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ABSTRACT

MULTISCALE VOLATILITY ANALYSIS VIA MALLIAVIN CALCULUS

Inkaya, B. Alper
Ph.D., Department of Financial Mathematics
Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

February 2018, 84 pages

In this thesis, we study multifractal stochastic processas stability properties of
stochastic processes with the aim of analyzing the mulascharacteristics of dy-
namic risk premiums present in financial asset prices. Madttial processes are first
defined to model the statistical properties of turbulent #§@md characterized by the
scale-invariance property, which implies volatility deing, long-range dependency
and multiplicative instead of additive behavior. The nftdittal characterization of
a dataset can be obtained, also, via the multifractal sp@c¢tthe singularity spec-
trum and the generalized dimensions. The complex dynanfi¢siancial markets
resembling chaos recently gave rise to the development tiffraatal models in fi-
nance. In the present study we aim to relate the multifrdathlaviour of markets to
the existence of multiscale risk premiums. We employ Muifiacalculus techniques
to analyze the dynamics of the instantaneous risk premiymestimating the price-
volatility feedback effect rate, which is defined as the egian rate of the rescaled
variation resulting from the perturbation of the stochastiocess. Throughout our
study, we discover that the price-volatility feedback efffate is the local Lyapunov
exponent of the perturbation resulting in the change of measrhe fundamental in-
dicator of chaotic dynamics is generally accepted to be ¢émsisve dependency to
initial conditions, which can be measured via the Lyapun@oaents. The local Lya-
punov exponents (LLE) characterize the finite-time behavad the expansion rates.
We analyze the dimensional properties of the price-vithatieedback effect rate to
show the existence of multiscale risk premiums in finan@&lm series. The gener-
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alized dimensions constitutes the basis of our study asahey for the analysis of
perturbations of multifractal processes and LLEs.

To bring the multifractal framework and Malliavin calcultechniques together, we
first perform multifractal analysis of the empirical datssel' hen, we estimate the in-
stantaneous volatilities and the price-volatility feecloaffect rate series of the datasets
using the recently defined Fourier series method. Additipranalyze the multifrac-
tal characteristics of the instantaneous volatilitiesiletie usual multifractal analysis
assumes multifractality of absolute returns. To demotestree existence of multiscale
risk premiums, we perform dimensional analysis of both #tarn and the estimated
instantaneous price-volatility feedback effect rateeseriWwe conclude with the ob-
servation that the generalized dimensions spectrums &f ®&ties coincide, which
suggests that the existence of scale-dependent non-ty@aiof behavior of the risk
premiums in financial asset prices.

Keywords Multifractal processes, Malliavin calculus, Lyapunoyperents, volatility
modelling, the price-volatility feedback effect rate
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MALL IAV IN KALK ULUSILE COK OLCEKLI OYNAKLIK MODELLEMES |

Inkaya, B. Alper
Doktora, Finansal Matematikd@imi
Tez Yoneticisi : Dog. Dr. Yeliz Yolcu Okur

Subat 2019, 84 sayfa

Bu tezde, dinamik risk primlerinin goklaicekli analizinin yapiimasi amaciyla ¢oklu-
fraktal direcler ve stokastikiseclerin stabilitedzellikleri calisiimistir. Coklu-fraktal
stirecler ilk olarakiirbilant akislarin istatistiksézelliklerinin modellenmesi amaciyla
tanimlanmistir ve oynaklik birikimi, uzunesiem bglihk ve toplamsal yerine ¢arpim-
sal davranisl ima eddiicek-dgjismezIfi ile karakterize edilir. Bir veri setinin ¢oklu-
fraktal karakterizasyonu, ayni zamanda, ¢oklu-fraldght tekillik tayfi ve genellen-
mis boyutlar ile de elde edilebilir. Finansal piyasalakarmasik dinamikleri kaotik
davranisi andirmaktadir ve bu benzerlik ¢coklu-fraktabfisal modellerin olusturul-
masini sglamistir. Bu tezde, finansal piyasalarin ¢oklu-fraki@basini cokludlcekli
risk primlerinin varlg ile iliskilendirilmesi amaclanmistir. Anlik risk pnlerinin
Olculmesi icin Malliavin kalkKilts teknikleri kullanilarak fiyat-oynaklik geribesleme
etkisi olculmustur. Fiyat-oynaklik geribesleme etkisi, yenidélgeklenmis varyasy-
onun genigleme orani olarak tanimlanmistir ve calmmalahilinde bu etkinindlcl
degisimine yol acan peiirbasyonun yerel Lyapunairsteli oldugu gozlemlenmistir.
Kaotik davranisi tanimlayan temel karakteristik baglardurumuna hassasdidiktir

ve varlgl Lyapunovistelleri iledlctlebilir. Calismamizda, fiyat-oynaklik geribesleme
etkisinin boyutsal analizi yapilarak cokteekli risk primlerinin varlgi gosterilmistir.
Bu bajlamda, genellenmis boyutlar ¢calismanin temel unstatakon plana ¢ikmak-
tadir.

Calismada ilk olarak empirik verinin ¢oklu-fraktal dizayapilmis, sonrasinda Fourier
serisi tekndi ile anlik oynaklik ve fiyat-oynaklik geribesleme seritahmin edilmistir.
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Literatire empirik katki olarak, Fourier telgiiile tahmin edilen anlik oynaklik seri-
lerinin coklu-fraktal analizi yapilmistir. Coklalcekli risk primlerinin varlgini goster-
mek amaci ile, getiri ve fiyat-oynaklik geribesleme seinlierboyutsal analizi yapiimig
ve elde edilen genellenmis boyut tayflarinin birbirinezmrdavranisigzlemlenmistir.
Bu sonug, coklulcekli dojrusal olmayan risk primlerinin vagina isaret etmektedir.

Anahtar Kelimeler Multifraktal sirecler, Malliavin kalkilis, oynaklik modelleme,
Lyapunovustelleri, fiyat-oynaklik geribesleme etkisi orani
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Literature Review

The seemingly random, mainly due to unpredictability offinedamental drivers, be-
haviour of financial markets inspired the employment ofmasistochastic processes of
various levels of complexity for modeling financial dataislaccepted by many authors
that the dawn of financial modeling is the work ci&helier in early twentieth century
[3]. Then, approximately0 years later, comes the celebrated Black&Scholes&Merton
(BSM) formula (se€el[10] and [45]), which utilizes the techungg of statistical physics
to model the dynamics of price processes. It is now widelykmthat BSM formula

is built on the similar arguments as the work ddbelier, in the sense that both works
employ Brownian motion as the stochastic process that isines of randomness. As
the financial markets grow and and become more and more comptang the recent
decades, more advanced financial models have been devetogstly motivated by
the inclusion of non-Gauissianity and non-linear featuceBetter model complexity
in financial market dynamics.

The observed behaviour of financial markets are far fromgsiable, mostly referred
as being "‘chaotic”. The notion of chaos had emerged from study of turbulent
flows where multiplicative processes are frequently engiipystarted with the pio-
neering work of Kolmogorovi [29]. Multiplicative processaee built in an iterative
fashion through various scales, creating a feature calkzhle-invariance™. Scale-
invariance is in fact a generalization of self-similaritypperty, first used in the area of
fractal geometry and later extended to stochastic prosegsactal geometry, mainly
developed by Mandelbrot based on the work of Gaston Julipd@&ynamical sys-
tems. As the fractal geometry is shown to be a useful toolHferstudy of turbulence
and chaos, the link between multiplicative processes autidls was also brought into
the light, and a new family of stochastic processes have gaderMultifractals™.

The term Multifractal was first coined by Parisi and Frisahtheir work on turbu-
lence [48]. Mandelbrot has attempted to define Multifraptaicesses via fractal sets
on which the turbulence is concentrated. Parisi and Frisotyever, proposed that
there should be duality between the Hausdorff dimension of the fractal sets and the
order of exteme realizations observed in turbulence. Thewn defined a Legendre
duality between the scaling of the moments of a Multifraptalcess and codimension

of its singularities of certin orders. Multifractal modeisere built in discrete time
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and scale in the beginning, until the pioneering work of joyend Schertzer where
they defined stochastic integrals that generate Multiélambcesses. Multifractals was
widely used in modelling of weather phenomena such as tharfd clouds (see [51],
[60Q], [34]) also in geophysics [52], physiolody [24] and indince([41],[[54],[[5],[[11],
[12]. In [39], Mandelbrot et. al. developed the MultifracModel of Asset Returns
(MMAR), by defining a Multifractal process via a time-changgtwnian motion,
where the time-change is performed by a Multifractal randoeasure. Later, Bacry
and Muzy have defined the Multifractal Random Walk (MRW) in aiknfashion to
Mandelbrot. They have defined the Multifractal process alt@imtegral of a Mul-
tifractal measure with respect to a Brownian motion. Mudiifial models in finance
developed with the aim of capturing the empirical charastierof the financial asset
prices such as volatility clustering, long-range autoelations and scale-invariance.

As the models aim to capture complex and intermittent bemalbserved in empirical
studies, investors prefer stability when they make investidecisions. The increasing
frequency of financial crisis have motivated regulators auathorities to first define,
and then ensure stability. Market stability is consideretha ability of the market to
absorb fluctuations up to a certain degree. Durin@tl8 crisis, markets witnessed a
specific type of instability caused by a sudden drain of tigyiin the market, resulted
in large price moves in general assumed to be belonging ttatlseof the probability
distributions assumed modeling the market dynamics. lbeaargued that the lack of
liquidity had induced significant changes in investors'ga@tion of risk, which can be
observed by dynamical estimation of the market price of, ngkich is the agent that
serves as the generator of the feedback loop between pceoatility.

Stability characteristics of random dynamical systemsusstigated via the Lyapunov
exponents([36]. Lyapunov exponents indicate whether trdedying process fea-
tures sensitive dependency to initial conditions, whicthes distinguishing property
of chaotic systems. Furthermore, the local, i.e. time-ddpat, Lyapunov exponents
are used to characterize the intermittency observed inridenlying system [8],[61].
Lyapunov exponents of Multifractals have been studied byeho [33] and based on
his work Aurell et. al. derived a duality relation for localdpunov exponents in a sim-
ilar way to the construction of the singularity spectrumNtultifractals [2]. The Lya-
punov spectrum is the counterpart of the singularity specin Multifractal stochastic
framework.

Although there is a huge literature on Multifractals and fyaov exponents, only a
very small portion of them involve both concepts. On the otiend, there is only

a small number of studies featuring the price-volatilitedback effect rate to our
knowledge [[6], [46]. Therefore, the novelty of this studytie attempt to establish
the relation between Multifractals and the feedback effats through the local Lya-
punov exponents, by the observation that the feedbacktssi# is a local Lyapunov

exponent. This relation is difficult to detect using the dinal statistical methods so
we employ Multifractal analysis to capture the dimensigraperties of Multifractals

and the feedback effect rate associated to Multifractatgss.



1.1.1 The Aim of the Thesis

The aim of this thesis is to contribute to the existing litara in both theoretical and
empirical terms:

e Empirical contributions: In the present study, we have @ygdl Multifractal
analysis techniques to investigate the scale-invarianmgepties of absolute re-
turns of BIST30 index, USD/TRY and EUR/USD exchange rates. Ve falso
estimated the instantaneous volatilities and feedbadcefhte series via the
Fourier method developed by Barucci et. al.[ih [6]. The oledifeedback ef-
fect rate values are interpreted in terms of their abilityntdicate market stabil-
ity. Then, we analyzed the scale-invariance propertiedf the instantaneous
volatilities and the feedback effect rate series to repdretiver the two are re-
lated in terms of dimensional properties. The dimensionalysis of volatilities,
returns and the feedback effect rate may reveal the changeadure dynamics
of the underlying asset price. This feature of the price tldlafeedback effect
rate constitutes the basis for the possibility of a mullescaarket price of risk
present in the markets.

e Theoretical contributions: Our theoretical contributisrbased on our observa-
tion that the feedback effect rate itself is in fact the locghpunov exponent
of the Girsanov factor resulting from a perturbation of tinelerlying stochastic
process. This observation allows us to investigate cardigtthe Multifractal
properties of the feedback effect rate to compute appraeinshe local Lya-
punov spectrum of the measure transforming perturbation.

1.1.2 Plan of the Thesis

In Chapterl, we start by briefly summarizing the building blocks of Mirtictal pro-
cesses and then proceed to Multifractal framework. We fherseimmarized some
examples of Multifractal models and parameter estimatmhniques applied to ab-
solute returns of several datasets as a proxy of the instaois volatility to detect
Multifractal scaling in volatility series. Results are coangd to the results of unifrac-
tal examples to distinguish Multifractality from unifradity. In Chapter2, we study
the methods to identify the stability characteristics oaicbastic processes and report
the relation between the feedback effect rate and the logapunov exponents in
the context of stochastic stability. To include the feedbeffect rate to Multifrac-
tal framework, we employ the Lyapunov exponents within tbetext of Multifractal
characterizations of the underlying stochastic processgels as the singularity spec-
trum, generalized dimensions spectrum and the Lyapunastrsime. The theoretical
background on Lyapunov exponents allows us to build thistiat by using the link
between the Lyapunov spectrum to singularity spectrum ofifvactal processes. In
Chapter3, we summarize our results and conclude by discussing fudsearch direc-
tions.






CHAPTER 2

MULTIFRACTAL PROCESSES

2.1 Multifractal Processes in Finance

Multifractal processes was first developed to model turtullews. The motivation
behind using multifractal processes to model financialtgesees are due to empirical
findings which are commonly observed in financial marketsWiare considered to be
of similar characteristics to that of turbulent flows (de€][142], [39]). These stylized
facts have now become prerequisites for newly developeddiaamodels. Let us
briefly mention some of those below:

e Long-range autocorrelations, or long-memory, of the ratamplitudes This
observation is in contradiction with the efficient markepbtheses as it implies
that the amplitude of the returns of the past observationdeaused to predict
the amplitudes of the future returns. It is clear that thistdee gave rise to
arbitrage opportunities where a portfolio of return amylés can be constructed
in such a way to create risk-free returns.

e Scale dependent shape of the distribution of retuiffse Gaussianity assump-
tion for the random behaviour of the returns was made in ttustaf the twen-
tieth century, where at the time the empirical studies weaeliy carried out at
the daily time scale. As the data analysis at finer time sdadesme available,
it is observed that at smaller time scales, the distributibreturns are highly
non-Gaussian, whereas at larger time scales, for instaabeat weekly, the
distributions converge to Gaussian.

e Scale invariance The scale invariance property, also caltedltifractal scal-
ing, refers to non-linear behaviour of the rate of growth for thements of
financial returns along different time-scales. We want tpleasize that the self-
similarity property implies linear rate of growth for all fie moments at any
time-scale considered.

Let us first state that the findings listed above does not ateneith the properties of
some of the most popular stochastic models employed in fiaamodeling. To build
up models that exhibit long-range correlations one canidenshe fractional Brow-
nian motions as the source of randomness. However, thet efféitne-scale on the

5



15 min USDTRY returns 30 min USDTRY returns
8000 6000

6000
4000

4000

2000
2000

0
-0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.02 -0.01 0 0.01

1 hour USDTRY returns 4 hour USDTRY returns
3000 600

2000 400

1000 200

0 0

Figure 2.1: Histograms of USD/TRY exchange rate at various scales

shape of the distribution of returns can not be obtained siaguinfinitely divisible,
self-similar nor stable processes. Similarly, for thesgpsses, the rate of the change
of moments is linear with changing time-scale. The nam#tifractal scaling refers

to the definitive property of a new family of stochastic preses: Multifractals. Mul-
tifractal stochastic processes, first constructed in thesrgit to model the dynamics
of chaoticsystems, such asirbulent flows[48], [41], fits into the picture: financial
markets are thought to be at a level of complexity probablyenseen before. One
can now trade at time scales ranging from milliseconds tothwherefore, the scale
dependent distributional behaviour is of fundamental irtgpwe for any trading or
hedging activity.

The effect of changing time scale on the distributional abtaristics of the process
informs on the behaviour of financial markets. Let us startdaysidering a very small
time-scalej.e. high-frequency data samples, and the characteristicedfifitribution
at this scale. Naturally, at small time-scales, one witegsauch less extreme am-
plitudes of return series, which is the result of the resticof time window to very
small sizes that makes it impossible for a large number ofamgysell orders to occur.
Putting aside the automated-trading phenomena, it is almp®ssible to build up an
investment or trading strategy based on the informatiomiobtl only by analyzing
at such a small time scale. Therefore, it is natural to thivét the tails of the return
distribution of the returns at smaller time-scales woulldibit different characteristics
than the tails of the return distribution at larger time ssalWWe can therefore assume
that the volatility at smaller time scales would be smallempared to volatility at
larger time scales. However, employing unifractal proessg is impossible to dis-
tinguish between the characteristics of the distributibmesty small time scales and
very large ones. Let us also discuss the pricing of risk inkestarwith the increasing
frequency of the occurrence of financial crisis. On the l@Tgt a volatile market is
perceived as an unstable market, where investors wouldregljgher returns or even
avoid participating in the market. Higher volatility atdgr time-scales, therefore, can
be assumed to be an undesirable property and that is proalylgentral banks and
financial regulators aim to suppress extreme volatility prevent longer periods with
high volatility to occur. Some examples can be used to vehfse assertions. The
tails of the large time-scale samples, mostly, correspéméisancial crisis or market
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bubbles. The increasing frequency of the occurrence oémdrrealizations forces the
authorities to establish tighter regulations to restaabisity in the markets. It is clear

that the time scale does effect the distributional propsrtif financial prices and ac-
knowledgement of this fact lead to researchers to employifmagtal models to model

financial asset prices, or more precisely, price fluctuation

In what follows, we will first briefly summarize the main prapes of unifractal, or
self-similar, stochastic processes and how multifractat@sses are built on unifractal
processes using multiplicative cascades.

2.1.1 Unifractal Stochastic Processes

In financial modeling, randomness is mostly observed as #ia source of risk, and
therefore practitioners frequently attempted to modeltiiee volatility. The need for
predictability is generally predominates the fact thatfthancial markets aralmost
impossible to predict. The linear growth of variance rul®me of the reasons that
financial institutions prefer linear additive models to @& the risk. The famous
“square root of time to maturity” rule is known to be an oveglification of the risk
in financial markets. Nevertheless, it offers people ptetitity and probably that
is the reason it is still being used in financial practicesin ifact is the result of the
self-similarity of the Gaussian random variables! Let wusesthe definition of the
self-similarity below [50]:

Definition 2.1. Let {S(¢), t > 0} be a self-similar stochastic process. Then for each
A > 0, there existg > 0 such that

S(At) £ BS(t). (2.1)

The distribution of a self-similar stochastic process aiotes time scales can be com-
puted using the relation betwearand which is characterized by a single exponent
H, namely the self-similarity, or Hurst, exponent®ft). The following theorem sets
the basic relation betweenand s, where the role of the self-similarity exponeifitis

explained[[31]:

Theorem 2.1.1f {S(¢), t > 0} is nontrivial, stochastically continuous at= 0 and
self-similar, then there exists a unique expongnt 0 such that5s can be expressed
as = \". Moreover,H > 0 if and only if S(0) = 0 a.s..

The self-similarity exponent is denoted by the letiérand also called the Hurst ex-
ponent in regard to H. E. Hurst, who has first discovered thg-lange dependence
in hydrological time series data of Nile River [23]. In gereme have) < H < 1.
Some examples of self-similar processes include Browniatiom@B(t), ¢t > 0}, in
which case we havél = 1:

A2 B(t), (2.2)
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Figure 2.2: Simulation of fBm with Hurst parameter of 0.3

where it is said that the Brownian motion i1§-§elf-similar”. Among the continuum of
processes with self similarity exponént H < 1, the Brownian motion is a member
of continuous self-similar stochastic processes, nanfedyfrtactional Brownian mo-
tions. Brownian motion has stationary independent increseit turns out that the
independent increment property is a specific feature of Braavmotion which is the
result of its% self-similarity. The following theorem iri_ [50] explainseleffect of H
on the auto-covariance structure of increments of a stticha®cess:

Theorem 2.2. Let {S(t), t > 0} be nontrivial andH self-similar with stationary
increments and suppo&|S(1)[%] < co. Then

1
E[S()S(s)] = S{#*" + 5 — [t = s IE[ S(D)]). (2.3)
Proof. We refer to [50] for the proof of the theorem. n

Let us observe that fall = % we obtain:

EIS()S(5)] = 5(t 45— |t — s)) = min{t, 5},

which is the covariance structure of the increments of adstathBrownian motion.
However, whenH = % the covariation structure implies the dependency of incre
ments. Furthermore, the fractional Brownian motion witti-sehilarity (or Hurst) ex-
ponentH is classified as persisterf, > 3 and anti-persistenty < % in reference to
positive and negative correlations between subsequemnments, respectively. These
features of fractional Brownian motions have extensivegolis modeling of natural
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Figure 2.3: Simulation of fBm with Hurst parameter of 0.7

phenomena, spot electricity prices, financial prices anygiplogical observations (see
[24,[41,52] and the references therein).

The ;-self-similarity of Brownian motion is a consequence of thextEa Limit The-
orem (CLT): The square root of time, or number of observationie for the growth
of the standard deviation of the sum of the sequence, orzedans of the stochas-
tic processB(t). Therefore, for self-similar process wifh # % one can obtain the
following form of the CLT [27]:

_ " X; —a(n) B
g&; T L, (2.4)

whereb(n) = n'/* and0 < o < 2is called thestability or Lévy index of the variable
L,. For self-similar processes, one can see fihat i Equation[(2.1) is in fact the
defining equation of stable stochastic processes. Forlsletaistable processes, we
refer to AppendixA.

Self-similarity property is a simplification of a wide rangé possible distributional

behavior of stochastic processes, and therefore it is arestyictive one. It can be
argued that self-similarity holds for large class of preessfor a predefined interval
of time scales. However, the limiting behavior may diffegrsficantly which results

in misinterpretation of distributional properties of adtastic process for very large
or very small time scales. To properly capture the multiescstributional charac-

teristics of stochastic processes, the notion of selftanity was generalized to allow
for non-linear scaling of the moments. To better capturectiraplex structure of the
scaling, the following generalization of the self-simitgis considered:

9



E[|X (¢, At)|7] = c(q) (A1), (2.5)

where thescaling exponenf(q) depends not only on the order of momenbut also
on the time scale at which the moment is estimated. For eéxistand non-degeneracy
purposes((q) is assumed to be a convex functionf For unifractal self-similar
processes it is a linear function @f To obtain a non-linea¢(¢), unifractal processes
are organized in a specific hierarchy. In the next sectionsuvemarize the beautiful
multifractal framework

2.2 A Hierarchical Structure of Unifractal Processes: Multifractals and Scale-
Invariance

In recent studies, self-similarity have shown to be an ornglfication of the be-
haviour of financial markets [11], [89],][5]. In these stugli¢he growth rate of vari-
ance with time scale was found to be behaving in a non-lineay for datasets of
many different markets. This property is called $male invariance The idea of
scale-invariance in distributions of random processessda&ck to Kolmogorov [29],
where his proposition of the existence scaling in turbufeaws inspired a series of
studies of scaling in natural sciences, especially physieseorology, geophysics and
economics. The earliest example for a scale invariant exuég the Navier-Stokes
equation (see [59]). Scale invariance is, in a very geneeaalmar, expressed by Equa-
tion (2.3), which was very familiar with mathematicians qigsicists for almost half
a century. However, with the emergence of a new paradigrec¢athaos”, the unifrac-
tal, or uniscaling, modelling suddenly became obsoletee dlbservations of chaotic
systems suggests a new type behaviour, namahjtiscaling Multiscaling manifests
itself as the non-linearity of the scaling functigfy) as a function of time scale at
which the process is observed. As the researchers agreadhgevident results from
various analysis, the next debate was about how one canabmiltltiscaling model
that demonstrates a similar behaviour to that of the chaytstems in terms of its
finite dimensional distributions. A natural candidate wasnd to be the so-called
“multiplicative cascades”, which has its origins in themeering work of Richardson
on the weather prediction[([49]). Multiplicative cascades be used to build pro-
cesses with non-linear scaling, which makes it the ideatlickte as a technique for
building multifractal models.

Now let us state the definition of multifractal stochastiogasses [([39]):

Definition 2.2. A stochastic proces§X (t), ¢t € T} is called multifractal if it has
stationary increments and satisfies:

E[|X ()] = ¢()t?, forall teT, qeQ, (2.6)

where7 andQ are intervals on the real lin€(q) andc(q) are functions with domain
Q. Moreover, we assume thatand Q have positive lengths, and that 7, [0, 1] C
Q.

10



It can be seen that Equatioris (2.6) ahdl(2.5) are equivaedta process satisfying
these equations are calledale invariant In stochastic analysis terminology, scale-
invariance implies that the distribution of the processvariant under change of scale.
For financial modelling, one mostly deals with the scale miteof time. Therefore,
without loss of generality, in what follows, by saying scale mean time scale. So
when it is said that the Brownian motion is scale invariants in fact equivalent to
saying that when when the (time )scale is changed, its ligtan is still Gaussian with
mean equal to zero and variance equal to (time)scale copsdid€herefore, Equation
(2.8) is satisfied by scale invariant processes, which camifeactal or multifractal.
The distinction between unifractality and multifractglitomes into open when one
analyses the form of the scaling functiofy): A linear function ofg corresponds to
a unifractal process, which is uniscaling, whereas in cdise on-linear((q), the
process is a multifractal. The case for self-similar preeesan directly be seen since,
for a self-similar proces$S(t), t € T} with self-similarity exponent? we have

S(t) < t1.5(1), which leads to the following form of Equation (2.6):

E[|S(1)|) =t E[|S(1)]],
which implies((q) = Hq andc(q) = E[|S(1)]7].

To obtain the general properties of the scaling functjoq), we first setg = 0 to
conclude that for all scaling functions we ha/@®) = 0. Let us note at this point that
the specification of (¢) is slightly varies from the original definition of Mandelltia
[39], where he defineS,(¢) = ((¢)+1, where the subscript/ stands for Mandelbrot.
Holding the different definitions in mind, we will explainglreason behind our choice
of the scaling function later. Another property@f;) (andK,,(q)) is that it is a strictly
concave function of.

Unifractality can be seen as a direct consequence of selfesity whereas to obtain
multifractal dynamics, a more flexible approach is neededpp8se that instead of
a constant self-similarity exponent, the distributiongligalence between large-scale
and small-scale increments is defined via a random vari&blewith a distribution
depending only on thscale ratio\ > 0:

X(At) £ ROX (1), (2.7)

where{X(¢), t > 0} and R(-) are independent. If we assume tRaf(¢),t > 0} is
stationary, then Equatioh(2.7) can further be extendeddal Iscaling:

X(E+ AAL) — X (1) £ RO[X (¢ + At) — X (1)), (2.8)

for all A > 0 and the distribution of2(\) does not depend an One can see that self-

similar processes correspond to the deterministic ¢4se = \“. The scale invari-

ance property can be rewritten in a more suitable form by thefiif (\) = log, R(\):
X(A) £ NIV X (1), (2.9)

11



where H(\) is a random function of. This equation can be used to obtain some

iImportant features of scale invariance and multiscaliragesses. Let us assume that

i—j = §—3 with A\, Ao, A3 > 0 are constants. Then, the following holds:

X(at) 4 X(Ast)
X(\t)  X(Agt)’ (2.10)

as both sides of the equality in distribution is equal inribsition to the random vari-
abIeR(i—f). Itis also possible to obtain a very important feature ofrdrelom variable
R(-) by iterating Equatior (217) as follows:

X (At hat)

I IENES

where \; and )\, are positive constantd?; and R, are independent and identically
distributed (i.i.d) random variables which have the sansgritution asRk. Multifrac-
tal framework offers flexibility to properly model how a clgof scale effects the
distribution of the underlying process(t) through its scale dependent moments. It
is well-known that characteristic functions, and equindliethe moment generating
functions, are unique for a specified probability distribnt Scale invariance sug-
gests that the scaling functiaiiq) has a specific shape along thexis at any scale
considered. Therefore, when we consider multifractal @sses, we are dealing with
a collection of probability distributions each correspimgdto a scale. The scaling
function((q) allows for the parsimonious approach to model this comp&haliour.
Recall the empirical features of financial prices, whered t®mmon observation that
the shape of the distribution is highly non-Gaussian at natales converging to
guasi-Gaussian distribution as one considers larger sceiltifractals constitute a
natural candidate for modelling this specific type of bebaxi

In financial modelling, one usually deals with processed fanmultifractal processes,
at a predefined timg there are (at least) finitely many time-scales for which ae ¢
compute the distribution of the process. An important qoast that how to build
multifractal models from scratch? An important method thétiscale behaviour can
be analysed is theaultiplicative cascadesvhich is the subject of the next section.

2.2.1 Discrete Multiplicative Cascades and Multiplicative Masures

A multiplicative cascade is an iterative procedure wheegaah iteration, the time scale
is reduced by a predetermined ratio called the scale ratidtiplicative cascades was
firstintroduced by Richardson for weather prediction [49Lltiplicative cascades can
be used to generate multiscaling models that properly niineédehaviour of complex
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dynamical systems. In order to build multifractal modelsttiemonstrate multiscal-
ing, one starts with building multifractal measures andtietend multifractality from
stochastic measures to stochastic processées [39].

In a more formal manner, multifractality is defined first foeasures and then extended
to processes. The definition involves afsactal sets such as the Cantor set, the Koch
curve and Peano curves (see for instance [40]).

The following example in[[56], which features one of the firsictal sets defined in
real analysis and named after its creator, explains how tphicétive cascade is built:
the Cantor sef[13].

Example 2.1(The Cantor set)Let us consider the closed intervdl 1], o-algebra
5[0, 1] and associate the probability measiiréhe uniform measure, which assigns
a probability to every intervdk, b] equal to its lengtlh — a. The Cantor set is con-
structed by the iterative procedure that first divides aerirgl into3 equal parts and
then removes the interval in the middle, i.e.(f = [0,1] thenC, = [0, 3] U [2,1],
whereP(C) = % The second iteration results in
1 21 27 8

Cy = |0, §]U[§,§]U[§,§]U[§,1], (2.11)
where one can see th&{C,) = 3. At the k-th iteration, the se€’;, contains2" inter-
vals, with assigned probability of:, and the whole sef, has therefore probability
(2)*. The Cantor sef’ is defined as

C =,Ch.

A straightforward computation shows that

P(C) = lim P(Cy) = lim (%)k 0.

k—o0 k—o0

Based on the setS,, one can construct a random variable using, for instancea b
mial random variabl&), with P(Y,, = 1) =P(Y,, =0) =3, n=1,2,...:

oo

2Y,,

After the firstn coin tosses, the random varialifetakes values in the sét, which

shows thaty” can only take values in the Cantor geét= N2> ,C,,. Y has very in-
teresting properties: it does not have a density nor a pilityatlensity function. Its
cumulative distribution function is aingularly continuoudunction, i.e. it is a non-
constant continuous function with a derivative equal tmzdmost everywhere.

The Cantor set is &actal, a set with a fractional dimension, defined on the real line.
Fractal sets were defined in the beginning of the twentietitucg. The iteration pro-

13



cedure and the choice of the probability measure is lategrgdined to construct mul-
tiplicative measures through which we can obtain multiibprocesses.

In a similar manner to the construction of the Cantor set, iplidative measures are
constructed via an iterative procedure. Recall that, thedduanction is defined by
assigning a uniform probability measure to each intervalagéd¢o the length of the
interval. In the context of multifractal processes we cdesinfinitely divisible distri-
butions to assign probability to each interval in the caswagrocess.

Suppose there are two real numbegsg; > 0 with gy + g1 = 1. At the initial step

i = 0 of the cascade, we consider the uniform probability meaguoa the compact
interval[0, 1]. In the first step = 1, the measure is obtained via assigning theeight

go to subinterval0, 1/2] and g, to subintervall/2,1]. Note that the subintervals are
created by dividing the initial intervad, 1] to two equal halves and therefdfe scale
ratio is equal tol /2. Similarly, in the second stepp= 2, we now havel subintervals:
[0,1/4],[1/4,1/2], [1/2,3/4] and[3/4, 1] and the interval that was a subinterval in the
previous step, namely, 1/2] and[1/2, 1] are treated in the same way the unit interval
[0, 1] was treated in the first step, i.e. the measp@ssigns the weights to subintervals
as follows:

§2[07 1/4} = Jo9o, §2[1/47 1/2] = god1,
§2[1/2, 3/4} = 39190, §2[3/47 1] = 0191,

where the weightg;s are independent at each step. Bh@mialmeasure is defined
as the limit of the sequence of measuies

The binomial measure cascade is #i@plest multifractabxample. It has some im-
portant properties. For instance, considering the dyaaierval [t,¢ + 27*] with
t = 0.mns ... 7 in the counting base of, one can compute the measure of a dyadic
interval according to

s[t,t+27% = g5 g™,

wherer, andr, denote the relative frequencies@d and1’s in the binary representa-
tion of ¢, respectively. One can also proceed to compute the measaaller (or
finer) scale from darger according to the following principle:

Gil0mmz ... me) = gi(t)si[0.muma - - 1] (2.12)

The properties of multifractal random measures are noatrimultifractal random
measures are continuous but singular probability measueeshey have no density
and no point mass, which are the features of the Cantor set.

Preservation of the mass at each step with the constfaintg; = 1 has been named
themicrocanonicalproperty. Multifractal measures can be built via multiptige cas-
cade procedure with not only two but a larger number of weight which results
in multinomialmeasures. In the microcanonical setting, we asshmg, = 1, with

0 <m < b— 1. For the binomial case we have< m < 1.
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The generalization of the binomial and multinomial measwan be obtained with al-
lowing the non-negative weights, to be general random variables, instead of discrete
ones. As a result, the classmlltiplicative measureare obtained. Again, in the first
step of the multiplicative cascade, the unit interiall] is subdivided intd-adic cells
that have length /b, where for everyn the random weigh4,,, is assigned tanth cell.
Iterating this procedure, we obtain the measure of an iatefMengthAt = b~

g(At) = g(m)g(nl,mz) ... glm, ..., m),

and therefore for the-th moment, we have

g(At)? = g(m)?g(m,m2)* ... g, ...,m)?, Vg > 0. (2.13)

Taking expectation of the both sides of Equation (P.13), botaio the intended scaling
rule:

E[g(At)"] = (E[¢"))", (2.14)
as the weightg(n;), i = 1,2, ..., n are independent.

To relax the restriction of microcanonical conservatiorpased on the multifrac-
tal measure, it can be required that the measure consergesplectedmass,i.e.
E[>" g~ = 1. In this case, the measure is calle@honical Canonical multifractal
measures play an important role in the attempts to buildewsal multifractal pro-
cesses and multifractal stochastic equations. For caalonidtifractals, Equation2.13
takes the following form:

g(A)T = Qn1, ..., m)g(m) g1, m2)®. . g(m,...,m)?, Vg >0, (2.15)

where() denotes the total mass of the multifractal measure. In étigg, (71, ..., 7:)
1, and therefore the multifractal measure satisfies Equ@@idd), which is the desired
multifractal scaling property.

a

2.2.2 Multifractal Random Fields and Change of Measure

The analysis of scaling properties of random fields involwegry well-known con-
cept in financial mathematics and modeling, as well as s&iithanalysis, of course:
change of measure. Change of measure is in fact one of the gedients of BSM
model, which makes it possible to define the option pricirgpfem in a conformable
setting to the fundamental theorem of asset pricing (sem&ance([15]). Now let us
turn back to scaling random fields to discover the role of thenge of measure in the
construction of multifractal fields.
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Now let us start by considering a random meaguié), defined over ther-field of
subsetsd € R”, whereD denotes the dimension of the underlying space. The average
density at scalé is defined as [44]:

Fi(r) = L™"u(C), (2.16)

whereC' is a D-dimensional cube of side lengthcentered at and F(r) is a random
field. To analyze the densipyat different scalesand L, one can consider the relative
densitya,.;,, which is the well-known Radon-Nikodym derivative process:

al;L:E(T)/FL<T), (217)
whereL > [ anda,,;, satisfies:

ai, = Q1,901 (2.18)

wherel < g < L andV; < V, <V}, and we assume that, is a random variable, the
distribution of which depends only on the ratjd. and is independent of the positions
of volume center provided that/; € V;,. For the moments af;.;, we write:

Elaf,) = Elof,JEla, ), (2.19)
and sinceél[a; ;| depends only on the ratig L, we obtain the following general form

Elaf,) = (/1)@ (2.20)
where by definition we see that(0) = K(1) = 0.

Now let us introduce the logarithmic ratio

KL = —lﬂ(FllD/FLLD)
= —In(F/F)(l/L)
= —In(a) (/L) (2.21)

where we can see that, is a non-negative random variable that is depending only on
the ratiol/ L. Let us observe that one can define a sequeneecabes (or intervals in
1-dimensional case) of side length lying between/; andV;, such that

1/pr=pi/ps=---=pa/L=(/L)Y" (2.22)
The representation af;.;, in terms ofa;.;, allows us to write:
Ki.L = Kizpy + Kpripe + 0+ KpoiLs (2.23)
which implies thats;.;, is an infinitely divisible random variable.

One can see that in multifractal random fields, change oésogblies change of mea-
sure through the Radon-Nikodym derivative process Therefore, each change of
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scale fromL to [ corresponds to a change of measure. In fact, the multifrecading is
observed iy ;. As the scale ratio between two intervals increase, the euofldiimes
the measure changed also increases. In the small time soéletl can be assumed
that there are almost infinite number of measure changes.

2.2.2.1 Generator of the cascade

Let us recall that the random variabl(\) is responsible for the scale dependent
behaviour of the multifractal process(¢). An equivalent approach to multifractal
analysis is using multifractal random measures of the pre/section. Writingz(\)

for a;,;, we can write:

4

R(AA2) £ R(M)R(), (2.24)

which implies thatR(-) is amultiplicativeprocess. Moving to logarithmic coordinates
we obtain a familiar distributional property &f(\):

log R(AA2) < log R(A1) + log R(As), (2.25)

i.e. log R(-) is infinitely divisible and thereford?(-) is log-infinitely-divisible. This
result is also obtained for self-similar random measures.

Remark2.1 The random weight&(-) determining the scale-dependent behaviour of
a multifractal proces (¢) is log-infinitely divisible.

This important remark restricts the class of stochasticggses to be chosen to deter-
mine the scale-dependent behavior of multifractal praeedglembers of the family of
infinitely divisible processes ranges from the Brownian motio Poisson processes,
and the multifractal processes are named after the diisibof R(-), with examples
such as the log-Normal multifractal and the log-Poissortifnattal.

We can write via scale invariance:

X(t) L R(H)X(1), (2.26)

and rewrite Equatiori_(2.6) as:

E[X®)] = E
- E
= (gt

wherec(q) = E[|X(1)|?] is a constant an&(-) satisfies
E[R(\)] = K@, (2.27)
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The log-infinite divisibility of R(-) allows for relating the scaling functio(¢) and
the moment generating function of the infinitely divisiblsstdbution of W (\) =
In(R(N)) since:

E[R(N)Y] = Elexp(¢W(N))] (2.28)
AE(@), (2.29)

Let us denote the moment generating function of the infyniatisible distribution by
¢(q). Then, we have the following equality that defin€sg):

K(q) = qD —£(q), (2.30)

whereD is the dimension of the underlying space. The conservatiopgsty implies

(1) = D [44].

What is the distribution o (¢)? The multifractal process is named after the distribu-
tion of W (\), the generator of the cascade. In fact, the choice of theteifrdivisible
distribution fully characterizes the distribution of theiltifractal processX (¢) since it
determines the form of the scaling functiaf(g) and K (q).

Using Equation[(Z.26) on a multiplicative cascade requinesscale ratio\ to be set
equal to a constant greater than one. The usual choige=s2. Holding in mind
that we are only considering models that satisfy canonicabervation property,e.

E[R(N)] = 1, let us proceed to the construction process.

The multifractal cascades can be built starting from a pexdened largest scalé
down to a smallest scale The scale considered when analysing the multifractal pro-
cess is called the resolution. The multifractal procesh@atsmallest scale is called
“bare”, in analogy to the energy flux in turbulence. Therelsodhe “dressed” pro-
cess, corresponding to integrated bare process. Theeatkthdcussion on the distinc-
tion between dressed and bare processes is not in the scthpesitidy. However, one
must keep in mind that in empirical studies, the incrasirgescs used to obtain the
dressed process for parameter estimation procedurese tasitading process, at each
iteration, the scale is reduced to the subsequent scaletscttie ratio\: s; = s;_1/\.
Denoting the resolution by, we haveS = r x \". As the scale decreases, the number
of intervals increase by: at then-th iteration, the scale is, = L/\" and the number

of intervals is\", where the size of an interval is fixed as

Inspired by Richardson’s cascade setting, the cascade &rooted with random
weights. Suppose € [0, 7], with the largest scal® = T'. At the n-th iteration of
the cascade, the realization of the multifractal procegg att is given by:

Xt =][Rr. (2.31)



wherelV;(t) stands for the-th step weight corresponding to timeThese weights are
independent of each other, helping to satisfy:

ELX ()] = [ [ El(R()) = B[R, (2.32)

with B £ Ri(t), i=1,---,n. If one considers a total number of cascade st€ps
thetotal scale ratioA is defined as

A=== )N

S
r
Now let us write X, (¢) to denote the multifractal process at resolutionThe scale
invariance property suggests that

E[X (0] = A,

where the scaling function reads$q) = log, E[R?], and we see that the result is
independent of the time point

The multiplicative cascade setting restricts the possihldces of the scale ratios by
determining the rate of increase of the scale via a constaie satio. Investigation of
the relation between the dynamics of the procEssat different cascade steps we can
write:

Xoman (t) = T (Xom (1)) Xxn (1), (2.33)

where X~ (t) and X (t) are independent:-th andn-th step realizations of the pro-
cess at cascade, respectively and we hByEY \ ()] = X, = (t)(A~"t), where we can
rewrite Equation[(2.33) as

Kymen(t) = Xam ()(A") Xan (1), (2.:34)

which allows for the computation of. + n-th step realization using:-th andn-th
step realizations. Let us switch to the generator settifyy) = In(X()\)), where we
dropped the time pointfor simplicity. For the multifractal procesk), to satisfy the
canonical conservation property, the following normalmacan be employed

(2.35)

where we comput&[I"'] = 1. This normalization is in fact the well-knowBsscher
transform which is in accordance with the observation that a changeale implies
a change of measure for multiplicative multifractals.
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The random variablé; satisfies thedditive group property

G)\ern == Tn (G)\m) + G)\n .

At the smallest scale of the cascade,that ishbmogeneity scalehe process con-
verges to the limiting behaviour, which can be characterizg its scaling function
((g). The choice of the distribution of the generat@rdetermines the form of(q).
Let us demonstrate this property in the following exampEl[5

Example 2.2(The log-Normal multifractal) This class of multifractals corresponds
to the choice of a Gaussian random variable as the geneffatoe oascade. Holding
in mind the conservative property, we require the scalimgfion to satisfyK (0) =
K (1) = 0. For simplicity, we assume a scale raNc= 2. The log-Normal generator
L is given by

L=-exp(X), X ~ N(a,b?).

The stability property of Gaussian random variables allos/ write:
XZa+bzZ, Z~N(01).

The logarithmic transformation implies the moment genegdiunction of X is equiv-
alent to they-th order moment of_:

Elexp(¢X)] = E[L9] (2.36)
1 2 2
= exp(ga+ 0°¢).

The conservation property implies the following relatia@tween the parametersand
b, the mean and the variance of the distribution respectively

1 1
—*=0 or a=—=b
a—i—2 a 50"

and definings = K(2) = log,(E[L?]), we can rewrite Equatiofi (2.B36) as
L = exp(\/klog2Z — glogZ).

Then, one can show that the log-Normal generator resultseifidilowing form of the

scaling function:
KR

Cla) = 5 ’—q).

The log-Normal multifractal was first proposed by Kolmogoemd Obukhov as the
first example of a multiscaling process [29], [47]. It petfeddemonstrates how the
choice of the infinitely divisible distribution, the Gauassidistribution in this case,
determines the form of the scaling functiofy) of the multifractal procesX ().

This observation in fact points out to a stronger result iolet for infinitely divisible
random processes, which is stated in the following theotEfh [
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Theorem 2.3. The class of infinitely divisible distributions coincidegtwihe class of
limit distributions of compound Poisson distributions.

We will not repeat the proof of Theorein (2.3) and refef td [fbrjthe proof. However,
we report some of the important results in Apperdix A.

It is therefore possible to specify the distribution of tbg-infinitely divisible multi-
fractals via specifying the canonicaklzy measurel/ and therefore to compute the
scaling function(¢) as soon as the canonicad\ky measure is specified. The proba-
bility distribution of a multifractal process is, of courseale dependent. In fact, it can
be interpreted that the probability distribution of a nfuictal process is a collection
of probability distributions along different time-scale$his interpretation is a very
useful one for financial applications since many empiritadies report that the shape
of the distribution of financial returns are highly non-Gsias for small time-scales
and converges to a quasi-Gaussian distribution as thedoale-increases. The result-
ing collection of scale-dependent distributions mangetstelf in the scaling function
C(q): unlike unifractal processes, the scaling function of atifrattal process is not
a vector of values for each order of moments but a matrix afe@lwhere the second
dimension is the time scale. This matrix contains all theessary information on the
distribution of the multifractal process.

Suppose that one wants to investigate the characteridtite extreme realizations
of the process at each time-scale considered. These teaizaorrespond to the
tails of the probability distribution. Since the scalingh@tion {(¢) contains all the
necessary information on the distribution, one can alsatifjehow the tails of the
distribution behaves, at each scale. It turns out that th&temce of a multifractal
process is possible when there idwal relationship between the order of the extreme
realizations and their probabilities. This duality hasanctfled to the definition of the
multifractal processes, and the term multifractal to benediby Parisi and Frisch in
their pioneering study [48].

2.3 Singularities and Codimensions: Knitting Unifractalsin Hierarchy

Multifractal processes used frequently to model the gtegdisdynamics of chaotic
systems such as cloud formations, atmospheric wind, tenbdluids, rainfall fields,
human heart beat and financial markets. In early studieanthiplicative cascades
and their statistical properties were considered. As thi@ marpose is to build multi-
fractal processes, the focus is first on the notion of dinemsihe key relation relation
upon which the multifractal framework was built is the onévilen what is called a
singularity, its order, and the fractal dimension of the set it is obs#r\&e proceed
with some important definitions.
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2.3.1 Dimension and Singularity

The key point in the definition of multifractals is the intsio dual relationship between
dimension and singularity of a function, or a stochasticcpes. This duality was
first proposed by Parisi and Frisch in [48]. Their idea is thatrder for multifractal
behavior to be possible, the magnitude of large obsernaton the dimension of the
sets that support those observations must have a speci@ofygependence. Let us
start with the definition o§ingularity [48]:

Definition 2.3. A process/(-) is said to have a singularity of ordér> 0 at the point
x if
lim, [v(x) — v(y)|/|z —y|" # 0. (2.37)

The early multifractal models were built on the assumptlwat their singularities are
concentrated on fractal sets. Let us denoteSly) the set of points for which the
process has a singularity of order The notion of singularity is closely related to
local Holder exponentf&8]:

Definition 2.4. A function f is h-Holder continuous at poirt iff there exists a poly-
nomial P of degreeh’ < h such that

() = P(t = to)] < Cyolt —to]" (2.38)

in a neighborhood of,, whereC,, is a constant. Le€"(¢,) denote the space of real-
valued functions that satisfy Equatidn (2.38)at A function f is said to have local
Holder exponent; if for h < hy, f € C"(ty) and forh > hy, f & C"(to).

Connecting two previous definitions, it is observed that wiienfunctionf has a
singularity of orderh, which is the case on the s8th), it is said thatf is not an
Holder function of ordeh. Therefore one can define two subspaces of the underlying
space where the singularities of ordeioccurs and where thedter continuity of
orderh are observed.

The Holder exponent of &vy processes are path dependent. However, there is a fa-
mous exception: the fractional Brownian motion with setfiarity exponentH (in-
cluding the standard Brownian motion correspondingfte= 1) has local exponent
hypm = % almost surely almost everywheireg for almost all sample paths. However,
we do not have similar results obtained for sample pathsésfylprocesses or even
for a-stable Llevy motion. This difficulty is overcome by defining thimgularity spec-
trum of a stochastic process. The definition of singularity spectdefined based on

the Hausdorff-Besicovitch dimension. We proceed to the dimof the Hausdorff
measurel[57]:

Definition 2.5. For any set € R¢, we define theexterior a-dimensionaHausdorff
measure of by

m.(E) = hmlnf{z diamFy)* : E C U F., diamF, <6 all k:}, (2.39)
k=1
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wherediam.S denotes the diameter of the sgtthat is,diam.S = sup{|z —y| : z,y €
S}. The exterior Hausdorff measure considers for each 0, a union of arbitrary
setsF}, with diameter less thamand take the infimum of the subn,, (diamF},)*. An
important feature of the exterior Hausdorff measure is, tiha@ measure of a set scales
according to its dimension. To see this, consider afsstaled byr, wherer is a
positive constant, thefiliam F')* scales by\?, i.e.

Ma(AE) = \my(E), VYA > 0. (2.40)

The scaling property of the Hausdorff measure resembléssisalarity of random
measures and one can see the relation between the experneriEquation [2.4D)
and the self-similarity exponeri{. To better understand this relation, let us state the
definition of the Hausdorff-Besicovitch dimension of a stastic process [57]:

Definition 2.6. Hausdorff dimension Given a Borel subdétof R?, there exists a

uniquea such that
{oo if 0<a,
mpg =

0 if «a<pg,

whereq is theHausdorff dimensionf £, given by

a=sup{f:mg(E) =oc} =inf {B: mg(E) = 0}. (2.41)

The Hausdorff dimension is a very fundamental concepfrimtals. Fractals are de-
fined to be objects with fractional dimension. The Cantor sstd Hausdorff dimen-
sion ofa = log 2/log 3. The famous example of a fractal set in real world had been
discovered by Richardson in his study to measure the lengtheofoast of Britain,
where he computed that the coast has a fractional dimensibA,and therefore it is
a fractal! Fractals simultaneously defined in complex asialpy Gasin Julia in his
study of dynamical systems in [28]. However, an importarnhpihat was emphasized
by Richardson on the applicability of fractals in naturakswes is that empirical stud-
ies of fractals requires advanced computational powertands Mandelbrot who first
attempted to construct fractal sets using computers [40fadt Julia has drawn the
Julia set by hand. The fractals have drawn a lot of attentiocesthen. Their distinc-
tive property, the self-similarity, has been used in modgthe geometry of natural ob-
jects. As we have seen in the previous chapter, self-siyilaroperty was extended to
stochastic processes, of course, in distributional sdndas pioneering studies, Kol-
mogorov suggested a self-similar stochastic process tehtobulent flows. In fact,
the model he constructed corresponds to a fractional Browmiation with H = %
which is a unifractal. The uniscaling structure of unifedstwas later criticized to
be an underestimation of the level of complexity observeuiithulence. The idea of
multifractal, or multiple, scaling later proposed to prdpeeflect the characteristic
features of turbulence.

The characterization of the behaviour of singularitiesievwof the Hausdorff dimen-
sions of the sets on which they are observed, brings theiqonestwhether there is a
dependency between these two. This question is answerearisy &d Frisch in [48]
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where the authors conjectured that if these type of singigaexist, then in case the
scaling function is non-linear, as in the case for multifa¢s; the Hausdorff dimen-
sion of the setS(h), denoted byi(h), has a “nontrivial dependence aén different
kind of singularities are associated with sets having ckffié Hausdorff dimensions”.
This is where the terrmultifractal is first coined: a hierarchical structure of fractal
sets with different values of Hausdorff dimensions, on \hitce singularities: are
concentrated. The counterexample of unifractals cormdpto self-similar processes
with linear scaling functionsg(q). For multifractals, the mixture of linear scaling expo-
nents result in a non-linear scaling function. Furthermtire degree of multifractality
of a stochastic process can be measured by measuring howitasdaling function
deviates from linearity. Now let us sketch briefly how Paaisd Frisch have made the
connection between the scaling functigg) and the singularity spectrum, which they
had first demonstrated in theirmodel.

The fractal dimension of the cascade is responsible for thiisoaling characteri-

zation of the process. Recall that fractal sets have fragtiblausdorff dimension,

whereas regular sets have integer Hausdorff dimensionhwiequal to its Euclidean
dimension. This distinction leads to homogeneous andrimtéent” cascades. Homo-
geneous cascades are sets with integer Hausdorff dimetisibdemonstrate regular
and predictable behaviour. In the case of a cascade witltgdinal Hausdorff dimen-

sion, the resulting structure is a fractal which demonsgratultiple scaling.

Let us briefly summarize thé model of Parisi and Frisch. To mimic the aggregation
properties of turbulent flows, their idea was to construetdhscade from larger scale
to smaller scales in a way that at each iteration, the randeighis are either dead
,equal to zero, or alive, equal to a predetermined cons@nppose a multiplicative
random variabléV,,, with the following binomial distribution:

P(W,, = \°) = A°© (2.42)
P(W,, =0) = 1—\° (2.43)

where we can see that to satisfy the canonical conservatapepgyE[W,,] = 1, a
duality between singularities and their probability of o@nce has been formed: The
probability of occurence of a singulariti(1V,,, = \°), is proportional to its ordek°.
This duality constitutes the basis of the multifractal feamork.

Suppose that we have at theth iteration of the cascade of tiiemodel. Since the
cascade steps are independent of each other, the propéialita weight is alive after
n iterations is

P(Wm,n - )\C|Wm,1 - Wm,2 == Wmn-1— )\c) - ()\fc)n’ (244)

where IV, , denotes the multiplicative weight at theth iteration of the cascade.
Equation [[2.44) implies a power-law behaviour for the pifitglof staying alive for
the weightlV,,, throughn iteration of the cascading process. The asymptotic exgonen
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c is called the (fractaltodimensiorof the process. Let us consider/adimensional
cascade, where at each iteration, the number of “pixelgeames by\?. Then, the
average number of active weights is computed as

#(active) = #(pizels)P(epn = A) = XA = AP, D=d—c¢,

where the exponenb is the difference between the dimension of the space and the
codimension ofV/,,. It can be interpreted that the active weights is concegdrah a
volume of\~¢ of the total volume of\?. As we progress through cascadifggoes to

the (fractal) Hausdorff dimension of the set of active ppiwhenever: < d, since the
empty space where there is no alive weight determines theleaity of the fractal

set that is built by the multiplicative cascade. In cddge an integer, the fractality of
the set of non-zero points directly implies the fractalityie set of zero points as both
would have fractional dimensions. Let us compute the sgdlinction K’3(q) of the 3
model:

E[Wi] = XA~ = 3ah), (2.45)

which concludes((q) = ¢(c — 1) and therefore thé model is a unifractal.

The 5 model simply captured the connection between the dimersidrithe order of
singularities. However, the resulting process was not difradtal but a unifractal
self-similar process, which are taught to be too simpliaticeflect theintermittency
observed in chaotic dynamical systems. To obtain multi&igy, Schertzer and Love-
joy improved thes model and developed the model in a similar fashion to thg
model, by multiplicative cascading with dead and alive w&sgsee([35]). The idea
behind thex model was to complicate the setting by allowing the aliveghies at eacht
step to increase or decrease in magnitude according tofpredexponents.

Let us start with the unit interval, 1] and at iteratiord, the weightit, = 1. Con-
sider as before a scale ratipwhich is an integer denoting the number of subintervals
generated by the cascade at each iteration. The cascadeegsoto smaller scales
by multiplying i.i.d. random weight$V,, with E[W,,] = 1, at each iteration. Let

x € |0, 1], then, the value at at then-th iteration of the cascade is computed as

W(z) =[] Wi (@) (2.46)

and the smallest scale, or the resolution, is ngw". The canonical conservation to-
gether with the i.i.d. assumption foV,, ;,j = 1,...,nimpliesE[W, (z)] = 1,Vx €
[0, 1]. The multiplicative cascade upon which thenodel is built is a binomial cas-
cade:
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P(W,, =\") = x°
P(W,, =\") = 1-\7¢

whereht > 0 corresponds to &oost i.e. ¢, > 1 andh~ < 0 corresponds to a
decreasean the magnitude of the weights. We can see that when we wartrtgpute
the expectation of the model at any step, the canonical conservation property snove
in, and the relationship betweér and the codimensioncomes into view:

E[W,] = AN 4 (1= AN =1,

which also implies that among the three parameters ofithdel, (L™, h~, ¢), only
two of them can be decided freely. It is possible to recgvarodel ash™ — ¢, which
corresponds td~ — —oo. The improvement of the model on thes model is that in
the latter, the part of the space is reserved for zero reé@irdue to occurence of dead
weights whereas in the former there exist realizations) @seery small, resulting in a
more continuous structure of the process. dhmodel, therefore, as an example of a
multifractal model, allows for the construction of stoctiasnodels with intermediate
behaviour between jump models and continuous models [39].

Both g anda models assume that the probability of a realization is swigrrelated to
its order of singularity. Now consider the multifractal pesse, defined as the limit
of the multiplicative cascade with weighits,: at cascade step

N
ex=][wx. (2.47)
=1

for which the following form of probability density in termsf the singularities is
assumed:

dc
dy
wherep(h) is a normalization factor and k) is thecodimension functioof the pro-
cess. This approach is similar to that of scaling functjgpn of a multifractal. Recall
that to obtain multifractality, the consant scaling exparessumption relaxed so that

we have a scaling function. The codimension functigh) is the corresponding relax-
ation of the codimensions.

P(ey > \') = p(h)A=®), >0, (2.48)

In a more general way, one can defirjé) instead of a single codimension constant
as follows:

#(singularities with orders- h)
#(pixels)
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The singularity of multifractal processes constructedwidtiplicative cascades offers
an opportunity to define a universal classs|[53]. We have destrthe idea of a multi-

fractal process is developed on the observation that tlgiksinities of various orders
exist on fractal sets of various Hausdorff dimensions. Tdes is formally stated in

terms of acodimension functiomelated to the scaling functiof(¢) via a Legendre

transform. Let us first observe that for a multifractal calea, the singularities can
be defined by a power of the scale, or resolution

S\ Z Aihu

which implies that the rate of divergenceayfis greater of equal to the rate of diver-
gence ofA\~". Borrowing the terminology of thermodynamics, recall the¢ach iter-
ation, the “generator”, which we have called the mother ksegp to\? “offsprings”,
which we have called the daugter, where- 1 is the scale ratio for one iteration of
the cascade and is the dimension of the space on which we construct the cascad
Let us denote the resolution atth step byl,,, implying A\ = 1,,+1/l,. Furthermore,
let us restrict the development of the cascade by introdutirthe largest scale to be
considered in our construction. At theth step, the total scale ratio}8 = A. As we
have mentioned in previous sections, the logarithray,aé a member of the class of
infinitely divisible random variables, and therefore shitgy frome, to 'y = In(e))
will be helpful in the analysis of multifractal cascades.

The canonical conservation property is defined based onshngption that the ex-
pectation, the first moment, ef is finite. However, the singularities of higher orders
may cause the divergence of moments. To compute the bounttsefoonvergence of
moments, i.e((q) < oo, the “trace moments” introduced by Schertzer and Lovejoy
([35]) of €, on aD dimensional sefi, where the subscript indicates that the set

IS measured at the same resolutior,as

E| /A dP ] = B[S AP, (2.50)

Ax
which is bounded since
E[) " eiA""] > #(singularities with orders- h)A""A~9P = \loh=e(h)=(h=DD
A
' (2.51)

The scaling functior{.(¢) of the multifractal variable, is defined by

E[el] = E[/]X@ = exp(C(q) In(\)Ele1]. (2.52)

The scale invariance property establishes a duality betweeorder of moments and
the order of singularities which creates a hierarchicakomf singularities and the

fractal sets in the multiplicative cascade. Now let us fomaushe connection between
the codimension function(h) and the scaling functior(¢). We can specify the

following form of scaling tail probabilities for the multéctal process:
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d
Pey > A1) =2 A=<, d—; >0, (2.53)

and the probability density of singularities can be comguée

d]]?)(E)\ Z Ah> ’

P(h) = o = ¢ (h)(In(A)A~e)) = \—<h) (2.54)

wherec (h) In()\) is a slowly varying function at infinity. Combining Equatibrb2
and Equation 2.54, one can write:

E[e"] = / ldP ~ / dh A\l (2.55)

where the change of variables = )\ is used to obtain the right-hand side. The
motivation behind this transformation is that we focus dteration on the realizations
of ¢, that are greater than or equal to singularitiés In view of Equation[(2.55), we
obtain

E[e!] = \X@ = exp(K (q) In(\)) ~ / h dhexp(In(\)(gh — c(h))), (2.56)

which is of similar form to Equation 2.64 and fbr(\) >> 1, the largest contribution

to the integral in the right-hand side of Equatibn (2.56) esrfrom integrand with the
maximum value of the exponent:

K (q) = max(qh — e(h)), (2.57)

which is called a Legendre transform. The Legendre transfoas a very special
property that inverse of the Legendre transform is againgehdre transform, which
allows to obtain:

c(h) = mélx(qh — K(q)). (2.58)

2.3.1.1 Mandelbrot’s Approach

Mandelbrot reports similar results with a slight change efspective: instead of the
scale ratio)\ getting larger, he considers the time scalgetting smaller to its limit
value of zero. The codimension function takes another nantieis context: the sin-
gularity spectrum. Similarly, the singularity spectruninigis out the scale dependent
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Holder continuity characteristics of the multifractal pess. This, also, defines a spe-
cific hierarchy of Hlder exponents. We first restate the definition of shregularity

spectrun39]:

Definition 2.7. Let f : R — R be a real-valued function and for eagh> 0 define the
set of points at whiclf has local Hblder exponenk.:

Q(a) = {t, hy(t) = a}. (2.59)

The singularity spectrum of is the functionD : R — R which associates to each
a > 0 the Hausdorff dimension d#(«):

D¢(a) = dimpuQ(a). (2.60)

Put into words, the singularity spectrum of a function, ot@bkastic process in our
case, is the set of Hausdorff dimensions of points with aifipéacal Holder exponent.

We have mentioned that the singularity spectrum of stochpsicesses may be path-
dependent and therefore the estimation of singularity tsywacof a process is of no
special importance. However, Jaffard ([26]) showed thatafdarge class of évy
processes, the singularity spectrum is the same for aliastraple paths In fact, the
singularity spectrum of ag&vy process can be characterized by the Blumenthal-Getoor
index defined as

¢ =inf {y > 0,/ v(dz) < oo},

lz|<1

wherev(dz) is the Levy measure of the process. An important result is thatofor
stable stochastic processes, the Blumenthal-Getoor irsdegual to the index of sta-
bility . This result provides important information on the muitptive cascades with
«-stable weigts and their singularity spectrum.

More formally, the following proposition ir [26] for the gjularity spectrum of Bvy
processes:

Proposition 2.4. Let { X (¢),t > 0} be a Levy process with&vy triplet(s?, v, b) and
Blumenthal-Getoor indek

e If2 > ¢ > 0ando = 0 then for almost every sample path
dimQ(a) =Ea for o< %

andQ(«) = 0 for o > 1/¢.

e If2 > ¢ > 0ando # 0 then for almost every sample path

i 1
dimQ(a) = sa !f “= ¥
1 if o= 9
andQ(«) = 0 fora > 1/2.
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e If £ = 0 then for eachy > 0 with probability 1, dimQ(«) = 0.
Proof. For the proof of the proposition, we refer {0 [26]. n

Propositiorf 2.4 states that folelzy processes, the singularity spectrum reduces to a
single number. This better explains the scale-indeperydehthe moments of self-
similar processes: Regardless of the time-scale conside&y processes behave
according to a single value of singularity, i.e. the set dhfgowhere a Evy process
has a local Blder exponenty has the Hausdorff dimension equal to a multiple of the
Holder exponent and the Blumenthal-Getoor index

This result is of practical importance, since the locélder exponents of &vy pro-
cesses may differ between sample paths, one can obtaimiation on the singulari-
ties, that is, theoughnessof the process by estimating its singularity spectrum. The
interpretation of the singularity spectrum requires songght on the Hausdorff di-
mension. We have stated that fractals have fractional dsirnarand the singularity
spectrum of levy processes involves this case whenever the value of theddéf
dimension, which is given a&x, is a fraction. This feature is in accordance with
the log-linear behaviour observed for the scaling functign of the self-similar pro-
cesses.

Mandelbrot emphasizes there are more than one intergnetaitihe singularity spec-
trum, for which he prefers the termultifractal spectrumFirst consider a discretiza-
tion of time of lengthAt = b=*, whereb is a positive constant, and define

_ InX(t,At)

TSR (2.61)

(073 (t)

whereqy(t) are called theoarseHolder exponents. To obtain the limit &g — 0, we
increase: and in the limit, the frequency histogram of coars@dér exponents con-
verges to the frequency distribution of locablder exponents. Mandelbrot states that
the singularity, or multifractal, spectrum can be intetpdeas the following equivalent
alternatives:

1. The limit of a renormalized histogram o®itler exponents,
2. The Hausdorff (fractal) dimension of the set of instanth \Molder exponenty,
3. The limit of k! log, P(ay, > ) + 1.

An implication of this definition is that the number of intafs with Holder exponent
a, N,, behaves as
Na(At) ~ (At)~Pr(@),
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which can be obtained by the scaling property of the Haugdoeasure given by
Equation [2.4D0).
Now let us consider a finite intervél, T'] with N discrete points and define the esti-

mator( (q) of the scaling functior (¢) of the processK (-) as follows:

N-1

{(g) = In ( 3 X (iAt, At)\q> /In(At), (2.62)

=0

and it is known that for a given sample, one can estimate tted lddlder exponent by
the relation

| X (¢, At)| ~ (At)7®) (2.63)

wherea(t) denotes the local élder exponent at. The singularity spectrun;(«),
implies that the distribution of is of the forme(a)(At)~P7(*), wherec(a) is a con-
stant. As we have obtained the form of the distributiomvpfising Equatioh 2.63, we
can write

N—-1
S X (At AL ~ / c(a) (At)1~Pr@) dg, (2.64)

1=0

In the limit Az — 0, the main contributor to the integral above is the followiagm:
(Atyminelaa=Dile), (2.65)
which shows that in the limiting case we have

C(q) — moin(qa — D¢(ar)), as At —0, (2.66)

wheremin, (¢ — D¢(«)) is the Legendre transfornof D («) ([14]), which has an
important property that it also satisfies

Dy(er) = min(ger — ¢(g)). (2.67)

which provides an estimator for the singularity, or muétdtal, spectrum of the process
X(t).

2.3.2 Universal Multifractals

Until now we have seen that multiscaling property of mudtifial processes, denoted
by ¢, can be obtained by employing multiplicative cascades ritidlom weights (mul-
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tipliers), which are called generators and given by thetiia = exp(I"). Further-
more, we have showed that the scale invariance propertyamgie log-infinite di-
visibility of the random variable that characterizes thelsdependent behaviour of
the cascading process. If we further restrict our atterttanstable generators, it has
been shown that we can reach a universal characterizationdtifractals. The gen-
erators that result in universal multifractal processesikhbe chosen according to the
following requirements listed below:

1. Sinceln(e) > 0, itis required that™ > 1.

2. Denoting byK (q) the scaling exponent of the limiting processve can write

Kx(q) = In(\)K(q),

3. For some orders of moments> 0 to converge, it is necessary that the right tail
of the probability distribution of the generatby must decay faster than expo-
nentially. This requirement is particularly important amedgtrictive since it de-
scribes the distribution of an asymmetiiestable random variables, (o, —1, 1)
where we have assumed the lowest value-offor the skewness parametgr
By setting = —1, we ensure that all moments ofs finite (J50]).

4. The canonical conservation property must be satisfigd:) = 0.

The debate of the existence of universal multifractals wesrg active one especially
around1980’s ([53], [22]). Finally, Schertzer and Lovejoy have deysad the univer-
sal multifractals based on extremely asymmettie; —1, a-stable random generators.
They have also obtained the form of the scaling functjoy) as

_ @ a0 ae0,2])\ {1},
o) = {C’lqln(q) if a=1, (2.68)

wherea is the stability index of thex-stable distribution and’;, = K'(1). This rep-
resentation is of particular importance in terms of appiices as one can estimate the
shape of the empirical scaling function of, for instanceéyume amplitudes, i.e. the
absolute returns, and calibrate the parameteaad (', to the sample under consider-
ation. Furthermore, using Equatibn 2.57, we obtain themedsion function of the
universal multifractals as

- {01($+5_,)(q“—q) T AN €S A,

| Crexp (& —1) if a=1,
wherel + 1 = 1.

Universal multifractals are named after the generatorggeemployed in multiplica-
tive cascade procedure. Some of the important examplesvane as follows|[[4]:
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1. The log-Lévy multifractal In this case, one considers a stable generator with
stability index1 < a < 2 and we have almost surely discontinuous paths. This
case corresponds to the canonical/ measuré/(dx) ~ z*~*, and the result-
ing scaling function is

Ky, = o%|q|”.

2. The log-Normal multifractal We have already mentioned the log-Normal mul-
tifractal in Exampld_2J2. It is the first multiscaling prosgsroposed by Kol-
mogorov and Obukhov(([29, 47]) and the scaling function el as:

K
Ky = §(q2 —q),

wherex = K(2) = log, E[W] andWW is the log-Normal generator of the cas-
cade.

2.3.3 Order of Singularities vs. Fractal Dimension

We have seen that Equatiofis (2.58) dnd (2.67) completebjif@sethe scaling func-
tions K (¢) and((q), where the former denotes the scaling function of the nrattigl
random measure and the latter denotes the scaling fundttbe onultifractal process.
The relation between two functions, in the context of lofjritely divisible random
measures is given as:

C(q) = qH — K(q),

with H = ¢(1), which is the exponent of the mean. Comparing Equations 258
(2.67), one can see the inverse-type relationship betweg@imensions:(k) and sin-
gularity spectrumD(«), which reveals one of the fundamental implications of scale
invariance: the minimum deviation of the Hausdorff dimensof the process from
linearity is equivalent to, or implies, a maximum deviatwinthe codimension of the
process from linearity. This duality results in the hiekacal structure of multifractals,
where the singularities of highest orders occur on fraetd with the smallest fractal
dimensions. This observation brings into question therdisbn between rare events
and extreme events.

It is argued by Schertzer and Lovejoy that the singularitgcsum was developed
for deterministic chaos and the codimension formalism esged in Equations (2155)
through [[2.57) is more general and necessary for stochastesses.

Now let us get back to the investigation of the convergendke$caling functioq(q).
By Equation§ 2.51 arld 2,67, we can see that the moments diwbeye

((q) =qh —c(h) > (h—1)D, (2.70)
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and we can define the critical order of singulariti€s (¢) = ((q) — (¢ — 1)D and
therefore the divergence occurs whenekgy(q) > 0. From this point of view, the
critical codimensiong’(¢) are defined as

Clq)(g—1) =¢(q)- (2.71)

The canonical conservation requirg§1) = 0 and by definitionk (0) = 0, which
are the properties of the scaling functiofy) we have mentioned before and it can be
shown that(¢) is convex, that ig<" (¢) > 0. An important value is the “codimension
of the mean'C, = C(1) = K'(1).

Going back to the model of Parisi and Frisch, we recall that it constitutesxangple
of unifractal processes. The scaling function for thenodel is computed as

Ks(q) = Ci(q— 1), (2.72)

which is, as expected, a linear functiongfand this observation lead to a suggestion
to measure the degree of multifractality of a process by maagthe deviation of its
scaling function from linearity. For instance, th&;(¢) of the 8 model. It is known
that linear scaling functions points out to unifractal, eif-similar, processes. One can
see that thes model is self-similar with the scaling exponeht = ;. Recall that

to construct multifractality, the constant scaling expuseare replaced by functions
H(q). Similarly, in this context, one has the scaling exponentfion C(¢). A local,

in ¢, measure of multifractality is suggested as follows:

p=K"(q)/K (q), (2.73)

which is in fact a measure of the non-linearity(@f). In case of unifractal processes,
we havep = 0.

We have seen in 2.4 that foelry processes, this dimension can be computed by its
Blumenthal-Getoor index, which is the index of stabilityor a-stable processes. Note
that the case > d, which results inD < 0, leads to the so called “latent” dimensions,
which is out of the scope of our study.

The investigation of the process in terms of its singulesigind the shape of the singu-
larity spectrum, and itkegendre dualscaling function led to the construction of the
class “universal multifractals” by Schertzer and Lovej{®0]). Universal multifrac-
tals are particularly important for the definition of thedtastic equations that are the
solutions of multifractal processes. In the next subsactice will briefly explain the
approach to universality through multiplicative cascades
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2.3.4 Generalized Dimensions

The Hausdorff dimension is a member of the set of generalis@@nsions, defined
as the generalization of the box-counting dimension. Theegdized dimensions are
used to construct the generalized dimension spectrumhid@lso a characterization
of the stochastic processes and dynamical systems (Sefef Erief discussion). The
generalized dimensions are also important for the studyuifiitactal models and the
concept of codimension.

Let us assume that we assign a probabgityo each nonempty cell A trivial choice
of assignment would be to usg/N wheren; is the number of points in thah cell
and N is the total number of points considered. When the total nuraberonempty
cells isn, we write

Lo Jog 3T pf
D(q)_q_lg%( s ¢ ), a€R. (2.74)

Generalized dimensions for eaghcontains specific information on the underlying
process. Fog = 1, we obtain the information dimension:

noq
Dy = lim (1282 Pl (2.75)

e—0 log €

and it is equal to the pointwise dimensiann general:

p(l) ~ 1%, 1 —0,

wherep(l) denotes the measure of a neighborhood of 5iZ@(¢) is called the corre-
lation dimension, and so on.

The spectrum of generalized dimensions characterizes titténactal properties of a
process. Let us define a functigita) as the dimension of points with a pointwise
dimensiona, which is calledthe singularity spectrunm the multifractal framework.
The generalized dimensions have the following property:

D(q) = -1 [ga — ()], (2.76)

and by computing the derivative we obtain= i ((¢ — 1)D(¢)) and f(a) = (1 —
7)D(q) + qa.

Defined by Grassberger and Procaccia, the generalized siomsnemphasizes the
theoretical background of multifractals which extendséafal geometry [20, 21]. Itis
the dimensional properties that distinguishes multitxicand generalized dimensions
establishes the link between entropy and the fractal dirners the process, and of
critical importance to our study.
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We have seen that the scaling exponeiits hold critical information about the mul-
tiscale characteristics of the process. However, one may t@ obtain further in-

formation such as the predictability properties of a mrdttal process, which is of
fundamental importance since the characteristic feat@irehaotic dynamics is the
sensitive dependency to initial conditions. In the mudithal framework, this feature
is explained by the long-term scale dependent structureutafcarrelation function.

However, this explanation is in terms of average deviatanms causes loss of critical
local information. A natural candidate for the analysis oédgictability of multifrac-

tals is the local Lyapunov exponents. Inspired by the stufdyooenz [33], Aurell et

al. have shown that one can define a multifractal charaet#wiz of a dynamical sys-
tem using the generalized dimensions of its local Lyapungoeents. In fact, this
characterization constitutes the basis of our study. Wesed in Chaptes that using

Malliavin calculus techniques, it is possible to measueeltital Lyapunov exponents
resulting from a perturbation of a stochastic process. Thgrestimating the gen-
eralized dimensions of these exponents, we will show treanhltifractal behaviour
of the process manifests itself in the generalized dimassad the local Lyapunov
exponents. Similar to the multifractal spectrum, the geliwsd dimension spectrum
of a multifractal process exhibit non-linear behavior arghhvariability. In case of a
unifractal process, the generalized dimensions will beiroflar magnitude, and the
spectrum is a constant value along different orders of dgmen However, for mul-

tifractal processes, the dimensiob$q) will show high variability, as we see for the

scaling functiong(¢), and as; gets larger, we see a sharper decrease than linear or-

der. We will estimate the generalized dimensions of emalidata to show the listed
features in the following sections.

2.4 Examples of Multifractal Processes

Multifractal processes are built upon unifractal processih the employment of the
method of multiplicative cascades. The choice of the uaifidgprocess in fact deter-
mines the scale-invariance properties of the constructdtifractal process. Several
multifractal models are built according to this feature. Wi# mention some of the
most famous examples.

2.4.1 The Multifractal Random Walk

In financial modelling, multifractality is considered toigixin the volatility series of
financial prices. This approach is first employed by Mandliet al. in [39] by
considering a time-change based on a multifractal randoasuare, which is called
the “trading time”. An equivalent approximation by Bacry avdzy is suggested to
employ a multifractal process as the volatility coefficiehan 11 integral with respect
to a Brownian motion{ B(¢),t € [0,7]} ([4]). Let us consider the following process
{P\(t),t € [0,T], X € [N, A]} as a model for financial prices:

36



P = [ expla(s)iB(s), @.77)

where we assume that (s) LW (s),Vs € [0,7]. The Multifractal Random Walk
(MRW) P(t) is the limiting process:

P(t) = lim P\(t). (2.78)

A—01

The resulting MRW is in fact equal in distribution to Mandeitis MMAR model, that
is, a Brownian motion subordinated with a multifractal tregltime M/ (¢). The MRW
exhibits the following scaling:

NG
o)

whereK, = T*@DE[M ([0, T))9], K, = q/2—1(q/2) andy(q/2) is the scaling function
of the canonlcal measurel (dx) of the multifractal process, (¢).

E[|P(t)|*] = o1 Ky ot™a, (2.79)

2.4.2 Continuous Multifractals

Let us consider a variable scale ratic< A < A, whereA is the fixed largest scale
ratio. IntroduceR = log A andr = log A. The elementary scale ratio is now =
\,Y/" = exp R/n. The discrete cascade corresponds to introducing a stickamel
M, and intervalsA,, and B, such that (recall that(z) = [[/—,' Wi..)

—_

['(z) =loge(x) =Y M(A,, B,(x)), (2.80)

3

=3
Il
o

whereM (A, B) is arandom variable depending onlymnA), resulting iny;a,5y(q) =
m(A)Yo(q). The intervalsA, and B,, responsible for the cascading behaviour are
given by:

A, = [pTR’ W], and B,(x)=[r— %exp(pR/n),x + %exp(pR/n)],

whereK = L/A is the resolution and} = exp(pR/n).
The densification of the cascade actually corresponds-tooo, transforms Equation
(2.80) into a stochastic integral and one can show that:

ea(x) = exp/ M( @ , Dy\Ip)(x)), (2.81)



wherec > 0 is a parametetl,(z) is the interval of the lengtlx” centered inc, and D,
is the dilatation operator of factox.

The stochastic integral generates a multifractal field asbeaseen via scaling of mo-
ments a[e}] = AS@ with ¢(¢) = c(¥(q) — q). Moreover, the two-points statistics
can also be recovered.

The above approximation for the causal cascades can alsedeuith the assumption
that the position is time, and the past does not depend omutheef For this purpose,
the interval is modified a®,(t) = [t — K exp(pR/n),t]. This gives the following
causal stochastic evolution law for continuous multifedet

A
en(t) = Acexp(/l M(%, [t — K\ 1)) (2.82)

Finally, let us consider an important family, log-Stableltifiiactals, including the log-

normal case. Stable laws are infinitely divisible(kA) < k'VeM(A) for k > 0
constant, and < « < 2 is the Lévy index. This result injy(q) = ¢“; when
a < 2, the second Laplace characteristic function is defineddeitpre moments only
for asymmetric laws for which hyperbolic pdf correspondsh&mative fluctuations,
P(—X > x) =~ x~*, whereas positive fluctuations have an exponential decagn,T
by splitting Equation{2.80) into two integrals, corresgimy to backward and forward
domains, and introducing the change of variables = — %)\ andv = x+ %A respec-
tively, one obtains, with the &vy measuéd.,, (du) = M (du, [u, x]) a stable stochastic
integral:

en(z) =AN"° exp(/A( ) lu — 2| ~VdLy(cu)) (2.83)

whereA(z) = [x — X /2,2 — K/2]U[z+ K/2,x+ X/2] andA = X /K .This equation
corresponds to the exponential of a fractional integraaver a limited domain) of
order(1 — 1) of a Levy-stable noise. When the position is in time, we obtain \&ith

fixed scale ratio\ = L:

t—K

exlz) =A"° exp(/t (u— )Y La(cu)) (2.84)

-T

whereL,,(cu) L /Ly (u).

2.4.2.1 Continuous Universal Multifractals

One important point is that we have considered mainly diserescale multiplicative
cascades, and yet have not presented any results regandimgrtinuous time limit
of multiplicative cascades with infinitely divisible, or meospecifically, stable gen-
erators. Let us recall that we have defingd= exp(I')), where\ = L/l indicates
the scale ratio under consideration, whéres the largest scale arids the time scale
(resolution) at scale ratid. We write
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86)\ N o 8FA
E)_)\ =AEXN;, VA= a, (2-85)

where~, is the infinitesimal generator of the cascade. One questisasais how one
can define a continuous time multifractal process. It tuntgioat this can be done in
a formal way as followd [51, 52]:

e = lim €, = exp(D), (2.86)

A—00
where we also definE = lim,_,, I'y. By taking\ — oo, we takel — 0 and obtain
a continuous in scale (and therefore in time) multifractalcess. Our fundamental

concern is, as expected, to build a continuous model thavdstrates multiple scaling
which implies logarithmic divergence of the moments pasA — 0:

E[ef] ~ A9 = E[exp(I'))?] ~ exp(¢(g) In(\).

To stay within the borders of the universal multifractalesgahooses a fractionally
integrated, of ordeh, a-stable levy process, as the generator of the cascade:

Ca(x) = gx x ().

where g, * y\(2) ~ |z|~" and restricting the domain of integration to the interval
Dy : {|='| € [L/), L]}, we write

M) = [ ol Pnle =) (2.87)

we obtain the following form for the generator:

Da(x) = ( / a2 |~y + (2.88)
Dy

which results in the following scaling function

L

E[T5(z)] = exp((¢° / dz' |2 |~ + go), (2.89)

A

wherev, is a recentering parameter to ensure the canonical conieered the mass is
satisfied in the multiplicative cascade. For obtaining te&iicbd logarithmic divergence
of scaling function in\, that is
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L
/ dx|z| =" ~ In()),
L/

it is required that

] 7" ~ a7,

whered is the dimension of the embedding space, which gives g. This result

shows that the index of stability, also determines the order of fractional integration
of the a-stable Levy process, to obtain universal continuous multifractals

2.5 Empirical Analysis Procedures

Multifractal processes exhibit fundamental propertietheffinancial markets and fur-
thermore it is possible to characterize the distributiofiredincial prices using only a
small number of parameters. As usual, to be able to emplotifragtal processes, it is
necessary to check whether the underlying sample exhigtsharacteristic features
of multifractals. Recall that the main features consist ofleange correlations in re-
turn amplitudes, multifractal scaling and scale-invac@nThe analysis of the data in
terms of scaling function, codimension functions and mangenerating function can
be used to identify if it is appropriate to employ multifralstin the modeling process.
Let us briefly summarize some of the analysis techniquedadlaifor multifractal
analysis.

2.5.1 Structure Functions

This is the most frequently used method since it is built lgoba the definition of
scale-invariance. Multifractal processes are processdssatisfy multiple scaling, a
property that requires a specific form of the scaling functigy). It is therefore natural
to compute the empirical moments at various time-scaleggawhine its form to detect
the non-linear scaling of a multifractal process. In fact, mave already reported the
estimator of the scaling function based on the structuretfans in Equation(2.82):

N-1

K(g)=In ( 3 X (int, At)|q> /In(At). (2.90)

=0
Computation of the empirical scaling functigy) reveals the scaling characteristics
of the process. A linear structure in logarithmic coord@sasuggests unifractality
while non-linearity is a sign of multifractality [39].
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2.5.2 Detrended Fluctuation Analysis

An important consideration in the analysis of structurections is local trends, season-
alities and/or non-stationarities present in the data. Ahowdeveloped to overcome
these possible issues is thiltifractal detrended fluctuation analygiBIFDFA) (see
[24]). The MDFA algorithm detrends the subsamples at diffiéiscale ratios,;, and
then explores the scale dependent moment structure vialativeuseries. MFDFA is
used to estimate the scaling function and the singularigcspm via estimating the
“generalized Hurst exponent? (q), which is related to the scaling functigrg) as:

C(q) = qH(q) — 1.

Using the scaling functiog(q), then, as we have seen, it is possible to compute the
singularity spectrum via a Legendre transform:

fla) = qa = ((q),
wherea = K'(¢). Furthermore, we can estimate the generalized dimensions:
D(q) = qf(a) —((q), (2.91)

which is of essence for our study as we will see in the next iemaghere we will
estimate the generalized dimensions of the price-vdiafdiedback effect rate series.

2.5.3 Double Trace Moments

The Double Trace Moments (DTM) of technique, defined by Laeain ([32]) aims
to detect the scaling behaviour of the multifractal prodmsérst taking itsnth power
at the scale ratio < A and define:

Exp =
* o El(e)"]
which has the following scaling structure:
E['EZ,A] ~ )\K(q,n)’

where K (q,n) is called thedouble trace moment scaling exponand related to the
usual scaling function with the following equality:

K(q,m) = K(qn) — qK(n),
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Table 2.1: Sample statistics for datasets

Dataset Mean Median| St. dev.| Skewness Kurtosis
BIST30 7.1473e¢ — 06 | 0 0.0029 | —1.3 102.9986
USD/TRY | 0 0 0.0007 | —0.3085 | 38.0840
EUR/USD | 0 0 0.0011 | —0.1813 | 33.1317

andK (g, 1) = ¢(q).

The DTM method is especially useful to obtain parametenests for the universal
multifractal processes:

K(g,m) =n"¢(q)-

Therefore, one can estimateby plotting K'(¢, n) against; in logarithmic coordinates.
The linear fit gives the estimate of

2.6 Empirical Results

In this study, we employed multifractal analysis to thretadats:5 minute observa-
tions of BIST30 index betweent.1.2007 and 29.4.2010, 15 minute observations of
USD/TRY betweent.1.2016 and22.1.2016 and1 hour observations of EUR/USD ex-
change rate betwedr2.6.2013 and17.12.2013. The BIST30 dataset includes the crit-
ical 2008 period, where the global crises have caused turbulenceandial markets
worldwide. The USD/TRY and EUR/USD exchange rates are chbsercompare
their multifractal characteristics here first and theibgity properties in Chaptes.
The obtained results suggest that all three datasets éeatuitifractality via bursts of
volatility, non-linear structure of the scaling exponentidocal discontinuities.

Let us first summarize some statistical properties of thas#ds used:

The datasets we use in our analysis share some common tekbdted below:

e Near zero mean and median,
e Low volatility over the whole sample,
e Negative skewness and excess kurtosis.
Excess kurtosis is one of the stylized facts of financialrresuHowever, we are inter-

ested in the change in the statistics with the changing tcates As usual, we expect
the return series converge to a Gaussian distribution asleescale increases.
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Table 2.2: Time scale and statistics for USD/TRY returns

Time scale| Mean | Median | St. dev.| Skewness Kurtosis
15 min 0 0 0.0007 | —0.3085 | 38.0840
30 min 0 0 0.001 —0.2391 | 27.2431
60 min 0 0 0.0014 | —0.757 27.2913
120 min 0 0 0.002 —0.8972 | 19.9106

We see that for USD/TRY sample, as the time scale incredsesptatility increases

whereas the kurtosis decreases. The skewness of the sdsmiraeases in magni-
tude towards the more negative values. Since we are noestésl in the precise time
scale at which the sample is quasi-Gaussian but how the samgients change as
the time scale changes, we proceed to multifractal anabjsie datasets.

Scaling exponent of BIST30

6 *  Returns *** !
—©6— Abs Returns *%*
sl * GBM o

7(q)
w

Figure 2.4: Comparison of scaling functions for BIST30 Index

We gquantitatively measure the multifractality in datasassthe non-linearity of the
scaling functions, the generalized dimensions and thergkned Hurst exponents,
which are estimated using the Multifractal DFA methiod [24].

Singularity spectrums of all three datasets also supparbleservation that multifrac-
tal scaling is present in the return series of EUR/USD, BISTi3®@ dSD/TRY. The
spectrums vary significantly when compared to the spectifisrBsownian motion.

We proceed with the estimation of generalized Hurst exptsngiiq) for BIST30 re-
turns and a standard Brownian motion to check whether theadisiultifractal scaling
could be obtained. The generalized Hurst exponents of tiienrseries emphasizes
the multifractal nature of the three datasets analyzedguoreiZ.y.

We interpret the estimated scaling exponents as the defneeltifractality varies be-
tween datasets. The scaling exponent of USD/TRY is almsafiand it is the closest
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Figure 2.5: Comparison of singularity spectrums of retunese

Generalized Hurst exponents
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Generalized Hurst Exponents
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to unifractal behavior among the three datasets. We cansalsdhat its singularity
spectrum is symmetrical with the most probable singulasityaround0.5 in Figure

[2.5. For BIST30 and EUR/USD datasets, however, the multdidoethavior is easier
to see with non-linear scaling functions, asyymetric arehsd singularity spectrums.

2.7 Conclusion of Empirical Results

Our analysis suggest that although of different levels griiicance, all three datasets
exhibit multifractal features. The generalized Hurst enguas H (q) differ signifi-
cantly from the Brownian motion value 0f5. We see weak signs of multifractality in
USD/TRY return series. This may be a result of the partictitae period chosen or the
relatively low number of observations in the data samples Mltifractal behavior of
BIST30 and EUR/USD series can be seen via the generalized ékshents, scaling
exponents and the singularity spectrums. One can intetfpaefor large time scales,
the volatility of USD/TRY would exceed the volatility of BISSD and EUR/USD re-
turns. The variability of USD/TRY series do not seem to diffi@éth changing time
scales.

By looking at the value off = H (1), the usual Hurst exponent for the three datasets,
we see the anti-persistent nature of EUR/USD returns wheheaseturns of both
USD/TRY and BIST30 series are persistent. This may be a resulte very high
trade volumes and orders for EUR/USD exchange rate, which caage very fast
reversion to mean and low volatility. Similarly, the eff@ttpositive or negative return
observations do not easily vanish for USD/TRY and BIST30eseriThe observed
persistence may be used to build trading strategies.
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CHAPTER 3

STABILITY PROPERTIES OF STOCHASTIC PROCESSES

It is the usual assumptions in financial modeling practieg tihhe investment decisions
are based on two main drivers of asset prices: the risk andetoen of a financial
asset. While it is much more straightforward to define therretun an asset, e.g. the
change in its value through time, the risk of an asset is evi@inuit to define. The
usual practice is to use the volatility as the fundamentasuee of risk. However, as
the markets evolve to a more complex structure and marketesged new type of
crises, practitioners and investors invented new risk onegs

The latest big financial crisis i2008 have added a new type of risk the investors
did not taking seriously before: The liquidity risk. A sucddrain of liquidity in
the market induces large price movements as the investtindavge asset portfolios
would consider liquidating some of their holdings to redtlee risk of falling prices.
However, liquidity shocks result in widening bid/ask smgieand the more investors
trying to sell their assets paradoxically put pressure aepr After2008, maintaining
the stability in markets have become one of the main targetewtral banks and
financial authorities.

The stability of financial markets can be, in some contexindd as a market’s ability
to absorb “small” price fluctuations1[6]. Conversely, instfp refers to an easily
altered path of asset prices, where one considers the ftimtsas perturbations of
the price process. Therefore, the notion of stability iselp related to the reactions
of a market to perturbations. The behavior of a (stochagtm}ess under perturbation
can be analyzed using dynamical systems approach wheréeathiktyg of the process
is measured vikyapunov exponents

Lyapunov exponents are introduced to measure the stabfltlynamical systems. It
is later extended to semi-martingales by X. Maal! [43] and Adrt]. The stability
behaviour of both fi and Stratonovich type stochastic differential equatamesexten-
sively studied. Furthermore, Lyapunov exponents of nraltifal processes are recently
studied and the so-callegkneralized Lyapunov exponemt® shown to be related to
the entropy of the process [2,161].

In a more recent study, Barucci et al. have analyzed the &yabfl stochastic pro-
cesses, & processes specifically, by employing Malliavin calculashiniques and
proposed a stability index, the so-callpdce-volatility feedback effect raff]. In
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this study, we show that the price-volatility feedback efffeate is the Lyapunov ex-
ponent of theGirsanov factorfor the change of measure induced by infinitesimal per-
turbations of a stochastic process through time. This cigiimline with the idea that
the price-volatility feedback effect rate is a stabilitgéx, as Lyapunov exponents are
used to decide whether a process is stochastically stabietor

In the following section we briefly summarize the definitioip @hd some important
results regarding Lyapunov exponents in the context ohstsiic processes.

3.1 Lyapunov Exponents and Stochastic Stability

Lyapunov exponents are roughly the exponential rate of ghanf a process. It is
introduced as an indicator of the stability in the sense wehbsiefly explain below.
As the theoretical background of Lyapunov exponents is inbgtyond the scope of
this study, we briefly summarize some of the results mentian¢l]. Let us consider
an SDE of the form:

dX (1) = a(t, X (£))dt + b(t, X (£))dW (¢), (3.1)

where{W (t),t € [0,7]} is a Brownian motiong(-) andb(-) areR valued functions
which satisfy the existence and uniqueness conditionsXftd = z, € R. Let us
further assume that(¢,0) = b(¢,0) = X(¢,0) = 0. Then it is said that SDE in
Equation [(3.1l) admits the trivial solutian(¢,0) = 0 Let us state the definition of
stochastic stability ([43]):

Definition 3.1. The trivial solution of Equatiori(3l1) is said to bochastically stable
or stable in probabilityif for every pair ofe € (0,1) andr > 0, there exists & =
d(e, ) > 0 such that

P X (;x0)| <7, VI >0}), (3.2)
whenevelzy| < J. Otherwise, it is said to bstochastically unstable

Stochastic stability can be detected via the Lyapunov expts) more precisely the
sign of the Lyapunov exponents. The stability of a processheadefined as its insen-
sitivity to changes in the initial conditions. The sensitivto initial conditions is also

a subject of financial modeling where the option Greek Dekasares the sensitivity
of the option price with respect to changes in the initialdibon. Let us mention the
definition of the Lyapunov exponent of a SDE in an informal mam{43]:

Afag) = Jim * 1og | X 0)) (3.3)

Zo

where the quantity\(z,) is called the Lyapunov exponent of(¢,z,). A negative
A(xy) value indicates stochastic stability whereas a positive iomplies instability.
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More precisely, a positive Lyapunov exponent implies demsidependence on the
initial conditions, a feature of chaotic dynamical syste@se can see from Equation
(3.3) that the Lyapunov exponents are time averages of tadpiantitylog | X (¢, x)|.

In a similar fashion, local Lyapunov exponents are definestian the expansion rate
of the perturbation of a dynamical system. Let us assume ifial iperturbation of
w(0) = wy of the process and define the local Lyapunov exponents (LEEQlEows

[8.161]:

Att,a0) = 1050} (3.4)

Wo

with dw(t)/dt = A(t,z0)w(0). The idea is that in chaotic systems, the initial pertur-
bationw, will expand exponentially in accordance with sensitiveatggency to initial
conditions.

A similar argument is used by Barucci and coworkers to defirepitice-volatility
feedback effect raté [6]. In the next section, we will shoatttme price-volatility feed-
back effect rate is in fact the LLE of the so-called Girsanastdr that is responsible
for the change of measure induced by a perturbatian,aif the underlying process.
The critical feature of the LLEs is that they fluctuate acawgdo a probability distri-
butionP(A, t). Therefore, one can define moments of various orders of LiMB&h
are called generalized Lyapunov exponents (GLE) [61]:

Lig) = - tim * 1og B 2Dy 35)
t w
and fort >> 1, the following form of the distribution is obtained [8,/61]:

P(A’ t) ~ exp[—tf(A)], (3.6)

where f(A) denotes the entropy function and, just previously done émtiultifractal
framework, one can show that it is related to the GLEs via thgelndre transform:

f(A) = man(qA —qL(q)). (3.7)

By comparing Equatior.(3.7) to Equatidn (2.58), one can saeftt\) ~ ¢(h) and
K(q) ~ qL(q). This relation implies that the Lyapunov exponents are ofilar
order to singularities of a multifractal process, which timghtforward to see since
both quantities are responsible for the expansion of thenyidg process. A more
important result is obtained by Aurell et al. inl [2], where tAuthors analyzed the
predictability problem for multifractals.

Suppose that an infinitesimal perturbation of initial sbzgrows to a threshold af-
ter the so-callegpredictability timedenoted byT'(6,0). The “finite-size” Lyapunov
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exponent (FSLE) is then defined as:

1 o
0. 0)]> ln(g), (3.8)

A(6,0) = (]

where<> denotes statistical average. Then, it is shown that the R&lsEhe scaling
exponent

) 2—D(q
x(¢q) = min(1 + —()),

q q
which is “a new invariant of the multifractal approach toldulence”. This result has
motivated us to investigate the dimensional propertiehefliLE by estimating the
generalized dimensions.

3.2 The Price-Volatility Feedback Effect Rate

The price-volatility feedback effect rate is developed asadility, or liquidity, index

for financial markets in [6] and later applied to BIST30 indexahalyze the (market)
stability characteristics of the index in_[46]. The markethslity refers to the ability
of the market to absorb relatively small price fluctuatioi#is definition is in fact

closely related to the stability concept introduced by Liyraqv.

To properly capture the motivation behind the price-véitsitteedback effect rate, we

first mention the pioneering study of Foueret al. [18]. In their study, authors have
employ Bismut-Elworthy-Li formula]9],[16] to suggest a nemethod to estimate the

Greeks. The Greek Rho, the sensitivity of the option pricéaéochanges in the mean
rate of return, or the drift, parameter, can be used to ilyast the stability properties

of a stochastic process with respect to random perturtaitbnrandom times. Let us

briefly summarize how the connection between the change asune and the stability

Is established via Malliavin calculus techniques.

3.2.1 Change of Measure and Parametric Sensitivities

In financial practices, one seldomly thinks in marginal terifhe alchemy of financial
markets is the relative value, or the sensitivity, of thereadf asset classes with respect
to each other, as the obvious opportunities are easily paghtit is the hidden patterns
that makes the difference. In turn, a multi-correlated seéestructure of financial mar-
kets have evolved. It is still uncertain what drives the @sienost of the time as the
reasoning generally lags behind the movement. Howevercaneanterpret changes
in the prices as the changes in the underlying measure ofwestors through which
they measure the price of risk and manage investment dasiacordingly.
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Fourni et al. suggested that the changes in the price levels of acfalaasset re-
sults from the changes in the underlying measure. Considendaional(-) of the
price process of a financial asset. The price of this payeittonal is computed via
conditional expectations with respect to two equivalenbpbility distributions([18]:

Change in price = E®[¢] — E9[¢] (3.9)
= E%[¢ x 1], (3.10)

where the Malliavin weight is defined as follows:

~dQ —dQy
V= —

3.11
When one considers a parametrized farfilyof distributions with parameter set=
{vi}, 1 =1,...,n, we have the following result:
O 0[] = E®[p x v} (3.12)
al/i 2]

with Z = % andv; = %, which states that; is the logarithmic derivative of) at
Qo in they; direction.

The Malliavin weight is defined based on the change of meaagements: it is the
logarithmic derivative of the Radon-Nikodym derivative pess” in a specific direc-
tion. In general, to compute the Greeks, Equation (3.12igleyed withy; = 1, i.e.

a unit change along the axis. Now consider the Greek Rho, tistsgy of the price

of the contingent clainp with respect to the changes in the mean rate of return, or the
drift, parameter.

3.2.2 Perturbation and the Feedback Effect Rate

Assume that the function bay be such that it can depend on the whole history of the
process{ X (t),0 € [0, 7]} satisfyingE[¢(X(+))?] < oo. Consider the reference path
as in Equation(3]1) and the perturbed path, or process|las/fo

AX(t) = [a(t, X(£)) + ey(t, X<(£)]dt + b(t, X (£))dW (¢), (3.13)

wheree € R is a small parameter and : [0,7] x R* — R" is bounded. The
infinitesimal random perturbation of (¢) induces a change of measure through the
Radon-Nikodym derivative proce$s::

Z(T) = exp (— ¢ /0 Zg((g))dvv(t) -5 /O (Zg((g; 2dt). (3.14)
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and its logarithmic derivative &, in the v direction results in the Malliavin weight
for the Greek Rho (se&18]):

(X))
/0 XD AW (1), (3.15)

Barucci et al. coins the terthe Girsanov factofor the ratiozg((f); and investigates its

)
dynamics for a special choice of perturbation by choosifi¥(¢)) as the first variation
process and define the price-volatility feedback effed.rat

The causality behind volatility feedback effect is the timaying risk premium on the
underlying asset. In_[6], this causality is used to relatlatdy feedback effect to
Girsanov transformation and Malliavin calculus notionse S¥art by defining thérst
variationof X (¢), Y (t) = 2 X*(t), t € [0, 7

dY (1) = ( (XT ()Y (Odt + o (X“()Y ()dW (1), Y(0)=1.  (3.16)

Now suppose that we choos¢X (t)) := Y (¢) and analyze the change of measure
induced by an infinitesimal random perturbationdd¥(¢), wheree is a small real pa-
rameter. We have seen in Equatibn (3.14) that this pertorbdefines a new Brownian
motion{B(t),t € [0,7]} under the new measuf®,:

dB(t) = eo_(YS—(z))dt +dB(t), (3.17)

wherez(t) = G(YS—((?)) is called therescaled variation In line with the dynamical sys-
tems framework, one can think @(¢) as the reference sample path ai¢t) as the
perturbed path, and Equatidn (3.17) shows that the pettarbef the processX (¢)
by €Y (¢) results in the change of the measure by the rescaled varigtin Volatility
feedback effect rate is defined as the change in the rescatliadon of a stochastic pro-
cess through time and in this context it allows us to analyzetihe measure is affected
by perturbations at different times. The following theoremnhich is first proposed in

[6] plays an important role in our study:

Theorem 3.1. The rescaled variation is a differentiable function withpest tot, with
its logarithmic derivative\(¢) being called the feedback effect rate. Thus we have

Z(t) = exp (/ MNr)dr)Z(s), s<t, (3.18)

wheret € [0, 7.

Proof. We closely follow the proof in([6]. Let us first obtain the difential equations

that defines(-) and 5. Applying It formula to f(z) = o(x) andg(z) = ;5
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respectively, which satisfy the usual regularity assuomn®j we can write

do(X(t)) = 0"(X(t))(u(X(t))dt+0(X(t))dB(t))+%0"(X(t))0'2(X(t))dt7

I _ o(X(@®) ) 1
d(U(X(t))) B 02<X(t)>u(X(t))dt O(X(t))dB(t) 5 (X (t))dt
(o' (X (1))
oy

Then we obtain the differential equation 8(-) as follows:

dZ(t) = d

1
)+ U(X(t)dy(t) + <dY(t)’d(a(X(t)))>

(X(O)u(X(1)dt — o' (X(t)dB(t)

Y(t)

where(-, ) denotes the quadratic covariation. The logarithmic dévigaof Z(¢) can
be expressed as follows:

CZZZT%) = [ (X ) - Z((}f((f)))) (X (1) — %U(X (t))o”" (X (1)) dt.

Let us define‘% = \(t)dt. Integrating both sides fromto ¢ yields

InZ(t)—InZ(s) = /t A(T)dT,

which gives

2(8) = exp( / Mr)dr)Z(s),
where\(t) is defined as

[ o (X (1))

A =~ | =26 (X)) + 2u(X () T

+o(X(t)o (X@)|. (3.19)
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Theorem [(3.1) states the basis of our study: the feedbaektefite is the LLE of
the rescaled variation process, which is responsible ferntieasure transformation
resulting from a perturbation of the stochastic proc&$s). This claim is supported
in [38] since the authors stated that the volatility feedbeffect rate can be seen as
the appreciation rate of the rescaled variation and thaeviduige positive values of
indicates market instability, negative feedback effet x@lues imply market stability
in the sense that the market oscillates around an equitibstate. We have already
seen in Definition[(3]1) that, negative Lyapunov exponamdgate stochastic stability
of the underlying SDE by means of its reactions under randertugbations. The
following proposition explains the relation between negst of the feedback effect
rate and the duration of the effect of perturbations on tloegss, which results in
what the authors uses the teremote memorywhich should not be confused with the
long-memory observed in fractional Brownian motions in cAse 1/2.

Proposition 3.2. Assume thaf, = 0. Furthermore assume that there exists> 0
such that the price-volatility feedback effect rate asatsd to price process defined by
Equation [(3.2%) satisfies

A(t) < =6, Vtel0,T].

Then, the market has no remote memory (thaf{s) — 0 ast — +oc). More
precisely, we have the estimate

|Z(t)] < exp(—=d(t —t0))|Z(to)|, Vt € (to,T).
Proof. See[[38] for the proof of this proposition. O

The feedback effect rate, the LLE of the rescaled variai®npt a constant quantity
and oscillates with the transition of the underlying statltaprocess between stabil-
ity and instability in the sense that the increase and deergathe sensitivity of the

underlying process to random perturbations. This feattifiectuating feedback rates
can be compared to features of multifractal processes émabe observed as volatility
clustering, intermittency and the decreasing dimensiothefsets upon which large
singularities are observed, i.e. the definitive duality afltifractals. Since one can

consider multifractals as random measures as well as rapdoresses, a continuous
change of measure is observed through both time and scalee Bie feedback effect
rate corresponds to LLEs of the rescaled variation, dinogradiproperties would co-

incide with that of a multifractal process. We will in factsgiay this feature of the

feedback effect rate in our empirical analysis.

Let us briefly summarize how the feedback effect rate is cdetpun the next subsec-
tion.

3.2.2.1 Quadratic Variation and Covariations

To compute volatility feedback effect ratg.), we need to know the analytic expres-
sions ofg () andy(-) in advance, which is generally not the case in applicati@Qrse
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can overcome this difficulty by using non-parametric meghfwat estimation of high-

frequency volatility and covariance series. For this pggdValliavin and Mancino

developed a non-parametric method based on Fourier asatysompute time series
volatility for semimartingales in [37]. In what follows;, -) denotes quadratic covari-
ation. Let us first give the representations of the quastiieeded as follows

(dX (), dX (t)) = Adt, (dX(t),dA(t)) = Bdt, (dB(t),dX (t)) = Cidt.

So, the instantaneous quadratic variation and covariaonslefined as functions of
time. Furthermore, the following theorem in [6] states thalatility feedback effect
rate \(-) can be expressed as a functionA4f B andC. Note that, in this setting,
the variance of the log return series is equaltathe quadratic covariation between
log return and log return variance series is equabBto Hence,C' is the quadratic
covariation betweeeR and the log return series.

Theorem 3.3. The volatility feedback effect rate functiaf) can be expressed as

MO) = 20— o (X)) — (X (D) (3.20)

Proof. We first observe thatldt = o%(X(t))dt. To compute B, which is defined as
the quadratic covariation between return and return veeawe will first compute the
differential form of A, which can be expressed as:

d(o®(X (1)) = 20(X (1))o (X (1))dX (1) + %20’/(X(t))(a/(X(t)U(X(t)))Z-
Then,
Bdt = (dX,dA) = <dX, 2a/adX> and o(X (1)) (X (1)) = %.

Using these equations, we can write

(aX.2d(o (X ()" (X(1))) = <dX,2d(%)>

"

= 2[0 (X(8)o(X () + (0 (X(1))*)o(X (1) | dt

 A(dX,dB) — B(dX,dB)
= - . (3.21)

Substituting Equatiori (3.21) in Equatidn (3.19), we obth@following representation
of \:

MO = 2o — S i (X(0) — (X (1) 5 £ [0.T)

U U
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3.2.3 Estimating Volatility

The Fourier series method to estimate volatility was fireppised inl[37]. The method
requires computation of Fourier coefficients of the seriger computing the coef-
ficients, it is possible to reconstruct the series using iEodéjer inversion formula.
The first step in applying the method is scaling the origimahgling interval tdo, 2x|.
Moreover, the series that we will compute the coefficientstbe detrended in such a
way that we will haveX (0) = X (27). The Fourier coefficients of the series are then
computed using the following equations:

ag(dX) = %/0 7rdX(t), ap(dX) = %/0 7rc:os(lft)dX(t),

27 (322)
bp(dX) = l/ sin(kt)dX(t), te|0,2n].
T Jo

Applying integration by parts and previous-tick intergaa scheme, in order to avoid
any bias in the computation of volatilities (séé [7]), theegral equation foa, (d.X) in
equation[(3.22) can be approximated by:

ar(dX) = & (2”)7: X©O) | / " sin(kt)X (t)dt.

Previous-tick interpolation assumést) = X (t;) on [¢;,t;11], this assumption leads
to the following approximation:

E tit1 X(t)dt _ X(ti)l[cos(k?ti) - COS<kti+1)]‘

T Ji, T

Then, we can compute the Fourier coefficientsxoby the following equation:

ap(dX) = X<27T —I— ZX COS (kt;) — cos(kt;i1)].

The modified coefficients defined below are used in the conipataf volatility series
in order to guarantee its positivity (see [38] for details):

« | ai(dp) fork >0, b br(dp) fork > 0,
YT\ a_w(dp) fork <o, 71 —b_g(dp) fork <0,

with aj = b = 0. The Fourier coefficients of the volatility series are rejerged in
terms ofa; andb; are as follows:

N—k

a(d) = Jim s S [ (dX)al, () + B (X (dX),
Nk

W(4) = lim 2 (dX084(dX) = BdX)a} ()
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Finally, the volatility series are reconstructed usingRberier-Fejer inversion formula
given by

Alt;) = ]\}1_21(1)0 (1-— %)[ak(A) cos(kt;) + bp(A) sin(kt;)].

We iterated Fourier series method three times to compute andC'. The sensitivity
and the resolution of the quantity decreases at each aaramd in order to avoid
estimation errors in these computations, a smaller nunfloesificients in the Fourier-
Féjer inversion formula is used. It is shown if [7] that Fouseries method results
in an unbiased estimator of volatility. The coefficientsAfare used to obtain the
coefficients ofB, and then the coefficients @ are used to obtain the coefficients of
C [6]. After all three quantities computed, the volatilityefdback effect rate can be
computed using Equatiop (3]20).

3.2.4 Instantaneous Volatilities and the Feedback Effect Ra

To investigate market stability, or more specifically thebgity of a chosen asset price
process, we employ the Fourier method to estimate the iastaous feedback effect
rate values. Since the feedback rate is suggested as a medsnarket stability in
terms of market liquidity, we have chosen arguably the mqgsid exchange rate in
the world, the EUR/USD exchange rate, and two relativelguild datasets, BIST30
index and USD/TRY exchange rate.

In what follows, assume that the stock pri§é) follows a diffusion process in the
form given below:

dS(t) = p(S(t)S(t)dt + 5(S(t))S(t)dB(t); S(0)=seR", te]|0,7].(3.23)

wherefi(-) andag (-) are deterministic functions that are continuously diffeizble and
satisfy the usual assumptions [38]. We further assume tiatikties are functions of
price levels. Hence, the dynamics of the logarithmic pricecpssX (1) = log(S(t))
has the following form:

X(t) :log(S(O))+/0 [(S(s)) — =o (S(s))]ds+/0 a(S(s))dB(s). (3.24)

For simplicity, let us defing(z) := fi(exp(z)) — 562(exp(z)) ando(z) = & (exp(z))
to obtain the following stochastic differential equati@DE) for X (¢):

dX (1) = p(X(1)dt + o(X($)dB(t), X(0) = log(s) = x.

We first estimate the instantaneous volatilities of therregeries where we observe
characteristic features of financial volatility such asstdwing and extreme observa-
tions.
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Figure 3.1: BISBO returns and instantaneous volatility estimations

The BIST30 sample includes the observations durin@ti8 crisis and we observe
large volatility estimations around July and Aug@808. An important point is that
before July2008, volatility levels are very low, without any significant shering ef-
fect. However, after the extreme volatility observed a@eptember, we also ob-
serve large positive feedback effect rate values and dféedate, the volatility levels
increase and on the other hand, feedback estimations deci@®efore crisis levels
and we observe a significant upward movement in the indextaiagd until March
2010, where the higher volatility are coupled with negative orfifeedback values
result in the stable behavior of the market.

Volatility series of EUR/USD observations between Janwan6 and Januarg018

is very low. During the almost two year period we observe Jevy variability and
the exchange rate oscillates betwdeh and 1.3 levels. When we analyze the joint
behavior of volatility and the feedback effect rate we oleehat during periods with
higher volatility, the feedback effect is negative, resigjtin the observed stability of
the exchange rate.

The feedback series of USD/TRY and BIST30 index takes botlip@snd negative

values with large magnitudes. The large positive feedbddevations point out to
instability in the sense that the market is not liquid enotmlhandle small fluctua-
tions, which effectively implies that prices are easilyeefied by marginal buy and sell
transactions of significant levels.

3.3 Generalized Dimensions of the Feedback Effect Rate

Feedback is a characteristic feature of chaotic dynamysaéms. However, the ma-
jority of multifractal models does not feature feedback. eTensitive dependency
to initial conditions point out to chaotic behavior of thedemlying process or sys-
tem, which is assumed to manifest itself in the autoconmattructure of multifractal
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Figure 3.2: EUR/USD returns and instantaneous volatilityrestions
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Figure 3.3: USD/TRY returns and instantaneous volatilggreations
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Figure 3.4: BIST30 observations and instantaneous feedistitkations

60 min EURUSD series

1.4

1.3

1.2

1.1

1
12.15

5000

03.16

06.16

09.16

01.17

04.17

07.17

60 min instantaneous feedback effect

11.17

02.18

o

—-5000

—10000 [

—-15000

12.15

Figure 3.5: EUR/USD observations and instantaneous fe&disdicnations

03.16

06.16

09.16

01.17

60

04.17

07.17

11.17

02.18



15 min USDTRY series
2.2 T T

2.1F 1

2r 1
1.9 1

18 . . . .
04.13 06.13 08.13 09.13 11.13 01.14

15 min instantaneous feedback effect
10000

5000 [ 1

-5000 ‘ ‘ ‘
04.13 06.13 08.13 09.13 11.13 01.14

Figure 3.6: USD/TRY observations and instantaneous fezdbstimations

models.

We have seen that the price volatility feedback effect mtr fact the local Lyapunov
exponent of the Girsanov factor that causes the change afureaA critical assump-
tion that allows for the computation of the feedback effeteris the non-specified
form of the volatility functions(-). The dynamics of the stock price process) as-
sumed to behave according to ad 8DE. However, using the function(-), we can
compute the feedback effect rate and investigate the #yadoild ergodicity properties

of S(t) [6].

We have also seen that continuous multifractal processebecdefined via fractional
integration. Here, we do not specify the formaf) but we assume that the SDE in
Equation [(3.2B) represent the dynamics of a multifractal sgppecific scale, at least in
the sense of the dressed properties.

Based on this assumption and the result of Aurell et al. statédjuation [3.B), we
proceed to analyze the generalized dimensions of the fekdiiect rate and compare
with the generalized dimensions of the underlying retuotpss.

The generalized dimensions of the price-volatility feexkbaffect rate, or the local
Lyapunov exponent of the rescaled variation, is of similzaracteristics for the pos-
itive values ofh. The negative dimensions, which are also called latent nsmes,
are out of the scope of our study and presented only for tieedsted reader. For the
discussion on the negative dimensions we refer to [12] aaddferences therein.

The similar characteristics of the generalized dimensajrith the return series and
the instantaneous price-volatility feedback effect ratges support our claim that the
risk premiums have multiscale characteristics.

We observe that the generalized dimensions of the returessamnd the feedback effect
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Figure 3.9: Comparison of the generalized dimensions of BISE3JR/USD and
USD/TRY return series

rate series coincide in general. Our analysis support aimdhat the feedback effect
rate scales according to the generalized dimensions, wichaccordance with the
result obtained by Aurell et al. for local Lyapunov exporsej®]. Since the feedback
effect is a measure of the time-varying risk premiums in iapsees, we interpret
the observed characteristics of the generalized dimessibthe feedback effect rate
as the evidence of the existence of multiscale risk premiumesset prices. This
interpretation is valid for all three datasets we have azely of various levels.

Abs returns vs Instantanous volatilities
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Figure 3.10: The scaling exponents of the absolute returdghae Fourier volatilities
of BIST30
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Figure 3.11: Comparison of the generalized dimensions of BOISEturn series and
the feedback effect

This result have two main implications for financial modwdlipractice:

1. Market risk premium required by investors for the compéiog of risk depends
on the time scale, or the investment horizon, in a non-liveay: This result
would not surprise the practitioners since the risk premhas an upper bound,
l.e. the risk premium of a risky asset can not always increaeincreasing
time scale. This is in accordance with the flattening end efsitaling function
((q). The volatility does not always increase linearly with tived scale. The
rate of increase decreases after a certain time window.

2. Market risk premium depends also on moments of higherrortiee risk can
not only be measured with the volatility, the second ordenmmot, of the return
series. Investors also take into account the higher monsertis as skewness
and kurtosis into consideration. The dimensional analysike feedback effect
reveal the multiscale nature of time varying risk premiumespnt in asset prices.
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CHAPTER 4

CONCLUSION

In this thesis, we study the multifractal processes andlgyaproperties of stochastic
processes with the aim of analyzing the multiscale chamatites of the time-varying
risk premiums present in financial asset prices. We emplolidvan calculus tech-
niques to analyze the behavior of dynamic risk premiums lynasing the price-
volatility feedback effect rate. Throughout our study, wavé discovered that the
price-volatility feedback effect rate is the local Lyapurexponent of the perturbation
resulting in the change of measure. Our aim is to prove theteaxte of multiscale risk
premiums via dimensional analysis of the feedback effdet ra

For this purpose, we started with the investigation of thdtifractal processes and
their properties, with a focus on the dimensional charéttes. Even though multi-
fractal processes are defined in terms of their scale depehdbavior, the theoretical
framework was in fact built on the duality between the dimemf the fractal sets
that support extreme observations. The detailed concegtian includes singulari-
ties, Holder exponents, Hausdorff dimensions and the Legendnsfoams that knits
the singular values to their supporting fractal sets in guaiway that defines multi-
fractals. The resulting connection can be viewed in ternist the scaling exponent
and the singularity spectrum of the multifractal procedsisTonnection also charac-
terizes the generalized dimensions of the underlying m®oghich provides us with
the chance to use the Lyapunov exponents in the study offracttals. The Lyapunov
exponents are defined in order to analyze the stability ptiggseof dynamical systems
and stochastic processes and play a similar role to codioren# the multifractal
framework.

Another approach to stability analysis of financial marketgg Malliavin calculus
techniques resulted in the concept of the price-volatiegdback effect rate. The aim
of measuring the feedback effect rate is to identify how cangberturbations enforce
changes in the underlying measure of the underlying stdéicha®cess. In our study,
we discovered that the feedback effect rate is in fact thallbgapunov exponent
of the perturbation of the underlying probability measufais observation suggests
applying multifractal analysis to feedback effect rateieseto analyze dimensional
properties. Our analysis shows that the generalized dimesnsf the return series and
the estimated instantaneous price-volatility feedbaticefate series exhibit similar
characteristics, a result which we interpret as the pro@xadtence of multiscale risk
premium in financial asset prices.
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We mainly employed the Multifractal Detrended Fluctuatidnalysis (MFDFA) to
estimate multiscale distributional characteristics akéhdatasets: a market index,
BIST30, the USD/TRY exchange rate, which can be seen as anpéxarha rela-
tively less liquid exchange rate and the EUR/USD exchangg vétich is arguably
the most liquid exchange rate in the world, to compare theitifractal and feebdack
effect rate characteristics.

Our empirical study is multilayered: We first estimate imséameous volatility series
using Fourier series method of Malliavin and Mancino anahtemploy multifractal
analysis to estimated volatility series. We also perfornitifnactal analysis of absolute
return series and compare the multifractal charactesistiovolatilities and absolute
returns. Then, we estimate the price-volatility feedbait&ce rate series to analyze
the stability dynamics of the price processes.

Finally, we analyze the dimensional properties of the estiaa price-volatility feed-
back effect rate series and based on the result obtainetidquredictability of mul-
tifractals we compare the generalized dimensions of theneteries with the price-
volatility feedback effect rate series, to obtain the dmsbiresult that the generalized
dimensions spectrums of both series coincide, which shiogvextistence of multiscale
risk premiums in the analyzed datasets.
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APPENDIX A

DISTRIBUTIONAL PROPERTIES OF ADDITIVE PROCESSES

A.1 Additivity of Stochastic Processes and Infinite Divisildity

Additivity is the fundamental property that is needed tolduwip stochastic models
if one aims to employ stochastic integration. Consider ad.i$equence of random
variables{©,} where we may explicitly know the form of the underlying distition
or not. A basic question arises when one attempts to chaizetbe distribution of
the sum of the sequence: “Can the distribution of the sum blaiegal in terms of the
distribution of the sequence?”

Stochastic processes are classified according to the piexpef their distributions un-
der arithmetic operations. The application of these opmrato stochastic processes is
in fact non-trivial; For instance, to perform addition toemsence of random variables,
the sequence must be realizations of an “additive” stoahpsicess:

Definition A.1. A stochastic procesgo;,,t € (0,7} is called anadditive process if
the following two conditions are satisfied:

o X(t)=0, as.

e Foranychoiceofy <t <---<t,<T,X(t;)—X(ti1),i=1,2,--- n,are
independent.

Investigation of the distributional characteristics oflsite processes is of fundamen-
tal importance for statistical modelling and therefore ricial modelling. The be-
haviour of sums and averages of financial returns holds wétigad information for
applicational purposes such as portfolio optimizationlding trading strategies, pric-
ing options and financial derivatives. The relation betwtberdistribution of the sums
of sequences and the underlying distribution of the sequiased to classify stochastic
processes. In this regard, let us consider the additiveegsoand their distributions.
TheFundamental Construction Theorem(FCT) (seel[25]), stated below, establishes
the connection between additive processes and sequenahstrdfutions of incre-
ments:

Theorem A.1 (Fundamental Construction Theoremyssume thaf X (¢),¢ € [0, 7T}
is an additive stochastic process wil(t) — X (s) ~ ¢,0 < s <t < T. Then, ifa
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family {¢s,0 < s < t < T'} of probability distributions, satisfies

gbsu - qbst * qbtua s <t <u, (Al)

where x denotes convolution operator, then an additive proc&sst € [0,7] can
be constructed on a suitable probability space in such a wayttie distribution of
X(t) — X (s) is given byps,.

In the FCT, it is stated that the distribution of the incremeinthe procesg X (¢),t €
(0,77} can be defined as the convolution of the distributions of té*increments”
which can also be interpreted as the increments at diff¢i@etscales — u = (s —

t) + (t — u): The distribution of the large time-scale increments) — X (u), can

be obtained via convolution of the distributions of the dntiahe-scale increments
X(s) — X(t)and X (t) — X (u). In the early financial models, this relation is assumed
to be linear and the distributions does not depend on the-dmak of the increment.
This assumption leads to the definition of the notion of setitlarity for stochastic
processes, which we will explain in the following sections.

Now consider a special family of stochastic processes, evhach realization of the
process is defined to be an additive process. This propertfledinfinite divisibility
and the members of this family, infinitely divisible processinclude the Brownian
motion, the fractional Brownian motion, Poisson proceéss,Lévy processes are in-
finitely divisible.

Let us first recall the definition of infinite divisibility[([2]):

Definition A.2. A stochastic proces®,,t > 0, is said to have an infinitely divisible
distribution if for eacht > 0 andn = 1,2, ..., there exist a sequence of i.i.d. random
variables9, ., ..., 0, such that

O, L O+ + O,

We have already seen that the additivity property is defireskt on a sequence of
distributions and their convolutions, which implies thastéence of the sequence of
distributionsg;; , satisfying:

Gijt = Dikt * Dhijts
W|th @i7t - @jﬂg ~ ¢ij,t-
Infinite divisibility property is frequently, and equivaly, defined viacharacteristic

functionsof the sequence of distributions;,« = 1,---,n. Let us first recall the
definition of the characteristic function of a distributif@r random variable):

Definition A.3. Let X be a random variable with probability distributidn. The
characteristic function of" (or of X) is the functiony defined for real by

o(0) = / " exp(iCz)Fdz) = u(¢) + iw(C), (A2)

o0
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where

[e.9] [e.o]

u(¢) = / cos(Cx)F'(dx), U(C):/_ sin((x) F(dx), (A.3)

—00 [e.e]

Characteristic functions exhibit some important propsenvéich allow for the analysis
of random variables and their distributional propertiese Tollowing lemma lists the
main properties:

Lemma A.2. a) ¢ is continuous,
b) ¢(0) = 1 and|p(¢) < 1| for all ¢,
c) aX + b has the characteristic function

Elexp(i¢(aX + b))] = exp(ibC)e(af)

In particular, ¢ = u — v is the characteristic function of X.
d) u is evenyp is odd. The characteristic function is real #if is symmetric.
e)Forall¢,0 <1 —u(2¢) <4(1—u(()).

The famous Evy-Khinchin representation describes the form of the attaristic
functions of infinitely divisible distributions, which igated in the following theorem:

Theorem A.3. Let F' be an infinitely divisible distribution of®?. Its characteristic
function can be represented as:

Dr(z) = exp(B(2)),z € RY,

1
U(z) = —gedztinzt /Rd(eXp(’iw — 1 —izaly<))v(de),

where A is a symmetric positive x n matrix,y € R? andv is a positive measure
satisfying

/ lz|?v(dz) < oo, v(dr) < oo,
lz|<1 |z|=1

and it is called the Bvy measure of the distributian.

An important result can be verified for infinitely divisiblearacteristic functions:

RemarkA.1. A characteristic functio® is infinitely divisibleiff for everyn € N there
exists a characteristic functioh, satisfying

®(0) = (®.(0))". (A.4)

Infinite divisibility of a distribution (or a random procgsgoes not conclude any re-
strictions on the shape of the distribution of the sum of #guence. An example is the
exponentially distributed random variables; the sum al.i.exponentially distributed

random variables has Gamma density. However, the sum af Gaussian random
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variables is again Gaussian. The distinction will be cleathie following sections
where we introduce thstable distributions and random variables. The motivation is
the search for a functiofi(n) that would make the following relation possible:

O+ 4O L f(n)Oiy, n=12... (A.5)

where the functionf(n) is a deterministice function of, which allows to express
the distribution of the sequence in terms of the underlyiistrithution of the sample.
The existence of this strong bond resulted in one of the rmgbitant theorems in
statistical theoryThe Central Limit Theorem (CLT). The CLT and its connection to
self-similarrandom processes will be briefly explained in the next sectio

A.2 The Roots of Self-Similarity: The Central Limit Theorem

The most important theorem that constitutes the basis émhsistic modelling is ar-
guably the Central Limit Theorem (CLT). Consider any hypotatstatistical prob-
lem, where there are a large number of observations wherevants to characterize
the statistics of the sample. Itis possible to characteniedehaviour of a data sample
with a large number of observations via the statement of thE CThere are various
alternative probability distributions and most of the tithe most suitable choice is
not apparent. However, one can switch her approach to tHdgmoand investigate
the behaviour of the sums and averages of the observatiormol#ability distribu-
tion is basically a rule that assigns each observation aghibty depending on its
magnitude. The integrability property of probability dibtitions result in distribution
functions with a decrease in probability as the magnitudeeimses: the tails of the
probability distribution corresponds to numbers with &rgagnitudes which are as-
signed with low probabilities of occurence. The CLT basicathtes that the sums of
random variables can be characterized with a standard {aaudistribution. We first
state the definition where the notion of the central limitipressed explicitly:

Definition A.4. A sequence X,k > 1} of real random variables on a probability
space((2, F,P) is said to havahe central limit property if there are sequences of
constants:,, andb,,, n > 1, such that the sequence

n X . "
v, = T e (A6)
converges in distribution to a standard Gaussian randorablar i.e.:
lim P(Y, < 2) = — /x ( “2)d eR (A7)
m n <) =—— exp(——)du, <« , .
n— 00 \ 27 o b 2

which can also be stated & ~ N(0, 1), Gaussian distribution witfl[Y;,] = 0 and
Var(S,) =1whereVar(X,) = E[(X, — pn)%.

The central limit property puts the Gaussian distributithie very centre of statistical
modelling. As a subdiscipline of statistical modellinge tbentral limit property is
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still the most widely used property in financial modellinggtices. The Gaussianity
assumption and the BSM model are still in use as it allows faraptete and closed-
form characterization of many complex financial productst s give the.indeberg-
Lévyversion of the CLT below ([30]):

Theorem A.4. Let {X,,n > 1} be an independently identically distributed (i.i.d.)
sequence in.?(Q, F,P), the space of square integrable real random variables, and
takeE[X,] = pandVar(X,) = 0, Vn > 1 witho > 0. Define

Sn:ZXk, S‘n:&, and
k=1 n
Y_Sn—n,u_S'n—u
" oyn o/n

Then{X,,,n > 1} has the central limit property with,, = nu andb,, = o/n.

The CLT has various number of important implications on thesv@ur of the sums of
I.i.d. random variables. Most importantly, it allows foraracterizing the sums of the
random variables via only two statistics: the sample meathecentering parameter,

1 and the sample varianeg. It is usually assumed that the centering parameter is
trivial and can be shifted without distorting the shape @f distribution. This can be
easily seen via the following example:

Example A.1. Let X ~ N(u,0?). ThenX + ¢ ~ N(u + ¢,0?), wherec € R is a
constant.

This feature is not specific to Gaussian random variableshatdt also for various
distributions, as we will see in the next sections. Anothepartant feature of Gaus-
sian distribution is that it can be characterized only byfiis two moments, as we
mentioned above, namely the mean and the variance. Howa/are have seen that
the role of the mean, or the centering or the location paramistnot of practical im-
portance and can easily be shifted along the real line (aresfza higher dimensional
variables), we focus our attention to the variance, or téeggarameter. We will avoid
using the term scale parameter for the sample variance sioae cause confusion in
the context of scale invariance and multifractals, whighthe main topic of this study.
The arguably most important implication of the CLT is thateffides the form ob,
asoy/n. For a sequence of i.i.d. random variables having the delintré property,
one can say that the growth of the variance is proportiontiéanumber of observa-
tions in the sample, which is equivalent to the proportidpaif the standard deviation
to the square root of the number of observations in the sanipie square root rule
for the growth standard deviation, or the linear growth ffolethe variance, has been
generalized to define the self-similarity property of ststic processes.

A.3 Stable Distributions and Processes

Stability property can be derived via a generalization ef@LT in terms of the form
of the functionb(n) in Equation [(2.4). The stable processes satisfy some deberv
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properties for modelling purposes such as the flexibilityfmdelling the tails of the
distribution of observations. By choosing a stable randomegss as the source of ran-
domness, one does not need to worry about the distributithreafata at any time-scale
considered. When one is concerned about the time-scales shthple, or its incre-
ments, stability property imposes that the shape of theilolision does not change
with a change in time-scale. We will thorougly examine thhaour of the financial
returns to see whether this statement holds or not when wadmmapplications. The
stability property is defined as follows:

Definition A.5. A random variableX has a stable distribution if and only if it has
a domain of attractioni.e., if there exist a sequence bf, Y5,... of i.i.d. random
variables and sequencés$, } and{a, } of positive real numbers such that

Yi4+Y, 4 +Y,
1+2; T e, S X (A.8)

where, in general, the form af, is

dy, = n**n(n) (A.9)

with h(x), > 0is a slowly varying function at infinity, i.€lim, . h(uz)/h(z) =1
foralluw > 0 ([B0], [17]). By saying that the stability property is a gealézation of the
CLT, it is meant that the the finite variance assumption haa belaxed in Definition
(A5). WhenY;’s are i.i.d. random variables with finite variance, th€ns Gaussian
and the ordinary version of the CLT is obtained. Stable randanables are infinitely
divisible, whereas the converse is not true. An importaatuiee of stable processes
is that the tails of the probability distribution obeys a mwvaw, which is also called
Paretian, or scaling, tails:

P(X > z) ~ Sz, (A.10)

The most important parameter for a stable random varialiteeisstability index” .
Stable random variables are also self-similar and thelgtainidex o has a one-to-one
correspondency with the self-similarity expondit Let us briefly summarize some
of the properties of stable processes and mention some efjtiealent definitions of
stability. Let us first give the definition of a stable distribd random variable[([50]):

Definition A.6. A random variableX is said to have a stable distribution if for any
positive number andb, there is a positive numberand a real numbef such that

aX, +bXs L cX +d, (A.11)

whereX; and X, have the same distribution a&.

It can be seen that the above definition is a simplified restate of Definition [(A.b).
In the following theorem, the role of the stability indexis expressed, which is the
basis for motivation to employ stable processes in finame@delling:
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Theorem A.5. For any stable random variabl&’, there is a numbet. € (0, 2] such
that the numbet in Equation [A.I1) satisfies

c =a* 4+ b (A.12)
The well-known Gaussian distributed random variable ismtost famous member of

the family of stable random variables. This is demonstratgde following example:

Example A.2. If X is a Gaussian random variable with mgaand variancer?, i.e.
X ~ N(u,0?), andX; and X, are equal in distribution t&. It is known that

aXi + bXy ~ N((a+ b)u, (a® + b*)o?) (A.13)
which shows that Equation (A.112) holds with= a* + b* and

aX; +bXe L cX +d, (A.14)
whered = (a + b — ¢)p.

The result obtained for the Gaussian case shows that a @aussidom variable is
stable witha = 2. Recall that it is aIS(%-seIf-similar. This observation is not trivial,
it is in fact a general result for the stable random variab¢estable random variable
with stability indexa is —-self similar. We will mention this property in detail as we
define then-stable levy ‘motion but first let us briefly mention some of the impottan
properties of stable random variables. We begin with tharpaters that determine the
shape of the distribution of a stable random variable:

e the stability indexxy € (0, 2],
e the location, or mean paramejek (—oo, 00),
e the skewness parameterc [—1, 1],

e the scale parameterc (0, co).

We will denote a stable random variable accordinglydyo, 53, 1), following [50].
The parameters, S andy are unique and whem = 2 (Gaussian casej, is irrelevant,
since Gaussian distribution is symmetric around its meamvHat follows, arithmetic
properties of the stable random variables is summarized:

Definition A.7. Let X; and X, be two independent random variables wixh ~
Sa(oi, Biy i), i =1,2. ThenX; + Xy ~ S,(0, 5, 1) where

Prof + Baoy

0 = (Utlx"i'ag)l/a’ p= o + o
1 2

=t e (A.15)
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The skewness parameteéidetermines whether a stable random variable is symmetric
about the location parametgr For instance, for any < o < 2,

XNS&<O_757M) <:>—XNSQ(07 —/B,M), (A16)
and aS, (o, 3, p) is symmetric about iff 5 = 0.

We previously mentioned the scaling, or Paretian, tail$adfle random variables. This
property is more formally stated in the following way:

RemarkA.2. Let X ~ S, (o, 8, 1) with 0 < a < 2. Then

: _ 48 _«
{hmm_mx P(X > x) =co—22 ; o (A17)

lim, oo z°P(X < —2) = ¢4 2500‘,

where

Co = (/ sin zdw) "
0

The power-law behaviour of stable variables is used to okdaiimportant implica-
tion of the indexa on the existence of moments of various orders. SinceXfor
Sa(0, B8, 1) we haveE[| X || = [ P(|X|" > x)dz, one can show that

, .
{E[]X|]<oo if 0<q<a, (A18)

E[| X]9] = o0 if ¢>a.

which impliesa-stable random variables with < 2 have infinite second moments,
which poses a huge problem in terms of applications to modahdial returns as the
volatility is defined via the second moment of the returnscdsea < 1, we have
infinite expectations.

The characteristic function of a stable random variablespasific form which is given
in the following definition that is equivalent to Definitios5 andA.6:

Definition A.8. A random variableX ~ S, (o, 3, 1) has the characteristic function of
the form:

(i) — 4 P Ualvla(l—iﬁ(sgn( ) tan(7) +ipy}t  ifa# 1
Eleop(rX) {exp{ o |(1 + 82 (sgn(7)) In(1)} fa=1

(A.19)
wheresgn(-) denotes the sign function.

A more familiar concept in the study ofelvy processes is tHeevy-Khintchine repre-
sentation which specifies the following form for the characteristiation of a stable
random variable:

Bloxn (i) — 4 OPUEY =077} i a=2
[eXp(Z’Y )] - eXp{ZK")/ + PJ‘OOO w(,% x1+a + Qf w ¥, T ‘le_a} If [0 S 2.
(A.20)
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whereM € R, o > 0 and P and( are non-negative numbers and

YT
1422

Y(v, ) = exp(ivr) — 1 —

Based on the representation given in Equation (A.20)Léws measurd.(dz) is de-
fined as

P
L(d!)ﬁ') = ﬁl(o’oo)(l')dflf + m%l(oqo)(l')dl‘? (A21)

wherel 4, denotes the indicator function of sét

Mandelbrot’s idea to employ-stable random variables in modelling of financial data
is mainly built on the behaviour of their moments of varioudass. This specific
behaviour resulting from the power-law structure in théstaf the stable distributions,
allows for more flexibility in terms of applications, as thet-tailed distributions are
frequently observed in analysis of financial data.

Now let us extend the stability property from random vamghio random processes

[27]:

Definition A.9. A stochastic proces§X (t),t € T}, whereT is an arbitrary set, is
stableif all its finite dimensional distributions

X(tl),X(t2>,,X(tn), tl,tg,...7tn€T7 TZZ]_

Is stable. It issymmetric stabld all its finite-dimensional distributions are symmetric
stable. Furthermore, it is symmetric stable iff all lineantinations

ZalX(tl), TLZl, tl,tz,...,tneT, al,ag,...,anER
=1
are symmetric stable.

The following example reveals some of the very importaniLiess of stable processes:

Definition A.10. A stochastic processX (¢),¢ > 0} is called (standard)-stable levy
motion if

1. X(0) =0,
2. X has independent incrementsit) — X (s) LX(s), s < t,
3. X(t) — X(s) ~ Su((t — s)/*,3,0), forany0 < s < t < oc.
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A.4 Canonical Levy measures of Infinitely Divisible Processes

Infinite divisibility is a very fundamental feature of theoshastic processes. It is di-
rectly related to the additivity of processes, which is dréelfeature to define stochas-
tic integrals. Infinite divisibility is equivalently defiefor characteristic functions:

Theorem A.6. A characteristic functior? is infinitely divisible iff there exists a se-
quence(y, ) of characteristic functions such thap,,)” — W.
In this casélV! is characteristic function for every> 0, andWW (¢) # 0 for all ¢.

Theoren Z.B allows for the specification of the most genenahfof infinitely divis-
ible characteristic function8” = exp(v). It suffices to determine the general form
of possible limits of sequences of characteristic fundiom(c,((, — 1)) of the com-
pound Poisson type.e. the possible limits of the characteristic functions of theni
W, = exp(¢,,) with

Vn(C) = cal@n(C) — 1 —imy(), (A.22)

and sincéV,, are infinitely divisible, its continuous limits are also mfely divisible.
Let us analyze the conditions under which there exists aroaomis limit

¥(¢) = lim ¢, (C), (A.23)

n—0o0

where it can be seen tha, is the characteristic function of a probability distritmrti
F,, thec, are positive constants, and the centering constaptare real.

As itis always possible to recenter a distributon to zerowilechoosem,, accordingly
when needed. The simplest such centering is obtained byethgrement that for
¢ = 1the value ofy,, be real. Let:,, andv,, denote the real and imaginery partsof,
respectively. By Equation_(Al3), this condition requireatth

Bn = vp(l) = /00 sinzF, (dx), (A.24)
since
P(1) = /Oo exp(i(x)F(dz) = u(1) + iv(1), (A.25)
and with Equatiof A.24 foB,,, we obtain
Un(1) = cp(u(l) +iv(l) — 1 —dv(1)) = ¢, (u(l) — 1), (A.26)

which shows that centering is always possible. With it
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Un(C) = ¢y /_ h [€"" — 1 —i( sin 2] F,(dx). (A.27)

[e.9]

Near the origin the integrand behaves Iikég%?, which is the case with the normal
distribution with zero mean and variance @ The following lemma leads to the
representation of infinitely divisible distributions irrtes of canonical measures.

Lemma A.7. Let{c,} and{y, } be given. If there exist centering constapfssuch
that,, tends to a continouos limit, then Equatiof’/A.27 will achieve the same goal.

In what follows, it will be shown that with an arbitrarily cken finite measur#/, the
integral in Equation A.28 defines an infinitely divisible cheteristic functiorexp ().
Now let us define

> elbr 1 —i(sinx

w0 = | ) (A.28)
This integral is well-defined as the integrand is a boundediicoous function assum-
ing at the origin the value-1¢*. For the integral to be well-defined, it suffices that
M attributes finite massses to finite intervals and tHdt—x, =} increases sufficiently

slowly for the integrals

M*(z) = / Méfy), M~ (—z) = M;fy) (A.29)
to converge for all: > 0. Measures defined by the densitje§’dx with 0 < p < 1
are typical examples. It will be proved that if the measiifehas these properties,
then Equatior(A.28) defines an infinitely divisible chaedisttic function, and all such
characteristic functions are obtained in this manner. Tewing definition intro-
duces the special term for measute

Definition A.11. A measurel/ will be called canonical if it attributes finite masses to
finite intervals and the integrals in Equatién (A.29) cogesfor some (and therefore
all) x > 0.

The following lemma provides the generalization for thedgtof infinitely divisible
characteristic functions via canonical measures:

Lemma A.8. If M is a canonical measure and defined by Equatioi (A.28) then
exp(7) is an infinitely divisible characteristic function.

Proof of this lemma is especially important as two most wideded cases are consid-
ered:

Proof. a) Suppose that/ is concentrated at the origin and attributes mass- 0 to
it. Theny(¢) = —m(¢?/2, and soexp(v) is a Gaussian characteristic function with
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variance(?.
b) Suppose thal/ is concentrated on| > 1 wheren > 0. In this case, Equation
may be rewritten in a simpler form. Indee{ﬁﬁ—m) now defines a finite measure

with total massu = M* () + M~ (—n). Accordingly, (/) = F(dx) defines

a characteristic functiop, and obviously)(() = ulp(¢) — 1 — ib¢], whereb is a
real constant. Thus, in this casep(v) is the characteristic function of the compound
Poisson type, and hence infinitely divisible.

c) In the general case, let > 0 be the mass attributed by to the origin, and put

6n(C) = / exp(iz — 12— i sin x)M(dx) (A30)
lz|>n L
Then m
$(0) = D¢+ lmmp(0), (a31)

It has been seen thatp(v,(()) is the characteristic function of an infinitely divisible
distributionU,,. If m > 0 the addition of-m(*/2 to ¢,,(¢) corresponds to a convolu-
tion of U, with a normal distribution. Thus, Equatidn_(Al31) reprdsenp(i) as the
limit of a sequence of infinitely divisible characteristinictions and henocexp(v)) is
infinitely divisible as asserted. O
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