**? presented that homopropargyl alcohol 17 firstly
reacts with phosgene and then with phenylselenol to furnish seleno carbonate 18.
Treatment of 18 with AIBN initiated cyclization reaction to form a-arylidine-y-
butyrolacton 19 (Scheme 4).

Ph Ph
Z " 4 coc = a. AIBN
b. PhSeH SePh b. BuzSnH
‘OH /"/O/go
17 18 19
Scheme 4

Thebtaranonth and coworkers synthesized the natural compound xylobovide (22)
exhibiting antifungal and antibacterial activity, by a retro-Diels-Alder process. Firstly
itaconate-antracene derivative 20 was converted into the bislactone 21 then adduct

was submitted to FVP (flash vacuum pyrolysis) to afford xylobovide (22) (Scheme
5).113

-

FVP, 450 °C ~ O,
///,\

O

20 21 22

Scheme 5

An efficient and straightforward way to synthesize y-butyrolacton is a Baeyer-
Villiger oxidation on cyclobutanone derivative 23. Cyclobutanone derivative 23 was
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treated with acetic anhydride in pyridine to give the corresponding acetate followed
by the reaction with tert-butyl hydroperoxide to generate y-butyrolacton derivative
24 (Scheme 6).*

?Bn (l)Bn
1, 0o a. Ac,0, Py. ", O
b. t—BuOOH/NaOH‘ (@)
HO Y AcO Y
Me OMe Me OMe
23 24
Scheme 6

Design of a-alkylidine-y-butyrolactons by tandem intramolecular C-H insertions has
increased dramatically in recent years. For example, Shie and Zhu reported that
treatment of cyclohexyl-a-diazo-a-phosphoryl acetate 25 with Rhy(OAc), in DCM

gave the y-butyrolactone derivative 28 which is an insertion/cyclization products

(Scheme 7).1%°

o Me
Ny b OE! ‘.P?/oa PO(OEt), /
O\ I OEt cat Rh(OAG), O\ L ~OEt C-H insertion Cfgzo HWE o
O~ "0 o o (e} (¢}
25 26 27
l ¢ two step

Me

Me
O
(0]

28

Scheme 7

Pd-catalyzed cross-coupling reaction was developed for the formation of the a-
alkylidine-y-butyrolactons 31 by Larock et al.**® For this, a-iodo acrylicacids 29 was
reacted with 1,3-cyclohexadiene (30) in the presence of Pd(OAc), to generate o-

alkylidine-y-butyrolacton 31 (Scheme 78).1
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3.1.2 Claisen Rearrangement

Claisen Rearangement discovered by Claisen in 1912,"" is a [3,3] sigmatropic
rearrangement of allyl vinyl ethers which utilize the synthesis of y,5-unsaturated

carbonyl compounds (Scheme 9).

2
3 O/\1 A Ojj
3K/ 1 B3 X
2
32 33

Scheme 9

Bergmann et al.'*® showed that rearrangement of ethyl cinnamyl oxycrotonate 36
obtained by the reaction of cinamyl alcohol 34 with ethyl-3-ethoxytonate 35, was
mediated by NH4CI at higher temperature to give the Claisen rearrangement product
37 (Scheme 10).

Ph Ph
Ph EtO Sn2' X A, NH,CI =
K\/ + W/ACOZEt L»OK\/ il et o
OH Y\COZE’( [3.3] CO,Et

34 35 36 37

Scheme 10

Hurd and coworker utilized a new method for designing of the starting material 39.
Diallyl dimethylketals 38 was treated with acid, a methylvinyl allyl ether 39 was

formed. Heating of 39 gave y,6-unsaturated carbonyl compound 40 (Scheme 11).1%°
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There are different versions of Claisen rearrangement such as Carroll rearrangement,
Eschenmoser rearrangement, Johnson rearrangement, Ireland-Claisen rearrangement,
Reformatsky-Claisen rearrangement, thio-Claisen rearrangement, aza-Claisen
rearrangement, chelate Claisen Rearangment, diosphenol-Claisen rearrangement,

metallo-Claisen rearrangement and retro-Claisen rearrangement.

In 1940, M. F. Carroll showed that thermal rearrangement of allyl acetoacetate 41
first formed 43 that underwent decarboxylation to furnish product 45. Claisen
rearrangement followed by a decarboxylation is called as the Carroll rearrangement
(Scheme 12).'%°

T e Ty

41 42 43 44 45

Scheme 12

In 1964, Eschenmoser observed that the reaction of hydroxy-dimethylcyclohex-2-ene
derivative 46 with 1,1-dimethoxy N,N-dimethylethan-1-amine gave an unpredictable
product 48. In this reaction, firstly N,O-ketene acetals 47 was formed, which was
called as the Eshenmoser rearrangement, followed by the formation of v,5-

unsaturated amide 48 (Scheme 13).*%
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In 1970, Johnson reported that y,6-unsaturated ester 51 was formed as a result of the
rearrangement of ketene acetal 53, prepared by reaction of trimethoxyethane 49 with
allyllic alcohol 50 (Scheme 14).'%

Me
MeO
e)<0Me + j I\I/Ie
Me HO CH,CH,C=CH,

Me
L0

EtO” O "CH,CH,C=CH,
49 + 50
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1
Me ] 2 Me
9t — 1N e
Et0+ -EtOH !
CH2CH2C CH2 Et0O"2 0" “CH,CH,C=CH,
EtO 3
52 53
Scheme 14

The Ireland-Claisen rearrangement firstly reported in 1972 afforded the synthesis of
v,0-unsaturated carboxylic acid 57 starting from ester 54. The ester 54 was first
converted into the corresponding enolate 55 which was trapped with trimethylsilyl
chloride to furnish allyl trimethylsilyl keten acetals 56. Upon heating, compound 56

underwent Claisen rearrangement to give product 57 (Scheme 15).1%
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Reformatsky-Claisen rearrangement is a thermal rearrangement of a zinc enolate 59

generated by the reaction of a a-bromo ester 58 with zinc dust. Heating of 59

furnished y,8-unsaturated zinc carboxylate 60 (Scheme 16).%%*

(@] OZnBr OZnBr
Br e Me 1 Me
M o 2n Z 703 A Me o
e —_— .

v A Me X 3 [33] =

2
58 59 60
Scheme 16

Kwart and Schwartz reported that thermal rearrangement of allyl phenyl sulfide 61
produced thiol 62 that was not isolated. The intermediate 62 underwent a Sy? type
reaction with starting sulfide 61 under the same reaction conditions to afford diallyl
derivative 63. This methodology is called as thio-Claisen rearrangement (Scheme
17).1%

s sU =N s oalies

B3]

61 62 63 64

Scheme 17
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Jolidon and Hansen discovered the aza-Claisen rearrangement that is a thermal

rearrangement of allyl arylamines 65. This rearrangement required harsh conditions

(200-350 °C) than the other Claisen rearrangements. (Scheme 18).126

3
H. 3 H\ =
N/ﬁz N NH2
2 | 1 5 | H |
1 —_ . -
[3,3]
65 66 67
Scheme 18

[3,3] sigmatropic rearrangement of a chelate enolate is called as chelate Claisen
rearrangement. Reaction of a protected amino acid having an allylic group with
ZnCl; in the presence of LDA results in the formation of the intermediate 69 that

undergoes a Claisen rearrangement to form amino acid 70 (Scheme 19).**’

2
A LDA Cb 11/\03 A g
Z 2 3
O —» \N X CbZ\N O
Hl}l/\[( ZnCl, :Z/Y 13.3] |

_-0
Cbz O n in’o
68 69 70
Scheme 19

In 1980, Ponaras developed an extremely new method, known as Diosphenol-Claisen
rearrangement, for the preparation of diosphenol 72 affording the thermal

rearrangement of allyl ether 71 at 200 °C (Scheme 20).'%

3 (e} OH
36% y /\Cjij
1
2. [3,3] Z
Me Me

71 72

Scheme 20

Retro-Claisen rearrangement is a general process for a number of substrates

including neighbour quarternary centers when the a-carbonyl substituent is not an
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electron-releasing group For example, Rhoads and Cockroft reported the

rearrangement of vinylcyclopropane carboxaldehyde 73 leading to formation of 2,5-

dihydrooxepin 74 via retro-Claisen reaction (Scheme 21).1%°

1
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73 74

Scheme 21

Gold-catalyzed sigmatropic rearrangements, especially Claisen rearrangements, have
attracted intense research in past few decades. He and coworkers achieved the
synthesis of dihydrobenzofurane derivative 77 by using gold-catalyzed Claisen

rearrangements (Scheme 22).1%

1A3 g

2 03 5 mol% PPh3AuCI/AgOTf
toluen, 80 °C, 16h

\ R

3,3] X
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Au*® fast ‘\ Au slow
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Scheme 22

Important synthetic approach for Gold-catalyzed Claisen rearrangements was
reported by Toste and coworkers.®* In the presence of gold(l) and silylactylene 78,

Claisen rearrangements took place to obtain homoallenic alcohol 79 at room

temperature (Scheme 23).

o X 1 mol% (PPhzAu);0)BF, H
CH,Cly, 1t R /&
Ph NV NaBH, MeOH, rt Ph™ ~C OH
\ a 4, e ,
SiMe3 Y\/
SIMe3
78 79
Scheme 23
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According to the proposed mechanism for this reaction, firstly gold(l) catalyst
coordinates to the alkyne functionality in 80to generate more electrophilic alkyne
which undergoes rearrangement to form cationic dihydropyran intermediate 82.

Removal of gold forms allenic aldehyde 83 (Scheme 23).%*

HOA R
R O '
/§ b ‘\ [Au* \
H7 e , </
80
83
(gekr R
— ® N
K /
Au] [Au]
82 \_/ 81

Scheme 24

Gagné and coworkers reported that allyll aryl ethers 84 was converted to enones 85

in the presence of gold(l) catalyst and under the mild conditions via Claisen

rearrangement reaction (Scheme 24).*%

O 10 mol% PPhsAUNTY,
OO 1,2-DCE, 60 °C

84 85

Scheme 25

According to the proposed mechanism, firstly gold(l) catalyst coordinates the double
bond in 87 forming a cationic chair like transition state 88. Removal of gold

generates enone 89 (Scheme 25).%%
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Scheme 26

3.1.3 Aim of the Study

This part of this thesis focused on the reaction of bicyclic endoperoxides with gold
salt because there is no study on this subject in the literature. Our aim was first to
synthesize simple structured endoperoxide derived from cyclohexa-1,3-diene (90).
So, cyclohexdiene (92) will be synthesized as reported in the literature starting from
cyclohexene (90)by bromination with NBS followed by dehydrobromination to form
91.. Reaction of cyclohexa-1,3-diene with singlet oxygen will result in the formation
of the key compound named 2,3-dioxabicyclo[2.2.2]oct-5-ene (93) via [4+2] addition

reaction (Scheme 26).1%

5
90 91 92 93
Scheme 27
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Synthesized simple structured endoperoxide 93 will be reacted with alkynes in the
presence of Au(L)/AgOTf. The structures of the formed compounds will be
determined and the formation mechanism of the products will be discussed. (Scheme
27).

i-pr_i-Pr

NN
Au(L) / AGOTS
s Re=—p QAT Q T
Pr AuCl | p,
Au(L)

93 94

Scheme 28
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3.2 RESULTS AND DISCUSSION

Since there is no study in the literature involving the reaction of endoperoxides with
gold salt, we decided to examine this reaction. At the beginning of our work, we
wanted to study simple structured endoperoxide. So, we decided to synthesize firstly
cyclohexa-1,3-diene and then the bicyclic endoperoxide derived from cyclohexa-1,3-

diene.
3.2.1 Synthesis of Cyclohexa-1,3-diene (92)

To afford cyclohexa-1,3-diene (92), cyclohexene (90) was firstly treated with N-
bromosuccinimide to generate 3-bromocyclohex-1-ene (91) which was distilled in

the presence of quinoline to form the desired compound 92 (Scheme 28).*

The *H NMR spectrum (Fig 161 - p. 189) of compound 92 include three signals.
Olefinic protons resonate at 5.82-5.76 and 5.72-5.65 ppm as multiplet. Methylene

protons resonate at 2.05 ppm as quasi triplet.

Br
NBS quinoline
A 3h distd
90 91 92
Scheme 29

3.2.2 Photooxygenation of the Cyclohexa-1,3-diene (92)

Tetraphenylporphyrin sensitized photooxygenation of cyclohexa-1,3-diene (92) in
methylene chloride at room temperature for 18 h produced endoperoxide 93 (Scheme
29)_134

In the *H NMR spectrum (Fig 163 - p. 190) of 92, two olefinic protons give multiplet
at 6.62-6.57 ppm. Two bridgehead protons resonate at 4.60-4.55 ppm as a broad
multiplet. Methylene protons resonate as an AB-systems.
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3.2.3 Reaction of Endoperoxide (93) with Alkyne Derivatives in Presence of
Au(L)/AgOTf

After synthesis of key compound 93, 2,3-dioxabicyclo[2.2.2]oct-5-ene, we treated
endoperoxide 93 with alkyne derivatives 94 in the presence of Au(L)/AgOTf then

we obtained new products 95 (Scheme 30).

4 R i-pr_-Pr
5 3a 3 -
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(3 o= e o | D
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R=-(CO)OC,H o7
¢ R=- 25 fR= <<

Scheme 31

The structures of 95 a-f were determined by 1D and 2D (DEPT, COSY, HSQC and
HMBC) NMR spectral data. In the 'H NMR spectrum (Fig 165 - p. 191) of 95a,
methine protons H-7a, H-3a and H-3 resonate at 4.64, 2.64-2.61 and 2.26,
respectively. Olefinic protons resonate at 5.78 ppm as doublet of doublets of triplets
(J =9.9, 3.9 and 1.8 Hz) and 5.50 ppm as doublet of doublets of doublets (J = 9.9,
3.7 and 1.9 Hz).

In the °C NMR spectrum (Fig 166 - p. 192) a new carbonyl carbon was formed
which resonates at 178.1 ppm. Furthermore, new formed olefinic carbons resonate at
127.3 and 125.0 ppm, respectively. The other signals of *C NMR spectrum were in

accordance with the proposed structure.
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HMBC spectrum has important correlations supporting the proposed structure. In the
HMBC spectrum, we focused on the correlations of methine proton (H-3) with the
carbon atoms. As expected, there are correlations between the H-3 and the carbons
C-2, C-4, C-7a, C-3a, and C-8 or C-9. These correlations support the proposed

structure (Figure 1).

The NMR spectra of the other derivatives 95b-95f were also in agreement with the

proposed structures.
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Figure 1: HMBC Spectrum of Compound 95a

For this transformation we suggest the following reaction mechanism. We assume
that endoperoxide 93 first undergoes an isomerization reaction to form hydroxyenone
96. We proved that Au(l) salt catalysizes this transformation. We did two different
experiments to prove this transformation. Endoperoxide 93 was heated at the reflux
temperature of toluene in the presence of Au(L)/AgOTf and in the absence of
Au(L)/AgOTTf. Hydroxy enone 96 was formed when the experiment was carried out
in the presence of Au(L)/AgOTT catalysis. However, epoxy ketone 102 was formed
in the absence of Au(L)/AgOTf catalyst (Sheme 32). Hydoxyl group of enone 96

can attack the alkyne complex formed by interaction of alkyne unit with Au'* to
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form an allylinyl ether 98 as the intermediate. The formed compound 98 has a
suitable structure to undergo a [3,3] sigmatropic Claisen rearrangement to form the
corresponding v,5-unsaturated dicarbonyl compound 99. Ketone carbonyl unit can
attack the activated aldehyde carbonyl unit in 100 to generate 101 which has
tendency for 1,3-hydrogen shift to form target compound 95 (Scheme 31).
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OH
91 926
Scheme 33

We tested five different catalyst in our reaction. Unfortunately, there was no reaction
when the reaction was conducted with AuCls AuCl, and N-hetereocyclic carbene
(NHC) complex of Au(l) and AgOTTf in toluene. But, reaction with Au(L)/AgOTf
gave product 95d after 18 h in 66% yield.
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Figure 2: Catalyst Screening on the Cyclization Reaction of 95d
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CHAPTER 4
CONCLUSION

The oxidative free radical cyclization reaction is an important reaction because of
fascinating regiochemistry and controversial reaction mechanism. We combined this
radical cyclization with photoxygenation reaction and obtained very interesting

results in terms of mechanistic studies.
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Scheme 1

First we synthesized dihydrocyclohepta[b]furan derivatives 130 by the reaction of
cycloheptatriene (111) with various 1,3-dicarbonyl compounds 137. On the other
hand, when cycloheptatriene (111) was reacted with cyclic 1,3-diketone 139, we

observed two different ring closure products 140 and 141 (Scheme 1).

We performed three different reactions with dihydrocyclohepta[b]furan derivatives
130. Photoxygenation of dihydrocyclohepta[b]furan derivatives 130 gave
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endoperoxide derivatives 131. Furthermore, when we increased the reaction time of
photooxygenation of dihydrocyclohepta[b]furan derivatives 130, surprisingly we
obtained dicarbonyl compounds 132 where dihydrofuran ring underwent a cleavage
reaction. However, the peroxide linkage was intact. Finally, oxidation reaction of
dihydrocyclohepta[b]furan derivatives 130 with SeO, resulted in the formation of

tropone derivatives 133 (Scheme 1).
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(0]

132a
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Scheme 2

Endoperoxide 131a was reacted with CoTPP, AuCl; and NEt;. Reaction of
endoperoxide 131a with CoTPP afforded bisepoxide 153 where the dihydrofuran
ring underwent a ring-opening reaction. On the other hand, reaction of 131a with
AuCls in the presence of oxygen caused an oxidative ring-opening reaction of the
five-membered ring. The endoperoxide unit was intact against the AuCls. Reaction of
endoperoxide with triethyl amine afforded compound 160. We assume that the
expected product o,pB-unsaturated enone 157 was formed as the intermediate which
was transformed into 160 under the reaction conditions. Furthermore, we assume that
the suitable conformation of this intermediate was responsible for this transformation
(Scheme 2).
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In the second part, we synthesized pyrrolo-pyrazino-pyrrole derivatives. Pyrazines
ring is an important heterocycle compound due to its various biological activities.

In the first step, we synthesized 2,2'-(1'-pyrrolinyl)pyrrole (70) from the reaction of
pyrrole (69) and 2-pyrrolidinone (74). Then,2,2'-(1-pyrrolinyl)pyrrole (70) was
reacted with propargyl bromide derivatives to generate propargylated compounds 71.
1-Prop-2-ynyl-4'5'-dihydro-1H,3'H-2,2"-bipyrrole  (71a) was derivatized via
Sonogashira cross-coupling reaction. Propargylated compounds 71 and their
derivatives 79 were reacted with Pd/C to form the target compounds, pyrrolo-

pyrazino-pyrrole derivatives 73 and 80 (Scheme 3).
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Scheme 3

In the third part, we developed a new methodology for the synthesis of a-alkylidine-
y-butyrolacton derivatives. Endoperoxide 93 was reacted with alkyne derivatives in
the presence of Au(L)/AgOTf and we obtained unexpected product, a-alkylidine-y-

butyrolacton derivatives 95. Au*! plays an important role in this reaction. We assume
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that Au™ catalyzes thermal isomerization of endoperoxide 93 to give enone 96 as an
intermediate that adds to the activated alkyne unit to form 98. This product 98
contains an allyl vinyl ether which is suitable for a [3,3]-sigmatropic rearrangement
to give dicarbonyl compound 99. Cyclization of dicarbonyl compound results in the

formation of the final product 95 (Scheme 4)..
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CHAPTER 5

EXPERIMENTAL

5.1 General

'H-NMR and *C-NMR spectrums were recorded on a Bruker Instrument Avance
Series-Spectrospin DPX-400 Ultrashield instrument in CDCl3;, CD;0D, DMSO-ds,
and with TMS as internal reference. Chemical shifts (8) were reported in units parts
per million (ppm). Spin multiplicities were specified as singlet (s), broad singlet (bs),
doublet (d), broad doublet (bd), doublet of doublets (dd), doublet of triplets (dt),
doublet of quartets (dq), doublet of doublets of doublets (ddd), triplet (t),triplet of
doublets (td), quintet (quint), quasi triplet (quasi t) and multiplet (m) and coupling

constants (J) were reported in Hertz (Hz).

HRMS data were recorded by Agilent Technologies, 6224 TOF LC/MS-T1200
Series applying the electrospray technique. GC-MS data were recorded by Agilent
Technology 7890A using Agilent J&W GC HP-5MS, 30 m x 0.2500 mm x 0.25 pm
(190915-433:325 °C)

Infrared spectra were recorded on a Bruker Platinum ATR FT-IR spectrometer in the
range of 600-4000 cm™.

Melting points were reported by operating Gallenkamp electronic melting point

apparatus.

Column chromatography separations were done by using 60-mesh silica gel. Thin
layer chromatography (TLC) was performed by using 0.20 mm silica gel 60 F254

aluminum plates.

Names of the compounds were established by using ACD/NMR.
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All solvents and chemicals were commercially available and used without further

purification.

5.2. 1-[(3aS,8aS)-2-methyl-4,8a-dihydro-3aH-cyclohepta[b]furan-3-
yllethanone (130a)

To a solution of cycloheptatriene (111) (0.92 g, 10 mmol) in MeOH (50 mL) was
added acetyl acetone 147a (1.00 g, 10 mmol) and then the reaction mixture was
cooled down 0 °C. To this mixture was added a solution of (10.96 g, 20 mmol) CAN
in MeOH (100 mL) dropwise in 45 minutes and the solution was stirred for 75
minutes. After completion of reaction, the reaction mixture was evaporated and the
residue was dissolved in EtOAc then the organic phase was washed with water. After
evaporation of the solvent the residue was chromatographed on silica gel (50 g),
eluting with ethyl acetate/hexane (1:4) to give 1-[(3aS,8aS)-2-methyl-4,8a-dihydro-
3aH-cyclohepta[b]furan-3-yl]ethanone (130a) (1.81 g, 9.52 mmol, 95%) as a
colorless oil.

— 'H NMR (400 MHz, CDCl3) §: 6.21-6.12(m, Hs and Hg),
Qﬁi\ CHa 6.05 (ddd, J = 12.0, 5.4, and 1.1 Hz, H), 5.97 (ddd, J = 10.1,
TN . \2 CH3 5.4, and 1.2 Hz, Hg), 5.01 (bd, J = 8.7, Hga), 3.27 (bt, J = 10.1

hoa Hz, Ha), 2.35-2.29 (M, Ha), 2.28 (s, CH3), 2.24 (s, CH3), 2.03
(dddd, J = 16.2, 9.0, 5.3, and 2.0 Hz, Hs) . **C NMR (100
MHz, CDCls) 6 193.6, 167.1, 134.6, 129.8, 127.2, 126.9, 118.2, 84.6, 51.8, 30.0,

29.1, 15.3. IR (ATR, cm™) 1716, 1609, 1393, 1340, 1217, 1204, 1203, 1066, 1027,
946, 900, 710; HRMS Calcd for (C1,H140;) [M + H]*: 191.1066; Found: 191.1065.

5.3 Methyl(3aS,8aS)-2-methyl-4,8a-dihydro-3aH-cyclohepta[b]furan-3-
carboxylate (130b)

To a solution of cycloheptatriene (111) (0.92 g, 10 mmol) in MeOH (50 mL) was
added methyl acetoacetate 147b (1.16 g, 10 mmol) and then the reaction mixture
cooled down 0 °C. To this mixture was added a solution of (10.96 g, 20 mmol) CAN
in MeOH (100 mL) dropwise over a period of 45 minutes and the solution was
stirred for 75 minutes. After completion of the reaction, the reaction mixture was

evaporated and the residue was dissolved in EtOAc then the organic phase was
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washed with water. After evaporation of the solvent the residue was
chromatographed on silica gel (50 g), eluting with ethyl acetate/hexane (1:1) to give
methyl (3aS,8aS)-2-methyl-4,8a-dihydro-3aH-cyclohepta[b]furan-3-carboxylate
(130b) (1.78 g, 8.64 mmol, 86%) as a colorless oil.

'H NMR (400 MHz, CDCls) 6 6.19-6.11 (m, Hs and Hg),

5 O
o \a . oCHs| 6.02 (ddd, J = 11.9, 5.4, and 1.1 Hz, Hy), 5.98-5.93 (m,
9 1
7 oo He), 5.03 (bd, J = 8.9 Hz, Hg,), 3.73 (s, O-CHs3), 3.22 (bt,
g8 8a o 2 CH
e J = 10.2 Hz, Hs,), 2.38 (ddd, J = 13.3, 8.3, and 1.5 Hz,

130b

Ha), 2.20 (s, CHs), 2.03 (dddd, J = 13.3, 9.5, 5.5, and 1.8
Hz, Hs). *C NMR (100 MHz, CDCls) § 167.7, 166.1, 134.5, 130.2, 126.9 (2C),
106.6, 84.5, 51.7, 50.7, 29.8, 14.1. IR (ATR, cm™) 3019, 2161, 1980, 1730, 1435,
1279, 1045, 928, 725, 668; HRMS Calcd for (Ci;H1403) [M + H]*: 207.1015;
Found: 207,1006.

5.4 Ethyl (3aS,8aS)-2-methyl-4,8a-dihydro-3aH-cyclohepta[b]furan-3-
carboxylate (130c)

To a solution of cycloheptatriene (111) (0.92 g, 10 mmol) in MeOH (50 mL) was
added ethyl acetoacetate 147c (1.3 g, 10 mmol) and then the reaction mixture cooled
down 0 °C. To this mixture was added a solution of (10.96 g, 20 mmol) CAN in
MeOH (100 mL) dropwise over a period of 45 minutes and the solution was stirred
for 75 minutes. After completion of the reaction, the reaction mixture was evaporated
and the residue was dissolved in EtOAc then the organic phase was washed with
water. After evaporation of the solvent the residue was chromatographed on silica gel
(50 g), eluting with ethyl acetate/hexane (1:1) to give ethyl (3aS,8aS)-2-methyl-4,8a-
dihydro-3aH-cyclohepta[b]furan-3-carboxylate (130c) (1.63 g, 7.4 mmol, 74%) as a

colorless oil.
s . 0O 'H NMR (400 MHz, CDCls) ¢ 6.19-6.11 (m, Hs and
BQ&ﬁ{?%ﬁ%m Hsg), 6.00 (bdd, J = 11.5 and 5.5 Hz, Hy), 5.95 (bdd, J =
7
s 80" 2 CHs 10.1 and 5.5 Hz, Hg), 5.02 (bd, J = 8.9 Hz, Hg,), 4.18
1 13
130c (m, CHy), 3.22 (bt, J =10.1 Hz, Hs,), 2.40 (dd, J = 13.2

and 8.3 Hz, Ha), 2.20 (s, CH3), 2.01 (dt, J = 13.2 and 4.8 Hz, Ha), 1.3 (t, J = 7.1 Hz,

CHs). *C NMR (100 MHz, CDCls) § 167.1, 165.4, 134.4, 130.3 126.9, 126.8, 106.7,
75



84.3, 59.2, 51.8, 29.8, 14.3, 14.0. IR (ATR, cm) 2977, 1690, 1638, 1439, 1380,
1340, 1312, 1199, 1102, 1076, 1021, 975, 905, 771; HRMS Calcd for (C13H1503) [M
+ H]*: 221.1172; Found: 221.1165.

5.5 Methyl (3aS,8aS)-2-(2-methoxy-2-oxoethyl)-4,8a-dihydro-3aH-
cyclohepta[b]furan-3-carboxylate(130d)

To a solution of cycloheptatriene (111) (0.92 g, 10 mmol) in MeOH (50 mL) was
added ethyl acetoacetate 147d (1.74 g, 10 mmol) and then the reaction mixture
cooled down 0 °C. To this mixture was added a solution of (10.96 g, 20 mmol) CAN
in MeOH (100 mL) dropwise over a period of 45 minutes and the solution was
stirred for 75 minutes. After completion of the reaction, the reaction mixture was
evaporated and the residue was dissolved in EtOAc then the organic phase was
washed with water. After evaporation of the solvent the residue was
chromatographed on silica gel (50 g), eluting with ethyl acetate/hexane (1:4) to give
methyl (3aS,8aS)-2-(2-methoxy-2-oxoethyl)-4,8a-dihydro-3aH-cyclohepta[b]furan-3-
carboxylate(130d) (1.81 g, 6.85 mmol, 68%) as a colorless oil.

'H NMR (400 MHz, CDCls) 6 6.19-6.15 (m, Hs and

5, 0]
6 2 g o GHs Hg), 6.04 (ddd, J = 12.1, 5.4 and 1.7 Hz, H;), 5.97
10
A o \2 v~ GH3| (ddd, J = 10.3, 5.4 and 1.1 Hz, Hg), 5.14 (bd, J = 9.0
12 14
1130d © Hz, Hg,), 3.88 (d, A-part of AB-system, J =16.3 Hz,

Hi,), 3.73 (s, OCHg), 3.72 (s, OCH3), 2.62 (d, B-part of AB-system, J = 16.3 Hz,
Hio), 3.27 (bt, J= 9.7 Hz, H3,), 2.40 (ddd, J = 13.4, 8.2 and 1.9 Hz, H,), 2.08 (ddd, J
= 13.4, 5.0 and 1.9 Hz, Hy),. ®C NMR (100 MHz, CDCl3) ¢ 186.6, 165.3, 162.5,
134.3 129.9, 127.2, 127.1, 109.2, 85.2, 52.2, 51.5, 51.0, 33.8, 29.6. IR (ATR, cm™)
2951, 1743, 1697, 1643, 1435, 1404, 1369, 1319, 1226, 1199, 1163, 1063, 1014, 973,
902, 846, 763, 675, 640; HRMS Calcd for (C14H1605) [M + H]": 265.1070; Found:
265,1080.

56  (2S,7R)-7,9,10,11-tetrahydro-2,7-methano-1-benzoxonin-8(2H)-one
(140a) and (5aR,10aR)-2,3,4,5a,10,10a-hexahydro-1H-
benzo[b]cyclohepta[d]furan-1-one (141a)
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To a solution of cycloheptatriene (111) (0.92 g, 10 mmol) in MeOH (50 mL) was
added 1,3-cyclohexanadione (139a) (1.12 g, 10 mmol) and then the reaction mixture
cooled down 0 °C. To this mixture was added a solution of (10.96 g, 20 mmol) CAN
in MeOH (100 mL) dropwise over a period of 45 minutes and the solution was
stirred for 75 minutes. After completion of the reaction, the reaction mixture was
evaporated and the residue was dissolved in EtOAc then the organic phase was
washed with water. After evaporation of the solvent the residue was
chromatographed on silica gel (50 g), eluting with ethyl acetate/hexane (1:1) to give
(2S,7R)-7,9,10,11-tetrahydro-2,7-methano-1-benzoxonin-8(2H)-one (140a) (0.65 g,
3.2 mmol, 32%) as a light yellow colored solid from CH,Cl,/n-hexane, Mp: 71-73 °C
and  (5aR,10aR)-2,3,4,5a,10,10a-hexahydro-1H-benzo[b]cyclohepta[d]furan-1-one
(141a) (0.78 g, 3.86 mmol, 38%) as a light yellow colored solid from CH,Cl,/n-
hexane, Mp: 87-89 °C.

'H NMR (400 MHz, CDCI3) & 6.39 (dd, J = 10.7 and 8.7

8 (o]
o\, | Hz, M), 5.95 (ddd, J = 118, 7.3, and 0.6 Hz, He), 5.79 (dd,
alE .| J=11.8and 6.3 Hz, Hy), 5.68 (dd, J = 10.7 and 7.3 Hz, Hs),
6 {~_ >
7 9% | 492 (ddt, J=5.9, 4.2, and 2.0 Hz, H,), 3.39 (bt, J = 6.3 Hz,
140a

Hsa), 2.32-2.13 (m, 5H), 1.87-1.80 (m, 3H). *C NMR (100
MHz, CDCI3) ¢ 197.5, 169.9, 139.1, 129.6, 128.8, 123.2, 114.5, 72.4, 36.7, 28.4,
28.3, 27.4, 20.6. IR (ATR, cm™) 3018, 1606, 1386, 1214, 725, 668; HRMS Calcd
for (C13H140,) [M + H]": 203.1066; Found: 203,1069.

'H NMR (400 MHz, CDCls) 6 6.16 (m, Hsand Hg), 5.97 (ddd,

s+ 9 J=11.4,5.4, and 2.0 Hz, H7), 5.90 (ddd, J = 10.4, 5.4, and 1.1

7 . “’ Hz, He), 5.12 (bd, J = 9.3 Hz, Hgy), 3.37 (bt, J = 9.9 Hz, Hsy),

s 072, 2.45 (ddd, J = 13.4, 8.2, and 2.1 Hz, Hy), 2.41-2.34 (m, 2H),

141a 2.30-2.24 (m, 2H), 2.0-1.95 (m, 2H), 1.87 (ddd, J = 13.4, 5.0,

and 2.1 Hz, Hs). ®*C NMR (100 MHz, CDCl3) 6 194.2, 175.0, 133.8, 129.2, 126.4,

126.1, 116.2, 86.3, 49.3, 35.7, 28.5, 22.8, 20.6. IR (ATR, cm™) 1967, 1722, 1615,

1393, 1216, 1066, 725, 668; HRMS Calcd for (C13H1402) [M + H]": 203.1066;
Found: 203,1061.
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57  (2S,7R)-10,10-dimethyl-7,9,10,11-tetrahydro-2,7-methano-1-benzoxonin-
8(2H)-one (140Db) and (5aR,10aS)-3,3-dimethyl-2,3,4,5a,10,10a-
hexahydro-1H-benzo[b]cyclohepta[d]furan-1-one (141b)

To a solution of cycloheptatriene (111) (0.92 g, 10 mmol) in MeOH (50 mL) was

added dimedone (139b) (1.4 g, 10 mmol) and then the reaction mixture cooled down

0 °C. To this mixture was added a solution of (10.96 g, 20 mmol) CAN in MeOH

(100 mL) dropwise over a period of 45 minutes and the solution was stirred for 75

minutes. After completion of the reaction, the reaction mixture was evaporated and

the residue was dissolved in EtOAc then the organic phase was washed with water.

After evaporation of the solvent the residue was chromatographed on silica gel (50

0), eluting with ethyl acetate/hexane (1:2) to give (2S,7R)-10,10-dimethyl-7,9,10,11-

tetrahydro-2,7-methano-1-benzoxonin-8(2H)-one (140b) (0.68 g, 2,95 mmol, 29%)

as a light white colored solid from CH,Cl,/n-hexane, Mp: 83-85 °C and (5aR,10aR)-

2,3,4,5a,10,10a-hexahydro-1H-benzo[b]cyclohepta[d]furan-1-one (141a) (0.75 g,

3.26 mmol, 32%) as a white colored solid from CH,Cl,/n-hexane, Mp: 65-68 °C.

'H NMR (400 MHz, CDCl3) 6 6.44 (bt, J = 10.5 Hz, Ha),

8 (@)
. /4 oo, 6.0 (dd, J = 11.8 and 6.2 Hz, Hg), 5.87 (dd, J = 11.8 and
a CH
ol N° SCH.| 6.1Hz, Hy),5.77 (dd, J = 11.0 and 6.2 Hz, Hs), 5.03-4.95

(M, Hya), 3.47 (bt, J = 6.2 Hz, Hga), 2.28-2.22 (M, CHa0),
Hg), 2.21-2.18 (M, CHaa), 1.93 (dd, J = 16.0 and 1.1
Hz, Hg), 1.02 (s, CH3), 1.0 (s, CHs). *C NMR (100 MHz, CDCls) 6 196.7, 168.1,
138.8, 129.3, 129.0, 123.1, 113.0, 72.2, 50.4, 42.1, 31.8, 28.8, 27.9, 27.5, 27.3. IR
(ATR, cm’) 2987, 2900, 2834, 2159, 2016, 1977, 1650, 1616, 1378, 1082, 1066,
1056; HRMS Calcd for (C1sH1505) [M + H]*: 231.1379; Found: 231.1386.

- 5 'H NMR (400 MHz, CDCl3) 8, 6.15-6.08 (m, Hs and Hs),

@ﬁ; 5.98 (ddd, J = 12.0, 5.4 and 1.7 Hz, H;), 5.90 (ddd, J =
N A %':,33 10.4, 5.4 and 1.1 Hz, H), 5.13 (bd, J = 9.1 Hz, Hgy), 3.36
b (bt, J = 10.2 Hz, Hsy), 2.45 (ddd, J = 13.4, 8.4 and 2.0 Hz,

Ha), 2.23 (5, CHag), 2.23 (d, J = 10.2 Hz , CHaga), 1.88

(ddt, J = 13.4, 5.3, and 1.8 Hz, Ha), 1.05 (s, CHa), 1.02 (s, CH3). C NMR (100
MHz, CDCly) 6 194.2, 175.0, 133.8, 129.2, 126.4, 126.1, 116.2, 86.3, 50.4, 42.1,

31.8, 28.8, 27.9, 27.5, 27.3. IR (ATR, cm™) 2968, 2900, 2834, 2160, 2017, 1977,
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1697, 1614, 1455, 1394, 1255, 1049; HRMS Calcd for (CisHig0,) [M + H]™:
231.1379; Found: 231.1385.

58 1-[(3aR,5S,8S,8aR)-2-Methyl-4,8a-dihydro-3aH-5,8-
epidioxycyclohepta[b]furan-3-yl]ethanone (131a)

Dihydro cyclohepta[b]furan derivative 130a (0.380 g, 2 mmol) and a catalytic
amount of tetraphenylporphine (TPP) (20 mg) was dissolved in CH,Cl, (50 mL) in a
flask covered with a water jacket. Then, the mixture was irradiated with a projection
lamp (300 W) overnight while the dry oxygen was bubbled through the solution with
a constant rate at room temperature. After the reaction was complete the solvent was
removed by a rotary evaporator at 30 °C. The residue was chromatographed on silica
gel (40 g), eluting with ethyl acetate/hexane (2:1) to give 1-[(3aR,5S,8S,8aR)-2-
methyl-4,8a-dihydro-3aH-5,8-epidioxycyclohepta[b]furan-3-yl]ethanone (131a)
(0.351 g, 79%) as a colorless oil.

S 'H NMR (400 MHz, CDCl3) § ), 6.57 (dd, A-part of AB-
4a 5

41(°:H3 system, J = 9.10 and 7.1 Hz, Hy), 6.47 (dd, B-part of AB-
TR, \7 oh, system, J = 9.10 and 6.8 Hz, Hs), 5.12-5.08 (m, Ha), 5.07
s T (bt, J = 4.9 Hz, Hga), 4.64 (t, J = 6.8 Hz, Has), 2.53 (quintet, J

1312 = 6.4 Hz, Hs;), 2.11 (ddt, J = 15.5 and 12.8 Hz, Hs), 1.65 (dd,
J=155 and 6.7 Hz, 1H), Hs), 1.59 (s, CH3). *C NMR (100 MHz, CDCl5) & 192.6,
168.4, 134.2, 124.4, 118.8, 84.5, 76.2, 73.8, 38.2, 35.4, 28.2, 14.8. IR (ATR, cm™)
2088, 2900, 1732, 1715, 1698, 1624, 1416, 1375, 1229, 1188, 1148, 1065; 705 666,

641, 619 HRMS Calcd for (C1,H1404) [M + H]™: 223.0964; Found: 223.0961.

5.9 Methyl (3aR,5S,8S,8aR)- 2-methyl-4,8a-dihydro-3aH-5,8-
epidioxycyclohepta[b]furan-3-carboxylate (131b)

Dihydro cyclohepta[b]furan derivative 130b (0.412 g, 2 mmol) and a catalytic
amount of tetraphenylporphine (TPP) (20 mg) was dissolved in CH,Cl, (50 mL) in a
flask covered with a water jacket. Then, the mixture was irradiated with a projection
lamp (300 W) overnight while the dry oxygen was bubbled through the solution with
a constant rate at room temperature. After the reaction was complete the solvent was
removed by a rotary evaporator at 30 °C. The residue was chromatographed on silica
gel (40 g), eluting with ethyl acetate/hexane (1:2) to give methyl (3aR,5S,8S,8aR)- 2-
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methyl-4,8a-dihydro-3aH-5,8-epidioxycyclohepta[b]furan-3-carboxylate (131b):
(0.365 g, 76%) as a colorless oil.

'H NMR (400 MHz, CDCls) § 6.71 (dd, A-part of AB-

456 Og g/gHs system, J = 9.1 and 7.1 Hz, H3), 6.42 (ddd, B-part of AB-

\§ system, J = 9.1, 6.8 and 0.9 Hz, H,), 5.09 (dt, J = 6.5 and

2.3 Hz, Hy,), 4.96 (bt, J = 6.3 Hz, Hy,), 4.66 (dd, J = 9.1

131b and 2.8 Hz, Hg,), 3.75 (5, OCH3), 3.14 (bg, J = 9.2 Hz,

Hsa), 2.7 (ddd, J =14.2, 7.7, and 6.4 Hz, Hs), 2.23 (s, CH3), 2.20-2.14 (m, Hs). **C

NMR (100 MHz, CDClIs;) 6 170.2, 166.1, 135.1, 125.5, 107.9, 85.6, 77.2, 74.9, 50.8,

38.7, 36.5, 14.5. IR (ATR, cm™) 3015, 2988, 2900, 1685, 1637, 1438, 1356, 1333,

1299,1223, 1161, 1089, 1039, 983; 953, 891, 839, 700, 666, 617, HRMS Calcd for
(C12H1405) [M + H]": 239.0914; Found: 239.0912.

3

2a 8a O 7 CH3
12

8

5.10 Ethyl (3aR,5S,8S,8aR)- 2-methyl-4,8a-dihydro-3aH-5,8-
epidioxycyclohepta[b]furan-3-carboxylate (131c)

Dihydro cyclohepta[b]furan derivative 130c (0.440 g, 2 mmol) and a catalytic
amount of tetraphenylporphine (TPP) (20 mg)was dissolved in CH,Cl, (50 mL) in a
flask covered with a water jacket. Then, the mixture was irradiated with a projection
lamp (300 W) overnight while the dry oxygen was bubbled through the solution with
a constant rate at room temperature. After the reaction was complete the solvent was
removed by a rotary evaporator at 30 °C. The residue was chromatographed on silica
gel (40 g), eluting with ethyl acetate/hexane (1:4) to give ethyl (3aR,5S,8S,8aR)- 2-
methyl-4,8a-dihydro-3aH-5,8-epidioxycyclohepta[b]furan-3-carboxylate (131c)
(0.352 g, 69%) as a colorless oil.

. . o _ .. 'H NMR (400 MHz, CDCl3) 6 6.72 (dd, A-part of AB-
4 s o~ ~CH, | system, J = 9.1 and 7.1 Hz, Hy), 6.42 (ddd, B-part of
’ A \7 CH, AB-system, J=9.1, 7.5, and 0.9 Hz, Hy), 5.09 (bd, J =

e 6.3, Hza), 4.96 (bt, J = 6.0 Hz, Hua), 4.66 (dd, J = 9.2
and 2.8 Hz, Hga), 4.21-4.12 (m, CHyay)), 3.19-3.14 (m,
Hsa), 2.70 (ddd, J =14.3, 7.7, and 6.5 Hz, Hs), 2.24 (s, CH3), 2.23-2.21 (m, Hs) 1.27
(bt, J = 7.1 Hz, CH3). *C NMR (100 MHz, CDCls) § 169.9, 165.7, 135.1, 125.5,
108.1, 85.5, 77.2, 74.9, 59.5, 38.8, 36.6, 14.5, 14.4. IR (ATR, cm™) 3023, 2953,
80

131c




1740, 1694, 1645, 1437, 1403, 1321, 1214, 1166, 1108, 1066, 1015, 973, 846, 706,
667; HRMS Calcd for (C13H160s) [M + H]™: 253.1070; Found: 253.1076.

511 Methyl (3aR,5S,8S,8aR)- 2-(2-methoxy-2-oxoethyl)-4,8a-dihydro-3aH-
5,8-epidioxycyclo-hepta[b]furan -3-carboxylate (131d)

Dihydro cyclohepta[b]furan derivative 130d (0.530 g, 2 mmol) and a catalytic
amount of tetraphenylporphine (TPP) (20 mg) was dissolved in CH,Cl, (50 mL) in a
flask covered with a water jacket. Then, the mixture was irradiated with a projection
lamp (300 W) overnight while the dry oxygen was bubbled through the solution with
a constant rate at room temperature. After the reaction was complete the solvent was
removed by a rotary evaporator at 30 °C. The residue was chromatographed on silica
gel (40 g), eluting with ethyl acetate/hexane (1:2) to give methyl (3aR,5S,8S,8aR)- 2-
(2-methoxy-2-oxoethyl)-4,8a-dihydro-3aH-5,8-epidioxycyclo-hepta[b]furan -3-
carboxylate (131d) (0.394 g, 66%) as a colorless oil.

o . 'H NMR (400 MHz, CDCls) ¢ 6.73 (dd, A-part of AB-
4Sa L CH, system, J = 9.3 and 7.0 Hz, H3), 6.43(ddd, B-part of
Sgofj;ﬂ\o/?ﬁ?’ AB-system, J = 9.3, 6.8 and 0.9 Hz, H,), 5.11 (dt, J =

e O 6.8 and 2.0 Hz, Hg), 4.79 (dd, J = 9.2 and 2.8 Hz, Hsgy),

131d 470 (bt, J = 65 Hz, Ha), 403 (d, A-part of AB-
system, J = 16.5 Hz, Hyy), 3.73 (s, OCHg), 3.71 (s, OCHg), 3.50 (d, B-part of AB-
system, J =16.5 Hz, Hiy), 3.22 (q, J = 8.8 Hz, Hs,), 2.70 (ddd, J =15.5, 7.7, and 6.5
Hz, Hs), 2.25 (dd, J =15.5 and 10.5 Hz, Hs). *C NMR (100 MHz, CDCls) 6 168.6,
165.3, 164.9, 135.2, 125.4, 110.4, 86.3, 77.1, 74.7, 52.4, 51.1, 38.6, 36.3, 34.2. IR
(ATR, cm™) 2988, 2900, 2159, 2017, 1978, 1743, 1705, 1632, 1435, 1373, 1327,

1194, 1124, 1053; HRMS Calcd for (Ci4H10s5) [M + H]™: 297.0979; Found:
297.0973.

5.12 1-[(1S,5S5)-6,7-Dioxabicyclo[3.2.2]nona-2,8-dien-3-yl]propane-1,2-dione
(132a)

Dihydro cyclohepta[b]furan derivative 130a (0.380 g, 2 mmol) and a catalytic

amount of tetraphenylporphine (TPP) (20 mg) was dissolved in 50 mL of CH,Cl; in

a flask covered with a water jacket. Then, the mixture was irradiated with a

projection lamp (300 W) for 96 h while the dry oxygen was bubbled through the
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solution with a constant rate at room temperature. After the reaction was complete
the solvent was removed by a rotary evaporator at 30 °C. The residue was
chromatographed on silica gel (40 g), eluting with ethyl acetate/hexane (1:2) to give
1-[(1S,5S)-6,7-dioxabicyclo[3.2.2]nona-2,8-dien-3-yl]propane-1,2-dione (132a)
(0.320 g, 82%) as a colorless oil.

- = 'H NMR (400 MHz, CDCl3) ¢ 7.32 (bd, J = 6.8, H7), 6.73

4(lj’H3 (bdt, J = 8.9 and 0.9 Hz, H3), 6.51 (dt, J = 8.7 and 1.0 Hz,
6
"7 0 Ha), 5.02-4.94 (m, H,, and Ha,), 3.13 (ddd, A-part of AB-

132a system, J = 19.4, 7.04 and 2.0 Hz, Hs), 2.70 (dt, B-part of
AB-system, J = 19.4 and 1.3 Hz, Hs), 2.4 (s, CHs). *C NMR (100 MHz, CDCls) 6
200.1, 193.3, 146.5, 136.6, 131.8, 128.5, 75.0, 72.3, 33.2, 26.6. IR (ATR, cm™)
2159, 2017, 1978, 1743, 1705, 1632, 1435, 1373, 1327, 1254, 1194, 1124, 1084,
1053, 582; HRMS Calcd for (C19H1004) [M + H]": 195.0651; Found: 195.0658.

5.13 Methyl (1S,55)-6,7-dioxabicyclo[3.2.2]nona-2,8-dien-3-yl(oxo)acetate
(132b)

Dihydro cyclohepta[b]furan derivative 130b (0.412 g, 2 mmol) and a catalytic
amount of tetraphenylporphine (TPP) (20 mg) was dissolved in 50 mL of CH,ClI; in
a flask covered with a water jacket. Then, the mixture was irradiated with a
projection lamp (300 W) for 96 h while the dry oxygen was bubbled through the
solution with a constant rate at room temperature. After the reaction was complete
the solvent was removed by a rotary evaporator at 30 °C. The residue was
chromatographed on silica gel (40 g), eluting with ethyl acetate/hexane (1:2) to give
methyl (1S,5S)-6,7-dioxabicyclo[3.2.2]nona-2,8-dien-3-yl(oxo)acetate (132b) (0.331

g, 78%) as a colorless oil.

'H NMR (400 MHz, CDCls) 6 7.32 (dt, J = 6.8 and 1.6
4 . 8/8H3 Hz, H7), 6.73 (bdd, J = 8.6 and 1.1 Hz, Hs), 6.51 (ddd, J =
8.6, 7.4 and 1.0 Hz, Hy), 5.02-4.95 (m, Hy, and Has), 3.90

132b (s, OCHg3), 3.14 (ddd, A-part of AB-system, J = 19.3, 4.5

and 1.8 Hz, Hs), 2.74 (dt, B-part of AB-system, J = 19.3 and 1.3 Hz, Hs). *C NMR
(100 MHz, CDCls) 6 193.2, 187.6, 146.6, 137.8, 131.6, 128.6, 74.9, 72.2, 52.8, 33.0.
IR (ATR, cm™) 2988, 2900, 2833, 2159, 2017, 1977, 1867, 1688, 1680, 1540, 1521,
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1410, 1065, 1046; HRMS Calcd for (CioH10s) [M + H]": 211.0601; Found:
211.0608.

5.14 Ethyl (1S,5S5)-6,7-dioxabicyclo[3.2.2]nona-2,8-dien-3-yl(oxo)acetate (132c)

Dihydro cyclohepta[b]furan derivative 130c (0.440 g, 2 mmol) and a catalytic
amount of tetraphenylporphine (TPP) (20 mg) was dissolved in 50 mL of CH,ClI; in
a flask covered with a water jacket. Then, the mixture was irradiated with a
projection lamp (300 W) for 96 h while the dry oxygen was bubbled through the
solution with a constant rate at room temperature. After the reaction was complete
the solvent was removed by a rotary evaporator at 30 °C. The residue was
chromatographed on silica gel (40 g), eluting with ethyl acetate/hexane (1:2) to give
ethyl (1S,5S)-6,7-dioxabicyclo[3.2.2]nona-2,8-dien-3-yl(oxo)acetate (132c) (0.312 g,

69%) as a colorless oil.

'H NMR (400 MHz, CDCls) 6§ 7.30 (d, J = 6.7 Hz, Hy),

5 0 _ 2 6.73 (bt, J = 8.8, H3), 6.51 (bt, J = 8.6 Hz, Hy), 5.05-4.95
@ (M, Haa and Haa), 4.35 (dd, J= 7.2 and 2.0 Hz, CH; (11),
3.14 (ddd, A-part of AB-system, J =19.4, 4.9 and 1.9
Hz, Hs), 2.73 (dd, B-part of AB-system, J =19.4 and 1.9
Hz, Hs), 1.37 (t, J = 7.2 Hz, CH3). *C NMR (100 MHz, CDCls) § 188.0, 163.4,
146.4, 137.8, 131.6, 128.6, 74.9, 72.2, 74.9, 72.2, 62.4, 33.0, 14.1. IR (ATR, cm'l)
2988, 2900, 2160, 2030, 1978, 1769, 1716, 1682, 1594, 1540, 1476, 1424, 1267,
1148, 1215, 1066;

132¢c

5.15 3-Acetyl-4H-cyclohepta[b]furan-4-one (133a)

To a solution of dihydro cyclohepta[b]furan derivative 130a (0.380 g, 2 mmol) in
anisole (15 mL) was added SeO, (0.888 g, 8 mmol) and the reaction mixture was
heated at the reflux temperature for 18 h. After completion of the reaction, the
mixture was cooled, filtered and evaporated. The residue was chromatographed on
silica gel (45 @), eluting with ethyl acetate/hexane (4:1) to give 3-acetyl-4H-
cyclohepta[b]furan-4-one (133a) (0.276 g, 73%) as a light yellow colored solid from
CH_Cl,/n-hexane, Mp: 87-89 °C.
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'H NMR (400 MHz, CDCl3) § 9.14 (d, J = 11.2 Hz, Hs), 7.64

s O 0
Ghy| (dd, =112 and 8.9 Hz, He), 7.54-7.49 (m, Hg), 7.52 (s, Hy),
9
~NA Y 7.36 (ddd, J = 11.5, 8.5 and 4.0 Hz, H7), 2.58 (s, CHs). °C
8 ©%a (@)
1 NMR (100 MHz, CDCls) § 195.1, 167.6, 159.2, 153.3, 140.8,
133a

136.5, 135.0, 131.7, 120.1, 103.6, 30.1. IR (ATR, cm™) 2988,
2900, 2558, 2017, 1977, 1760, 1732, 1657, 1480, 1468, 1416, 1263.1066; HRMS
Calcd for (C1:HgO3) [M + H]*: 189.0546; Found: 189.0551.

5.16 Methyl 4-oxo-4H-cyclohepta[b]furan-3-carboxylate (133b)

To a solution of dihydro cyclohepta[b]furan derivative 130b (0.412 g, 2 mmol) in
anisole (15 mL) was added SeO, (0.888 g, 8 mmol) and the reaction mixture was
heated at the reflux temperature for 20 h. After the completion of the reaction, the
mixture was cooled, filtered and evaporated. The residue was chromatographed on
silica gel (45 @), eluting with ethyl acetate/hexane (1:2) to give methyl 4-oxo-4H-
cyclohepta[b]furan-3-carboxylate (133b) (0.307 g, 75%) as a light yellow colored
solid from CH,Cl,/n-hexane, Mp: 84-86 °C.

'H NMR (400 MHz, CDCl3) 6 8.88 (d, J = 11.3 Hz, Hs),

s 0 0 11
63a - oCHs| 7,65 (dd, J = 11.3 and 8.5 Hz, Hg), 7.53-7.49 (m, Hg), 7.50
N \: (s, Ho), 7.36 (ddt, J = 12.5, 8.2 and 4.4 Hz, Hy), 3.95 (s,
8 ao
1 OCH;). *C NMR (100 MHz, CDCls) ¢ 165.3, 164.0, 158.7,
133b

154.8, 139.7, 136.1, 134.1, 130.8, 119.3, 96.5, 51.8. IR
(ATR, cm™) 2988, 2900, 2159, 1770, 1747, 1715, 1697, 1537, 1478, 1440, 1268,
1211, 1147, 1065, HRMS Calcd for (Ci1HgOs) [M + H]™: 205.0495; Found:
205.0502.

5.17 Ethyl 4-oxo0-4H-cyclohepta[b]furan-3-carboxylate (133c)

To a solution of dihydro cyclohepta[b]furan derivative 130c (0.440 g, 2 mmol) in
anisole (15 mL) was added SeO, (0.888 g, 8 mmol) and the reaction mixture was
heated at the reflux temperature for 20 h. After the completion of the reaction, the
mixture was cooled, filtered and evaporated. The residue was chromatographed on

silica gel (45 g), eluting with ethyl acetate/hexane (1:2) to give  ethyl 4-ox0-4H-
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cyclohepta[b]furan-3-carboxylate (133c) (0.293 g, 67%) as a light yellow colored
solid from CH,Cl,/n-hexane, Mp: 91-93 °C.

S 'H NMR (400 MHz, CDCls) 6 8.85 (d, J = 11.3 Hz, Hs),

o/ . 3 SA2| 7.62(dd, J=11.3 and 8.2 Hz, Hg), 7.50-7.45 (m, Hg), 7.47
7 (s, Hy), 7.36 (ddd, J = 12.5, 8.2 and 4.4 Hz, H), 4.40 (g, J =
8 7.1 Hz, CH,), 1.40 (t, J = 7.1 Hz, CH3) . *C NMR (100

133¢ MHz, CDCls) 6 165.2, 163.6, 158.7, 154.6, 139.4, 135.9,
133.8,130.7, 118.9, 77.2, 60.7, 14.4. IR (ATR, cm™) 2987, 2900, 2558, 2159, 2017,
1977, 1771, 1732, 1748, 1688, 1681, 1507, 1488, 1473, 1267, 1208, 1065; HRMS

Calcd for (C12H1004) [M + H]": 219.0651; Found: 219.0658.

5.18 1-[(1R,2S,4S,8R)-3,9-Dioxatricyclo[6.1.0.0**Inon-6-yl]propane-1,2-dione-
5yl acetate (153) and 1-[(1R,2S,4S,8R)-3,9-dioxatricyclo[6.1.0.0>*]non-5-
en-6-yl]propane-1,2-dione (134)

To a stirred solution of 0.22 g (1.0 mmol) endoperoxide (131a) in 10 mL of CH,CI,

at room temperature was added 14.0 mg (0.02 mmol) of CoTPP. The resulting

mixture was stirred for 3 h, and the solvent was evaporated to give 1-[(1R,2S,4S,8R)-

3,9-dioxatricyclo[6.1.0.0*]non-6-yl]propane-1,2-dione-5yl acetate (153) (0. 195 g,

76%) as a white colored solid Mp: 62-64 °C. When (153) was chromatographed on

silica gel (25 @), eluting with ethyl acetate/hexane (1:1) the compound 1-

[(1R,2S,4S,8R)-3,9-dioxatricyclo[6.1.0.0**Inon-5-en-6-yl]propane-1,2-dione  (134)

(0. 141 g, 72%) was formed as a light yellow colored oil.

'H NMR (400 MHz, CDCls) § 5.46 (dd, J = 4.7 and 2.2 Hz, Ha),
L, | 3.78373(m, Ha), 3.5 (bt J = 3.1, Hz, Hzs), 3.40 (dd, J = 3.9 and
o5, 0" | 20 Hz, Hy), 3.20-3.17 (M, Ha), 3.16-3.11 (m, Hs), 2.30 (s,
185§ | CHy), 219 (t, J = 6.7 Hz, CHy), 1.99 (s, CHs).°C NMR (100
MHz, CDCly) 6 197.5, 196.0, 170.3, 69.5, 58.1, 53.8, 51.6, 50.4, 43.3, 24.0, 235,
20.8. IR (ATR, cm') 2988, 2900, 1685, 1637, 1438, 1356, 1333, 1314, 1305, 1299,
1223, 1192, 1161, 1119, 1089, 1039, 1023, 983, 891, 839, 700, 666, 617; HRMS
Calcd for (C12H1406) [M + H]™: 255.0824; Found: 255.0885.

"0, 52

1a|

5

'H NMR (400 MHz, CDCl3) 6 6.86 (dd, J = 4.2 and 1.8 Hz, H3), 3.75 (dd, , J = 4.2
and 2.3 Hz, Hy,), 3.62 (t, J = 4,2 Hz, Haza), 3.17 (dd, J = 4.1 and 2.3 Hz, H1a), 3.13
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(d, J = 6.4 Hz, Hs), 3.01 (ddd, J = 6.4, 41 and 2.0 Hz,

1

Q2 s O | Hs) 285 (ddd, J = 8.6, 6.4 and 1.79 Hz, Hs), 2.30 (s,
14|

2w /7o M| CH3).BC NMR (100 MHz, CDCls) 6 200.5, 191.8, 1145,
J

O = 31 g 136.5, 52.8, 52.7, 49.7, 48.1, 26.8, 22.4. IR (ATR, cm™)

3019, 1715, 1621, 1396, 1214, 1044, 928, 750, 668, 627
HRMS Calcd for (C1oH1004) [M + H]*: 195.0613; Found: 195.0659.

519 (1R,2R,3S,5R)-3-Pyruvoyl-6,7-dioxabicyclo[3.2.2]non-8-en-2-yl acetate
(247)

To a stirred solution of 0.22 g (1.0 mmol) endoperoxide (131a) in 5 mL of CH3Cl at

was added gold trichloride (3.0 mg, 2.5 mmol %) room temparature under an oxygen

atmosphere. The resulting mixture was stirred for 24 h, and the solvent was

evaporated to give compound (1R,2R,3S,5R)-3-pyruvoyl-6,7-dioxabicyclo[3.2.2]non-

8-en-2-yl acetate (147) (0. 213 g, 83%) as a white colored solid Mp: 60-62 °C. When

147 was chromatographed on silica gel, eluting with ethyl acetate/hexane gave 132a.

) 'H NMR (400 MHz, CDCl;) 5 6.56-6.45 (m, Hs and H.),
40CH3 5.32 (dt, J= 4.8 and 1.0 Hz, Hy), 495 (tt, J = 6.4 and 1.0
.

g ] Hz, Hys), 4.81 (dt, J = 6.7 and 1.2 Hz, Hay), 3.69 (dt, J = 12.6
O%-CHy | and 4.8 Hz, He), 255 (dd, J = 15.6 and 12.6 Hz, Hy), 2.25
"o (s, CHy), 1.99 (s, CHs), 1.95-1.87 (m, Hs). *C NMR (100
MHz, CDCls) & 197.1, 196.7, 170.7, 131.9, 126.9, 75.2, 75.1, 72.7, 42.0, 28.8, 23.6,
20.7. IR (ATR, cm) 2988, 2900, 2884, 1716, 1507, 1405, 1216, 1074, 1066, 1057,

1027, 1016, 891, 668, 625, 601,; HRMS Calcd for (C1.H1406) [M + H]": 255.0824;
Found: 255.0890.

520 (1aS,7bS)-5-acetyl-6-methyl-1a,2,4,4a,7a,7b-hexahydro-3H-
oxireno[6,7]cyclohepta[1,2-b]furan-3-one (160):

A solution of triethylamine (45 mg, 0.44 mmol) in 25 mL of CHCI; was added to a
stirred solution of 0.22 g (1.0 mmol) endoperoxide (131a) in 50 mL of CHClzat 0 °C
dropwise over 15 min. The resulting mixture was stirred for 8 h at room temperature,
and the solvent was evaporated to give compound (1aS,7bS)-5-acetyl-6-methyl-
1a,2,4,4a,7a,7b-hexahydro-3H-oxireno[6,7]cyclohepta[1,2-b]furan-3-one (160) (0.
181 g, 81%) as a yellow colored solid from EtOAc/n-hexane, Mp: 85-87 °C.
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'H NMR (400 MHz, CDCl3) § 5.38 (d, J = 2.1 Hz, Hyy),
479 (dt,J=5.5 and 2.3 Hz, Hi,), 4.55 (dd, J = 7.8 and 5.8
Hz, Ha), 3.13 (ddd, J = 16.1, 7.9 and 1.2 Hz, H,), 2.84-
2.78 (M, Hyand CHy), 2.76-2.71 (M, Hga), 2.09 (s, CH3),
1.43 (s, CH3). *C NMR (100 MHz, CDCls) 6 2019, 197.3,
169.3, 104.2, 76.7, 72.6, 70.9, 45.0, 44.0, 42.5, 19.9, 15.1.

521 2,2'-(1'-Pyrrolinyl)pyrrole (70)

Phosphoryl chloride (4.2 mL, 45.0 mmol) was added over a period of 1 h to pyrrole
(15.6 mL, 225 mmol) under nitrogen and cooled in an ice bath. To that solution, 2-
pyrrolidinone (74) (3.9 mL, 51.0 mmol) was added over a period of 2 h under
nitrogen and cooled in an ice bath. After the addition was complete, the viscous,
amber solution was allowed to warm to room temperature. CHCI3 (25 mL) was
added and the solution was transferred to a flask containing water (100 mL) and
sodium acetate (40.0 g) cooled in an ice bath. The pH of the turbid, orange solution
was adjusted to ~10 with aqg KOH (~20 mL, 10 M). The organic layer was separated
and saved. The aqueous layer was extracted three times with CHCI3 (~25 mL). The
organic extracts were combined with the saved organic layer, and extracted five
times with ag. HCI (50 mL, 0.5 M). The pH of each aqg. extract was adjusted to ~10
with ag KOH (10 M) to produce a yellow/orange precipitate. The ag. extracts with
the precipitate were combined and extracted four times with CHCI3 (100 mL). The
combined organic extracts were dried over Na,;SO4 and concentrated to dryness to
afford a light orange waxy solid. Crude product 70 was purified by sublimation at 80
°C (100 mTorr) to afford 4.7 g of a white powder. Crystallization from ethanol
afforded (70) as white crystals (3.6 g, 66%), Mp 162-163 °C.

) “H NMR (400 MHz, CDCls) 6 6.93 (dd, J = 2.4 and 1.1 Hz, Hs),
:QZ—G@Q 6.54 (dd, J = 3.5 and 1.1 Hz, H3), 6.21 (dd, J = 3.5 and 2.4 Hz,

H' 7 °| Hy), 402 (Bt, J = 7.0, Hz, CHyg), 2.90 (tt, J = 82, 1.4 Hz,
CHaqy), 2.00 (quintet, J = 8.2 Hz, CHag). °C NMR (100 MHz,

CDCl3) 6 166.5, 127.8, 122.2, 113.2, 109.1, 60.5, 35.0, 22.7.

70
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5.22 1-Prop-2-ynyl-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (71a)

To a solution of 2,2'-(1'-pyrrolinyl)pyrrole (70) (0.201 g, 1.5 mmol) in dry DMF (5
mL) was added NaH (0.040 g, 1.7 mmol) portion wise at 0 °C. The reaction mixture
was then stirred at room temperature for 0.5 h. To this solution was added propargyl
bromide (0.178 g, 1.5 mmol) drop wise, and the resulting mixture was stirred at room
temperature for 2 h. After completion of the reaction (controlled by TLC), water (5
mL) was added, and the solution was extracted with ethyl acetate 6 times. The
combined organic extracts were dried over MgSO,. The solvent was evaporated to
give the crude product, which was purified by column chromatography eluting with
EtOAc/hexane (1:4) to give final product 1-prop-2-ynyl-4',5'-dihydro-1H,3'H-2,2'-
bipyrrole (71a) (0.201 g, 77%) as a light yellow colored oil.

R 'H NMR (400 MHz, CDCl3) 6§ 7.06 (bdd, J = 2.5 and 1.6 Hz,

mg H.), 6.50 (dd, J = 3.6 and 1.6 Hz, H3), 6.17 (dd, J = 3.6 and 2.5

1& Hz, Hy), 5.41 (d, J = 2.5 Hz, CHyq1)), 4.01 (t, J = 7.2 Hz, CHyg),

& 2.86 (tt, J = 8.0, 1.4 Hz, CHyqg), 2.37 (t, J = 2.5 Hz, Hy3), 1.87

(quintet, J = 7.7 Hz, CHyg). *C NMR (100 MHz, CDCls) 6

165.9, 127.3, 125.8, 115.4, 108.3, 79.3, 73.1, 61.8, 38.3, 36.6, 21.8. IR (ATR, cm™)

3001, 2944, 2292, 2252, 1441,1375, 1038, 918, 749; HRMS Calcd for (C1;H12N»)
[M + H]": 173.1073; Found: 173.1081.

5.23 1-But-2-ynyl-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (71b)

To a solution of 2,2'-(1'-pyrrolinyl)pyrrole (70) (0.201 g, 1.5 mmol) in dry DMF (5
mL) was added NaH (0.040 g, 1.7 mmol) portion wise at 0 °C. The reaction mixture
was then stirred at room temperature for 0.5 h. To this solution was added propargyl
bromide (0.200 g, 1.5 mmol) drop wise, and the resulting mixture was stirred at room
temperature for 2 h. After completion of the reaction (controlled by TLC), water (5
mL) was added, and the solution was extracted with ethyl acetate 6 times. The
combined organic extracts were dried over MgSO,. The solvent was evaporated to
give the crude product, which was purified by column chromatography eluting with
EtOAc/hexane (1:4) to give final product 1-but-2-ynyl-4'5'-dihydro-1H,3'H-2,2'-
bipyrrole (71b) (0.177 g, 63%) as a light yellow colored oil.
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A 'H NMR (400 MHz, CDCl3) 6 7.10 (bdd, J = 2.8 and 1.6 Hz,

[ J° | My, 651 (dd, I = 3.8 and 1.6 Hz, Hy), 6.17 (dd, J = 3.6 and 2.8

1& Hz, H,), 5.32 (g, J = 2.5 Hz, CHaqyy), 4.00 (tt, J = 7.2 and 1.6

7M1p Hz, CHyg), 2.88 (tt, J = 7.2 and 1.6 Hz, CHq0)), 1.89 (quintet,

J = 7.3 Hz, CHyg), 1.84 (t, J = 2.5 Hz, CH3). *C NMR (100

MHz, CDCls) 6 165.9, 127.1, 125.9, 115.2, 107.9, 80.9, 74.5, 61.9, 38.7, 36.6, 21.9,

3.7. IR (ATR, cm™) 3164, 3000, 2944, 2292, 2252, 1613,1435, 1375, 1038, 917,
735, 649; HRMS Calcd for (C11H12Ny) [M + H]*: 187.1229; Found: 187.1223.

5.24 1-(3-Phenylprop-2-ynyl)-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (79a)

A stirred mixture of Cul (17.0 mg, 0.09 mmol), PPh; (90.0 mg, 0.34 mmol), and
Pd(OACc), (17.0 mg, 0.08 mmol) was purged with nitrogen for 30 min and heated to
50 °C. Then a solution of 1-prop-2-ynyl-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (71a)
(0.190 g, 1.1 mmol), iodobenzene (0.245 g, 1.2 mmol), and DIPA (diisopropylamine)
(2 mL) in THF (15 mL) was added successively. The mixture was heated for 3 h at
70 °C. After complete conversion (monitored by TLC) solvent was evaporated, and
the residue was chromatographed on silica gel eluting with EtOAc/hexane (1:4) to
give final product 1-(3-phenylprop-2-ynyl)-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (79a)
(0.240 g, 87%) as a light yellow colored oil.

IH NMR (400 MHz, CDCls) & 7.37- 7.33 (m, arom, 2H),

3 10

4M9 7.23-7.20 (m, arom, 3H), 7.11 (dd, J = 2.9 and 1.6 Hz, Hs),
*N L% ®s | 646(dd, J=36and 1.6 Hz Hs), 6.12 (dd, J = 3.6 and 2.9
= 14 16

1M =
1

w

Hz, Ha), 5.55 (S, CHyay), 3.95 (tt, J = 7.2 and 1.3 Hz,
79a "] CHag), 2.82 (tt, 3= 7.2 and 1.6 Hz, CHauo), 1.82 (quintet,
J = 7.2 Hz, CHyg). °*C NMR (100 MHz, CDCls) 6 166.0, 131.8, 128.4, 128.3,
127.3,125.9, 122.8, 115.3, 108.1, 85.0, 84.6, 61.8, 39.2, 36.6, 21.9. IR (ATR, cm™)
3164, 3001 2292, 2253, 1443, 1375, 1039, 918, 749; HRMS Calcd for (C17H16Ny)
[M + H]": 249.1386; Found: 249.1397.
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525 1-[3-(4-Methylphenyl)prop-2-ynyl]-4',5'-dihydro-1H,3'H-2,2'-bipyrrole
(79b)

A stirred mixture of Cul (17.0 mg, 0.09 mmol), PPh; (90.0 mg, 0.34 mmol), and
Pd(OACc); (17.0 mg, 0.08 mmol) was purged with nitrogen for 30 min and heated to
50 °C. Then a solution of 1-prop-2-ynyl-4'5'-dihydro-1H,3'H-2,2"-bipyrrole (71a)
(0.190 g, 1.1 mmol), 4-iodotoluene (0.261 g, 1.2 mmol), and DIPA
(diisopropylamine) (2 mL) in THF (15 mL) was added successively. The mixture
was heated for 4 h at 70 °C. After complete conversion (monitored by TLC) solvent
was evaporated, and the residue was chromatographed on silica gel eluting with
EtOAc/hexane (1:4) to give final product 1-[3-(4-methylphenyl)prop-2-ynyl]-4',5'-
dihydro-1H,3'H-2,2'-bipyrrole (79b) (0.215 g, 74%) as a light yellow colored oil.

'H NMR (400 MHz, CDCls) 6 7.34-7.29 (A-part of
4E\>2_6(j9 AA'BB'-system, arom, 2H), 7.19 (bdd, J = 2.9 and 1.6
N 40 7 15 Hz, Hs), 7.11-7.06 (B-part of AA'BB'-system, arom,
Wéz 2H), 6.52 (dd, J = 3.7 and 1.6 Hz, H3), 6.19 (dd, J = 3.6
"7 and 2.9 Hz, Ha), 561 (5, CHa), 4.02 (tt, J = 7.2 and

1.7 Hz, CHag), 2.88 (tt, J = 7.5 and 1.6 Hz, CHyqg),
2.32 (s, CH3), 1.88 (quintet, J = 7.6 Hz, CHyg). *C NMR (100 MHz, CDCls) §
166.0, 138.5, 131.7, 129.0, 127.3, 125.9, 119.7, 115.3, 108.0, 85.1, 83.8, 61.8, 39.2,

36.6, 21.9, 21.5. IR (ATR, cm™) 3001, 2293, 2253, 1632, 1507, 1441, 1375, 1039,
918, 749, 668; HRMS Calcd for (C1gH1sN2) [M + H]*: 263.1542; Found: 263.1560.

79b

526 1-[3-(4-Methoxyphenyl)prop-2-ynyl]-4',5'-dihydro-1H,3'H-2,2'-bipyrrole
(79c)

A stirred mixture of Cul (17.0 mg, 0.09 mmol), PPh; (90.0 mg, 0.34 mmol), and
Pd(OACc); (17.0 mg, 0.08 mmol) was purged with nitrogen for 30 min and heated to
50 °C. Then a solution of 1-prop-2-ynyl-4'5'-dihydro-1H,3'H-2,2'-bipyrrole (71a)
(0.190 g, 1.1 mmol), 4-iodoanisole (0.281 g, 1.2 mmol), and DIPA
(diisopropylamine) (2 mL) in THF (15 mL) was added successively. The mixture
was heated for 3 h at 70 °C. After complete conversion (monitored by TLC) solvent
was evaporated, and the residue was chromatographed on silica gel eluting with
EtOAc/hexane (1:4) to give final product 1-[3-(4-methoxyphenyl)prop-2-ynyl]-
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4'5'-dihydro-1H,3'H-2,2"-bipyrrole (79c¢) (0.237 g, 77%) as a light yellow colored
oil.

T 'H NMR (400 MHz, CDCl3) 6 7.37 (quasi d, J = 8.8
4
% T Hz, arom, 2H), 7.19 (bdd, J = 2.6 and 1.7 Hz, Hs),
° N 2 N 6.82 (quasi d, J = 8.8 Hz, arom, 2H), 6.53 (dd, J =

= 6 18
1

o-CHa| 3.7 and 1.7 Hz, Hy), 6.19 (dd, J = 3.7 and 2.6 Hz,
700 Hs), 5.60 (5, CHay), 4.03 (tt, J = 7.2 and 1.6 Hz,
CHa), 3.80 (s, OCHa), 2.89 (tt, J = 7.6 and 1.6 Hz, CHaaoy), 1.90 (quintet, J = 7.6
Hz, CHa). *C NMR (100 MHz, CDClg) § 166.0, 159.7, 133.2, 127.3, 125.9, 115.3,
114.9, 113.9, 108.0, 84.9, 83.1, 61.8, 55.3, 39.3, 36.7, 21.9. IR (ATR, cm™) 3164,
3001, 2292, 2253, 1443, 1375, 1038, 918, 749; HRMS Calcd for (C15H1sN,0) [M +
H]*: 279.1491; Found: 279.1497.

-
>
-
> ~
N
N
N
3
N
J

5.27 1-[3-(4-Chlorophenyl)prop-2-ynyl]-4',5'-dihydro-1H,3'"H-2,2"'-bipyrrole
(79d)

A stirred mixture of Cul (17.0 mg, 0.09 mmol), PPh; (90.0 mg, 0.34 mmol), and
Pd(OACc), (17.0 mg, 0.08 mmol) was purged with nitrogen for 30 min and heated to
50 °C. Then a solution of 1-prop-2-ynyl-4'5'-dihydro-1H,3'H-2,2'-bipyrrole (71a)
(0.190 g, 1.1 mmol), 1-chloro-4-iodobenzene (0.286 g, 1.2 mmol), and DIPA
(diisopropylamine) (2 mL) in THF (15 mL) was added successively. The mixture
was heated for 3 h at 70 °C. After complete conversion (monitored by TLC) solvent
was evaporated, and the residue was chromatographed on silica gel eluting with
EtOAc/hexane (1:4) to give final product 1-[3-(4-chlorophenyl)prop-2-ynyl]-4',5'-
dihydro-1H,3'H-2,2"-bipyrrole (79d) (0.201 g, 78%) as a light yellow colored oil.

'H NMR (400 MHz, CDCls) § 7.37-7.27 (m, arom, 5H),

“E\gz_e(iojg 7.14 (dd, J = 2.8 and 1.7 Hz, Hs), 6.54 (dd, J = 3.7 and
SN N 1.7 Hz, Ha), 6.20 (dd, J = 3.7 and 2.8 Hz, Ha), 5.63 (s,
TS0 | CHyu), 4.03 (it J = 7.3 and 1.6 Hz, CHy), 2.90 (tt, J =
79d T 73 and 16 Hz, CHyug), 1.91 (quintet, J = 7.3 Hz,

CHy). *C NMR (100 MHz, CDCls) ¢ 165.9, 131.7, 128.3, 128.2, 127.3, 125.9,
122.7, 115.2, 108.0, 84.9, 84.5, 61.8, 39.2, 36.6, 21.9. IR (ATR, cm™) 3164, 3000,

91



2292, 2253, 1442, 1375, 1039, 918, 749; HRMS Calcd for (C17HisCIN,) [M + H]™:
283.0996; Found: 283.1021.

5.28 5-Methyldipyrrolo[1,2-a:2',1'-c]pyrazine (73a)

To a 50 mL flask equipped with a condenser was added 1-prop-2-ynyl-4',5'-dihydro-
1H,3'H-2,2"-bipyrrole (71a) (0.172 g, 1.0 mmol) and diglyme (5 mL). Nitrogen was
directed through a needle so as to continuously bubble through the solution. The
solution was warmed to a few degrees below the boiling point of the solvent, and
10% palladium on carbon (0.027 g, 0.025 mmol) was added then the resulting
mixture was heated at the reflux temperature for 16 h. After complete conversion
(monitored by TLC) solvent was evaporated, and the residue was chromatographed
on silica gel eluting with ethyl acetate/hexane (1:4) to give pure product 5-
Methyldipyrrolo[1,2-a:2',1'-c]pyrazine (73a) (0.135 g, 79%) as a yellow colored
solid from EtOAc/n-hexane, Mp: 123-125 °C.

T 'H NMR (400 MHz, CDCls) ¢ 6.98 (bd, J = 2.1 Hz, Hg), 6.92

9%2 (bd, J = 2.1 Hz, Hs), 6.90-6.88 (m, Hg), 6.56 (d, J = 2.1 Hz, H;

8 D‘E{j 3 | and Hy), 6.47 (d, J = 2.1 Hz, H, and Hg), 2.35 (d, J = 1.2 Hz,

® °CH; | CHs). ®C NMR (100 MHz, CDCls) § 124.8, 123.9, 118.9, 113.6,

7a” 111.9, 111.3, 110.8, 109.1, 99.8, 98.6, 15.6. IR (ATR, cm™),

3164, 3000, 2292, 2253, 1632, 1442, 1375, 1039, 918, 749; HRMS Calcd for
(C11H10N2) [M + H]*: 171.0916; Found: 171.0918.

5.29 5-Ethyldipyrrolo[1,2-a:2",1'-c]pyrazine (73b)

To a 50 mL flask equipped with a condenser was added 1-but-2-ynyl-4'5'-dihydro-
1H,3'H-2,2"-bipyrrole (71b) (0.186 g, 1.0 mmol) and diglyme (5 mL). Nitrogen was
directed through a needle so as to continuously bubble through the solution. The
solution was warmed to a few degrees below the boiling point of the solvent, and
10% palladium on carbon (0.027 g, 0.025 mmol) was added then the resulting
mixture was heated at the reflux temperature for 18 h. After complete conversion
(monitored by TLC) solvent was evaporated, and the residue was chromatographed
on silica gel eluting with ethyl acetate/hexane (1:4) to give pure product 5-
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ethyldipyrrolo[1,2-a:2',1'-c]pyrazine (73b) (0.130 g, 70%) as a yellow colored solid
from EtOAc/n-hexane, Mp: 127-129 °C.

TR H NMR (400 MHz, CDCl3) & 7.05 (bt, J = 2.2 Hz, Hg), 6.97
TN 2 | (dd, 3 = 25, 1.6 Hz, Hs), 6.92 (bs, He), 6.57-6.55 (m, H; and

SRR Hig), 6.51-6.47 (m, H and Hg), 2.77 (dg, J =7.4 and 1.2 Hz,
67;011 CHs| CHy), 1.38 (t, J = 7.4 Hz, CH3). ©*C NMR (100 MHz, CDCly) §
124.8, 124.4, 123.9, 113.8, 111.6, 111.3, 110.9, 108.0, 99.6,

98.5, 22.5, 11.2. IR (ATR, cm™) 3164, 3001, 2944, 2292, 2252, 1632, 1443, 1375,

1038, 918, 749; HRMS Calcd for (C1oH12Nz) [M + H]": 185.1073; Found: 185.1078.

5.30 5-Benzyldipyrrolo[1,2-a:2',1'-c]pyrazine (80a)

To a 50 mL flask equipped with a condenser was added 1-(3-phenylprop-2-ynyl)-
4' 5'-dihydro-1H,3'H-2,2"-bipyrrole (79a) (0.248 g, 1.0 mmol) and diglyme (5 mL).
Nitrogen was directed through a needle so as to continuously bubble through the
solution. The solution was warmed to a few degrees below the boiling point of the
solvent, and 10% palladium on carbon (0.027 g, 0.025 mmol) was added then the
resulting mixture was heated at the reflux temperature for 16 h. After complete
conversion (monitored by TLC) solvent was evaporated, and the residue was
chromatographed on silica gel eluting with ethyl acetate/hexane (1:4) to give pure
product 5-benzyldipyrrolo[1,2-a:2',1'-c]pyrazine (80a) (0.185 g, 75%) as a yellow
colored solid from EtOAc/n-hexane, Mp: 125-127 °C.

'H NMR (400 MHz, CDCl3) 6 7.37-7.28 (m, arom, 5H),

10 1
TN 6.96 (dd, J = 2.8 and 1.4 Hz, Hg), 6.91 (bt, J = 2.2 Hz, Hs),
s NN ., | 6.75(bs, He), 6.55 (dd, J = 3.7 and 1.4 Hz, Hio), 6.51-6.47
%15 (m, Hy, H, and Hg), 4.05 (s, CH,). *C NMR (100 MHz,
80a CDCl;) ¢ 135.8, 128.9, 128.8, 127.2, 124.8, 123.9, 121.9,

114.0, 112.4, 111.3, 111.2, 110.7, 99.7, 98.7, 35.9. IR (ATR, cm™) 3164, 3001,
2292, 2252, 1443, 1375, 1039, 918, 749; HRMS Calcd for (CizHuN2) [M + H]*:
247.1229: Found: 247.1241.

5.31 5-(4-Methylbenzyl)dipyrrolo[1,2-a:2',1'-c]pyrazine (80b)
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To a 50 mL flask equipped with a condenser was added product 1-[3-(4-
methylphenyl)prop-2-ynyl]-4',5'-dihydro-1H,3'H-2,2"-bipyrrole (79b) (0.262 g, 1.0
mmol) and diglyme (5 mL). Nitrogen was directed through a needle so as to
continuously bubble through the solution. The solution was warmed to a few degrees
below the boiling point of the solvent, and 10% palladium on carbon (0.027 g, 0.025
mmol) was added then the resulting mixture was heated at the reflux temperature for
17h. After complete conversion (monitored by TLC) solvent was evaporated, and the
residue was chromatographed on silica gel eluting with ethyl acetate/hexane (1:4) to
give pure product 5-(4-methylbenzyl)dipyrrolo[1,2-a:2',1'-c]pyrazine (80b) (0.167 g,
64%) as a yellow colored solid from EtOAc/n-hexane, Mp: 145-147 °C.

'H NMR (400 MHz, CDCls) 6 7.20-7.14 (AA'BB'
10
9\ \0a } ’ 2 system, arom, 4H), 6.97 (dd, J = 2.8 and 1.4 Hz, Hg),

1a

s NN 6.92 (bt, J = 2.2, H3), 6.75 (bs, He), 6.55 (dd, J = 3.7

\63_“3§1—12®1%H3 and 1.4 Hz, Hyg), 6.51-6.47 (M, Hy H, and He), 4.02 (s,

a0k CH,), 2.35 (s, CH3). ®*C NMR (100 MHz, CDCl3) ¢

136.8, 132.7, 129.5, 128.7, 124.8, 123.9, 122.1, 114.0,

112.3,111.3, 111.1, 110.6, 99.7, 98.6, 35.5, 21.1. IR (ATR, cm™) 3164, 3001, 2292,

2253, 1442, 1375, 1038, 918, 749; HRMS Calcd for (C1gH1sN2) [M + H]*: 261.1386;
Found: 261.1401.

5.32 5-(4-Methoxybenzyl)dipyrrolo[1,2-a:2',1'-c]pyrazine (80c)

To a 50 mL flask equipped with a condenser was added product 1-[3-(4-
methoxyphenyl)prop-2-ynyl]-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (79c) (0.278 g, 1.0
mmol) and diglyme (5 mL). Nitrogen was directed through a needle so as to
continuously bubble through the solution. The solution was warmed to a few degrees
below the boiling point of the solvent, and 10% palladium on carbon (0.027 g, 0.025
mmol) was added then the resulting mixture was heated at the reflux temperature for
16 h. After complete conversion (monitored by TLC) solvent was evaporated, and
the residue was chromatographed on silica gel eluting with ethyl acetate/hexane (1:4)
to give pure product 5-(4-methoxybenzyl)dipyrrolo[1,2-a:2',1'-c]pyrazine (80c)
(0.171 g, 62%) as a light green colored viscous oil.
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'H NMR (400 MHz, CDCls) § 7.14 (quasi d, J = 8.5 Hz,
arom, 2H), 6.90 (dd, J = 2.8, 1.4 Hz, Hg), 6.84 (bt, J = 2.0
Hz, Hs3), 6.81 (quasi d, J = 8.5 Hz, arom, 2H), 6.65 (bs,
Hs), 6.48 (dd, J = 3.7 and 1.3 Hz, Hyg), 6.44-6.39 (m, H;
H, and Hg), 3.92 (s, CH,), 3.74 (s, CH3). *C NMR (100

MHz, CDCls) 0 158.8, 129.9, 127.7, 124.8, 123.9, 122.4, 114.3, 114.0, 112.3, 111.3,
111.1, 110.6, 99.7, 98.6, 55.3, 35.0. IR (ATR, cm™) 3164, 3001, 2292, 2252, 1442,
1375, 1038, 918, 749; HRMS Calcd for (C15H16N20) [M + H]*: 277.1335; Found:
277.1340.

5.33  5-(4-Chlorobenzyl)dipyrrolo[1,2-a:2",1'-c]pyrazine (80d)

To a 50 mL flask equipped with a condenser was added product 1-[3-(4-
chlorophenyl)prop-2-ynyl]-4',5'-dihydro-1H,3'H-2,2'-bipyrrole (79d) (0.282 g, 1.0
mmol) and diglyme (5 mL). Nitrogen was directed through a needle so as to

continuously bubble through the solution. The solution was warmed to a few degrees

below the boiling point of the solvent, and 10% palladium on carbon (0.027 g, 0.025

mmol) was added then was the resulting mixture heated at the reflux temperature for

18 h. After complete conversion (monitored by TLC) solvent was evaporated, and

the residue was chromatographed on silica gel eluting with ethyl acetate/hexane (1:4)

to give pure product 5-(4-chlorobenzyl)dipyrrolo[1,2-a:2',1'-c]pyrazine (80d) (0.175
g, 62%) as a yellow colored solid form EtOAc/n-hexane, Mp:137-138.

9

10 1

\1 Oa / 2

'H NMR (400 MHz, CDCls) 6 7.32 (quasi d, J = 8.3 Hz,
arom, 2H), 7.24 (quasi d, J = 8.3 Hz, arom, 2H), 6.93 (bt,
J = 1.8 Hz, Hg), 6.90 (dd, J = 2.4 and 1.4 Hz Hs), 6.78 (bs,
He), 6.57-6.54 (m, Hy), 6.53-6.48 (m, Hy H, and Hy),
4.03 (s, CH,). *C NMR (100 MHz, CDCl3) & 134.4,

133.1, 130.1, 129.1, 124.7, 123.8, 121.3, 114.1, 1125, 111.5, 111.4, 110.8, 99.9,
98.9, 35.3. IR (ATR, cm™) 3164, 3001, 2292, 2253, 1443, 1375, 1039, 918, 749;
HRMS Calcd for (C17H13N,Cl) [M + H]*: 281.0767; Found: 281.0862.

5.34 Cyclohexa-1,3-diene (92)
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A mixture of 156 mL of cyclohexene (88) (127.0 g, 1.55 mol) and N-
bromosuccinimide (55.0 g, 0.31 mol) was heated at the reflux temperature for 3h in a
round-bottomed flask with a condenser and drying tube. After complete conversion,
reaction mixture was filtered into a one round-bottomed flask. Filitrate was
evaporated and the residual yellowish oil was purified by vacuum distillation to give
3-bromocyclohex-1-ene (89) (209.0 g, 84%). Liquid distilled between T = 51-52 °C.
(10 torr) 3-Bromocyclohexene (209.0 g, 1.30 mol) (89) and 386 mL of quinoline
(422.0 g, 3.27 mol) were added into a round-bottomed flask attached with distilling
equipment ending with an oil bubbler. Oil bath was set to maximum power to avoid
precipitation. The colorless cyclohexa-1,3-diene (90) (88.4 g, 85%) distilled between
T =80-82 °C.**

'H NMR (400 MHz, CDCls) § 5.82-5.76 (m, A part of AB system, H,
and H3), 5.72-5.65 (m, B part of AB system, H; and Hy), 6.93 (bt, J = 1.8
Hz, CHys) and CHag). *C NMR (100 MHz, CDCls) 6 124.2 (2C) 122.4
(2C), 20.1 (2C).

54.35 2,3-Dioxabicyclo[2.2.2]oct-5-ene (93)

Cyclohexa-1,3-diene (92) (1 g, 1.25 mol) and a catalytic amount of
tetraphenylporphine (TPP) (30 mg) was dissolved in 100 mL of CH,CI; in a flask
covered with a water jacket. Then, the mixture was irradiated with a projection lamp
(300 W) for 18 h while the dry oxygen was bubbled through the solution with a
constant rate at room temperature. After the reaction was complete the solvent was
removed by a rotary evaporator at 30 °C. The residue was chromatographed on silica
gel (65 g), eluting with ethyl acetate/hexane (1:1) to give 2,3-Dioxabicyclo[2.2.2]oct-
5-ene (93) (1.26 g, 90%) as a colorless oil.***

'H NMR (400 MHz, CDCls) & 6.60 (t, J=4.3, H, and Hs), 4.56 (bs, H;
and Hai), 2.17 (AA' part of AA'BB' system, CHyg), 1.41 (BB' part of
AA'BB' system, CHys). *C NMR (100 MHz, CDCl3) 6 131.6 (2C) 70.2
(2C), 21.1 (2C).

5.36 3-Butyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95a)
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To a solution of 2,3-Dioxabicyclo[2.2.2]oct-5-ene (93) (0.112 g, 1 mmol) in toluene
(10 mL) was added Au(L) (12.5 mg, 0.02 mmol, 2 mmol %) and AgOTf (7.5 mg,
0.03 mmol, 3 mmol %). Then was added 1-hexyne (0.082 g, 1 mmol) and the
resulting mixture was heated at the reflux temperature for 16 h. After complete
conversion (monitored by TLC) reaction mixture was filtrated and then evaporated.
The residue was chromatographed on silica gel (20 g), eluting with ethyl
acetate/hexane (1:2) to give 3-butyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one
(95a) (0.119 g, 61%) as a colorless oil.

'H NMR (400 MHz, CDCls) 6 5.78 (ddt, J = 9.9, 3.9 and 1.8
Hz, Hs), 5.50 (ddd, J=9.9, 3.7 and 1.9 Hz, Hy), 4.64 (td, J =
6.5 and 4.6 Hz, Hy,), 2.64-2.61 (m, Hs,), 2.26 (dt, J = 8.1 and
6.0 Hz, H3), 2.17-2.07 (m, Hg), 2.01-1.91 (m, Hg), 1.82 (ddt, J
95a = 9.3, 6.6 and 2.3 Hz, CHag), 1.78-1.70 (m, Hy), 1.60-1.53
(M, Hy), 1.43-1.35 (M, CHyg)), 1.33-1.25 (M, CHa)) ), 0.89 (t, J=7.3 Hz, CH3). **C
NMR (100 MHz, CDCls) ¢ 178.1, 127.3, 125.0, 75.2, 45.8, 39.4, 28.8, 28.5, 24.2,
215, 19.4, 12.8. IR (ATR, cm™) 3019, 2931, 2858, 2394, 2196, 2025, 1763, 1467,
1214, 1175, 1028, 667; HRMS Calcd for (C12H1802) [M + H]": 195.1379; Found:
195.1374.

5.37 3-Propyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95b)

To a solution of 2,3-dioxabicyclo[2.2.2]oct-5-ene (93) (0.112 g, 1 mmol) in toluene
(10 mL) was added Au(L) (12.5 mg, 0.02 mmol, 2 mmol %) and AgOTf (7.5 mg,
0.03 mmol, 3 mmol %). Then was added 1-pentyne (0.068 g, 1 mmol) and was
heated at the reflux temperature for 16 h. After complete conversion (monitored by
TLC) reaction mixture was filtrated and then evaporated. The residue was
chromatographed on silica gel (20 g), eluting with ethyl acetate/hexane (1:2) to give
3-propyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95b) (0.115 g, 63%) as a

colorless viscous oil.

'H NMR (400 MHz, CDCls) 6 5.86 (ddt, J = 9.8, 3.7 and 1.9 Hz, Hs), 5.57 (ddd, J =
9.8, 3.4 and 1.7 Hz, Hy), 4.71 (dd, J = 11.2 and 6.5 Hz, Hya), 2.70 (m, Hay), 2.34 (dt,
J=7.8and 6.1 Hz, H3), 2.24-2.14 (m, HG), 2.08-1.98 (m, He), 1.93-1.86 (m, CHg(g)),
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1.79 (ddt, J = 15.0, 8.4 and 5.6, Hz, H;), 1.66-1.59 (m, Hy),
1.55-1.47 (m, CHy), 0.96 (t, J=7.3 Hz, CH3) . *C NMR (100
MHz, CDCls) 6 179.1, 128.4, 126.0, 76.2, 46.6, 40.4, 32.2,
25.2, 20.5, 20.4, 13.9. IR (ATR, cm™) 3019, 2900, 1688, 1393,
_ 95b ) 1214, 1047, 928, 750, 668, 582; HRMS Calcd for (C11H1605)
[M + H]": 181.1223; Found: 181.1215.

5.38 Methyl 2-ox0-2,3,3a,6,7,7a-hexahydro-1-benzofuran-3-carboxylate (95c)

To a solution of 2,3-dioxabicyclo[2.2.2]oct-5-ene (93) (0.112 g, 1 mmol) in toluene
(10 mL) was added Au(L) (12.5 mg, 0.02 mmol, 2 mmol %) and AgOTf (7.5 mg,
0.03 mmol, 3 mmol %). Then was added ethyl propiolate (0.098 g, 1 mmol) and was
heated at the reflux temperature for 14 h. After complete conversion (monitored by
TLC) reaction mixture was filtrated and then evaporated. The residue was
chromatographed on silica gel (20 g), eluting with ethyl acetate/hexane (1:2) to give
methyl 2-oxo-2,3,3a,6,7,7a-hexahydro-1-benzofuran-3-carboxylate (95c¢) (0.120 g,

57%) as a colorless viscous oil.

o cn 'H NMR (400 MHz, CDCl3) 6 5.87 (bdt, J = 10.2 and 1.2

g ° Hz, Hs), 5.45 (bdt, J = 10.2 and 1.8 Hz, Hy), 4.88 (dt, J =
6.1 and 3.4 Hz, Hz), 4.20 (g, J = 7.2 Hz, CHyg), 3.31-
6 7a 3.27 (m, Hs,), 2.18-2.10 (m, H3z and Hg), 2.02-1.91 (m, Hg

95¢ and Hy), 1.85-1.74 (m, Hy), 1.25 (t, J = 7.2 Hz, CHs). ®C
NMR (100 MHz, CDCl3) ¢ 171.6, 167.3, 129.8, 124.1, 77.5, 62.3, 53.6, 39.0, 24.7,
19.5, 14.1. IR (ATR, cm™) 3018, 2900, 2399, 1730, 1516, 1399, 1214, 1047, 928,
750, 668; HRMS Calcd for (C11H1404) [M + H]™: 211.0964; Found: 211.0973.

5.39 3-Phenyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95d)

To a solution of 2,3-dioxabicyclo[2.2.2]oct-5-ene (93) (0.112 g, 1 mmol) in toluene

(10 mL) was added Au(L) (12.5 mg, 0.02 mmol, 2 mmol %) and AgOTf (7.5 mg,

0.03 mmol, 3 mmol %). Then was added phenylacetylene (0.102 g, 1 mmol) and was

heated at the reflux temperature for 18 h. After complete conversion (monitored by

TLC) reaction mixture was filtrated and then evaporated. The residue was

chromatographed on silica gel (20 g), eluting with ethyl acetate/hexane (1:2) to give
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3-phenyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95d) (0.141 g, 66%) as a

light yellow colored oil.

'H NMR (400 MHz, CDCls) 6 7.30-7.20 (m, 3H, arom.), 7.17-
7.13 (m, 2H, arom.), 5.82 (dt, J = 10.2 and 5.9 Hz, Hs), 4.88 (ddd,
J=10.4, 2.7 and 1.5 Hz, Hy), 4.81 (bs, H7,), 4.11 (d, J = 8.0, Hs),
3.18-3.11 (m, Hay), 2.30-2.21 (m, H7), 2.20 (m, He) 1.95 (dt, J =
17.7 and 5.7, Hz, Hg), 1.65 (dddd, J = 17.0, 11.9, 6.2 and 2.0 Hz,
H;) . *C NMR (100 MHz, CDCls) § 175.5, 132.3, 128.9, 128.6,
127.3, 126.5, 121.5, 75.2, 50.8, 39.8, 23.4, 17.6. IR (ATR, cm™) 3018, 2987, 2900,
1770, 1393, 1214, 1066, 929, 750, 668, 626, 589; HRMS Calcd for (C14H140,) [M +
H]*: 215.1066; Found: 215.1065.

5.40 3-(4-Ethylphenyl)-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95e)

To a solution of 2,3-dioxabicyclo[2.2.2]oct-5-ene (93) (0.112 g, 1 mmol) in toluene
(10 mL) was added Au(L) (12.5 mg, 0.02 mmol, 2 mmol %) and AgOTf (7.5 mg,
0.03 mmol, 3 mmol %). Then was added 1-ethyl-4-ethynylbenzene (0.130 g, 1
mmol) and was heated at the reflux temperature for 18 h. After complete conversion
(monitored by TLC) reaction mixture was filtrated and then evaporated. The residue
was chromatographed on silica gel (20 g), eluting with ethyl acetate/hexane (1:2) to
give 3-(4-ethylphenyl)-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95e) (0.135 g,

56%) as a light yellow colored oil.

'H NMR (400 MHz, CDCl3) 6 7.18 (quasi d, J = 8.2 Hz, 2H,
arom.), 7.13 (quasi d, J = 8.2 Hz, 2H, arom.), 5.80 (dt, J =
10.0 and 5.7 Hz, Hs), 4.99 (ddt, J = 10.0 and 3.0 Hz, Hy), 4.86
(bs, Hza), 4.15 (d, J = 8.1 Hz, H3), 3.23-3.15 (M, Hs.), 2.64 (q, J
= 7.7 Hz, CHaup), 2.35-2.28 (M, Hy), 2.27-2.19 (m, Hg), 2.01
956 (dt, J = 17.5 and 4.0 Hz, Hg), 1.72 (dddd, J = 17.0, 11.9, 6.3, 2.0
Hz, H;), 1.23(t, J = 7.7 Hz, CH3). *C NMR (100 MHz, CDCls) ¢ 176.8, 143.5,
129.9, 129.5, 127.9, 124.3, 122.7, 76.1, 51.5, 40.8, 28.5, 24.5, 18.6, 15.5. IR (ATR,
Cm'l) 3019, 2965, 2162, 1979, 1770, 1516, 1214, 1038, 929, 750, 626, 581; HRMS
Calcd for (C16H1802) [M + H]": 243.1379; Found: 243.1384.

12_CHj
13

99



541  3-Cyclopropyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95f)

To a solution of 2,3-dioxabicyclo[2.2.2]oct-5-ene (93) (0.112 g, 1 mmol) in toluene
(10 mL) was added Au(L) (12.5 mg, 0.02 mmol, 2 mmol %) and AgOTf (7.5 mg,
0.03 mmol, 3 mmol %). Then was added cyclopropylacetylene (0.066 g, 1 mmol)
and was heated at the reflux temperature for 18 h. After complete conversion
(monitored by TLC) reaction mixture was filtrated and then evaporated. The residue
was chromatographed on silica gel (20 g), eluting with ethyl acetate/hexane (1:2) to
give 3-cyclopropyl-3a,6,7,7a-tetrahydro-1-benzofuran-2(3H)-one (95f) (0.121 g,
67%) as a colorless viscous oil.

'H NMR (400 MHz, CDCls) 6 5.85 (ddt, J = 9.8, 3.9 and 1.9 Hz,
Hs), 5.58 (ddd, J = 9.8, 3.7 and 1.8 Hz, Hy), 4.77 (dt, J = 11.0 and
6.2 Hz, Hz,), 2.70-2.60(m, Hsa), 2.23-2.13 (M, He), 2.07-1.99 (m,
He), 1.92-1.85 (m, H3 and H;), 1.85-1.81 (m, H;), 0.99 (ddt, J =
13.1, 8.3 and 4.8 Hz, Hg), 0.67 (ddt, J = 13.8, 9.1 and 4.9 Hz, Ho),
0.58 (ddt, J = 13.5, 8.1, 4.5 Hz, Hy), 0.48 (dt, J = 9.5 and 4.9 Hz, Ho), 0.35 (dt, J=9.4
and 4.7 Hz, Hyo) . *C NMR (100 MHz, CDCls) 6 177.9, 128.3, 125.9, 76.3, 50.9,
415, 25.1,20.3, 11.5, 3.4, 2.8. IR (ATR, cm™) 2988, 2900, 1766, 1405, 1393, 1216,
1066, 1057, 1027, 870, 750, 668; HRMS Calcd for (C11H1405) [M + H]*: 179.1066;
Found: 179.1068.
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APPENDICIES

A. SPECTRAL DATA
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