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ABSTRACT

MULTISCALE VOLATILITY ANALYSIS VIA MALLIAVIN CALCULUS

İnkaya, B. Alper

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

February 2018, 84 pages

In this thesis, we study multifractal stochastic processesand stability properties of
stochastic processes with the aim of analyzing the multiscale characteristics of dy-
namic risk premiums present in financial asset prices. Multifractal processes are first
defined to model the statistical properties of turbulent flows and characterized by the
scale-invariance property, which implies volatility clustering, long-range dependency
and multiplicative instead of additive behavior. The multifractal characterization of
a dataset can be obtained, also, via the multifractal spectrum, the singularity spec-
trum and the generalized dimensions. The complex dynamics of financial markets
resembling chaos recently gave rise to the development of multifractal models in fi-
nance. In the present study we aim to relate the multifractalbehaviour of markets to
the existence of multiscale risk premiums. We employ Malliavin calculus techniques
to analyze the dynamics of the instantaneous risk premiums by estimating the price-
volatility feedback effect rate, which is defined as the expansion rate of the rescaled
variation resulting from the perturbation of the stochastic process. Throughout our
study, we discover that the price-volatility feedback effect rate is the local Lyapunov
exponent of the perturbation resulting in the change of measure. The fundamental in-
dicator of chaotic dynamics is generally accepted to be the sensitive dependency to
initial conditions, which can be measured via the Lyapunov exponents. The local Lya-
punov exponents (LLE) characterize the finite-time behaviour of the expansion rates.
We analyze the dimensional properties of the price-volatility feedback effect rate to
show the existence of multiscale risk premiums in financial return series. The gener-
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alized dimensions constitutes the basis of our study as theyallow for the analysis of
perturbations of multifractal processes and LLEs.

To bring the multifractal framework and Malliavin calculustechniques together, we
first perform multifractal analysis of the empirical datasets. Then, we estimate the in-
stantaneous volatilities and the price-volatility feedback effect rate series of the datasets
using the recently defined Fourier series method. Additionally, analyze the multifrac-
tal characteristics of the instantaneous volatilities, while the usual multifractal analysis
assumes multifractality of absolute returns. To demonstrate the existence of multiscale
risk premiums, we perform dimensional analysis of both the return and the estimated
instantaneous price-volatility feedback effect rate series. We conclude with the ob-
servation that the generalized dimensions spectrums of both series coincide, which
suggests that the existence of scale-dependent non-lineartype of behavior of the risk
premiums in financial asset prices.

Keywords: Multifractal processes, Malliavin calculus, Lyapunov exponents, volatility
modelling, the price-volatility feedback effect rate
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ÖZ

MALL İAV İN KALK ÜLÜS İLE ÇOK ÖLÇEKLİ OYNAKLIK MODELLEMES İ

İnkaya, B. Alper

Doktora, Finansal Matematik B̈olümü

Tez Yöneticisi : Doç. Dr. Yeliz Yolcu Okur

Şubat 2018, 84 sayfa

Bu tezde, dinamik risk primlerinin çoklu-ölçekli analizinin yapılması amacıyla çoklu-
fraktal s̈ureçler ve stokastik s̈ureçlerin stabilitëozellikleri çalışılmıştır. Çoklu-fraktal
süreçler ilk olarak ẗurbülant akışların istatistikselözelliklerinin modellenmesi amacıyla
tanımlanmıştır ve oynaklık birikimi, uzun-dönem băglılık ve toplamsal yerine çarpım-
sal davranışı ima eden̈olçek-dĕgişmezlĭgi ile karakterize edilir. Bir veri setinin çoklu-
fraktal karakterizasyonu, aynı zamanda, çoklu-fraktal tayfı, tekillik tayfı ve genellen-
miş boyutlar ile de elde edilebilir. Finansal piyasalarınkarmaşık dinamikleri kaotik
davranışı andırmaktadır ve bu benzerlik çoklu-fraktal finansal modellerin oluşturul-
masını săglamıştır. Bu tezde, finansal piyasaların çoklu-fraktal yapısını çoklu-̈olçekli
risk primlerinin varlı̆gı ile ilişkilendirilmesi amaçlanmıştır. Anlık risk primlerinin
ölçülmesi için Malliavin kalk̈ulüs teknikleri kullanılarak fiyat-oynaklık geribesleme
etkisi ölçülmüşẗur. Fiyat-oynaklık geribesleme etkisi, yenidenölçeklenmiş varyasy-
onun genişleme oranı olarak tanımlanmıştır ve çalışmamız dahilinde bu etkinin,̈olçü
dĕgişimine yol açan pertürbasyonun yerel Lyapunov̈usteli oldŭgu g̈ozlemlenmiştir.
Kaotik davranışı tanımlayan temel karakteristik başlangıç durumuna hassas bağlılıktır
ve varlı̆gı Lyapunovüstelleri ileölçülebilir. Çalışmamızda, fiyat-oynaklık geribesleme
etkisinin boyutsal analizi yapılarak çoklu-ölçekli risk primlerinin varlı̆gı gösterilmiştir.
Bu băglamda, genellenmiş boyutlar çalışmanın temel unsuru olarakön plana çıkmak-
tadır.

Çalışmada ilk olarak empirik verinin çoklu-fraktal analizi yapılmış, sonrasında Fourier
serisi teknĭgi ile anlık oynaklık ve fiyat-oynaklık geribesleme serileri tahmin edilmiştir.
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Literatüre empirik katkı olarak, Fourier tekniği ile tahmin edilen anlık oynaklık seri-
lerinin çoklu-fraktal analizi yapılmıştır. Çoklüolçekli risk primlerinin varlı̆gını g̈oster-
mek amacı ile, getiri ve fiyat-oynaklık geribesleme serilerinin boyutsal analizi yapılmış
ve elde edilen genellenmiş boyut tayflarının birbirine benzer davranışı g̈ozlemlenmiştir.
Bu sonuç, çoklu-̈olçekli dŏgrusal olmayan risk primlerinin varlığına işaret etmektedir.

Anahtar Kelimeler: Multifraktal süreçler, Malliavin kalk̈ulüs, oynaklık modelleme,
Lyapunovüstelleri, fiyat-oynaklık geribesleme etkisi oranı
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Literature Review

The seemingly random, mainly due to unpredictability of thefundamental drivers, be-
haviour of financial markets inspired the employment of various stochastic processes of
various levels of complexity for modeling financial data. Itis accepted by many authors
that the dawn of financial modeling is the work of Báchelier in early twentieth century
[3]. Then, approximately70 years later, comes the celebrated Black&Scholes&Merton
(BSM) formula (see [10] and [45]), which utilizes the techniques of statistical physics
to model the dynamics of price processes. It is now widely known that BSM formula
is built on the similar arguments as the work of Báchelier, in the sense that both works
employ Brownian motion as the stochastic process that is the source of randomness. As
the financial markets grow and and become more and more complex during the recent
decades, more advanced financial models have been developedmostly motivated by
the inclusion of non-Gauissianity and non-linear featuresto better model complexity
in financial market dynamics.

The observed behaviour of financial markets are far from being stable, mostly referred
as being ”‘chaotic”’. The notion of chaos had emerged from the study of turbulent
flows where multiplicative processes are frequently employed, started with the pio-
neering work of Kolmogorov [29]. Multiplicative processesare built in an iterative
fashion through various scales, creating a feature called ”‘scale-invariance”’. Scale-
invariance is in fact a generalization of self-similarity property, first used in the area of
fractal geometry and later extended to stochastic processes. Fractal geometry, mainly
developed by Mandelbrot based on the work of Gaston Julia [28] on dynamical sys-
tems. As the fractal geometry is shown to be a useful tool for the study of turbulence
and chaos, the link between multiplicative processes and fractals was also brought into
the light, and a new family of stochastic processes have emerged: ”‘Multifractals”’.
The term Multifractal was first coined by Parisi and Frisch, in their work on turbu-
lence [48]. Mandelbrot has attempted to define Multifractalprocesses via fractal sets
on which the turbulence is concentrated. Parisi and Frisch,however, proposed that
there should be aduality between the Hausdorff dimension of the fractal sets and the
order of exteme realizations observed in turbulence. They then defined a Legendre
duality between the scaling of the moments of a Multifractalprocess and codimension
of its singularities of certin orders. Multifractal modelswere built in discrete time

1



and scale in the beginning, until the pioneering work of Lovejoy and Schertzer where
they defined stochastic integrals that generate Multifractal processes. Multifractals was
widely used in modelling of weather phenomena such as rainfall and clouds (see [51],
[60], [34]) also in geophysics [52], physiology [24] and in finance [41], [54], [5], [11],
[12]. In [39], Mandelbrot et. al. developed the Multifractal Model of Asset Returns
(MMAR), by defining a Multifractal process via a time-changedBrownian motion,
where the time-change is performed by a Multifractal randommeasure. Later, Bacry
and Muzy have defined the Multifractal Random Walk (MRW) in a similar fashion to
Mandelbrot. They have defined the Multifractal process as anItô integral of a Mul-
tifractal measure with respect to a Brownian motion. Multifractal models in finance
developed with the aim of capturing the empirical characteristic of the financial asset
prices such as volatility clustering, long-range autocorrelations and scale-invariance.

As the models aim to capture complex and intermittent behavior observed in empirical
studies, investors prefer stability when they make investment decisions. The increasing
frequency of financial crisis have motivated regulators andauthorities to first define,
and then ensure stability. Market stability is considered as the ability of the market to
absorb fluctuations up to a certain degree. During the2008 crisis, markets witnessed a
specific type of instability caused by a sudden drain of liquidity in the market, resulted
in large price moves in general assumed to be belonging to thetails of the probability
distributions assumed modeling the market dynamics. It canbe argued that the lack of
liquidity had induced significant changes in investors’ perception of risk, which can be
observed by dynamical estimation of the market price of risk, which is the agent that
serves as the generator of the feedback loop between price and volatility.

Stability characteristics of random dynamical systems is investigated via the Lyapunov
exponents [36]. Lyapunov exponents indicate whether the underlying process fea-
tures sensitive dependency to initial conditions, which isthe distinguishing property
of chaotic systems. Furthermore, the local, i.e. time-dependent, Lyapunov exponents
are used to characterize the intermittency observed in the underlying system [8], [61].
Lyapunov exponents of Multifractals have been studied by Lorenz [33] and based on
his work Aurell et. al. derived a duality relation for local Lyapunov exponents in a sim-
ilar way to the construction of the singularity spectrum forMultifractals [2]. The Lya-
punov spectrum is the counterpart of the singularity spectrum in Multifractal stochastic
framework.

Although there is a huge literature on Multifractals and Lyapunov exponents, only a
very small portion of them involve both concepts. On the other hand, there is only
a small number of studies featuring the price-volatility feedback effect rate to our
knowledge [6], [46]. Therefore, the novelty of this study isthe attempt to establish
the relation between Multifractals and the feedback effectrate through the local Lya-
punov exponents, by the observation that the feedback rate itself is a local Lyapunov
exponent. This relation is difficult to detect using the standard statistical methods so
we employ Multifractal analysis to capture the dimensionalproperties of Multifractals
and the feedback effect rate associated to Multifractal process.
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1.1.1 The Aim of the Thesis

The aim of this thesis is to contribute to the existing literature in both theoretical and
empirical terms:

• Empirical contributions: In the present study, we have employed Multifractal
analysis techniques to investigate the scale-invariance properties of absolute re-
turns of BIST30 index, USD/TRY and EUR/USD exchange rates. We have also
estimated the instantaneous volatilities and feedback effect rate series via the
Fourier method developed by Barucci et. al. in [6]. The obtained feedback ef-
fect rate values are interpreted in terms of their ability toindicate market stabil-
ity. Then, we analyzed the scale-invariance properties of both the instantaneous
volatilities and the feedback effect rate series to report whether the two are re-
lated in terms of dimensional properties. The dimensional analysis of volatilities,
returns and the feedback effect rate may reveal the change ofmeasure dynamics
of the underlying asset price. This feature of the price volatility feedback effect
rate constitutes the basis for the possibility of a multiscale market price of risk
present in the markets.

• Theoretical contributions: Our theoretical contributionis based on our observa-
tion that the feedback effect rate itself is in fact the localLyapunov exponent
of the Girsanov factor resulting from a perturbation of the underlying stochastic
process. This observation allows us to investigate consistently the Multifractal
properties of the feedback effect rate to compute approximately the local Lya-
punov spectrum of the measure transforming perturbation.

1.1.2 Plan of the Thesis

In Chapter1, we start by briefly summarizing the building blocks of Multifractal pro-
cesses and then proceed to Multifractal framework. We beriefly summarized some
examples of Multifractal models and parameter estimation techniques applied to ab-
solute returns of several datasets as a proxy of the instantaneous volatility to detect
Multifractal scaling in volatility series. Results are compared to the results of unifrac-
tal examples to distinguish Multifractality from unifractality. In Chapter2, we study
the methods to identify the stability characteristics of stochastic processes and report
the relation between the feedback effect rate and the local Lyapunov exponents in
the context of stochastic stability. To include the feedback effect rate to Multifrac-
tal framework, we employ the Lyapunov exponents within the context of Multifractal
characterizations of the underlying stochastic processessuch as the singularity spec-
trum, generalized dimensions spectrum and the Lyapunov spectrum. The theoretical
background on Lyapunov exponents allows us to build this relation by using the link
between the Lyapunov spectrum to singularity spectrum of Multifractal processes. In
Chapter3, we summarize our results and conclude by discussing futureresearch direc-
tions.
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CHAPTER 2

MULTIFRACTAL PROCESSES

2.1 Multifractal Processes in Finance

Multifractal processes was first developed to model turbulent flows. The motivation
behind using multifractal processes to model financial asset prices are due to empirical
findings which are commonly observed in financial markets which are considered to be
of similar characteristics to that of turbulent flows (see [11], [42], [39]). These stylized
facts have now become prerequisites for newly developed financial models. Let us
briefly mention some of those below:

• Long-range autocorrelations, or long-memory, of the return amplitudes: This
observation is in contradiction with the efficient market hypotheses as it implies
that the amplitude of the returns of the past observations can be used to predict
the amplitudes of the future returns. It is clear that this feature gave rise to
arbitrage opportunities where a portfolio of return amplitudes can be constructed
in such a way to create risk-free returns.

• Scale dependent shape of the distribution of returns: The Gaussianity assump-
tion for the random behaviour of the returns was made in the midst of the twen-
tieth century, where at the time the empirical studies were mainly carried out at
the daily time scale. As the data analysis at finer time scalesbecome available,
it is observed that at smaller time scales, the distributionof returns are highly
non-Gaussian, whereas at larger time scales, for instance daily or weekly, the
distributions converge to Gaussian.

• Scale invariance: The scale invariance property, also calledmultifractal scal-
ing, refers to non-linear behaviour of the rate of growth for themoments of
financial returns along different time-scales. We want to emphasize that the self-
similarity property implies linear rate of growth for all finite moments at any
time-scale considered.

Let us first state that the findings listed above does not coincide with the properties of
some of the most popular stochastic models employed in financial modeling. To build
up models that exhibit long-range correlations one can consider the fractional Brow-
nian motions as the source of randomness. However, the effect of time-scale on the

5
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Figure 2.1: Histograms of USD/TRY exchange rate at various time scales

shape of the distribution of returns can not be obtained via using infinitely divisible,
self-similar nor stable processes. Similarly, for these processes, the rate of the change
of moments is linear with changing time-scale. The namemultifractal scaling refers
to the definitive property of a new family of stochastic processes: Multifractals. Mul-
tifractal stochastic processes, first constructed in the attempt to model the dynamics
of chaoticsystems, such asturbulent flows[48], [41], fits into the picture: financial
markets are thought to be at a level of complexity probably never seen before. One
can now trade at time scales ranging from milliseconds to months. Therefore, the scale
dependent distributional behaviour is of fundamental importance for any trading or
hedging activity.

The effect of changing time scale on the distributional characteristics of the process
informs on the behaviour of financial markets. Let us start byconsidering a very small
time-scale,i.e. high-frequency data samples, and the characteristics of the distribution
at this scale. Naturally, at small time-scales, one witnesses much less extreme am-
plitudes of return series, which is the result of the restriction of time window to very
small sizes that makes it impossible for a large number of buyand sell orders to occur.
Putting aside the automated-trading phenomena, it is almost impossible to build up an
investment or trading strategy based on the information obtained only by analyzing
at such a small time scale. Therefore, it is natural to think that the tails of the return
distribution of the returns at smaller time-scales would exhibit different characteristics
than the tails of the return distribution at larger time scales. We can therefore assume
that the volatility at smaller time scales would be smaller compared to volatility at
larger time scales. However, employing unifractal processes, it is impossible to dis-
tinguish between the characteristics of the distribution at very small time scales and
very large ones. Let us also discuss the pricing of risk in markets with the increasing
frequency of the occurrence of financial crisis. On the long term, a volatile market is
perceived as an unstable market, where investors would require higher returns or even
avoid participating in the market. Higher volatility at larger time-scales, therefore, can
be assumed to be an undesirable property and that is probablywhy central banks and
financial regulators aim to suppress extreme volatility andprevent longer periods with
high volatility to occur. Some examples can be used to verifythese assertions. The
tails of the large time-scale samples, mostly, correspondsto financial crisis or market
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bubbles. The increasing frequency of the occurrence of extreme realizations forces the
authorities to establish tighter regulations to restore stability in the markets. It is clear
that the time scale does effect the distributional properties of financial prices and ac-
knowledgement of this fact lead to researchers to employ multifractal models to model
financial asset prices, or more precisely, price fluctuations.

In what follows, we will first briefly summarize the main properties of unifractal, or
self-similar, stochastic processes and how multifractal processes are built on unifractal
processes using multiplicative cascades.

2.1.1 Unifractal Stochastic Processes

In financial modeling, randomness is mostly observed as the main source of risk, and
therefore practitioners frequently attempted to model theprice volatility. The need for
predictability is generally predominates the fact that thefinancial markets arealmost
impossible to predict. The linear growth of variance rule isone of the reasons that
financial institutions prefer linear additive models to measure the risk. The famous
“square root of time to maturity” rule is known to be an oversimplification of the risk
in financial markets. Nevertheless, it offers people predictability and probably that
is the reason it is still being used in financial practices. Itin fact is the result of the
self-similarity of the Gaussian random variables! Let us state the definition of the
self-similarity below [50]:

Definition 2.1. Let {S(t), t ≥ 0} be a self-similar stochastic process. Then for each
λ > 0, there existsβ > 0 such that

S(λt)
d
= βS(t). (2.1)

The distribution of a self-similar stochastic process at various time scales can be com-
puted using the relation betweenλ andβ which is characterized by a single exponent
H, namely the self-similarity, or Hurst, exponent ofS(t). The following theorem sets
the basic relation betweenλ andβ, where the role of the self-similarity exponentH is
explained [31]:

Theorem 2.1. If {S(t), t ≥ 0} is nontrivial, stochastically continuous att = 0 and
self-similar, then there exists a unique exponentH ≥ 0 such thatβ can be expressed
asβ = λH . Moreover,H > 0 if and only ifS(0) = 0 a.s..

The self-similarity exponent is denoted by the letterH and also called the Hurst ex-
ponent in regard to H. E. Hurst, who has first discovered the long-range dependence
in hydrological time series data of Nile River [23]. In general, we have0 < H < 1.
Some examples of self-similar processes include Brownian motion {B(t), t > 0}, in
which case we haveH = 1

2
:

B(λt)
d
= λ

1

2B(t), (2.2)
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Figure 2.2: Simulation of fBm with Hurst parameter of 0.3

where it is said that the Brownian motion is “1
2
-self-similar”. Among the continuum of

processes with self similarity exponent0 < H < 1, the Brownian motion is a member
of continuous self-similar stochastic processes, namely the fractional Brownian mo-
tions. Brownian motion has stationary independent increments. It turns out that the
independent increment property is a specific feature of Brownian motion which is the
result of its 1

2
self-similarity. The following theorem in [50] explains the effect ofH

on the auto-covariance structure of increments of a stochastic process:

Theorem 2.2. Let {S(t), t ≥ 0} be nontrivial andH self-similar with stationary
increments and supposeE[|S(1)|2] <∞. Then

E[S(t)S(s)] =
1

2
{t2H + s2H − |t− s|2H}E[|S(1)|2]. (2.3)

Proof. We refer to [50] for the proof of the theorem.

Let us observe that forH = 1
2
, we obtain:

E[S(t)S(s)] =
1

2
(t+ s− |t− s|) = min{t, s},

which is the covariance structure of the increments of a standard Brownian motion.
However, whenH 6= 1

2
, the covariation structure implies the dependency of incre-

ments. Furthermore, the fractional Brownian motion with self-similarity (or Hurst) ex-
ponentH is classified as persistent,H > 1

2
and anti-persistentH < 1

2
in reference to

positive and negative correlations between subsequent increments, respectively. These
features of fractional Brownian motions have extensively used in modeling of natural
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Figure 2.3: Simulation of fBm with Hurst parameter of 0.7

phenomena, spot electricity prices, financial prices and physiological observations (see
[24, 41, 52] and the references therein).

The 1
2
-self-similarity of Brownian motion is a consequence of the Central Limit The-

orem (CLT): The square root of time, or number of observations, rule for the growth
of the standard deviation of the sum of the sequence, or realizations of the stochas-
tic processB(t). Therefore, for self-similar process withH 6= 1

2
, one can obtain the

following form of the CLT [27]:

lim
n→∞

n
∑

i=1

Xi − a(n)

b(n)
= Lα, (2.4)

whereb(n) = n1/α and0 ≤ α ≤ 2 is called thestability or Lévy index of the variable
Lα. For self-similar processes, one can see thatH = 1

α
. Equation (2.4) is in fact the

defining equation of stable stochastic processes. For details on stable processes, we
refer to Appendix A.

Self-similarity property is a simplification of a wide rangeof possible distributional
behavior of stochastic processes, and therefore it is a veryrestrictive one. It can be
argued that self-similarity holds for large class of processes for a predefined interval
of time scales. However, the limiting behavior may differ significantly which results
in misinterpretation of distributional properties of a stochastic process for very large
or very small time scales. To properly capture the multi-scale distributional charac-
teristics of stochastic processes, the notion of self-similarity was generalized to allow
for non-linear scaling of the moments. To better capture thecomplex structure of the
scaling, the following generalization of the self-similarity is considered:
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E[|X(t,∆t)|q] = c(q)(∆t)ζ(q). (2.5)

where thescaling exponentζ(q) depends not only on the order of momentq, but also
on the time scale at which the moment is estimated. For existence and non-degeneracy
purposes,ζ(q) is assumed to be a convex function ofq. For unifractal self-similar
processes it is a linear function ofq. To obtain a non-linearζ(q), unifractal processes
are organized in a specific hierarchy. In the next section, wesummarize the beautiful
multifractal framework.

2.2 A Hierarchical Structure of Unifractal Processes: Multifractals and Scale-
Invariance

In recent studies, self-similarity have shown to be an oversimplification of the be-
haviour of financial markets [11], [39], [5]. In these studies, the growth rate of vari-
ance with time scale was found to be behaving in a non-linear way for datasets of
many different markets. This property is called thescale invariance. The idea of
scale-invariance in distributions of random processes dates back to Kolmogorov [29],
where his proposition of the existence scaling in turbulentflows inspired a series of
studies of scaling in natural sciences, especially physics, meteorology, geophysics and
economics. The earliest example for a scale invariant equation is the Navier-Stokes
equation (see [59]). Scale invariance is, in a very general manner, expressed by Equa-
tion (2.5), which was very familiar with mathematicians andphysicists for almost half
a century. However, with the emergence of a new paradigm called “chaos”, the unifrac-
tal, or uniscaling, modelling suddenly became obsolete. The observations of chaotic
systems suggests a new type behaviour, namely,multiscaling. Multiscaling manifests
itself as the non-linearity of the scaling functionζ(q) as a function of time scale at
which the process is observed. As the researchers agreed upon the evident results from
various analysis, the next debate was about how one can builta multiscaling model
that demonstrates a similar behaviour to that of the chaoticsystems in terms of its
finite dimensional distributions. A natural candidate was found to be the so-called
“multiplicative cascades”, which has its origins in the pioneering work of Richardson
on the weather prediction ([49]). Multiplicative cascadescan be used to build pro-
cesses with non-linear scaling, which makes it the ideal candidate as a technique for
building multifractal models.

Now let us state the definition of multifractal stochastic processes ([39]):

Definition 2.2. A stochastic process{X(t), t ∈ T } is called multifractal if it has
stationary increments and satisfies:

E[|X(t)|q] = c(q)tζ(q), for all t ∈ T , q ∈ Q, (2.6)

whereT andQ are intervals on the real line,ζ(q) andc(q) are functions with domain
Q. Moreover, we assume thatT andQ have positive lengths, and that0 ∈ T , [0, 1] ⊆
Q.

10



It can be seen that Equations (2.6) and (2.5) are equivalent,and a process satisfying
these equations are calledscale invariant. In stochastic analysis terminology, scale-
invariance implies that the distribution of the process is invariant under change of scale.
For financial modelling, one mostly deals with the scale in terms of time. Therefore,
without loss of generality, in what follows, by saying scalewe mean time scale. So
when it is said that the Brownian motion is scale invariant, itis in fact equivalent to
saying that when when the (time )scale is changed, its distribution is still Gaussian with
mean equal to zero and variance equal to (time)scale considered. Therefore, Equation
(2.6) is satisfied by scale invariant processes, which can beunifractal or multifractal.
The distinction between unifractality and multifractality comes into open when one
analyses the form of the scaling functionζ(q): A linear function ofq corresponds to
a unifractal process, which is uniscaling, whereas in case of a non-linearζ(q), the
process is a multifractal. The case for self-similar processes can directly be seen since,
for a self-similar process{S(t), t ∈ T } with self-similarity exponentH we have

S(t)
d
= tHS(1), which leads to the following form of Equation (2.6):

E[|S(t)|q] = tHq E[|S(1)|q],
which impliesζ(q) = Hq andc(q) = E[|S(1)|q].

To obtain the general properties of the scaling functionζ(q), we first setq = 0 to
conclude that for all scaling functions we haveζ(0) = 0. Let us note at this point that
the specification ofζ(q) is slightly varies from the original definition of Mandelbrot in
[39], where he definesζM(q) = ζ(q)+1, where the subscriptM stands for Mandelbrot.
Holding the different definitions in mind, we will explain the reason behind our choice
of the scaling function later. Another property ofζ(q) (andKM(q)) is that it is a strictly
concave function ofq.

Unifractality can be seen as a direct consequence of self-similarity whereas to obtain
multifractal dynamics, a more flexible approach is needed. Suppose that instead of
a constant self-similarity exponent, the distributional equivalence between large-scale
and small-scale increments is defined via a random variableR(·) with a distribution
depending only on thescale ratioλ > 0:

X(λt)
d
= R(λ)X(t), (2.7)

where{X(t), t ≥ 0} andR(·) are independent. If we assume that{X(t), t ≥ 0} is
stationary, then Equation (2.7) can further be extended to local scaling:

X(t+ λ∆t)−X(t)
d
= R(λ)[X(t+∆t)−X(t)], (2.8)

for all λ > 0 and the distribution ofR(λ) does not depend ont. One can see that self-
similar processes correspond to the deterministic caseR(λ) = λH . The scale invari-
ance property can be rewritten in a more suitable form by definingH(λ) = logλR(λ):

X(λt)
d
= λH(λ)X(t), (2.9)
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whereH(λ) is a random function ofλ. This equation can be used to obtain some
important features of scale invariance and multiscaling processes. Let us assume that
λ2

λ1
= λ3

λ2
, with λ1, λ2, λ3 > 0 are constants. Then, the following holds:

X(λ2t)

X(λ1t)
d
=
X(λ3t)

X(λ2t)
, (2.10)

as both sides of the equality in distribution is equal in distribution to the random vari-
ableR(λ2

λ1
). It is also possible to obtain a very important feature of therandom variable

R(·) by iterating Equation (2.7) as follows:

X(λ1λ2t)
d
= R(λ1λ2)X(t)
d
= R(λ1)X(λ2t)
d
= R(λ1)R(λ2)X(t),

whereλ1 andλ2 are positive constants,R1 andR2 are independent and identically
distributed (i.i.d) random variables which have the same distribution asR. Multifrac-
tal framework offers flexibility to properly model how a change of scale effects the
distribution of the underlying processX(t) through its scale dependent moments. It
is well-known that characteristic functions, and equivalently the moment generating
functions, are unique for a specified probability distribution. Scale invariance sug-
gests that the scaling functionζ(q) has a specific shape along theq axis at any scale
considered. Therefore, when we consider multifractal processes, we are dealing with
a collection of probability distributions each corresponding to a scale. The scaling
functionζ(q) allows for the parsimonious approach to model this complex behaviour.
Recall the empirical features of financial prices, where it isa common observation that
the shape of the distribution is highly non-Gaussian at smaller scales converging to
quasi-Gaussian distribution as one considers larger scales. Multifractals constitute a
natural candidate for modelling this specific type of behaviour.

In financial modelling, one usually deals with processes, and for multifractal processes,
at a predefined timet, there are (at least) finitely many time-scales for which we can
compute the distribution of the process. An important question is that how to build
multifractal models from scratch? An important method the multiscale behaviour can
be analysed is themultiplicative cascades, which is the subject of the next section.

2.2.1 Discrete Multiplicative Cascades and Multiplicative Measures

A multiplicative cascade is an iterative procedure where ateach iteration, the time scale
is reduced by a predetermined ratio called the scale ratio. Multiplicative cascades was
first introduced by Richardson for weather prediction [49]. Multiplicative cascades can
be used to generate multiscaling models that properly mimicthe behaviour of complex
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dynamical systems. In order to build multifractal models that demonstrate multiscal-
ing, one starts with building multifractal measures and then extend multifractality from
stochastic measures to stochastic processes [39].

In a more formal manner, multifractality is defined first for measures and then extended
to processes. The definition involves alsofractal sets such as the Cantor set, the Koch
curve and Peano curves (see for instance [40]).

The following example in [56], which features one of the firstfractal sets defined in
real analysis and named after its creator, explains how a multiplicative cascade is built:
the Cantor set [13].

Example 2.1 (The Cantor set). Let us consider the closed interval[0, 1], σ-algebra
B[0, 1] and associate the probability measureP the uniform measure, which assigns
a probability to every interval[a, b] equal to its lengthb − a. The Cantor set is con-
structed by the iterative procedure that first divides an interval into3 equal parts and
then removes the interval in the middle, i.e. ifC0 = [0, 1] thenC1 = [0, 1

3
] ∪ [2

3
, 1],

whereP(C1) =
2
3
. The second iteration results in

C2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1], (2.11)

where one can see thatP(C2) =
4
9
. At thek-th iteration, the setCk contains2k inter-

vals, with assigned probability of1
3k

, and the whole setCk has therefore probability
(2
3
)k. The Cantor setC is defined as

C = ∩∞
k=1Ck.

A straightforward computation shows that

P(C) = lim
k→∞

P(Ck) = lim
k→∞

(
2

3
)k = 0.

Based on the setsCk, one can construct a random variable using, for instance, a bino-
mial random variableYn with P(Yn = 1) = P(Yn = 0) = 1

2
, n = 1, 2, . . . :

Y =
∞
∑

n=1

2Yn
3n

.

After the firstn coin tosses, the random variableY takes values in the setCn which
shows thatY can only take values in the Cantor setC = ∩∞

n=1Cn. Y has very in-
teresting properties: it does not have a density nor a probability density function. Its
cumulative distribution function is asingularly continuousfunction, i.e. it is a non-
constant continuous function with a derivative equal to zero almost everywhere.

The Cantor set is afractal, a set with a fractional dimension, defined on the real line.
Fractal sets were defined in the beginning of the twentieth century. The iteration pro-
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cedure and the choice of the probability measure is later generalized to construct mul-
tiplicative measures through which we can obtain multifractal processes.

In a similar manner to the construction of the Cantor set, multiplicative measures are
constructed via an iterative procedure. Recall that, the Cantor function is defined by
assigning a uniform probability measure to each interval equal to the length of the
interval. In the context of multifractal processes we consider infinitely divisible distri-
butions to assign probability to each interval in the cascading process.

Suppose there are two real numbersg0, g1 > 0 with g0 + g1 = 1. At the initial step
i = 0 of the cascade, we consider the uniform probability measureς0 on the compact
interval[0, 1]. In the first stepi = 1, the measureς1 is obtained via assigning theweight
g0 to subinterval[0, 1/2] andg1 to subinterval[1/2, 1]. Note that the subintervals are
created by dividing the initial interval[0, 1] to two equal halves and thereforethe scale
ratio is equal to1/2. Similarly, in the second stepi = 2, we now have4 subintervals:
[0, 1/4], [1/4, 1/2], [1/2, 3/4] and[3/4, 1] and the interval that was a subinterval in the
previous step, namely[0, 1/2] and[1/2, 1] are treated in the same way the unit interval
[0, 1] was treated in the first step, i.e. the measureς2 assigns the weights to subintervals
as follows:

ς2[0, 1/4] = g0g0, ς2[1/4, 1/2] = g0g1,

ς2[1/2, 3/4] = g1g0, ς2[3/4, 1] = g1g1,

where the weightsgis are independent at each step. Thebinomialmeasure is defined
as the limit of the sequence of measuresςk.

The binomial measure cascade is thesimplest multifractalexample. It has some im-
portant properties. For instance, considering the dyadic interval [t, t + 2−k] with
t = 0.η1η2 . . . ηk in the counting base of2, one can compute the measure of a dyadic
interval according to

ς[t, t+ 2−k] = gkν00 gkν11 ,

whereν0 andν1 denote the relative frequencies of0’s and1’s in the binary representa-
tion of t, respectively. One can also proceed to compute the measure at a smaller(or
finer) scale from alarger according to the following principle:

ςi[0.η1η2 . . . ηk] = gi(t)ςi[0.η1η2 . . . ηk−1]. (2.12)

The properties of multifractal random measures are nontrivial: Multifractal random
measures are continuous but singular probability measures, i.e. they have no density
and no point mass, which are the features of the Cantor set.

Preservation of the mass at each step with the constraintg0 + g1 = 1 has been named
themicrocanonicalproperty. Multifractal measures can be built via multiplicative cas-
cade procedure with not only two but a larger number of weights gm, which results
in multinomialmeasures. In the microcanonical setting, we assume

∑

gm = 1, with
0 ≤ m ≤ b− 1. For the binomial case we have0 ≤ m ≤ 1.
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The generalization of the binomial and multinomial measures can be obtained with al-
lowing the non-negative weightsgm to be general random variables, instead of discrete
ones. As a result, the class ofmultiplicative measuresare obtained. Again, in the first
step of the multiplicative cascade, the unit interval[0, 1] is subdivided intob-adic cells
that have length1/b, where for everym the random weightgm is assigned tomth cell.
Iterating this procedure, we obtain the measure of an interval of length∆t = b−1:

g(∆t) = g(η1)g(η1, η2) . . . g(η1, . . . , ηi),

and therefore for theq-th moment, we have

g(∆t)q = g(η1)
qg(η1, η2)

q . . . g(η1, . . . , ηi)
q, ∀q ≥ 0. (2.13)

Taking expectation of the both sides of Equation (2.13), we obtain the intended scaling
rule:

E[g(∆t)q] = (E[gq])i, (2.14)

as the weightsg(ηi), i = 1, 2, . . . , n are independent.

To relax the restriction of microcanonical conservation imposed on the multifrac-
tal measure, it can be required that the measure conserves the expectedmass,i.e.
E[
∑

gm] = 1. In this case, the measure is calledcanonical. Canonical multifractal
measures play an important role in the attempts to build universal multifractal pro-
cesses and multifractal stochastic equations. For canonical multifractals, Equation 2.13
takes the following form:

g(∆t)q = Ω(η1, . . . , ηi)g(η1)
qg(η1, η2)

q . . . g(η1, . . . , ηi)
q, ∀q ≥ 0, (2.15)

whereΩ denotes the total mass of the multifractal measure. In this setting,Ω(η1, . . . , ηi)
d
=

Ω, and therefore the multifractal measure satisfies Equation(2.14), which is the desired
multifractal scaling property.

2.2.2 Multifractal Random Fields and Change of Measure

The analysis of scaling properties of random fields involvesa very well-known con-
cept in financial mathematics and modeling, as well as stochastic analysis, of course:
change of measure. Change of measure is in fact one of the key ingredients of BSM
model, which makes it possible to define the option pricing problem in a conformable
setting to the fundamental theorem of asset pricing (see forinstance [15]). Now let us
turn back to scaling random fields to discover the role of the change of measure in the
construction of multifractal fields.
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Now let us start by considering a random measureµ(A), defined over theσ-field of
subsetsA ∈ RD, whereD denotes the dimension of the underlying space. The average
density at scaleL is defined as [44]:

FL(r) = L−Dµ(C), (2.16)

whereC is aD-dimensional cube of side lengthL centered atr andFL(r) is a random
field. To analyze the densityµ at different scalesl andL, one can consider the relative
densityal;L, which is the well-known Radon-Nikodym derivative process:

al;L = Fl(r)/FL(r), (2.17)

whereL > l andal;L satisfies:

al;L = al;gag;L, (2.18)

wherel < g < L andVl < Vg < VL and we assume thatal;L is a random variable, the
distribution of which depends only on the ratiol/L and is independent of the positions
of volume centerr provided thatVl ∈ VL. For the moments ofal;L we write:

E[aql;L] = E[aql;g]E[a
q
g;L], (2.19)

and sinceE[aql;L] depends only on the ratiol/L, we obtain the following general form

E[aql;L] = (l/L)−K(q), (2.20)

where by definition we see thatK(0) = K(1) = 0.

Now let us introduce the logarithmic ratio

κl;L = − ln
(

Fll
D/FLL

D
)

= − ln
(

Fl/FL

)(

l/L
)

= − ln
(

al;L
)(

l/L
)

(2.21)

where we can see thatκl;L is a non-negative random variable that is depending only on
the ratiol/L. Let us observe that one can define a sequence ofn cubes (or intervals in
1-dimensional case) of side lengthρn lying betweenVl andVL such that

1/ρ1 = ρ1/ρ2 = · · · = ρn/L = (l/L)1/n. (2.22)

The representation ofκl;L in terms ofal;L allows us to write:

κl;L = κl;ρ1 + κρ1;ρ2 + · · ·+ κρn;L, (2.23)

which implies thatκl;L is an infinitely divisible random variable.

One can see that in multifractal random fields, change of scale implies change of mea-
sure through the Radon-Nikodym derivative processal;L. Therefore, each change of
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scale fromL to l corresponds to a change of measure. In fact, the multifractal scaling is
observed inal;L. As the scale ratio between two intervals increase, the number of times
the measure changed also increases. In the small time scale limit, it can be assumed
that there are almost infinite number of measure changes.

2.2.2.1 Generator of the cascade

Let us recall that the random variableR(λ) is responsible for the scale dependent
behaviour of the multifractal processX(t). An equivalent approach to multifractal
analysis is using multifractal random measures of the previous section. WritingR(λ)
for al;L we can write:

R(λ1λ2)
d
= R(λ1)R(λ2), (2.24)

which implies thatR(·) is amultiplicativeprocess. Moving to logarithmic coordinates
we obtain a familiar distributional property ofR(λ):

logR(λ1λ2)
d
= logR(λ1) + logR(λ2), (2.25)

i.e. logR(·) is infinitely divisible and thereforeR(·) is log-infinitely-divisible. This
result is also obtained for self-similar random measures.
Remark2.1. The random weightsR(·) determining the scale-dependent behaviour of
a multifractal processX(t) is log-infinitely divisible.

This important remark restricts the class of stochastic processes to be chosen to deter-
mine the scale-dependent behavior of multifractal processes. Members of the family of
infinitely divisible processes ranges from the Brownian motion to Poisson processes,
and the multifractal processes are named after the distribution ofR(·), with examples
such as the log-Normal multifractal and the log-Poisson multifractal.

We can write via scale invariance:

X(t)
d
= R(t)X(1), (2.26)

and rewrite Equation (2.6) as:

E[|X(t)|q] = E[|R(t)X(1)|q]
= E[R(t)]E[|X(1)|q]
= c(q)tK(q),

wherec(q) = E[|X(1)|q] is a constant andR(·) satisfies

E[R(λ)] = λK(q). (2.27)
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The log-infinite divisibility ofR(·) allows for relating the scaling functionζ(q) and
the moment generating function of the infinitely divisible distribution of W (λ) =
ln(R(λ)) since:

E[R(λ)q] = E[exp(qW (λ))] (2.28)

= λK(q). (2.29)

Let us denote the moment generating function of the infinitely divisible distribution by
ξ(q). Then, we have the following equality that definesK(q):

K(q) = qD − ξ(q), (2.30)

whereD is the dimension of the underlying space. The conservation property implies
ξ(1) = D [44].

What is the distribution ofX(t)? The multifractal process is named after the distribu-
tion ofW (λ), the generator of the cascade. In fact, the choice of the infinitely divisible
distribution fully characterizes the distribution of the multifractal processX(t) since it
determines the form of the scaling functionsζ(q) andK(q).

Using Equation (2.26) on a multiplicative cascade requiresthe scale ratioλ to be set
equal to a constant greater than one. The usual choice isλ = 2. Holding in mind
that we are only considering models that satisfy canonical conservation property,i.e.
E[R(λ)] = 1, let us proceed to the construction process.

The multifractal cascades can be built starting from a predetermined largest scaleS
down to a smallest scales. The scale considered when analysing the multifractal pro-
cess is called the resolution. The multifractal process at the smallest scale is called
“bare”, in analogy to the energy flux in turbulence. There is also the “dressed” pro-
cess, corresponding to integrated bare process. The detailed discussion on the distinc-
tion between dressed and bare processes is not in the scope ofthis study. However, one
must keep in mind that in empirical studies, the incrasing scale is used to obtain the
dressed process for parameter estimation procedures. In the cascading process, at each
iteration, the scale is reduced to the subsequent scale by the scale ratioλ: si = si−1/λ.
Denoting the resolution byr, we haveS = r× λn. As the scale decreases, the number
of intervals increase byλ: at then-th iteration, the scale issn = L/λn and the number
of intervals isλn, where the size of an interval is fixed asr.

Inspired by Richardson’s cascade setting, the cascade is constructed with random
weights. Supposet ∈ [0, T ], with the largest scaleS = T . At the n-th iteration of
the cascade, the realization of the multifractal processX(·) at t is given by:

X(t) =
n
∏

i=1

Ri(t), (2.31)
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whereWi(t) stands for thei-th step weight corresponding to timet. These weights are
independent of each other, helping to satisfy:

E[X(t)q] =
n
∏

i=1

E[(Ri(t))
q] = E[Rq]n, (2.32)

with R
d
= Ri(t), i = 1, · · · , n. If one considers a total number of cascade stepsN ,

thetotal scale ratioΛ is defined as

Λ =
S

r
= λN .

Now let us writeXΛ(t) to denote the multifractal process at resolutionr. The scale
invariance property suggests that

E[XΛ(t)] = Λζ(q),

where the scaling function readsζ(q) = logΛ E[R
q], and we see that the result is

independent of the time pointt.

The multiplicative cascade setting restricts the possiblechoices of the scale ratios by
determining the rate of increase of the scale via a constant scale ratio. Investigation of
the relation between the dynamics of the processXλ at different cascade steps we can
write:

Xλm+n(t) = Tn(Xλm(t))Xλn(t), (2.33)

whereXλm(t) andXλn(t) are independentm-th andn-th step realizations of the pro-
cess at cascade, respectively and we have,Tn[Xλm(t)] = Xλm(t)(λ−nt), where we can
rewrite Equation (2.33) as

Xλm+n(t) = Xλm(t)(λ−nt)Xλn(t), (2.34)

which allows for the computation ofm + n-th step realization usingm-th andn-th
step realizations. Let us switch to the generator settingG(λ) = ln(X(λ)), where we
dropped the time pointt for simplicity. For the multifractal processXλ to satisfy the
canonical conservation property, the following normalization can be employed

expG
′

=
expG

E[expG]
, (2.35)

where we computeE[Γ
′

] = 1. This normalization is in fact the well-knownEsscher
transform, which is in accordance with the observation that a change ofscale implies
a change of measure for multiplicative multifractals.
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The random variableG satisfies theadditive group property:

Gλm+n = Tn(Gλm) +Gλn .

At the smallest scale of the cascade,that is thehomogeneity scale, the process con-
verges to the limiting behaviour, which can be characterized by its scaling function
ζ(q). The choice of the distribution of the generatorG determines the form ofζ(q).
Let us demonstrate this property in the following example [55]:

Example 2.2(The log-Normal multifractal). This class of multifractals corresponds
to the choice of a Gaussian random variable as the generator of the cascade. Holding
in mind the conservative property, we require the scaling function to satisfyK(0) =
K(1) = 0. For simplicity, we assume a scale ratioλ = 2. The log-Normal generator
L is given by

L = exp(X), X ∼ N(a, b2).

The stability property of Gaussian random variables allowsus to write:

X
d
= a+ bZ, Z ∼ N(0, 1).

The logarithmic transformation implies the moment generating function ofX is equiv-
alent to theq-th order moment ofL:

E[exp(qX)] = E[Lq] (2.36)

= exp(qa+
1

2
b2q2).

The conservation property implies the following relation between the parametersa and
b, the mean and the variance of the distribution respectively:

a+
1

2
b2 = 0 or a = −1

2
b2,

and definingκ = K(2) = log2(E[L
2]), we can rewrite Equation (2.36) as

L = exp(
√

κ log 2Z − κ

2
log 2).

Then, one can show that the log-Normal generator results in the following form of the
scaling function:

ζ(q) =
κ

2
(q2 − q).

The log-Normal multifractal was first proposed by Kolmogorov and Obukhov as the
first example of a multiscaling process [29], [47]. It perfectly demonstrates how the
choice of the infinitely divisible distribution, the Gaussian distribution in this case,
determines the form of the scaling functionζ(q) of the multifractal processX(t).

This observation in fact points out to a stronger result obtained for infinitely divisible
random processes, which is stated in the following theorem [17]:
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Theorem 2.3. The class of infinitely divisible distributions coincides with the class of
limit distributions of compound Poisson distributions.

We will not repeat the proof of Theorem (2.3) and refer to [17]for the proof. However,
we report some of the important results in Appendix A.

It is therefore possible to specify the distribution of the log-infinitely divisible multi-
fractals via specifying the canonical Lévy measureM and therefore to compute the
scaling functionζ(q) as soon as the canonical Lévy measure is specified. The proba-
bility distribution of a multifractal process is, of course, scale dependent. In fact, it can
be interpreted that the probability distribution of a multifractal process is a collection
of probability distributions along different time-scales. This interpretation is a very
useful one for financial applications since many empirical studies report that the shape
of the distribution of financial returns are highly non-Gaussian for small time-scales
and converges to a quasi-Gaussian distribution as the time-scale increases. The result-
ing collection of scale-dependent distributions manifests itself in the scaling function
ζ(q): unlike unifractal processes, the scaling function of a multifractal process is not
a vector of values for each order of moments but a matrix of values, where the second
dimension is the time scale. This matrix contains all the necessary information on the
distribution of the multifractal process.

Suppose that one wants to investigate the characteristics of the extreme realizations
of the process at each time-scale considered. These realizations correspond to the
tails of the probability distribution. Since the scaling function ζ(q) contains all the
necessary information on the distribution, one can also identify how the tails of the
distribution behaves, at each scale. It turns out that the existence of a multifractal
process is possible when there is adual relationship between the order of the extreme
realizations and their probabilities. This duality has in fact led to the definition of the
multifractal processes, and the term multifractal to be coined by Parisi and Frisch in
their pioneering study [48].

2.3 Singularities and Codimensions: Knitting Unifractalsin Hierarchy

Multifractal processes used frequently to model the statistical dynamics of chaotic
systems such as cloud formations, atmospheric wind, turbulent fluids, rainfall fields,
human heart beat and financial markets. In early studies, themultiplicative cascades
and their statistical properties were considered. As the main purpose is to build multi-
fractal processes, the focus is first on the notion of dimension. The key relation relation
upon which the multifractal framework was built is the one between what is called a
singularity, its order, and the fractal dimension of the set it is observed. We proceed
with some important definitions.

21



2.3.1 Dimension and Singularity

The key point in the definition of multifractals is the intrinsic dual relationship between
dimension and singularity of a function, or a stochastic process. This duality was
first proposed by Parisi and Frisch in [48]. Their idea is thatin order for multifractal
behavior to be possible, the magnitude of large observations and the dimension of the
sets that support those observations must have a specific type of dependence. Let us
start with the definition ofsingularity[48]:

Definition 2.3. A processν(·) is said to have a singularity of orderh > 0 at the point
x if

¯limx→y|ν(x)− ν(y)|/|x− y|h 6= 0. (2.37)

The early multifractal models were built on the assumption that their singularities are
concentrated on fractal sets. Let us denote byS(h) the set of points for which the
process has a singularity of orderh. The notion of singularity is closely related to
local Hölder exponents[58]:

Definition 2.4. A functionf is h-Hölder continuous at pointt0 iff there exists a poly-
nomialP of degreeh

′

< h such that

|f(t)− P (t− t0)| ≤ Ct0|t− t0|h (2.38)

in a neighborhood oft0, whereCt0 is a constant. LetCh(t0) denote the space of real-
valued functions that satisfy Equation (2.38) att0. A function f is said to have local
Hölder exponenthf if for h < hf , f ∈ Ch(t0) and forh > hf , f /∈ Ch(t0).

Connecting two previous definitions, it is observed that whenthe functionf has a
singularity of orderh, which is the case on the setS(h), it is said thatf is not an
Hölder function of orderh. Therefore one can define two subspaces of the underlying
space where the singularities of orderh occurs and where the Ḧolder continuity of
orderh are observed.

The Hölder exponent of Ĺevy processes are path dependent. However, there is a fa-
mous exception: the fractional Brownian motion with self-similarity exponentH (in-
cluding the standard Brownian motion corresponding toH = 1

2
) has local exponent

hfBm = 1
H

almost surely almost everywhere,i.e for almost all sample paths. However,
we do not have similar results obtained for sample paths of Lévy processes or even
for α-stable Ĺevy motion. This difficulty is overcome by defining thesingularity spec-
trum of a stochastic process. The definition of singularity spectrum defined based on
the Hausdorff-Besicovitch dimension. We proceed to the definition of the Hausdorff
measure [57]:

Definition 2.5. For any setE ∈ Rd, we define theexteriorα-dimensionalHausdorff
measure ofE by

m∗
α(E) = lim

δ→0
inf

{

∑

k

(diamFk)
α : E ⊂

∞
⋃

k=1

Fk, diamFk ≤ δ all k
}

, (2.39)
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wherediamS denotes the diameter of the setS, that is,diamS = sup{|x− y| : x, y ∈
S}. The exterior Hausdorff measure considers for eachδ > 0, a union of arbitrary
setsFk with diameter less thanδ and take the infimum of the sum

∑

k(diamFk)
α. An

important feature of the exterior Hausdorff measure is that, the measure of a set scales
according to its dimension. To see this, consider a setF scaled byr, wherer is a
positive constant, then(diamF )α scales byλα, i.e.

mα(λE) = λαmα(E), ∀λ > 0. (2.40)

The scaling property of the Hausdorff measure resembles self-similarity of random
measures and one can see the relation between the exponentα in Equation (2.40)
and the self-similarity exponentH. To better understand this relation, let us state the
definition of the Hausdorff-Besicovitch dimension of a stochastic process [57]:

Definition 2.6. Hausdorff dimension Given a Borel subsetE of Rd, there exists a
uniqueα such that

mβ =

{

∞ if β < α,

0 if α < β,

whereα is theHausdorff dimensionof E, given by

α = sup
{

β : mβ(E) = ∞
}

= inf
{

β : mβ(E) = 0
}

. (2.41)

The Hausdorff dimension is a very fundamental concept forfractals. Fractals are de-
fined to be objects with fractional dimension. The Cantor set has a Hausdorff dimen-
sion ofα = log 2/ log 3. The famous example of a fractal set in real world had been
discovered by Richardson in his study to measure the length ofthe coast of Britain,
where he computed that the coast has a fractional dimension of 1.5, and therefore it is
a fractal! Fractals simultaneously defined in complex analysis by Gast́on Julia in his
study of dynamical systems in [28]. However, an important point that was emphasized
by Richardson on the applicability of fractals in natural sciences is that empirical stud-
ies of fractals requires advanced computational power and it was Mandelbrot who first
attempted to construct fractal sets using computers [40]. In fact Julia has drawn the
Julia set by hand. The fractals have drawn a lot of attention since then. Their distinc-
tive property, the self-similarity, has been used in modeling the geometry of natural ob-
jects. As we have seen in the previous chapter, self-similarity property was extended to
stochastic processes, of course, in distributional sense.In his pioneering studies, Kol-
mogorov suggested a self-similar stochastic process to model turbulent flows. In fact,
the model he constructed corresponds to a fractional Brownian motion withH = 1

3
,

which is a unifractal. The uniscaling structure of unifractals was later criticized to
be an underestimation of the level of complexity observed inturbulence. The idea of
multifractal, or multiple, scaling later proposed to properly reflect the characteristic
features of turbulence.

The characterization of the behaviour of singularities in view of the Hausdorff dimen-
sions of the sets on which they are observed, brings the question of whether there is a
dependency between these two. This question is answered by Parisi and Frisch in [48]
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where the authors conjectured that if these type of singularities exist, then in case the
scaling function is non-linear, as in the case for multifractals, the Hausdorff dimen-
sion of the setS(h), denoted byd(h), has a “nontrivial dependence onh: different
kind of singularities are associated with sets having different Hausdorff dimensions”.
This is where the termmultifractal is first coined: a hierarchical structure of fractal
sets with different values of Hausdorff dimensions, on which the singularitiesh are
concentrated. The counterexample of unifractals corresponds to self-similar processes
with linear scaling functionsζ(q). For multifractals, the mixture of linear scaling expo-
nents result in a non-linear scaling function. Furthermore, the degree of multifractality
of a stochastic process can be measured by measuring how muchits scaling function
deviates from linearity. Now let us sketch briefly how Parisiand Frisch have made the
connection between the scaling functionζ(q) and the singularity spectrum, which they
had first demonstrated in theirβ model.

The fractal dimension of the cascade is responsible for the multiscaling characteri-
zation of the process. Recall that fractal sets have fractional Hausdorff dimension,
whereas regular sets have integer Hausdorff dimension which is equal to its Euclidean
dimension. This distinction leads to homogeneous and “intermittent” cascades. Homo-
geneous cascades are sets with integer Hausdorff dimensionthat demonstrate regular
and predictable behaviour. In the case of a cascade with a fractional Hausdorff dimen-
sion, the resulting structure is a fractal which demonstrates multiple scaling.

Let us briefly summarize theβ model of Parisi and Frisch. To mimic the aggregation
properties of turbulent flows, their idea was to construct the cascade from larger scale
to smaller scales in a way that at each iteration, the random weights are either dead
,equal to zero, or alive, equal to a predetermined constant.Suppose a multiplicative
random variableWm with the following binomial distribution:

P(Wm = λc) = λ−c (2.42)
P(Wm = 0) = 1− λ−c, (2.43)

where we can see that to satisfy the canonical conservation propertyE[Wm] = 1, a
duality between singularities and their probability of occurence has been formed: The
probability of occurence of a singularity,P(Wm = λc), is proportional to its orderλ−c.
This duality constitutes the basis of the multifractal framework.

Suppose that we have at then-th iteration of the cascade of theβ model. Since the
cascade steps are independent of each other, the probability that a weight is alive after
n iterations is

P(Wm,n = λc|Wm,1 = Wm,2 = · · · = Wm,n−1 = λc) = (λ−c)n, (2.44)

whereWm,n denotes the multiplicative weight at then-th iteration of the cascade.
Equation (2.44) implies a power-law behaviour for the proability of staying alive for
the weightWm throughn iteration of the cascading process. The asymptotic exponent
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c is called the (fractal)codimensionof the process. Let us consider ad-dimensional
cascade, where at each iteration, the number of “pixels” increases byλd. Then, the
average number of active weights is computed as

#(active) = #(pixels)P(ǫm,n = λc) = λdλ−c = λD; D = d− c,

where the exponentD is the difference between the dimension of the space and the
codimension ofWm. It can be interpreted that the active weights is concentrated on a
volume ofλ−c of the total volume ofλd. As we progress through cascading,D goes to
the (fractal) Hausdorff dimension of the set of active points wheneverc ≤ d, since the
empty space where there is no alive weight determines the complexity of the fractal
set that is built by the multiplicative cascade. In cased is an integer, the fractality of
the set of non-zero points directly implies the fractality of the set of zero points as both
would have fractional dimensions. Let us compute the scaling functionKβ(q) of theβ
model:

E[W q
m] = λqcλ−q = λq(c−1), (2.45)

which concludesKβ(q) = q(c− 1) and therefore theβ model is a unifractal.

Theβ model simply captured the connection between the dimensionand the order of
singularities. However, the resulting process was not a multifractal but a unifractal
self-similar process, which are taught to be too simplisticto reflect theintermittency
observed in chaotic dynamical systems. To obtain multifractality, Schertzer and Love-
joy improved theβ model and developed theα model in a similar fashion to theβ
model, by multiplicative cascading with dead and alive weights (see [35]). The idea
behind theαmodel was to complicate the setting by allowing the alive weights at eacht
step to increase or decrease in magnitude according to predefined exponents.

Let us start with the unit interval[0, 1] and at iteration0, the weightW0 = 1. Con-
sider as before a scale ratioλ, which is an integer denoting the number of subintervals
generated by the cascade at each iteration. The cascade proceeds to smaller scales
by multiplying i.i.d. random weightsWm with E[Wm] = 1, at each iteration. Let
x ∈ [0, 1], then, the value atx at then-th iteration of the cascade is computed as

Wn(x) =
n
∏

j=1

Wm,j(x) (2.46)

and the smallest scale, or the resolution, is now1/λn. The canonical conservation to-
gether with the i.i.d. assumption forWm,j, j = 1, . . . , n impliesE[Wn(x)] = 1, ∀x ∈
[0, 1]. The multiplicative cascade upon which theα model is built is a binomial cas-
cade:

25



P(Wm = λh
+

) = λ−c

P(Wm = λh
−

) = 1− λ−c,

whereh+ > 0 corresponds to aboost, i.e. ǫm > 1 andh− < 0 corresponds to a
decreasein the magnitude of the weights. We can see that when we want tocompute
the expectation of theα model at any step, the canonical conservation property moves
in, and the relationship betweenh± and the codimensionc comes into view:

E[Wm] = λ−cλh
+

+ (1− λ−c)λh
−

= 1,

which also implies that among the three parameters of theα model,(h+, h−, c), only
two of them can be decided freely. It is possible to recoverβ model ash+ → c, which
corresponds toh− → −∞. The improvement of theα model on theβ model is that in
the latter, the part of the space is reserved for zero realizations due to occurence of dead
weights whereas in the former there exist realizations, even if very small, resulting in a
more continuous structure of the process. Theα model, therefore, as an example of a
multifractal model, allows for the construction of stochastic models with intermediate
behaviour between jump models and continuous models [39].

Bothβ andα models assume that the probability of a realization is inversely related to
its order of singularity. Now consider the multifractal processǫΛ defined as the limit
of the multiplicative cascade with weightsWλi at cascade stepi:

ǫλ =
N
∏

i=1

Wλi , (2.47)

for which the following form of probability density in termsof the singularities is
assumed:

P(ǫλ ≥ λh) = p(h)λ−c(h),
dc

dγ
> 0, (2.48)

wherep(h) is a normalization factor andc(h) is thecodimension functionof the pro-
cess. This approach is similar to that of scaling functionζ(q) of a multifractal. Recall
that to obtain multifractality, the consant scaling exponent assumption relaxed so that
we have a scaling function. The codimension functionc(h) is the corresponding relax-
ation of the codimensions.

In a more general way, one can definec(h) instead of a single codimension constantc
as follows:

P(ǫλ ≥ λh) ∼= #(singularities with orders> h)

#(pixels)
∼= λ−c(h). (2.49)
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The singularity of multifractal processes constructed viamultiplicative cascades offers
an opportunity to define a universal class [53]. We have seen that the idea of a multi-
fractal process is developed on the observation that the singularities of various orders
exist on fractal sets of various Hausdorff dimensions. Thisidea is formally stated in
terms of acodimension functionrelated to the scaling functionζ(q) via a Legendre
transform. Let us first observe that for a multifractal cascade ǫl, the singularities can
be defined by a power of the scale, or resolutionλ:

ǫλ ≥ λ−h,

which implies that the rate of divergence ofǫλ is greater of equal to the rate of diver-
gence ofλ−h. Borrowing the terminology of thermodynamics, recall that at each iter-
ation, the “generator”, which we have called the mother breaks up toλd “offsprings”,
which we have called the daugter, whereλ > 1 is the scale ratio for one iteration of
the cascade andd is the dimension of the space on which we construct the cascade.
Let us denote the resolution atn-th step byln, implying λ0 = ln+1/ln. Furthermore,
let us restrict the development of the cascade by introducing L, the largest scale to be
considered in our construction. At then-th step, the total scale ratio isλn = Λ. As we
have mentioned in previous sections, the logarithm ofǫλ is a member of the class of
infinitely divisible random variables, and therefore switching from ǫλ to Γλ = ln(ǫλ)
will be helpful in the analysis of multifractal cascades.

The canonical conservation property is defined based on the assumption that the ex-
pectation, the first moment, ofǫλ is finite. However, the singularities of higher orders
may cause the divergence of moments. To compute the bounds for the convergence of
moments, i.e.ζ(q) < ∞, the “trace moments” introduced by Schertzer and Lovejoy
([35]) of ǫλ on aD dimensional setAλ, where the subscriptλ indicates that the setA
is measured at the same resolution asǫλ:

E[

∫

Aλ

ǫqλd
qDx] = E[

∑

Aλ

ǫqλλ
−qD], (2.50)

which is bounded since

E[
∑

Aλ

ǫqλλ
−qD] ≥ #(singularities with orders> h)λqhλ−qD = λ(qh−c(h))−(h−1)D.

(2.51)

The scaling functionKǫ(q) of the multifractal variableǫλ is defined by

E[ǫqλ] = E[ǫh1 ]λ
ζ(q) = exp(ζ(q) ln(λ))E[ǫ1]. (2.52)

The scale invariance property establishes a duality between the order of moments and
the order of singularities which creates a hierarchical order of singularities and the
fractal sets in the multiplicative cascade. Now let us focuson the connection between
the codimension functionc(h) and the scaling functionK(q). We can specify the
following form of scaling tail probabilities for the multifractal process:
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P(ǫλ ≥ λh) ∼= λ−c(h);
dc

dh
> 0, (2.53)

and the probability density of singularities can be computed as

P(h) =
dP(ǫλ ≥ λh)

dh
= c

′

(h)(ln(λ)λ−c(h)) ∼= λ−c(h), (2.54)

wherec
′

(h) ln(λ) is a slowly varying function at infinity. Combining Equation 2.52
and Equation 2.54, one can write:

E[ǫhλ] =

∫

ǫqλdP ∼
∫

dhλ−c(h)λqh, (2.55)

where the change of variablesǫλ = λh is used to obtain the right-hand side. The
motivation behind this transformation is that we focus our attention on the realizations
of ǫλ that are greater than or equal to singularitiesλh. In view of Equation (2.55), we
obtain

E[ǫqλ] = λK(q) = exp(K(q) ln(λ)) ∼
∫ ∞

−∞

dh exp(ln(λ)(qh− c(h))), (2.56)

which is of similar form to Equation 2.64 and forln(λ) >> 1, the largest contribution
to the integral in the right-hand side of Equation (2.56) comes from integrand with the
maximum value of the exponent:

K(q) = max
h

(qh− c(h)), (2.57)

which is called a Legendre transform. The Legendre transform has a very special
property that inverse of the Legendre transform is again a Legendre transform, which
allows to obtain:

c(h) = max
q

(qh−K(q)). (2.58)

2.3.1.1 Mandelbrot’s Approach

Mandelbrot reports similar results with a slight change of perspective: instead of the
scale ratioλ getting larger, he considers the time scaleδt getting smaller to its limit
value of zero. The codimension function takes another name in this context: the sin-
gularity spectrum. Similarly, the singularity spectrum brings out the scale dependent
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Hölder continuity characteristics of the multifractal process. This, also, defines a spe-
cific hierarchy of Ḧolder exponents. We first restate the definition of thesingularity
spectrum[39]:

Definition 2.7. Let f : R → R be a real-valued function and for eachα > 0 define the
set of points at whichf has local Ḧolder exponenth:

Ω(α) = {t, hf (t) = α}. (2.59)

The singularity spectrum off is the functionD : R+ → R which associates to each
α > 0 the Hausdorff dimension ofΩ(α):

Df (α) = dimHΩ(α). (2.60)

Put into words, the singularity spectrum of a function, or a stochastic process in our
case, is the set of Hausdorff dimensions of points with a specific local Hölder exponent.

We have mentioned that the singularity spectrum of stochastic processes may be path-
dependent and therefore the estimation of singularity spectrum of a process is of no
special importance. However, Jaffard ([26]) showed that for a large class of Ĺevy
processes, the singularity spectrum is the same for almost all sample paths In fact, the
singularity spectrum of a Ĺevy process can be characterized by the Blumenthal-Getoor
index defined as

ξ = inf
{

γ > 0,

∫

|x|≤1

xγν(dx) <∞
}

,

whereν(dx) is the Ĺevy measure of the process. An important result is that, forα-
stable stochastic processes, the Blumenthal-Getoor index is equal to the index of sta-
bility α. This result provides important information on the multiplicative cascades with
α-stable weigts and their singularity spectrum.

More formally, the following proposition in [26] for the singularity spectrum of Ĺevy
processes:

Proposition 2.4. Let {X(t), t ≥ 0} be a Ĺevy process with Ĺevy triplet(σ2, ν, b) and
Blumenthal-Getoor indexξ.

• If 2 > ξ > 0 andσ = 0 then for almost every sample path

dimΩ(α) = ξα for α ≤ 1

ξ

andΩ(α) = ∅ for α > 1/ξ.

• If 2 > ξ > 0 andσ 6= 0 then for almost every sample path

dimΩ(α) =

{

ξα if α < 1
2
,

1 if α = 1
2
,

andΩ(α) = ∅ for α > 1/2.
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• If ξ = 0 then for eachα > 0 with probability1, dimΩ(α) = 0.

Proof. For the proof of the proposition, we refer to [26].

Proposition 2.4 states that for Lévy processes, the singularity spectrum reduces to a
single number. This better explains the scale-independency of the moments of self-
similar processes: Regardless of the time-scale considered, Lévy processes behave
according to a single value of singularity, i.e. the set of points where a Ĺevy process
has a local Ḧolder exponentα has the Hausdorff dimension equal to a multiple of the
Hölder exponent and the Blumenthal-Getoor indexξ.

This result is of practical importance, since the local Hölder exponents of Ĺevy pro-
cesses may differ between sample paths, one can obtain information on the singulari-
ties, that is, theroughness, of the process by estimating its singularity spectrum. The
interpretation of the singularity spectrum requires some insight on the Hausdorff di-
mension. We have stated that fractals have fractional dimension and the singularity
spectrum of Ĺevy processes involves this case whenever the value of the Hausdorff
dimension, which is given asξα, is a fraction. This feature is in accordance with
the log-linear behaviour observed for the scaling functionζ(q) of the self-similar pro-
cesses.

Mandelbrot emphasizes there are more than one interpretation of the singularity spec-
trum, for which he prefers the termmultifractal spectrum. First consider a discretiza-
tion of time of length∆t = b−k, whereb is a positive constant, and define

αk(t) =
lnX(t,∆t)

ln(∆t)
, (2.61)

whereαk(t) are called thecoarseHölder exponents. To obtain the limit as∆t→ 0, we
increasek and in the limit, the frequency histogram of coarse Hölder exponents con-
verges to the frequency distribution of local Hölder exponents. Mandelbrot states that
the singularity, or multifractal, spectrum can be interpreted as the following equivalent
alternatives:

1. The limit of a renormalized histogram of Hölder exponents,

2. The Hausdorff (fractal) dimension of the set of instants with Hölder exponentα,

3. The limit ofk−1 logb P(αk > α) + 1.

An implication of this definition is that the number of intervals with Hölder exponent
α,Nα, behaves as

Nα(∆t) ∼ (∆t)−Df (α).

30



which can be obtained by the scaling property of the Hausdorff measure given by
Equation (2.40).

Now let us consider a finite interval[0, T ] with N discrete points and define the esti-
matorζ̂(q) of the scaling functionζ(q) of the processX(·) as follows:

ζ̂(q) = ln
(

N−1
∑

i=0

|X(i∆t,∆t)|q
)

/ ln(∆t), (2.62)

and it is known that for a given sample, one can estimate the local Hölder exponent by
the relation

|X(t,∆t)| ∼ (∆t)qα(t), (2.63)

whereα(t) denotes the local Ḧolder exponent att. The singularity spectrumDf (α),
implies that the distribution ofα is of the formc(α)(∆t)−Df (α), wherec(α) is a con-
stant. As we have obtained the form of the distribution ofα, using Equation 2.63, we
can write

N−1
∑

i=0

|X(i∆t,∆t)|q ∼
∫

c(α)(∆t)qα−Df (α)dα. (2.64)

In the limit ∆t→ 0, the main contributor to the integral above is the followingterm:

(∆t)minα(qα−Df (α), (2.65)

which shows that in the limiting case we have

ζ̂(q) → min
α

(qα−Df (α)), as ∆t→ 0, (2.66)

whereminα(qα − Df (α)) is theLegendre transformof Df (α) ([14]), which has an
important property that it also satisfies

D̂f (α) = min
α

(qα− ζ̂(q)), (2.67)

which provides an estimator for the singularity, or multifractal, spectrum of the process
X(t).

2.3.2 Universal Multifractals

Until now we have seen that multiscaling property of multifractal processes, denoted
by ǫ, can be obtained by employing multiplicative cascades withrandom weights (mul-
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tipliers), which are called generators and given by the relation ǫ = exp(Γ). Further-
more, we have showed that the scale invariance property implies the log-infinite di-
visibility of the random variable that characterizes the scale dependent behaviour of
the cascading process. If we further restrict our attentionto α-stable generators, it has
been shown that we can reach a universal characterization for multifractals. The gen-
erators that result in universal multifractal processes should be chosen according to the
following requirements listed below:

1. Sinceln(ǫ) ≥ 0, it is required thatΓ ≥ 1.

2. Denoting byK(q) the scaling exponent of the limiting processǫ, we can write

Kλ(q) ≈ ln(λ)K(q),

3. For some orders of momentsq > 0 to converge, it is necessary that the right tail
of the probability distribution of the generatorΓλ must decay faster than expo-
nentially. This requirement is particularly important andrestrictive since it de-
scribes the distribution of an asymmetricα-stable random variable:Sα(σ,−1, µ)
where we have assumed the lowest value of−1 for the skewness parameterβ.
By settingβ = −1, we ensure that all moments ofǫ is finite ([50]).

4. The canonical conservation property must be satisfied:K(1) = 0.

The debate of the existence of universal multifractals was avery active one especially
around1980’s ([53], [22]). Finally, Schertzer and Lovejoy have developed the univer-
sal multifractals based on extremely asymmetric,β = −1,α-stable random generators.
They have also obtained the form of the scaling functionζ(q) as

K(q) =

{

C1

α−1
(qα − q) if α ∈ [0, 2] \ {1},

C1q ln(q) if α = 1,
(2.68)

whereα is the stability index of theα-stable distribution andC1 = K
′

(1). This rep-
resentation is of particular importance in terms of applications as one can estimate the
shape of the empirical scaling function of, for instance, return amplitudes, i.e. the
absolute returns, and calibrate the parametersα andC1 to the sample under consider-
ation. Furthermore, using Equation 2.57, we obtain the codimension function of the
universal multifractals as

c(h) =

{

C1

(

h
C1α

′ + 1
α
′

)

(qα − q) if α ∈ [0, 2] \ {1},
C1 exp

(

h
C1

− 1
)

if α = 1,
(2.69)

where 1
α
+ 1

α
′ = 1.

Universal multifractals are named after the generator process employed in multiplica-
tive cascade procedure. Some of the important examples are given as follows [4]:
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1. The log-Lévy multifractal In this case, one considers a stable generator with
stability index1 < α < 2 and we have almost surely discontinuous paths. This
case corresponds to the canonical Lévy measureM(dx) ∼ x2−α, and the result-
ing scaling function is

KL = σα|q|α.

2. The log-Normal multifractal We have already mentioned the log-Normal mul-
tifractal in Example 2.2. It is the first multiscaling process proposed by Kol-
mogorov and Obukhov ([29, 47]) and the scaling function is defined as:

KLN =
κ

2
(q2 − q),

whereκ = K(2) = log2 E[W ] andW is the log-Normal generator of the cas-
cade.

2.3.3 Order of Singularities vs. Fractal Dimension

We have seen that Equations (2.58) and (2.67) completely specifies the scaling func-
tionsK(q) andζ(q), where the former denotes the scaling function of the multifractal
random measure and the latter denotes the scaling function of the multifractal process.
The relation between two functions, in the context of log-infinitely divisible random
measures is given as:

ζ(q) = qH −K(q),

with H = ζ(1), which is the exponent of the mean. Comparing Equations (2.58) and
(2.67), one can see the inverse-type relationship between codimensionsc(h) and sin-
gularity spectrumDf (α), which reveals one of the fundamental implications of scale
invariance: the minimum deviation of the Hausdorff dimension of the process from
linearity is equivalent to, or implies, a maximum deviationof the codimension of the
process from linearity. This duality results in the hierarchical structure of multifractals,
where the singularities of highest orders occur on fractal sets with the smallest fractal
dimensions. This observation brings into question the distinction between rare events
and extreme events.

It is argued by Schertzer and Lovejoy that the singularity spectrum was developed
for deterministic chaos and the codimension formalism expressed in Equations (2.55)
through (2.57) is more general and necessary for stochasticprocesses.

Now let us get back to the investigation of the convergence ofthe scaling functionζ(q).
By Equations 2.51 and 2.57, we can see that the moments divergewhen

ζ(q) = qh− c(h) ≥ (h− 1)D, (2.70)
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and we can define the critical order of singularitiesKD(q) ≡ ζ(q) − (q − 1)D and
therefore the divergence occurs wheneverKD(q) ≥ 0. From this point of view, the
critical codimensionsC(q) are defined as

C(q)(q − 1) = ζ(q). (2.71)

The canonical conservation requiresK(1) = 0 and by definitionK(0) = 0, which
are the properties of the scaling functionζ(q) we have mentioned before and it can be
shown thatζ(q) is convex, that isK

′′

(q) > 0. An important value is the “codimension
of the mean”C1 = C(1) = K

′

(1).

Going back to theβ model of Parisi and Frisch, we recall that it constitutes an example
of unifractal processes. The scaling function for theβ model is computed as

Kβ(q) = C1(q − 1), (2.72)

which is, as expected, a linear function ofq, and this observation lead to a suggestion
to measure the degree of multifractality of a process by measuring the deviation of its
scaling function from linearity. For instance, theKβ(q) of theβ model. It is known
that linear scaling functions points out to unifractal, or self-similar, processes. One can
see that theβ model is self-similar with the scaling exponentH = C1. Recall that
to construct multifractality, the constant scaling exponents are replaced by functions
H(q). Similarly, in this context, one has the scaling exponent functionC(q). A local,
in q, measure of multifractality is suggested as follows:

ρ = K
′′

(q)/K
′

(q), (2.73)

which is in fact a measure of the non-linearity ofζ(q). In case of unifractal processes,
we haveρ = 0.

We have seen in 2.4 that for Lévy processes, this dimension can be computed by its
Blumenthal-Getoor index, which is the index of stabilityα for α-stable processes. Note
that the casec > d, which results inD < 0, leads to the so called “latent” dimensions,
which is out of the scope of our study.

The investigation of the process in terms of its singularities and the shape of the singu-
larity spectrum, and itsLegendre dual, scaling function led to the construction of the
class “universal multifractals” by Schertzer and Lovejoy ([60]). Universal multifrac-
tals are particularly important for the definition of the stochastic equations that are the
solutions of multifractal processes. In the next subsection, we will briefly explain the
approach to universality through multiplicative cascades.
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2.3.4 Generalized Dimensions

The Hausdorff dimension is a member of the set of generalizeddimensions, defined
as the generalization of the box-counting dimension. The generalized dimensions are
used to construct the generalized dimension spectrum, which is also a characterization
of the stochastic processes and dynamical systems (see [19]for a brief discussion). The
generalized dimensions are also important for the study of multifractal models and the
concept of codimension.

Let us assume that we assign a probabilitypi to each nonempty celli. A trivial choice
of assignment would be to useni/N whereni is the number of points in theith cell
andN is the total number of points considered. When the total number of nonempty
cells isn, we write

D(q) =
1

q − 1
lim
ǫ→0

( log
∑n

i=1 p
q
i

log ǫ

)

, q ∈ R. (2.74)

Generalized dimensions for eachq contains specific information on the underlying
process. Forq = 1, we obtain the information dimension:

DI = lim
ǫ→0

( log
∑n

i=1 p
q
i

log ǫ

)

, (2.75)

and it is equal to the pointwise dimensionα in general:

p(l) ∼ lα, l → 0,

wherep(l) denotes the measure of a neighborhood of sizel. D(q) is called the corre-
lation dimension, and so on.

The spectrum of generalized dimensions characterizes the multifractal properties of a
process. Let us define a functionf(α) as the dimension of points with a pointwise
dimensionα, which is calledthe singularity spectrumin the multifractal framework.
The generalized dimensions have the following property:

D(q) =
1

q − 1

[

qα− f(α)
]

, (2.76)

and by computing the derivative we obtainα = d
dq

(

(q − 1)D(q)
)

andf(α) = (1 −
q)D(q) + qα.

Defined by Grassberger and Procaccia, the generalized dimensions emphasizes the
theoretical background of multifractals which extends to fractal geometry [20, 21]. It is
the dimensional properties that distinguishes multifractals and generalized dimensions
establishes the link between entropy and the fractal dimension of the process, and of
critical importance to our study.
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We have seen that the scaling exponentsζ(q) hold critical information about the mul-
tiscale characteristics of the process. However, one may need to obtain further in-
formation such as the predictability properties of a multifractal process, which is of
fundamental importance since the characteristic feature of chaotic dynamics is the
sensitive dependency to initial conditions. In the multifractal framework, this feature
is explained by the long-term scale dependent structure of autocorrelation function.
However, this explanation is in terms of average deviationsand causes loss of critical
local information. A natural candidate for the analysis of predictability of multifrac-
tals is the local Lyapunov exponents. Inspired by the study of Lorenz [33], Aurell et
al. have shown that one can define a multifractal characterization of a dynamical sys-
tem using the generalized dimensions of its local Lyapunov exponents. In fact, this
characterization constitutes the basis of our study. We will see in Chapter3 that using
Malliavin calculus techniques, it is possible to measure the local Lyapunov exponents
resulting from a perturbation of a stochastic process. Then, by estimating the gen-
eralized dimensions of these exponents, we will show that the multifractal behaviour
of the process manifests itself in the generalized dimensions of the local Lyapunov
exponents. Similar to the multifractal spectrum, the generalized dimension spectrum
of a multifractal process exhibit non-linear behavior and high variability. In case of a
unifractal process, the generalized dimensions will be of similar magnitude, and the
spectrum is a constant value along different orders of dimension. However, for mul-
tifractal processes, the dimensionsD(q) will show high variability, as we see for the
scaling functionsζ(q), and asq gets larger, we see a sharper decrease than linear or-
der. We will estimate the generalized dimensions of empirical data to show the listed
features in the following sections.

2.4 Examples of Multifractal Processes

Multifractal processes are built upon unifractal processes with the employment of the
method of multiplicative cascades. The choice of the unifractal process in fact deter-
mines the scale-invariance properties of the constructed multifractal process. Several
multifractal models are built according to this feature. Wewill mention some of the
most famous examples.

2.4.1 The Multifractal Random Walk

In financial modelling, multifractality is considered to exist in the volatility series of
financial prices. This approach is first employed by Mandelbrot et al. in [39] by
considering a time-change based on a multifractal random measure, which is called
the “trading time”. An equivalent approximation by Bacry andMuzy is suggested to
employ a multifractal process as the volatility coefficientof an Itô integral with respect
to a Brownian motion{B(t), t ∈ [0, T ]} ([4]). Let us consider the following process
{Pλ(t), t ∈ [0, T ], λ ∈ [λ0,Λ]} as a model for financial prices:
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Pλ(t) =

∫ t

0

exp(
1

2
γλ(s))dB(s), (2.77)

where we assume thatγλ(s)⊥W (s), ∀s ∈ [0, T ]. The Multifractal Random Walk
(MRW) P (t) is the limiting process:

P (t) = lim
λ→0+

Pλ(t). (2.78)

The resulting MRW is in fact equal in distribution to Mandelbrot’s MMAR model, that
is, a Brownian motion subordinated with a multifractal trading timeM(t). The MRW
exhibits the following scaling:

E[|P (t)|q] = σq 2
q/2Γ( q+1

2
)

Γ(1
2
)

Kq/2t
Kq , (2.79)

whereKq = T ζ(q)E[M([0, T ])q],Kq = q/2−ψ(q/2) andψ(q/2) is the scaling function
of the canonical measureM(dx) of the multifractal processǫλ(t).

2.4.2 Continuous Multifractals

Let us consider a variable scale ratio1 ≤ λ ≤ Λ, whereΛ is the fixed largest scale
ratio. IntroduceR = log Λ andr = log λ. The elementary scale ratio is nowλ1 =
λ,1/n = expR/n. The discrete cascade corresponds to introducing a stochastic kernel
M , and intervalsAp andBp such that (recall thatǫ(x) =

∏n−1
i=1 Wi,x)

Γ(x) = log ǫ(x) =
n−1
∑

p=0

M(Ap, Bp(x)), (2.80)

whereM(A,B) is a random variable depending only onm(A), resulting inψM(A,B)(q) =
m(A)ψ0(q). The intervalsAp andBp, responsible for the cascading behaviour are
given by:

Ap = [
pR

n
,
(p+ 1)R

n
], and Bp(x) = [x− K

2
exp(pR/n), x+

K

2
exp(pR/n)],

whereK = L/Λ is the resolution andλp1 = exp(pR/n).

The densification of the cascade actually corresponds ton→ ∞, transforms Equation
(2.80) into a stochastic integral and one can show that:

ǫΛ(x) = Λ−c exp(

∫ Λ

1

M(
cdλ

λ
,DλI0)(x)), (2.81)
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wherec > 0 is a parameter,I0(x) is the interval of the lengthK centered inx, andDλ

is the dilatation operator of factorλ.

The stochastic integral generates a multifractal field as can be seen via scaling of mo-
ments asE[ǫqΛ] = Λζ(q) with ζ(q) = c(ψ(q) − q). Moreover, the two-points statistics
can also be recovered.

The above approximation for the causal cascades can also be used with the assumption
that the position is time, and the past does not depend on the future. For this purpose,
the interval is modified asBp(t) = [t − K exp(pR/n), t]. This gives the following
causal stochastic evolution law for continuous multifractals:

ǫΛ(t) = Λ−c exp(

∫ Λ

1

M(
cdλ

λ
, [t−Kλ, t]). (2.82)

Finally, let us consider an important family, log-Stable multifractals, including the log-

normal case. Stable laws are infinitely divisible;M(kA)
d
= k1/αM(A) for k > 0

constant, and0 < α ≤ 2 is the Ĺevy index. This result inψ0(q) = qα; when
α < 2, the second Laplace characteristic function is defined for positive moments only
for asymmetric laws for which hyperbolic pdf corresponds tonegative fluctuations,
P(−X > x) ≈ x−α, whereas positive fluctuations have an exponential decay. Then,
by splitting Equation (2.80) into two integrals, corresponding to backward and forward
domains, and introducing the change of variablesu = x− K

2
λ andv = x+ K

2
λ respec-

tively, one obtains, with the Ĺevy measueLα(du) = M(du, [u, x]) a stable stochastic
integral:

ǫΛ(x) = Λ−c exp(

∫

A(x)

|u− x|−1/αdLα(cu)) (2.83)

whereA(x) = [x−X/2, x−K/2]∪ [x+K/2, x+X/2] andΛ = X/K.This equation
corresponds to the exponential of a fractional integration(over a limited domain) of
order(1 − 1

α
) of a Lévy-stable noise. When the position is in time, we obtain witha

fixed scale ratioΛ = T
K

:

ǫΛ(x) = Λ−c exp(

∫ t−K

t−T

(u− x)−1/αdLα(cu)) (2.84)

whereLα(cu)
d
= c1/αLα(u).

2.4.2.1 Continuous Universal Multifractals

One important point is that we have considered mainly discrete-in-scale multiplicative
cascades, and yet have not presented any results regarding the continuous time limit
of multiplicative cascades with infinitely divisible, or more specifically,α stable gen-
erators. Let us recall that we have definedǫλ = exp(Γλ), whereλ = L/l indicates
the scale ratio under consideration, whereL is the largest scale andl is the time scale
(resolution) at scale ratioλ. We write
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∂ǫλ
∂λ

= γλǫλ, γλ =
∂Γλ

∂λ
, (2.85)

whereγλ is the infinitesimal generator of the cascade. One question arises is how one
can define a continuous time multifractal process. It turns out that this can be done in
a formal way as follows [51, 52]:

ǫ ≡ lim
λ→∞

ǫλ = exp(Γ), (2.86)

where we also defineΓ = limλ→∞ Γλ. By takingλ → ∞, we takel → 0 and obtain
a continuous in scale (and therefore in time) multifractal process. Our fundamental
concern is, as expected, to build a continuous model that demonstrates multiple scaling
which implies logarithmic divergence of the moments ofǫλ asλ→ 0:

E[ǫqλ] ∼ λζ(q) ⇒ E[exp(Γλ)
q] ∼ exp(ζ(q) ln(λ)).

To stay within the borders of the universal multifractals, one chooses a fractionally
integrated, of orderh, α-stable Ĺevy processγλ as the generator of the cascade:

Γλ(x) = gλ ∗ γλ(x).

wheregλ ∗ γλ(x) ∼ |x|−h and restricting the domain of integration to the interval
Dλ : {|x′ | ∈ [L/λ, L]}, we write

Γλ(x) =

∫

Dλ

dx
′ |x′ |−hγλ(x− x

′

), (2.87)

we obtain the following form for the generator:

Γλ(x) = (

∫

Dλ

dx
′ |x′ |−αh)1/αγ + γ0, (2.88)

which results in the following scaling function

E[Γλ(x)] = exp((qα
∫ L

L
λ

dx
′ |x′ |−αh + qγ0), (2.89)

whereγ0 is a recentering parameter to ensure the canonical conservation of the mass is
satisfied in the multiplicative cascade. For obtaining the desired logarithmic divergence
of scaling function inλ, that is
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∫ L

L/λ

dx|x|−αh ∼ ln(λ),

it is required that

|x|−αh ∼ |x|−d,

whered is the dimension of the embedding space, which givesh = d
α
. This result

shows that the index of stability,α, also determines the order of fractional integration
of theα-stable Ĺevy process, to obtain universal continuous multifractals.

2.5 Empirical Analysis Procedures

Multifractal processes exhibit fundamental properties ofthe financial markets and fur-
thermore it is possible to characterize the distribution offinancial prices using only a
small number of parameters. As usual, to be able to employ multifractal processes, it is
necessary to check whether the underlying sample exhibits the characteristic features
of multifractals. Recall that the main features consist of long-range correlations in re-
turn amplitudes, multifractal scaling and scale-invariance. The analysis of the data in
terms of scaling function, codimension functions and moment generating function can
be used to identify if it is appropriate to employ multifractals in the modeling process.
Let us briefly summarize some of the analysis techniques available for multifractal
analysis.

2.5.1 Structure Functions

This is the most frequently used method since it is built solely on the definition of
scale-invariance. Multifractal processes are processes that satisfy multiple scaling, a
property that requires a specific form of the scaling function ζ(q). It is therefore natural
to compute the empirical moments at various time-scales andexamine its form to detect
the non-linear scaling of a multifractal process. In fact, we have already reported the
estimator of the scaling function based on the structure functions in Equation (2.62):

K̂(q) = ln
(

N−1
∑

i=0

|X(i∆t,∆t)|q
)

/ ln(∆t). (2.90)

Computation of the empirical scaling functionζ(q) reveals the scaling characteristics
of the process. A linear structure in logarithmic coordinates suggests unifractality
while non-linearity is a sign of multifractality [39].
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2.5.2 Detrended Fluctuation Analysis

An important consideration in the analysis of structure functions is local trends, season-
alities and/or non-stationarities present in the data. A method developed to overcome
these possible issues is themultifractal detrended fluctuation analysis(MFDFA) (see
[24]). The MDFA algorithm detrends the subsamples at different scale ratiosλi, and
then explores the scale dependent moment structure via cumulative series. MFDFA is
used to estimate the scaling function and the singularity spectrum via estimating the
“generalized Hurst exponent”H(q), which is related to the scaling functionζ(q) as:

ζ(q) = qH(q)− 1.

Using the scaling functionζ(q), then, as we have seen, it is possible to compute the
singularity spectrum via a Legendre transform:

f(α) = qα− ζ(q),

whereα = K
′

(q). Furthermore, we can estimate the generalized dimensions:

D(q) = qf(α)− ζ(q), (2.91)

which is of essence for our study as we will see in the next chapter where we will
estimate the generalized dimensions of the price-volatility feedback effect rate series.

2.5.3 Double Trace Moments

The Double Trace Moments (DTM) of technique, defined by Lavallee in ([32]) aims
to detect the scaling behaviour of the multifractal processby first taking itsηth power
at the scale ratioλ ≤ Λ and define:

ǫηλ,Λ =
(ǫλ)

η

E[(ǫλ)η]
E[(ǫΛ)

η],

which has the following scaling structure:

E[ǫηλ,Λ] ≈ λK(q,η),

whereK(q, η) is called thedouble trace moment scaling exponentand related to the
usual scaling function with the following equality:

K(q, η) = K(qη)− qK(η),
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Table 2.1: Sample statistics for datasets

Dataset Mean Median St. dev. Skewness Kurtosis
BIST30 7.1473e− 06 0 0.0029 −1.3 102.9986
USD/TRY 0 0 0.0007 −0.3085 38.0840
EUR/USD 0 0 0.0011 −0.1813 33.1317

andK(q, 1) = ζ(q).

The DTM method is especially useful to obtain parameter estimates for the universal
multifractal processes:

K(q, η) = ηαζ(q).

Therefore, one can estimateα by plottingK(q, η) againstη in logarithmic coordinates.
The linear fit gives the estimate ofα.

2.6 Empirical Results

In this study, we employed multifractal analysis to three datasets:5 minute observa-
tions of BIST30 index between4.1.2007 and 29.4.2010, 15 minute observations of
USD/TRY between4.1.2016 and22.1.2016 and1 hour observations of EUR/USD ex-
change rate between12.6.2013 and17.12.2013. The BIST30 dataset includes the crit-
ical 2008 period, where the global crises have caused turbulence in financial markets
worldwide. The USD/TRY and EUR/USD exchange rates are chosentwo compare
their multifractal characteristics here first and their stability properties in Chapter3.
The obtained results suggest that all three datasets feature multifractality via bursts of
volatility, non-linear structure of the scaling exponent and local discontinuities.

Let us first summarize some statistical properties of the datasets used:

The datasets we use in our analysis share some common features listed below:

• Near zero mean and median,

• Low volatility over the whole sample,

• Negative skewness and excess kurtosis.

Excess kurtosis is one of the stylized facts of financial returns. However, we are inter-
ested in the change in the statistics with the changing time scale. As usual, we expect
the return series converge to a Gaussian distribution as thetime scale increases.
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Table 2.2: Time scale and statistics for USD/TRY returns

Time scale Mean Median St. dev. Skewness Kurtosis
15 min 0 0 0.0007 −0.3085 38.0840
30 min 0 0 0.001 −0.2391 27.2431
60 min 0 0 0.0014 −0.757 27.2913
120 min 0 0 0.002 −0.8972 19.9106

We see that for USD/TRY sample, as the time scale increases, the volatility increases
whereas the kurtosis decreases. The skewness of the sample also increases in magni-
tude towards the more negative values. Since we are not interested in the precise time
scale at which the sample is quasi-Gaussian but how the sample moments change as
the time scale changes, we proceed to multifractal analysisof the datasets.
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Figure 2.4: Comparison of scaling functions for BIST30 Index

We quantitatively measure the multifractality in datasetsvia the non-linearity of the
scaling functions, the generalized dimensions and the generalized Hurst exponents,
which are estimated using the Multifractal DFA method [24].

Singularity spectrums of all three datasets also support our observation that multifrac-
tal scaling is present in the return series of EUR/USD, BIST30 and USD/TRY. The
spectrums vary significantly when compared to the spectrum of a Brownian motion.

We proceed with the estimation of generalized Hurst exponentsH(q) for BIST30 re-
turns and a standard Brownian motion to check whether the desired multifractal scaling
could be obtained. The generalized Hurst exponents of the return series emphasizes
the multifractal nature of the three datasets analyzed in Figure 2.7.

We interpret the estimated scaling exponents as the degree of multifractality varies be-
tween datasets. The scaling exponent of USD/TRY is almost linear and it is the closest
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to unifractal behavior among the three datasets. We can alsosee that its singularity
spectrum is symmetrical with the most probable singularityof around0.5 in Figure
2.5. For BIST30 and EUR/USD datasets, however, the multifractal behavior is easier
to see with non-linear scaling functions, asyymetric and skewed singularity spectrums.

2.7 Conclusion of Empirical Results

Our analysis suggest that although of different levels of significance, all three datasets
exhibit multifractal features. The generalized Hurst exponentsH(q) differ signifi-
cantly from the Brownian motion value of0.5. We see weak signs of multifractality in
USD/TRY return series. This may be a result of the particulartime period chosen or the
relatively low number of observations in the data sample. The multifractal behavior of
BIST30 and EUR/USD series can be seen via the generalized Hurstexponents, scaling
exponents and the singularity spectrums. One can interpretthat for large time scales,
the volatility of USD/TRY would exceed the volatility of BIST30 and EUR/USD re-
turns. The variability of USD/TRY series do not seem to differ with changing time
scales.

By looking at the value ofH = H(1), the usual Hurst exponent for the three datasets,
we see the anti-persistent nature of EUR/USD returns whereasthe returns of both
USD/TRY and BIST30 series are persistent. This may be a resultof the very high
trade volumes and orders for EUR/USD exchange rate, which maycause very fast
reversion to mean and low volatility. Similarly, the effectof positive or negative return
observations do not easily vanish for USD/TRY and BIST30 series. The observed
persistence may be used to build trading strategies.
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CHAPTER 3

STABILITY PROPERTIES OF STOCHASTIC PROCESSES

It is the usual assumptions in financial modeling practice that the investment decisions
are based on two main drivers of asset prices: the risk and thereturn of a financial
asset. While it is much more straightforward to define the return on an asset, e.g. the
change in its value through time, the risk of an asset is even difficult to define. The
usual practice is to use the volatility as the fundamental measure of risk. However, as
the markets evolve to a more complex structure and markets witnessed new type of
crises, practitioners and investors invented new risk measures.

The latest big financial crisis in2008 have added a new type of risk the investors
did not taking seriously before: The liquidity risk. A sudden drain of liquidity in
the market induces large price movements as the investors with large asset portfolios
would consider liquidating some of their holdings to reducethe risk of falling prices.
However, liquidity shocks result in widening bid/ask spreads and the more investors
trying to sell their assets paradoxically put pressure on prices. After2008, maintaining
the stability in markets have become one of the main targets of central banks and
financial authorities.

The stability of financial markets can be, in some context, defined as a market’s ability
to absorb “small” price fluctuations [6]. Conversely, instability refers to an easily
altered path of asset prices, where one considers the fluctuations as perturbations of
the price process. Therefore, the notion of stability is closely related to the reactions
of a market to perturbations. The behavior of a (stochastic)process under perturbation
can be analyzed using dynamical systems approach where the stability of the process
is measured viaLyapunov exponents.

Lyapunov exponents are introduced to measure the stabilityof dynamical systems. It
is later extended to semi-martingales by X. Mao [43] and Arnold [1]. The stability
behaviour of both It̂o and Stratonovich type stochastic differential equationsare exten-
sively studied. Furthermore, Lyapunov exponents of multifractal processes are recently
studied and the so-calledgeneralized Lyapunov exponentsare shown to be related to
the entropy of the process [2, 61].

In a more recent study, Barucci et al. have analyzed the stability of stochastic pro-
cesses, It̂o processes specifically, by employing Malliavin calculus techniques and
proposed a stability index, the so-calledprice-volatility feedback effect rate[6]. In
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this study, we show that the price-volatility feedback effect rate is the Lyapunov ex-
ponent of theGirsanov factorfor the change of measure induced by infinitesimal per-
turbations of a stochastic process through time. This claimis in line with the idea that
the price-volatility feedback effect rate is a stability index, as Lyapunov exponents are
used to decide whether a process is stochastically stable ornot.

In the following section we briefly summarize the definition of, and some important
results regarding Lyapunov exponents in the context of stochastic processes.

3.1 Lyapunov Exponents and Stochastic Stability

Lyapunov exponents are roughly the exponential rate of change of a process. It is
introduced as an indicator of the stability in the sense we will briefly explain below.
As the theoretical background of Lyapunov exponents is mostly beyond the scope of
this study, we briefly summarize some of the results mentioned in [1]. Let us consider
an SDE of the form:

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), (3.1)

where{W (t), t ∈ [0, T ]} is a Brownian motion,a(·) andb(·) areR valued functions
which satisfy the existence and uniqueness conditions andX(0) = x0 ∈ R. Let us
further assume thata(t, 0) = b(t, 0) = X(t, 0) = 0. Then it is said that SDE in
Equation (3.1) admits the trivial solutionx(t, 0) ≡ 0 Let us state the definition of
stochastic stability ([43]):

Definition 3.1. The trivial solution of Equation (3.1) is said to bestochastically stable
or stable in probabilityif for every pair ofǫ ∈ (0, 1) andr > 0, there exists aδ =
δ(ǫ, r) > 0 such that

P({|X(t; x0)| < r, ∀ t ≥ 0}), (3.2)

whenever|x0| < δ. Otherwise, it is said to bestochastically unstable.

Stochastic stability can be detected via the Lyapunov exponents, more precisely the
sign of the Lyapunov exponents. The stability of a process can be defined as its insen-
sitivity to changes in the initial conditions. The sensitivity to initial conditions is also
a subject of financial modeling where the option Greek Delta measures the sensitivity
of the option price with respect to changes in the initial condition. Let us mention the
definition of the Lyapunov exponent of a SDE in an informal manner [43]:

Λ(x0) = lim
t→∞

1

t
log |X(t, x0)

x0
|, (3.3)

where the quantityΛ(x0) is called the Lyapunov exponent ofX(t, x0). A negative
Λ(x0) value indicates stochastic stability whereas a positive one implies instability.

48



More precisely, a positive Lyapunov exponent implies sensitive dependence on the
initial conditions, a feature of chaotic dynamical systems. One can see from Equation
(3.3) that the Lyapunov exponents are time averages of the local quantitylog |X(t, x0)|.

In a similar fashion, local Lyapunov exponents are defined based on the expansion rate
of the perturbation of a dynamical system. Let us assume an initial perturbation of
ω(0) = ω0 of the process and define the local Lyapunov exponents (LLE) as follows
[8, 61]:

Λ(t, x0) =
1

t
log |ω(t)

ω0

|, (3.4)

with dω(t)/dt = Λ(t, x0)ω(0). The idea is that in chaotic systems, the initial pertur-
bationω0 will expand exponentially in accordance with sensitive dependency to initial
conditions.

A similar argument is used by Barucci and coworkers to define the price-volatility
feedback effect rate [6]. In the next section, we will show that the price-volatility feed-
back effect rate is in fact the LLE of the so-called Girsanov factor that is responsible
for the change of measure induced by a perturbation ofω0 of the underlying process.
The critical feature of the LLEs is that they fluctuate according to a probability distri-
butionP(Λ, t). Therefore, one can define moments of various orders of LLEs,which
are called generalized Lyapunov exponents (GLE) [61]:

L(q) =
1

q
lim
t→∞

1

t
logE[|ω(t)

ω(0)
|q], (3.5)

and fort >> 1, the following form of the distribution is obtained [8, 61]:

P(Λ, t) ∼ exp[−tf(Λ)], (3.6)

wheref(Λ) denotes the entropy function and, just previously done in the multifractal
framework, one can show that it is related to the GLEs via the Legendre transform:

f(Λ) = max
q

(qλ− qL(q)). (3.7)

By comparing Equation (3.7) to Equation (2.58), one can see that f(λ) ∼ c(h) and
K(q) ∼ qL(q). This relation implies that the Lyapunov exponents are of similar
order to singularities of a multifractal process, which is straightforward to see since
both quantities are responsible for the expansion of the underlying process. A more
important result is obtained by Aurell et al. in [2], where the authors analyzed the
predictability problem for multifractals.

Suppose that an infinitesimal perturbation of initial sizeδ grows to a thresholdθ af-
ter the so-calledpredictability timedenoted byT (δ, θ). The “finite-size” Lyapunov
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exponent (FSLE) is then defined as:

Λ(δ, θ) =
〈

[
1

T (δ, θ)
]
〉

ln(
δ

θ
), (3.8)

where
〈〉

denotes statistical average. Then, it is shown that the FSLEhas the scaling
exponent

χ(q) = min
q
(1 +

2−D(q)

q
),

which is “a new invariant of the multifractal approach to turbulence”. This result has
motivated us to investigate the dimensional properties of the LLE by estimating the
generalized dimensions.

3.2 The Price-Volatility Feedback Effect Rate

The price-volatility feedback effect rate is developed as astability, or liquidity, index
for financial markets in [6] and later applied to BIST30 index to analyze the (market)
stability characteristics of the index in [46]. The market stability refers to the ability
of the market to absorb relatively small price fluctuations.This definition is in fact
closely related to the stability concept introduced by Lyapunov.

To properly capture the motivation behind the price-volatility feedback effect rate, we
first mention the pioneering study of Fournié et al. [18]. In their study, authors have
employ Bismut-Elworthy-Li formula [9], [16] to suggest a newmethod to estimate the
Greeks. The Greek Rho, the sensitivity of the option price to the changes in the mean
rate of return, or the drift, parameter, can be used to investigate the stability properties
of a stochastic process with respect to random perturbations at random times. Let us
briefly summarize how the connection between the change of measure and the stability
is established via Malliavin calculus techniques.

3.2.1 Change of Measure and Parametric Sensitivities

In financial practices, one seldomly thinks in marginal terms. The alchemy of financial
markets is the relative value, or the sensitivity, of the value of asset classes with respect
to each other, as the obvious opportunities are easily captured, it is the hidden patterns
that makes the difference. In turn, a multi-correlated, dense structure of financial mar-
kets have evolved. It is still uncertain what drives the prices most of the time as the
reasoning generally lags behind the movement. However, onecan interpret changes
in the prices as the changes in the underlying measure of the investors through which
they measure the price of risk and manage investment decisions accordingly.
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Fourníe et al. suggested that the changes in the price levels of a financial asset re-
sults from the changes in the underlying measure. Consider a functionalφ(·) of the
price process of a financial asset. The price of this payoff functional is computed via
conditional expectations with respect to two equivalent probability distributions [18]:

Change in price = EQ0 [φ]− EQ[φ] (3.9)
= EQ0 [φ× υ], (3.10)

where the Malliavin weightυ is defined as follows:

υ =
dQ− dQ0

dQ0

. (3.11)

When one considers a parametrized familyQν of distributions with parameter setν =
{νi}, i = 1, . . . , n, we have the following result:

∂

∂νi
EQ0 [φ] = EQ0 [φ× υi], (3.12)

with Z = dQ
dQ0

andυi = ∂Z
∂νi

, which states thatυi is the logarithmic derivative ofQ at
Q0 in theνi direction.

The Malliavin weight is defined based on the change of measurearguments: it is the
logarithmic derivative of the Radon-Nikodym derivative processZ in a specific direc-
tion. In general, to compute the Greeks, Equation (3.12) is employed withνi = 1, i.e.
a unit change along the axis. Now consider the Greek Rho, the sensitivity of the price
of the contingent claimφ with respect to the changes in the mean rate of return, or the
drift, parameter.

3.2.2 Perturbation and the Feedback Effect Rate

Assume that the functionφ bay be such that it can depend on the whole history of the
process{X(t), 0 ∈ [0, T ]} satisfyingE[φ(X(·))2] < ∞. Consider the reference path
as in Equation (3.1) and the perturbed path, or process, as follows:

dXǫ(t) = [a(t,X(t)) + ǫγ(t,Xǫ(t))]dt+ b(t,X(t))dW (t), (3.13)

where ǫ ∈ R is a small parameter andγ : [0, T ] × Rn → Rn is bounded. The
infinitesimal random perturbation ofX(t) induces a change of measure through the
Radon-Nikodym derivative processdQ0

dQ
:

Zǫ(T ) = exp
(

− ǫ

∫ T

0

γ(X(t))

b(X(t))
dW (t)− ǫ2

2

∫ T

0

(
γ(X(t))

b(X(t))
)2dt

)

, (3.14)
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and its logarithmic derivative atQ0 in theγ direction results in the Malliavin weight
for the Greek Rho (see [18]):

∫ T

0

γ(X(t))

b(X(t))
dW (t). (3.15)

Barucci et al. coins the termthe Girsanov factorfor the ratioγ(X(t))
b(X(t))

and investigates its
dynamics for a special choice of perturbation by choosingγ(X(t)) as the first variation
process and define the price-volatility feedback effect rate.

The causality behind volatility feedback effect is the time-varying risk premium on the
underlying asset. In [6], this causality is used to relate volatility feedback effect to
Girsanov transformation and Malliavin calculus notions. We start by defining thefirst
variationof X(t), Y (t) = ∂

∂x
Xx(t), t ∈ [0, T ]:

dY (t) = µ
′

(Xx(t))Y (t)dt+ σ
′

(Xx(t))Y (t)dW (t), Y (0) = 1. (3.16)

Now suppose that we chooseγ(X(t)) := Y (t) and analyze the change of measure
induced by an infinitesimal random perturbation byǫY (t), whereǫ is a small real pa-
rameter. We have seen in Equation (3.14) that this perturbation defines a new Brownian
motion{B̃(t), t ∈ [0, T ]} under the new measureQ0:

dB̃(t) = ǫ
Y (t)

σ(S(t))
dt+ dB(t), (3.17)

wherez(t) = Y (t)
σ(S(t))

is called therescaled variation. In line with the dynamical sys-

tems framework, one can think ofB(t) as the reference sample path andB̃(t) as the
perturbed path, and Equation (3.17) shows that the perturbation of the processX(t)
by ǫY (t) results in the change of the measure by the rescaled variation z(t). Volatility
feedback effect rate is defined as the change in the rescaled variaton of a stochastic pro-
cess through time and in this context it allows us to analyze how the measure is affected
by perturbations at different times. The following theorem, which is first proposed in
[6] plays an important role in our study:

Theorem 3.1.The rescaled variation is a differentiable function with respect tot, with
its logarithmic derivativeλ(t) being called the feedback effect rate. Thus we have

Z(t) = exp (

∫ t

s

λ(τ)dτ)Z(s), s≤ t, (3.18)

wheret ∈ [0, T ].

Proof. We closely follow the proof in [6]. Let us first obtain the differential equations
that defineσ(·) and 1

σ(·)
. Applying Itô formula tof(x) = σ(x) and g(x) = 1

σ(x)
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respectively, which satisfy the usual regularity assumptions, we can write

dσ(X(t)) = σ
′

(X(t))(µ(X(t))dt+ σ(X(t))dB(t)) +
1

2
σ

′′

(X(t))σ2(X(t))dt,

d(
1

σ(X(t))
) = −σ

′

(X(t))

σ2(X(t))
µ(X(t))dt− σ

′

(X(t))

σ(X(t))
dB(t)− 1

2
σ

′′

(X(t))dt

+
(σ

′

(X(t)))2

σ(X(t))
dt.

Then we obtain the differential equation forZ(·) as follows:

dZ(t) = d(
Y (t)

σ(X(t))
)

= Y (t)d(
1

σ(X(t)
) +

1

σ(X(t)
dY (t) +

〈

dY (t), d(
1

σ(X(t))
)

〉

=
Y (t)

σ(X(t))
(−σ

′

(X(t))

σ
(X(t))µ(X(t))dt− σ

′

(X(t))dB(t)

−1

2
σ(X(t))σ

′′

(X(t))dt+ (σ
′

)2dt+
Y (t)

σ(X(t))
(σ

′

(X(t))dB(t)

+µ
′

(X(t)dt))− Y (t)

σ(X(t))
(σ

′

)2dt,

where〈·, ·〉 denotes the quadratic covariation. The logarithmic derivative of Z(t) can
be expressed as follows:

dZ(t)

Z(t)
=

[

µ
′

(X(t))− σ
′

(X(t))

σ(X(t))
µ(X(t))− 1

2
σ(X(t))σ

′′

(X(t))

]

dt.

Let us definedZ(t)
Z(t)

= λ(t)dt. Integrating both sides froms to t yields

lnZ(t)− lnZ(s) =

∫ t

s

λ(τ)dτ,

which gives

Z(t) = exp (

∫ t

s

λ(τ)dτ)Z(s),

whereλ(t) is defined as

λ(t) = −1

2

[

−2µ
′

(X(t)) + 2µ(X(t))
σ

′

(X(t))

σ(X(t))
+ σ(X(t))σ

′′

(X(t))

]

. (3.19)
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Theorem (3.1) states the basis of our study: the feedback effect rate is the LLE of
the rescaled variation process, which is responsible for the measure transformation
resulting from a perturbation of the stochastic processX(t). This claim is supported
in [38] since the authors stated that the volatility feedback effect rate can be seen as
the appreciation rate of the rescaled variation and that while large positive values ofλ
indicates market instability, negative feedback effect rate values imply market stability
in the sense that the market oscillates around an equilibrium state. We have already
seen in Definition (3.1) that, negative Lyapunov exponents indicate stochastic stability
of the underlying SDE by means of its reactions under random perturbations. The
following proposition explains the relation between negativity of the feedback effect
rate and the duration of the effect of perturbations on the process, which results in
what the authors uses the termremote memory, which should not be confused with the
long-memory observed in fractional Brownian motions in caseH > 1/2.

Proposition 3.2. Assume thatµ = 0. Furthermore assume that there existsδ > 0
such that the price-volatility feedback effect rate associated to price process defined by
Equation (3.24) satisfies

λ(t) < −δ, ∀t ∈ [0, T ].

Then, the market has no remote memory (that isZ(t) → 0 as t → +∞). More
precisely, we have the estimate

|Z(t)| ≤ exp(−δ(t− t0))|Z(t0)|, ∀t ∈ (t0, T ].

Proof. See [38] for the proof of this proposition.

The feedback effect rate, the LLE of the rescaled variation,is not a constant quantity
and oscillates with the transition of the underlying stochastic process between stabil-
ity and instability in the sense that the increase and decrease in the sensitivity of the
underlying process to random perturbations. This feature of fluctuating feedback rates
can be compared to features of multifractal processes that can be observed as volatility
clustering, intermittency and the decreasing dimension ofthe sets upon which large
singularities are observed, i.e. the definitive duality of multifractals. Since one can
consider multifractals as random measures as well as randomprocesses, a continuous
change of measure is observed through both time and scale. Since the feedback effect
rate corresponds to LLEs of the rescaled variation, dimensional properties would co-
incide with that of a multifractal process. We will in fact display this feature of the
feedback effect rate in our empirical analysis.

Let us briefly summarize how the feedback effect rate is computed in the next subsec-
tion.

3.2.2.1 Quadratic Variation and Covariations

To compute volatility feedback effect rateλ(.), we need to know the analytic expres-
sions ofσ(·) andµ(·) in advance, which is generally not the case in applications.One
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can overcome this difficulty by using non-parametric methods for estimation of high-
frequency volatility and covariance series. For this purpose, Malliavin and Mancino
developed a non-parametric method based on Fourier analysis to compute time series
volatility for semimartingales in [37]. In what follows,〈·, ·〉 denotes quadratic covari-
ation. Let us first give the representations of the quantities needed as follows

〈dX(t), dX(t)〉 = Adt, 〈dX(t), dA(t)〉 = Bdt, 〈dB(t), dX(t)〉 = Cdt.

So, the instantaneous quadratic variation and covariatonsare defined as functions of
time. Furthermore, the following theorem in [6] states thatvolatility feedback effect
rateλ(·) can be expressed as a function ofA, B andC. Note that, in this setting,
the variance of the log return series is equal toA, the quadratic covariation between
log return and log return variance series is equal toB. Hence,C is the quadratic
covariation betweeenB and the log return series.

Theorem 3.3.The volatility feedback effect rate functionλ(·) can be expressed as

λ(t) =
3B2

8A3
− C

4A2
+ µ

′

(X(t))− µ(X(t))
B

2A2
. (3.20)

Proof. We first observe thatAdt = σ2(X(t))dt. To compute B, which is defined as
the quadratic covariation between return and return variance, we will first compute the
differential form ofA, which can be expressed as:

d(σ2(X(t))) = 2σ(X(t))σ
′

(X(t))dX(t) +
1

2
2σ

′

(X(t))(σ
′

(X(t)σ(X(t)))2.

Then,

Bdt = 〈dX, dA〉 =
〈

dX, 2σ
′

σdX
〉

and σ(X(t))σ
′

(X(t)) =
B

2A
.

Using these equations, we can write

〈

dX, 2d(σ(X(t))σ
′

(X(t)))
〉

=

〈

dX, 2d(
B

2A
)

〉

= 2
[

σ
′′

(X(t))σ(X(t)) + (σ
′

(X(t)))2)σ2(X(t)
]

dt

=
A 〈dX, dB〉 −B 〈dX, dB〉

A2
. (3.21)

Substituting Equation (3.21) in Equation (3.19), we obtainthe following representation
of λ :

λ(t) =
3B2

8A3
− C

4A2
+ µ

′

(X(t))− µ(X(t))
B

2A2
, t ∈ [0, T ].
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3.2.3 Estimating Volatility

The Fourier series method to estimate volatility was first proposed in [37]. The method
requires computation of Fourier coefficients of the series.After computing the coef-
ficients, it is possible to reconstruct the series using Fourier-Féjer inversion formula.
The first step in applying the method is scaling the original sampling interval to[0, 2π].
Moreover, the series that we will compute the coefficients must be detrended in such a
way that we will haveX(0) = X(2π). The Fourier coefficients of the series are then
computed using the following equations:

a0(dX) =
1

2π

∫ 2π

0

dX(t), ak(dX) =
1

π

∫ 2π

0

cos(kt)dX(t),

bk(dX) =
1

π

∫ 2π

0

sin(kt)dX(t), t ∈ [0, 2π].

(3.22)

Applying integration by parts and previous-tick interpolation scheme, in order to avoid
any bias in the computation of volatilities (see [7]), the integral equation forak(dX) in
equation (3.22) can be approximated by:

ak(dX) =
X(2π)−X(0)

π
+

∫ 2π

0

sin(kt)X(t)dt.

Previous-tick interpolation assumesX(t) = X(ti) on [ti, ti+1], this assumption leads
to the following approximation:

k

π

∫ ti+1

ti

X(t)dt = X(ti)
1

π
[cos(kti)− cos(kti+1)].

Then, we can compute the Fourier coefficients ofX by the following equation:

ak(dX) =
X(2π)−X(0)

π
+

N
∑

i=1

X(ti)
1

π
[cos(kti)− cos(kti+1)].

The modified coefficients defined below are used in the computation of volatility series
in order to guarantee its positivity (see [38] for details):

a∗k =

{

ak(dp) for k > 0,
a−k(dp) for k < 0 ,

b∗k =

{

bk(dp) for k > 0,
−b−k(dp) for k < 0 ,

with a∗0 = b∗0 = 0. The Fourier coefficients of the volatility series are represented in
terms ofa∗k andb∗k are as follows:

ak(A) = lim
N→∞

1

2N + 1

N−k
∑

s=−N

[a∗s(dX)a∗s+k(dX) + b∗s(dX)b∗s+k(dX)],

bk(A) = lim
N→∞

1

2N + 1

N−k
∑

s=−N

[a∗s(dX)b∗s+k(dX)− b∗s(dX)a∗s+k(dX)].
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Finally, the volatility series are reconstructed using theFourier-F́ejer inversion formula
given by

A(ti) = lim
N→∞

N
∑

k=0

(1− k

N
)[ak(A) cos(kti) + bk(A) sin(kti)].

We iterated Fourier series method three times to computeA, B andC. The sensitivity
and the resolution of the quantity decreases at each iteration and in order to avoid
estimation errors in these computations, a smaller number of coefficients in the Fourier-
Féjer inversion formula is used. It is shown in [7] that Fourier series method results
in an unbiased estimator of volatility. The coefficients ofA are used to obtain the
coefficients ofB, and then the coefficients ofB are used to obtain the coefficients of
C [6]. After all three quantities computed, the volatility feedback effect rate can be
computed using Equation (3.20).

3.2.4 Instantaneous Volatilities and the Feedback Effect Rate

To investigate market stability, or more specifically the stability of a chosen asset price
process, we employ the Fourier method to estimate the instantaneous feedback effect
rate values. Since the feedback rate is suggested as a measure of market stability in
terms of market liquidity, we have chosen arguably the most liquid exchange rate in
the world, the EUR/USD exchange rate, and two relatively illiquid datasets, BIST30
index and USD/TRY exchange rate.

In what follows, assume that the stock priceS(·) follows a diffusion process in the
form given below:

dS(t) = µ̃(S(t))S(t)dt+ σ̃(S(t))S(t)dB(t); S(0) = s ∈ R+, t ∈ [0, T ].(3.23)

whereµ̃(·) andσ̃(·) are deterministic functions that are continuously differentiable and
satisfy the usual assumptions [38]. We further assume that volatilities are functions of
price levels. Hence, the dynamics of the logarithmic price processX(t) = log(S(t))
has the following form:

X(t) = log(S(0)) +

∫ t

0

[µ̃(S(s))− 1

2
σ̃2(S(s))]ds+

∫ t

0

σ̃(S(s))dB(s). (3.24)

For simplicity, let us defineµ(x) := µ̃(exp(x))− 1
2
σ̃2(exp(x)) andσ(x) = σ̃(exp(x))

to obtain the following stochastic differential equation (SDE) forX(t):

dX(t) = µ(X(t))dt+ σ(X(t))dB(t), X(0) = log(s) = x.

We first estimate the instantaneous volatilities of the return series where we observe
characteristic features of financial volatility such as clustering and extreme observa-
tions.
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Figure 3.1: BIST30 returns and instantaneous volatility estimations

The BIST30 sample includes the observations during the2008 crisis and we observe
large volatility estimations around July and August2008. An important point is that
before July2008, volatility levels are very low, without any significant clustering ef-
fect. However, after the extreme volatility observed around September, we also ob-
serve large positive feedback effect rate values and after that date, the volatility levels
increase and on the other hand, feedback estimations decrease to before crisis levels
and we observe a significant upward movement in the index maintained until March
2010, where the higher volatility are coupled with negative or small feedback values
result in the stable behavior of the market.

Volatility series of EUR/USD observations between January2016 and January2018
is very low. During the almost two year period we observe verylow variability and
the exchange rate oscillates between1.2 and1.3 levels. When we analyze the joint
behavior of volatility and the feedback effect rate we observe that during periods with
higher volatility, the feedback effect is negative, resulting in the observed stability of
the exchange rate.

The feedback series of USD/TRY and BIST30 index takes both positive and negative
values with large magnitudes. The large positive feedback observations point out to
instability in the sense that the market is not liquid enoughto handle small fluctua-
tions, which effectively implies that prices are easily effected by marginal buy and sell
transactions of significant levels.

3.3 Generalized Dimensions of the Feedback Effect Rate

Feedback is a characteristic feature of chaotic dynamical systems. However, the ma-
jority of multifractal models does not feature feedback. The sensitive dependency
to initial conditions point out to chaotic behavior of the underlying process or sys-
tem, which is assumed to manifest itself in the autocorrelation structure of multifractal
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Figure 3.2: EUR/USD returns and instantaneous volatility estimations
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Figure 3.3: USD/TRY returns and instantaneous volatility estimations
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Figure 3.4: BIST30 observations and instantaneous feedbackestimations
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Figure 3.5: EUR/USD observations and instantaneous feedback estimations
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Figure 3.6: USD/TRY observations and instantaneous feedback estimations

models.

We have seen that the price volatility feedback effect rate is in fact the local Lyapunov
exponent of the Girsanov factor that causes the change of measure. A critical assump-
tion that allows for the computation of the feedback effect rate is the non-specified
form of the volatility functionσ(·). The dynamics of the stock price processS(t) as-
sumed to behave according to an Itô SDE. However, using the functionσ(·), we can
compute the feedback effect rate and investigate the stability and ergodicity properties
of S(t) [6].

We have also seen that continuous multifractal processes can be defined via fractional
integration. Here, we do not specify the form ofσ(·) but we assume that the SDE in
Equation (3.23) represent the dynamics of a multifractal ata specific scale, at least in
the sense of the dressed properties.

Based on this assumption and the result of Aurell et al. statedin Equation (3.8), we
proceed to analyze the generalized dimensions of the feedback effect rate and compare
with the generalized dimensions of the underlying return process.

The generalized dimensions of the price-volatility feedback effect rate, or the local
Lyapunov exponent of the rescaled variation, is of similar characteristics for the pos-
itive values ofh. The negative dimensions, which are also called latent dimensions,
are out of the scope of our study and presented only for the interested reader. For the
discussion on the negative dimensions we refer to [12] and the references therein.

The similar characteristics of the generalized dimensionsof both the return series and
the instantaneous price-volatility feedback effect rate series support our claim that the
risk premiums have multiscale characteristics.

We observe that the generalized dimensions of the return series and the feedback effect
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Figure 3.7: Comparison of the generalized dimensions of EUR/USD return series and
the feedback effect
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Figure 3.8: Comparison of the generalized dimensions of USD/TRY return series and
the feedback effect
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Figure 3.9: Comparison of the generalized dimensions of BIST30, EUR/USD and
USD/TRY return series

rate series coincide in general. Our analysis support our claim that the feedback effect
rate scales according to the generalized dimensions, whichis in accordance with the
result obtained by Aurell et al. for local Lyapunov exponents [2]. Since the feedback
effect is a measure of the time-varying risk premiums in asset prices, we interpret
the observed characteristics of the generalized dimensions of the feedback effect rate
as the evidence of the existence of multiscale risk premiumsin asset prices. This
interpretation is valid for all three datasets we have analyzed, of various levels.
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Figure 3.10: The scaling exponents of the absolute returns and the Fourier volatilities
of BIST30
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Figure 3.11: Comparison of the generalized dimensions of BIST30 return series and
the feedback effect

This result have two main implications for financial modelling practice:

1. Market risk premium required by investors for the compensation of risk depends
on the time scale, or the investment horizon, in a non-linearway: This result
would not surprise the practitioners since the risk premiumhas an upper bound,
i.e. the risk premium of a risky asset can not always increasewith increasing
time scale. This is in accordance with the flattening end of the scaling function
ζ(q). The volatility does not always increase linearly with the time scale. The
rate of increase decreases after a certain time window.

2. Market risk premium depends also on moments of higher order: The risk can
not only be measured with the volatility, the second order moment, of the return
series. Investors also take into account the higher momentssuch as skewness
and kurtosis into consideration. The dimensional analysisof the feedback effect
reveal the multiscale nature of time varying risk premiums present in asset prices.
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CHAPTER 4

CONCLUSION

In this thesis, we study the multifractal processes and stability properties of stochastic
processes with the aim of analyzing the multiscale characteristics of the time-varying
risk premiums present in financial asset prices. We employ Malliavin calculus tech-
niques to analyze the behavior of dynamic risk premiums by estimating the price-
volatility feedback effect rate. Throughout our study, we have discovered that the
price-volatility feedback effect rate is the local Lyapunov exponent of the perturbation
resulting in the change of measure. Our aim is to prove the existence of multiscale risk
premiums via dimensional analysis of the feedback effect rate.

For this purpose, we started with the investigation of the multifractal processes and
their properties, with a focus on the dimensional characteristics. Even though multi-
fractal processes are defined in terms of their scale dependent behavior, the theoretical
framework was in fact built on the duality between the dimension of the fractal sets
that support extreme observations. The detailed conceptualization includes singulari-
ties, Ḧolder exponents, Hausdorff dimensions and the Legendre transforms that knits
the singular values to their supporting fractal sets in a unique way that defines multi-
fractals. The resulting connection can be viewed in terms ofboth the scaling exponent
and the singularity spectrum of the multifractal process. This connection also charac-
terizes the generalized dimensions of the underlying process, which provides us with
the chance to use the Lyapunov exponents in the study of multifractals. The Lyapunov
exponents are defined in order to analyze the stability properties of dynamical systems
and stochastic processes and play a similar role to codimensions in the multifractal
framework.

Another approach to stability analysis of financial marketsusing Malliavin calculus
techniques resulted in the concept of the price-volatilityfeedback effect rate. The aim
of measuring the feedback effect rate is to identify how random perturbations enforce
changes in the underlying measure of the underlying stochastic process. In our study,
we discovered that the feedback effect rate is in fact the local Lyapunov exponent
of the perturbation of the underlying probability measure.This observation suggests
applying multifractal analysis to feedback effect rate series to analyze dimensional
properties. Our analysis shows that the generalized dimensions of the return series and
the estimated instantaneous price-volatility feedback effect rate series exhibit similar
characteristics, a result which we interpret as the proof ofexistence of multiscale risk
premium in financial asset prices.
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We mainly employed the Multifractal Detrended FluctuationAnalysis (MFDFA) to
estimate multiscale distributional characteristics of three datasets: a market index,
BIST30, the USD/TRY exchange rate, which can be seen as an example of a rela-
tively less liquid exchange rate and the EUR/USD exchange rate, which is arguably
the most liquid exchange rate in the world, to compare their multifractal and feebdack
effect rate characteristics.

Our empirical study is multilayered: We first estimate instantaneous volatility series
using Fourier series method of Malliavin and Mancino and then employ multifractal
analysis to estimated volatility series. We also perform multifractal analysis of absolute
return series and compare the multifractal characteristics of volatilities and absolute
returns. Then, we estimate the price-volatility feedback effect rate series to analyze
the stability dynamics of the price processes.

Finally, we analyze the dimensional properties of the estimated price-volatility feed-
back effect rate series and based on the result obtained for the predictability of mul-
tifractals we compare the generalized dimensions of the return series with the price-
volatility feedback effect rate series, to obtain the desired result that the generalized
dimensions spectrums of both series coincide, which shows the existence of multiscale
risk premiums in the analyzed datasets.
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APPENDIX A

DISTRIBUTIONAL PROPERTIES OF ADDITIVE PROCESSES

A.1 Additivity of Stochastic Processes and Infinite Divisibility

Additivity is the fundamental property that is needed to build up stochastic models
if one aims to employ stochastic integration. Consider an i.i.d. sequence of random
variables{Θi} where we may explicitly know the form of the underlying distribution
or not. A basic question arises when one attempts to characterize the distribution of
the sum of the sequence: “Can the distribution of the sum be explained in terms of the
distribution of the sequence?”

Stochastic processes are classified according to the properties of their distributions un-
der arithmetic operations. The application of these operations to stochastic processes is
in fact non-trivial; For instance, to perform addition to a sequence of random variables,
the sequence must be realizations of an “additive” stochastic process:

Definition A.1. A stochastic process{Θt, t ∈ [0, T ]} is called anadditive process if
the following two conditions are satisfied:

• X(t) = 0, a.s.

• For any choice oft0 ≤ t1 < · · · < tn < T ,X(ti)−X(ti−1), i = 1, 2, · · · , n, are
independent.

Investigation of the distributional characteristics of additive processes is of fundamen-
tal importance for statistical modelling and therefore financial modelling. The be-
haviour of sums and averages of financial returns holds very critical information for
applicational purposes such as portfolio optimization, building trading strategies, pric-
ing options and financial derivatives. The relation betweenthe distribution of the sums
of sequences and the underlying distribution of the sequence used to classify stochastic
processes. In this regard, let us consider the additive process and their distributions.
TheFundamental Construction Theorem(FCT) (see [25]), stated below, establishes
the connection between additive processes and sequences ofdistributions of incre-
ments:

Theorem A.1 (Fundamental Construction Theorem). Assume that{X(t), t ∈ [0, T ]}
is an additive stochastic process withX(t) −X(s) ∼ φst, 0 < s < t < T . Then, if a
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family{φst, 0 < s < t < T} of probability distributions, satisfies

φsu = φst ∗ φtu, s < t < u, (A.1)

where∗ denotes convolution operator, then an additive processXt, t ∈ [0, T ] can
be constructed on a suitable probability space in such a way that the distribution of
X(t)−X(s) is given byφst.

In the FCT, it is stated that the distribution of the incrementof the process{X(t), t ∈
[0, T ]} can be defined as the convolution of the distributions of the “sub-increments”
which can also be interpreted as the increments at differenttime-scaless − u = (s −
t) + (t − u): The distribution of the large time-scale incrementX(s) − X(u), can
be obtained via convolution of the distributions of the small time-scale increments
X(s)−X(t) andX(t)−X(u). In the early financial models, this relation is assumed
to be linear and the distributions does not depend on the time-scale of the increment.
This assumption leads to the definition of the notion of self-similarity for stochastic
processes, which we will explain in the following sections.

Now consider a special family of stochastic processes, where each realization of the
process is defined to be an additive process. This property iscalledinfinite divisibility
and the members of this family, infinitely divisible processes, include the Brownian
motion, the fractional Brownian motion, Poisson process,i.e. Lévy processes are in-
finitely divisible.

Let us first recall the definition of infinite divisibility ([17]):

Definition A.2. A stochastic processΘt, t ≥ 0, is said to have an infinitely divisible
distribution if for eacht ≥ 0 andn = 1, 2, . . . , there exist a sequence of i.i.d. random
variablesΘ1,t, . . . ,Θn,t such that

Θt
d
= Θ1,t + · · ·+Θn,t.

We have already seen that the additivity property is defined based on a sequence of
distributions and their convolutions, which implies the existence of the sequence of
distributionsφij,t satisfying:

φij,t = φik,t ∗ φkj,t,

with Θi,t −Θj,t ∼ φij,t.

Infinite divisibility property is frequently, and equivalently, defined viacharacteristic
functionsof the sequence of distributionsφi,t, i = 1, · · · , n. Let us first recall the
definition of the characteristic function of a distribution(or random variable):

Definition A.3. Let X be a random variable with probability distributionF . The
characteristic function ofF (or ofX) is the functionϕ defined for realζ by

ϕ(ζ) =

∫ ∞

−∞

exp(iζx)F (dx) = u(ζ) + iv(ζ), (A.2)
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where

u(ζ) =

∫ ∞

−∞

cos(ζx)F (dx), v(ζ) =

∫ ∞

−∞

sin(ζx)F (dx), (A.3)

Characteristic functions exhibit some important properties which allow for the analysis
of random variables and their distributional properties. The following lemma lists the
main properties:

Lemma A.2. a) ϕ is continuous,
b) ϕ(0) = 1 and|ϕ(ζ) ≤ 1| for all ζ,
c) aX + b has the characteristic function

E[exp(iζ(aX + b))] = exp(ibζ)ϕ(aζ)

In particular, ϕ̄ = u− iv is the characteristic function of−X.
d) u is even,v is odd. The characteristic function is real iffF is symmetric.
e) For all ζ, 0 ≤ 1− u(2ζ) ≤ 4(1− u(ζ)).

The famous Ĺevy-Khinchin representation describes the form of the characteristic
functions of infinitely divisible distributions, which is stated in the following theorem:

Theorem A.3. Let F be an infinitely divisible distribution onRd. Its characteristic
function can be represented as:

ΦF (z) = exp(Ψ(z)), z ∈ Rd,

Ψ(z) = −1

2
zAz + iγz +

∫

Rd

(exp(izx− 1− izx1|x|≤1))ν(dx),

whereA is a symmetric positiven × n matrix, γ ∈ Rd and ν is a positive measure
satisfying

∫

|x|≤1

|x|2ν(dx) <∞,

∫

|x|≥1

ν(dx) <∞,

and it is called the Ĺevy measure of the distributionF .

An important result can be verified for infinitely divisible characteristic functions:

RemarkA.1. A characteristic functionΦ is infinitely divisibleiff for everyn ∈ N there
exists a characteristic functionΦn satisfying

Φ(Θ) = (Φn(Θ))n. (A.4)

Infinite divisibility of a distribution (or a random process) does not conclude any re-
strictions on the shape of the distribution of the sum of the sequence. An example is the
exponentially distributed random variables; the sum of i.i.d. exponentially distributed
random variables has Gamma density. However, the sum of i.i.d. Gaussian random
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variables is again Gaussian. The distinction will be clear in the following sections
where we introduce thestabledistributions and random variables. The motivation is
the search for a functionf(n) that would make the following relation possible:

Θ1,t + · · ·+Θn,t
d
= f(n)Θi,t, n = 1, 2, . . . (A.5)

where the functionf(n) is a deterministice function ofn, which allows to express
the distribution of the sequence in terms of the underlying distribution of the sample.
The existence of this strong bond resulted in one of the most important theorems in
statistical theory:The Central Limit Theorem (CLT). The CLT and its connection to
self-similarrandom processes will be briefly explained in the next section.

A.2 The Roots of Self-Similarity: The Central Limit Theorem

The most important theorem that constitutes the basis for stochastic modelling is ar-
guably the Central Limit Theorem (CLT). Consider any hypothetical statistical prob-
lem, where there are a large number of observations where onewants to characterize
the statistics of the sample. It is possible to characterizethe behaviour of a data sample
with a large number of observations via the statement of the CLT. There are various
alternative probability distributions and most of the timethe most suitable choice is
not apparent. However, one can switch her approach to the problem and investigate
the behaviour of the sums and averages of the observations. Aprobability distribu-
tion is basically a rule that assigns each observation a probability depending on its
magnitude. The integrability property of probability distributions result in distribution
functions with a decrease in probability as the magnitude increases: the tails of the
probability distribution corresponds to numbers with large magnitudes which are as-
signed with low probabilities of occurence. The CLT basically states that the sums of
random variables can be characterized with a standard Gaussian distribution. We first
state the definition where the notion of the central limit is expressed explicitly:

Definition A.4. A sequence{Xk, k ≥ 1} of real random variables on a probability
space(Ω,F ,P) is said to havethe central limit property, if there are sequences of
constantsan andbn, n ≥ 1, such that the sequence

Yn =

∑n
k=1Xk − an

bn
(A.6)

converges in distribution to a standard Gaussian random variable, i.e.:

lim
n→∞

P(Yn ≤ x) =
1√
2π

∫ x

−∞

exp(−u
2

2
)du, x ∈ R, (A.7)

which can also be stated asYn ∼ N (0, 1), Gaussian distribution withE[Yn] = 0 and
V ar(Sn) = 1 whereV ar(Xn) = E[(Xn − µ)2].

The central limit property puts the Gaussian distribution to the very centre of statistical
modelling. As a subdiscipline of statistical modelling, the central limit property is
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still the most widely used property in financial modelling practices. The Gaussianity
assumption and the BSM model are still in use as it allows for a complete and closed-
form characterization of many complex financial products. Let us give theLindeberg-
Lévyversion of the CLT below ([30]):

Theorem A.4. Let {Xn, n ≥ 1} be an independently identically distributed (i.i.d.)
sequence inL2(Ω,F ,P), the space of square integrable real random variables, and
takeE[Xn] = µ andV ar(Xn) = σ2, ∀n ≥ 1 with σ > 0. Define

Sn =
n

∑

k=1

Xk, S̄n =
Sn

n
, and

Yn =
Sn − nµ

σ
√
n

=
S̄n − µ

σ/n
.

Then{Xn, n ≥ 1} has the central limit property withan = nµ andbn = σ
√
n.

The CLT has various number of important implications on the behaviour of the sums of
i.i.d. random variables. Most importantly, it allows for characterizing the sums of the
random variables via only two statistics: the sample mean, or the centering parameter,
µ and the sample varianceσ2. It is usually assumed that the centering parameter is
trivial and can be shifted without distorting the shape of the distribution. This can be
easily seen via the following example:

Example A.1. Let X ∼ N (µ, σ2). ThenX + c ∼ N (µ + c, σ2), wherec ∈ R is a
constant.

This feature is not specific to Gaussian random variables andholds also for various
distributions, as we will see in the next sections. Another important feature of Gaus-
sian distribution is that it can be characterized only by itsfirst two moments, as we
mentioned above, namely the mean and the variance. However,as we have seen that
the role of the mean, or the centering or the location parameter, is not of practical im-
portance and can easily be shifted along the real line (or space for higher dimensional
variables), we focus our attention to the variance, or the scale parameter. We will avoid
using the term scale parameter for the sample variance sinceit can cause confusion in
the context of scale invariance and multifractals, which are the main topic of this study.
The arguably most important implication of the CLT is that it defines the form ofbn
asσ

√
n. For a sequence of i.i.d. random variables having the central limit property,

one can say that the growth of the variance is proportional tothe number of observa-
tions in the sample, which is equivalent to the proportionality of the standard deviation
to the square root of the number of observations in the sample. The square root rule
for the growth standard deviation, or the linear growth rulefor the variance, has been
generalized to define the self-similarity property of stochastic processes.

A.3 Stable Distributions and Processes

Stability property can be derived via a generalization of the CLT in terms of the form
of the functionb(n) in Equation (2.4). The stable processes satisfy some deserved
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properties for modelling purposes such as the flexibility for modelling the tails of the
distribution of observations. By choosing a stable random process as the source of ran-
domness, one does not need to worry about the distribution ofthe data at any time-scale
considered. When one is concerned about the time-scales of the sample, or its incre-
ments, stability property imposes that the shape of the distribution does not change
with a change in time-scale. We will thorougly examine the behaviour of the financial
returns to see whether this statement holds or not when we consider applications. The
stability property is defined as follows:

Definition A.5. A random variableX has a stable distribution if and only if it has
a domain of attraction, i.e., if there exist a sequence ofY1, Y2, . . . of i.i.d. random
variables and sequences{dn} and{an} of positive real numbers such that

Y1 + Y2 + · · ·+ Yn
dn

+ an
d→ X. (A.8)

where, in general, the form ofdn is

dn = n1/αh(n) (A.9)

with h(x), x ≥ 0 is a slowly varying function at infinity, i.e.limx→∞ h(ux)/h(x) = 1
for all u > 0 ([50], [17]). By saying that the stability property is a generalization of the
CLT, it is meant that the the finite variance assumption has been relaxed in Definition
(A.5). WhenYi’s are i.i.d. random variables with finite variance, thenX is Gaussian
and the ordinary version of the CLT is obtained. Stable randomvariables are infinitely
divisible, whereas the converse is not true. An important feature of stable processes
is that the tails of the probability distribution obeys a power-law, which is also called
Paretian, or scaling, tails:

P(X > x) ∼ Sx−α, (A.10)

The most important parameter for a stable random variable isthe “stability index”α.
Stable random variables are also self-similar and the stability indexα has a one-to-one
correspondency with the self-similarity exponentH. Let us briefly summarize some
of the properties of stable processes and mention some of theequivalent definitions of
stability. Let us first give the definition of a stable distributed random variable ([50]):

Definition A.6. A random variableX is said to have a stable distribution if for any
positive numbera andb, there is a positive numberc and a real numberd such that

aX1 + bX2
d
= cX + d, (A.11)

whereX1 andX2 have the same distribution asX.

It can be seen that the above definition is a simplified restatement of Definition (A.5).
In the following theorem, the role of the stability indexα is expressed, which is the
basis for motivation to employ stable processes in financialmodelling:
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Theorem A.5. For any stable random variableX, there is a numberα ∈ (0, 2] such
that the numberc in Equation (A.11) satisfies

cα = aα + bα (A.12)

The well-known Gaussian distributed random variable is themost famous member of
the family of stable random variables. This is demonstratedin the following example:

Example A.2. If X is a Gaussian random variable with meanµ and varianceσ2, i.e.
X ∼ N(µ, σ2), andX1 andX2 are equal in distribution toX. It is known that

aX1 + bX2 ∼ N((a+ b)µ, (a2 + b2)σ2) (A.13)

which shows that Equation (A.12) holds withc2 = a2 + b2 and

aX1 + bX2
d
= cX + d, (A.14)

whered = (a+ b− c)µ.

The result obtained for the Gaussian case shows that a Gaussian random variable is
stable withα = 2. Recall that it is also1

2
-self-similar. This observation is not trivial,

it is in fact a general result for the stable random variables: a stable random variable
with stability indexα is 1

α
-self-similar. We will mention this property in detail as we

define theα-stable Ĺevy motion but first let us briefly mention some of the important
properties of stable random variables. We begin with the parameters that determine the
shape of the distribution of a stable random variable:

• the stability indexα ∈ (0, 2],

• the location, or mean parameterµ ∈ (−∞,∞),

• the skewness parameterβ ∈ [−1, 1],

• the scale parameterσ ∈ (0,∞).

We will denote a stable random variable accordingly bySα(σ, β, µ), following [50].
The parametersα, β andµ are unique and whenα = 2 (Gaussian case),β is irrelevant,
since Gaussian distribution is symmetric around its mean. In what follows, arithmetic
properties of the stable random variables is summarized:

Definition A.7. Let X1 andX2 be two independent random variables withXi ∼
Sα(σi, βi, µi), i = 1, 2. ThenX1 +X2 ∼ Sα(σ, β, µ) where

σ = (σα
1 + σα

2 )
1/α, β =

β1σ
α
1 + β2σ

α
2

σα
1 + σα

2

, µ = µ1 + µ2. (A.15)
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The skewness parameterβ determines whether a stable random variable is symmetric
about the location parameterµ. For instance, for any0 < α ≤ 2,

X ∼ Sα(σ, β, µ) ⇔ −X ∼ Sα(σ,−β, µ), (A.16)

and aSα(σ, β, µ) is symmetric aboutµ iff β = 0.

We previously mentioned the scaling, or Paretian, tails of stable random variables. This
property is more formally stated in the following way:
RemarkA.2. LetX ∼ Sα(σ, β, µ) with 0 < α < 2. Then

{

limx→∞ xαP(X > x) = cα
1+β
2
σα,

limx→∞ xαP(X < −x) = cα
1−β
2
σα,

(A.17)

where

cα = (

∫ ∞

0

sin xdx)−1.

The power-law behaviour of stable variables is used to obtain an important implica-
tion of the indexα on the existence of moments of various orders. Since forX ∼
Sα(σ, β, µ) we haveE[|X|r] =

∫∞

0
P(|X|r > x)dx, one can show that

{

E[|X|q] <∞ if 0 < q < α,

E[|X|q] = ∞ if q ≥ α.
(A.18)

which impliesα-stable random variables withα < 2 have infinite second moments,
which poses a huge problem in terms of applications to model financial returns as the
volatility is defined via the second moment of the returns. Incaseα ≤ 1, we have
infinite expectations.

The characteristic function of a stable random variable hasspecific form which is given
in the following definition that is equivalent to DefinitionsA.5 and A.6:

Definition A.8. A random variableX ∼ Sα(σ, β, µ) has the characteristic function of
the form:

E[exp(iγX)] =

{

exp{−σα|γ|α(1− iβ(sgn(γ)) tan(πα
2
) + iµγ} if α 6= 1,

exp{−σ|γ|(1 + iβ 2
π
(sgn(γ)) ln(γ)} if α = 1.

(A.19)
wheresgn(·) denotes the sign function.

A more familiar concept in the study of Lévy processes is theLévy-Khintchine repre-
sentation, which specifies the following form for the characteristic function of a stable
random variable:

E[exp(iγX)] =

{

exp{iKγ − σ2γ2} if α = 2,

exp{iKγ + P
∫∞

0
ψ(γ, x) dx

x1+α +Q
∫ 0

−∞
ψ(γ, x) dx

|x|1+α} if α ≤ 2.

(A.20)
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whereM ∈ R, σ ≥ 0 andP andQ are non-negative numbers and

ψ(γ, x) = exp(iγx)− 1− iγx

1 + x2
.

Based on the representation given in Equation (A.20), theLévy measureL(dx) is de-
fined as

L(dx) =
P

x1+α
1(0,∞)(x)dx+

Q

|x|1+α
1(−∞,0)(x)dx, (A.21)

where1A denotes the indicator function of setA.

Mandelbrot’s idea to employα-stable random variables in modelling of financial data
is mainly built on the behaviour of their moments of various orders. This specific
behaviour resulting from the power-law structure in the tails of the stable distributions,
allows for more flexibility in terms of applications, as the fat-tailed distributions are
frequently observed in analysis of financial data.

Now let us extend the stability property from random variables to random processes
[27]:

Definition A.9. A stochastic process{X(t), t ∈ T}, whereT is an arbitrary set, is
stableif all its finite dimensional distributions

X(t1), X(t2), . . . , X(tn), t1, t2, . . . , tn ∈ T, n ≥ 1

is stable. It issymmetric stableif all its finite-dimensional distributions are symmetric
stable. Furthermore, it is symmetric stable iff all linear combinations

n
∑

i=1

aiX(ti), n ≥ 1, t1, t2, . . . , tn ∈ T, a1, a2, . . . , an ∈ R

are symmetric stable.

The following example reveals some of the very important features of stable processes:

Definition A.10. A stochastic process{X(t), t ≥ 0} is called (standard)α-stable Ĺevy
motion if

1. X(0) = 0,

2. X has independent increments:X(t)−X(s)⊥X(s), s < t,

3. X(t)−X(s) ∼ Sα((t− s)1/α, β, 0), for any0 ≤ s < t <∞.

79



A.4 Canonical Lévy measures of Infinitely Divisible Processes

Infinite divisibility is a very fundamental feature of the stochastic processes. It is di-
rectly related to the additivity of processes, which is a desired feature to define stochas-
tic integrals. Infinite divisibility is equivalently defined for characteristic functions:

Theorem A.6. A characteristic functionW is infinitely divisible iff there exists a se-
quence(ϕn) of characteristic functions such that(ϕn)

n → W .
In this caseW t is characteristic function for everyt > 0, andW (ζ) 6= 0 for all ζ.

Theorem 2.3 allows for the specification of the most general form of infinitely divis-
ible characteristic functionsW = exp(ψ). It suffices to determine the general form
of possible limits of sequences of characteristic functions exp(cn(ζn − 1)) of the com-
pound Poisson type,i.e. the possible limits of the characteristic functions of the form
Wn = exp(ψn) with

ψn(ζ) = cn(ϕn(ζ)− 1− imnζ), (A.22)

and sinceWn are infinitely divisible, its continuous limits are also infinitely divisible.
Let us analyze the conditions under which there exists a continuous limit

ψ(ζ) = lim
n→∞

ϕn(ζ), (A.23)

where it can be seen thatϕn is the characteristic function of a probability distribution
Fn, thecn are positive constants, and the centering constantsmn are real.

As it is always possible to recenter a distributon to zero, wewill choosemn accordingly
when needed. The simplest such centering is obtained by the requirement that for
ζ = 1 the value ofψn be real. Letun andvn denote the real and imaginery parts ofϕn,
respectively. By Equation (A.3), this condition requires that

βn = vn(1) =

∫ ∞

−∞

sin xFn(dx), (A.24)

since

ψ(1) =

∫ ∞

−∞

exp(iζx)F (dx) = u(1) + iv(1), (A.25)

and with Equation A.24 forβn, we obtain

ψn(1) = cn(u(1) + iv(1)− 1− iv(1)) = cn(u(1)− 1), (A.26)

which shows that centering is always possible. With it
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ψn(ζ) = cn

∫ ∞

−∞

[eiζx − 1− iζ sin x]Fn(dx). (A.27)

Near the origin the integrand behaves like−1
2
ζ2x2, which is the case with the normal

distribution with zero mean and variance ofζ2. The following lemma leads to the
representation of infinitely divisible distributions in terms of canonical measures.

Lemma A.7. Let {cn} and{ϕn} be given. If there exist centering constantsβn such
thatψn tends to a continouos limitψ, then Equation A.27 will achieve the same goal.

In what follows, it will be shown that with an arbitrarily chosen finite measureM , the
integral in Equation A.28 defines an infinitely divisible characteristic functionexp(ψ).
Now let us define

ψ(ζ) =

∫ ∞

−∞

eiζx − 1− iζ sin x

x2
M(dx). (A.28)

This integral is well-defined as the integrand is a bounded continuous function assum-
ing at the origin the value−1

2
ζ2. For the integral to be well-defined, it suffices that

M attributes finite massses to finite intervals and thatM{ ¯−x, x} increases sufficiently
slowly for the integrals

M+(x) =

∫ ∞

x

M(dy)

y2
, M−(−x) =

∫ −x

−∞

M(dy)

y2
(A.29)

to converge for allx > 0. Measures defined by the densities|x|pdx with 0 < p < 1
are typical examples. It will be proved that if the measureM has these properties,
then Equation (A.28) defines an infinitely divisible characteristic function, and all such
characteristic functions are obtained in this manner. The following definition intro-
duces the special term for measureM :

Definition A.11. A measureM will be called canonical if it attributes finite masses to
finite intervals and the integrals in Equation (A.29) converge for some (and therefore
all) x > 0.

The following lemma provides the generalization for the study of infinitely divisible
characteristic functions via canonical measures:

Lemma A.8. If M is a canonical measure andψ defined by Equation (A.28) then
exp(ψ) is an infinitely divisible characteristic function.

Proof of this lemma is especially important as two most widely used cases are consid-
ered:

Proof. a) Suppose thatM is concentrated at the origin and attributes massm > 0 to
it. Thenψ(ζ) = −mζ2/2, and soexp(ψ) is a Gaussian characteristic function with
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varianceζ2.
b) Suppose thatM is concentrated on|x| > η whereη > 0. In this case, Equation
A.28 may be rewritten in a simpler form. Indeed,M(dx)

x2 now defines a finite measure

with total massµ = M+(η) + M−(−η). Accordingly, (M(dx)
x2 /µ = F (dx) defines

a characteristic functionϕ, and obviouslyψ(ζ) = µ[ϕ(ζ) − 1 − ibζ], whereb is a
real constant. Thus, in this caseexp(ψ) is the characteristic function of the compound
Poisson type, and hence infinitely divisible.
c) In the general case, letm ≥ 0 be the mass attributed byM to the origin, and put

ψn(ζ) =

∫

|x|>η

exp(iζx− 1− iζ sin x)

x2
M(dx). (A.30)

Then
ψ(ζ) = −m

2
ζ2 + lim

η→0
ϕn(ζ), (A.31)

It has been seen thatexp(ψn(ζ)) is the characteristic function of an infinitely divisible
distributionUη. If m > 0 the addition of−mζ2/2 to ψn(ζ) corresponds to a convolu-
tion of Uη with a normal distribution. Thus, Equation (A.31) represents exp(ψ) as the
limit of a sequence of infinitely divisible characteristic functions and henceexp(ψ) is
infinitely divisible as asserted.
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Surname, Name: İnkaya, B. Alper
Nationality: Turkish
Date and Place of Birth: 13.03.1982,̇Izmir
Marital Status: Married
Phone: +90 542 716 26 36
Fax: Fax Number

EDUCATION

Degree Institution Year of Graduation
Ph.D. Financial Mathematics, IAM, METU 2018
M.S. Financial Mathematics, IAM, METU 2011
B.S. Statistics, Faculty of Science, Ankara University 2008

PROFESSIONAL EXPERIENCE

Year Place Enrollment
December 2017 - Present Aksa Enerji Assistant Portfolio Manager
October 2017 - December 2017 Enerjisa Enerji Quantitative Analysis Process

Leader
June 2016 - October 2017 Enerjisa Optimizasyon Portfolio Management

Strategies Process Leader
March 2016 - June 2016 Enerjisa Optimizasyon Expert Quantitative Analyst
August 2014 - March 2016 Enerjisa Optimizasyon Quantitative Analyst
November 2011 - August 2014 IAM, METU Research Assistant

PUBLICATIONS
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