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ABSTRACT

AN END-TO-END COMMUNICATION ARCHITECTURE FOR
INTELLIGENT TRANSPORTATION SYSTEMS: DESIGN,

IMPLEMENTATION AND LATENCY ANALYSIS

BAĞCI, Çağatay

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Ece Güran Schmidt

February 2018, 93 pages

Vehicle to anything (V2X) communication is a very significant component of Intelli-

gent Transport Systems (ITS) applications.

This thesis proposes an application layer communication architecture, ITSVeCon for

V2X communications which enables communication among the end-hosts which can

be vehicle Electronic Control Units (ECU)’s, Road Side Units (RSU)s, computers,

smart phones or third party service providers. All these end-hosts are bi-directionally

connected to the ITSVeCon Server where this server carries out application layer

switching realizing unicast or multicast communication. The architecture consists of

a layered software and network protocol stack with message formats and rules, which

are implemented in the end-hosts and the ITSVeCon server.

To this end, this thesis presents the ITSVeCon realization on the vehicle On Board

Unit (OBU) and the ITSVeCon server. The OBU realization further fulfills the gate-
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way functionality between the in-vehicle CAN network and the Internet. The ITSVe-

Con implementation features WebSockets carrying messages in JSON format, Pub-

lish and Subscribe pattern and NTP synchronization to enable V2X communications

for real-time ITS applications. To this end, the proposed architecture allows the seam-

less running on different ITS applications on different types of host devices.

This thesis proposes the cellular communications as the wireless communication tech-

nology for the vehicle. To this end, the end-to-end communication path in ITSVeCon

consists of cellular access and IP core network over multiple nodes and network seg-

ments. A very important contribution of the thesis is the measurement set-up, detailed

experiment scenarios and measurement results of the end-to-end delay components.

The measured end to end delay values are close to 100 ms with embedded component

delays under 4 ms and large cellular network access delay under 3G network. Hence,

a complementary short range wireless interface is proposed in this thesis as the sec-

ond option to improve communication and functional tests of this option is carried

out. With the improvements in technology, around 10 ms end to end delay value can

be achieved with 4G and 1 ms end to end delay value is expected to be accomplished

with 5G.

Keywords: V2X Communication, Intelligent Transportation Systems, On Board Units,

Publish and Subscribe
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ÖZ

AKILLI ULAŞIM SİSTEMLERİ İÇİN UÇTAN UCA BİR HABERLEŞME

MİMARİSİ: TASARIM, GERÇEKLEŞTİRİM VE GECİKME ANALİZİ

BAĞCI, Çağatay

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ece Güran Schmidt

Şubat 2018 , 93 sayfa

Araçtan Her Şeye (AHŞ) haberleşme, Akıllı Ulaşım Sistemleri (AUS) uygulamaları-

nın çok önemli bir bileşenidir.

Bu tez, elektronik kontrol üniteleri, yol kenarı üniteleri, bigisayarlar, akıllı telefonlar

veya üçüncü parti servis sağlayıcıları gibi uçta bulunan sistemler arasındaki iletişimi

sağlayan Akıllı Ulaşım Sistemleri ve Araçlar Arasındaki Bağlantı (AUSAAB) ileti-

şim mimarisini içermektedir. Bütün bu uç sistemler, uygulama katmanında anahtar-

lama yaparak tek noktaya veya çok noktaya iletişimi gerçekleştirebilen ITSVeCon su-

nucusuna bağlıdır. Bu mimari, uç sistemlerde ve AUSAAB sunucusunda uygulanmış

olan katmanlı bir yazılım, ağ protokol yığını, ileti format ve kurallarından oluşmak-

tadır.

Bu amaçla bu tez, Araca Takılı Ünite (ATÜ) ve AUSAAB sunucusu üzerindeki AUSAAB
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mimarisinini gerçekleştirimini sunmaktadır. ATÜ gerçekleştirimi, araç içi CAN ağı ve

internet arasındaki geçit işlevselliğini göstermektedir. AUSAAB uygulaması, gerçek

zamanlı AUS uygulamaları için gerçekleştirilen AHŞ iletişimleri için NTP senkro-

nizasyonunu, JSON formatında mesaj iletimini sağlayan Websocket alt yapısını ve

"Yayınla ve Abone Deseni"ni içermektedir. Bu amaçla, önerilen mimari, farklı tür-

deki ana cihazlarda farklı AUS uygulamalarının kesintisiz çalışmasını sağlar.

Bu tez, araç için kablosuz iletişim teknolojisi olarak hücresel ağ iletişimini sağlamak-

tadır. Bu nedenle uçtan uca iletişim yolu çoklu düğümler ve ağ kesimleri üzerinden

gerçekleştirilen IP çekirdek ağı ve hücresel ağ erişiminden oluşmaktadır. Tezin çok

önemli katkıları olarak ölçüm kurulumu, detaylı deney senaryoları ve uçtan uca ge-

cikme bileşenlerinin ölçüm sonuçları gösterilmektedir. Ölçülen uçtan uca gecikme

değerleri, 3G şebekesi altında gömülü bileşenlerdeki gecikmenin 4 ms’nin altında ol-

makla birlikte büyük bir hücresel ağ erişim gecikmesi altında 100 ms’ye yakındır.

Dolayısıyla, iletişimin iyileştirilmesi için ikinci seçenek olarak, tamamlayıcı bir kısa

menzilli kablosuz arayüz önerilmiştir ve bu şekilde fonksiyonel testler yapılmıştır.

Teknolojideki gelişmelerle birlikte, 4G teknolojisiyle yaklaşık 10 ms uçtan uca ge-

cikme değeri ve 5G teknolojisi ile 1 ms uçtan uca gecikme değerinin elde edilmesi

beklenmektedir.

Anahtar Kelimeler: Araçtan Her Şeye Haberleşme, Akıllı Ulaşım Sistemleri, Araca

Takılı Ünite, Yayınla ve Abone
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CHAPTER 1

INTRODUCTION

Intelligent Transportation Systems (ITS) support transportation of goods and humans

with information and communication technologies in order to efficiently and safely

use the transport infrastructure and transport means [1]. ITS exploit technologies

from multiple disciplines to improve transportation systems in all aspects by increas-

ing traffic information, reducing driving loads and enhancing route management [2].

Vehicle to Vehicle (V2V) or Vehicle to Infrastructure (V2I) communication are very

significant components of ITS. These different types of communications involving

the vehicle are called V2X communications. The ITS applications with V2X com-

munications incorporate Road Side Units (RSU), vehicles, user devices and service

providers. Applications serving different purposes have been developed for each plat-

form.

These ITS applications are classified according to being safety related or not. While

emergency electronic brake lights, traffic condition warning and pre-crash sensing

warning are the examples of safety related ITS applications, media download, inter-

section management and traffic light optimal speed advisory can be given as examples

to non-safety applications [3]. Frequency of safety and non-safety related messages

ranges from 1 Hz to 10 Hz. Maximum latency of safety related messages is gener-

ally 100 ms except for pre-crash sensing warning which requires 50 ms latency. In

non-safety applications, latency up to 500 ms is acceptable.

V2X wireless communications are enabled by mostly DSRC (Dedicated Short Range

Communications)/WAVE that is derived from IEEE 802.11p and cellular commu-

nication standards 3G and LTE. Although DSRC/ WAVE are very widely promoted
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for V2X communications particularly in the US, there are many drawbacks which de-

grade the overall performance. The main issues are that packet collisions and medium

access collisions occur at high rates when the vehicle population is dense. Packet re-

ception ratio decreases drastically when distance between vehicles increases. These

issues make it hard to adopt these protocols to ITS safety applications which requires

high packet reception ratios with low latencies. In addition to that, obstacles such

as buildings result in coverage problems affecting transmission performance. As for

D2D communication, it is a very new proposal and is not widely deployed yet. Fur-

thermore, as it shares the same frequency band with cellular networks which may

cause interference problems.

Cellular access network offers the best packet reception ratios with higher latencies

compared to wireless communication types. However, with the improvements in the

technology, especially latest releases of LTE towards 5G mobile communication net-

work is considered to take away many disadvantages. Low access network latency

down to 1 msec, high bandwidth up to 10Gbps, reliability and ubiquitous coverage

can all be achieved with 5G which makes it the most promising choice for ITS com-

munication. In addition to these, today backbone networks can support 100 Gbps

connection speed supporting the usage of 5G.

In-vehicle communication is also a part of ITS applications. Electronic control units

located in the car are connected with various interconnection mechanisms such as

Controller Area Network (CAN, CAN-FD), FlexRay and Ethernet. To use messages

generated in vehicles by these ECUs in V2V or V2I communication, there should

be an additional component having interfaces suitable for in-vehicle, inter-vehicle

and vehicle to infrastructure. A common practice is to use commercial off-shelf unit

having flexible interfaces called On Board Unit (OBU) [4].

In this thesis, we propose an ITS communication architecture which achieves V2X

communications through cellular access network and IP-backbone network. In this

architecture, the end hosts can be ECUs, RSUs, third party servers, computers and

smartphones. All these end hosts are are always connected to a Vehicular Connec-

tivity (ITSVeCon) Server via WebSockets. The ITSVeCon Server processes the data

collected from the end hosts and other ITS sources of information. Accordingly,
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ITSVeCon Server provides end-to-end unicast or multicast communication among

the end-hosts by application layer switching. The vehicle connectivity is achieved

by OBUs located in vehicles with cellular network interfaces. In addition to that, the

OBUs are connected to In-Vehicle CAN Network, fulfilling CAN-to-Internet gateway

functionality. Furthermore, the vehicles can directly connect with each other through

short range wireless interfaces without the need of ITSVeCon Server to support con-

nectivity and improve the latency. Communication with other end points such as

smart phones or RSUs are processed over ITSVeCon Server.

The first contributions of this thesis is the implementation of ITSVeCon together with

the layered protocol architecture, OBU software and ITSVeCon Server software. The

second and a very significant contribution of the thesis is the measurement set-up

and the measured values for end to end latency values for V2V communication us-

ing ITSVeCon. The transmission path starts with an ECU transmitting a CAN frame

and ends in another ECU receiving the same CAN frame in a different vehicle. In this

thesis, this transmission path is deeply studied and delay values between each compo-

nents located in this path are measured. An additional application is implemented for

a device capable of transmitting CAN frames to simulate ECUs. Time synchroniza-

tion infrastructure is established for measurements. Usage of short range wireless

interface together with 3G to achieve better latency is realized on OBU ITSVeCon

Applications.

This thesis is organized as follows:

First, relevant background information about ITS applications, performance metrics,

communication types of ITS applications, network application layer technologies and

time synchronization is given in Chapter 2. In addition to that, ITS communication

architectures in the literature are investigated.

Chapter 3 explains the proposed ITSVeCon architecture, communication type and

implemented applications. This chapter includes a comparison of ITSVeCon to the

previous work of CarCode presented in [5].

Chapter 4 gives evaluation of the proposed ITSVeCon architecture, measurement

method and results.
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Finally, thesis is concluded in Chapter 5.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

2.1 ITS Applications and Communication

A contemporary vehicle has a large number of electronic components including Elec-

tronic Control Units (ECUs), sensors and actuators to realize distributed applications

with the help of in-vehicle communication among these components. It is important

to note that some ITS applications are distributed over the components of a single

vehicle and require in-vehicle communication only whereas other ITS applications

involve geographically separate end nodes. To this end, V2X communication be-

tween the vehicle and other vehicles, Road Side Units (RSU) and Internet end-nodes

take place. Main ITS applications about safety services and their maximum tolerable

latency values are stated in Table 2.1. Some non-safety related ITS applications are

given in Table 2.2.

2.2 Performance Metrics for V2X Communication for ITS

ITS applications have different communication requirements that are quantified by the

following metrics [6]. Here we assume that the application is running over multiple

ITS nodes that are not on the same vehicle.

• End to end latency: It is the maximum tolerable time from the time message

is generated at source application until it is received by destination application.

For short range wireless communication, mostly the air interface latency defines

end to end latency. For cellular network communication, sum of uplink, routing

and downlink time defines end to end latency. It is the most critical design factor
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Table 2.1: ITS safety services and maximum latency values [3]

Application Communication Min. Frequency Maximum
Mode of Per. Messages Latency

Emergency electronic Time limited periodic 10 Hz 100 ms
brake lights broadcast on event

Abnormal condition Time limited periodic 1 Hz 100 ms
warning broadcast on event

Slow vehicle Periodic triggered 2 Hz 100 ms
warning by vehicle mode

Wrong way driving Time limited periodic 10 Hz 100 ms
warning broadcast on event

Roadwork warning Temporary messages 2 Hz 100 ms
broadcasting on event

Lane change V2X co-operative 10 Hz 100 ms
assistance awareness

Pre-crash sensing Broadcast of pre-crash 10 Hz 50 ms
warning state

especially for safety related applications.

• Reliability: It is the maximum tolerable packet loss rate of ITS application.

If destination point does not obtain the generated packet, it is counted in lost

packets. For example, big trucks, tunnels and buildings lead to packet loss for

communications over short range wireless interfaces such as DSRC.

• Data rate: It defines minimum bit rate necessary for application to work prop-

erly.

• Communication range: It is the maximum distance between source and desti-

nation points which can provide required reliability with respect to relevant ITS

application. Communication range is also closely related to end to end latency.

• Node mobility: It is the maximum speed which can satisfy reliability condi-

tions. Node mobility is an important issue for short range wireless interfaces

because of limited mobility support. On the other hand, communication over

cellular network supports higher speeds.

• Network density: Node density defines maximum number of vehicles that can

be present at a specified area without affecting reliability.
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Table 2.2: ITS non-safety services and maximum latency values [3]

Application Communication Min. Frequency Maximum
Mode of Per. Messages Latency

Traffic light optimal Periodic, permanent 2 Hz 100 ms
speed advisory messages broadcasting

Intersection Periodic, permanent 1 Hz 100 ms
management messages broadcasting

Electronic toll I2V broadcasting and 1 Hz 500 ms
collect unicast full duplex session

Local electronic Duplex commun. between 1 Hz 500 ms
commerce RSU and vehicles

Media download User access to internet 1 Hz 500 ms
for multimedia download

• Positioning accuracy: It defines the maximum location error that can be toler-

ated by the application.

• Security: Different security features are required for ITS applications such as

authentication or user privacy.

2.3 Communication Types in ITS Applications

2.3.1 In-Vehicle Communication

In-vehicle communication is an indispensable part of overall ITS architecture, playing

a key role to access ECUs located in vehicles. Vehicles include complex intelligent

electronic and mechanical systems in today’s technology. Engine, transmission, ABS

control mechanisms, power locks and entertainment systems can be given as an exam-

ple to electronic systems. There are many communication types among these ECUs

differing according to the application. In-vehicle network connects all of this elec-

tronic systems in order to add flexibility, to avoid wiring and to have better control.

Society for Automotive Engineers (SAE) has classified in-vehicle networks into four

classes according to network speed [7] [8]. Table 2.3 illustrates these classes. Mostly

used in-vehicle networking protocols and their applications are listed in Table 2.4 [9].
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Table 2.3: In-vehicle network classes

Class Number Specification
Class A Low speed (< 10Kbits /Second) Seat control, door lock
Class B Medium Speed (10Kbitps to 125Kbps) Vehicle

speed, general message transferring
Class C High speed (125 Kbitsps to 1M) Real time applications
Class D Speeds higher than 1Mb/sec Internet, X by Wire

Table 2.4: In-vehicle networking protocols

Protocol Applications
LIN Door Locks, Climate Control, Seat Belts, Sunroof,

Lighting,Window Lift, Mirror Control
CAN Body Systems, Engine Management, Transmission

FlexRay Drive-by-Wire, Brake-by-Wire, Advanced Safety and
Collision Avoidance Systems, Steer-by-Wire, Stability

Control, Camera-Based Monitoring Systems
RF Remote Keyless Entry, Vehicle Immobilization,

Passive Entry, Tire Pressure Monitoring Systems

2.3.1.1 CAN Bus

According to [10], Controller Area Network is a serial communications protocol

which efficiently supports distributed real time control with a very high level of secu-

rity. CAN supports bitrates up to 1 Mbps. Prioritization of messages, configuration

flexibility and error detection are main capabilities of this communication type. CAN

2.0A and CAN2.0B are types of CAN protocol. While CAN 2.0A uses 11 bit iden-

tifier, CAN2.0B uses 29 bit identifier. Bit fields of standard CAN frame is given in

Figure 2.1. Each CAN frame starts with Start of Frame (SOF) bit used to synchro-

Figure 2.1: CAN frame structure

nize the nodes on the bus after idle period. After that identifier bits are placed which

are 11 bits for standard CAN frame and 29 bits for extended CAN frames. Single re-

mote transmission request is used to request data transmission from the node defined

in identifier field. IDE bit is used to indicate whether the frame is extended or stan-
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dard frame. R0 is reserved bit. DLC field defines the number of data bytes. Cyclic

redundancy check bits come after these field for error correction. ACK bits are used

for nodes to acknowledge received data. End of frame (EOF) marks the end of CAN

frame. Interframe space (IFS) bits are used for controller to move the received frame

to buffer.

CAN physical layer implements logical AND operation on the bus. ‘0’ logic level is

dominant and ‘1’ is recessive. If a node transmits a dominant bit level on the bus, it

is in dominant state regardless of any conditions. Bus arbitration is done according to

ID bits. A frame with low ID field has higher priority over other frames, so this frame

wins arbitration. If nodes detect any other node that is transmitting a higher priority

frame, they stop transmitting and wait for end of the frame.

CAN frames are divided into two according to schedule. Periodic CAN frames are

sent with predefined intervals. Sporadic frames can be transmitted in any time. A

CAN frame that is transmitted by emergency brake can be given as an example to

sporadic frames. These frames have higher priority over other frames because of

strict latency requirements. CAN schedule analysis is done by calculating worst case

response time which should be below deadline to perform as intended. Worst case

response time has three elements. If m represents a frame with priority m, Jm rep-

resents queuing delay which is the time between initiation and the time the frame is

ready to be transmitted on the bus. wm is the maximum queuing delay for the frame.

Cm is transmission time of of the frame. Worst case response time Rm is given by the

equation below.

Rm = Jm + wm + Cm

Queuing delay wm includes two components. First one is blocking Bm which is due

to lower priority messages being in transmission process when frame m is queued.

Second component is interference caused by higher priority messages’ winning arbi-

tration. In [11], wm is given by the equation below.

wn+1
m = Bm + qCm +

∑
∀kεhp(m)

dw
n
m + Jk + τbit

Tk
eCk
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In this equation, Bm is the maximum queuing delay represented with maximum

blocking time. Worst case response time measurements are done in various platforms

to see if CAN frames can meet deadline requirements. SAE benchmark test uses

seven different subsystems transmitting 53 different CAN frames [12]. CAN frames

include both sporadic and periodic messages. Sporadic messages generally have 20

ms deadline, periodic messages have deadlines between 5 ms and 1000 ms. While

deadline requirements can be satisfied with 250 Kbps bus rate, 125 Kbps fails to meet

sporadic messages’ latency requirements. This shows the importance of selecting the

right bus speed according to the platform. In [13], network calculus method, a method

used to determine upper and lower bounds of end to end delays, is used for in-vehicle

CAN network. According to the data sets obtained from Audi, maximum end to end

delay varies from 1 ms to 14 ms.

2.3.2 Vehicle to X (V2X) Communication

2.3.2.1 Short Range Communication

• DSRC/WAVE: Dedicated Short Range Communication (DSRC) is a set of

standards mainly developed by IEEE for wireless communication. Wireless

Access in Vehicular Environment (WAVE) term defines core standards of this

communication type based on IEEE P1609.X [14]. IEEE 1609.1 core system

standard, IEEE 1609.2 security standard, IEEE 1609.3 network services and

IEEE 1609.4 channel management standards focus on MAC and network lay-

ers constituting WAVE term. IEEE 802.11p, which is an improved standard

compared to IEEE 802.11a is used in PHY layer. Whereas WAVE defines the

core standards of DSRC, generally DSRC and WAVE terms are used together.

US allocated 75 MHz spectrum in 5.9 GHz frequency band for DSRC/WAVE

[15]. Seven 10 MHz bands and one 5 MHz guard band are defined in this

spectrum interval.

DSRC/WAVE network uses two components which are On Board Units (OBU)

and Road Side Units (RSU). OBUs are located in vehicles having wireless in-

terface to communicate with RSUs. RSUs are the units connecting vehicles

to access network which is intermediate network before core network. Each
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Table 2.5: Differences of IEEE 802.11a and IEEE 802.11p Protocols [16]

Parameters IEEE 802.11a IEEE 802.11p
Bit Rate 6, 9, 12, 18, 24, 36, 48, 54 6, 9, 12, 18, 24, 36, 48, 54

Code Rate 1/2, 2/3, 3/4 1/2, 2/3, 3/4
Symbol Duration 4 µs 8 µs

Guard Time 0.8 µs 1.6 µs
FFT Period 3.2 µs 6.4 µs

Preamble Duration 16 µs 32 µs
Subcarrier Spacing 0.3125 MHz 0.15625 MHz

RSU has a limited communication zone. IEEE 802.11p standards are used for

the communication between OBU and RSU. IEEE 802.11p brings many ad-

vantages compared to IEEE 802.11a. Table 2.5 illustrates the differences of

these two protocols. In [16], IEEE 802.11a and IEEE 802.11p are compared in

contact duration and loss comparison aspects. For contact duration test, car is

started its movement outside connection range of RSU and maintains the same

speed at 200 meter proximity to RSU. Results show that at 20 Km/h speed,

contact time of IEEE 802.11a is 4.5 seconds, while IEEE 802.11p is 38.5 sec-

onds. Contact duration is 0 for 802.11a for 40 Km/h and 60 Km/h speeds. IEEE

802.11p provides a contact duration of 19 seconds and 14 seconds for 40 Km/h

and 60 Km/h speeds respectively. For loss comparison, losses of 802.11p are

close to zero in line of sight (LON) environment while it is 2.68% in non-line

of sight (NLON) environment. Losses can reach to 11% in NLON environment

for 802.11a protocol.

While DSRC/WAVE is considered a feasible solution to ITS applications, it has

many drawbacks. According to [17], these drawbacks results from PHY layer,

MAC layer and multi-channel operations. First of all as vehicles moves very

fast and there are a lot of obstacles such as tunnels, bridges and intersections

in the environment, this can affect the radio performance badly. As for MAC

layer, packet collision ratio can reach to remarkable value when the density of

vehicles in one area is high. Since IEEE 802.11p protocol is a multi-channel

protocol, a rule is required for vehicles to use different channels for different

applications. Although some solutions are proposed in [17] for these disad-

vantages, there are still challenges and unresolvable problems in DSRC/WAVE
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protocol.

• D2D: In cellular networks, users should always communicate with cellular re-

ceivers. Even if two users are in close distance with each other, data goes

through additional path when compared to DSRC/WAVE. D2D is proposed as

a solution to this problem. Device to Device (D2D) is defined as the commu-

nication between two users directly in close distance to eliminate RSU usage

[18]. D2D is designed to use cellular network resources and can work in four

modes. In silent mode (no D2D) all resources are allocated for cellular network

so D2D usage is restricted. Underlay D2D uses the resources at the same time

with cellular network. This can cause interference problems between D2D and

cellular network. In overlay D2D some resources of cellular network is allo-

cated for D2D communication. Unique mode (D2D only) uses all resources

of cellular network. In [19], D2D communication is applied in LTE-A cellular

network standard which brings many innovations compared to DSRC/WAVE.

3 ms delay value are obtained from simulation results for D2D communication

when number of vehicles are 30 in coverage area. However, there are no prac-

tical ways to implement D2D communication in ITS applications yet, so only

simulation results can be used for analysis. The main disadvantages of D2D are

described in [20] as follows. In underlay D2D, interference management and

power control is hard to realize between D2D and cellular network. Despite

allocated resources, overlay D2D communication has low spectral efficiency

compared to underlay. Last words that can be said for D2D communication is

that, it has a long way ahead to improve and develop itself to adapt to real life

conditions.

2.3.2.2 Access Network

• Cellular Networks (3G/4G/5G): Cellular network is mostly used in daily life

and it is becoming more popular in ITS applications. The trend of using cellular

network in ITS applications started with 3G solution which offers data rates up

to 5 Mbps and latencies between 100 ms and 500 ms [21]. 3G uses an upgraded

version of Code Division Multiple Access (CDMA) which is Wideband CDMA

(WCDMA). High Speed Packet Access Protocol (HSPA) is used to obtain better
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download speeds at the cost of upload speed.

LTE/4G technology can reach 1-50 Mbps data rates and latency below 100 ms

[21]. LTE network architecture is consisted of user equipment, Evolved Univer-

sal Terrestrial Access Network (E-UTRAN) and Evolved Packet System (EPS)

[22]. E-UTRAN contains base stations which are called eNodeB or eNB. eNB

communicates with user equipment in its coverage area. These base stations are

connected to EPS which can be also called as core network of LTE. LTE uses

Orthogonal Frequency Division Multiple Access (OFDMA) modulation and

uses wide bandwidths up to 20 MHz. LTE-Advanced (LTE-A) is an upgraded

version of LTE, offering increased peak data rate, higher spectrum efficiency

and better performance at cell edges [23]. In spite of having such features, LTE

still is not considered an efficient way. According to [24], when vehicles sends

periodic messages to eNB at every 100 ms, these nodes becomes overloaded

even if an idealistic assumption is used. Even 802.11p beaconing outperforms

LTE. Because of that, D2D approach in LTE-A is considered to be a better

solution. However, as explained in D2D section, it has several problems too.

In today’s technology 5G cellular network is being developed day by day. It

has many features already declared, it is expected to be a milestone in ITS ap-

plications. 5G uses Beam Division Multiple Access (BDMA) and Filter Bank

multi carrier (FBMC) access technologies [25]. With applying this technolo-

gies, each user equipment obtains an orthogonal beam and this beam is divided

according to locations of mobile stations. 5G has more throughput, substantial

amount of bandwidth, higher mobility and low latency values [6]. 5G is ex-

pected to solve all coverage problems addressed in other V2X communication

types. Mobility up to 500 Km/h, 10-5 packet loss ratio and 1 ms end to end la-

tency are supported with 5G solution. In addition to that, D2D communication

is expected to be handled better.

2.3.2.3 Overall Evaluation of V2X Communication Types

There are other solutions for vehicular communication such as Wifi, Zigbee, and

Bluetooth which are lagging behind other communication types due to disadvantages.
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Table 2.6 illustrates some of the features of 802.11p, LTE-A, Wifi-Direct, Zigbee and

Bluetooth. Table 2.7 compares advantages and disadvantages of 802.11p and LTE

communication.

Table 2.6: Comparison of 802.11p, LTE-A, Wifi-Direct, Zigbee and Bluetooth [19]

Feature LTE-A 802.11p Wifi Direct Zigbee Bluetooth
Frequency Licensed 5.86-5.92 GHz 2.4, 5 GHz 2.4 GHz 2.4 GHz

Band band
Max. Trans. 1000 m 200 m 200 m 10-100 m 10-100 m

Distance
Max Data Rate 1 Gb/s 27 Mb/s 250 Mb/s 250 kbps 24 Mb/s

Mobility Up to Up to Low Low Low
Support 350 Km/h 60 Km/h

Many V2X communication types are explained in previous section. They all have

their own disadvantages and advantages except 5G. Considering the fact that 5G is

still in development and there is no practical implementation with 5G related to ve-

hicular communication, it can still has drawbacks. The best choice for V2X commu-

nication is open to discussion. Further work is needed to apply these communication

types to real world.

Table 2.7: Comparison of 802.11p and LTE [6]

Features IEEE 802.11p 3GPP LTE
Traffic No (fully distributed) Yes (eNB)

Bottleneck
Spectral Low (throughput performance High (channel dependent

Efficiency degrades under high load scheduling in frequency
due to backoff procedure) selective channels)

Qos Guarantees Not guaranteed (due to Guaranteed after connection
probabilistic nature of establishment

CSMA/CA backoff procedure).
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2.4 Network Application Layer Technologies

2.4.1 Websocket Protocol

Websocket protocol is designed to provide a full-duplex communication over a single

TCP connection [26]. In HTTP protocol, many TCP connections need to be opened

in order for the server and the client to communicate. Because of that, server becomes

overloaded. In fact HTTP is not designed for full-duplex communications. Websocket

is designed to address these issues by enabling bi-directional communication over a

single connection.

In Websocket protocol, at first, client sends a handshake message to the server. Server

responds back by sending a different handshake message. If handshake is successful,

data transfer starts. Each side can send data at any time which is the most important

feature of the protocol. Websocket frame format is shown in Figure 2.2. FIN field

defines if the message is final fragment or not. RSV1, RSV2 and RSV3 bit fields are

0 unless there is an extension. Opcode defines if payload data is a continuation of

frame, text frame, binary frame, connection close, ping or pong. MASK bit is used to

specify if payload data is masked. Payload length defines the length of payload data.

Masking key is 32 bit value which is used if MASK bit is 1. Payload data is sent after

all these fields compatible with the format defined in opcode field.

HTTP polling, long polling and Websocket protocol are explained and compared in

[27]. In HTTP polling, after client sends a request to the server, server responds to

the client with new message if it exists or an empty response if there is no new mes-

sage. Server does not just immediately sends empty response if there is not any new

messages in HTTP long polling. Server waits until a new message is available for

the client and then it sends the message to the server. Timeout is used to define a

maximum interval of time that client can wait to get a response. To compare these

three protocols, one way latency is measured between server and client at different

times in [27]. In this test, messages are obtained from a wind sensor at 4 Hz rate

by the server and the server handles HTTP and Websocket requests made by clients.

The results show that Websocket protocol has the lowest latency values among all of

them. Long polling HTTP performs the second after Websocket protocol. Polling
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HTTP is the worst option having latencies 3 times more than Websocket protocol.

ZeroMQ is an asynchronous messaging library, aimed at use in distributed or con-

current applications [28]. For Websocket protocol, client and server have fixed roles,

while in ZeroMQ these roles can be changeable. In addition to that, ZeroMQ is used

for much complex messaging pattern by using many sockets on the same node. The

architecture is not centralized and administrated by one node. Websocket protocol is

selected for being more suitable to the centralized architecture proposed in this thesis.

Figure 2.2: Websocket Frame Format [26]

2.4.2 Publish and Subscribe Pattern

Publish-Subscribe pattern is an asynchronous communication pattern, where the sub-

scribers are the special clients showing their interest in form of subscriptions, and

the publishers are the clients sending information to subscribers [29]. In Publish-

Subscribe pattern, subscribers first subscribe to the topics according to their interest.

These topics can also be called channels. To give an example about ITS application,

a vehicle may subscribe to the “Weather” channel if it wants to get information about

the weather conditions. On the other hand, publishers are the ones that send informa-
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tion to these channels. A RSU can send information about weather conditions to the

channel named “Weather”. When a publisher sends information to a channel, all of

the subscribers in this channel get this information. The process is shown in Figure

2.3. For our example, after RSU sends information about the weather conditions to

“Weather” channel, all of the vehicles in this channel get this information and see it on

their dashboards. To publish information to a channel, it is necessary to be subscribed

first.

Figure 2.3: Publish and Subscribe Pattern

In Publish and Subscribe pattern, there is decoupling between publishers and sub-

scribers which can be examined in three different sections [29]. First of all, pub-

lishers and subscribers do not need to know each other which is space decoupling.

Subscribers does not contain a list of publishers, publishers does not know any in-

formation about subscribers similarly. For time decoupling, subscribers can receive

events after some period of time if they are disconnected from server at the time

when publisher sends an information. In addition to that, subscribers can get notified

asynchronously while carrying out another activity.

2.5 Time Synchronization

Time synchronization is an important part for delay measurement purposes. Espe-

cially for ITS, end to end latency is important to decide whether the communication

structure allows real time ITS applications. If delay measurement is to be carried out

between two systems that are located at different points, time synchronization issue

arises. This case perfectly fits to ITS applications because of the distance between
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vehicles.

Network Time Protocol (NTP) is the biggest solution to time synchronization prob-

lem. Coordinated Universal Time (UTC) represents solar time defined by national

standards laboratories [30]. System time is the time set by hardware and operating

system. The aim of NTP protocol is to minimize the time difference between UTC

and system clock with the help of time servers. Time servers are special computers

obtaining real time information from reference clocks and distributing time infor-

mation to its clients using NTP protocol. The accuracy of time servers are defined

according to stratum level. Stratum 0 devices are very high precision devices such as

GPS clocks or atomic clocks. Stratum 1 computers obtain their time information from

stratum 0 devices and stratum 2 computers are synchronized with stratum 1 comput-

ers. Therefore computers with the lower stratum numbers have the higher accuracy.

There are some terms that is used to define synchronization performance of clients to

time servers [30]. Offset is calculated using root mean squares showing the time dif-

ference between time server and client. Delay is the round trip delay between server

and client. Jitter indicates root mean square (RMS) average of the most recent offset

differences.

A sophisticated algorithm is needed to synchronize clocks using NTP protocol. NTPD

is an operating system daemon used to synchronize system clocks with time servers

[31]. NTPD program exchanges messages with one or more NTP servers at speci-

fied intervals. NTPD adjusts system clock in small steps to prevent discontinuities.

Offsets higher than 128 ms is discarded by NTPD. NTPD is a Linux based program

having some configuration options for operation. Configuration options are kept in

“ntp.conf” file which is required for NTPD at startup. In “ntp.conf” file “server” name

is used to define NTP servers. “minpoll” and “maxpoll” options are used to define

minimum and maximum poll intervals for messages, in seconds to the power of two.

“iburst” option is used to send a burst of eight packets to server when client cannot

reach server. “ntpq –p” command is used to obtain offset, jitter and delay values cre-

ated by NTPD. A sample output of this command is given in Figure 2.4. “remote”

section shows time server. “reach” value shows the failure rate of connecting with

the time server. 377 is the highest value meaning that last eight communications with

time server is successful. “st” means the stratum of the server. “t” is the type of the
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connection which can be unicast (u) or broadcast (b). “ntpq –p” output can be used

to define the quality of synchronization.

Figure 2.4: NTPQ Output

Since NTPD is a Linux based daemon, it cannot be used in Windows OS. Meinberg

program is a different version of NTPD, which can run in Windows operating system

[32]. The configuration file and commands are the same with NTPD program. These

two programs are widely used for synchronization purposes. In the scope of this

thesis, NTPD and Meinberg programs are both used for delay measurement.

2.6 Previous Work on ITS Connectivity

Many research and work have been done in ITS connectivity area. Some of them

offer simulation results without practical usage, some of them implement the work

in real life but there is still disagreement about selecting the best communication

type. In the literature, works about measuring actual end to end latencies are lagging

behind with respect to simulation results. In this chapter, different ITS applications,

communication types and architectures existed in the literature are analyzed.

ITS applications can be used for various purposes. In [33] ITS application about

controlling the traffic at intersection points to reduce CO2 emission is proposed. Vir-

tual Traffic Light (VTL) is a presented concept to improve traffic flow using VANET.

Vehicles always transmits their position information with beacon messages. When

a vehicle approaches to an intersection point it checks for other vehicles’ beaconing

messages. If it does not receive any other beaconing messages from vehicles coming

from other directions then VTL is not needed to be created. If there is another vehicle

coming from other directions and close to intersection point, then one of the vehi-

cles at the front of the lane is selected as leader. The leader stops at the intersection

point and it is responsible for controlling VTL. Green light is available for the vehi-

cles coming from other direction. After a predefined period, the leader is assigned
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with green light. Before moving, the leader selects the new leader among the vehi-

cles waiting at the intersection point. Leader selection is not done when there are not

any vehicles waiting at red light. Simulation results are obtained using traffic density

and road information of Porto in Portugal. The results show that fuel consumption is

reduced by 25%. In addition to that, average vehicle velocity increases between 26%

and 41%.

Latency analysis between OBU and Traffic Management Center (TMC) in Sarubaya

city using 3G and LTE cellular network is realized in [34]. Messages contain infor-

mation of vehicle location, speed, route and passenger. Firstly OBU remains stable

and latency is measured with 3G and LTE. Then latency is measured again for mo-

bile OBU using 3G. OBU sends and receives data packets limited below 1500 bytes

every minute. OBU application runs on the laptop connected to internet with 3G or

LTE modem. Time stamp values are recorded in laptop for end to end delay mea-

surement. Tstart is the time when laptop sends HTTP.GET packet. Laptop sends

HTTP.GET command to the PC with ITS server. It waits until HTTP.GET transaction

is completed. Tstop is the time when laptop saves timestamp. Then time difference

is recorded and this procedure is repeated for several times. According to results,

90% of the data can be delivered in 4 seconds using 3G connection in static location.

When using LTE network, 90% of the data can be transferred in 0.25 seconds. As

for mobile condition, 90% of the data is transferred in 5 seconds with 3G connection.

Average latency values are not tolerable for safety related applications but it can be

useful for infotainment purposes such as ticketing application.

Another latency analysis using LTE networks is presented in [35]. Round-trip time

of packets that is sent from a moving vehicle is measured with three different mobile

carriers. Test routes are chosen from Federal University of Pernambuco which is

located in Recife. Smart phone with Android OS is used to access LTE network.

ICMP messages are sent to web server and round-trip times are measured. Figure 2.5

illustrates an overview of measurement method and the components of LTE network.

Throughput of the messages changes from 1 to 10 Hz and the length of the messages
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are 800 bytes. Total delay can be expressed in the following equation.

LE2E = 2 ∗ (LE−UTRAN + LEPC + LInternet)

End to end delay is measured as 132 ms with carrier “C”. This value is 147% lower

than measured delay value with 3G usage. Secondly carrier “T” is used and 244,5 ms

average end to end latency value is obtained. Finally average end to end latency is

122 ms when carrier “V” is used. This is just 2% lower with respect to 3G usage of

carrier “V”. When all results are analyzed, it is seen that these latency values do not

fit the requirements of real time ITS applications. However, if network architecture

and service providers are improved, then average latency can be reduced below 100

ms.

Figure 2.5: LTE architecture used in measurement method

Another work that focuses on improving LTE performance for ITS applications is pre-

sented in [36]. LTE can be used for the areas that DSRC infrastructure is not enough

but messages has to be transmitted to server first across Radio Access Network (RAN)

and this can add extra delay compared to DSRC. Secondly when large number of de-

vices communicate over eNBs, scalability issues arise. This paper proposes that the

disadvantages of LTE network can be eliminated by selecting servers close to vehi-
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cles and by using broadcast communication. Data freshness concept is defined as the

time difference between the generation and consumption of information. Freshness

can be 1 ms for event-based messages using DSRC communication because end to

end delay is low. For periodic messages transmitted at 10 Hz, freshness is 100 ms.

In LTE networks, this latency value can be achievable by reducing message period.

For example, if the round trip delay between cloud server and vehicle is 50 ms and

message period is 100ms, the worst case freshness is 100+50=150 ms. If the vehicles

transmit location update messages at every 50 ms, then the worst case freshness is 50

+ 50 = 100 ms which is same with DSRC communication. Disadvantage of increas-

ing frequency of messages is that network utilization becomes higher. Server location

has significant impact on network usage. For example, when RTT is lowered from

80 ms to 60 ms for the messages with 100 ms target freshness, the network usage

is reduced by half. Therefore placing servers close to eNB or EPC is important for

network utilization. LTE supports Multimedia Broadcast/Multicast Service (MBMS)

which enables server to send broadcast messages. MMBS and non-MMBS cases are

shown in Figure 2.6.

Figure 2.6: MMBS and Non-MMBS architectures of LTE

Carriers do not support MMBS service at the moment but it is expected to be ac-

complished soon. Server obtains location updates from vehicles and sends combined

broadcast messages to all vehicles periodically. On the other hand, one message in-

cluding the location updates of nearby vehicles is sent to only one vehicle by server in

non-MMBS case. Experiments are done for non-MMBS case by sending UDP data

packets to server periodically. RTT is measured as approximately 50 ms when two ve-

hicles are present in the architecture. RTT level stays the same until twelve vehicles.

After this number, RTT starts to increase linearly. Simulation is done for MMBS
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and non-MMBS cases. When number of vehicles increases, freshness is increased

drastically for non-MMBS architecture. For example, when freshness is around 100

ms for MMBS architecture with 150 vehicles present, it is approximately 200 ms for

non-MMBS case. In conclusion, by using MMBS architecture and by placing servers

close to eNB, end to end LTE network latency is reduced significantly.

In [37], publish and subscribe system is applied to “Real-time Public Transit Track-

ing” ITS application. Applying Pub/Sub pattern to ITS applications has three chal-

lenges. First of all, vehicles continuously publish messages which creates a large

amount of real time data. It can create scalability issues. Secondly, context aware

messages including location updates have to be sent from each vehicle to a large

number of subscribers. Final issue is that Pub/Sub system should be fault tolerant in

case of drastic workload changes. This paper claims to resolve three issues resulting

from Publish and Subscribe pattern. To evaluate Pub/Sub system, “Real-time Public

Transit Tracking” ITS application is developed on Mobile Pub/Sub System (MoPS)

and it is built over OpenStack which is an open source cloud platform. Architecture

is consisted of Publishers/Subscribers, MoPS Broker and OpenStack. Brokers pro-

vide communication of publishers and subscribers. These brokers are deployed over

virtual machines (VM) at physical nodes. Cloud network based on OpenStack houses

VMs. In experiment, each vehicle sends current location at predefined intervals. To-

tal of 10 VMs are used in experiment. Vehicles publish their position according to

lines. For example vehicle in line number 1 sends messages to broker 1. In the first

scenario, 1000 subscribers are subscribed to the same broker all the time but they

change their subscriptions in the middle of the experiment. In the second scenario,

1000 subscribers reconnect to a new broker in the middle of the experiment. These

subscription changes are done to simulate mobility of vehicles. In addition to that,

messages are published per 60, 90 or 120 seconds in three cases to evaluate publi-

cation rate. The results show that end to end latency is around 175 ms when total

number of publishers is 1000 in scenario 1 with 2500 subscribers. Publication rate

does not change the latency for this case. End to end latency is around 225 ms for

5000 publishers when messages are published per 90 seconds. Latency increases to

275 ms when messages are published per 60 seconds. When the number of sub-

scribers increases, end to end delay increases drastically. For example latency is 800
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ms for 10000 subscribers when total number of publishers is 1000. It is very high

compared to 175 ms latency for previous case with 2500 subscribers. As for scenario

2, around 325 ms latency is achieved with 2500 subscribers and 1000 publishers when

messages are published per 90 seconds. Again, it is very higher than scenario 1 case.

1300 ms end to end latency is calculated when the number of subscribers is increased

to 10000. The results show that proposed MoPS is able to handle ITS applications

when the number of subscribers and publishers are large. Average end to end latency

values show that as the number of subscribers and publishers increases, it is becoming

hard to implement real time ITS applications. Secondly, this paper proves that MoPS

can be deployed in OpenStack.

Numerous works exist in the literature about ITS communication. In [38], 3G is used

with VANET to reduce average delay and overall performance. Some techniques to

enhance the capabilities of LTE network for vehicular communication is proposed

in [39]. USA and Japan are the leading countries focusing on research about ITS

architectures. Although there are a lot of proposed architectures in the literature, it is

still unclear which architecture works best for ITS applications. With improvement

of technology and increasing interest of ITS all over the world, it can be seen that

practical implementations will be carried out soon.
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CHAPTER 3

PROPOSED ITS ARCHITECTURE

In this section, the general ITSVeCon architecture and its elements are explained

in different aspects. After this explanation, OBU and server architectures and their

software implementations are given.

3.1 Overview of Proposed ITS Architecture

Intelligent Transportation Systems (ITS) consist of many different components. ITS

communication architecture defines the communication requirements and protocols

for the distributed application components. The main aim is to provide integrity, co-

ordination and reliability while maintaining the communication between these com-

ponents.

A flexible architecture that we call ITSVeCon which maintains the communication

between different end points while being suitable to real life conditions is introduced

in this thesis. The architecture enables end-to-end communication of host devices

through the dedicated ITSVeCon server which provides application layer switching

of TCP connections. ITSVeCon is an IP-based architecture which describes the ap-

plication layer protocols and message structures. We propose carrying out the link

layer communication over cellular access and IP core network. Main units and the

communication pattern are illustrated in Figure 3.1.

The host devices can be in-vehicle units such as Electronic control units (ECU)

and On Board Units (OBU), infrastructure units such as Road side units (RSU),

user devices such as computers and smart phones, and servers of third party service
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providers. Electronic control units which are illustrated as EP1 and EP2 are located

in vehicles. They are connected to in vehicle CAN Bus Network. Their main mission

is to collect information from sensors located in different parts of vehicle and to con-

trol vehicle by sending commands to electrical subsystems. Electric Parking Brake

Control Unit, Electric Vacuum Pump Control Unit, Speed Control Unit, Door Control

Unit are main examples of electronic control units. On board units (OBU) are also

Figure 3.1: ITSVeCon Communication Architecture

located in vehicles. They are also connected to in vehicle CAN network. The respon-

sibility of these units is to provide cellular network interface, to collect information

from electronic control units and GPS and to run ITS applications on top level. It can

also send commands to ECUs located in vehicle according to the application type. It

is the gateway of the vehicle to the outside network. Communication of the vehicle

with other end points are done by this component.

Roadside Units (RSU), 3rd Party Service Provider and smart phone are the other

main components presented in this architecture. Communication is done over cellular

access network and IP Core Network. IP Core Network provides path for exchanging

messages over different sub-networks. In this architecture, these sub-networks are
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access networks used by RSU, vehicles, smart phones, 3rd party service provider and

ITSVeCon server.

In this proposed architecture, OBUs, RSU, smart phone and 3rd party service provider

are always connected the ITSVeCon server via TCP/IP layer. Full duplex communi-

cation is established between the server and the end-hosts by Websocket protocol

over a single TCP connection. This is crucial for real time applications because of

the ability of instantaneous bi-directional communication. The messages can be sent

to only 1 destination point (unicast) or they can be sent to multiple destination points

(multicast). For real time applications, it is estimated that all of the components are

in the same city which enables low communication delay. Here we note that short

range wireless interfaces (SRWI) such as D2D or DSRC can be used together with

ITSVeCon communication. In this case, this wireless communication is only realized

between vehicles. Messages are transmitted directly without the use of the server

which enables lower delay values. However due to coverage issues, sometimes mes-

sages may not be delivered to the destination point. For reliable communication,

vehicles send messages from both cellular and short range wireless interface. This

guarantees higher rates of packet reception ratio as well as best delay values. This

type of communication is handled in this thesis as a functional test. SRWI is simu-

lated as a second interface to show that OBUs can get data from multiple interfaces

and make a selection. In order to give examples of communication types, end points

(EP) are numbered as shown in Figure 3.1. Examples of communication types are

given below.

• Communication between EP1 and EP2 (EP12): In this application, the ECU

named as EP1 sends speed or brake information to actuator via CAN Bus. Since

OBU in Vehicle-1 listens CAN Bus, it can obtain the CAN frame. After the

CAN frame is obtained by OBU, if short range wireless interface is not enabled,

the message is sent to only ITSVeCon Server. ITSVeCon Server examines the

destination point of this message and sends this message to Vehicle-2. OBU

in Vehicle-2 obtains this message and transmits it to CAN Bus. Finally, ECU

named as EP2 in Vehicle-2 receives the message and read the speed and brake

information transmitted by EP1 of Vehicle-1. If short range wireless interface

is enabled, the message is also sent from wireless interface. Vehicle-2 uses
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the first message that is obtained and ignores the other one. This application

can be used as controlling the speed of Vehicle-2 in accordance with Vehicle-1.

This communication can be classified in Security and Traffic Administration

Applications.

• Communication of EP4, EP1 and EP2 (EP412): In this application, the fre-

quency of traffic light EP4 is transmitted to the ECUs in Vehicle-1 and Vehicle-

2 with the help of ITSVeCon Server and OBUs located in the vehicles. The

color of the traffic light can then be displayed in the driver’s dashboard. This

application is an example of Security and Traffic Administration Applications.

• Communication of EP5, EP1 and EP2 (EP512): 3rd party service provider

sends the information of weather and traffic conditions which was previously

provided from the related RSUs. The information coming from the ITSVeCon

server is displayed in driver’s dashboard after obtained from OBU. Communi-

cation is broadcast so both EP1 and EP2 can obtain the information. This is

classified in Automotive Infotainment Applications.

• Communication of EP1 and EP3 (EP13): In this application, speed and GPS

location of Vehicle-1 can be displayed in user’s smart phone with the help of

OBU and ITSVeCon Server. Similarly a message that is sent from smart phone

can be seen by the driver of the Vehicle-1 in dash board. This can also be listed

in Automotive Infotainment Applications.

The main aim of this proposed architecture is to enable the communication between

every component and to establish control over them. ITSVeCon server is the main

control and switching mechanism while the other clients are responsible for sending

and receiving necessary messages and taking actions accordingly. It is possible to

increase the number of servers to provide better quality of service and to take security

measures in case of any unexpected issues.

3.2 ITSVeCon Server Architecture and Software

ITSVeCon server is the main message switching center in ITSVeCon architecture.

Every component is always connected to the ITSVeCon Server using Websocket pro-
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tocol. The messages are not changed by server, server just adds the timestamp values

of the time when the message is received and sent. Server is also responsible of au-

thentication of clients. Unauthorized clients cannot communicate with other clients.

In this proposed architecture, authentication is done by looking clients’ user infor-

mation IDs. This ID is license plate for vehicles, IMEI number for smart phones,

and a predefined keyword for RSUs. There is a list containing all of the authorized

clients’ user information. This list is checked by the server when a new client wants

to connect.

ITSVeCon server should always send the message to the desired end points to main-

tain reliable communication. In some ITS applications such as speed and brake

control of the vehicle according to another vehicle, the transmission of the message

should be unicast. However, in some cases, the message should be transmitted to more

than just one vehicle. For example; a RSU may send the weather condition of the area

to the nearest vehicles. In order to provide both unicast and broadcast messaging, the

communication between the clients are carried out in Publish-Subscribe pattern by

ITSVeCon Server. In this proposed architecture, all of publish and subscribe requests

are sent to the ITSVeCon Server and server handles creating the channels and sending

the messages.

For the communication in this architecture, the messages are formed in JSON format

before sending to the ITSVeCon Server. JavaScript Object Notation (JSON) format

is a collection of the human-readable name-value pairs which is used when trans-

mitting data objects [40]. In this name-value pairs, value represents the content of

the name. It can be an object, number, array, string, true, false or null. One or

more of these name-value pairs constitute objects. JSON format is different from

XML format and it is more practical to use because of its’ readability. JSON for-

mat is a language independent format meaning that it can be implemented in various

platforms. Considering the fact that there are many components in ITS architec-

ture, this makes JSON format a perfect option for exchanging messages. In this

proposed ITS architecture, the clients generate messages in JSON format first and

then send them to the ITSVeCon Server. When receiving messages, clients parse

the received message to obtain name-value pairs. Similarly, ITSVeCon Server parses

the received message first and then it regenerates the message in JSON format be-

29



fore sending it to the clients. An example of the JSON format is given below:
{

“Folder”: “windows”,

“Number”: 20,

}

In this example; “Folder” is a name and its value is “windows” which is a string.

“Number” is a name whose value is an integer 20.

3.2.1 Structure of JSON Messages

The communication between clients and the ITSVeCon Server is done by Websocket

protocol, which creates a permanent full duplex communication over a single TCP

connection. An example JSON message format of this proposed architecture is given

below:

{

“Action”: “Publish”,

“UserID”: “06FJ6392”

“DestUserID”: “06AA06”

“ChannelName”:”Diagnosis”,

“ApplicationName”:”DiagnosisApp”,

“DestApplicationName”:”MaintenanceApp”,

“CANFrame”:”5A1#11.22.33.FF”,

“Lat”: 34.6543

“Lng”: 33.9543

“Counter”:1

“Info”: “Server”

}

Since Publish-Subscribe pattern is used, in addition to the context of the message,

the clients need to define which type of action they want to perform. In order for the

server to keep record of the clients in the channels, every client should have user ID.If

the message is broadcast, channel name definition is enough for the server to send the

message to the subscribers. However, if the message is unicast, then the “Destination
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User ID” should be defined. Then the server just sends the message to the destination

with destination user ID. It is still necessary that destination user is subscribed to the

channel stated in message. More than just one application can run on the clients, so

the clients also define the name of the application sending the message and the name

of the application that should receive the message. In addition to these fields, more

name-value pairs can be added to the JSON message depending on the application.

For example; for sending the CAN messages, “CANFrame” name can be added to

the JSON message and a real CAN message is added as a string in the value part. All

of this name-value pairs are parsed by the ITSVeCon server and the necessary fields

are obtained. Detailed explanation of name-value pairs is given below.

• “Action”: Its’ values constitute a command set for the server to accomplish.

This name can take 6 string values. “AuthenRequest” value is firstly used by

clients for authentication request. If the client is suitable for making a con-

nection and if it is defined as a reliable source, the server puts “AuthGranted”

value in the “Action” value and then sends it back to the client. For “AuthenRe-

quest” value, other names except “UserID” is not important. Because of that,

when client requests for authentication it just fills the “UserID” and “Action”

names. Clients which want to subscribe to a channel, fill this name’s value

with “Subscribe”. The server then looks for the value of the “ChannelName”

name and performs subscription to the desired channel. If the channel does

not exist, the server creates channel and then adds user to the subscription list.

“Unsubscribe” value is used together with the value of “ChannelName” name

to indicate that the client wants to unsubscribe from the defined channel. Then

the server removes the user from the list of subscriptions of the related channel.

“UnsubscribeAll” value is used for client to unsubscribe from all subscribed

channels. This is generally used before the client disconnects from the server.

“Publish” value is used to send necessary information to the channel defined

by the value of “ChannelName” name. The information can be changed from

application to application and it can be added as different name-value pairs.

Since the communication can both support unicast and broadcast, after “Pub-

lish” value is received from the server, the server looks for the “DestUserID”

name’s value. If it is null, then server sends the message to all of the subscribers
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in the channel. If it is not null and destination user is subscribed to the channel,

the server just sends the message to the user defined in “DestUserID” name. To

sum up, the values of the name “Action” and their meanings are illustrated in

Figure 3.2.

Figure 3.2: The Values of “Action” Name in JSON Messages

• “UserID”: The name “UserID” is used for the client to identify itself. In this

proposed ITS architecture, every client should have user ID. Vehicles use their

license plates and smart phones use their IMEI number as user ID.

• “DestUserID”: If the message is aimed to be sent to only one client, then the

value of “DestUserID” name is filled with the user ID of the client which is

expected to obtain the message.

• “ChannelName”: When the client makes a subscription or publish request to
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the server, channel name should be defined. If subscription request is made,

the server creates a channel if it does not exists and then adds the client to the

subscription list. If the channel exists, the server just adds the client to the

subscription list. Channel name is a string and it may be application dependent.

• “ApplicationName”: Since more than one application can run in each client,

when sending messages, clients define the application which sends the message

in “ApplicationName” field. For example, an application named “RoadInfo”

may request road conditions from RSU and it is necessary for RSU to obtain

the application information before preparing response message.

• “DestApplicationName”: This field is filled with the name of application run-

ning on destination client which is supposed to receive the message. Applica-

tions can send messages to other applications with the help of this name field.

• “CANMessage”: On Board Units which are located in the vehicles can send

CAN messages obtained from ECUs in this field. CAN message format is a

string. ’#’ character is used to separate CAN ID from the CAN data. For

example; “5A1#11.22” means a CAN message with ID 0x5A1 whose data is

0x11 and 0x22 in hexadecimal form. If CAN message is not wanted to be

transmitted, this field is left as null.

• “Lat”: This name is used to define the latitude of the client. It can be left as

null if it is not used.

• “Lng”: This name is used to define the longitude of the client. It can be left as

null if it is not used.

• “Counter”: It is used to count the number of specific messages sent to the

server in some applications. For example in real time CAN frame transmission

between vehicles, this value is increased by 1 for each CAN frame transmitted.

• “Info”: It is used to distinguish short range wireless interface and server mes-

sages in some of the applications. In ITS architecture, this area is filled with the

value of “Server” when the communication is done over server. However for

the communications done by short range wireless interface, this area is filled

with the value of “ShortRangeWirelessInterface”.
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3.2.2 Server’s Algorithm

According to these JSON name-value pairs, ITSVeCon Server creates and deletes

channels, adds clients to the channel or removes clients from channels, sends the

message to appropriate destination points and maintain always-open connection be-

tween its’ clients. The algorithm of the ITSVeCon server is represented in Figure

3.3 in flowchart format. As it can be seen from the figure, algorithm almost depends

on name-value pairs encapsulated in JSON format. ITSVeCon server is implemented

in Microsoft Visual Studio development environment using C# programming lan-

guage. To parse encapsulated JSON messages, “Newtonsoft-JSON” external library

designed for .NET framework is used. Newtonsoft-JSON is an open-source project

offering libraries of serializing and de-serializing JSON objects [41]. When a mes-

sage is received by the server, it is first de-serialized and value of the “Action” name

is obtained. Then message is serialized again after adding necessary time-stamps and

editing some necessary name-value pairs. Since there is not default Websocket imple-

mentation in C#, an external library “Websocket-sharp” is used to provide Websocket

protocol. “Websocket-sharp” is an open-source library aiming to provide Websocket

protocol to .NET framework [42].

ITSVeCon Server runs on port 80, which is default TCP/IP port number. The gen-

eral server address starts with “ws://” indicating that it is using Websocket protocol.

ITSVeCon Server has infrastructure of maintaining more than just one service. For

example, while one service can serve for the ITS, other service can serve just for chat

purposes. In this proposed ITS architecture, ITSVeCon Server has only one service

and it is fully reserved to ITS algorithm. The service name is added to the total server

address which makes total server address as “ws://IP_Address:Port_Number/Nam

e_of Websocket_Service”. When clients want to connect to the ITSVeCon server,

they should know the IP address of the server as well as the service name. In this

architecture, it is assumed that all clients know these information about server.
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3.2.3 Server Timestamp Functionality and Synchronization

Meinberg program runs together with ITSVeCon server to maintain synchronization

with NTP server. Meinberg is Windows version of NTPD and working algorithm is

the same. ITSVeCon server has the ability to execute "ntpq -p" command to obtain

current offset value. ITSVeCon server can log time stamps at reception and transmis-

sion of any Websocket messages. These time stamp values are recorded as text file

when server ITSVeCon application stops. These time values can be used for mea-

surement and prioritization purposes.

3.3 OBU Hardware and Operating System

In the scope of this thesis, “SABRE for Automotive Infotainment Based on the i.MX6

Series” development board is selected and used. The board and its’ interfaces can be

seen in Figure 3.4. SABRE for Automotive Infotainment Development Board is

Figure 3.4: SABRE for Automotive Infotainment Development Board

designed to include the features necessary for developing automotive applications.

Board support package (BSP) and demo images of both Linux and Android can be

obtained via NXP’s website. This enables customization of the selected operating

system as well as the developed applications running on top of it. For example initial-

ization parameters of some interfaces, booting logo or user interface can be changed

by changing BSP. The main features of SABRE-AI development board is as follows
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[43]:

• i.MX 6 QUAD processor running up to 1GHz,

• 2 GB x 64 DDR3 running up to 532 MHz,

• 32 MB 16-bit parallel NOR flash,

• SD card interface, NAND flash socket,

• 1.5 Gb/s SATA interface,

• Ethernet interface,

• JTAG and UART interfaces,

• High and low speed CAN interfaces,

• High-Speed USB (OTG) interface,

• LVDS and HDMI interfaces,

• SPDIF receive interface,

• I2C module connector

Main lack of this board that it does not have cellular mobile interface and GPS. To

establish 3G interface, external components such as “3G to Ethernet Modem” should

be used. GPS can also be added if an external GPS board is connected to the UART

interface.

For operating system, both Linux and Android operating systems can run on this

board. Linux images are obtained in accordance with Yocto Project, a project that

aims to create customized Linux operating systems [44]. The libraries and features

have recipes which can be added or removed when creating the desired custom image.

Developing Java applications in this customized Linux operating system is difficult

and adding visual graphics to applications requires using extra libraries such as Way-

land or X11. However developing Java applications and adding graphics features are

practical in Android OS. Considering the fact that Android OS is a widely used oper-

ating system in Intelligent Transportation Systems, it is reasonable to select this OS.
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It enables more customization compared to any other operating systems. Therefore in

the scope of this thesis, Android 4.3 OS demo image which is given in NXP’s website

is used. This image contains base Android operating system without any additional

features. Necessary developer settings have to be arranged first to install applica-

tions. ITSVeCon Application is implemented on top of this image in Android Studio,

a development platform for Android applications.

3.3.1 OBU ITSVeCon Application

The application on OBU is a multi-layered application designed to run on Android

operating system. This application is implemented mostly with Java libraries that are

developed by Google for Android. This Android development framework comes with

the Android Studio, which is an Android application compiler [45]. External Java and

native (C/C++) libraries are also used to add some features that normally do not exist

in Android development framework.

ITSVeCon Application aims to provide an infrastructure for the OBU that is located

inside the vehicle while being connected to the CAN Bus, 3G cellular network and

GPS. It is designed in such a way that if OBU is connected to a vehicle in real life,

it can be easily modified and be ready to work as desired. In order to do so, a flexi-

ble structure is implemented allowing future developers to add as many applications

as necessary. ITSVeCon Application is capable of sending and receiving CAN mes-

sages, communicating ITSVeCon Server using Websocket protocol, providing short

range wireless interface protocol, logging message reception and transmission tim-

ings, running super user commands and allowing developers to add many applications

that can run using the application’s existing libraries. ITSVeCon OBU Application’s

being able to provide real CAN and Ethernet interfaces makes it usable in any vehi-

cle. The layers in ITSVeCon Application is arranged such that every layer can only

talk with upper or lower layer of itself. The architecture of the ITSVeCon application

is given in Figure 3.5. The user is only interested with the “MainActivity” and “Set-

tingsActivity” which are placed on top the ITSVeCon architecture. The layers at the

bottom are responsible of controlling interfaces and simulations. The communication

of the lowest layers with the top layers is done by “V2X Application Interface” and
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“Distributer Starter” layers.

Figure 3.5: ITSVeCon application layers

Websocket Messages Management: This layer is used to communicate with ITSVe-

Con server. Since Websocket protocol and JSON message format are used in ITSVe-

Con algorithm, this layer makes sure that the message transmission requests coming

from V2X Applications are converted to the right format. When a V2X application

requests to send a message to the ITSVeCon Server, this layer gets the request with

the necessary parameters and creates JSON message accordingly. When the server

sends a message to the OBU, first this layer gets the message, and it directly passes

the message to an upper layer, which is “Distributer & Starter”. Application name,

destination application name, user ID, destination user ID, channel name and “Ac-

tion” values are the ones that should be included in every message. Extra name-value

pairs are added to JSON messages according to V2X Application which requested to

send message.

Android SDK normally does not provide Websocket library. In order to use Web-

socket protocol, an open-source library, Autobahn|Android is used. Bidirectional

real-time messaging in Android applications using Websocket protocol are realized

with the help of Autobahn|Android library [46]. When the application begins, this

layer first tries to connect to the server. If it is successful, the authentication message

is sent immediately. After authentication granted message is received, normal opera-

tion depending on callback functions start. These callback functions trigger events if

39



disconnection or message reception occurs. When V2X applications requests to send

messages to server, “Action” value and timestamps are added after creating JSON

message. After formation, this message is sent to the server. Figure 3.6 illustrates the

algorithm.

Figure 3.6: Websocket Messages Management Flowchart

CAN Interface Management: In ITSVeCon Application, CAN messages are trans-

mitted and received using this layer. In NXP’s Android image, Linux kernel beneath

the Android operating system is patched with SocketCAN open source CAN drivers

to control CAN interface. Berkeley socket API, which is a Linux network stack is

used by SocketCAN to implement CAN drivers as if it is a network interface [47].

SocketCAN supports extended, remote, error and normal CAN frames, local loop-

back, filtering, triple-sampling and CAN FD frames. All bitrates up to 1 Mbps can

be selected using this driver. SocketCAN makes using C code mandatory because

controlling this CAN interface requires opening, listening and closing sockets which

is not included in Java programming. In order to use C code, Java Native Interface

(JNI) programming is adapted to android coding, which enables using C/C++ cod-

ing in Java programming language [48]. Initialization, reading and transmitting CAN

frames are written in C code. In this layer’s Java part, the functions written in C code

is called by using wrapper functions.
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Linux-can-utils which is a collection of open source tools developed by Volkswagen

and Bosch to control SocketCAN drivers using iproute2 tools [49]. The commands

listed below are used to initialize, start and stop CAN interface.

• Before starting the CAN interface, the bitrate must be defined. “ip link set can0

type can bitrate 125000” is used in command line to define bitrate.

• CAN interface is started by using the command “ip link set can0 up”.

• CAN interface is stopped by using the command “ip link set can0 down”.

These commands are called by ITSVeCon Application with the super user privilege.

Triple sampling, loopback and listen-only mode are disabled by default, so it is not

necessary to call the commands related to them before starting CAN interface.

When a CAN frame is read by JNI layer, it is automatically transferred to the Java

layer and “Distributer & Starter” layer respectively. When a V2X Application wants

to send a CAN frame, it calls the wrapper function in Java layer. Afterwards, CAN

frame is transmitted by the JNI layer. If CAN filtering is used, JNI layer does not

receive the CAN frame unless the received frame’s CAN ID matches with the filtered

CAN ID. ITSVeCon Application supports filtering CAN frames according to their

ID’s, however in the scope of this thesis, filtering is not used in JNI layer. CAN

frame filtering happens at “Distributer & Starter” which is an upper layer of “CAN

Interface Management”. Initializing, reading and sending CAN frames in ITSVeCon

Application’s layered structure is illustrated in Figure 3.7.

Location Tracking: This layer is used to earn location detection ability to ITSVeCon

Application. SABRE for Automotive Infotainment Board which is used for OBU

hardware, does not have default GPS. Because of that, a mechanism getting mock

location updates is realized in this layer. When vehicle’s location changes by 10

meters, an event is triggered by Android Location API. This layer listens to this event

and informs “Distributer & Starter” layer when the event is triggered.

Short Range Wireless Interface: This layer is used for functional testing to prove

that OBU ITSVeCon application can receive data from multiple interfaces. SRWI is

simulated in this layer just like a second arbitrary interface. By doing this, the effects
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Figure 3.7: ITSVeCon Application CAN Interface Management Structure

of implementing a short range wireless communication such as DSRC/WAVE or D2D

and the functionality of making them to work together with cellular interface can be

seen. In order make these interfaces comparable, delay values of the second interface

should be selected close to the cellular network interface. The aim is to think about

the future when short range wireless interface delay values and cellular network delay

values such as 5G are comparable.

Normally ITSVeCon Application sends all Websocket messages to ITSVeCon Server

when this interface is disabled, so all communication are done over ITSVeCon Server.

In “Settings Activity” layer, there is an option to enable short range wireless in-

terface. If it is enabled, this layer starts working. As it can be seen from Figure

3.8, this layer generates JSON messages like normal ones except “Info” field and

sends them with predefined interval. V2X Applications understand that if the mes-

sage comes from short range wireless interface by looking to the value of “Info”

name in JSON message. When a Websocket message is received from server, on-

MessageReceived() function is called in “Websocket Messages Management”. This

layer calls the same function for generated virtual messages. However, for wireless

communication, sometimes packets cannot be delivered to destination. Because of

that, this function is called with a certain probability to adapt this situation. 3 differ-
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ent probabilities are selected as %30, %60 and %100. These three probabilities are

used for every measurement when Short Range Wireless Interface (SRWI) is enabled.

With this configuration, all cases can be examined in one measurement experiment.

Predefined time interval is be selected according to measured end to end delay values.

Figure 3.8: Short Range Wireless Interface Packet Generation

CommandAsRoot: This layer is used to execute commands necessary for the “CAN

Interface Management” layer.

SaveParameters: ITSVeCon Server address, port number, CAN bitrate and other

settings are saved by this layer.

SaveAsText: Timestamp values at reception and transmission of CAN frames and

Websocket messages are saved in text format by this layer.

NTPQ Daemon: : The responsibility of this layer is to get offset values from NTPD

daemon running in the background by executing “ntpq –p” command.

Distributer & Starter: The link between the layers located at the bottom and the

“V2X Application Interface” layer is established with the help of this layer. Received

CAN frames and Websocket messages are distributed to the correct V2X application

here. A subscription mechanism is used to determine the application which should

get the message. The application which is designed to get a specific CAN frame,

subscribe to this CAN frame’s ID at initialization. Distinguishing CAN frames are

done by looking to their ID’s. “Distributer & Starter” layer keeps a table of every

application that subscribes to specific CAN ID’s. After CAN frame is received by

“ITSVeCon CAN Interface Management” layer, this table is used to convey the frame

to the correct application. The path of CAN frames starting from CAN Bus ending
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in V2X applications is show in Figure 3.9. On the other hand, Websocket messages

Figure 3.9: Distributing CAN Frames

are distributed by looking to the value of “ApplicationName” name which is defined

in JSON format. Since every application has a name in string type, this layer parses

the received JSON message, looks “ApplicationName” field and then decides which

application gets which message. A matching table like CAN frames is used for Web-

socket messages. The process is show in Figure 3.10.

Figure 3.10: Distributing Websocket Frames

V2X Application Interface: This layer presents abstract functions for V2X applica-

tions to implement. Initialization, reception of CAN frames and Websocket messages

and an application specific loop are provided to develop V2X applications. As it is

shown in Figure 3.11, initialization, start and stop functions are the same for all V2X

applications. Reception of CAN frame and Websocket message functions, location

updates as well as application specific loop function are different for each V2X appli-

cation. Applications running on the top are developed by implementing these specific

functions.
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Figure 3.11: V2X application base functions

V2X Applications: In this layer, many applications can run simultaneously in sep-

arate threads. According to CPU’s performance, the number of applications may be

higher in some platforms. V2X applications are developed by extending “V2X Ap-

plication Interface” layer. Initialization, start and stop functions are used from this

interface. Necessary initialization steps can be added separately for each application,

which allows flexible usage. In this layer, reception of CAN frames and Websocket

messages, application specific loops and location updates are implemented. It is not

obligatory to implement all of the functions defined in “V2X Application Interface”.

For example, some applications may not need location updates. Then in order not to

receive location updates, it is enough not to implement the related function.

Application name, subscription of CAN frames and location updates and applica-

tion specific loop delay are defined at initialization stage. Applications may work

independently or they can communicate with each other over “Distributer & Starter”

layer.

Main Activity: It is the layer that provides user interface together with the Settings

Activity. This layer provides the buttons for starting and stopping application.

Settings Activity: This layer presents the settings necessary at ITSVeCon Applica-
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tion’s initialization step to the users. ITSVeCon Server’s IP address, selection of V2X

applications to run in application, CAN bitrate and user ID (license plate) are defined

and saved in this layer.

3.3.2 Development of V2X Applications and Operation of SRWI

Since the main aim of this thesis is to provide end to end message delivery between

two ECUs in different vehicles, necessary applications are developed for this pur-

pose. As OBU ITSVeCon Application allows usage of many V2X applications run-

ning together, two different V2X applications are implemented for transmitting and

receiving messages. These applications are used for real time CAN frame delivery,

so they can be used for any ITS application related to safety such as vehicle tracking.

When implementing applications, it is assumed that ECUs in both vehicles transmit

and receive speed information so that the architecture presented in Figure 3.1 can be

achieved.

“Speed Controller” is used to obtain the CAN message, encapsulate it in JSON for-

mat and send it to ITSVeCon Server. First of all this application subscribes to related

CAN frame IDs that is transmitted by Ixxat’s first CAN interface. After authentica-

tion, “Speed Controller” subscribes to channel with channel name “RealTime”. After

that, it starts to listen CAN frames. If a CAN frame is received and its ID matches

with one of the subscribed CAN IDs, this CAN frame is delivered to this application

by “Distributer & Starter” layer. The time and offset values of reception are recorded

as text file with the help of “SaveAsText” layer. Application, destination applica-

tion, destination user and channel names are added to created JSON message. CAN

message is added as string to JSON message. For example “5A1#11.22” means a

standard CAN frame with 0x5A1 ID and 2 bytes of data which are 0x11 and 0x22.

“Action” name’s value is “Publish” since message is aimed to be delivered to the des-

tination user. Unicast message transmission is realised by ITSVeCon server because

destination user name field is filled. The value of “Info” is “Server” meaning that

this message will be delivered to the server. This name-value pair is necessary for

the application runs on OBU2 to identify whether the message is coming from server

or short range wireless interface. Counter starts with 0 and increases by 1 for every
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subscribed CAN message transmitted. After JSON message is created, it is sent to

ITSVeCon server. Timestamp and offset values of transmission time is saved by call-

ing function from “SaveAsText” layer. Flow diagram of this application is shown in

Figure 3.12.

Since “Sabre for Automotive Infotainment” board does not have wireless interface,

the messages sent through wireless interface are simulated. Short Range Wireless

Interface layer presents at the bottom of the layered structure of OBU ITSVeCon ap-

plication and implements this simulation. However, in order to receive and use these

messages, a V2X application needs to be developed on top of this layered architec-

ture. Enabling SRWI interface is done for functional testing.

The second application “Tracker” is used to obtain the received JSON message, ex-

tract “CANMessage” name’s value and send this CAN message through CAN inter-

face together with the ability to receive SRWI messages. This application can run

in two modes. In the first mode, JSON messages are received only from ITSVe-

Con Server which is normal operation. In the second functional mode, short range

wireless interface (virtual second interface) is enabled. Therefore both ITSVeCon

Server and “Short Range Wireless Interface” layer sends JSON messages including

the same CAN messages in the same order to this application. "Tracker" application

starts thread after receiving the first CAN message. SRWI packet generation is done

with the algorithm explained in Figure 3.8. “Tracker” decides which one to receive

by investigating “Counter” value. While the message with lower counter value is re-

ceived, the other message is discarded. Mode selection is done in “SettingsActivity”

layer by user. Figure 3.13 illustrates the architecture of “Tracker”.

While enabling SRWI is done in "Settings" layer, starting thread in "SRWI layer"

is done by "Tracker" application. Therefore SRWI is enabled in the OBU running

"Tracker" application.

3.3.3 OBU Timestamp Functionality and Synchronization

Normally Freescale Android image does not support NTP synchronization. Synchro-

nization can be done with the help of NTPD application. First of all Android image is
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Figure 3.12: Speed controller flow diagram

Figure 3.13: Tracker flow diagram

patched with NTPD source code to be able to synchronize OBU time with the selected

NTP server. NTP synchronization process is started with "./ntpd -g -N -c ntp.conf"

command. NTPD usage is described at "Section 2.5 Time Synchronization".
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OBU ITSVeCon application has the ability to record timings at reception and trans-

mission of CAN frames and Websocket messages. Timestamp values are obtained

and recorded whenever a Websocket or CAN message is received or transmitted. In

addition to that, the difference of OBU time with respect to NTP server is recorded

as offset time. "NTPQ Daemon" layer runs "ntpq -p" command to obtain offset val-

ues. Then these offset values are conveyed to V2X applications running on top of

ITSVeCon application. These timings and offset values are saved with the help of

"SaveAsText" layer. "Speed Controller" saves time stamps at CAN frame reception

and Websocket message transmission. "Tracker" application saves time stamps at

CAN frame transmission and Websocket message reception.

3.4 Contributions Compared to CarCode ITS Architecture

Kaan Çetinkaya’s M. Sc. Study [5] was the first step towards ITS Communication

Architecture which utilized the same hardware platform, WebSocket protocol and

application level switching. To this end, we clearly state the contributions of this

thesis with respect to the proposed CarCoDe architecture in [5].

CarCoDe was designed as a proof of concept work to show that server OBU commu-

nication can be done local area network and it provides an infrastructure for adding

new CarCoDe applications. This thesis however, focuses on measuring the real time

end to end delay in real life while realizing real interfaces. The novel contributions of

this thesis with respect to [5] are summarized below and explained in detail in related

sections.

Using Real CAN Interface: In CarCoDe application, sending and receiving CAN

messages are implemented with BCM server, which uses network stack as CAN in-

terface. Therefore the effects of receiving and sending real CAN messages cannot be

observed. Virtual CAN interface is controlled by sending commands over local Eth-

ernet interface, which increases message traffic between server and OBU. Because of

controlling virtual CAN interface by sending commands from server, delay measure-

ment of messages is not possible. BCM server is always running on the background

using the command line, which makes CPU usage inefficient. When CAN frames are
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received, these frames are obtained by parsing the command line, which adds extra

time when reading and parsing command line strings. Sending of CAN messages are

just like receiving which requires executing commands. In Android operating system,

executing commands in command line takes long time. That is the reason why it is

not recommended to control fast interfaces like CAN.

In the scope of this thesis, CAN interface is controlled such that OBU can work

in a real environment like a vehicle. Sending and receiving real CAN frames are

supported. Socket type programming in JNI is used which decreases command time

significantly compared to executing commands in command line. Transmission and

reception of RTR, extended and normal CAN frames are supported. The bitrate can

be adjusted in Settings Activity. ITSVeCon Application CAN Interface Management

Layer is converting the CAN frames into strings when received which makes it easier

to parse their ID in “Distributer & Starter”.

Publish & Subscribe Pattern: The server conveys the messages by looking just

destination ID fields in CarCode architecture. This enables unicast messaging and

limits the use of broadcast messages. OBU has to send a lot of messages to the server

when broadcast messaging is intended. In addition to that, OBU has to know all of

the destination user ID’s which makes it impossible and insecure. In ITS applications,

only authorized controlling mechanisms should know every user’s information.

In proposed ITS architecture, publish and subscribe pattern is used in communica-

tion between components. Publish and subscribe pattern is the best choice for ITS

applications. There are many free and paid services which provides publish and sub-

scribe infrastructure and API in real world. Publish and subscribe enables unicast

and broadcast messaging. In the scope of this thesis, this pattern is used for commu-

nication of end points. When user subscribe to specific channels, ITSVeCon Server

creates a matching table of which user is subscribed to which channel. Only ITSVe-

Con Server knows the user ID’s which makes the architecture secure. When there are

more than 2 users in the channel and if "DestID" field is null, ITSVeCon Server sends

the message to every user and this makes the message broadcast. When the desti-

nation ID is specified in the message, server just sends the message to the user with

that ID if the destination user is in the same channel. This makes the communication
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unicast. ITSVeCon Server sends the incoming messages to the subscribers respec-

tively. However there are different server solutions which can send the message to

the subscribers simultaneously. Crossbar, an open source networking platform, uses

Web Application Messaging Protocol (WAMP) which is a sub-protocol of Websocket

together with Publish and Subscribe pattern [50]. Crossbar is capable of sending the

message to the subscribers simultaneously. Since ITSVeCon architecture uses pub-

lish and subscribe pattern, end to end delays can become even smaller if the server is

replaced with the one like Crossbar.

Synchronization of Time: In proposed ITS architecture, every user that is connected

to server is also connected to the NTP server. The main motivation for the synchro-

nization in the scope of this thesis was to collect timing measurements. However,

such capability can be used in time stamping of messages for real-time applications.

End points can have different time clocks which can cause problems. Every user in

ITS architecture add timestamp values of the time when the message is received and

transmitted. If there is a considerable amount of time difference between users, it may

result inconsistency in some applications. For example, user U1 sends a message to

user U2. The time when user U1 sends the message is T1. The time when the user

U2 receives the message is T2. In real life, T1 must be smaller than T2. However, if

user U2’s system clock is wrong, T2 may be smaller than T1. This causes problems,

especially with the applications requiring sensitive timing measurements. In the fu-

ture, it is expected that 5G will be widely used in ITS applications. It means that even

10 ms time interval can be a big deal soon.

In the scope of this thesis, it is proposed that every end user is also connected to the

NTP server. If the connection of end user is stable and the delay between NTP server

and the user is low, time difference between NTP server and the user becomes very

small. Considering the fact that 1 ms offset value can be achieved with 8 Mbps ADSL

connection in Ankara, it will not be hard to obtain the same values when 4G or 5G is

used in On Board Units located in vehicles. In [51], it is proposed that OBUs in each

vehicles need to synchronize perfectly by using a GPS receiver to achieve low jitter

TDMA implementations in ITS-G5 standard.

Virtual Second Interface (SRWI) working with the server communication: In
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the scope of this thesis, a preliminary implementation of short range communication

is simulated for V2V applications to support server communication. In CarCode

architecture, every message is conveyed by the server. Delay values can be high if

the connection between the server and the end point is not good. Therefore to see

the effects of adding a second interface (wireless communication) to the architecture,

short range wireless interface should also be implemented. OBU can understand if the

message comes from the server or short range wireless interface. Selection between

these messages are done by looking to counter value. This enables to compensate for

the packets lost in wireless communication. In this architecture, it is guaranteed that

the messages are received by the destination end point. Change of delay values are

recorded and compared with the normal operation. This is a functional test aiming

to show that OBU application can work both with cellular network and a second

interface such as DSRC, D2D or another SRWI.

Configuration of OBU Application: In CarCode application, the configuration of

the application is done by changing XML file. XML file editing is hard and requires

an editor. In ITSVeCon Application Settings Activity that has a user interface is used

to configure application. This makes it easy for standard users to edit.

Reducing Internal Delay in OBU Application: OBU ITSVeCon Application cod-

ing is changed effectively to reduce the internal delay. V2X applications running on

top can send Websocket and CAN frames faster compared to the old architecture.

Application loop delay is reduced in V2X applications and some polling functions

are converted to event triggered functions which is more suitable for real time appli-

cations.

V2X Applications Running on Top: In OBU ITSVeCon application, the applica-

tions running on top are implemented to measure end to end delay. In addition to

that, applications serve different purposes and they can be used in real life.

Real Communication over Internet: In CarCode application, only local area net-

work is used for communication between OBU and the server. In ITSVeCon Appli-

cation, OBU and server are connected to internet using different access networks. On

Board Units connect to the server over internet which enables to observe real life us-

age and delay measurements. Port forwarding is used in ADSL router to forward the
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message coming from internet to ITSVeCon Server in private local area network by

using router’s Network Address Translation (NAT) feature.
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CHAPTER 4

EVALUATION OF ITSVECON ARCHITECTURE

This thesis aims for exploring the feasibility of communication over cellular access

network and IP core network to achieve V2X communication. To this end, an impor-

tant research question is "Is it possible to use such an architecture for real-time vehicle

applications". This section explores different test scenarios to answer this question.

4.1 Usage of Developed V2X Applications

The communication can both be unidirectional or bidirectional and measurements

will be carried out accordingly. For unidirectional communication, only ECU in ve-

hicle 1 sends speed information to ECU in vehicle 2 presented in Figure 3.1. For

bidirectional communication, both ECUs simultaneously transmit speed information.

“Speed Controller” is the name of the application that transmits speed information

as Websocket message to ITSVeCon Server. “Tracker” is the application that gets

this speed information from ITSVeCon Server. Therefore “Tracker” runs in the ve-

hicle which follows other vehicle. These both applications run in each vehicle if the

communication is bidirectional.

To sum up, "Speed Controller" is used in OBU1 and "Tracker" runs in OBU2 if the

communication is unidirectional. Both "Speed Controller" and "Tracker" runs in each

vehicle if communication is bidirectional.
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4.2 Experimental Setup

Some ITS applications, especially the ones concerning about safety, require low end

to end delay. Because of that, delay should be measured accurately and it should rep-

resent real life conditions. Since the most important safety communication in ITS ap-

plications is between vehicles, the delay between two electronic control units (ECU)

located in different vehicles is measured in this experiment setup. These electronic

control units are shown in the previous figure, Figure 3.1, which shows the entire ar-

chitecture. Here it is important to note that the mobility effects are not present as this

is a laboratory experiment.

In this experimental setup, delay between the time when EP1 sends a CAN frame and

the time when EP2 receives the same CAN frame is measured. For example, EP1 in

vehicle 1 sends the CAN frame which commands the brake control module to reduce

the speed of the vehicle. This CAN frame is transmitted to the entire CAN network

in vehicle 1. OBU which is also connected to the same CAN network in vehicle 1,

receives this frame and sends it to the ITSVeCon Server after converting it in JSON

format. ITSVeCon Server transmits this message to OBU in vehicle 2. OBU parses

the received JSON message and obtains CAN frame. OBU sends the same CAN

frame to the CAN network in vehicle 2. Finally EP2 in vehicle 2 receives this CAN

frame and commands the brake control module accordingly. The path of the message

transmission between two end points is shown in Figure 4.1. As it can be seen, end to

end communication includes many components. This message transmission shown in

this figure is unidirectional. It is also possible that EP2’s transmitted CAN frames are

also delivered to EP1 in vehicle 1. Therefore this delivery can also be bidirectional.

Figure 4.1: CAN frame transmission unidirectional path
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Secondly, functional testing is carried out by enabling short range wireless interface.

This is done with the help of "Tracker" application and "SRWI" layer in OBU ITSVe-

Con application.

In experimental setup, to simulate electronic control units (ECU), Ixxat USB-to CAN

converter is used. Ixxat USB-to-CAN V2 product supports two high speed CAN inter-

face and USB 2.0 interface that is used to connect to host computer [52]. The product

is shown in Figure 4.2. A software is developed for the USB to CAN converter to

send and receive CAN messages and to record timings.

Figure 4.2: Ixxat USB to CAN converter

On Board Units have Ethernet interface which can be used to connect to internet by

cable. Since OBUs are used in vehicles, internet access can only be realised by using

cellular mobile access like 3G, 4G or 5G. To gain cellular mobile interface to OBUs,

TP-Link’s 3G/4G USB modem to Ethernet/Wireless converter and Turkcell VINN

USB modem are used together. TP-Link TL-MR3020 is capable of providing 150

Mbps wireless and Ethernet speed while using 3G/4G USB Modem as source [53].

TL-MR3020, Turkcell VINN USB Modem and their connection to OBU are shown

in Figure 4.3.

In ITS architecture, all of the components should have the same time source. To

achieve this, every component is connected to the same NTP server. In this experi-

mental setup, NTPD daemon runs at background in both On Board Units. Similarly,

Meinberg program runs at background in Server computer. If the number of compo-

nents using NTP increases, it would be difficult to decrease time difference between
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Figure 4.3: Providing 3G interface to OBU

them. To prevent that, Ixxat USB to CAN converter is connected to the ITSVeCon

Server machine. This reduces the number of components using NTP and makes time

domain of ITSVeCon Server and Ixxat USB to CAN Converter the same. As a result

of ITSVeCon computer’s high speed internet connection, end to end delay measure-

ment is very accurate. Experimental setup is shown in Figure 4.4. For simplicity,

TP-Link 3G USB Modem to Ethernet Converter and USB modem are not shown in

this figure.

There are many timestamp values that need to be recorded for this measurement. All

timestamp values are explained below.

• T1: The time when Ixxat’s first CAN interface sends CAN frame representing

ECU in vehicle 1.

• T2: OBU1 is going to obtain this CAN frame at T2. Then OBU1 is going to

encapsulate this CAN frame in JSON format.

• T3: This is the time when OBU1 sends JSON message to ITSVeCon Server

over Websocket protocol.

• T4: It is the time when ITSVeCon Server obtains JSON message.

• T5: ITSVeCon Server sends this JSON message to OBU2 at time T5.
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Figure 4.4: Experimental Setup with Communication Over 3G

• T6: OBU2 obtains JSON message from ITSVeCon Server at time T6. After

parsing this message, OBU2 is going to extract the CAN frame.

• T7: OBU2 sends CAN frame at time T7.

• T8: Ixxat’s second CAN interface representing ECU in vehicle 2 obtains CAN

frame at time T8.

According to these values, total delay is T8− T1. Delay in OBU1 is T3− T2 while

delay in OBU2 is T7−T6. ITSVeCon Server delay is T5−T4. T4−T3 and T6−T5

are network delays. T2− T1 and T8− T7 are CAN frame transmission delays. All

timings are illustrated in Figure 4.5.

Since Ixxat is connected to ITSVeCon Server computer, there are total of 3 time do-

mains. End to end delay and the delay between OBU and ITSVeCon Server do not

need synchronization because necessary timestamp values are obtained from the same

computer. Similarly internal delays of OBUs and ITSVeCon Server do not need syn-
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Figure 4.5: End to End Delay Components

chronization. NTPD maintains synchronization with NTP server well when internet

connection speed is sufficient. However, if the connection speed is not good enough,

offset values become large resulting in poor synchronization with NTP server. T2 −
T1, T4 − T3, T6 − T5 and T8 − T7 delays are the most difficult ones to measure.

For T2 − T1, time domain 1 and time domain 2 need to be synchronized perfectly.

Same condition is valid for time domain 3 and time domain 1 when measuring T8-

T7. When OBUs are connected to internet by 3G, offset values become too large for

sensitive measurement because of weak connection. GSM Operators in Turkey do

not provide stable 3G connection with high speed. Efficient synchronization with any

NTP Server is not possible with these connections. Even 50 ms offset values can be

observed, which is not suitable for measurement.

To overcome this situation, a simple method is developed. First of all, these delays are

CAN transmission and reception delays meaning that they does not change according

to the type of OBUs’ internet connection. Therefore it is assumed that these delay val-

ues stay the same. Second experimental setup is used to measure CAN transmission

and reception delays between OBUs and Ixxat CAN interfaces. In this setup, ITSVe-

Con Server and OBUs are connected to the same ADSL modem which is connected

to internet. Offset values can become lower than 1 ms since it is a stable connection

with 16 Mbps speed. Network delays stated as T4 − T3 and T6 − T5 are measured

over local area network (LAN). Delay measurement applications running on OBUs

are started when all components’ offset values are less than 1 millisecond. This setup

is used for measuring T2− T1 and T8− T7. These delay values are used later when

OBUs are connected to internet with 3G. By using these values, T4−T3 and T6−T5

can also be calculated. Experimental setup for measuring CAN frame transmission

and reception delays is shown in Figure 4.6.
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If short range wireless interface is enabled, then only T4 and T5 values are not used

because the message is generated directly in OBU2 and ITSVeCon Server is not used.

T8−T1 value is the most critical one because it shows the effects of using short range

wireless interface together with 3G communication.

Figure 4.6: Experimental Setup with Communication Over LAN

4.3 Ixxat CAN Application

Controller Area Network (CAN) application also runs on ITSVeCon Server machine.

This application sends a series of CAN messages from their CAN interfaces. If unidi-

rectional communication delay is to be measured, then CAN messages are sent from

only 1 CAN interface. For full duplex communication delay, same CAN messages
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are sent from both CAN interfaces simultaneously. Total count of messages are stated

in a text file which can be changed. Similarly, time interval between transmission of

2 successive CAN frames can be changed in a text file. Timestamp and offset values

of transmitted and received CAN messages are recorded. This time values can then

be parsed and all of the necessary values can be obtained. Different bitrate values as

well as normal, remote, extended CAN frames are supported in this application.

Total count of frames, the frames that are going to be sent from channel 1 and interval

between frames are obtained from text files. The frames defined in “CANTxMes-

sages” text file are sent in a loop. When total frame count equals to the total CAN

frames that have been sent from interface 1, application stops. For example, 2 CAN

frames with ID’s 0x111 and 0x222 are defined in “CANTxMessages” text file and

total count of frames is defined as 100 in “CANTxTotalCount” text file. 50 CAN

frames with ID 0x111 and 50 CAN frames with ID 0x222 will be sent from interface

1. When sending CAN frames, receive thread runs in background. When unidirec-

tional communication is selected, CAN frames are received from interface 2. When

a CAN frame is received, callback function is called and timestamp and offset values

are recorded with the received CAN frame in text format. Similarly, timestamp and

offset values are recorded when each CAN frame is sent.

If bidirectional communication is selected, CAN frames are sent from both interfaces

simultaneously. Reception thread runs for both interfaces. CAN frames received from

interface 1 and interface 2 are recorded in different text files. Similarly, CAN frames

transmitted are recorded in different text files according to interface number. Flow

diagram of Ixxat CAN Application’s transmission process is shown in Figure 4.7.

4.4 Sample Log Outputs

Sample record of a transmitted and received CAN frames measured in second ex-

perimental setup where all components are connected to the same ADSL modem is

explained in this section. Sample record from Ixxat CAN Application is given be-

low. Time intervals between each component in transmission path is calculated in

this section.
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Figure 4.7: CAN Application Transmission Flow Diagram
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CANTx_Chan1_Time1: 1491589748586 Offset: 0,074 Counter: 0 Message: Data

[5A1] Dlc=4 11 22 33 44

CANRx_Chan2_Time8: 1491589748600 Offset8: 0,074 Count: 0 Message: Data

[5A1] Dlc=4 11 22 33 44

The first record indicates time T1 which is the time when Ixxat’s first CAN interface

sends CAN frame with 0x5A1 ID and 0x11, 0x22, 0x33, 0x44 data. 1491589748586

represents milliseconds since 01.01.1970. Offset value is 0,074 milliseconds which

is very low. Counter’s being 0 means that it is the first message transmitted. Second

record shows the reception time of same CAN frame from Ixxat’s second CAN inter-

face. 1491589748600 shows the time in milliseconds since 01.01.1970 when CAN

frame is received.

“Speed Controller” saves timings as follows. Time T2 is the time when CAN frame

is received. Time T3 is the time when JSON message is sent to the server.

Time2: 1491589748588 Offset2: -0.411 Time3: 1491589748590 Offset3: -0.411

Count: 0 CANMes: 5A1#11.22.33.44

Server’s sample time record is given below. Time T4 is the time when JSON message

is received. Server sends JSON message to the destination user at time T5.

Time4: 1491589748592 Offset4: -0,116 Time5: 1491589748593 Offset5: -0,116

Count: 0 CANMes: 5A1#11.22.33.44

“Tracker” receives JSON message at time T6. After CAN frame is obtained from

encapsulated JSON message, it is sent to CAN Bus at time T7.

Time6: 1491589748595 Offset6: -0.426 Time7: 1491589748598 Offset7: -0.426

Count: 0 CANMes: 5A1#11.22.33.44

Real time value is found by summing offset and time value. All values are calculated

below.
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T1 = (1491589748586 + 0, 074) = 1491589748586, 0744

T2 = (1491589748588− 0, 411) = 1491589748587, 589

T3 = (1491589748590˘0, 411) = 1491589748589, 589

T4 = (1491589748592˘0, 116) = 1491589748591, 884

T5 = (1491589748593˘0, 116) = 1491589748592, 884

T6 = (1491589748595˘0, 426) = 1491589748594, 574

T7 = (1491589748598˘0, 426) = 1491589748597, 574

T8 = (1491589748600 + 0, 074) = 1491589748600, 074

Interval calculations are listed below.

T2− T1 = 1.515

T3− T2 = 2

T4− T3 = 2, 295

T5− T4 = 1

T6− T5 = 1.69

T7− T6 = 3

T8− T7 = 2.5

This is the calculation method of timing intervals. Total end to end delay is 14 ms

represented by T8 − T1. Since it is measured over local area network, this value is

normal.

4.5 NTPD Configuration

It is important that NTP server is located at a close position because of low delay.

Because of that servers included in “tr.pool.ntp.org” are considered to be selected.

Since there are many servers in this project ping values are measured for each one of

them. It is found that the server with IP address “212.50.1.11” gives the lowest ping

delay. Therefore this server is selected as main NTP server for all components in the

experimental setup. Same “Ntp.conf” file is used for both NTPD program running

in OBUs and Meinberg program running on NTP Server machine. With “iburst”

keyword, burst of 8 packets are sent to NTP server when it becomes unreachable.

Minpoll and maxpoll values are 3 which is the lowest values meaning that time value

is requested from NTP server for every 23 = 8 seconds. "Ntp.conf" file is given below.
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statistics loopstats peerstats clockstats

filegen loopstats file loopstats type day enable

filegen peerstats file peerstats type day enable

filegen clockstats file clockstats type day enable

server 212.50.1.11 iburst minpoll 3 maxpoll 3

restrict -4 default kod notrap nomodify nopeer noquery

restrict -6 default kod notrap nomodify nopeer noquery

restrict 127.0.0.1

restrict ::1

4.6 Detailed Measurement Method

In this section, detailed measurement method is explained. Delay measurement de-

pends on time recordings. Timings are recorded for different experimental setups and

different settings. First of all, delay is measured when both OBUs and ITSVeCon

server machine are connected to the same local area network. T2− T1 and T8− T7

values are obtained from this setup. After that OBUs are connected to the internet

with 3G cellular network. The values of T2− T1 and T8− T7 which were obtained

earlier are used for this measurement.

Eight arbitrary CAN frames are selected to be sent from Ixxat’s CAN interfaces.

These CAN frames are written in “CANTxMessages” text file for Ixxat CAN ap-

plication running on ITSVeCon Server machine. Ixxat’s CAN interfaces represent

ECUs in vehicles. It is assumed that these ECUs send CAN frames periodically for

every 100 ms. Therefore these predefined 8 different CAN frames are sent with 100

ms interval successively. Since confidence interval is calculated after measurement,

the number of delay samples should be high enough to reflect real results. There-

fore total of 500 CAN frames are transmitted from Ixxat’s one CAN interface for

every measurement. This is arranged by writing 500 to “CANTxTotalCount” text

file. Due to the type of communication, receive thread can run for only 1 interface

or both interfaces. These 8 CAN frames are sent in a cycle loop until total count

of transmitted messages reaches 500. If unidirectional communication delay is to be

measured, CAN frames are sent from both interfaces. CAN frames and the algorithm
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is illustrated in Figure 4.8.

Figure 4.8: Transmitted CAN Frames from CAN Application

4.6.1 Unidirectional Measurement in Experimental Setup with Communica-

tion over LAN

Step by step measurement method is explained below.

1. First "Experimental setup with communication over LAN" is used. Both OBUs

and ITSVeCon Server is connected to the same ADSL modem, so OBUs are

connected to server by local area network. TP-Link TL-MR3020 and 3G USB

Modem are not used.

2. NTPD daemon is started in both OBUs by “ntpd –g –N –c ntp.conf” command.

“ntp.conf” file is given in previous section. After entering this command, clock

of both OBUs are started to be synchronized with NTP server.

3. Meinberg program is started in ITSVeCon Server machine. Same “ntp.conf”

file is used to connect to same NTP server.

4. After waiting 30 minutes, offset values of both OBUs and Server computer is

checked. If they are all below 1 ms, applications can be started.
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5. ITSVeCon Server Application and CAN Application is started in ITSVeCon

Server machine. Server application is illustrated in Figure 4.9.

Figure 4.9: Server and Ixxat CAN Application

6. OBU application is started in both OBUs. “Speed Controller” is selected from

settings in OBU1. “Tracker” is selected in OBU2. After starting, these ap-

plications are connected to ITSVeCon server. These applications are ready to

receive, transmit CAN frames and Websocket messages. Server console and

Ixxat CAN Application are shown in Figure 4.10 and Figure 4.11 respectively.

Figure 4.10: OBUs’ Connection to Server

7. In Ixxat CAN Application, ‘t’ key is pressed to send all 500 CAN frames from

interface 1, so the measurement process begins here. All timing values are

recorded for every component. After transmission of 500 CAN frames is fin-

ished, Ixxat CAN Application stops. Text files including records are obtained

from OBUs and ITSVeCon Server machine.
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Figure 4.11: Ixxat CAN Application

8. (T2 +Offset2) – (T1 +Offset1) and (T8 +Offset8) – (T7 +Offset7)

values are obtained for each CAN frame transmission. Average value of 500

CAN frames is obtained.

9. This process is repeated two times. Total average values of T2−T1 and T8−T7

are found. These values will be used for unidirectional measurement calcula-

tion when OBUs are connected to internet by 3G.

4.6.2 Bidirectional Measurement in Experimental Setup with Communication

over LAN

This measurement is similar to unidirectional measurement. Only difference is CAN

frames are sent from both interfaces of Ixxat. In order for OBUs to receive CAN

frame and Websocket messages, both “Speed Controller” and “Tracker” applications

are started in each OBUs. “Speed Controller” is capable of receiving CAN frame and

converting it in JSON message, while “Tracker” is capable of receiving JSON mes-

sage and extracting CAN frame. For unidirectional communication each OBU should

be capable of these two conversions. This is why both applications run in each OBU.

Ixxat CAN Application sends CAN frames from both interfaces simultaneously. Af-

ter timings are recorded, (T2 +Offset2) – (T1 +Offset1) and (T8 +Offset8) –

(T7 +Offset7) values are obtained for each CAN frame transmission for 500 CAN
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frames. Process is repeated 2 times and total average values of T2−T1 and T8−T7

are obtained. These values will be used for bidirectional measurement calculation

when OBUs are connected to internet by 3G.

4.6.3 Unidirectional and Bidirectional Measurement in Experimental Setup

with Communication over 3G

This measurement is done in experimental setup with communication over 3G. After

all timing values are obtained as explained in previous sections, T2−T1 and T8−T7

values are ignored because of high offsets. These values are obtained from previous

sections. For unidirectional communication, average T2 − T1 and T8 − T7 values

obtained from unidirectional communication measurement in "Experimental setup

with communication over LAN" are used. For bidirectional communication, it is

the same except the values obtained in bidirectional communication measurement in

"Experimental setup with communication over LAN" are used. T4− T3 is found by

(T4−T1) – (T2−T1) – (T3−T2) equation. T6−T5 value is found by (T8−T5)

– (T8 − T7) – (T7 − T6) equation. All other interval values are calculated as the

same with "Experimental setup with communication over LAN".

4.7 Results

In this section the results of detailed measurement are investigated. First, unidirec-

tional and bidirectional communication end to end delay values are measured in "Ex-

perimental setup with communication over LAN". After calculating average T2−T1

and T8− T7 delay values, measurements are obtained for "Experimental setup with

communication over 3G" using 3G cellular network. Finally, short range wireless

interface is enabled and its’ effects on measurement are investigated.
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4.7.1 Unidirectional Measurement in Experimental Setup with Communica-

tion over LAN

Communication is set to unidirectional for this measurement. To achieve this, “Speed

Controller” runs in OBU1 while “Tracker” runs in OBU2. “NTPD” daemon is started

for OBU1, OBU2 and Server computer. Before running applications, NTP daemon

synchronizes the time with NTP server for 30 minutes. Offset values can be seen in

Figure 4.12, Figure 4.13 and Figure 4.14. Considering that all of offset values are

under 1 ms, applications are started and Ixxat CAN application starts to send CAN

frames from interface 1. Total of 2 measurements are done and 500 CAN frames are

sent for each measurement.

Figure 4.12: NTP and offset status of OBU1

Figure 4.13: NTP and offset status of OBU2

Figure 4.14: NTP and offset status of server computer

First measurement results are given in Table 4.1. According to these results, it is seen

that average of total delay T8 − T1 is 12,248 ms which is very ideal. These results

also show that if the delay between OBUs located in vehicles and server was less

than 4 ms in real life, 12.248 ms end to end communication delay would be really

sufficient enough to enable almost any kind of ITS applications.
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Table 4.1: Unidirectional delay values for experimental setup with communication
over LAN

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)

2.0651 1.4320 3.1149 1.074 1.2229 0.552 2.7871

Confidence interval computation is realized for above delay measurements. Since

T2-T1 and T8-T7 delay values will be used when OBUs are connected to the internet

by 3G, these values’ confidence interval should be as small as possible. For T2−T1,

3.3% and 4.3% confidence intervals or 95% and 99% confidence levels show that the

results are reliable. Similar confidence interval results are also obtained for T8− T7

delay values. Table 4.2 summarizes confidence interval computation results.

Table 4.2: Confidence interval computation for unidirectional communication over
LAN

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 12.248 1.64879 1.18 1.553

T2− T1 2.0651 0.7787 3.3 4.3

T8− T7 2.7871 0.59635 1.8755 2.468

Second batch of 500 CAN frames are sent from Ixxat USB-CAN converter’s interface

1. Delay values which is shown in Table 4.3 are calculated again. These delay values

are very close to previous values. Confidence interval computation is shown in Table

4.4. The results are reliable and their confidence intervals are all below 4%.

Table 4.3: Unidirectional delay values for experimental setup with communication
over LAN

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)

2.4623 1.468 2.7028 1.08 1.607 0.548 2.502

Average T2 − T1 delay for these 2 measurements is 2.2637 ms. Average T8 − T7

delay is 2.64455 ms. These values are obtained by realizing two measurements each

of which includes transmission of 500 CAN frames.
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Table 4.4: Confidence interval computation for unidirectional communication over
LAN

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 12, 37 1, 87539 2, 65 3, 49

T2− T1 2.4623 0.84 2.99 3.93

T8− T7 2.502 0.5299 1.8567 2.444

4.7.2 Bidirectional Measurement in Experimental Setup with Communication

over LAN

Both “Speed Controller” and “Tracker” run on each OBU to achieve bidirectional

communication. Applications run and delay values are started to be recorded when

offset values become less than 1 ms. Similar to unidirectional measurement, 2 mea-

surements each transmitting 500 CAN frames are carried out. Results of first mea-

surement can be seen in Table 4.5.

Table 4.5: Bidirectional delay values for experimental setup with communication over
LAN

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)

2.4544 0.7480 2.6996 1.066 1.3954 0.596 2.7376

Confidence interval computation is shown in Table 4.6. All results are below 5%

confidence interval.

Table 4.6: Confidence interval computation for bidirectional communication over
LAN

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 11.696 2.249 3.371 4.43

T2− T1 2.4544 0.632 2.26 2.975

T8− T7 2.7376 0.5552 1.778 2.341

Second measurement results and confidence interval computations are given in Table

4.7 and Table 4.8.
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Table 4.7: Bidirectional delay values for experimental setup with communication over
LAN

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)
2.258 0.804 3.3035 1.072 1.5093 0.698 2.5952

Table 4.8: Confidence interval computation for bidirectional communication over
LAN

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 12.24 3.0689 4.395 5.78

T2− T1 2.258 0.7489 2.907 3.826

T8− T7 2.5952 1.1196 3.7815 4.9778

Average T2−T1 delay for these 2 measurements is 2.3562 ms while average T8−T7

delay is 2.666 ms. These values will be used for delay measurements in "Experimen-

tal setup with communication over 3G" with bidirectional communication.

4.7.3 Unidirectional Measurement in Experimental Setup with Communica-

tion over 3G

For this experimental setup, both OBUs are connected to internet by 3G with the

help of Turkcell 3G USB modem and TP-Link TL-MR3020. T2− T1 and T8− T7

values are obtained from "Experimental setup with communication over LAN" results

with unidirectional communication. T4− T3 is found by (T4− T1) – (T2− T1) –

(T3−T2) equation. T6−T5 value is found by (T8−T5) – (T8−T7) – (T7−T6)

equation. Delay values and confidence interval computations are given in Table 4.9

and Table 4.10 respectively. Average end to end delay is 110.44 ms which is sufficient

for many ITS applications. Confidence intervals are 2.732% and 3.596% for 95% and

99% confidence levels.

T8− T1 delay values are given in Figure 4.15 for all CAN frames transmitted. If the

graph is examined, some spikes resulting from excessive 3G cellular access network

delay can be seen. This is due to the 3G connection quality of selected carrier in
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Table 4.9: Unidirectional delay values for experimental setup with communication
over 3G

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)

2.2637 1.636 55.5163 1.082 46.70345 0.594 2.64455

Table 4.10: Confidence interval computation for unidirectional communication over
3G

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 110.44 34.417 2.732 3.596

Turkey. Better delay values can be obtained with 4G or realising resource allocation

to ITS applications by GSM operators.

Figure 4.15: Unidirectional communication over 3G end to end delay values

Second measurement results and confidence interval computation are given in Table

4.11 and Table 4.12 respectively. Delay values and confidence intervals are close to

the previous results.

T8−T1 values are given for all CAN frames transmitted in Figure 4.16. Again, some

spikes resulted from 3G cellular access network. This shows that ITS applications
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Table 4.11: Unidirectional delay values for experimental setup with communication
over 3G

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)

2.2637 1.404 65.95485 1.086 47.0834 0.588 2.64455

Table 4.12: Confidence interval computation for unidirectional communication over
3G

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 121.02 42.222 3.058 4.025

related to security cannot be realized with this connection speed.

Figure 4.16: Unidirectional communication over 3G end to end delay values

4.7.4 Bidirectional Measurement in Experimental Setup with Communication

over 3G

Bidirectional communication delay values are obtained in this experimental setup.

Similar to unidirectional communication, T2− T1 and T8− T7 values are obtained
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from "Experimental setup with communication over LAN" results with bidirectional

communication. T4−T3 is found by (T4−T1) – (T2−T1) – (T3−T2) equation.

T6 − T5 value is found by (T8 − T5) – (T8 − T7) – (T7 − T6) equation. Delay

values and confidence interval computations are given in Table 4.13 and Table 4.14

respectively. Average end to end delay is 118.82 ms which is sufficient for many

ITS applications. Confidence intervals are 4.49% and 5.916% for 95% and 99%

confidence levels.

Table 4.13: Bidirectional delay values for experimental setup with communication
over 3G

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)

2.3562 0.802 54.064 1.058 57.4834 0.508 2.666

Table 4.14: Confidence interval computation for bidirectional communication over
3G

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 118.82 60.92 4.49 5.916

T8 − T1 delay values are given in Figure 4.17 for each of CAN frames transmitted.

Spikes are observed because of 3G connection latency issues of the carrier.

Second measurement results and confidence interval computation are given in Table

4.15 and Table 4.16 respectively. Delay values and confidence intervals are close to

the previous results.

Table 4.15: Bidirectional delay values for experimental setup with communication
over 3G

T2-T1 T3-T2 T4-T3 T5-T4 T6-T5 T7-T6 T8-T7
(ms) (ms) (ms) (ms) (ms) (ms) (ms)

2.3562 0.696 41.076 1.05 61.721 0.63 2.666

T8-T1 delay values are shown in Figure 4.18.
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Figure 4.17: Bidirectional communication over 3G end to end delay values

Table 4.16: Confidence interval computation for bidirectional communication over
3G

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
Interval(±%∆) Interval(±%∆)

Conf. Level: 95% Conf. Level: 99%
T8− T1 110.08 57.455 4.575 6.022

Figure 4.18: Bidirectional communication over 3G end to end delay values
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4.7.5 Comparison of 3G and ADSL Ping Values

To see the effects of 3G access delay, ICMP packets are sent to server for two cases.

In the first case, computer is connected to internet via ADSL with 16 Mbps connec-

tion speed. For the second case, it is connected to internet with the help of TP-Link

TL-MR3020 and 3G USB modem. 40 ping packets are sent to server and RTT time

is recorded. Figure 4.19 shows measured latency values for each packet. The time is

divided into two to find one way latency. While average latency is measured as 4.775

ms with ADSL usage, it is measured as 39.325 ms with 3G connection. Latency from

computer to ADSL modem is neglected because it is lower than 1 ms. Similarly, for

3G connection, latency from computer to TP-Link TL-MR3020 is neglected. Results

show that, if stable connection could be achieved in mobile vehicles like ADSL, one

way latency would reduce drastically enabling the use of safety related ITS applica-

tions.

Figure 4.19: ADSL and 3G Ping delay measurement

4.7.6 Overall Assessment of Results

In "Unidirectional Measurement in Experimental Setup with Communication over

3G" experiment, total percentage of delays on embedded hosts are %2.93 and %2.48

respectively. In "Bidirectional Measurement in Experimental Setup with Communi-

cation over 3G" experiment, total percentage of delays on embedded hosts are %1.93
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and %2 respectively. What we can get from these percentages is that internal embed-

ded delays are negligible. Network delay is the main factor that is contributing to the

total end-to-end delay. It can also be seen from Figure 4.19 that 3G network delay

is much more than ADSL network delay. As a result of it, since embedded internal

delays are very low, end-to-end delay values can reduce very much with the advances

in technology.

4.8 Functional Test With Enabling SRWI

This experiment is carried out to show that OBUs are capable of handling messages

coming from two different resources. SRWI messages are generated virtually in

SRWI Layer creating an second interface in addition to 3G cellular network.

After enabling SRWI, same JSON messages with “Speed Controller” are generated by

“Short Range Wireless Interface” layer in “Tracker” application except “Info” field.

“Tracker” decides which JSON message to obtain by looking to counter value. In this

measurement, overall delay T8− T1 and the effects of enabling short range wireless

interface are explained. This measurement is done with 3 different packet delivery

ratios of this interface which are %30, %60 and %100. In this type of experiment,

"Experimental setup with communication over 3G" with unidirectional communica-

tion configuration is selected together with enabling short range wireless interface.

Delay of the short range wireless interface is selected as 115 ms which is the average

of two end to end delay values obtained in "Experimental setup with communication

over 3G" with unidirectional communication. Thus, delay of short range wireless

interface becomes comparable to 3G interface. Messages are selected by looking at

the counter values of Websocket messages coming from two interfaces which was

explained in Figure 3.8. If 5G connection was used for communicating with server,

real short range wireless interface delay values like 4 ms could be used for analysis.

Using SRWI together with 3G connection is examined in 3 different scenarios. At the

first scenario, packet delivery ratio of SRWI interface is %100 which means that all of

the Websocket messages generated by SRWI class in OBU application are conveyed

to Websocket Messages class. Total of 1000 messages are delivered to "Tracker"

80



application in the form of 500 3G messages and 500 SRWI messages. Message re-

ception is done by looking the counter values. Figure 4.20 compares this condition

with using only 3G connection. It can easily be seen that using SRWI interface to-

gether with 3G inteface reduces end to end delay values significantly. It normalizes

delay values between 100 ms and 120 ms. Whenever the connection of 3G interface

is not stable, Websocket messages are received from SRWI which eliminates spikes.

It is crucial for safety related applications. Usage of SRWI messages is shown in

Figure 4.21. In this graph, the value of "1" represents the usage of SRWI messages.

If two figures are compared, it is seen that when 3G connection makes peaks and has

long delay values, SRWI compansates for these issues.

Figure 4.20: End to end delay after enabling SRWI with Probability %100

Figure 4.22 shows the same case when SRWI has %60 delivery ratio. In this case

some of the peaks cannot be compansated by SRWI because of delivery ratio. The

last scenario is shown by Figure 4.23 when SRWI delivery ratio is %30. The number

of peaks and delay values are increased compared to other scenarios.

Confidence interval computation is done for 4 cases shown in Table 4.17. In the first

case, SRWI is not used so only messages coming from 3G interface are used. Average

of total end to end delay is computed as 123.83 ms. SRWI is activated for other cases
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Figure 4.21: Usage of SRWI Messages %100

Figure 4.22: End to end delay after enabling SRWI with Probability %60

and it is seen that there is an improvement for end to end delay values. SRWI with

%100 packet delivery ratio has the lowest end to end delay values, standard deviation

and confidence interval.

These functional experiments are done to indicate the benefits of using SRWI together
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Figure 4.23: End to end delay after enabling SRWI with Probability %30

Table 4.17: End to end delay values for different SRWI delivery ratios

Delay Mean (ms) Std. Dev. (ms) Confidence Confidence
DSRC Interval(±%∆) Interval(±%∆)

Enabled Conf. Level: 95% Conf. Level: 99%
T8− T1 107.758 9.2 0.74 0.98

%100 Prob
T8− T1 113.728 29.74 2.29 3.0

%60 Prob
T8− T1 118.314 34.03 2.5 3.3

%30 Prob
T8− T1 123.83 43.16 3.0 4.0

Nor. Op.

with 3G interface. SRWI like DSRC has much lower end to end delay values in real

life but the delivery ratio is the main problem. In order to solve this, a solution with

using two interfaces is examined in this section. This experiment shows that if the

problems of short range wireless interfaces regarding delivery ratio cannot be solved

in the future, it can be used together with 4G or 5G standard. The advantages of this

solution are low end to end delay values, standard deviation and confidence interval.

Therefore it is very applicable for safety related ITS applications. Main disadvantage

is that messages are sent from both interfaces meaning that usage of wireless band is
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ineffective and it consumes more power.
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CHAPTER 5

CONCLUSION

This thesis proposes an application layer communication architecture, ITSVeCon for

V2X communications to facilitate Intelligent Transport Systems (ITS) Applications.

ITSVeCon is an all IP application layer architecture enabling communication among

the end-hosts which can be vehicle Electronic Control Units (ECU)’s, Road Side

Units (RSU)s, computers, smart phones or third party service providers. All these

end-hosts are bi-directionally connected to the ITSVeCon Server where this server

carries out application layer switching realizing unicast or multicast communication

among the end-hosts. The architecture consists of a layered software and network

protocol stack with message formats and rules, which are implemented in the end-

hosts and the ITSVeCon server.

To this end, this thesis presents the ITSVeCon realization on the vehicle On Board

Unit (OBU) and the ITSVeCon server. The OBU realization further fulfills the gate-

way functionality between the in-vehicle CAN network and the Internet. This gate-

way enables end-to-end transmission of CAN messages between the ECU’s of two

distinct vehicles. The ITSVeCon implementation features WebSockets carrying mes-

sages in JSON format, Publish and Subscribe pattern and NTP synchronization to

enable V2X communications for real-time ITS applications. OBU ITSVeCon appli-

cation provides simple and flexible infrastructure. While layers at the bottom con-

trols hardware components, layers in the middle maintain communication between

lower and upper layers. Many ITS applications can be developed to run at top layer

using features of lower layers. Architecture allows these ITS applications to run to-

gether or independently without any restrictions. Controlling real CAN and Ethernet

interfaces, communication with short range wireless interface, location services, con-
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trollable settings and editable user interface are most important features regarding

ITSVeCon Application.

This thesis proposes the cellular communications as the wireless communication tech-

nology for the vehicle. To this end, the end-to-end communication path in ITSVeCon

consists of cellular access and IP core network over multiple nodes and network seg-

ments. A very important contribution of the thesis is the measurement set-up, detailed

experiment scenarios and measurement results of the end-to-end delay components.

These results are collected for the communication of CAN data of two ECUs in two

different vehicles which represent the most general scenario. By recording times-

tamp values at certain message transmission points with the help of NTP server and

V2X applications, communication delay is measured along transmission path. Delay

values inside and between the components are investigated. If results are examined,

it is seen that for critical safety ITS applications, 3G usage is not enough because

of low connection speed and unexpected connection issues. 3G connection speed in

Turkey is less than average 3G speed in the world which causes higher delay values.

Nevertheless measured end to end delay values are close to 100 ms showing that the

proximity between server and clients is important. ITS applications related to info-

tainment can be realized with 3G connection if server is located in the same city with

other components in ITS architecture. Using 3G interface together with short range

wireless interface is proposed functionally in this thesis as a second option to improve

communication. SRWI is seen as a second arbitrary interface and functional tests are

carried out. Lower delay values can be achieved with this option because short range

wireless interface compensates for the high latencies resulted from 3G cellular net-

work. With the improvements in technology, around 10 ms end to end delay value can

be achieved with 4G and 1 ms end to end delay value is expected to be accomplished

with 5G.

An important contribution of this thesis is to show that embedded implementation

overheads are negligible. The main factor determining end-to-end latency is the net-

work latency. So for real time applications, reducing network delay should be the

main focus.

As future work, it can be achieved that ITSVeCon server sends Websocket messages
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simultaneously to the subscribers. This can improve end to end delay values for

broadcast messages. Messages can be prioritized to make sure that safety related

messages arrives to destination point at the right time. Geolocation based communi-

cation can be supported to relieve server load.
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