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ABSTRACT 

 

 

ADDRESSING THE NEAR-FAULT DIRECTIVITY EFFECTS FOR THEIR 

IMPLEMENTATION TO DESIGN SPECTRUM 

 

Moghimi, Saed 

Ph.D., Department of Civil Engineering  

     Supervisor: Assoc. Prof. Dr. Yalın Arıcı 

 

SEPTEMBER 2017, 213 pages 

 

 

 

Near-Fault Forward-Directivity (NFFD) ground motions are highly polarized and 

they have the potential to impose larger seismic demands on the structures. This is 

due to the presence of impulsive signals in the beginning of their velocity waveforms, 

which amplifies the response spectrum in periods close to pulse period.  

Different directivity models proposed recently can be used together with Ground 

Motion Prediction Equations (GMPEs) to estimate the response spectrum exposed to 

pulse-type ground motions. This study utilizes two directivity models to investigate 

the effect of different seismological and geometrical parameters on the amplification 

level that the directivity effect imposes on the response spectrum. It is shown that in 

Shahi and Baker (2011) (the first directivity model utilized in this study) slip rate, 

fault characteristic magnitude, hazard level and source-site geometric parameters 

play important role, on the response spectrum amplification. In Chiou and Spudich 

(2013) (the second directivity model), the characteristic magnitude and source-site 

geometry are the determining parameters. The observations from the case studies are 

used to set some simple rules for reflecting the forward-directivity effects on design 

spectra at the 475-year and 2475-year return periods. 

The concept of ground motion polarization (directionality) is also utilized in the 

determination of maximum rotated component (RotD100) for NFFD ground motions. 
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For this purpose RotD100 is calculated for the near fault ground motions with and 

without forward-directivity effect and a conversion factor is proposed by taking the 

ratios of spectral demands of RotD100 horizontal component between pulselike and 

non-pulse recordings. 

 

Keywords: Forward-directivity, Directionality, Ground motion prediction models, 

Probabilistic seismic hazard assessment, Pulse-type ground motion, Seismic design 

code 
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ÖZ 

 

 

YAKIN FAY YÖNELİM ETKİLERİNİN TASARIM SPEKTRUMLARINA 

UYGULANMALARI İÇİN İRDELENMELERİ 

 

Moghimi, Saed 

Doktora, İnşaat Mühendisliği Bölümü 

     Tez Yöneticisi: Doç. Dr. Yalın Arıcı 

 

Eylül 2017, 213 sayfa 

 

 

 

Faya Yakın İleri Direktivite (FYİD) zemin hareketleri oldukça polarize olup yapılar 

üzerinde yüksek sismik talepler oluşturma potansiyeline sahiptir.  Bu olay, hız 

dalgasının başında yer alan atım-tipi sinyallerin titreşim periyotlarına yakın 

periyotlarda tepki spektrumunu arttırmasından dolayıdır. 

Atım-tipi zemin hareketlerine maruz kalan tepki spektrumunun tahmini için, Zemin 

Hareketleri Tahmin Denklemleri (ZHTD) ile birlikte kullanılabilecek farklı 

direktivite modelleri son zamanlarda önerilmiştir. Bu çalışmada iki direktivite modeli 

kullanılarak farklı sismolojik ve geometrik parametrelerin, direktivite etkisinden 

dolayı tepki spektrumu üzerinde oluşturdukları amplifikasyon seviyesi incelenmiştir. 

Bu çalışmada kullanılan birinci direktivite modeli olan Shahi ve Baker (2011) ‘de 

gösterildiği üzere kayma oranı, fayın karakteristik büyüklüğü, tehlike seviyesi ve 

kaynak-saha geometrik parametreleri, tepki spektrumunu arttırmada önemli roller 

oynamaktadır. İkinci model olarak kullanılan Chiou ve Spudich (2013) de ise, 

karakteristik büyüklük ve kaynak-saha geometrisi belirleyici parametrelerdir. Örnek 

çalışmalardan yapılan gözlemler, 475 yıl ve 2475 yıllık dönüşüm periyotları tasarım 

spektrumları üzerindeki ileri direktivite etkisini yansıtmak üzere bazı basit kurallar 

oluşturmak için kullanılmıştır. 
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Zemin hareketi kutuplaşması (yönlülük) konsepti aynı zamanda FYİD zemin 

hareketleri için maksimum dönük bileşen (RotD100) belirlenmesinde de 

kullanılmıştır. Bu amaçla, direktivite etkisi özelliğini taşıyan ve taşımayan faya yakın 

yer hareketleri için RotD100 bileşeni hesaplanmıştır. Ardından puls-tipi ve puls-tipi 

olmayan kayıtlar arasındaki RotD100 spektral taleplerinin oranı alınarak bir dönüşüm 

faktörü önerilmiştir. 

 

Anahtar Kelimeler: İleri direktivite, Yönlülük, Yer hareketi tahmin modelleri, 

Olasılık sismik tehlike analizi, Atım-tipi yer hareketi, Deprem tasarım yönetmelikleri 
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CHAPTER 1 

 

 

 INTRODUCTION 

 

 

 

1.1 Problem Statement 

The near-fault ground motions have been the subject of studies in both seismology 

and earthquake engineering fields in the last two decades. The developments in strong 

ground-motion instrumentation as well as strong-ground motion databases led to rich 

and high-quality near-fault ground motions that provided valuable opportunities to 

study the different aspects of near-fault ground motions. In particular, with the 

increased number of near-fault records, the ground-motion prediction equations 

(GMPEs) have started to update their models to reflect the eminent features of near-

fault recordings on the estimated spectral ordinates. 

Estimation of seismic demands on structures is a challenging step in Performance 

Based Seismic Engineering (PBSE). The specific features of near-fault ground 

motions should be considered properly by seismic design spectrum at different hazard 

levels (represented by return periods in the seismic design codes) in order to provide 

solid information on the proper performance assessment of buildings against such 

ground motions. For example, some near-fault ground motions impose large 

amplitude and impulsive waveforms due to directivity effects that result in significant 

deformation demands on structures. Hence, defining these effects via simple rules for 

their incorporation in seismic design codes is important. 

In recent years, the researchers modeled the directivity amplifications on the response 

spectrum either by increasing the spectral ordinates monotonically over a range of 

periods (e.g., Somerville et al., 1997; Abrahamson, 2000) or by amplifying the 

response spectra in a narrow period range close to the period of impulsive waveforms 

(pulse period, Tp) (e.g., Tothong et al., 2007; Shahi and Baker, 2011). Both of these 
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approaches cause significant changes on the spectral amplitudes, which should be 

studied carefully to devise proper rules for near-fault directivity effects for seismic 

design codes. These rules would also be useful for quick assessment of structural 

damage against directivity-dominated seismic demand via different approaches in 

PBEE (e.g., probabilistic structural damage assessment). 

While some seismic codes like the 1997 edition of the Uniform Building Code (UBC, 

1997) incorporate the near-fault effects in design spectrum, a robust methodology to 

include directivity effects in design spectrum is still unavailable. Depending on the 

seismological features of directivity-dominated ground motions as well as source-site 

geometry the design spectrum can change considerably. For example, the pulse 

period of pulselike ground motions (one of the salient features of directivity 

dominated records) change the spectral period band where directivity related spectral 

amplification is prominent. Because pulse period to fundamental building period ratio 

is important to understand the maximum demand on structures subjected to directivity 

dominated ground motions, addressing the pulse-period effect on design spectrum is 

important.  

Apart from directivity effects, the horizontal component orientation that gives the 

maximum spectral demands is important for sites located in the vicinity of active 

faults. The maximum horizontal component is simply referred to as directionality in 

the literature and its effects are different than the directivity effects. For sites close to 

the active faults the inclusion of these two effects would amplify the spectral 

ordinates significantly. The currently GMPEs consider the directionality effects on 

the response spectrum estimates because this spectral demand is assumed to be more 

critical in some codes (e.g., ASCE, 2010; BSSC, 2009; 2015) for design, in particular 

for structures having symmetric stiffness in all directions (azimuth-independent 

structures). However, the directionality effects are considered as generic cases by 

current GMPEs and there are currently no ground-motion predictive models that 

explicitly consider the directivity and directionality effects at the same time. To this 

end, updating seismic design codes based on incorporation of forward-directivity 

effect and ground motion polarization seems to be an urgent need. To this end the 

seismic design spectrum in the near future should consider directivity and 

directionality effects at the same time. 
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1.2 Objective and Scope of the Research 

The main goal of this study is to determine the seismic load levels for near-fault 

directivity-dominant ground motions. For this purpose, two directivity models (Shahi 

and Baker, 2011; Chiou and Spudich, 2013) are used in the context of probabilistic 

seismic hazard assessment (PSHA) methodology to extract the directivity 

amplification factors for response spectrum by considering a suit of earthquake 

scenarios. The earthquake scenarios account for seismological parameters and 

source-site geometry that can be important in the spectral amplitude variation when 

directivity is prominent. In essence, the thesis proposes models to account for 

directivity effects on design response spectra at two return periods: 475-year and 

2475-year.  

The ground-motion polarization (or directionality effect) is the second important 

topic investigated by this study to demonstrate the level of amplification in response 

spectrum for sites close to the fault when both directivity and directionality are 

effective. To this end, pulselike (directivity dominant) ground motions are utilized 

and their spectra for maximum direction are compared (ratios are computed) with 

those of near-fault records where directivity is insignificant. 

1.3 Outline of the Thesis 

The overall structure of the study takes the form of six chapters, including this 

introductory chapter. In Chapter two the most important characteristics of near-fault 

directivity-dominated ground motions are introduced. Theoretical backgrounds, 

fundamental concepts of the renown directivity models are presented. The functional 

forms of proposed directivity models are also introduced in this chapter. The concept 

of ground-motion polarization “known as directionality” is discussed briefly. (This 

topic is further studied in Chapter four). Finally, the incorporation of near-fault 

effects in seismic design codes are discussed in the last part of this chapter.  

In the third chapter the fundamental features of two directivity models utilized in 

this study (SHB11 and CHS13) are presented. The mathematical and conceptual 

differences between these models are discussed using probabilistic earthquake 

scenarios. The selected seismological and geometrical input parameters utilized in 

the PSHA are introduced and the effect of these parameters on the level of 
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amplification are discussed. The interrelation between these parameters in the 

amplification models are also investigated. 

In Chapter four different horizontal component definitions of ground motions 

together with related important conversion models are presented. The importance of 

ground-motion polarization is discussed for near-fault directivity-dominated ground 

motions. Finally, a conversion model is proposed for estimation of the maximum 

rotated component for forward-directivity near fault ground motions. 

The results and discussions of chapter three are utilized in Chapter five to propose 

directivity induced spectral amplification models for use in design spectrum. The 

proposed amplification equations consider the source-site geometry in its functional 

form. The effects of fault-site configuration for the estimation of directivity-

dominated spectral ordinates are discussed through complicated and simplified 

models proposed in this study. Finally, comparisons are done in terms of 

amplification models proposed in this chapter and the conversion model proposed in 

Chapter four. 

Chapter six summarizes the work and highlights the main conclusions. In addition, 

recommendations are provided for the future studies. There are three appendices at 

the end of this dissertation showing the PSHA and maximum direction codes as well 

as the ground-motion database used in chapter four. 
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CHAPTER 2 

 

 

 METHODOLOGY, LITERATURE SURVEY AND THEORITICAL 

PRINCIPLES  

 

 

 

2.1 Introduction 

One of the significant features of near-fault directivity-dominant ground motions is 

the presence of impulsive signals in their waveforms. In principle, when an 

earthquake fault ruptures and propagates towards a site at a speed close to the shear-

wave velocity, the generated waves arrive at the site, generating a “distinct” velocity 

pulse in the ground-motion time history, which is dominantly observed in the strike-

normal direction. This velocity pulse usually occurs at the beginning of the velocity 

waveform of the directivity-dominated record. Such ground motions are known for 

their severe damage potential on structures, which is known for several decades. In 

contrast, for sites opposite to the direction of rupture propagation, the seismic energy 

arrives during a longer time interval, generating lower-frequency motions with 

smaller amplitudes. This phenomenon is known as backward directivity. Records of 

backward directivity are potentially less damaging. 

Directivity affects the amplitude, duration and frequency content of the near-fault 

ground motions for medium-to-large magnitude earthquakes due to magnitude-

sensitive velocity pulses. Forward-directivity also causes azimuthal variations in 

ground-motion amplitudes between strike-normal and strike-parallel components, 

which also change as a function of ruptured fault-site geometry (i.e., spatial variation 

around the fault). These azimuth-dependent changes in the amplitude, duration and 

frequency content of the directivity-dominated incident seismic waveforms make the 

description of this phenomenon for engineering use (its effects on response spectrum 

or structural behavior) quite complicated. 
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Figure 2.1 Strike normal forward-directivity and backward-

directivity ground velocities from the 1992 Landers earthquake 

(Somerville et al. 1997) 

Housner and Trifunac (1967) were the first researchers who observed ground motions 

with long-period, strong velocity and displacement pulses in the 1966 Parkfield 

earthquake. The second earthquake with impulsive signals in some of the fault-

normal components is the 1971 San Fernando earthquake (Boore and Zoback 1974; 

Niazy 1975). Since then, several near-fault pulselike ground motions carrying 

directivity features are recorded (e.g., 1992 Landers earthquake, 1994 Northridge 

earthquake, 1995 Kobe earthquake, 1999 Kocaeli earthquake; 1999 Düzce 

earthquake, 1999 ChiChi earthquake, etc.). However, pulse-type records with 

forward-directivity effect are not observed in all near-fault ground motions.  
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Figure 2.2 Illustration of orientations of motion from fling step and 

directivity effects in strike slip and dip-slip ruptures (Somerville 

2002) 

Figure 2.1 shows the velocity time histories of the 1992 Landers earthquake for two 

sites, which experienced both forward- and backward-directivity. Studies show that 

impulsive ground motions having long-period pulses impose severe inelastic 

demands on medium-to-high rise buildings due to their large amplitudes (Hall et al. 

1995; Alavi and Krawinkler 2004). Strike-normal components of ground motions 

with forward-directivity effects usually impose larger demands than the other 

horizontal components on buildings hence the structures are more vulnerable for 

structural damage against this component. Bertero et al. (1978) studied the destructive 

effect of pulse-type ground motions on medium-to-high rise buildings but the 

observed structural damage in the 1994 Northridge earthquake also revealed the 

vulnerability of high-rise buildings against pulse-type ground motions (Gupta and 

Krawinkler 1999). The earthquakes following the Northridge earthquake with 

directivity dominated recordings (1995 Kobe, 1999 Kocaeli and 2009 L’Aquila 

earthquakes) reconfirmed the destructive potential of near-fault ground motions as 

well as their socio-economic impact (Alavi and Krawinkler 2001; Chioccarelli and 

Iervolino 2010). 
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The other important characteristic of near-fault records is known as “fling-step”. 

Unlike the pulselike effect, which is a dynamic action of the fault movement during 

the earthquake, fling step is the static feature of the fault movement. In the near-fault 

directivity-dominated records the fling-step effect (or residual displacement) is 

observed in the displacement waveforms. 

Figure 2.2 illustrates and compares the most important features of pulselike and fling-

step waveforms for near-fault directivity-dominated ground motions. As it can be 

seen from this figure the residual displacements (fling-step) are observed in the strike-

parallel direction in strike-slip faults as in the case of the 1999 Kocaeli and Duzce 

earthquakes (Kalkan et al. 2004; Akkar and Gülkan, 2001). On the other hand, the 

residual displacement is observed in the strike-normal direction for dip-slips faults as 

in the case of the 1999 Chi-Chi (reverse) earthquake (Mavroeidis and Papageorgiou 

2003). As fling-step occurs in the fault slip direction (unlike the pulselike signal) 

some researchers (Kalkan and Kunnath 2006) assumed that it is independent of 

forward-directivity. 

Conventional GMPEs (ground-motion prediction equations) do not consider the 

effect of directivity in the estimation of response spectrum ordinates for near-fault 

ground motions. Therefore they may under-predict the seismic demand for the sites, 

which experience forward-directivity and over-predict it for sites with backward 

directivity effects. Individual forward-directivity models were developed for their use 

together with conventional GMPEs to estimate the response spectrum exposed to 

pulse-type ground motions (e.g., Somerville et al. 1997, later modified by 

Abrahamson 2000; Tothong et al. 2007; Shahi and Baker 2011). However, since the 

databases used to develop most of the conventional GMPEs include pulselike 

directivity-dominated ground motions the blind usage of such directivity models may 

double count the directivity effects in the estimated spectral ordinates. In fact, the 

directivity models developed under NGA-WEST1 (Power et al. 2008) could not be 

used practically for this reason. The conventional GMPEs developed in this project 

could not provide reference ground-motion estimates near the faults so that a specific 

directivity model (developed from the same project) could not correct the reference 

estimations for forward directivity. In order to prevail this problem, NGA-WEST2  

(Bozorgnia et al. 2014) directivity  group (Spudich et al. 2013) developed directivity 
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functions for reference estimations of conventional GMPEs or they proposed 

directivity models that can be embedded into the original predictive model.  

 

Figure 2.3 Response spectrum of pulse-type records with a) 0.6≤Tp<1.5 (mean 

Tp=1.0s) and b) 1.5≤Tp<2.5 (mean Tp=1.9s). The plots also show the response 

spectrum computed from conventional Abrahamson and Silva (1997) GMPE and 

the braod-band model by Somerville et al. (1997) (Tothong et al. 2007) 

The directivity models proposed up to now can be classified in two groups that are 

known as broad-band and narrow-band models. Broad-band models amplify the 

response spectrum uniformly in medium-to-long period range while the narrow-band 

models amplify the response spectrum in a narrow range of periods close in the 

vicinity of pulse period (Tp). The narrow-band effect of pulse-type records are given 

in Figure 2.3 (Tothong et al., 2007) that shows the median response spectra of fault 

normal pulse-type ground motions for two different Tp bins. The mean pulse period 

of first group is 𝑇𝑝̅̅̅ = 1.0s and the mean pulse period of second type group is equal to 

𝑇𝑝̅̅̅ = 1.9s. The response spectrum estimated from conventional Abrahamson and 

Silva (1997) GMPE as well as the broad-band model of Somerville et al. (1997) are 

also plotted in Figure 2.3. The pulse-type spectrum (representative of narrow-band 

model) shows a peak amplification close to the pulse period. The pick amplification 

flattens down and approaches to the conventional GMPE as the periods shift away 

from Tp. The broad-band model of Somerville et al. (1997) estimates larger response 

spectrum values with respect to conventional Abrahamson and Silva (1997) GMPE 

starting from T = 0.6s. The broad-band spectral amplification monotonically 

continues towards longer periods. The amplifications imposed by the broad-band 

model are smaller with respect to those of spectra representing narrow-band model. 
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As depicted in Figure 2.3 the narrow-band nature of pulse-type records results in 

peaked response spectrum shapes close to Tp. The pulse period is a function of 

earthquake magnitude (Mavroeidis and Papageorgiou 2003; Somerville 2003; Baker 

2007): larger the magnitude of an earthquake, the greater is the pulse period. Thus, 

the earthquakes with impulsive signals and smaller magnitudes will have shorter 

pulse periods, which results in amplified spectral ordinates from small-to-medium 

period range. On the other hand, large magnitude earthquakes possesses larger pulse 

periods and the response spectrum peaks at a larger period range. 

Figure 2.4 illustrates the velocity time histories and corresponding response spectra 

of fault normal, fault parallel and vertical component of pulselike ground motions 

having magnitudes in two intervals: 6.7<Mw<7.0 and 7.2<Mw<7.6 (Somerville 2003). 

Besides this figure shows the design spectrum of the 1994 edition of Uniform 

Building Code (UBC 1994) as reference. The fault normal components (shown as 

solid lines) of 6.7<Mw<7.0 records show peak spectral values in the period range 

between 0.5s < T < 2.5s that are considerably larger than those proposed by UBC 

(abbreviated as UBC 94). The fault normal response spectra of 6.7<Mw<7.0 records 

are also greater than the response spectrum of 7.2<Mw<7.6 records in the intermediate 

period range. The larger magnitude records (7.2<Mw<7.6) exhibit a clear bump in the 

period interval close to T = 4s in their fault normal components, which are (in some 

cases) larger than the UBC 94 response spectrum. The fault parallel components of 

these records (shown by long dashed lines) are also illustrated in this figure. This 

component exhibits smaller response spectrum amplitudes with respect to their fault 

normal counterparts for both moderate and large magnitudes.  

Baker (2007) proposed a quantitative model for identification of pulselike waveform 

in a ground-motion time history using wavelet analysis. He uses the pulse indicator 

parameter in order to classify the ground motion as pulse-type or non-pulse-type in 

which the ground motions having pulse indicators greater than 0.85 are considered to 

contain dominant pulse signals. Baker (2007) applies two additional criteria for 

identifying the pulselike ground motions, which are most likely caused by directivity 

effects. These additional criteria are (1) the pulse waveforms should arrive early in 

the time history and (2) the corresponding peak ground velocity (PGV) should be 

greater than 30cm/s. 



11 

 

 

 

F
ig

u
re

 2
.4

 F
au

lt
 n

o
rm

al
 v

el
o
ci

ty
 t

im
e 

h
is

to
ri

es
 o

f 
m

o
d
er

at
e 

an
d
 l

ar
g
e 

m
ag

n
it

u
d
e 

ea
rt

h
q
u
ak

es
 a

n
d
 c

o
rr

es
p
o
n
d
in

g
 a

cc
el

er
at

io
n
 

re
sp

o
n
se

 s
p
ec

tr
a 

to
g
et

h
er

 w
it

h
 t

h
e 

 U
B

C
 9

4
 s

p
ec

tr
u
m

 s
h
o
w

n
 a

s 
re

fe
re

n
ce

 (
S

o
m

er
v
il

le
 2

0
0
3
) 

 



12 

 

Determination of pulse period is another important parameter in pulselike ground 

motions. Several methods are proposed for the determination of pulse period. The 

pulse period is the period related to the peak of velocity response spectrum of pulse-

type ground motion in one of these methods. Baker (2007) used the wavelet analysis 

method for the measurement of pulse period. He defined the period of maximum 

Fourier amplitude of wavelet as the pulse period. He also showed that the pulse period 

determined from these two approaches (Fourier spectrum vs. velocity response 

spectrum) are close to each other in most cases. The pulse period obtained from the 

Fourier amplitude of wavelet is slightly larger than the pulse period from the spectral 

velocity method. 

The excessive structural damage induced by near-fault ground motions made a 

number of codes revise their provisions to reduce the risk against similar future 

excitations (e.g., UBC, 1997). For example, the 1997 version of UBC (UBC 97) 

considers the effects of near-fault ground motions in terms of elastic acceleration 

response spectrum. However, the information about the displacement demand on 

structures exposed to directivity-dominant ground motions is not still firmly available 

(Alavi and Krawinkler 2001; Alavi and Krawinkler 2004; Gupta and Krawinkler 

1999). Depending on the pulse period occurring due to directivity, characteristics of 

design spectrum can change considerably and UBC 97 was criticized to fail capturing 

the critical changes (Akkar and Gulkan 2001). 

This chapter summarizes the background theory for important and recently proposed 

directivity models.  In addition, the consideration of near-fault effects in some seismic 

design codes are discussed. The concept of directionality is introduced briefly here 

because it is discussed together with directivity in detail in Chapter 4. 

2.2 Directivity Models 

Since directivity effect is identified as one of the most important features of near-fault 

ground motions, several research groups proposed models in order to incorporate the 

directivity effect in GMPEs. These models were developed from databases containing 

ground-motion recordings of active crustal region (ACR) earthquakes. In general, the 

models follow a similar approach to improve the spectral acceleration estimations due 

to directivity: the model developers use an existing GMPE as base ground-motion 
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predictor and modify the median estimations and log standard deviations of GMPEs 

through additional functions for directivity effects. The directivity functions need 

some detailed information about finite fault rupture, hypocenter location and slip 

direction. They generally consider fault rupture location and source-site geometry. 

As indicated previously, directivity models are categorized in two major groups: 

broad-band and narrow-band models. The response spectrum is increased 

monotonically in broad-band models for medium-to-long period range when 

directivity is of concern. However, as discussed in the above paragraphs, the recent 

studies showed that the response spectrum ordinates of pulselike (directivity-

dominated) ground motions are amplified in a narrow period range, which is close to 

pulse period (Alavi and Krawinkler 2001; Mavroeidis and Papageorgiou 2003; 

Somerville 2003; Tothong et al. 2007; Tothog and Cornell 2007). Thus, the more 

recent directivity models focus on this specific feature of directivity dominant ground 

motions to reflect it on the spectral acceleration estimates.  

The next subsection covers the important directivity models. Somerville et. al (1997) 

directivity model, which is modified by Abrahamson (2000) is considered first 

because it is the most well-known and earliest directivity model in the literature. 

NGA-WEST2 (Bozorgnia et al., 2014) directivity models (Spudich et al. 2013) follow 

this review because they are the most recent and comprehensive directivity models. 

Note that the NGA-WEST1 (Power et al., 2008) directivity models (Spudich and 

Chiou 2008; Rowshandel 2010) are excluded in the review because they are updated 

by the successor NGAWEST2 directivity models.  

In the NGA-WEST2 project, the directivity models were included in GMPEs ab initio 

with the coefficients determined simultaneously with all other estimator coefficients 

of GMPE. The directivity predictors were centered on their average value. In addition, 

the NGA-WEST2 directivity models use distance metrics (rupture distance; Rrup and 

Joyner-Boore distances Rjb) instead of normalized distance parameters, like the 

parameters used in Somerville et al. (1997). Rowshandel, Shahi and Baker, Spudich 

and Chiou and Chiou and Spudich directivity models of NGAWEST2 are explicitly 

“narrow-band” while the Bayless and Somerville model is classified as “broad-band”. 

The closest point concept (point on the fault plane closest to the site of interest) is 

used in all NGA-WEST2 directivity models except Shahi and Baker. However, the 
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main disadvantage of the closest point concept is that it results in large shifts in the 

location of closest point for small shifts in the site location. This is referred to as 

“discontinuity” by the model developers. The model proposed by Chiou and Spudich 

also uses a linear integration for the definition of “so-called” DPP parameter, which 

results in smoother maps of directivity compared to the IDP parameter of the Spudich 

and Chiou model. (These parameters are discussed in detail in the next section). It 

should be noted that the Shahi and Baker (2011) and Chiou and Spudich (2013) 

models, which have been used as the directivity predictor models in this study will be 

discussed in more detail in the next chapters. 

2.2.1 Somerville et. al (1997) and Abrahamson (2000) Directivity Models 

The model proposed by Somerville et al. (1997) is known as the first directivity model 

established under a physical model. This model uses two geometric parameters to 

incorporate directivity effects on the ground-motion equations. First, the angle 

between the direction of rupture propagation and the direction of waves traveling 

from the fault to the site, and second, the fraction of the fault rupture surface that lies 

between the hypocenter and the site (Figure 2.5). Somerville et al. (1997) modify the 

average horizontal acceleration response spectrum and the duration of acceleration 

time history to incorporate the directivity effect in ground motions. The model also 

proposes a spectral ratio of strike-normal to strike-parallel components for ground 

motions with directivity effect. Equation 2.1 shows the functional form of the 

directivity model for the average horizontal component used in Somerville et al. 

(1997) model.  

    ln(𝑦) = 𝐶1(𝑇) + 𝐶2(𝑇). 𝑋. cos(𝜃)               for strike slip faults 2.1a 

ln(𝑦) = 𝐶1(𝑇) + 𝐶2(𝑇). 𝑌. cos(𝜑)               for dip slip faults 2.1b 

This model was modified by Abrahamson (2000) in order to incorporate the effect 

magnitude and distance saturation in directivity model. Abrahamson (2000) has used 

Equation 2.2 as the functional form of base directivity model. 

ln(𝑦) = 𝐶1(𝑇) + 1.88𝐶2(𝑇) ∙ 𝑋 ∙ cos(𝜃)         for cos(𝜃) ≤ 0.4 2.2a 
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ln(𝑦) = 𝐶1(𝑇) + 1.88𝐶2(𝑇) ∙ 0.4                   for cos(𝜃) > 0.4 2.2b 

 

 

Figure 2.5 Geometric parameters used in Somerville (1997) 

directivity model. 

Abrahamson (2000) used a cap of 0.4 for Xcos(θ) for the model because his 

evaluations of empirical data did not show any evidence that Xcos(θ) exceeds 0.4 for 

directivity-dominated ground motions. Abrahamson (2000) also used the distance and 

magnitude taper functions to reduce the directivity effect to zero for distances greater 

than 60km and magnitudes smaller than 6. The distance and magnitude taper 

functions are shown in Equations 2.3 and 2.4. The C1(T) and C2(T) coefficients used 

in this model are listed in Table 2.1. Rrup and M denote to rupture distance and 

moment magnitude respectively in Equations 2.3 and 2.4. Abrahamson (2000) 

showed that the implementation of this directivity model in GMPEs reduces the 

logarithmic standard deviation up to 0.05 at T=3sec. 
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𝑇𝑑(𝑅𝑟𝑢𝑝) = 1                                  for Rrup<30km  

𝑇𝑑(𝑅𝑟𝑢𝑝) =
1−(𝑟−30)

30
                        for 30km<Rrup<60km 2.3 

𝑇𝑑(𝑅𝑟𝑢𝑝) = 1                                  for Rrup>60km  

 

 𝑇𝑚(𝑀) = 1                                     for M≥6.5  

𝑇𝑚(𝑀) =
1−(𝑚−6.5)

0.5
                         for 6<M≤6.5 2.4 

𝑇𝑚(𝑀) = 0                                      for M<6.5  

 

Table 2.1 Coefficients used in the modified Somerville et al. (1997) directivity 

model by Abrahamson (2000) for average horizontal spectral component 

Period (sec) C1 C2 

0.6 0 0 

0.75 -0.084 0.185 

1 -0.192 0.423 

1.5 -0.344 0.759 

2 -0.452 0.998 

3 -0.605 1.333 

4 -0.713 1.571 

5 -0.797 1.757 

2.2.2 Bayless and Somerville (2013) Directivity Model (NGA-WEST2) 

This model (explained in detail in Chapter 2 of Spudich et al., 2013) is basically an 

updated form of Somerville et al. (1997) directivity model. The functional form of 

the model for predicting the median spectral acceleration for directivity effect is 

shown in Equation 2.5: 

ln(𝑆𝑎𝑑𝑖𝑟) = ln(𝑆𝑎) + 𝑓𝐷 2.5 

where fD is the directivity parameter. The directivity parameter is a function of 

geometric directivity predictor, the distance, magnitude, and azimuth tapers, which 

are shown in Equation 2.6. 



17 

 

𝑓𝐷 = (𝐶0 + 𝐶1. 𝑓𝑔𝑒𝑜𝑚) ∙ 𝑇𝐶𝐷 ∙ 𝑇𝑀𝑤 ∙ 𝑇𝐴𝑍 2.6 

where C0 and C1 are period, fault type and horizontal component dependent 

coefficients. Geometric directivity predictor (fgeom) for strike-slip and dip-slip faults 

is shown in Equation 2.7. 

𝑓𝑔𝑒𝑜𝑚 = ln(𝑠) ∙ (0.5 × cos(2𝜃) + 0.5)             for strike slip faults 2.7a 

𝑓𝑔𝑒𝑜𝑚 = ln(𝑑) ∙  cos (
𝑅𝑥

𝑊⁄ )                          for dip slip faults 2.7b 

where: 

s is the length of striking fault rupturing towards site, 

θ is  the angle between the direction of rupture propagation and the direction of waves 

traveling from fault to site, 

d is the length of dipping fault rupturing toward site, 

Rx is the horizontal distance from top edge of the rupture, 

W is the fault width (km), 

TCD is distance taper function, 

TMw is magnitude taper function, and 

TAZ is azimuth taper function. 

The distance taper functions reduce the directivity effect from maximum to zero for 

0.5<Rrup/L<1.0 and 1.5<Rrup/W<2.0 for strike-slip and dip-slip faulting mechanisms, 

respectively. The magnitude taper function also reduces the directivity effect from 

maximum to zero for 6.5>Mw>5.0 for both strike-slip and dip-slip faulting 

mechanisms. Azimuth taper function is only applied to dip-slip faulting mechanisms 

and it is in Equation 2.8. 

    𝑇𝑎𝑧(𝐴𝑧) = 1                                         for strike slip faults 2.8a 

𝑇𝑎𝑧(𝐴𝑧) = sin (|𝐴𝑧2|)                          for dip slip faults 2.8b 

where Az is the NGA source to site azimuth. 
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2.2.3 Rowshandel (2013) Directivity Model (NGA-WEST2) 

This model (explained in detail in Chapter 3 of Spudich et al., 2013) keeps the 

directivity parameter ξ’ developed in the previous directivity models of Rowshandel 

(2006) and Rowshandel (2010). Some modifications were applied to the previous 

predecessor models so that directivity parameter ξ’ can be computed based on the 

direction of rupture or the direction of slip, or the combination. Also the centered 

value of directivity parameter (ξ) is used in this model instead of ξ’ as can be seen in 

Equation 2.9. 

𝜉 = (𝜉′ − 𝜉𝑐
′) ∙ 𝐿𝐷 ∙ 𝐷𝑇 ∙ 𝑊𝑃 2.9 

where 

ξ’ is the traditional wide-band directivity parameter before applying any corrections, 

LD is the rupture length de-normalization factor, 

ξ’c is the directivity-centering parameter, 

DT is the distance-taper, and 

WP is the narrow-band multiplier. 

Roshandel (2013) defines the “rupture unit vector” (p) (along the vector connecting 

hypocenter and sub-fault i), “rupture-to-site unit vector” (q) (along the vector 

connecting the sub-fault i and site) and “unit slip vector” (s) (unit vector along the 

slip direction) geometric parameters in order to calculate the slip-based (𝜉𝑠
′ ) and 

rupture-based (𝜉𝑝
′ ) directivity parameters. The slip-based directivity parameter (𝜉𝑠

′) is 

the scalar product of “unit slip vector” (s) and “rupture-to-site unit vector” (q) while 

the rupture-based directivity parameter (𝜉𝑝
′ ) is the scalar product of “rupture unit 

vector” (p) and “rupture-to-site unit vector” (q). The directivity parameter (ξ’) is taken 

as the weighted average of these two parameters as shown in Equation 2.10.  

𝜉′ = 𝑎 ∙ 𝜉𝑠
′ + (1 − 𝑎) ∙ 𝜉𝑝

′  2.10 

where a and (1-a) are the relative weights contributing to the slip-based (𝜉𝑠
′) and 

rupture-based (𝜉𝑝
′ ) directivity parameters. Rupture length de-normalization factor is 

used in this model to ensure that the same directivity effect is obtained for the same 
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length of rupture. Rowshandel (2013) proposes a distance taper function for his 

model, which is dependent on the period of ground motion. A narrow-band multiplier 

is used in this model, which amplifies the directivity effect in the vicinity of pulse 

period with a normal distribution centered at Tp.  

2.2.4 Shahi and Baker (2013) Directivity Model (NGA-WEST2) 

Shahi and Baker (2013) as a follow up of their research published in 2011 (i.e., Shahi 

and Baker, 2011), propose another narrow-band directivity model (Chapter 4 in 

Spudich et al., 2013) by refitting the Campbell and Bozorgnia (2008) functional form 

for with and without directivity effects. The model is represented in Equations 2.11 

and 2.12.  

𝑙𝑛𝑆𝑎𝑖,𝑗 = 𝑓 (𝑀𝑖 , 𝑅𝑗 , 𝑇, 𝑉𝑆30𝑗 , 𝜃) + 𝐼𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑙𝑛𝐴𝑚𝑝(𝑇, 𝑇𝑝) + 𝜂𝑖 + 𝜀𝑖,𝑗 2.11 

𝑙𝑛𝐴𝑚𝑝(𝑇, 𝑇𝑝) = 𝑏0exp (𝑏1 (ln (
𝑇

𝑇𝑝
) − 𝑏2)

2

) 
2.12 

The f(Mi,Rj,T,VS30j,θ) is the base ground-motion model (functional form is inherited 

from CB08) fitted to NGA-West2 database for predicting the intensity of records 

without any pulse effect (designated as CBR by Shahi and Baker, 2013). The indices 

i and j refer to ith earthquake and jth station in Equation 2.11. lnAmp(T,Tp) computes 

the amplification of lnSa at periods close to Tp due to presence of directivity pulse. 

Shahi (2013) computed b0, b1 and b2 by fitting CB08 functional form with this 

directivity model to NGA-West2 data (designated as CBSB by the proponents). 

Idirectivity takes a value of unity upon the existence of pulselike waveforms. Otherwise, 

its value is zero. Tp and Idirectivity are treated as random variables in SHB13 for use 

within a probabilistic framework. 

2.2.5 Spudich and Chiou (2013) Directivity Model (NGA-WEST2) 

This model (explained in detail in Chapter 5 of Spudich et al., 2013) is an updated 

form of Spudich and Chiou (2008) which uses “Isochrone Theory” in order to 

characterize the directivity effect in GMPEs. The functional form of the directivity 

parameter is given in Equation 2.13. 
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𝑓𝐷(𝑥) = 𝑓𝑟(𝑅, 𝑅1, 𝑅2). 𝑏(𝑀, 𝑇). (𝐼𝐷𝑃(𝑥) − 𝐼𝐷𝑃̅̅ ̅̅ ̅(𝑅)) 2.13 

where IDP is the isochrone directivity parameter and b(M,T) and q(M,T) are given in 

Equations 2.14 and 2.15 respectively. 

𝑏(𝑀, 𝑇) = 𝑐2 + 𝑐3. max(𝑀 − 𝑐1, 0) . exp (𝑞(𝑀, 𝑇)) 2.14 

𝑞(𝑀, 𝑇) = −
[𝑙𝑜𝑔10(𝑇) − (𝑐4 + 𝑐5. 𝑀)]

2

2𝑔2
 2.15 

C1, C2, C3, C4, C5 and g are period-independent coefficients. fr is the distance taper 

function which reduces the directivity effect from maximum to zero for 

40<Rrup<70km and x is the site location of interest. The model is narrow-band and 

the period that maximum amplification occurs is a function of earthquake magnitude. 

The centered value of Isochrone Directivity Parameter (IDP) is used in the model in 

which 𝐼𝐷𝑃̅̅ ̅̅ ̅(𝑅) is the average value of the IDP over the footprint of constant 𝑅. 

2.3 Consideration of Near-Fault Effects in Earthquake Design Codes 

The discussions in the previous sections indicate that the seismic design spectrum 

needs to be updated to reflect the directivity effects. One important point that should 

be noted here is that the higher intensity of near-fault ground motions and 

consequently larger response spectrum amplitudes due to the close distance to the 

ruptured fault is different from the spectral amplifications that are imposed by 

directivity effects. Therefore, the effect of near-fault ground motions and forward-

directivity effects should not be treated in the same way in design spectrum. In this 

section, a brief review about the approaches that are utilized to address the directivity 

effects on seismic design codes will be discussed. 

UBC 97 is the first earthquake code that applies the distance and seismic activity 

dependent near-fault factors on the design response spectrum. The near-fault related 

provisions in UBC 97, in a way, aimed to minimize the near-fault originated damage 

risk experienced after the 1994 Northridge earthquake.  

Design response spectrum of UBC 97 is represented by the seismic coefficients Ca 

and Cv together with spectral periods T0 and Ts. The code has four seismic zones that 

are represented by seismic zone factor Z. In addition, the code has defined three 
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seismic source types addressing high, medium and low seismicity. Seismic source 

types and their definitions are illustrated in Table 2.2. 

 

Table 2.2 Seismic source type (from Table 16-U of UBC-97) 

Seismic 

Source 

Type 

Seismic Source Description 

Seismic Source 

Definition 

Maximum 

Mw 

Slip Rate, 

SR 

(mm/year) 

A 

Faults that are capable of producing 

large magnitude events and that 

have a high rate of seismic activity 

M≥7.0 SR≥5 

B All faults other than Types A and C 

M≥7.0 

M<7.0 

M≥6.5 

SR<5 

SR>2 

SR<2 

C 

Faults that are not capable of producing 

large magnitude earthquakes 

and that have a relatively low rate of 

seismic activity 

M≥7.0 SR≤2 

 

Near-fault effects are represented by the near source factors Na and Nv. Na represents 

the near-source effects for short period range (or acceleration controlled spectral 

region) and Nv represents the near-source effects for medium-to-long period range 

(or velocity controlled spectral region) of response spectrum. These factors are 

defined in terms of closest distance to the seismic sources as well as the seismic 

source type (depending on maximum moment magnitude, Mw and slip rate in 

mm/year). The factors are applied on the seismic coefficients Ca and Cv for the sites 

located in high seismicity regions (seismic zone 4). Near source coefficients, Na and 

Nv are shown in Table 2.3 and Table 2.4. Figure 2.6 shows the design spectrum of 

UBC 97 calculated for seismic zone 4, soil type SD and seismic source type A for 

closest distances 2, 5, 10 and 15km. The UBC97 equations that are used to calculated 

the response spectrum are also shown in Figure 2.6. 
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Table 2.3 Near source factor Na (from Table 16-S from UBC-97) 

 Closest distance to known seismic source 

Seismic 

source type 

≤2km 5km 10km 

A 1.5 1.2 1.0 

B 1.3 1.0 1.0 

C 1.0 1.0 1.0 

 

 

Table 2.4 Near source factor Nv (from Table 16-T from UBC-97) 

 Closest distance to known seismic source 

Seismic 

source type 

≤2km 5km 10km ≥15km 

A 2.0 1.6 1.2 1.0 

B 1.6 1.2 1.0 1.0 

C 1.0 1.0 1.0 1.0 

 

 

Figure 2.6 UBC 97 design spectrum calculated for seismic zone 4, soil 

type SD and seismic source type A for closest distances 2, 5, 10 and 

15km. 
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Chai et al. (2000) followed the same approach in UBC 97 to incorporate the near-

fault effects in Taiwanese seismic design code. They used the data recorded from the 

Chi-Chi earthquake in CWB stations with source-to-site distances less than 15km 

from the Chelungpu Fault in order to update the near-fault factors proposed in UBC 

97 for Taiwanese seismic design code. These coefficients are updated for rock site 

conditions (Type 1 soil profile) and the seismic zone A with zone factor Z=0.33 

according to Taiwanese seismic design code. The updated near-source factor NA and 

Nv for Taiwanese seismic design code at rock sites near the Chelungpu Fault are given 

in Table 2.5 and Table 2.6. 

 

Table 2.5 Near-Fault factor NA for the sites near the Chelungpu Fault in Taiwanese 

seismic design code (Chai et al. 2000) 

Distance ≤2km 4km ≥6km 

NA 1.34 1.16 1.0 

 

Table 2.6 Near-Fault factor NV for the sites near the Chelungpu Fault  in Taiwanese 

seismic design code (Chai et al. 2000) 

Distance ≤2km 6km ≥10km 

NV 1.7 1.3 1.0 

 

 

Table 2.7 Proposed near-fault factors for Chinese Seismic Design Code in stiff soil 

site (Li et al. 2007) 

Intensity 

(Mercalli) 

Distance 

(km) 
Na Nv 

VII 
2 1.0 1.7 

15 1.0 1.0 

VIII 

2 1.8 1.9 

8 - 1.0 

15 1.2 1.0 

IX 

2 1.2 1.8 

6 1.2 - 

9 - 1.6 

15 1.0 1.5 
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Li et al. (2007) used the data from 137 earthquakes from United States, Turkey, Japan, 

Taiwan and China that are recorded at distances less than 15km from the ruptured 

fault to update a ground-motion attenuation relationship. Subsequently they used this 

equation to calculate the near-fault factors for Chinese seismic design code. They also 

use the same concept of UBC 97 for the consideration of near-fault effects. The 

proposed coefficients for Chinese seismic design code at spectral periods of T=0.3s 

(short period) and T=1.0s (long period) are given in Table 2.7. These coefficients are 

given for stiff soil condition type. 

Yaghmaei-Sabegh and Mohammad-Alizadeh )2012) used 143 near-fault records 

from 26 earthquakes from different parts of the world including United States, Iran, 

Japan, Turkey and Taiwan in order to update their ground-motion attenuation 

relationship for near-fault earthquakes. The near-fault factors in short and long 

periods (Na and Nv) are proposed for the highest seismicity zone in Iran (with an 

effective peak ground acceleration of 0.35g) and spectral periods T=0.3 and 1.0sec 

respectively. These factors are given in Tables 2.9 and 2.10 for different soil types 

and magnitude ranges. 

 

Table 2.8 Near-fault factors for Iranian seismic design code, Mw<6.5 (Yaghmaei-

Sabegh and Mohammad-Alizadeh 2012) 

Distance (km) R<2 R=6 

Soil Type/ Mw 6.0 6.2 6.4 6.0 6.2 6.4 

Na 

I 1.0 1.0 1.0 1.0 1.0 1.0 

II 1.0 1.0 1.0 1.0 1.0 1.0 

III 1.0 1.0 1.05 1.0 1.0 1.0 

I V 1.0 1.0 1.0 1.0 1.0 1.0 

Nv 

I 1.0 1.0 1.1 1.0 1.0 1.0 

II 1.0 1.0 1.05 1.0 1.0 1.0 

III 1.0 1.05 1.1 1.0 1.0 1.0 

I V 1.0 1.1 1.1 1.0 1.0 1.0 
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Table 2.9 Near-fault factors for Iranian seismic design code, 6.5≤ Mw≤7.0 

(Yaghmaei-Sabegh and Mohammad-Alizadeh 2012) 

Distance 

(km) 
R<2 R=6 R=12 

Soil Type/ 

Mw 
6.6 6.8 7.0 6.6 6.8 7.0 6.6 6.8 7.0 

Na 

I 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

II 1.0 1.1 1.15 1.0 1.0 1.0 1.0 1.0 1.0 

III 1.0 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

I V 1.0 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

Nv 

I 1.2 1.4 1.5 1.0 1.1 1.1 1.0 1.0 1.0 

II 1.25 1.35 1.5 1.0 1.15 1.2 1.0 1.0 1.0 

III 1.3 1.35 1.45 1.1 1.15 1.2 1.0 1.0 1.0 

I V 1.35 1.4 1.4 1.1 1.2 1.2 1.0 1.0 1.0 

 

Table 2.10 Maximum near fault factor Nmax(T) (New Zealand Standard, NZS 2004) 

Period (sec) Nmax(T) 

≤1.5 1.0 

2.0 1.12 

3.0 1.36 

4.0 1.60 

≥5.0 1.72 

 

The New Zealand seismic design code (New Zealand Standard, NZS 2004) considers 

a uniform amplification of response spectrum for near-fault effects. The amplification 

factor, N(T,D) is function of spectral period, hazard level and distance. The 

amplification factor is calculated from Equations 2.16 and 2.17. The period dependent 

maximum near fault factor, Nmax is given in Table 2.10. 

- for annual probability of exceedance≥1/250: 

𝑁(𝑇, 𝐷) = 1 2.16 

- for annual probability of exceedance<1/250: 
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                𝑁(𝑇, 𝐷) = 𝑁𝑚𝑎𝑥(𝑇)                                               D<2km 2.17a 

                𝑁(𝑇, 𝐷) = 1 + (𝑁𝑚𝑎𝑥(𝑇) − 1) × 
20−𝐷

18
         2km<D≤20km 2.17b 

                 𝑁(𝑇, 𝐷) = 1.0                                                          D>20km 2.17c 

 

 

Figure 2.7 Near-Fault adjustment factor as a function of distance and spectral 

period (CALTRANS 2013). 

 

The Caltrans seismic design criteria (CALTRANS, 2013) proposed by California 

Department of Transportation offers near-fault adjustment factors as a function of 

distance and spectral period. This seismic design code considers a maximum 

amplification factor equal to 1.2 for sites located within 15km around the fault. The 

amplification factor is applied for spectral ranges larger than 0.5s increasing from 1.0 

for spectral period T=0.5s to 1.2 for spectral period T=1.0sec. The amplification 

factor given in CALTRANS (2013) is shown in Figure 2.7. The distance measure in 

this proposed factor is based on the closest distance to any point on the fault plane. 

The most recent building and non-building seismic design codes in the U.S: ASCE 

7-10 (ASCE, 2010) and FEMA P-750 (BSSC, 2009) as well as FEMA P-1090 (BSSC, 

2015) use maximum direction of spectral acceleration (referred to as directionality – 

see following subsection) however they do not include near-fault effects explicitly. 

For the sake of completeness it should be noted that current version of Turkish 

Seismic Design Code (TEC 2007) does not apply any amplification on design 

response spectrum due to near fault effects. 

As discussed in this section the near-fault effects are incorporated in seismic design 

codes via either a uniform scaling of a fixed spectral shape (UBC 1997; Taiwanese 
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seismic design code Chai et al. 2000) or a monotonic increase of amplitudes with 

magnitude (New Zealand Standard, NZS 2004). Both approaches are not entirely the 

correct way to consider the near-fault effects and they are not able to resolve the 

problem consistently, because design procedures should pay attention to the special 

distribution characteristics of near-fault ground motions around the seismic source 

(Alavi and Krawinkler 2004). In the following chapters, this study will provide some 

useful rules to surmount the current inconsistencies about the inclusion of directivity 

effects in seismic design codes. 

2.4 Directionality (Maximum Direction Component)  

In addition to directivity, another parameter of potential interest is ground motion 

directionality. When using a GMPE to predict a response spectrum parameter 

associated with horizontal shaking, the two-directions of horizontal components must 

be considered. The predicted ground motion parameters (e.g., spectral acceleration at 

a specified period, peak ground acceleration, or peak ground velocity) can be defined 

in a variety of ways with regard to multi-component horizontal shaking. Common 

methods that are used to quantify spectral acceleration from two horizontal 

components take the geometric mean of the spectral accelerations of the two as-

recorded ground motion components. Different definitions of horizontal components 

of ground motions are proposed recently to take the maximum or the median spectral 

acceleration observed when looking over all horizontal orientations. Figure 2.8 shows 

the response spectrum of Gebze station-1999 Kocaeli earthquake. The response 

spectrum is calculated for different orientations of rotated ground motion (0≤θ<180). 

For this purpose two horizontal components of the ground motion time series are 

combined into a single component which is θ degree rotated from H1 component. The 

response spectrum is then computed for the rotated component and this calculation is 

repeated for all orientations (0≤θ<180). The median value of all rotated response 

spectrum amplitudes at a specific spectral period is called as RotD50 and the 

maximum value is known as RotD100 component (Boore, 2010). These components 

are also shown in this figure together with geometric mean value of two horizontal as 

recorded components. This figure shows very clearly the effect of ground motion 
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orientation in variation of spectral amplitude. The issue of directionality is discussed 

with more detail in Chapter four.  

 

Figure 2.8 Response spectrum of Gebze station-1999 Kocaeli earthquake 

calculated for different rotated orientations of two horizontal components, 

together with geometric mean, RotD50 and RotD100 components illustrated 

for different spectral periods 
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 A STUDY ON MAJOR SEISMOLOGICAL AND FAULT-SITE 

PARAMETERS AFFECTING NEAR-FAULT DIRECTIVITY GROUND-

MOTION DEMANDS DUE TO STRIKE-SLIP FAULTING FOR THEIR 
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directivity ground-motion demands due to strike-slip faulting for their possible 

inclusion in seismic design codes 

Sinan Akkar, Saed  Moghimi and Yalın Arıcı 
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3.1 Introduction 

When the horizontally polarized S-wave (SH-wave) radiation pattern aligns with the 

direction of rupture propagation and direction to the site, the ground motions are 

largest. This phenomenon is the major principle behind forward-directivity according 

to Somerville et al. (1997). The forward-directivity is more prominent within the ends 

of the strike-slip fault that suggests directivity being more significant when rupture 

travels longer distances (Spudich and Chiou 2008). The coincidence of the maximum 

SH-wave radiation pattern and the rupture propagation toward the site produces a 

large displacement pulse normal to the fault strike. The minimum in the radiation 

pattern of vertically polarized S-wave (SV-wave) that is in the direction of seismic 

wave propagation produces small dynamic displacements superimposed on a larger 

static displacement (fling step) parallel to the fault. Instead of large pulses, the 

waveforms are dominated by low-amplitude and long-duration motions when the 
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rupture propagates away from the site. This phenomenon is called as backward 

directivity and it is not within the scope of this chapter. 

The near-fault forward-directivity (NFFD) ground motions have been recorded in 

many earthquakes during the past 50 years [e.g., Port Hueneme earthquake in 1957 

(Housner and Hudson 1958); Parkfield earthquake in 1966 (Housner and Trifunac 

1967); San Fernando earthquake in 1971 (Boore and Zoback 1974; Niazy 1975); 

Landers earthquake in 1992 (Campbell and Bozorgnia 1994); Northridge earthquake 

in 1994 (Somerville et al. 1996); Kobe earthquake in 1995 (Fukushima et al. 2000); 

Marmara earthquakes in 1999 (Akkar and Gulkan 2001); Chi-Chi earthquake in 1999 

(Chen et al. 2001); L’Aquila earthquake in 2009 (Chioccarelli and Iervolino 2010); 

Christchurch earthquake in 2011 (Bradley and Cubrinovski 2011)]. Their distinct 

features in terms of dynamic source characteristics as well as the large-amplitude 

impulsive horizontal and vertical waveforms that increase the damage potential on 

structures have led to many seismological and engineering studies. Modelling of 

high-slip zones and directivity (e.g., Somerville et al. 1999; Mai et al. 2005; Seekins 

and Boatwright 2010; Spudich et al. 2004; Schmedes and Archuleta 2008), influence 

of fault mechanisms on directivity (e.g., Oglesby et al. 2000) and dynamic rupture 

modeling to characterize super shear zones (e.g., Dalguer and Day 2007; Dunham 

and Archuleta 2005) are among the topics investigated by the seismological 

community to explain the physics behind the directivity-dominant ground motions. 

Inherently, the engineering community is interested in the damaging effects of such 

ground motions on different structural systems (e.g., Bertero et al. 1978; Anderson 

and Naeim 1984; Anderson and Bertero 1987; Heaton et al. 1995; Sasani and Bertero 

2000; Anderson et al. 2003; Alavi and Krawinkler 2004; Champion and Liel 2012). 

The variations in the elastic and inelastic horizontal spectral quantities under NFFD 

ground motions were investigated thoroughly (e.g., Malhotra 1999; Ambraseys and 

Douglas 2003; Mavroeidis et al. 2004; Menun and Fu 2002; Akkar et al. 2004; Bray 

and Rodriguez-Marek 2004; Tothong and Cornell 2006; Chioccarelli and Iervolino 

2010; Rupakhety et al. 2011; Iervolino et al. 2012; Chiou and Youngs 2014). The 

engineering studies on the definition of the response spectrum for NFFD ground 

motions consider the pulse period (Tp), the peak ground velocity to peak ground 

acceleration (PGV/PGA) and the peak ground displacement to peak ground velocity 
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(PGD/PGV) ratios as well as the pseudo-velocity spectrum (PSV) to account for the 

dominant impulsive signal effect on the spectral shape. Recently, there is an 

increasing effort to incorporate the directivity effects within the probabilistic seismic 

hazard and damage assessment procedures using linear and nonlinear structural 

response quantities (Tothong and Cornell 2006; Tothong and Cornell 2008; Tothong 

et al. 2007; Iervolino and Cornell 2008; Shahi and Baker 2011; Shahi 2013; 

Chioccarelli and Iervolino 2013; Chiou and Youngs 2014; Baltzopoulos et al. 2015; 

Baltzopoulos et al. 2016; Almufti et al. 2015). 

One of the most important contributions on the modelling of forward-directivity is 

developed by Somerville et al. (1997). This model estimates the spectral 

amplifications along the strike-normal and strike-parallel components as well as their 

geometric average due to rupture directivity to modify the spectral ordinates predicted 

by conventional (no-directivity) ground-motion predictive models (GMPMs). The 

model estimations are valid for moment magnitudes Mw> 6.5 with a dependence on 

normalized rupture to fault length and the angle between the rupture propagation 

direction and the site. The spectral amplifications by Somerville et al. (1997) increase 

monotonically after T = 0.6s. This type of forward-directivity model is referred to as 

the broad-band model in the literature. Later, Abrahamson (2000) proposed some 

modifications to the Somerville et al. (1997) directivity model for improving the 

limitations in directivity scaling of large magnitude events due to the use of 

normalized distance. The response spectrum amplifications due to directivity are 

investigated more systematically in the NGA-West1 (Power et al. 2008) and NGA-

West2 (Bozorgnia et al. 2014) projects. The forward-directivity modelers in NGA-

West1 (Spudich and Chiou 2008; Rowshandel 2010) propose corrections to the 

median predictions of the NGA-West1 no-directivity GMPMs. The implementation 

of these directivity models to the NGA-West1 GMPMs experienced conceptual 

difficulties because the median predictions of the no-directivity NGA-West1 

GMPMs already include the NFFD ground motions in their datasets. Thus, the 

identification of reference directivity conditions corresponding to the median 

estimations of NGA-West1 GMPMs are unclear while implementing the corrections 

of the forward-directivity models. As a surrogate to this shortcoming, the NGA-

West2 forward-directivity modelers (Bayless and Somerville, Rowshandel, Shahi and 
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Baker, Spudich and Chiou, and Chiou and Spudich – see Spudich et al. 2013) 

developed their models for their direct inclusion to the functional forms of the NGA-

West2 GMPMs. Besides, the NGA-West2 directivity models utilize either the Joyner-

Boore (RJB) or rupture (Rrup) distance in order to provide consistent scaling of 

forward-directivity for the entire magnitude range of interest (Spudich et al. 2014). 

The NGA-West2 directivity models by Rowshandel, Shahi and Baker, Spudich and 

Chiou, and Chiou and Spudich are defined as narrow-band models because the 

spectral ordinates are amplified only within a specific period interval that is sensitive 

to the magnitude. The Chiou and Spudich directivity model is adopted by the NGA-

West2 Chiou and Youngs (2014) GMPM. The Shahi and Baker model is based on an 

older version of the directivity model proposed by the same authors (Shahi and Baker, 

2011) that makes use of the Boore and Atkinson (2008) functional form from NGA-

West1. The other directivity modelers published their functional forms and regression 

coefficients for their implementation to either the NGA-West1 or NGA-West2 

GMPMs. Most of the NGA-West2 forward-directivity models suggest a maximum 

distance of 70km to 80km from the ruptured fault surface for the directivity effect. 

Although the NGA-West2 directivity models account for the sophisticated features 

of directivity phenomenon, there is still some room for their further improvement. 

For example, except for Rowshandel, no other model can clearly distinguish the 

directivity effects between the reverse and normal faults. However, Oglesby et al. 

(2000) have already shown the rupture-dynamic reasons for expecting larger 

amplitude near-fault motions from the reverse events rather than the normal ruptures. 

The wide range of studies on the NFFD ground motions are yet to show their full 

implications on the seismic design codes. To the best knowledge of the authors, the 

1997 version of the Uniform Building Code (UBC, 1997) is the first seismic design 

code with a design spectrum explicitly accounting for the near-source effects. This 

code introduces two near-fault factors Na and Nv to amplify the short-period and the 

long-period range in the design spectrum. Both Na and Nv depend on the seismic 

activity of the fault and amplify the design spectrum for directivity effects for 

Rrup≤15km.  The Taiwanese (Chai and Teng 2012; Chai et al. 2001), Chinese and 

Iranian (Yaghmaei-Sabegh and Mohammad-Alizadeh 2012) seismic design codes 

use the UBC-97 approach to include the forward-directivity effects on the definition 
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of design spectrum ordinates. The current seismic design code in China incorporates 

the near-source effects for base isolated structures with distance-dependent 

amplification factors. The New Zealand seismic code (New Zealand Standard, NZS 

2004) includes the forward-directivity effects for distances up to 20km to the ruptured 

fault and spectral periods T≥1.5s provided that the spectrum’s return period is 250-

year or more. The Caltrans seismic design guidelines (CALTRANS 2013) amplify 

the design spectrum for T>0.5s by a distance and period dependent near-fault 

adjustment factor. The adjustment factor increases spectral ordinates by 20% for 

Rrup≤15km and it linearly tapers to zero between rupture distances 

15km<Rrup≤25km. Caltrans (2013) states the validity of above amplifications for 

horizontal spectral ordinates having equal probability in all orientations [e.g., 

GMRotI50  or RotD501 horizontal component definitions as proposed in Boore et al. 

(2006) and Boore (2010) that are used by NGA-West1 and NGA-West2 GMPMs, 

respectively]. Upon the use of maximum direction (RotD100) horizontal spectral 

ordinates (Boore 2010) in which their occurrences are not equally probable in all 

orientations, Caltrans (2013) suggests an additional 15% to 25% spectral 

amplification over the previously suggested amplifications for a full coverage of 

NFFD effects. The suggested additional spectral amplifications are in line with the 

findings of Huang et al. (2008), Watson-Lamprey and Boore (2007) and Beyer and 

Bommer (2006) for Rrup≤5km. It should be noted that the 2009 edition of the 

NEHRP provisions (BSSC. 2009) as well as the 2010 edition of the ASCE 7-10 

standards (ASCE7-10) have started to use the maximum direction component in the 

definition of horizontal design spectrum since the collapse probability would be 

reduced for structures designed against maximum direction spectral demands (BSSC, 

2009). This horizontal component definition can also capture the strong polarization 

of directivity-dominant recordings (Boore 2006; Boore 2010). 

This chapter investigates the influence of the magnitude, pulse period (or magnitude-

dependent period band where the elastic response spectrum is amplified due to 

directivity), fault length, seismic activity, fault-site geometry, orientation of incident 

seismic wave with respect to fault-strike as well as the annual exceedance rate on the 

NFFD spectral amplitudes. A suite of strike-slip earthquake scenarios are generated 

via probabilistic seismic hazard assessment (PSHA) and implemented the narrow-
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band directivity models of Shahi and Baker (SHB11; Shahi and Baker 2011) and 

Chiou and Spudich (CHS13; Chapter 6 in Spudich et al., 2013) that is adopted by the 

Chiou and Youngs (2014) GMPM to study the effects of the above mentioned 

parameters on NFFD. The use of multiple directivity models provided us an 

opportunity to understand the influence of different methodologies in estimating the 

directivity response spectral amplifications. The important features of the considered 

directivity models are explained at first. The discussion continues by presenting the 

spectral amplitude distributions conditioned on the investigated seismological and 

geometrical parameters to assess their significance in directivity-based spectral 

amplifications. The chapter is finalized by mapping the spatial influence of directivity 

for different probabilistic earthquake scenarios that could be of interest to the modern 

seismic design codes. The outcomes highlighted in the chapter provide a good ground 

for the robust implementation of directivity effects on the code-based design spectra. 

3.2 Narrow-Band Forward-directivity Models 

The following subsections discuss the main features of SHB11 and CHS13 directivity 

models to highlight their underlying conceptual differences. The reader can refer to 

the relevant literature cited in this study to understand the details of each model. 

3.2.1 Shahi and Baker (2011) Model (SHB11) 

SHB11 establishes a probabilistic seismic hazard assessment model to consider the 

spectral amplitude modifications at sites subjected to pulselike waveforms due to 

directivity. The premise in SHB11 is that the directivity is the primary source for 

pulse dominated ground motions recorded at locations close to the ruptured fault. 

This probabilistic model follows the approach used in Tothong et al. (2007) and 

includes the probability of pulse occurrence for a given fault-site geometry as well as 

the probability of observing a pulse in a particular orientation given a pulse is 

observed at the site and the distribution of magnitude-dependent pulse period, Tp.  

The proponents of SHB11 use the quantitative pulse classification algorithm by Baker 

(2007) that employs wavelet theory to extract the impulsive signal features from the 

ground velocity of near-fault recordings. Shahi and Baker (2011) rotated such ground 

motions in all possible directions and classified them as pulselike whenever any one 



35 

 

of the rotated components is dominated by an impulsive waveform according to the 

pulse indicator index 1  (Baker 2007). The period associated with the maximum 

Fourier amplitude of the extracted pulse was used as a measure of pulse-period, Tp in 

SHB11. 

SHB11 estimates the amplification (and deamplification) of response spectrum 

ordinates for the existence (and absence) of pulse in near-source region. Equation 3.1 

shows the conceptual approach behind SHB11 while calibrating ground-motion 

spectral amplitudes for directivity. Here, P*(Sa > x |m, r, z) is the probability of 

spectral ordinate, Sa, exceeding x (Sa > x) given the occurrence of an earthquake of 

magnitude m at distance r under modified GMPM. z represents fault-to-site geometry 

information that has an important impact on marking the directivity effects. It is 

comprised of the parameters s and  where s is the distance along the rupture plane 

from the epicenter toward the site and  is the smallest angle between incident S-

wave and the fault strike. (See the illustrations in Error! Reference source not 

found.a as well as further discussions in the paragraph below for the parameters 

described here). 

𝑃∗(𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑧) = 

    𝑃 (𝑝𝑢𝑙𝑠𝑒⃓  𝑚, 𝑟, 𝑧) ∙ 𝑃 (𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑧, 𝑝𝑢𝑙𝑠𝑒⃓) + 

           [1 − 𝑃 (𝑝𝑢𝑙𝑠𝑒⃓  𝑚, 𝑟, 𝑧)] ∙ 𝑃 (𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑛𝑜 𝑝𝑢𝑙𝑠𝑒⃓) 

3.1 

Equation 3.1 splits the probability of Sa > x into two cases depending on whether or 

not the pulselike ground motion is observed: the first two probabilities on the right 

hand side are probabilities of observing a pulse and Sa > x upon the occurrence of 

pulse. The last two probabilities consider observing no pulse and Sa > x when no pulse 

is observed. Thus, the modification of spectral intensities, Sa, depend on the pulse 

occurrence or non-occurrence cases. 

The pulse occurrence is taken as the probability of observing a pulselike ground 

motion at a site in the direction  degrees from the strike of the fault. The pulse 

occurrence, at any orientation with respect to fault strike, is a function of source-site 

                                                 
1 Baker (2007) requires (a) pulse indicator index to be greater than 0.85, (b) impulsive signal 

occurring at the beginning of the ground-velocity waveform and (c) peak ground velocity being 

greater than 30 cm/s for a ground motion to be classified as directivity dominated. 
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geometry and SHB11 uses a logistic regression to model this probability (Equation 

2). Error! Reference source not found.b shows the contour map of the estimated 

pulse occurrence probabilities by Equation 3.2 for a rupture originating at the middle 

of fault segment. Note that the occurrence probability of the pulse increases towards 

the edges of the fault that is consistent with the basics of forward-directivity discussed 

in (Shahi and Baker 2011). SHB11 uses Equation 3.2 to estimate the probability of 

pulse at a given orientation  with respect to fault strike. In essence, the product of 

Equations 3.2 and 3.3 gives the pulse occurrence probability for a given source-site 

geometry and orientation with respect to fault strike: P(pulse | m, r, z). Inherently, the 

no-pulse occurrence case is 1 - P(pulse | m, r, z) that is given in the last term on the 

right hand side of Equation 3.1. 

𝑃(𝑝𝑢𝑙𝑠𝑒⃓|𝑟, 𝑠) = 1/[1 + 𝑒⃓(0.642+0.167𝑟−0.075𝑠)] 3.2 

𝑃(𝑝𝑢𝑙𝑠𝑒⃓ 𝑎𝑡 𝛼|𝑝𝑢𝑙𝑠𝑒⃓) = 𝑚𝑖𝑛 [0.67,0.67 − 0.0041(77.5 − 𝛼)] 3.3 

The exceedance probability of Sa for pulse observed case (i.e., P(Sa > x | m, r, z, pulse) 

as well as its counterpart (Sa exceedance for “no pulse observed” case; P(Sa > x | m, 

r, no pulse) are lognormal as given in Equations 3.4 and 3.5, which require the 

computation of lnSa,pulse, lnSa,pulse, lnSa,nopulse and lnSa,nopulse. 

𝑃 (𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑧, 𝑝𝑢𝑙𝑠𝑒⃓) = 1 − 𝛷 (
𝑙𝑛(𝑥) − 𝜇𝑙𝑛𝑆𝑎,𝑝𝑢𝑙𝑠𝑒

𝑙𝑛𝑆𝑎,𝑝𝑢𝑙𝑠𝑒
) 3.4 

𝑃 (𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑛𝑜 𝑝𝑢𝑙𝑠𝑒⃓) = 1 − 𝛷 (
𝑙𝑛(𝑥) − 𝜇𝑙𝑛𝑆𝑎,𝑛𝑜 𝑝𝑢𝑙𝑠𝑒

𝑙𝑛𝑆𝑎,𝑛𝑜 𝑝𝑢𝑙𝑠𝑒
) 3.5 

Here,  and  represent the mean and standard deviation of the logarithmic Sa values, 

respectively that are obtained from GMPMs. The “pulse observed” case represents 

the amplification of the spectral ordinates in the vicinity of Tp whereas the “no pulse 

observed” case accounts for the inherent reduction in the spectral ordinates for non-

pulselike ground motions. These two phenomena cannot be mimicked properly by 

traditional (conventional) GMPMs because they do not model the distinctive effects 

of pulselike and non-pulselike ground motions separately. (They rather combine 

these two effects with tradeoffs depending on the distributions of their ground-motion 

datasets). The following lines summarize the rationale behind the development of 

these parameters for the “pulse observed” and “no pulse observed” cases. 
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Figure 3.1 (a) the parameters defining fault-site geometry in SHB11 for a strike-

slip fault (b) contours of pulse occurrence probability for a rupture nucleating at 

the center of the fault 

According to SHB11, Sa only for pulselike motions (Sa,pulse) can be represented by 

modifying their pulse-removed spectral ordinates (Sa
r) with an amplification factor 

(Af). Thus, the average of logarithmic spectral amplitudes only for pulselike motions 

(lnSa,pulse) is 

𝜇𝑙𝑛𝑆𝑎,𝑝𝑢𝑙𝑠𝑒 = 𝜇𝑙𝑛𝐴𝑓 + 𝜇𝑙𝑛𝑆𝑎𝑟 3.6 

The logarithmic average estimated from a conventional GMPM (lnSa,gmm) is assumed 

to approximate 𝜇𝑙𝑛𝑆𝑎𝑟  in Shahi and Baker (2011). Thus, Equation 3.6 simplifies to 

𝜇𝑙𝑛𝑆𝑎,𝑝𝑢𝑙𝑠𝑒 = 𝜇𝑙𝑛𝐴𝑓 + 𝜇𝑙𝑛𝑆𝑎,𝑔𝑚𝑚
 3.7 

SHB11 reduces the standard deviation of the traditional GMPM (lnSa,gmm) by a factor 

Rf to represent lnSa,pulse (Equation 3.8). This is because the modified ground-motion 

model in SHB11 only accounts for pulse-like ground motions that, presumably, 

yields lower aleatory variability than that of the traditional GMPM. 
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𝑙𝑛𝑆𝑎,𝑝𝑢𝑙𝑠𝑒 = 𝑅𝑓 ∙ 𝜎𝑙𝑛𝑆𝑎,𝑔𝑚𝑚
 3.8 

Following a similar approach as in the case of pulse-like ground motions, SHB11 

applies a correction (deamplification, Df) factor to the logarithmic average of a 

traditional GMPM (lnSa,gmm) to approximate the logarithmic average spectral 

ordinates (lnSa,nopulse) of non-pulse-like ground motions (Equation 3.9). 

𝜇𝑙𝑛𝑆𝑎,𝑛𝑜𝑝𝑢𝑙𝑠𝑒 = 𝜇𝑙𝑛𝐷𝑓 + 𝜇𝑙𝑛𝑆𝑎,𝑔𝑚𝑚
 3.9 

SHB11 does not foresee any modification for the standard deviation of the non-

pulselike ground motions (lnSa,nopulse) and uses the standard deviations reported by 

conventional GMPMs (lnSa,gmm). The empirical relationships for lnSa,pulse, lnSa,pulse, 

lnSa,nopulse and lnSa,nopulse as well as an algorithm for their implementation to PSHA 

are given in Shahi and Baker (2011). The authors calibrated their narrow-band model 

by using the conventional GMPM proposed by Boore and Atkinson (2008) 

indicating, however, that it can be equally applicable to other conventional GMPMs. 

Under the light of above discussions, the mean annual frequency by which Sa at the 

site subjected to directivity exceeds a value x is. 

𝜈𝑆𝑎(𝑥) = 𝜈 ∫∫∫𝑃(𝑝𝑢𝑙𝑠𝑒⃓|𝑚, 𝑟, 𝑧)

 

𝑧

 

𝑟

 

𝑚

∙ ∫ 𝑃(𝑆𝑎 > 𝑥|𝑚, 𝑟, 𝑧, 𝑡𝑝) ∙ 𝑓𝑇𝑝|𝑍,𝑀,𝑅 ∙ 𝑓𝑍|𝑀,𝑅 ∙ 𝑓𝑀,𝑅 ∙ 𝑑𝑚

 

𝑡𝑝

∙ 𝑑𝑟 ∙ 𝑑𝑧 ∙ 𝑑𝑡𝑝

− ∫∫∫𝑃 (𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑛𝑜 𝑝𝑢𝑙𝑠𝑒⃓)

 

𝑧

 

𝑟

 

𝑚

∙ (1 − 𝑃(𝑝𝑢𝑙𝑠𝑒⃓|𝑚, 𝑟, 𝑧)) ∙ 𝑓𝑍|𝑀,𝑅 ∙ 𝑓𝑀,𝑅 ∙ 𝑑𝑚 ∙ 𝑑𝑟 ∙ 𝑑𝑧 

3.10 

In Equation 3.10  is the mean rate of occurrence of earthquakes on the fault above a 

minimum threshold. The capital letters denote random variables whereas the 

lowercase letters indicate realizations of these random variables. 𝑓𝑇𝑝|𝑍,𝑀,𝑅, 𝑓𝑍|𝑀,𝑅 are 

joint probability density functions (PDFs) but the research showed that the pulse 

period Tp only depends on magnitude and the first PDF reduces to 𝑓𝑇𝑝|𝑀. Upon the 

existence of multiple faults, Equation 3.10 should be calculated separately for each 

one and the summation of the resulting mean annual exceedance frequencies should 
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be used to obtain the total directivity induced seismic hazard. Figure 3.2 shows the 

algorithm used in the computation of Sa (x) by SHB11. 

 

Figure 3.2 Algorithm implemented to run PSHA with SHB11 directivity model 

 Geometrical calculations and the algorithm utilized in PSHA are explained in 

Appendices A and B in more detail. 

3.2.2 Chiou and Young-2014 (CHY-14) and Chiou and Spudich-2013 (CHS13) 

Directivity Model 

Chiou and Spudich (Chapter 6 in Spudich et al., 2013) define Direct Point Parameter 

(DPP) as an alternative to Isochrone Directivity Parameter (IDP) (Spudich and 

Chiou, 2008; Chapter 5 of Spudich and Chiou in Spudich et al., 2013) to model 

directivity by considering the effects of the slip distribution and radiation pattern of 

a finite source as well as the isochrone velocity (a quantity closely related to rupture 

velocity – high isochrone velocity is an indication of strong directivity effects). 

Besides its stronger theoretical foundation, DPP is also advantageous from a 

calculation standpoint with respect to IDP (Chapter 6 in Spudich et al., 2013).  

Figure 3.3 illustrates DPP on a simplified fault-site geometry. It is the intersecting 

point of the fault projected direct ray 𝑃𝐻𝑃𝑃 with the slipped area boundary, . Chiou 

and Spudich formulate DPP as given in Equation 3.11: 

𝐷𝑃𝑃 = 𝑙𝑛(𝑐̂′. 𝑚𝑎𝑥(𝐸, 0.1𝑓) .𝑚𝑎𝑥 (𝐹𝑆̅̅̅̅ , 0.2) 3.11a 
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𝑐̂′ =
1

(
1

0.8
−
𝑅𝐻𝑌𝑃−𝑅𝐷

𝐸
)
                                  for E>0 

3.11b 

𝑐̂′ = 0.8                                                 for E=0 3.11c 

As one can infer from Equation 3.11a, DPP is the convolution of isochrone velocity 

ratio (𝑐 ′̂), length of E-path (E or the larger of fault length or width, f see Figure 3.3a) 

that is closely associated with the highest isochrone velocity, hence an indicator of 

pulse dominance, and the average S-wave radiation pattern over E-path (𝐹𝑆̅̅̅̅ ). 

Equation 3.11b indicates that the isochrone velocity ratio is proportional to the 

difference between hypocentral distance, RHyp (𝑃𝐻𝑃𝑆) and the distance to the Direct 

Point, RD (𝑃𝐷𝑃𝑆). The same expression also suggests an inverse relation between 𝑐 ′̂ 

and E. The physical interpretations of these observations advocate maximized 

directivity effects towards the edges of the faults where E is large and RHyp-RD 

difference is small. 

The GMPM by Chiou and Youngs (2014) (CY14) uses DPP as the predictor of 

forward-directivity effect. Equation 3.12 shows the directivity function used in 

CY14. Given an earthquake scenario, CY14 centers DPP on its mean (DPPmean)  over 

a suite of sites located at the same distance (Figure 3.3b). The particular influence of 

forward-directivity at a specific site i along the same racetrack is determined by 

subtracting the DPPmean from DPPi (DPP; Equation 3.12a). For a given site i, a 

large difference between the DPPi and DPPmean (i.e., large DPP) indicates stronger 

forward-directivity effects in CY14. However, when DPP is zero, one can infer that 

the directivity does not dominate the spectral amplitudes at the site of interest for 

CY14. 

𝑓𝐷𝑃𝑃 = 𝑐8 . 𝑓𝑅 . 𝑓𝑀 . 𝑒⃓
−𝑐8𝑎(𝑀− 𝐶8𝑏)

2
 . 𝛥𝐷𝑃𝑃; 𝛥𝐷𝑃𝑃 =  𝐷𝑃𝑃𝑖 − 𝐷𝑃𝑃̅̅ ̅̅ ̅̅  3.12a 

𝑓𝑅 = 𝑚𝑎𝑥 [0 , 1 −
𝑚𝑎𝑥(𝑅𝑟𝑢𝑝 − 40)

30
] 3.12b 

𝑓𝑀 = 𝑚𝑎𝑥 [1 ,
𝑚𝑎𝑥(𝑀 − 5.5 ,   0))

0.8
] 3.12c 

In the above expressions, fR and fM are the taper functions for the distance and 

magnitude, respectively. fM reduces fDPP to zero over the magnitude range from Mw 
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6.3 to 5.5. The distance taper function fR does not reduce fDPP for Rrup≤40km but fDPP 

is linearly tapered down to zero starting from 40km to 70km. In Equation 3.12a c8, 

c8a and c8b are the regression coefficients computed by CY14. CHS13 is used via 

CY14 in this study but continue to refer this compound model as CHS13 in this 

chapter. Figure 3.4 presents the simplified algorithm used for the implementation of 

CHS13 in PSHA. 

 

 

 

Figure 3.3 a) Illustration of Direct Point Parameter (DPP) from a fictitious 

source-site geometry: 𝑃𝐻𝑃𝐷 is the E-path with length E and PD is the direct point, 

b) Sites along the same racetrack and the computed DPPi (i = 1 to n) 
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Figure 3.4 Algorithm implemented to run PSHA with SHB11 directivity model 

3.2.3 Specific Comparisons Between SHB11, CHS13 

This section compares the two directivity models introduced in the previous section 

using some PSHA case studies to have insight about their prominent features. The 

comparisons would help the reader to follow the discussions in the next section that 

examines the sensitivity of response spectrum amplifications against the chosen 

seismological parameters under directivity dominant hazard scenarios. 

 

Figure 3.5 Plan view of fault-site configuration used in this study. (The red 

rectangle encloses the sites 8, 9 and 10 that are used in the deterministic scenario) 

The discussions in this section as well as the subsequent sections make use of the 

fault-site geometry layout given in Figure 3.5. The site distributions are symmetric 

with respect to vertical axis (Ry) that crosses at the mid-length of the fault. Thus, there 

is a mirror image distribution of the sites on the left-hand side with respect to the fault 
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center (designated by Rx/L = 0 in Figure 3.5). The fault length normalized horizontal 

axis (Rx/L) runs parallel to the fault strike. The sites are located at every 5km in the 

strike-normal direction whereas their distribution is extended beyond the fault edges 

by 0.3L in the strike parallel direction to capture the spatial variation in forward-

directivity along the horizontal plane. Strike-slip fault mechanism is considered in 

earthquake scenarios because directivity models cannot fully capture the directivity 

effects for dip-slip faulting mechanisms (Spudich et al. 2013). The site condition is 

also represented by a generic rock site of VS30 = 760m/s throughout the study. 

Figure 3.6 compares the 2475-year return period2 spectral estimates by SHB11 and 

CHS13 (top row) and corresponding spectral amplifications (bottom row) at sites 8, 

9 and 10 (enclosed by a red rectangle in Figure 3.5) for a vertically dipping strike-

slip fault segment of length L = 150km and width w = 10km. The slip rate of the 

fictitious fault is chosen as 𝑠̇ = 1cm/yr and the mean magnitude vs. ruptured area 

(RA) relationship by Wells and Coppersmith (1994) yields characteristic magnitude 

of Mch 7.2 for this fault when the entire segment is ruptured. (Side note: The mean 

moment magnitude, Mw, that is estimated from the empirical Mw vs. RA relationship 

of Wells and Coppersmith is used in the Mch computations of fault segments 

considered in the probabilistic earthquake scenarios in this study). The Youngs and 

Coppersmith (1985) characteristic earthquake recurrence model is used in this case 

study as well as in all PSHA runs to define the temporal distribution of earthquakes. 

The characteristic model is illustrated in Figure 3.7 for convenience. The exponential 

part of the model considers earthquake activities between 5.0≤Mw≤Mch-0.25. The 

uncertainty in characteristic earthquake magnitudes is represented as a uniform 

distribution within Mch±0.25 in the earthquake recurrence model. These specific 

features of the stochastic earthquake recurrence model are the same in all 

probabilistic earthquake scenarios. The discrete magnitudes varying from Mw 5 to 

Mch+0.25 (dependent of fault length) and the corresponding mean rupture areas 

obtained from RA vs. Mw relationships of Wells and Coppersmith (1994) are used in 

the PSHA runs presented in this section as well as those discussed in the other 

sections (See Figure 3.2 and Figure 3.4 for the PSHA algorithms).  

                                                 
2 Return period is the reciprocal of mean annual exceedance rate of a spectral ordinate exceeding a 

specific threshold. 
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Rupture lengths of discrete scenarios in PSHA are determined by dividing the mean 

rupture areas with the constant fault width (w=10km) whenever √𝑅𝐴 >w. For 

√𝑅𝐴<w, rupture length is computed as √𝑅𝐴 in this study. The hypocenter of the 

rupture is taken at the center of the ruptured area. This information is necessary in the 

computation of PP at the sites of interest. For completeness, the “directivity” and 

“no directivity” spectra are both plotted. The latter case is represented by the 

conventional GMPM counterpart of each directivity model (i.e., BA08 for SHB11 

and CY14 with PP = 0 for CHS13). The spectral amplifications are the normalized 

plots of “directivity” and “no directivity” cases. The magnitude-dependent pulse 

period for SHB11 is estimated from the Tp-Mw expression in Shahi (2013). SHB11 

estimates strike-normal (fault-normal; FN  = 90) horizontal spectrum for the 

“directivity” case because the model first fits to strike-normal case and then modifies 

the amplitudes for different  according to pulse occurrence conditioned on . Thus, 

the spectral amplifications of SHB11 represent strike-normal to GMRotI50 (Boore et 

al. 2006) horizontal component ratios; the latter component definition is used by 

BA08. The other model uses RotD50 (Boore 2010) horizontal component definition 

for both the “directivity” and “no directivity” cases. 

 

Figure 3.7 The Youngs and Coppersmith (1985) stochastic model to describe the 

earthquake recurrence in PSHA runs. The minimum magnitude, Mmin, is always 

considered as Mw 5 in the probabilistic earthquake scenarios. The characteristic 

magnitude, Mch, is determined from the mean Mw estimated from the empirical 

Mw vs. RA relationship in (Wells and Coppersmith 1994). 

The comparative plots in Figure 3.6 indicate similar spectra for the “no directivity” 

case. The observed discrepancies are within tolerable ranges and can be the attributes 
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of different modeling perspectives. The observed similarity in the spectral estimates 

of “no directivity” can be explained by previous research (e.g., Abrahamson et al. 

2008; Gregor et al. 2014) that advocate similar trends in conventional GMPMs 

provided that the hazard is dominated by large magnitudes. The negligible difference 

between GMRotI50 and RotD50 horizontal component definitions (Boore 2010) is 

the other supporting factor for the similar spectra in the “no directivity” case. The 

spectral amplitudes as well as the spectral amplifications by SHB11 is larger with 

respect to CHS13, which can be attributed to the fault-normal spectral amplitude 

estimations of this model. In fact, Figure 3.8 shows the variation of forward-

directivity spectral amplifications for different pulse orientation angles (0≤≤90; 

see Error! Reference source not found.b) at Site 9 by SHB11. Figure 3.8 indicates 

that the difference in forward-directivity spectral amplitudes can reach up to 50% to 

60% between the strike-parallel ( = 0) and strike-normal ( = 90) pulse 

orientation. This observation brings forward the importance of horizontal component 

definition while addressing the directivity effects on the spectral amplitudes. This 

issue is partially addressed by Huang et al. (2008). 

 

Figure 3.8 Variation of forward-directivity spectral amplifications as a function of 

 (alpha) at Site 9 for the fictitious PSHA scenario considered in Figure 3.6. 

Figure 3.6 also indicates that SHB11 reaches its maximum at T  4.0s that is close to 

the median Tp for a characteristic earthquake of Mw 7.2 (Shahi and Baker 2011; Shahi 

2013). (This period is called as Tmax throughout the text because Tp is a log-normally 
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distributed random variable in the PSHA runs that use SHB11 directivity model - 

Figure 3.2). The spectral amplification factors estimated by SHB11 are less sensitive 

to the fault-site geometry with respect to CHS13 because the variation of 

amplifications from one site to the other are not as significant as in the case of CHS13 

(bottom row panels in Figure 3.6). CHS13 does not estimate any spectral 

amplification due to directivity at site 8 because PP = 0. The directivity 

amplifications by CHS13 are quite prominent at Site 10 that is slightly beyond the 

fault’s right end whereas SHB11 estimates maximum directivity amplifications at 

Site 9 that is located at the right end of the subject fault. Previous studies (Schmedes 

and Archuleta 2008; Spudich and Chiou 2008) showed that the maximum directivity 

amplifications occur within the ends of the fault due to stronger directivity as the 

distance the rupture travels is longer. Thus, the observed spectral amplification 

estimates by CHS13 as well as SHB11 are consistent and they display physically 

justifiable patterns. Nevertheless the conceptual differences in the model 

development phase between SHB11 and CHS13 are reflected on to the observed 

discrepancies in the directivity amplification. It should be noted that the directivity 

model proposed by Shahi and Baker accounts for the fault-site geometry in the 

probabilistic framework by increasing the likelihood of observing pulse occurrence 

towards the ends of the faults (e.g., Error! Reference source not found.b depicting 

pulse occurrence probability contours of SHB11 for different fault-site locations). 

CHS13, on the other hand, relies on PP that is based on the wave propagation theory 

while addressing the directivity for different fault-site patterns. Figure 3.9 further 

discusses this specific issue (pulse occurrence conditioned on fault-site geometry) to 

highlight the overall picture of modeling perspectives between SHB11 and CHS13.  

Another important observation from Figure 3.6 is the different spectral amplification 

trends between CHS13 and SHB11. Spectral amplifications by CHS13 tend to 

increase for periods up to T  4sec displaying a more stable pattern after this spectral 

period. SHB11 becomes maximum in the vicinity of the same spectral period and 

then decreases for longer periods. T  4sec is close to the median pulse period (Tp) 

for a characteristic earthquake of Mch 7.2 according to the empirical magnitude vs. 

pulse period expressions by Shahi (2013) or Shahi and Baker (2011). Tp is considered 

as log-normally distributed in the PSHA runs (Figure 3.2) per recommendations in 
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Shahi (2013) and Tmax ≈ Tp for the given case study suggests that median Tp can 

grossly describe the locus of maximum spectral amplification due to directivity for 

return periods about 2475-year. Although CHS13 does not explicitly predict the pulse 

occurrence, the isochrones theory employed by this model is consistent with pulse 

period scaling with magnitude. That’s why spectral amplifications by CHS13 show 

an increasing trend at periods close to Tp. They maintain a more stable trend for T>Tp 

as the model is not devised for the sole amplification of spectral ordinates in the 

vicinity of Tp. To distinguish the different theoretical backgrounds employed by 

CHS13 and SHB11 in this aspect, the spectral period at which the directivity-

dominant spectral amplification is maximized is called as Tcorner in CHS13. 

Figure 3.9 compares the 475-year return period spectral amplification contours of 

SHB11 and CHS13 to illustrate an overall picture about how the directivity effects 

are interpreted by these models in the probabilistic seismic hazard context. The 

illustrations are particularly useful to understand the consideration of fault-site 

geometry by SHB11 and CHS13 while addressing the directivity influence on 

spectral amplitudes. The spectral amplifications are computed for T = 4sec. The 

fictitious fault segment is a 90 dipping strike-slip fault of L = 100km with a slip rate 

(𝑠̇) equal to 2cm/year. The spectral amplification contours of SHB11 (Figure 3.9a) 

are larger than those of CHS13 (Figure 3.9b) because  = 90 is used in SHB11 to 

estimate FN spectral amplitudes as discussed in the previous paragraphs. Both models 

tend to estimate the largest directivity amplifications close to the ends of the fault 

whereas no amplification is computed by the two models at the center of the fault. 

This is consistent with the Somerville et al. (1997) model. The directivity 

amplifications of CHS13 are exclusively concentrated at the ends of the fault and they 

extend beyond the fault edges. This is inherited from the isochrone theory as 

explained while discussing the case study in Figure 3.6 as well as the theoretical 

background of this model. The directivity amplifications by SHB11 are shaped by the 

consideration of pulse occurrence probability that systematically increases towards 

the ends of the fault (e.g., Error! Reference source not found.b). Otherwise, SHB11 

would not change the spectral amplifications at equidistant sites from the fault strike. 

Note that SHB11 directivity amplifications significantly decrease for Rx/L>0.6, which 

is, again, due to the decreased probability of observing pulse occurrence at sites 
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located slightly remote from the far ends of the fault segment. Such modeling 

constraints do not exist in CHS13. 

 

Figure 3.9 475-year probabilistic spectral amplifications for forward-directivity 

computed by (a) SHB11 and (b) CHS13 (via CY14) for a fault length of L = 

100km and 𝑠̇ = 2cm/year 

Discussions on the probabilistic scenarios in Figure 3.6 and Figure 3.9 indicate that 

different narrow-band models impose different trends to describe directivity effects 

on spectral amplitudes because their theoretical backgrounds differ. SHB11 opts to 

modify traditional GMPMs for directivity effects in the vicinity of pulse period and 

they consider pulse occurrence probability to emphasize the fault-site geometry in 

directivity-dominant spectral amplifications. CHS13 applies isochrone theory to 

measure the directivity-induced amplification of an S-wave to model forward-

directivity effects. Thus, CHS13 combines source kinematics as well as the rupture 

dynamics together with the empirical data to explain forward-directivity spectral 

amplitudes whereas the models by Shahi and Baker structure the directivity effects 

using a probabilistic platform from empirical observations. The next section 

discusses the overall roles of some important seismological and geometrical 

parameters in directivity dominated spectral ordinates through the modeling 

perspectives of SHB11 and CHS13. 

3.3 Significance of Major Seismological Parameters in NFFD Spectral 

Amplitudes 

The site configuration for the probabilistic scenarios are already given in Figure 3.5. 

Five different fault lengths (L = 20km, 50km, 100km, 150km and 300km) are utilized 

that are capable of generating characteristic earthquakes with characteristic 
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magnitudes (Mch) of Mw 6.25, 6.7, 7.0, 7.2 and 7.5, respectively under full rupture 

conditions according to Wells and Coppersmith (1994) Mw vs. rupture area (Arup) 

relations. The seismogenic fault width is assumed 10km in all cases. Three different 

slip rates of 𝑠̇𝑡𝑜𝑡𝑎𝑙 = 0.5cm/year, 1.0cm/year and 2.0 cm/year are assumed to account 

for different seismic activities. These slip rates represent average seismic activities 

for the considered fictitious faults and can be referred to as the long-term slip rates. 

The characteristic earthquake recurrence model proposed in Youngs and 

Coppersmith (1985) is used (Figure 3.7) for stochastic earthquake recurrence (see 

relevant discussions in Section 3.2.3). Table 3.1 lists the slip rate decomposition of 

the exponential and characteristic earthquakes for each fictitious fault. The long-term 

slip rates ( 𝑠̇𝑡𝑜𝑡𝑎𝑙 ) are entirely dominated by the characteristic slip rates ( 𝑠̇𝑐ℎ𝑎𝑟 ) 

indicating that the forward-directivity related demands are mainly represented by the 

characteristic earthquakes. 

For each fictitious fault, PSHA was run using SHB11 and CHS13 directivity models 

and the spectral amplifications were computed at each site by normalizing “directivity 

considered” spectra with “no directivity” spectra. The spectral amplification 

computations are the same as those described in Section 3.2.3. The “no directivity” 

spectra are computed using BA08 (counterpart of SHB11) and CY14 with PP = 0 

(counterpart of CHS13).  

Given a set of Rx/L, T/Tmax (for SHB11) and T/Tcorner (for CHS13) ratios, Figure 3.13 

and Figure 3.11 show the non-exceedance probabilities of spectral amplifications 

(i.e., P(Af≤amp) computed from SHB11 and CHS13, respectively. The presented 

non-exceedance probabilities are actually count statistics and are obtained from the 

discrete cumulative densities of Af for each directivity model. Given a specific Rx/L 

and T/Tmax (or T/Tcorner in the case of CHS13) each cumulative density plot is 

computed from the spectral amplifications at 7 sites located between 0km≤ Ry≤ 30km 

(Figure 3.5). Since each site contains 5 spectral amplifications resulting from the 

PSHA runs of 5 fictitious faults, the cumulative density plots are computed from 35 

spectral amplification points. They can show the influence of the fault-site geometry 

(as a function of Rx/L), T/Tmax (or T/Tcorner) and the slip rate on directivity dominant 

spectral intensities. The cumulative densities (CDFs) in the first three rows show the 

475-year return period spectral amplifications whereas the last three rows show the 
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same cumulative densities for 2475-year return period. Hence, the plots in Figure 

3.10 and Figure 3.11 also describe the importance of mean annual exceedance rate 

(or return period) for directivity dominated spectral amplifications.  

 

Table 3.1 Decomposition of average slip rates for the exponential and characteristic 

earthquakes represented by the stochastic earthquake recurrence model used in the 

fictitious fault segments 

 L = 20 km / Mch 6.25 L = 50 km / Mch 6.7 

𝒔̇𝒕𝒐𝒕𝒂𝒍 
(cm/yr) 

Exponential 

5.0≤Mw≤6.0 

Characteristic 

6.0<Mw≤6.5 

Exponential 

5.0≤Mw≤6.45 

Characteristic 

6.45<Mw≤6.95 

𝒔̇𝒆𝒙𝒑 𝒔̇𝒄𝒉𝒂𝒓 𝒔̇𝒆𝒙𝒑 𝒔̇𝒄𝒉𝒂𝒓 

0.5 0.024 0.476 0.0278 0.4722 

1.0 0.050 0.950 0.0556 0.9444 

2.0 0.099 1.901 0.1112 1.8888 

 L = 100 km / Mch 7.0 L = 150 km / Mch 7.2 

𝒔̇𝒕𝒐𝒕𝒂𝒍 
(cm/yr) 

Exponential 

5.0≤Mw≤6.75 

Characteristic 

6.75<Mw≤7.25 

Exponential 

5.0≤Mw≤6.95 

Characteristic 

6.95<Mw≤7.45 

𝒔̇𝒆𝒙𝒑 𝒔̇𝒄𝒉𝒂𝒓 𝒔̇𝒆𝒙𝒑 𝒔̇𝒄𝒉𝒂𝒓 

0.5 0.0292 0.4708 0.0298 0.4702 

1.0 0.0584 0.9416 0.0597 0.9403 

2.0 0.1168 1.8832 0.1194 1.8806 

 L = 300 km / Mch 7.5 

 

𝒔̇𝒕𝒐𝒕𝒂𝒍 
(cm/yr) 

Exponential 

5.0≤Mw≤7.25 

Characteristic 

7.25<Mw≤7.75 

𝒔̇𝒆𝒙𝒑  𝒔̇𝒄𝒉𝒂𝒓  

0.5 0.0305  0.4695  

1.0 0.0611  0.9389  

2.0 0.1221  1.8779  

 

The 475-year CDFs in Figure 3.10 indicate the prominence of slip rate in directivity 

dominant spectral amplitudes by SHB11 because the non-exceedance probabilities 

are sensitive to the variations in slip rate for the directivity dominant sites 

(0.25≤Rx/L≤ 0.5). The slip rate, however, becomes less important for 2475-year 

directivity-based spectral amplifications in SHB11. The directivity effects are 

minimum in SHB11 at Rx/L = 0.7 (sites remotely located from the ends of the fault) 

for both 475-year and 2475-year return periods (more visible in 475-year CDFs). This 

specific feature of SHB11 is related to pulse occurrence probability that becomes 

fairly small at large Rx/L that is already discussed in the case studies in Section 3.2.3 

(Figure 3.6 and Figure 3.9). The non-exceedance probabilities in Figure 3.10 also 

suggest higher spectral amplifications for T ≥Tmax especially for directivity dominant 

cases according to SHB11 (i.e., 0.25≤Rx/L≤0.5). 
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Figure 3.10 Non-exceedance probabilities (cumulative density functions) of 

directivity spectral amplifications according to Shahi and Baker (2011) directivity 

model given a range of Rx/L, T/Tmax and average slip rate. First three rows show 

the probabilities for the 475-year return period. The last three rows pertain to the 

2475-year return period probabilities 

 

Contrary to the observations in SHB11, the CDFs by CHS13 presented in Figure 3.11 

suggest independency of the forward-directivity spectral amplifications on slip rate 

for both the 475-year and 2475-year return periods. Besides, the spectral 

amplifications in Figure 3.11 are significant for sites located along Rx/L = 0.5 and 

Rx/L = 0.7. The large non-exceedance probabilities at Rx/L = 0.7 by CHS13 are 

exactly the opposite of SHB11. This observation is not surprising because CHS13 
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considers the directivity related spectral amplifications only for regions extending 

beyond the fault ends (i.e., Rx/L≥0.5; see Figure 3.9b and relevant discussions). That’s 

why the directivity related spectral amplifications are barely significant for Rx/L=0.25 

in CHS13 (first and fourth row CDFs in Figure 3.11). As in the case of SHB11, 

CHS13 directivity-based spectral amplifications are larger for T≥Tcorner. Note that 

spectral amplifications by SHB11 are larger than those computed from CHS13 that 

can partially originate from the different horizontal component definitions by the two 

models. SHB11 spectral amplifications are computed by normalizing FN directivity 

spectra by GMRotI50 no directivity spectra. CHS13 computes spectral amplifications 

from directivity and no directivity spectral ratios of RotD50 horizontal component 

definition. The 2475-year spectral amplifications are larger than those of 475-year 

spectral amplifications for the SHB11 directivity model whereas CHS13 spectral 

amplifications are almost insensitive to return period. 

The period-dependent variations of directivity spectral amplifications are presented 

in Figure 3.12 for different fault lengths (L = 100km, 150km, 300km) for a slip rate 

of 𝑠̇𝑡𝑜𝑡𝑎𝑙 = 2.0cm/year. The spectral amplifications represent a hazard level of 2475-

year return period. Given a fault length, the period-dependent forward-directivity 

spectral amplifications in each panel are plotted for the entire site distribution (i.e., 

42 sites as shown in Figure 3.5) that are displayed in light gray color. In order to 

underline the variation of spectral amplifications for fault-site geometries along 

perpendicular and parallel directions to the fault strike, the median period-dependent 

spectral amplifications for constant Rx/L (Rx/L = 0, 0.25, 0.5, 0.6, 0.7, 0.8) and Ry (Ry 

= 0km, 5km, 10km, 15km, 20km, 25km and 30km) are also shown. The spectral 

amplifications of 7 sites located along the same Rx/L are used to compute the median 

spectral amplifications for a given Rx/L. Similarly, the median spectral amplification 

for a specific Ry is computed from the spectral amplifications of 6 stations located 

along the same Ry. The first two columns in Figure 3.12 show the median spectral 

amplitude variations for constant Ry computed from SHB11 (first column) and 

CHS13 (second column) for the fault lengths of L = 100km (1st row), L = 150km (2nd 

row) and L = 300km (3rd row). The last two columns display the same median spectral 

amplitude variations for constant Rx/L. The changes in fault length (affecting the 

characteristic magnitude) as well as the fault-site geometry (in terms of Rx/L and Ry) 
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are important to understand the sensitivity of directivity-dominated spectral 

amplifications against these two parameters. 

 

 

Figure 3.11 Same as Figure 3.10 but the forward-directivity model is Chiou and 

Spudich (2013; Chapter 6 in Spudich et al., 2013) implemented in Chiou and 

Youngs (2014) GMPM 

One can make interesting observations from Figure 3.12. Firstly, there is a clear 

difference between the period-dependent spectral amplification shapes estimated 

from the SHB11 and CHS13 directivity models. This difference is already discussed 

in Section 3.2.3 under specific probabilistic scenarios. The SHB11 spectral 

amplifications shows a steep increase until a peak. This is followed by a decrease 

with a steep slope. The CHS13 spectral amplifications also increase until a maximum 
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but this trend is milder with respect to SHB11. The increase in spectral amplifications 

follows either a stable trend or a slight reduction that can even be neglected compared 

to the steep decreasing trends observed in SHB11.  

 

Figure 3.12 Period-dependent 2475-year forward-directivity spectral 

amplifications estimated by SHB11 and CHS13 for PSHA scenarios of fault 

lengths L = 100km (top row), L = 150km (middle row) and L = 300km (bottom 

row) having 𝑠̇𝑡𝑜𝑡𝑎𝑙 = 2.0cm/year. The first two columns show mean spectral 

amplifications of SHB11 (first column) and CHS13 (second column) for sites 

located at a constant Ry and the last two columns show mean spectral 

amplifications of SHB11 (third column) and CHS13 (fourth column) for sites 

located at a constant Rx/L 

The locus of maximum spectral amplifications for both directivity models shift 

towards longer periods as the fault length increases. The increase in fault length is 

associated with a larger Mch (discussed in the previous paragraphs) that eventually 

yields longer periods (Tmax or Tcorner) where directivity-dominant spectral 

amplifications are maximized. Since SHB11 relies on the pulse occurrence 

probability (Section 3.2.1 and Figure 3.2), Tmax is inherently related to Tp due to the 

relation between magnitude and pulse period (Alavi and Krawinkler 2004; Shahi 

2013; Somerville 2003). CHS13 does not explicitly consider pulse period occurrence 
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but the isochrone theory recaps the Tp effect so Tcorner approximates Tmax. However, 

the directivity-based spectral amplification trends differ between CHS13 and SHB11 

for differences underlying the background theory of each model. The probabilistic 

case studies presented in this study suggest that Tmax or Tcorner can be approximated 

by the median Tp of empirical pulse period relationships for 475-year and 2475-year 

return periods.   

The forward-directivity spectral amplifications are inversely proportional to Ry: the 

median amplifications are maximum at on-fault sites (Ry = 0km) and they decrease 

as Ry increases. However, the fault length seems to be prominent on Ry dependent 

median spectral amplifications because increase in fault length reduces the difference 

between the median spectral amplifications of consecutive Ry values. This 

observation is more noticeable in CHS13: the differences between the median 

spectral amplifications of two consecutive Ry values for L = 300km fault are almost 

negligible with respect to the same median trends of L = 100km fault. This 

phenomenon may suggest that the directivity dependent spectral amplifications at 

some equidistant sites from the fault strike decrease drastically with the increase in 

fault length. In other words, sites located at identical Ry would be subject to 

significant variation in the directivity dependent spectral amplifications depending 

on the fault length.  

The directivity spectral amplifications have a more intricate relationship with Rx/L. 

The investigated directivity models behave differently against variations in this 

parameter. The median spectral amplifications along Rx/L = 0.5 and Rx/L = 0.6 are 

estimated to be the maximum by SHB11. These two locations represent the fault ends 

where the pulse occurrence is more likely according to SHB11, which essentially 

promotes larger directivity spectral amplifications. SHB11 advocates Rx/L = 0.25 as 

another potential location for large spectral amplifications and, in fact, Rx/L = 0.25 

becomes as critical as the fault ends for the ruptures occurring on large fault lengths 

(represented by L = 300km in this study). SHB11 gives almost no credit for 

directivity-based spectral amplification for sites remotely located from the fault ends 

(represented by Rx/L = 0.8 in the case studies). The directivity spectral amplifications 

by CHS13 show a more complicated pattern. CHS13 estimates large spectral 

amplifications at the sites located along and beyond the fault ends (i.e., Rx/L≥0.5). 
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However, the increase in the fault length decreases the possibility of observing large 

spectral amplifications at sites remotely located from the fault ends (Rx/L≥0.7). In 

contrast to SHB11, this directivity model does not give any credit to sites located 

along Rx/L = 0.25 for directivity based spectral amplifications. 

3.4 Spatial Extension of Directivity Dominated Sites (Regions) in the Fault 

Vicinity 

The discussions in the previous sections indicate the significance of the fault length 

(hence the characteristic earthquake generated by the fault that also puts forward the 

importance of Tmax or Tcorner), the slip rate as well as the return period in NFFD 

spectral amplifications. The fault-site geometry brings additional complexity to the 

directivity dominated spectral amplifications that further invokes the constraints 

imposed by the different directivity models. However, one can still develop some 

practical rules to delineate the directivity-dominated regions within the ruptured fault 

segment by making use of the probabilistic scenarios discussed throughout this study. 

These rules would be expressed in terms of the aforementioned seismological and 

geometrical parameters. Figure 3.13 and Figure 3.14 show the spatial distribution of 

directivity based spectral amplifications for SHB11 and CHS13, respectively. They 

are compiled from the entire set of probabilistic scenarios considered in this study. 

Both figures display the maximum spectral amplifications in the vicinity of Tmax or 

Tcorner (dependent of fault length thus the characteristic earthquake magnitude) for the 

475-year (top 5 panels) and the 2475-year (bottom 5 panels) return periods. Each 

column in the figures represents a specific slip rate (first column - 𝑠̇𝑡𝑜𝑡𝑎𝑙=0.5cm/year, 

second column - 𝑠̇𝑡𝑜𝑡𝑎𝑙=1.0cm/year, third column - 𝑠̇𝑡𝑜𝑡𝑎𝑙=2.0cm/year). The five rows 

for each return period represent the PSHA results of the fault lengths L = 20km, 50km, 

100km, 150km and 300km.  

The panels in Figure 3.13 and Figure 3.14 show the overall influence of the slip rate, 

the fault length and the return period on the directivity spectral amplifications. They 

also suggest the existence of a spatial distribution pattern for the spectral 

amplifications to delineate the directivity affected sites. The geometry of the spatial 

distribution pattern of the directivity affected region as well as the level of spectral 

amplifications enclosed by this region is directivity model dependent.  
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Figure 3.15 shows the proposed geometry for each directivity model to idealize the 

spatial distribution of the directivity-affected regions for spectral amplifications 

greater than 1.1. In other words, the regions enclosed by the proposed geometrical 

shape possess a spectral amplitude of 1.1 or above. Table 3.2 lists the proposed rules 

to establish the geometrical shapes for SHB11 and CHS13 in terms of the slip rate, 

the return period and the fault length. 

 

 

Figure 3.13 The spatial distribution of the forward-directivity spectral 

amplifications by SHB11 in terms of the return period, slip rate and the fault 

length (thus the characteristic earthquake magnitude) 
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Figure 3.14 The spatial distribution of the forward-directivity spectral 

amplifications by CHS13 in terms of the return period, slip rate and the fault 

length (thus the characteristic earthquake magnitude) 

The proposed geometry for SHB11 suggests perpendicular fault distances (Dy1 and 

Dy2) ranging between 10km to 20km for the strike-normal extension of directivity 

dominated regions in 475-year spectral amplifications. Dy2 can exceed 30km for fault 

lengths of 150km and above for the 2475-year spectral amplifications. SHB11 

imposes a wide perpendicular distance coverage from the fault strike for directivity-

dominated regions that tends to increase towards the edges of the fault (Figure 3.15, 

left panel). SHB11 suggests the extension of directivity effects beyond the fault edges 
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for horizontal distances (Dx) of 20% to 30% fault length. Dx can attain even larger 

values (i.e., Dx>0.3L) for the relatively shorter faults (L≤50km) in particular for the 

2475-year spectral amplifications. 

The geometry to define directivity-dominated regions draws a simpler pattern for 

CHS13 because this model lumps the directivity effects at the edges of the faults 

(Figure 3.15, right panel). The directivity effects generally commence in the last 

quarter length of the fault (Dx1) and they extend beyond the fault edges by 30% of 

fault length (Dx2) regardless of the slip rate and the return period. The perpendicular 

fault distance (Dy) ranges from 5km to 30km (and even larger for the long faults and 

the 2475-year return period) from one side of the fault strike. 

 

Figure 3.15 Simplified geometries to highlight the directivity affected regions in 

the ruptured fault vicinity for directivity spectral amplitudes greater than 1.1. Left 

panel: SHB11, Right panel: CHS13 

Table 3.2 Proposed rules for (a) SHB11 and (b) CHS13 to define the spatial 

distribution of directivity affected spectral amplifications within the fault 

(a) SHB11 
475 year Dx* Dy1* Dy2* 

FL SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 

L = 20km 0.2L >0.3L >0.3L 5km 10km 10km 10km 15km 15km 

L = 50km 0.2L 0.3L >0.3L 10km 10km 10km 15km 15km 15km 

L = 100km 0.2L 0.2L 0.2L 10km 10km 10km 15km 20km 20km 

L = 150km 0.2L 0.2L 0.2L 10km 10km 10km 20km 30km >30km 

L = 300km 0.2L 0.2L 0.2L 20km 20km 20km >30km >30km >30km 

2475 year Dx* Dy1* Dy2* 

FL SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 

L = 20km >0.3L >0.3L >0.3L 10km 15km 15km 15km 15km 20km 

L = 50km >0.3L >0.3L >0.3L 15km 15km 15km 20km 20km 20km 

L = 100km 0.3L 0.3L 0.3L 15km 15km 15km 25km 30km 30km 

L = 150km 0.3L 0.3L 0.3L 15km 15km 15km >30km >30km >30km 

L = 300km 0.2L 0.2L 0.2L 25km 25km 25km >30km >30km >30km 
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Table 3.2 (Continued) 

(b) CHS13 

475 year Dx1* Dx2* Dy* 

FL SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 

L = 20km 0.50L 0.50L 0.50L 0.3FL 0.3L 0.3L 5km 5km 5km 

L = 50km 0.25L 0.25L 0.25L 0.3FL 0.3L 0.3L 15km 15km 15km 

L = 100km 0.25L 0.25L 0.25L 0.3FL 0.3L 0.3L 25km 25km 25km 

L = 150km 0.25L 0.25L 0.25L 0.3FL 0.3L 0.3L 30km 30km 30km 

L = 300km 0.25L 0.25L 0.25L 0.2FL 0.2L 0.2L 10km 30km >30km 

2475 year Dx1* Dx2* Dy* 

FL SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 SR=0.5 SR=1.0 SR=2.0 

L = 20km 0.50L 0.50L 0.50L 0.3L 0.3L 0.3L 5km 5km 5km 

L = 50km 0.25L 0.25L 0.25L 0.3L 0.3L 0.3L 15km 15km 15km 

L = 100km 0.25L 0.25L 0.25L 0.3L 0.3L 0.3L 30km 30km 30km 

L = 150km 0.25L 0.25L 0.25L 0.3L 0.3L 0.3L >30km >30km >30km 

L = 300km 0.25L 0.25L 0.25L 0.2L 0.2L 0.2L >30km >30km >30km 

* Refer to Figure 3.15 for the definition of geometrical parameters 

3.5 Summary and Conclusion  

This chapter investigated the influence of some seismological and geometrical 

parameters on the spatial distribution and the amplitude variation of directivity 

dominated elastic spectral amplitudes by using the directivity models by Shahi and 

Baker (2011) (SHB11) and Chiou and Spudich (CHS13;(Spudich et al. 2013; Chiou 

and Youngs 2014)). SHB11 and CHS13 are narrow-band directivity models utilizing 

different approaches to consider spectral amplitude modifications for directivity 

dominant waveforms at sites relatively closer to the ruptured fault segment. SHB11 

uses a probabilistic framework and computes the exceedance probabilities of spectral 

ordinates by convolving the occurrence probabilities of pulses with the “pulse 

observed” and the “no pulse observed” cases. The fault-site geometry in SHB11 

accounts for the orientation of the incident pulselike waveform with respect to the 

fault strike (). The pulse occurrence probability is also related to fault-site geometry 

in SHB11. CHS13 is based on the DPP predictor that accounts for the fault-site 

geometry to physically explain the directivity effects. Given a site, CHS13 considers 

the forward-directivity effect by measuring the offset between the site-specific DPP 

and the average DPP computed from the equidistant sites surrounding the ruptured 

fault segment. It does not explicitly consider the pulse occurrence or orientation of 
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incident pulselike waveform with respect to the fault strike. SHB11 is calibrated by 

using BA08 whereas CHS13 is integrated with CY14 to address the directivity effects 

for elastic spectral amplitudes. Shahi and Baker (2011) state that SHB11 can equally 

be applicable to any other conventional GMPM whereas CY14 tailored CHS13 as 

part of its functional form via regression analysis. 

The observations made from this study rely on the probabilistic earthquake scenarios 

of strike-slip faults. They can be useful for the explicit consideration of the directivity 

effects in the future seismic design codes. The following conclusive remarks 

constitute the major outcomes of this study.  

 SHB11 and CHS13 estimate the largest spectral amplifications in the vicinity 

of spectral periods that are called as Tmax and Tcorner, respectively. These 

periods shift towards longer spectral intervals with increasing characteristic 

earthquake magnitude, Mch (thus, longer fault length). SHB11 relies on the 

occurrence of pulses, hence Tmax is eventually related to Tp that is a function 

of Mw. CHS13 uses isochrone theory and it does not rely on pulse occurrence 

but accounts for the relation between magnitude and Tp. Thus, Tcorner is 

correlated to pulse period but it would be inappropriate to make a direct 

comparison between these concepts. For the return periods of interest (475-

year and 2475-year), median Tp can fairly represent Tmax and Tcorner. 

 Period-dependent spectral amplifications by SHB11 show a steep increase 

until the maximum spectral amplification is reached in the vicinity of Tmax. 

This trend is followed by a decrease with a steep slope. The spectral 

amplifications by CHS13 also increase until a maximum in the vicinity of 

Tcorner. Contrary to spectral amplifications estimated by SHB11, they almost 

fluctuate about the maximum for T >Tcorner.  

 Spectral amplifications of SHB11 are larger than those of CHS13 that can be 

partially explained by the differences in their horizontal component 

definitions. Fault-normal horizontal component metric is used in SHB11 

while considering the forward-directivity effects. CHS13 inherently uses 

RotD50 horizontal component definition in the computation of directivity 

dominated spectral amplifications.  
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 SHB11 is sensitive to the variations in slip rate while estimating the directivity 

dominated spectral amplifications. Its influence seems to be more prominent 

for smaller return-period spectral amplifications (475-year return period in the 

case studies). The variations in the slip rate do not significantly affect the 

spectral amplifications of CHS13.  

 Longer return periods result in larger spectral amplifications due to forward-

directivity for SHB11. This observation is barely significant for CHS13. 

 SHB11 estimates large spectral amplifications for sites between 

0.25≤Rx/L≤0.5. The effect of directivity vanishes after Rx/L = 0.7. The 

directivity spectral amplifications of CHS13 are concentrated between 

0.5≤Rx/L≤0.7. The observed differences in the spectral amplification locations 

along the fault strike originate from theoretical backgrounds of SHB11 and 

CHS13 for the consideration of fault-site geometry in directivity 

phenomenon. The directivity-based spectral amplifications by CHS13 are 

inherited from the isochrone theory that maximizes the directivity effect 

towards and beyond the fault edges. SHB11 uses pulse occurrence 

probabilities that are larger at the fault ends and amplify spectral ordinates in 

the vicinity of corresponding pulse period.   

 Fault length (L) is an important parameter in the observed spectral 

amplifications. Larger fault lengths reduce the significance of perpendicular 

fault distances (designated by Ry in this study) in forward-directivity spectral 

amplifications. In other words, the difference between the spectral 

amplifications of two consecutive Ry values decreases as the fault length 

increases.  

 The spatial distribution of directivity affected sites are dependent on the slip 

rate, return period and the fault length. The first two parameters are 

particularly effective in the directivity dominated spatial distribution patterns 

suggested by SHB11. The directivity affected sites can exceed 30km in the 

fault normal direction. One can observe significant directivity dominated 

spectral amplifications within 60km radial distance from the fault ends for 

2475-year return period and for fault lengths of L≥150km.  
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CHAPTER 4 

 

 

 A PROPOSED RELATIONSHIP BETWEEN DIRECTIVITY AND 

NONDIRECTIVTY SPECTRAL AMPLITUDES FOR MAXIMUM 

DIRECTION  

 

 

 

 

4.1 Introduction 

The orientation of horizontal ground-motion components can affect the spectral 

demand level. This phenomenon is referred to as “directionality” that reflects the 

effect of ground-motion polarization on the spectral amplitude variation at different 

orientations. Since ground-motion predictive models (GMPMs) represent the spectral 

effects of two horizontal ground-motion components as a single component, they 

employ a variety of horizontal component definitions among which the geometric 

mean (GM), GMRotI50 (Boore et al., 2006), RotD50 (Boore, 2010) (Table 4.1) are 

the most popular in recently developed GMPEs. Notwithstanding, many researchers 

tend to focus on the strike-normal component of horizontal ground-motions to 

address the high spectral demands in directivity dominant ground motions (Huang et 

al., 2008).  

The horizontal component definition, in particular the directivity, becomes even more 

important since recent seismic design codes such as ASCE/SEI 7-10 (ASCE, 2010), 

the 2009 and 2015 editions of NEHRP provisions (BSSC, 2009; 2015) built their 

design strategies for maximum direction. This is because the earthquake spectral 

demands resulting from the geometrical mean of two horizontal components 

(geomean of horizontal components) are lesser with respect to those determined from 

the maximum direction (i.e., the direction corresponding to maximum of rotated 

horizontal components; SaRotD100). Since structures will have different levels of 

resistance at different orientations, their design that is based on the maximum 
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direction of horizontally rotated components sounds a reasonable strategy to many 

engineers. This strategy could be particularly relevant for structural systems having 

symmetry in all directions (known as azimuth-independent structures). 

Many studies in the literature address the directionality issue to harmonize the 

horizontal component definitions. For example, Beyer and Bommer (2006) provide 

a suite of expressions to convert one horizontal component definition to the other. Of 

those definitions, they propose empirical expressions to convert GMRotI50 to 

maximum of horizontally rotated component (RotD100) without making any 

distinction between near-fault and far-fault recordings. Hong and Goda (2007) define 

a model to estimate the spectral demands at any desired azimuthal angle from 

SaRotD100. Huang et al. (2008) seek relationships between geomean-based 

(GMRotI50) and maximum direction horizontal component definitions for near-fault 

records. Shahi and Baker (2014) propose horizontal-component conversion 

expressions between RotD50 and RotD100 without making any classification about 

directivity and non-directivity records.  

The directionality becomes even more important when directivity effect is of concern 

for sites close to the ruptured fault segment. As discussed in the previous chapter, 

directivity models such as the one proposed by Chiou and Spudich (Spudich et al., 

2013) evaluates the directivity effects by considering the RotD50 horizontal 

component definition. In other words, Chiou and Spudich directivity model 

intermediates between SaRotD50 and SaRotD50directivity (SaRotD50 component when 

directivity is dominant). In a similar manner, the Shahi and Baker (2011) directivity 

model modifies the GMPEs estimating geomean-based (i.e., GMRotI50) spectrum 

for arbitrary orientations relative to fault strike. This study uses the Shahi and Baker 

(2011) directivity model to compute the directivity spectral amplifications for strike-

normal horizontal component (see discussions in Chapter 5). As there is no specific 

scaling model to understand the relation between directivity and no-directivity 

SaRotD100 (i.e., SaRotD100directivity vs. SaRotD100nodirectivty -or simply SaRotD100-), the 

directivity amplification expressions developed from Shahi and Baker (2011) 

directivity model cannot be assessed for its use to represent SaRotD100,directivity in code-

based approaches. Note that a relationship between SaRotD100directivity vs. 

SaRotD100nodirectivty would also be useful to understand the level of additional 
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amplification to scale SaRotD50directivity to SaRotD100directivity. Currently, CALTRANS 

(2013) recommends a 20% increase in SaRotD50directivity to mimic SaRotD100directivity. 

This chapter aims to establish a relationship between SaRotD100directivity vs. 

SaRotD100nodirectivty in order to respond to the discussions posed in the previous 

paragraph. In other words, the relationship established between SaRotD100directivity and 

SaRotD100nodirectivty would be useful to see if the directivity spectral amplification 

expressions developed for SN horizontal component from SHB11 directivity model 

is sufficient while addressing SaRotD100directivity for seismic guidelines. The next section 

describes the horizontal component metrics for establishing the terminology and then 

explains the database as well as the methodology while developing the relationship 

between SaRotD100directivity and SaRotD100nodirectivty. The expressions developed in this 

chapter would also be useful to assess the suggestions by CALTRAN (2013) to obtain 

SaRotD100directivity from SaRotD50directivity. 

4.2 Horizontal Component Definitions 

The early versions of ground-motion predictive models use the spectral ordinates of 

(a) both “as recorded” horizontal components (referred to as random horizontal 

component metric) or (b) the maximum of spectral ordinate of “as recorded” 

horizontal components (referred to as maximum horizontal component metric). Later, 

the model developers have started to use either the arithmetic mean or geometric 

mean of “as recorded” horizontal ground motions as the ground-motion component 

metric. These metric definitions, however, disregard the ground motion orientation 

in component definition and they depend on the orientation of the recording device 

(Boore et al, 2006). In recent years, there is a growing effort among the engineering 

seismology and earthquake engineering community to surmount these drawbacks by 

adopting different horizontal component metrics that can reflect the ground-motion 

characteristics at different orientations. This is also important for describing 

earthquake demands in seismic design. The importance of an efficient horizontal 

component definition is more evident in highly polarized records (e.g., forward-

directivity records at which one of the horizontal components are under the influence 

of a strong pulse). Component definitions such as geometric mean would certainly 

fail to capture the polarization effect, as it would simply take the arithmetic average 
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of the two horizontal components in the logarithmic domain. An example of a highly 

polarized ground-motion record is given in Figure 4.1.a: Rolleston station recording 

from the 24 September 2010 Mw7.1 Darfield earthquake (Bradley and Baker, 2015). 

As depicted from this figure, the oscillator displacements of two mutually 

perpendicular horizontal axes at T= 2.0s show a strong polarization in the NW-SE 

directions (120-300 axis). 

 

Figure 4.1 (a) Illustration of polarization by plotting the displacement response 

of horizontal components at T = 2s for at the Rolleston station from the 24 

September 2010 Mw7.1 Darfield earthquake), (b) Sa values at T = 2.0s obtained 

by rotating the horizontal ground-motion components at 0≤≤179 (Bradley 

and Baker 2015) 

Boore et al. (2006) proposed GMRotDpp and GMRotIpp horizontal component 

metrics that are independent of sensor orientations. Given a set of spectral periods, 

these component metrics are based on a set of geometric means at each spectral period 

computed from “as recorded” orthogonal horizontal motions rotated through all 

possible non-redundant rotation angles. Here, “GM” refers to the geometric mean of 
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horizontal spectral ordinates at the designated spectral periods, “RotD” or “RotI” 

indicate rotation-dependency or rotation-independency as a function of spectral 

period and “pp” describes the designated percentile from the distribution of spectral 

ordinates at a given period at non-redundant rotation angles. In GMRotIpp, the most 

common rotation angle that minimizes the spread of the rotation-dependent geometric 

mean is chosen from the considered period range in the spectrum calculations. 

Boore (2010) introduces RotDpp and RotIpp that represent the ppth fractile of rotated 

horizontal ground motions at non-redundant rotation angles without computing 

geometric means. The computation of horizontal ground motion for RotDpp or 

RotIpp is given in equation (4.1).  

𝑂𝑆𝐶(𝑡, 𝜃) = 𝑂𝑆𝐶1(𝑡) ∙ cos 𝜃 + 𝑂𝑆𝐶2(𝑡) ∙ sin 𝜃 4.1 

The variable OSC(t,) is the resultant horizontal ground-motion vector at angle  

computed from the mutually perpendicular horizontal ground-motion components of 

OSC1(t) and OSC2(t). The angle  is the rotation angle measured from the horizontal 

axis along OSC1 and t refers to time. Given a period T, one can compute the spectral 

ordinates for non-redundant angles 0≤≤179 and select the ppth fractile from the 

populated spectral ordinates at all angles. In case pp = 50, the corresponding spectral 

value is the median spectral amplitude (probability of exceedance is 50%) whereas if 

pp = 100, the corresponding spectral value is the maximum of all rotated components 

(and the corresponding direction is maximum direction) because the probability of 

exceedance is 0%. As in the case of GMRotDpp, RotDpp indicates rotation-

dependent spectral ordinates in terms of period whereas RotIpp is rotation-

independent spectral ordinates for the period of concern in the spectrum 

computations. In other words, the analyst selects the rotation angle such that the 

variation of rotation angles is minimum along the entire period range at the pre-

selected fractile, pp for RotIpp component metric. 

Figure 4.1b graphically illustrates the differences between geometric mean of “as 

recorded” components (SaGM) together with SaRotD100, SaRotD50 as well as the 

orientation dependency (SaRot) of spectral ordinates at T = 2s for the recording given 

in Figure 4.1a. Note that SaRotD100 occurs at about  = 120 whereas SaRotD50 occurs 

at about  = 70. The variation of spectral ordinates is significant in terms of rotation 

angle .  
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Table 4.1 Definitions of horizontal component metrics 

Horizontal Parameter Definition 

As recorded 

The orientation of the recording instruments is 

commonly arbitrary with respect to the fault 

alignment (very often north–south and east–west) 

and is generally not correlated to the orientation of 

nearby faults 

Geometric Mean 

Geometric mean of spectra of x and y components  

𝑆𝑎𝐺𝑀𝑥𝑦(𝑇𝑖) =  √𝑆𝑎𝑥(𝑇𝑖)  ∙  𝑆𝑎𝑦(𝑇𝑖)  

FN and FP 
Fault-normal and fault-parallel components with 

respect to fault-strike 

GMRotDpp 

This component definition accounts for the random 

orientation of the horizontal axis system by 

choosing, at each response period, the ppth 

percentile of the geometric mean from all possible 

orientations (Boore et al. 2006) 

GMRotIpp 

This ground-motion measure is an approximation 

of GMRotDpp with a constant axis orientation for 

all periods, which minimizes the sum of differences 

between GMRotIpp and GMRotDpp over all 

considered periods (Boore et al. 2006) 

RotDpp 

This component is a measure of horizontal-

component seismic intensity that represent any 

fractile in a consistent way with GMRotDpp 

without computing geometric means but yet still 

independent of the in situ orientations of the 

recorded ground motions (Boore 2010) 

RotIpp 

This ground-motion measure is an approximation 

of RotDpp with a constant axis orientation which is 

the most representative of the SaRotDnn spectrum 

over all considered periods (Boore 2010) 
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As indicated, for this specific period (T = 2s), the maximum direction spectral 

acceleration occurs when   120 but this angle would be different for the rest of the 

spectral periods. In passing, it should be noted that the fault-normal and fault parallel 

component definitions are frequently used in the literature to emphasize some 

important features of the directivity-dominated ground motions. As already described 

in the previous chapters, fault normal is perpendicular to the azimuthal strike of the 

ruptured fault plane whereas fault parallel is the component along the azimuthal strike 

of the ruptured fault. Table 4.1 lists the definitions of horizontal component metrics 

discussed in this section. 

4.3 Ground-motion Data Set 

The ground-motion database used in this study is a subset of PEER (Pacific 

Earthquake Research Center) NGA-West2 database (http://ngawest2.berkeley.edu; 

Ancheta et al. (2014)). The ground motions with 6.0<Mw<8.0 and Rrup<30km are 

selected from the PEER NGA-West2 database for pulselike and non-pulse cases. The 

magnitude range covers the characteristic magnitudes considered in this study. The 

distance range of these records is also consistent with the distance interval of interest 

(i.e., Ry≤30km). The basic premise about non-pulse recordings is that they mainly 

represent the backward directivity phenomenon whereas the pulselike ground 

motions in the dataset are recordings of forward-directivity. The studies by Baker 

(2007) and Shahi and Baker (2014) are used while determining the pulselike 

recordings in the NGA-West2 strong-motion database. These studies determine 

pulselike records near the ruptured fault segment through wavelet analysis and use a 

set of criteria such as pulse indicator index being greater than 0.85, occurrence of 

impulsive signals at the beginning of ground-velocity waveform and amplitudes of 

peak ground velocities greater than 30 cm/s. (Already stated in Chapter 3). A total of 

58 non-pulse and 113 pulselike ground-motions are compiled for the designated 

magnitude and distance intervals. The pulselike records used in this study are also 

used by Shahi (2013) to develop the directivity model (SHB13) discussed in Chapter 

3.  

http://ngawest2.berkeley.edu/
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Figure 4.2 Magnitude versus distance distribution of (a) pulselike and (b) non-pulse 

ground motions for different styles of faults (dip-slip and strike-slip) 
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Strong motion recordings that exhibit unequal durations in their horizontal 

components or recordings from very soft soil conditions (VS30<140m/s) as well as 

those having VS30>900m/s are disregarded in the database. The accelerograms with 

unequal durations are disregarded as SaRotD100 spectral computations require 

acceleration time series with equal lengths. SaRotD100 spectrum is required in the 

derivation of proposed spectral amplification factor between maximum direction 

pulselike and non-pulse horizontal ground motions. Very soft and hard rock records 

are also disregarded because the proposed spectral amplification factor is established 

from a limited number of ground-motion records and a dataset showing large VS30 

variations may yield biased spectral amplifications in terms of soil conditions. The 

current VS30 interval (140m/s<VS30<800m/s) of the dataset represents stiff soil 

conditions and the proposed amplification factor would be suitable for this VS30 

interval. Figure 4.2 shows the magnitude vs. distance distributions of pulselike 

(Figure 4.2a) and non-pulse (Figure 4.2b) records. The scatters use different color 

codes for dip-slip (normal and reverse) and strike-slip records. The pulselike records 

display a fairly uniform Mw vs. Rrup distribution for Rrup<15km. The non-pulse 

records are sparse and lack uniformity in terms of Mw and Rrup. Appendix C lists the 

pulselike and non-pulse ground motions with their important features. 

As discussed in Chapters 2 and 3, Somerville et al. (1997) is one of the first systematic 

studies to distinguish the general features of directivity dominated pulselike ground 

motions. The Somerville et al. (1997) forward-directivity model makes use of some 

fault-site geometry parameters to identify the important properties of directivity-

dominated ground. These parameters are length ratio for strike-slip faults, X; a width 

ratio for dip-slip faults, Y; an azimuth angle between the fault plane and ray path to 

site for strike-slip faults, ; and a zenith angle between the fault plane and ray path to 

the site for dip-slip faults, . (See relevant discussions in Chapter 2). These 

parameters are still used to identify the directivity dominated (pulselike) recordings 

(e.g., Huang et al., 2008). According to Somerville et al. (1997) (a) Xcos() or 

Ycos() is greater than 0.5 in the forward-directivity region, and for Mw>6.5 and for 

T>0.6s the geomean spectral demands of directivity dominated records are larger than 

those estimated from the conventional GMPEs, (b) for Mw>6 and T>0.5s, strike-
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normal (SN or fault-normal; FN) spectral demands are, on average, greater than the 

strike-parallel (SP or fault parallel; FP) spectral demands when  or  is less than 45.  

 

Figure 4.3 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by 

considering the  = 45 criterion as the boundary between pulselike and non-pulse 

strike-slip recordings. The red solid lines show the average of pulselike and non-

pulse SN/SP ratios. 

 

Figure 4.3 compares the SN-to-SP (SN/SP) spectral ratios of strike-slip pulselike and 

non-pulse datasets at T = 2s, 3s, 4s and 5s by considering the second observation of 

Somerville et al. (1997). The pulselike recordings are those having ≤45 and the 

non-pulse recordings are designated by >45. The panels in Figure 4.3 also show 

the average of SN/SP spectral ratios (𝑆𝑁/𝑆𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅) for pulselike and non-pulse records. 

The SN/SP pulselike records attain larger values that is also certified by their larger 

mean (i.e., 𝑆𝑁/𝑆𝑃̅̅ ̅̅ ̅̅ ̅̅ ̅) with respect to non-pulse recordings. Figure 4.4 displays the 
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same comparison for dip-slip (i.e., normal and reverse faults) recordings. The same 

observations are also valid for this case: SN/SP spectral ratios of pulselike ground 

motions exhibit larger values with respect to those of non-pulse records. 

 

Figure 4.4 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by 

considering the  = 45 criterion as the boundary between pulselike and non-pulse 

dip-slip recordings. The red solid lines show the average of pulselike and non-pulse 

SN/SP ratios. 

 

Figure 4.5 and Figure 4.6 further validate the above remarks by implementing the 

first observation of Somerville et al. (1997) to data in hand. This time the SN/SP 

spectral ratios at T = 2s, 3s, 4s and 5s are compared between pulselike and non-pulse 

records by making use of Xcos = 0.5 (strike-slip) and Ycos = 0.5 border (dip-slip). 

The pulselike SN/SP spectral ratios are populated in the Xcos ≥ 0.5 (stike-slip 

events; Figure 4.5) or Ycos ≥ 0.5 regions (dip-slip events; Figure 4.6). As expected, 

these figures also depict larger SN/SP ratios for pulselike recordings.  
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The discussions in this section suggest that the compiled pulselike and non-pulse 

recordings follow the observations made by Somerville et al. (1997) that is a one of 

the renown studies in the literature to identify the distinctive features of directivity-

dominated ground motions. Thus, these recordings can be used in confidence to 

develop the empirical modification factors to estimate the maximum rotated 

horizontal component for directivity effects (RotD100directivity). The following 

sections describe the methodology followed to reach this objective. 

 

 

Figure 4.5 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by 

considering the Xcos() = 0.5 criterion as the boundary between pulselike and non-

pulse strike-slip recordings. The red solid lines show the average of pulselike and 

non-pulse SN/SP ratios. 
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Figure 4.6 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by 

considering the Ycos() = 0.5 criterion as the boundary between pulselike and non-

pulse dip-slip recordings. The red solid lines show the average of pulselike and non-

pulse SN/SP ratios. 

4.4 Conceptual Discussions on RotD100directivity 

In recent years, several studies have proposed conversion factors to estimate the 

maximum rotated horizontal component of ground motions (RotD100) from an 

arbitrary horizontal component definition. (In fact, most of the time the proposed 

conversion factors aim to convert geomean type horizontal components - 

GMRotI50). This is because the specification of maximum direction ground motions 

(i.e., RotD100), referred to as directionality, gains popularity in seismic design codes 

(ASCE, 2010; BSSC 2009; 2015). The studies by Beyer and Bommer (2006), 

Campbell and Bozorgnia (2008) and Huang et al. (2008) proposed conversion factors 

to estimate maximum rotated horizontal spectral acceleration component (SaRotD100) 
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from GMRotI50 spectral acceleration (SaGMRotI50). These studies use the SaRotD100 to 

SaGMRotI50 ratios from observed ground-motion data to propose their empirical 

conversion factors. The 2009 NEHRP provisions (FEMA P-750; BSSC, 2009) also 

propose similar conversion factors that are based on the studies of Huang et al. 

(2008). Shahi and Baker (2014) propose a conversion factor that scales SaRotD50 

component for the maximum rotated component (SaRotD100). Shahi and Baker (2014) 

use the scaling factors provided by Boore (2010) to modify their conversion 

expression (i.e., SaRotD100/SaRotD50) to (SaRotD100/SaGMRotI50). The later study 

investigates the relation between SaRotD50 and SaGMRotI50 indicating that, on average, 

there are slight differences between the spectral amplitudes of these two horizontal 

component definitions and the differences are insignificant for many engineering 

studies. Hence, these two conversion factors (i.e., SaRotD100/SaRotD50 and 

SaRotD100/SaGMRotI50) can be assumed the same without losing significant accuracy. 

Figure 4.7 compares different conversion models proposed for SaRotD100/SaGMRotI50 

ratio. Note that the 2015 NEHRP provisions (FEMA P-1050; BSSC, 2015) still use 

the same scaling factors of the 2009 edition of NEHRP provisions to convert geomean 

horizontal component definitions for maximum rotated component.  

 

Figure 4.7 Comparison of different scaling (conversion) models proposed for 

SaRotD100/SaGMRotI50 ratio 
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The curves by Campbell and Bozorgnia (2007), Beyer and Bommer (2006), and 

Shahi and Baker (2014) follow very similar trends as given in Figure 4.7 because 

these conversion models blend the near-fault and far-fault records in the same 

ground-motion dataset. The 2009 edition of NEHRP curve is a compromise between 

Huang et al. (2008) “all earthquakes” and “no Chi-Chi” cases. Note that the Huang 

et al. (2008) curves are developed from near-fault recordings but they are classified 

into different bins including (a) those of forward-directivity dominant ground 

motions, (b) all near-fault recordings in the database, and (c) near-fault ground 

motions excluding those of the 1999 Chi-Chi, Taiwan earthquake. That’s why the 

curves by Huang et al. (2008) follow a different path with respect to other conversion 

models. As a matter of fact, the Huang et al. (2008) “forward-directivity” conversion 

factor imposes significantly larger values with respect to the other models since it 

combines the directivity as well as directionality effects in a single curve. In other 

words, the “forward-directivity” conversion factors by Huang et al. (2008) establish 

a relationship between the geomean horizontal component and the maximum 

direction horizontal component including forward-directivity. It should be noted that 

the curves presented in Figure 4.7 display median conversion values whereas the 

compared models also provide the 84th percentile curves to account for ground-

motion variability.   

The comparative plots in Figure 4.7 indicate the lack of an intermediate relationship 

between SaRotD100 and directivity-dominated maximum-direction spectral amplitudes 

(SaRotD100directivity). The significance of directivity-dominated spectral demands for 

maximum rotated component is emphasized by Bradley and Baker (2015) by 

studying the directivity-dominated ground motions of the 2010 Canterbury 

earthquake. Huang et al. (2008) estimate the maximum rotated component for 

forward-directivity effects (RotD100directivity) from a geomean horizontal component 

definition (GMRotI50). The same study indicates the similarity between SN 

horizontal component spectral demands (SaFN) and SARotD100 (maximum rotated 

component spectral demands) at sites very close to the ruptured fault segment 

(Rrup<3km) when forward-directivity conditions are met. However, this assertion 

loses its validity as rupture distance increases even if the directivity effects are still 
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prominent. Thus, a conversion factor between the spectral demands of maximum 

rotated component (SaRotD100) and maximum rotated component dominated by 

directivity (SaRotD100,directivity) would have practical implications for code-based 

spectrum development. In essence, this chapter provides this model by taking the 

ratios of spectral demands of RotD100 horizontal component between pulselike and 

non-pulse recordings. This is given in Equation 4.2. 

𝐴𝐹𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑆𝑎𝑅𝑜𝑡𝐷100𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑆𝑎𝑅𝑜𝑡𝐷100𝑛𝑜𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 4.2 

Note that the spectral demands of maximum rotated component dominated by 

directivity can be computed from Equation 4.3. 

𝑆𝑎𝑅𝑜𝑡𝐷100,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑆𝑎𝑅𝑜𝑡𝐷50 ∙ 𝐴𝐹𝑅𝑜𝑡𝐷100  ∙  𝐴𝐹directivity 4.3 

where AFRotD100 can be the directionality conversion factor proposed by Shahi and 

Baker (2014) or it could be the conversion factor by Beyer and Bommer (2006) if 

RotD50 spectral demands are assumed to be the same as GMRotI50 spectral 

demands. In fact, the next chapter presents directivity amplification expressions for 

strike-normal spectral demands from the Shahi and Baker (2011) narrow-band 

directivity model by modifying the GMRotI50 elastic spectrum. Thus, comparisons 

of AFRotD100∙AFdirectivity with the proposed model in the next chapter would lead to 

useful observations about (a) directivity models presented in this chapter and the next 

chapter as well as their implications on code spectrum for directivity effects, and (b) 

the similarity (as well as validity) between SN and maximum rotated component 

spectral demands under directivity dominant cases. The next chapter also develops 

an alternative directivity amplification equation for SaRotD50directivity by considering the 

Chiou and Spudich (2013) directivity model. Thus, the developed AFdirectivity 

expression can be useful to understand the level of difference between SaRotD50directivity 

and SaRotD100directivity. This is again a topic considered in the next chapter. 

4.5 Proposed Model for Calculation of RotD100directivity 

The database presented in Section 4.3 is used for the computation AFdirectivity. The 

dataset is divided into different bins considering different magnitude and distance 

intervals. The bins are generated whenever the number of data (either in pulselike or 

non-pulse ground-motion groups) are greater than 4. This limitation is necessary 
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since the ratio expression given in Equation (4.2) is developed from the median 

spectrum computed from each bin. Average statistics determined from a small 

number of data would be dubious for computing reasonable spectral amplifications.  

Table 4.2 lists the ground-motion bins, the number of data in each bin as well as their 

magnitude and distance intervals. In brief, the ground-motion bins are classified into 

two broad magnitude bins (6.0<Mw<7.0 and 7.0<Mw<8). The bins having close 

distance (Rrup<15km) recordings are the majority. There is one pulselike and non-

pulse ground-motion bin pair from the larger magnitude interval (7.0<Mw<8.0) 

representing recordings of distances between 15km<Rrup<30km. The sparse data do 

not allow a rupture-mechanism (dip slip vs. strike-slip) type classification in the 

computation of AFdirectivity. 

 

Table 4.2 Classification of the records for different magnitude, distance and site 

class ranges and the related subgroups 

Moment 

Magnitude 

Rrup 

(km) 

Number of 

pulselike records 

Number of non-

pulse records 

6.0< Mw<7.0 0 <Rrup< 5 23 6 

6.0< Mw<7.0 5<Rrup< 10 29 36 

6.0< Mw<7.0 10<Rrup< 15 8 5 

7.0< Mw<8.0 0< Rrup<15 37 4 

7.0< Mw<8.0 15< Rrup<30 16 7 

 

The median spectral amplitudes (log mean of spectral amplitudes) as well as 

SaRotD100directivity and SaRotD100nondirectivity spectra of individual ground motions in the 

ground-motion bins listed in Table 4.2 are given in Figure 4.8 and Figure 4.9, 

respectively. Note that no attempt is made to eliminate some of the outlier spectral 

variations since data is quite limited. These outlier spectral shapes are considered as 

the cases showing intricate nature of the ground motions and in a way depict record-

to-record variability.  

The median ratio curves (medians of SaRotD100directivity to SaRotD100nodirectivity from 

pulselike and non-pulse bin pairs) are displayed in Figure 4.10. Larger spectral 

amplifications due to directivity are observed at closer sites independent of magnitude 

(i.e., AFdirectivity values of 6<Mw<7, 0km<Rrup<5km are the largest with respect to all 
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other amplification values). Although vague, in general, the AFdirectiviy variations 

show an increasing trend up to a certain spectral period that is followed by a more 

stable trend towards longer periods. This trend is similar to the one observed from 

Chiou and Youngs (2013) narrow-band directivity model. (See discussions on 

CHS13 directivity model held in Chapter 3 as well as Chapter 5). 

 

Figure 4.8 SaRotD100directivity (from pulselike records) spectral amplitudes of 

individual ground motions of the bins given in Table 4.2 
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Figure 4.9 SaRotD100nodirectiviy (from non-pulse records) spectral amplitudes of 

individual ground motions of the bins given in Table 4.2 

The aforementioned observation is violated only by the AFdirectivity curve of 7<Mw<8 

and 0km<Rrup<15km bin that follows a spectral amplification trend similar to SHB11 

narrow-band directivity model. (See discussions on CHS13 directivity model held in 

Chapter 3 as well as Chapter 5). However, this analogy can be considered as weak 

and it would be difficult to justify because it is the only AFdirectivity curve showing a 

trend comparable to SHB11 narrow-band directivity model and, yet, the gradient of 
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descending branch (after T ≈ 7s) is very slow with respect to those of SHB11 model 

presented in Chapters 3 and 5. Given the sparse data in the considered database, the 

shape-wise similarity in SHB11 and AFdirectivity curve for the 7<Mw<8 and 

0km<Rrup<15km bin is coincidental. 

 

Figure 4.10 AFdirectivity curves computed from median SaRotD100directivity to 

SaRotD100nodirectivity ratios of the ground-motion bins presented in Table 4.2 

For comparison purposes, the same exercise is repeated for 

SaRotD50directivity/SaRotD50nodirectivity using the same ground-motion bins presented in 

Table 4.2. The RotD50 spectra for directivity and nodirectivity bins are given in 

Figure 4.11 and Figure 4.12, respectively. These plots also display the mean 

logarithmic spectrum of each ground-motion bin as well. The log-mean 

SaRotD50directivity/SaRotD50nodirectivity ratios are presented in Figure 4.13. Note the 

significant similarity between these spectral ratios and those presented in Figure 4.10 

(log-mean SaRotD100directivity/SaRotD100nondirectivity ratios). The observed similarity 

between the spectral ratios for different horizontal component definitions requires 

further investigation and may suggest that the pulselike and non-pulse ground-motion 

databases as well as the ratio computations have some specific implications. This 

topic would be discussed later in the last section of Chapter 5. 
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Figure 4.11 SaRotD50directivity (from pulselike records) spectral amplitudes of 

individual ground motions of the bins given in Table 4.2. The solid black lines 

are the log-mean (median) spectral curves of each bin. 
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Figure 4.12 SaRotD50nodirectiviy (from non-pulse records) spectral amplitudes of 

individual ground motions of the bins given in Table 4.2. The solid black lines 

are the log-mean (median) spectral curves of each bin 
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Figure 4.13 Median SaRotD50directivity to SaRotD50nodirectivity ratios computed by 

normalizing the median SaRotD50directivity spectrum of each pulse-like ground-

motion bin in Table 4.2 with the corresponding median SaRotD50nodirectivity spectrum 

of non-pulse ground-motion bin 

4.6 Summary and Conclusion  

This chapter emphasizes the significance of directionality in response spectrum 

computations and investigates the relationship between directivity and nondirectivity 

spectral amplifications for maximum direction (RotD100) (i.e., AFdirectivity = 

SaRotD100directivity/SaRotD100nodirectivity). A specific dataset is compiled from pulselike and 

non-pulse ground motions having magnitudes between 6<Mw<8 and rupture 

distances up to Rrup = 30km. The rupture mechanisms of the compiled ground motions 

are either dip-slip or strike-slip whereas VS30 values used as an indicator for site 

conditions range between 140m/s<VS30<900m/s. The non-pulse data resemble 

backward directivity phenomenon and pulselike data represent directivity-dominated 

earthquake scenarios. To this end, RotD100 spectral ratios of pulselike and non-pulse 

records populated under different magnitude and distance intervals would yield a 

first-order approximation on spectral amplitude variations along maximum direction 

between directivity-dominated and nondirectivity near-source recordings. The 

AFdirectivity ratios computed under these conditions for earthquake scenarios (or 

magnitude and distance intervals) given in Table 4.2 are presented in Figure 4.10. 

Note that for very close distances to the ruptured fault segment (Rrup<5km), the 
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AFdirectivity ratios exhibit significantly large values (AFdirectivity ≈ 6.5 for T>2s even if 

the magnitude range is between 6<Mw<7).  

 

Figure 4.14 Median of SaRotD100directivity to SaRotD100nodirectivity ratios presented in 

Figure 4.10 

In fact, Figure 4.14 shows the period-dependent median variation of AFdirectivity curves 

given in Figure 4.10 for an overall idea about the directivity-dominated spectral 

amplification along maximum direction. Table 4.3 lists the period dependent 

variation of this median curve.  

As indicated above, the proposed relationships are developed from a limited number 

of data that may pose questions about the reliability of the presented results. They do 

not reveal any explicit information about fault-site geometry as discussed in Chapter 

3. Besides the magnitude and distance intervals are quite large. Moreover, the median 

SaRotD50directivity/SaRotD50nodirectivity ratios (Figure 4.13) that are computed for the same 

ground-motion bins are very similar to those of SaRotD100directivity/ SaRotD100nodirectivity. 

The observed similarity can be an indicator of some specific features in the compiled 

pulselike and non-pulse ground-motion bins that are reflected on the the ratio 

statistics. This topic will be discussed in the last section of Chapter 5.  

Nevertheless, to the best knowledge of the author, this type of relationship 

(SaRotD100directivity/ SaRotD100nodirectivity) is presented for the first time in the literature. 

Essentially, this first-order relationship can serve to understand the level of spectral 

amplification for compound effects of directionality (along maximum direction) and 

directivity. The discussions in this section are also useful to see the limits of 
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directivity amplifications that are developed from SHB11 describing the relation 

between directivity-dominated fault normal to nondirectivity geomean type 

horizontal spectra. (See details in Chapter 5). 

 

Table 4.3 Period-dependent variation of SaRotD100directivity to SaRotD100nodirectivity 

ratios presented in Figure 4.14 

Period (s) Median of SaRotD100 ratio 

0 1.25 

0.01 1.25 

0.02 1.22 

0.03 1.16 

0.04 1.17 

0.05 1.11 

0.075 1.00 

0.1 1.01 

0.12 1.07 

0.15 1.08 

0.17 1.08 

0.2 1.08 

0.25 1.29 

0.3 1.37 

0.4 1.34 

0.5 1.61 

0.75 1.44 

1 1.96 

1.5 2.55 

2 2.43 

3 3.14 

4 3.56 

5 4.15 

7.5 4.47 

10 4.51 
 

 

Another useful relation that can be developed from the compiled pulselike and non-

pulse ground-motion bins is the period-dependent RotD100/RotD50 ratios of 

pulselike and non-pulse records. These ratios are given in Figure 4.15 (for pulselike 

bins) and Figure 4.16 (for non-pulse bins). Figure 4.17 shows the median curves of 

the ground-motion bin specific ratios given in Figures 4.15 and 4.16. The presented 

median curves can be a first-order modification factor for CHS13-based directivity 

spectral amplifications (see Chapter 5) because, as it is already stated in Chapter 3, 
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CHS13 model yields spectral amplifications between SaRotD50directivity and 

SaRotDnodirectivity whereas the median directivity amplification presented in Figure 4.17 

can rescale SaRotD50directivity for SaRotD100directivity. Table 4.4 lists the median 

amplification curves presented in Figure 4.17. 

 

 

Figure 4.15 RotD100 to RotD50 spectral amplitude ratios for the pulselike bins in 

Table 4.2 

 

 

Figure 4.16 RotD100 to RotD50 spectral amplitude ratios for the nonpulse bins in 

Table 4.2 
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Table 4.4 Period-dependent variation of SaRotD100 to SaRotD50 ratios presented in 

Figure 4.17 

Period 

(s) 

Median of  

RotD100 to RotD50  

for pulselike 

 

 

Median of  

RotD100 to RotD50  

for nonpulse 

RotD100 to RotD50 0 1.1861 1.1978 

0.01 1.1861 1.1985 

0.02 1.1895 1.1972 

0.03 1.1787 1.1859 

0.04 1.1816 1.2051 

0.05 1.1974 1.2056 

0.075 1.1803 1.1726 

0.1 1.1887 1.2142 

0.12 1.2161 1.1898 

0.15 1.2016 1.2272 

0.17 1.2210 1.2239 

0.2 1.2031 1.1992 

0.25 1.2348 1.2001 

0.3 1.2204 1.1913 

0.4 1.2538 1.2576 

0.5 1.2400 1.1796 

0.75 1.2419 1.2357 

1 1.2446 1.2431 

1.5 1.2853 1.2088 

2 1.2496 1.2683 

3 1.3039 1.2728 

4 1.2984 1.2730 

5 1.3210 1.2552 

7.5 1.2835 1.2756 

10 1.2942 1.2672 
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Figure 4.17 Medians of RotD100 to RotD50 spectral ratio curves computed from 

pulselike (Figure 4.15) and non-pulse (Figure 4.16) bins 
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CHAPTER 5 

 

 

 AMPLIFICATION MODELS FOR FORWARD-DIRECTIVITY 

 

 

 

5.1 Introduction  

In Chapter 3 the effects of some salient seismological parameters such as slip rate 

and fault characteristic magnitude on directivity dominant spectral amplifications are 

investigated. In addition, the influence of target hazard level (mean annual 

exceedance rate or return period) as well as source-site geometry are studied to 

address the variations in spectral ordinate amplifications under directivity. The 

observations show that the above parameters play important roles on the directivity 

dominated spectral amplifications but different narrow-band models (SHB11 and 

CHS13 in this case) consider their affects at different levels. SHB11 is sensitive to 

all of the above parameters to describe the forward-directivity dominated spectral 

amplitudes whereas CHS13 model is influenced by the characteristic magnitude and 

source-site geometry while estimating spectral amplifications for directivity.  

Based on the findings and observations of Chapter 3, the expressions for directivity 

amplification are proposed in this chapter for their direct incorporation to elastic 

response spectrum. The important point about the proposed expressions is their level 

of complexity. In other words, the expressions proposed here are kept simple enough 

to facilitate their implementation to seismic design codes with a balance of preserving 

their effectiveness and efficiency in predicting the directivity dominated spectral 

amplification factors. 

In order to show how a model can be very complex, SHB11 narrow-band model is 

used to propose two alternative forward-directivity spectral amplification expressions 

for 475-year and 2475-year return periods. The complicated expressions developed 

from SHB11 also showed the approach to develop the simpler formulations. Of the 

two alternative SHB11 based expressions, the simpler one is compared with another 
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formulation developed from the CHS13 narrow-band model to comprehend how 

different narrow-band directivity models describe the spectral amplifications due to 

directivity. A similar discussion already takes place in Chapter 3 while highlighting 

the influence of seismological and geometrical parameters in directivity dominated 

spectral amplitudes. However, this time the comparisons are focused on the 

implications of different narrow-band directivity models on the design spectrum.  

5.2 Complex Nature of Forward-directivity Spectral Amplification 

The forward-directivity spectral amplification is affected by a set of geometrical and 

seismological parameters as discussed in Chapter 3. The major objective in this 

chapter is to propose spectral amplification expressions for directivity that can 

represent the variations in elastic spectral ordinates under different directivity 

scenarios. However, the contribution of several seismological and geometrical factors 

(used as estimator parameters in the proposed expressions) to describe the directivity-

dominated spectral amplifications makes it difficult to propose a simple amplification 

model. Besides, the interaction (correlation) between these parameters may 

complicate the nature of proposed expressions. As an example, the fault characteristic 

magnitude not only changes the spectral amplification amplitudes due to directivity 

but also affects the period range where spectral amplifications become maximum 

(discussed in Section 3.3). In order to address and illustrate the complexity of the 

directivity-dominated spectral amplifications a set of equations is developed from 

SHB11 narrow-band model by considering all the contributing seismological and 

geometrical parameters. The expressions for estimating the spectral amplifications 

due to directivity are developed from the normalized spectral ordinates: given a 

specific return period directivity dominated spectral ordinates (Sadirectivity) are 

normalized with their counterparts that disregard the directivity (Sano-directivity). In 

other words, the developed expressions in this section as well as in the rest of this 

chapter estimate Sadirectivity/Sano-directivity ratio. Although the earthquake scenarios used 

in the calculations of Sadirectivity/Sano-directivity are already given in Table 3.1, they are 

repeated here for convenience. Five different fault lengths (FL = 20km, 50km, 

100km, 150km and 300km) with a constant fault width (FW=10km) to represent five 

different characteristic magnitude (Mch 6.25, 6.7, 7.0, 7.2 and 7.5) together with three 
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slip rates ( 𝑠̇=0.5cm/year, 1.0cm/year and 2.0cm/year) corresponding to different 

levels of seismic activity are used to establish the aforementioned earthquake 

scenarios. The probabilistic seismic hazard computations are run over 42 sites that 

are spatially distributed around the fault to address the influence of source-site 

geometry on Sadirectivity/Sano-directivity. The proposed spectral amplification expressions 

in this section consider the variation of all of the above estimator parameters as 

explained in the following.  

5.2.1 A Comprehensive 475-year Return Period Spectral Amplification 

Expression from the SHB11 Narrow-band Model 

As stated in Chapter 3 the directivity-dominated spectral amplifications become 

maximum at sites located close to the edges of the faults in SHB11 model. This 

behavior results in a bilinear trend for the spectral amplification curves along the fault 

strike direction (designated by Rx/L in Chapter 3). The spatial distribution of the sites 

around the fault used in this study is illustrated here once again (Figure 5.1) for 

convenience together with the boundary regions highlighted with red boxes. These 

boundary regions are used in the development of spectral amplification expressions 

for 475-year return period.  

 

Figure 5.1 Spatial distribution of sites around the fictitious fault and the sites 

located in the boundary region enclosed by red rectangles 

As an example to directivity-dominated bilinear spectral amplification trends along 

Rx/L, Figure 5.2 shows the amplification curves (Sadirectivity/Sano-directivity) at different 

spectral periods for sites located 15km away from the fault in Ry direction (the sites 
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along the green line as shown in Figure 5.1). The depicted amplification curves 

correspond to an earthquake scenario of FL = 100km and 𝑠̇ = 1cm/year. 

 

Figure 5.2 Bilinear trend for directivity-dominated spectral amplifications along 

fault strike, Rx/L, direction for a suit of spectral periods (FL = 100km, 𝑠̇ = 

1.0cm/year, Ry=15km) 

As it can be seen in Figure 5.2, the maximum spectral amplifications due to forward-

directivity are observed at sites located along Rx/L = 0.5 and the amplification curves 

follow a bilinear trend between the the sites located in the boundary regions. The 

level of spectral amplifications is sensitive to spectral period that is proportional to 

pulse period, Tp, in SHB11 (see relevant discussions in Chapter 3). For example, in 

this specific earthquake scenario, the characteristic magnitude is Mch 7 since 

FL=100km that corresponds to a pulse period of (Tp)  4sec. Eventually directivity 

originated spectral amplifications are mostly maximized at T = 4sec in Figure 5.2. 

This observation is common in most of the earthquake scenarios studied in this thesis 

under SHB11 narrow-band directivity model. In fact, Figure 5.3 shows the 475-year 

return period maximum Sadirectivity/Sano-directivity spectral amplification values that are 

populated from all earthquake scenarios generated under different combinations of 

fault length and slip rate at sites located 10km from the fault strike in Ry direction 

(the sites along the blue line as shown in Figure 5.1). (Side note: maximum spectral 
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amplification corresponds to the spectral period at which Sadirectivity/Sano-directivity is 

maximum for a specific earthquake scenario that is dictated by fault length, slip rate, 

etc). As it can be seen in this figure the majority of maximum spectral amplifications 

due to directivity occur at sites located on Rx/L = 0.5. These observations justify the 

use of a bilinear functional form to express the directivity-dominated spectral 

amplifications for SHB11 narrow-band model. 

The bilinear trends discussed in the previous paragraphs require two functional forms 

to describe the spectral amplifications at two regions: 0<Rx/L<0.5 and 0.5<Rx/L<0.8. 

The maximum spectral amplifications at the sites located inside the boundary regions 

(i.e., shown with red boxes in Figure 5.1 and they are located on Rx/L = 0 and Rx/L 

= 0.5) are used to develop the maximum spectral amplification equations for sites 

enclosed by these regions (Equations 5.1and 5.2). For sites located between these 

boundary regions (0<Rx/L<0.5 or 0.5<Rx/L<0.8), the maximum spectral 

amplifications are calculated from linear interpolation as given in Equation 5.3. 

 

Figure 5.3 Maximum amplification values and location of the sites which 

experience the maximum value 

 

𝐴𝑀𝑃
(
𝑅𝑥
𝐿
=0,𝑅𝑦,𝑇)

= 𝑎01 + 𝑎11. 𝑅𝑦 + 𝑎21. 𝑇 + 𝑎31. 𝑇
2 + 𝑎41. 𝑅𝑦. 𝑇 5.1 

𝐴𝑀𝑃
(
𝑅𝑥
𝐿
=0.5,𝑅𝑦,𝑇)

= 𝑎02 + 𝑎12. 𝑅𝑦 + 𝑎22. 𝑇 + 𝑎32. 𝑅𝑦
2 + 𝑎42. 𝑇

2 + 𝑎52. 𝑅𝑦. 𝑇

+ 𝑎62. 𝑅𝑦
2. 𝑇 + 𝑎72. 𝑅𝑦. 𝑇

2 + 𝑎82. 𝑅𝑦
2. 𝑇2 

5.2 
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𝐴𝑀𝑃
(
𝑅𝑥
𝐿
,𝑅𝑦,𝑇)

= 2 × (
𝑅𝑥

𝐿
) × [𝐴𝑀𝑃

(
𝑅𝑥
𝐿
=0.5,𝑅𝑦,𝑇)

− 𝐴𝑀𝑃
(
𝑅𝑥
𝐿
=0,𝑅𝑦,𝑇)

]

+ 𝐴𝑀𝑃
(
𝑅𝑥
𝐿
=0,𝑅𝑦,𝑇)

 
0 <

𝑅𝑥

𝐿
< 0.5 5.3a 

𝐴𝑀𝑃
(
𝑅𝑥
𝐿
,𝑅𝑦,𝑇)

=
(
𝑅𝑥
𝐿
) − 0.5

0.3
× [1 − 𝐴𝑀𝑃

(
𝑅𝑥
𝐿
=0.5,𝑅𝑦,𝑇)

]

+ 𝐴𝑀𝑃
(
𝑅𝑥
𝐿
=0.5,𝑅𝑦,𝑇)

 

0.5 <
𝑅𝑥

𝐿
< 0.8 5.3b 

As discussed throughout the text as well as in Sections 3.3 and 3.4, the directivity 

dominated spectral amplifications are functions of the spectral period (T), Ry, Rx/L 

and the slip rate values. The characteristic magnitude (that is proportional to fault 

length) also determines the period range that maximum spectral amplifications occur. 

(Characteristic magnitude, Mch, is closely related to pulse period, Tp, for SHB11 as 

discussed in Chapter 3). Therefore, the developed amplification equations (Equations 

5.1 to 5.3) are dependent on these parameters (spectral period (T), Ry, Rx/L and slip 

rate and Mch) for the sites located along the first and second boundary regions (i.e., 

along Rx/L=0 and Rx/L=0.5). Regarding the discussions in Section 3.4 (Figure 3.13 

and Table 3.2) the directivity-dominated spectral amplifications at sites located along 

Rx/L = 0.8 can be taken as unity. Limited to the case studies in this study, directivity 

amplifications are either insignificant or they do not exist at or beyond Rx/L = 0.8. 

The coefficients of Equation 5.1 (Rx/L = 0) and Equation 5.2 (Rx/L = 0.5) are 

computed from the regression analysis on the maximum spectral amplifications that 

are extracted from the entire set of earthquake scenarios generated within the context 

of this thesis (discussed and presented in Section 3.3). These coefficients are given in 

Table 5.1 and Table 5.2. The general form of the spectral amplification expression 

that can be used for all sites located around the fault is shown in Equation 5.3. The 

first part of this expression (Equation 5.3a) gives the directivity-dominant spectral 

amplifications for sites located between 0< Rx/L≤0.5 and the second part (Equation 

5.3b) gives the directivity-dominant spectral amplifications for sites located between 

0.5< Rx/L≤0.8. 

The residuals that show the differences between the spectral amplifications calculated 

from PSHA (observed) and Equations 5.1 to 5.3 (estimated) are shown in Figure 5.4. 

This basic statistical measure reveals information about the existence of bias in the 

estimated spectral amplifications. Any apparent trend in the mean residuals indicate 
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the existence of bias in the estimated spectral amplifications against a specific 

estimator parameter.  The residual trends are shown for Rx/L, Ry and the spectral 

periods respectively. Mean and mean ± standard deviation of the residuals are also 

given in these figures (as error bars) to envisage the possibility of bias in the estimated 

spectral amplifications for directivity. The plots show that the mean values of the 

residuals are either zero or they are close to zero. This is consistent with the 

theoretical expectations because residuals are expected to be normally distributed 

zero mean varieties. The standard deviations of residuals show a dependency on the 

selected estimator parameters (i.e., Rx/L, Ry and T).  

 

 

Table 5.1 Coefficients of the directivity dominant spectral amplifications of 

Equation (5.1) for sites located along Rx/L = 0 

Characteristic 

Magnitude 

Slip Rate 

(cm/year) 
a01 a11 a21 a31 a41 

Mch=6.25 

𝒔̇ = 0.5 1.12642 -0.00397 -0.02851 0.00146 0.00054 

𝒔̇  = 1.0 1.16436 -0.00534 -0.03444 0.00161 0.00072 

𝒔̇ =2.0 1.22046 -0.00771 -0.04034 0.00148 0.00103 

Mch=6.75 

𝒔̇ =0.5 1.06475 -0.00209 -0.01058 0.00039 0.00029 

𝒔̇ =1.0 1.07242 -0.00245 -0.01152 0.00043 0.00040 

𝒔̇ =2.0 1.12303 -0.00487 -0.01290 -0.0001 0.00058 

Mch=7.0 

𝒔̇ =0.5 1.05341 -0.00177 -0.00659 0.00025 0.00025 

𝒔̇ =1.0 1.05150 -0.00179 -0.00317 -0.00015 0.00021 

𝒔̇ =2.0 1.07892 -0.00363 0.00641 -0.00135 0.00031 

Mch=7.25 

𝒔̇ =0.5 1.05752 -0.00177 -0.00671 0.00017 0.00023 

𝒔̇ =1.0 1.04008 -0.00125 0.00165 -0.00045 0.00015 

𝒔̇ =2.0 1.03573 -0.00252 0.02337 -0.00243 0.00015 

Mch=7.5 

𝒔̇=0.5 1.07911 -0.00222 -0.01194 0.00049 0.00034 

𝒔̇=1.0 1.02404 -0.00147 0.02584 -0.00237 0.00019 

𝒔̇=2.0 0.96960 -0.00160 0.08205 -0.00628 -0.00042 
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Figure 5.4 Residuals between PSHA (observed) and the estimated directivity 

amplifications for 475-year return period 
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5.2.2 Estimating the 2475-year Return Period Spectral Amplifications from the 

Complicated Formulations Developed from SHB11 Narrow-band 

Directivity Model 

The directivity-dominant spectral amplitudes for 2475-year return period (referred to 

as Maximum Considerable Earthquake, MCE, in seismic design codes) are developed 

by modifying the corresponding expressions (Equations 5.1 to 5.3) that are valid for 

475-year return period spectral amplifications. This approach is explained in the 

following paragraphs.  

The Sadirectivity/Sano-directivity ratios are extracted for 2475-year return period from the 

PSHA runs of all earthquake scenarios. This step is similar to the one described in 

the development of directivity-dominant spectral amplification expressions for the 

475-year return period. Let this ratio be called as amp2475 (T) that is given in Equation 

5.4. Figure 5.5 presents a typical case of two spectra corresponding to Sadirectivity and 

Sano-directivity, and amp2475 (T) is essentially the ratio between these spectra. 

𝑎𝑚𝑝2475(𝑇) =
𝑆𝑎𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑇)

𝑆𝑎𝑛𝑜𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑇)
 5.4 

 

 

Figure 5.5 Normalization of 2475-year return period narrow-band spectrum to 

conventional spectrum 
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The similar amplification factors for 475-year return period can be called as 

amp475(T) that are, in fact, already computed for the entire earthquake scenarios and 

for all sites for the derivation of Equations 5.1 to 5.3 as explained in the previous 

section. In essence, the ratio between these amplification factors (i.e., 

amp2475(T)/amp475(T)) that is given in Equation 5.5 would describe the spectral 

amplification difference for the two return periods of concern when the directivity 

effects are prevalent.  

𝑁𝑅𝑀𝑎𝑚𝑝(𝑇) =
𝑎𝑚𝑝2475(𝑇)

𝑎𝑚𝑝475(𝑇)
                     0.6sec  ≤T<10sec 5.5 

The normalized spectral amplification factor (NRMamp(T)) is unity for periods less 

than 0.6s as SHB11 narrow-band directivity model inherently accounts for the 

forward-directivity effects for T≥0.6s. This is partially observed in Figure 5.5 for the 

2475-year return period sample. Figure 5.6 shows NRMamp(T) variations of 42 sites 

for two specific earthquake scenarios having different fault lengths (FL = 50km and 

FL = 100km), thus exposed to different Mch, and 𝑠̇ = 1cm/year. The plots in Figure 

5.6 include the logarithmic mean () and three different fractiles of NRMamp(T) ( 

and +2) assuming that NRMamp(T) is lognormally distributed. Note that 

NRMamp(T) is above unity almost for the entire spectral period range. The exception 

is the relatively shorter periods (T<1s) where the directivity-dominant spectral 

amplifications are almost equal to 1.0 and directivity spectral amplifications of 475-

year return period (amp475(T)) are slightly larger than those of 2475-year return 

period directivity spectral amplifications (amp475(T)). This is an inherent feature of 

the SHB11 narrow-band directivity model.  

An approach similar to directivity dominant area concept that is discussed at the end 

of Chapter 3 is used for utilizing NRMamp(T) distributions to modify the 475-year 

return period directivity spectral amplifications for the 2475-year return period. The 

region around the fault is divided into 4 regions by combining the fault-site geometry 

and NRMamp(T) distribution. For each region the NRMamp(T) distribution is 

represented by a specific value: μln(NRMamp), μ ln(NRMamp)±σ ln(NRMamp) or μ ln(NRMamp)+2σ 

ln(NRMamp). As already explained, μln(NRMamp) and σ ln(NRMamp) denote the logarithmic 

mean and logarithmic standard deviation of NRMamp(T) calculated from 42 sites 
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given a specific earthquake scenario. The next paragraphs discuss how the directivity 

dominated fault vicinity is divided into four regions. 

 

Figure 5.6 Normalized period-dependent 2475-year to 475-year directivity dominant 

spectral amplification ratios of 42 sites (grey curves) and corresponding logarithmic 

mean, sigma as well as 2sigma over logarithmic mean a) fictitious fault with 50km 

length and 𝑠̇ = 1cm/year b) fictitious fault with 100km length and  𝑠̇ = 1cm/year 

 

Figure 5.7 shows the NRMamp(T) contour maps at T = 2sec (top row) and T = 4sec 

(bottom row) for faults having 20km and 100km lengths with 1cm/year slip rate. Next 

to each contour map, the corresponding NRMamp(T) curves for 42 sites are plotted for 

T up to 10s. These curves indicate that at T = 2sec and T = 4sec, the NRMamp(T) 

values are maximized for 20km and 100km fault length earthquake scenarios, 

respectively. The contour maps of corresponding earthquake scenarios deliberately 
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display the distribution of NRMamp(T) at these periods to show the extent of 

difference between the 475-year and 2475-year directivity dominant spectral 

amplitudes. The NRMamp(T) curves also include μ, μ±σ and μ+2σ fractiles that are 

given as red lines. (Note that μln(NRMamp) and σ ln(NRMamp) are abbreviated as μ and σ, 

respectively to increase the readability of the text). The comparisons between the 

contour maps and maximum NRMamp(T) at μ, μ±σ and μ+2σ suggest that the 

directivity dominated region can be represented by four sub regions and each region 

can attain one of the NRMamp(T) fractile values: μ, μ±σ or μ+2σ. 

 

 

Figure 5.7 Comparison of NRMamp and the related contour maps for classification 

of the sites a) NRMamp vs T(sec) for FL=20km, 𝑆̇=1cm/year b) contour map of 

NRMamp for T=2.0sec  FL=20km, 𝑆̇=1cm/year c) NRMamp vs T(sec) for 

FL=100km, 𝑆̇=1cm/year d) contour map of NRMamp for T=4.0sec  FL=100km, 

𝑆̇=1cm/year 
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Inherently, the sites located on the fault have the largest NRMamp(T) (Figure 5.7). 

These on-fault sites are classified as Group 1 and μ+2σ3 value of NRMamp(T) can 

represent the amplification at these sites fairly well. The gradual decrease in 

NRMamp(T) values as depicted by the contour maps in Figure 5.7 suggest that one can 

create three additional regions (Group 2, Group 3 and Group 4) and the sites within 

the boundaries of these regions can be idealistically represented by μ+σ, μ and μ-σ 

NRMamp(T) values, respectively.  

 

Table 5.3 Geometric parameters for determination of four region boundaries 

defined for the calculation of amplifications  

Characteristic 

Magnitude 

Slip Rate 

(cm/year) 
Rx1 (km) Rx2 (km) Dy (km) 

Mw 6.25 

𝒔̇=0.5 0.3 × FL 0 10 

𝒔̇=1.0 0.3 × FL 0 10 

𝒔̇=2.0 0.3 × FL 0 10 

Mw 6.75 

𝒔̇=0.5 0.3 × FL 0 10 

𝒔̇=1.0 0.3 × FL 0 15 

𝒔̇=2.0 0.3 × FL 0 20 

Mw 7.0 

𝒔̇=0.5 0.1 × FL 0.1 × FL 15 

𝒔̇=1.0 0.1 × FL 0.1 × FL 20 

𝒔̇=2.0 0.1 × FL 0.1 × FL 25 

Mw 7.25 

𝒔̇=0.5 0.1 × FL 0.1 × FL 25 

𝒔̇=1.0 0.1 × FL 0.1 × FL 30 

𝒔̇=2.0 0.1 × FL 0.1 × FL 30 

Mw 7.5 

𝒔̇=0.5 0.1 × FL 0.1 × FL 30 

𝒔̇=1.0 0.1 × FL 0.1 × FL 30 

𝒔̇=2.0 0.1 × FL 0.1 × FL 30 

                                                 
3 There is one exception to this rule: for on-fault sites that are exposed to Mch>7.25 (or FL>150km), 

one should use μ+σ NRMamp(T) value. This is due to the saturation of amplification factors for such 

long faults. 
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The idealized four regions are shown in Figure 5.8. The suggested pattern in Figure 

5.8 is very similar to the one in Figure 3.15. However, the subregions in Figure 5.8 

represent the overall variation of NRMamp(T) (2475-year to 475-year directivity 

spectral amplification) whereas Figure 3.15 reveals information about the spatial 

extent of directivity in the vicinity of the ruptured fault. In essence, NRMamp(T) 

values of μ+2σ, μ+σ, μ and μ-σ can be used by the sites enclosed with red (Group 1), 

green (Group 2), yellow (Group 3) and blue (Group 4) colors, respectively. The 

boundaries in Figure 5.8 are given in Table 5.3 for different earthquake scenarios 

considered in this study. 

 

Figure 5.8 Classification of the area around the fault into four regions with 

respect to NRMamp(T) intensities 

Polynomial curves are fit by using the discrete logarithmic mean and standard 

deviation values of NRMamp(T) at T = 0.75s, 1.0s, 1.5s, 2.0s, 3.0s, 4.0s, 5.0s, 7.5s and 

10s. These expressions are given in Equations 5.6 and 5.7 for μln(NRMamp) and σ 

ln(NRMamp), respectively. Table 5.4 lists the regression coefficients for different 

combinations of Mch and 𝑠̇  representing the entire set of earthquake scenarios 

considered in this study.  

𝜇(ln𝑁𝑅𝑀𝑎𝑚𝑝(𝑇)) = ln(𝑏4 ∙ 𝑇
4 + 𝑏3 ∙ 𝑇

3 + 𝑏2 ∙ 𝑇
2 + 𝑏1 ∙ 𝑇 + 𝑏0) 5.6 

𝜎(ln𝑁𝑅𝑀𝑎𝑚𝑝(𝑇)) = ln(𝑐3 ∙ 𝑇
3 + 𝑐2 ∙ 𝑇

2 + 𝑐1 ∙ 𝑇 + 𝑐0) 5.7 
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The estimation of directivity spectral amplifications for the 2475-year return period 

is done by following the below expressions: 

Group 1 Sites: 𝑎𝑚𝑝2475(𝑇) =  𝑎𝑚𝑝475(𝑇) ∙ 𝑒⃓
𝜇+2𝜎 

Group 2 Sites: 𝑎𝑚𝑝2475(𝑇) =  𝑎𝑚𝑝475(𝑇) ∙ 𝑒⃓
𝜇+𝜎 

Group 3 Sites: 𝑎𝑚𝑝2475(𝑇) =  𝑎𝑚𝑝475(𝑇) ∙ 𝑒⃓
𝜇 

Group 4 Sites: 𝑎𝑚𝑝2475(𝑇) =  𝑎𝑚𝑝475(𝑇) ∙ 𝑒⃓
𝜇−𝜎 

In the above expressions amp475(T) is determined from Equations 5.1 to 5.3 by 

considering source-site geometry whereas Equations 5.6 and 5.7 are used in the 

exponential terms to modify 475-year directivity amplifications for 2475-year. Note 

that the resulting 2475-year directivity-dominated spectral amplifications are not 

fully sensitive to the source-site geometry because a simplified regional classification 

is used to reflect the proximity of the site to the fault. Thus, although the complicated 

formulations given in this section tend to acknowledge the influence of all prominent 

directivity parameters, they are not fully capable of capturing the entire physical 

model for a precise description of directivity dominated spectral amplification. This 

last statement is at least valid for the 2475-year return period directivity spectral 

amplifications. Notwithstanding, the expressions presented in this section are far too 

complex to be considered in the seismic design codes since an expert needs to use 

many tabulated coefficients to obtain the directivity amplifications for a specific 

scenario. The next sections provide alternative approaches to address the directivity 

dominated spectral amplifications in a simplified manner.  

5.3 Simplified Directivity Amplification Equations for SHB11 and CHS13 

Spectral amplification equations proposed in the previous sections for SHB11 are 

developed by considering the effect of slip rate, fault characteristic magnitude and 

fault-site geometry as well as the interaction between these parameters. The 

consideration of all these parameters adds significant complexity to the proposed 

equations (significant number of coefficients to be considered to address the 

directivity effects on spectral ordinates). The proposed equations suggest a good 
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agreement with the results of PSHA (observed cases) for the 475-year return period 

amplifications (Figure 5.4) but the 2475-year amplifications that are obtained by 

modifying the corresponding estimations of 475-year values are not fully sensitive to 

the fault-site geometry for a simplified regionalization approach as explained in the 

previous section. Besides estimation of the 2475-year spectral amplifications over the 

475-year spectral amplification predictions may not be very practical.  

In this section, simpler expressions are proposed for the directivity amplifications 

using the observed PSHA results of SHB11 and CHS13 models. The proposed 

expressions prevail a compromise between accuracy and simplicity. To this end, a 

different approach is used to incorporate the effect of fault-site geometry in the 

directivity-based amplification equations: first amplification expressions are 

developed for sites where the highest directivity spectral amplifications are observed. 

This step is followed by defining source-site geometry scaling factors to estimate the 

directivity spectral amplifications at the other locations around the fault. As it is 

discussed at different parts of the text (e.g., Section 3.4), the largest directivity 

spectral amplifications occur at the sites located along Rx/L=0.5 in SHB11 (the sites 

inside the red box in Figure 5.9). The maximum directivity spectral amplifications 

are observed at the sites located along Rx/L=0.6 in CHS13 (the sites inside the blue 

box in Figure 5.9). 

The base models are developed for the sites located inside the green buffer around 

the fault (Figure 5.9). These sites are at the most 15km away from the fault strike 

(along y direction). The premise is that the distance-dependent variation of directivity 

spectral amplification beyond this buffer zone is more significant and tapers down 

rather fast. A similar distance capping is also implemented in Caltrans seismic design 

provisions (CALTRANS 2013) (Section 2.3, Figure 2.7). The proposed expressions 

for SHB11 narrow-band directivity model considers the effects of slip rate, fault-site 

geometry and hazard level. The proposed expressions that originate from CHS13 

narrow-band directivity model are functions of source-site geometry and hazard level 

as slip rate is not a critical parameter while determining the level of directivity 

spectral amplification in CHS13 (refer to Figure 3.11). In order to develop the base 

amplification equations, the medians of directivity-dominant spectral amplifications 
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are calculated from the sites that experience the largest amplification (sites inside the 

red box for SHB11 and the sites inside the blue box for CHS13 in Figure 5.9). 

 

Figure 5.9 Spatial distribution of the sites around the fault and the sites located in 

the boundary region 

The median amplifications are calculated at the spectral period where maximum 

amplification occurs (AMP(Tmax) in SHB11 and AMP(Tcorner) in CHS13) as well as at 

T = 10s for SHB11-based model. For spectral periods less than Tmax (or Tcorner) or for 

periods between Tmax and T = 10s, the directivity amplifications are approximated 

from linear interpolation. A scaling methodology is used to estimate the directivity 

amplifications at locations other than the sites where directivity amplifications are 

maximum. The details of entire process are discussed in the next sections.  

5.3.1 Relationship between the Characteristic Magnitude and Amplification 

Period Range 

In Section 3.3 it is shown that the fault characteristic magnitude affects the amplitude 

of directivity spectral amplification as well as the period interval where the maximum 

amplification occurs. SHB11 and CHS13 narrow-band directivity models reflect this 

effect on to spectral amplifications in different ways. To start developing the 

simplified expressions, the relationship between the characteristic magnitude and the 

period interval where the maximum directivity spectral amplification occurs is 

investigated in this subsection. The directivity spectral amplification patterns for both 

SHB11 and CHS13 are also highlighted while studying the above relationship. 
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As it is depicted in Section 3.3 both SHB11 and CHS13 models show a bilinear trend 

for period-dependent directivity amplifications. The spectral period where the 

directivity amplification becomes maximum is called as Tmax and Tcorner in SHB11 

and CHS13, respectively. The PSHA results indicate that given a specific fault 

characteristic magnitude (or a specific fault length) Tmax and Tcorner attain similar 

values. This observation is shown in Figure 5.10 that illustrates the 2475-year return 

period directivity amplifications for a fault of 150km length (Mch = 7.25) at 𝑠̇=0.5, 

1.0 and 2.0cm/year. The period-dependent directivity amplifications are plotted for 

sites located within the 15km distance from the fault strike in y-direction. The upper 

and lower panels display the results of SHB11 and CHS13, respectively and both 

panels display the median directivity amplifications as well. The Tmax and Tcorner 

values can be approximated as 4.0s for both SHB11 and CHS13 although the trends 

in the directivity amplifications between the SHB11 and CHS13 are quite different. 

SHB11 amplifications increase up to Tmax, decrease after Tmax whereas CHS13 

amplifications increase up to Tcorner, and keep almost a constant value after Tcorner. 

Note that the amplification values are quite different between SHB11 and CHS13: 

SHB11-based amplification values are larger than those of CHS13 because SHB11 

estimates the directivity amplifications for fault-normal horizontal component 

whereas the directivity amplifications by CHS13 are for RotD50 (Boore, 2010). 

The period values at which the directivity amplifications are maximized increase with 

the characteristic magnitude of the fault. Larger the characteristic magnitude, greater 

is the period where that directivity amplification reaches its maximum (Tmax or Tcorner 

in SHB11 and CHS13, respectively). Figure 5.11 shows the median directivity 

amplifications to describe the change in Tmax (SHB11) and Tcorner (CHS13) as Mch 

shifts towards larger values. Each median directivity amplification curve is computed 

from the directivity amplification curves of sites within the first 15km from the strike 

of the fault that generates the designated Mch earthquake. All three slip rates (𝑠̇=0.5, 

1.0 and 2.0cm/year) are considered in the calculations. The Tmax values picked from 

the median directivity amplification curves are plotted against Mch in Figure 5.12a. 

The Tmax values are linearly related with Mch. The same trend is also valid for Tcorner 

since Tmax  Tcorner as discussed in the above lines (Figure 5.12b).   
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Figure 5.10 Tmax and Tcorner values for directivity amplifications. The earthquake 

scenario is FL=150km (Mch=7.25), 𝑠̇ = 0.5cm/year, 1cm/year, 2 cm/year a) 

SHB11 model b) CHS13 model 
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Figure 5.11 Median SHB11 and CHS13 directivity amplifications in terms of Mch 

and the variation of Tmax and Tcorner with the characteristic magnitudes 

The almost linearly related characteristic magnitude and Tmax (or Tcorner) is 

represented by Equation 5.8. 

T𝑚𝑐 = 2.72 ∙ 𝑀𝑐ℎ − 15.37 5.8 

where Tmc denotes either Tmax (SHB11) or Tcorner (CHS13) and Mch is the 

characteristic magnitude of the fault. Note that the characteristic magnitude is 

described by Mch in this study. Equation 5.8 is compared with the probability of pulse 

occurrence for different pulse periods versus discretized magnitude. The figures of 

these comparisons and related discussions are given in Appendix B.  
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Figure 5.12 Relationship between characteristic magnitude and the spectral period 

(Tmc) at which the maximum directivity amplification occur. Dashed red line is 

the fit to the actual trend given in black  

5.3.2 Simplified Amplification Equation for SHB11 Model 

Firstly, a base expression is proposed for the sites where maximum directivity 

amplification occurs. To this end, median directivity amplifications are computed at 

Tmax for the sites located along Rx/L=0.5 and Ry≤15km (i.e., sites 3, 9, 15 and 21 that 

are enclosed by the red box in Figure 5.9). The same calculations (using the same 

sites) are also repeated at T = 10s to compute the median directivity amplifications at 

the end of the period range of interest in this study.  

In Figure 5.13 the median directivity amplifications of sites 3, 9, 15 and 21 are plotted 

as a function of Mch at Tmax for the three slip rates (i.e., 𝑠̇ = 0.5cm/year, 1.0cm/year 

and 2cm/year) as well as for the two return periods of interest (475-year and 2475-

year). The directivity amplifications have a linearly increasing trend between 

6.25≤Mch≤7.25. They tend to flatten (or either decrease) after Mch 7.25 that is 

interpreted as amplification saturation in this study. The amplification saturation is 

experienced on long faults (thus, faults with large Mch) and the sites located close to 
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the edges of such faults are not affected from directivity when ruptures occur at 

remote locations with respect to the fault edges.  

The relationship between Mch and directivity amplification at Tmax (AMPTmax,base) is 

represented by linear curves fitted to the observed (from PSHA) data by least squares 

method for magnitude range between 6.25≤Mch≤7.25. For magnitudes beyond Mch 

7.25, the directivity amplifications are assumed to follow a constant value. This 

relationship is given in Equation 5.9.  

𝐴𝑀𝑃𝑇𝑚𝑎𝑥,𝑏𝑎𝑠𝑒 = 𝛼𝑇𝑚𝑎𝑥 ∙ 𝑀𝑐ℎ + 𝛽𝑇𝑚𝑎𝑥  6.25<Mch≤7.25 5.9a 

𝐴𝑀𝑃𝑇𝑚𝑎𝑥,𝑏𝑎𝑠𝑒 = 𝛼𝑇𝑚𝑎𝑥 ∙ 7.25 + 𝛽𝑇𝑚𝑎𝑥  Mch>7.25 5.9b 

AMPTmax,base estimates the median directivity amplifications at the sites 3, 9, 15 and 

21 (shown in Figure 5.9) and Table 5.5 lists the values for αTmax and βTmax for different 

slip rates as well as return periods.  

Figure 5.14 shows the relationship between Mch and the directivity amplification at 

T=10s for the three slip rates (𝑠̇ = 0.5cm/year, 1.0cm/year and 2cm/year) and for the 

two return periods (475-year and 2475-year). This figure also shows the linear curve 

fitted to data for each slip rate value. The relationship between AMPT10,base and Mch 

is given in Equation 5.10. 

𝐴𝑀𝑃𝑇10,𝑏𝑎𝑠𝑒 = 𝛼𝑇10 ∙ 𝑀𝑐ℎ + 𝛽𝑇10 5.10 

where αT10 and βT10 denote the regression coefficients of the fitted curve and are given 

in Table 5.6 for the slip rates and return periods considered in this study. Note again 

that AMPT10,base estimates the median directivity amplifications of sites 3, 9, 15 and 

21 at T=10s.  

Alternative to Equation 5.10, a cubic relationship is also fitted to represent 

AMPT10,base. The functional form of this expression is given in Equation 5.11 (Table 

5.7 lists the coefficients) whereas Figure 5.15 compares the fitted expression with the 

actual data. Although AMPT10,base can be calculated from either of these two 

equations, Equation 5.10 is preferred for its simplicity. 

𝐴𝑀𝑃𝑇10,𝑏𝑎𝑠𝑒 = 𝛼𝑇10 ×𝑀𝑐ℎ
3 + 𝛽𝑇10 ×𝑀𝑐ℎ

2 + 𝛾𝑇10 ×𝑀𝑐ℎ + 𝜁𝑇10 5.11 
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Figure 5.13 SHB11-based directivity amplification vs Mch relationship together 

with linear fits calculated for the sites 3, 9, 15 and 21 at spectral period Tmax a) 

475-year return period b) 2475-year return period 
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Figure 5.14 SHB11-based directivity amplification vs Mch relationship together 

with linear fits calculated for the sites 3, 9, 15 and 21 at T = 10s a) 475-year 

return period b) 2475-year return period 
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Figure 5.15 SHB11-based directivity amplification vs Mch relationship together 

with cubic fits calculated for the sites 3, 9, 15 and 21 at T = 10s a) 475-year 

return period b) 2475-year return period 
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Table 5.5 αTmax and βTmax coefficients for AMPTmax,base – SHB11 

AMPTmax 475-year Return Period 2475-year return period 

SR(cm/year) αTmax βTmax αTmax βTmax 

SR=0.5 0.146 0.149 0.495 -1.9 

SR=1.0 0.241 -0.364 0.546 -2.168 

SR=2.0 0.454 -1.664 0.554 -2.167 

 

Table 5.6 αT10 and βT10 coefficients for AMPT10,base – SHB11 

AMPTmax 475-year Return Period 2475-year return period 

SR(cm/year) αT10 βT10 αT10 βT10 

SR=0.5 0.045 0.72 0.313 -0.95 

SR=1.0 0.167 -0.04 0.384 -1.4 

SR=2.0 0.229 -0.4 0.425 -1.65 

 

Table 5.7 αT10, βT10, 𝛾T10 and 𝜁T10 coefficients for AMPT10,base – SHB11  

AMPTmax 475-year Return Period 2475-year return period 

SR(cm/year) αT10 βT10 𝛾T10 𝜁T10 αT10 βT10 𝛾T10 𝜁T10 

SR=0.5 -0.012 0.162 -0.502 0.72 0.0448 -0.606 2.35 -0.95 

SR=1.0 0.008 -0.115 0.554 -0.04 0.0515 -0.695 2.718 -1.4 

SR=2.0 0.04 -0.531 1.979 -0.4 0.0511 -0.689 2.735 -1.65 

 

Equations 5.9, 5.10 and 5.11 are developed from directivity amplifications of sites 

located along Rx/L=0.5 and Ry≤15km. To estimate the directivity amplifications of 

sites at other locations around the fault geometric scale factors (GSFTmax and GSFT10) 

are used in the directivity amplification expressions. The geometric scale factors, 

GSFTmax and GSFT10 modify AMPTmax,base and AMPT10,base to calculate AMPTmax and 

AMPT10 for different locations around the fault. As in the case of AMPTmax,base and 

AMPT10,base, a linear trend is assumed between AMPTmax and AMPT10 to estimate the 

directivity amplifications at the intermediate periods between 0.6s≤T≤ Tmax and 

Tmax<T≤10s at locations other than Rx/L = 0.5. The derivations of relevant expression 

are discussed in the following paragraphs. 

Figure 5.16 and Figure 5.17 as well as Figure 5.18 to Figure 5.19 show the variations 

of 475-year and 2475-year GSFTmax and GSFT10 along Rx/L = 0, 0.25, 0.5, 0.6, 0.7 

and 0.8 for 𝑠 = 0.5cm/year, 1.0cm/year and 2.0cm/year. The GSF computations are 

done with the directivity amplifications of sites within Ry≤15km because for 

relatively remote sites (Ry>15km) a distance taper will be considered as explained 
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later. Given a specific Mch, GSF is the normalized directivity amplifications at 

Rx/L≠0.5 by those at Rx/L=0.5. These plots suggest that the directivity amplifications 

do not change dramatically at Mch 6.25 for different Rx/L. Thus, the directivity 

amplification is not affected seriously from the site location at small magnitudes. 

Thus, the characteristic magnitude dependent variations of GSFTmax and GSFT10 start 

with unity at Mch 6.25 and increases linearly up to Mch 7.25. Both geometric scale 

factors (GSFTmax and GSFT10) attain a constant value after Mch 7.25 that corresponds 

to the geometric scale factor at Mch 7.25. The expressions for the computation of 

GSFTmax and GSFT10 are given in Equations 5.12 and 5.13. The corresponding scale 

factors (SFTmax and SFT10) values are given in Table 5.8. 

𝐺𝑆𝐹𝑇𝑚𝑎𝑥 = [1 + (𝑆𝐹𝑇𝑚𝑎𝑥 − 1) ∙ (𝑀𝑐ℎ − 6.25)] 6.25<Mch≤7.25 5.12a 

𝐺𝑆𝐹𝑇𝑚𝑎𝑥 = 𝑆𝐹𝑇𝑚𝑎𝑥  Mch>7.25 5.12b 

 

𝐺𝑆𝐹𝑇10 = [1 + (𝑆𝐹𝑇10 − 1) ∙ (𝑀𝑐ℎ − 6.25)] 6.25<Mch≤7.25 5.13a 

𝐺𝑆𝐹𝑇10 = 𝑆𝐹𝑇10 Mch>7.25 5.13b 
 

Table 5.8 Scale factor values for Tmax and T = 10s for the computation of geometric 

scale factors at different Rx/L values (SHB11 model) 

 Rx/L=0 Rx/L=0.25 Rx/L=0.5 Rx/L=0.6 Rx/L=0.7 Rx/L=0.8 

2475-SFTmax 0.67 0.89 1 0.93 0.7 0.6 

2475- SFT10 0.78 0.94 1 0.93 0.83 0.78 

475- SFTmax 0.83 0.85 1 0.93 0.85 0.83 

475- SFT10 0.96 0.96 1 0.98 0.96 0.96 

 

The directivity amplifications at Tmax and T =10s (AMPTmax and AMPT10, 

respectively) at locations other than Rx/L = 0.5 are computed from AMPTmax,base, 

AMPT=10,base, GSFTmax  and GSFT10 per Equations 5.9, 5.10, 5.11, 5.12 and 5.13. For 

convenience, the relevant expressions for AMPTmax and AMPT10 are given in 

Equations 5.14 and 5.15.  

𝐴𝑀𝑃𝑇𝑚𝑎𝑥 = 𝐴𝑀𝑃𝑇𝑚𝑎𝑥,𝑏𝑎𝑠𝑒 ∙ 𝐺𝑆𝐹𝑇𝑚𝑎𝑥 = 

                  (𝛼𝑇𝑚𝑎𝑥 ∙ 𝑀𝑐ℎ + 𝛽𝑇𝑚𝑎𝑥) ∙ 

      [1 + (𝑆𝐹𝑇𝑚𝑎𝑥 − 1) ∙ (𝑀𝑐ℎ − 6.25)] 

6.25<Mch≤7.25 5.14a 
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𝐴𝑀𝑃𝑇𝑚𝑎𝑥 = 𝐴𝑀𝑃𝑇𝑚𝑎𝑥,𝑏𝑎𝑠𝑒 ∙ 𝐺𝑆𝐹𝑇𝑚𝑎𝑥 = 

     (𝛼𝑇𝑚𝑎𝑥 ∙ 7.25 + 𝛽𝑇𝑚𝑎𝑥) ∙ 𝑆𝐹𝑇𝑚𝑎𝑥 
Mch>7.25 5.14b 

𝐴𝑀𝑃𝑇10 = 𝐴𝑀𝑃𝑇10,𝑏𝑎𝑠𝑒 ∙ 𝐺𝑆𝐹𝑇10 = 

                   (𝛼𝑇10 ∙ 𝑀𝑐ℎ + 𝛽𝑇10) ∙ 

   [1 + (𝑆𝐹𝑇10 − 1) ∙ (𝑀𝑐ℎ − 6.25)] 

6.25<Mch≤7.25 5.15a 

𝐴𝑀𝑃𝑇10 = 𝐴𝑀𝑃𝑇10,𝑏𝑎𝑠𝑒 ∙ 𝐺𝑆𝐹𝑇10 = 

(𝛼𝑇10 ∙ 7.25 + 𝛽𝑇10) ∙ 𝑆𝐹𝑇10 
Mch>7.25 5.15b 

As already stated the extension of directivity amplifications at periods other than Tmax 

and T = 10s is done by assuming a bilinear variation of directivity amplifications 

between 0.6s≤T≤Tmax and Tmax<T≤10s. The general form of directivity amplification 

function for this computation is given in Equation 5.16. This equation can be used to 

compute the directivity amplifications between 0.6 sec<T<10 sec for 475-year and 

2475-year return periods by using the auxiliary formulations given in Equations 5.9, 

5.10, 5.11, 5.12 and 5.13. The functional form accounts for the particular influence 

of Mch and 𝑠̇. 

𝐴𝑀𝑃(𝑇) = 1 + 

           [(𝐴𝑀𝑃𝑇𝑚𝑎𝑥
− 1) ∙ (

𝑇−0.6

𝑇𝑚𝑎𝑥−0.6
)]                                0.6s<T< Tmax 

5.16a 

𝐴𝑀𝑃(𝑇) = 𝐴𝑀𝑃𝑇𝑚𝑎𝑥
+ 

                [(𝐴𝑀𝑃𝑇10 − 𝐴𝑀𝑃𝑇𝑚𝑎𝑥
) ∙ (

𝑇−𝑇𝑚𝑎𝑥

10−𝑇𝑚𝑎𝑥
)]                  Tmax<T<10s 

5.16b 

The above expressions compute Tmax by considering the directivity amplifications for 

distances up to 15km from the fault strike. In other words, the variation of Tmax is 

assumed to be dominated by the directivity effects up to Ry = 15km (Equation 5.8). 

As explained in the beginning of this chapter and at different locations throughout the 

text, the computed directivity amplifications from above expressions are assumed to 

be constant for Ry≤15km. The directivity amplifications taper down to unity between 

15km<Ry≤30km and this is discussed in the last part of this chapter (Section 5.3.4). 
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Figure 5.16 Observed geometric scale factors for AMPTmax - 475-year return 

period and 𝑠̇ = 0.5cm/year, 𝑠̇ = 1.0cm/year and 𝑠̇ = 2.0cm/year (SHB11) 
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Figure 5.17 Observed geometric scale factors for AMPTmax - 2475-year return 

period and 𝑠̇ = 0.5cm/year, 𝑠̇ = 1.0cm/year and 𝑠̇ = 2.0cm/year (SHB11) 
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Figure 5.18 Observed geometric scale factors for AMPT10 - 475-year return 

period and 𝑠̇ = 0.5cm/year, 𝑠̇ = 1.0cm/year and 𝑠̇ = 2.0cm/year (SHB11) 
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Figure 5.19 Observed geometric scale factors for AMPT10 - 2475-year return 

period and 𝑠̇ = 0.5cm/year, 𝑠̇ = 1.0cm/year and 𝑠̇ = 2.0cm/year (SHB11) 
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Figure 5.20 Effect of characteristic magnitude and slip rate on the directivity 

amplifications for SHB11 model computed from proposed simplified expressions 

a) 475-year return period b) 2475-year return period 

The directivity amplification expressions developed here are employed for different 

earthquake scenarios to grasp the variations in directivity under different parameters. 

Figure 5.20 illustrates the period-dependent variation of directivity amplifications at 

Rx/L=0.5 when faults of different lengths rupture with Mch 6.25 and Mch 7.25. The 

plots include the slip rate effects confined to the slip rates considered in this study. 
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As it is expected, the increase in slip rates as well as Mch lead to larger directivity 

amplifications. Needless to say, the change in return periods from 475-year to 2475-

year) also lead to larger directivity amplifications. Note that the maximum directivity 

amplifications occur at Tmax = 1.6s and Tmax = 4.4s for Mch 6.25 and Mch 7.25, 

respectively. These values are comparable with the patterns observed from PSHA. 

 

Figure 5.21 Effect of fault-site geometry (Rx/L) on the directivity amplifications 

of SHB11 narrow-band model computed from the proposed simplified 

formulations a) 475-year return period b) 2475-year return period 
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Figure 5.21 compares the period-dependent variation of directivity amplifications for 

Rx/L=0 and Rx/L=0.6 at Mch 6.25 and Mch 7.25. The directivity amplifications also 

account for the differences due to different return periods. There is a single curve for 

Mch 6.25 as the model assumes indifferent spatial variation of directivity 

amplifications at small magnitude events. (Side note: the smallest characteristic 

magnitude considered in this study is Mch 6.25 that is approximately the lower bound 

limit of narrow-band directivity models used in this study). The amplitude of 

directivity amplifications are higher for Rx/L=0.6 as the characteristic magnitude 

attains larger values. This observation is even stronger for larger return periods (2475-

year in the comparative plots). These simple comparisons suggest that the important 

features of forward-directivity as discussed in Chapter 3 are incorporated fairly well 

with the proposed expressions in this section. 

5.3.3 Simplified Directivity Amplification Equations for CHS13 Narrow-Band 

Model 

The directivity amplification equations that are developed from CHS13 narrow-band 

directivity model follow a similar methodological pattern as in the case of SHB11-

based expressions (discussions in the previous section). As discussed in Chapter 3, 

the directivity amplifications computed from CHS13 increase for spectral periods up 

to Tcorner (between 0.5s≤T≤Tcorner) that is followed by a constant plateau towards very 

long periods (between Tcorner<T≤10s). In addition, CHS13 modifies RotD50 

horizontal component for directivity effects (RotD50Directivity) while SHB11 modifies 

GMRotI50 horizontal component for directivity and the modified horizontal 

component is along the strike normal direction (simply fault-normal component). 

Similar to the methodology followed in SHB11, the reference (base) expressions for 

CHS13 are developed from the median directivity amplifications at sites along Rx/L 

= 0.6 and Ry≤15km (Sites 4, 10, 16 and 22 in Figure 5.9). These sites show the 

maximum directivity amplification in CHS13 and the median directivity 

amplification (AMPTcorner,base) is computed for the spectral period Tcorner in this case. 

The spectral period Tcorner
 is also calculated form Equation 5.8 as in the case of SHB11 

because PSHA results suggest Tcorner ≈ Tmax. The relationship between AMPTcorner,base 

and characteristic magnitude is given in Equation 5.17. 
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Figure 5.22 Base amplification factors and magnitude relationships together with 

linear line fits calculated for sites 4, 10, 16 and 22 at spectral period Tcorner - 

CHS13 model, 475- and 2475-year return period  

 

𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟,𝑏𝑎𝑠𝑒 = 𝛼𝑇𝑐𝑜𝑟𝑛𝑒𝑟 ∙ 𝑀𝑐ℎ + 𝛽𝑇𝑐𝑜𝑟𝑛𝑒𝑟  6.25<Mch≤7.25 5.17a 

𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟,𝑏𝑎𝑠𝑒 = 𝛼𝑇𝑐𝑜𝑟𝑛𝑒𝑟 ∙ 7.25 + 𝛽𝑇𝑐𝑜𝑟𝑛𝑒𝑟  Mch>7.25 5.17b 

where αTcorner and βTcorner are the regression coefficients and are computed by fitting 

a straight line over the observed data (Figure 5.22). The αTcorner and βTcorner 

coefficients of Equation 5.17 are given in Table 5.9 for the return periods of interest 

in this study.  

 

Table 5.9 αTcorner and βTcorner coefficients for linearly fitted AMP(Tcorner) function - 

CHS13 

475-Year 2475-Year 

αTcorner βTcorner αTcorner βTcorner 

0.4 -1.4931 0.464 -1.9 
 

As it is depicted in Figure 5.22 the directivity amplifications are linearly related to 

Mch between 6.25≤Mch≤7.25. The amplification saturation is also observed for this 
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case as in SHB11, thus, AMPTcorner,base value at Mch 7.25 is assumed to be valid for 

Mch>7.25. Note that the slip rate does not play an important role in the directivity 

amplification amplitudes so 𝑠̇  is disregarded in the formulations developed for 

CHS13. 

The effect of site location (spatial variation of sites around the fault) is incorporated 

into this model via geometric scale factor (GSFTcorner). The approach is again similar 

to the one followed in SHB11 model. The maximum scale factor (GSFTcorner) is unity 

for Mch 6.25 whereas it is the normalized directivity amplifications at locations Rx/L 

≠ 0.6 with those at Rx/L = 0.6. The procedure for the computation of GSFTcorner is 

given in Figure 5.23 for 475 and 2475-year return period. The related SFTcorner values 

are given in Table 5.10. 

The geometric scale factor (GSFTcorner) is assumed to vary linearly between 

6.25≤Mch≤7.25 whereas it is kept as constant between 7.25<Mch≤7.5 with the 

corresponding value at Mch 7.25. The relevant expressions for the computation of 

GSFTcorner are given in Equation 5.18. 

 

𝐺𝑆𝐹𝑇𝑐𝑜𝑟𝑛𝑒𝑟 = [1 + (𝑆𝐹𝑇𝑐𝑜𝑟𝑛𝑒𝑟 − 1) × (𝑀𝑐ℎ − 6.25)] 6.25<Mch≤7.25 5.18a 

𝐺𝑆𝐹𝑇𝑐𝑜𝑟𝑛𝑒𝑟 = 𝑆𝐹𝑇𝑐𝑜𝑟𝑛𝑒𝑟  Mch>7.25 5.18b 

 

Table 5.10 Geometric scale factor for different Rx/L values -CHS13 

 Rx/L=0 RX/L=0.25 RX/L=0.5 RX/L=0.6 RX/L=0.7 RX/L=0.8 

475-Tcorner 0.73 0.74 0.93 1 0.98 0.89 

2475-Tcorner 0.69 0.70 0.86 1 0.98 0.88 

 

After determining AMPTcorner,base and geometric scale factor (GSFTcorner) the 

directivity amplification at any location around the fault for CHS13 narrow-band 

directivity model can be calculated (Equation 5.19). The AMPTcorner in Equation 5.19 

is the maximum directivity amplification corresponding to spectral period Tcorner. As 

noted previously, for spectral periods larger than Tcorner the directivity amplification 

takes a constant value that is equal to AMPTcorner.  

𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟 = 𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟,𝑏𝑎𝑠𝑒 ∙ 𝐺𝑆𝐹𝑇𝑐𝑜𝑟𝑛𝑒𝑟 = 

                (𝛼𝑇𝑐𝑜𝑟𝑛𝑒𝑟 ∙ 𝑀𝑐ℎ + 𝛽𝑐𝑜𝑟𝑛𝑒𝑟) ∙ 

                        [1 + (𝑆𝐹𝑇𝑐𝑜𝑟 − 1) ∙ (𝑀𝑐ℎ − 6.25)] 

6.25<Mch≤7.25 5.19a 



132 

 

𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟 = 𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟,𝑏𝑎𝑠𝑒 ∙ 𝐺𝑆𝐹𝑇𝑐𝑜𝑟𝑛𝑒𝑟 = 

                     (𝛼𝑇𝑐𝑜𝑟𝑛𝑒𝑟 ∙ 7.25 + 𝛽𝑇𝑐𝑜𝑟𝑛𝑒𝑟) ∙ 𝑆𝐹𝑇𝑐𝑜𝑟𝑛𝑒𝑟 
Mch>7.25 5.19b 

The extension of directivity amplifications for periods other than Tcorner is given in 

Equation 5.20 where a linear trend is assumed between 0.5s≤T≤Tcorner and a constant 

value for T>Tcorner.  

𝐴𝑀𝑃(𝑇) = 1 + [(𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟 − 1) ×
𝑇−0.5

𝑇𝑐𝑜𝑟𝑛𝑒𝑟−0.5
]          0.5s <T≤Tcorner 5.20a 

AMP(T) = 𝐴𝑀𝑃𝑇𝑐𝑜𝑟𝑛𝑒𝑟                                                  Tcorner<T <10s 5.20b 

As already emphasized in the previous section, the corner periods (Tcorner) are 

estimated from Equation 5.8 that is developed from the observed Tcorner (or Tmax in 

case of SHB11) for Ry≤15km. A distance taper is implemented for sites beyond Ry = 

15km to account for the decrease in directivity effects and it will be discussed in 

Section 5.3.4. 

 

Figure 5.23 Calculation of Geometric Scale Factor for AMPTcorner - 475-year 

CHS13 
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Figure 5.24 Amplification Model for RotD50 Component of CHS13 

a) 475-year Return Period b) 2475-year return period 

Equations 5.19 and 5.20 are used to compute directivity amplifications to observe the 

behavior of CHS13 narrow-band model under different combinations of Mch and site 

location. Figure 5.24 shows the 475-year and 2475-year return period directivity 

amplifications plotted for Mch 6.75 and Mch 7.25 at three site locations (Rx/L=0.25, 
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0.5 and 0.6). The displayed directivity amplifications are assumed to be invariant of 

fault-normal distance up to Ry = 15km. As it is depicted from this figure, the site 

location and Mch can significantly affect the directivity amplifications. The corner 

periods shift towards longer periods with increasing Mch that also results in increased 

directivity amplifications. As Rx/L attains values closer to 0.6, the directivity 

amplifications increase. Inherently, the larger return periods (2475-year vs. 475-year 

return periods in this case) result in larger directivity amplifications. These 

observations are similar to those highlighted from the simplified SHB11 narrow-band 

directivity model. The difference is in the period-dependent directivity amplification 

trend as well as the amplitudes of directivity amplifications (originates from different 

horizontal component definitions of the two models). 

5.3.4 Taper function for the distance 

The simplified equations proposed for SHB11 and CHS13 directivity models assume 

an invariant directivity amplification for distances up to Ry = 15km. The directivity 

amplifications taper down linearly to unity between 15km<Ry≤30km. In essence, the 

simplified directivity amplification expressions given in the previous two section 

estimate constant directivity amplifications that are valid for Ry≤15km and these 

values should be decreased linearly to unity between 15km<Ry≤30km. This approach 

is similar to the one used in the seismic design guidelines of CALTRANS 

(CALTRANS, 2013).  Equations 5.21 show the implementation of this approach as 

discussed in this paragraph. The whole concept is presented in Figure 5.25.  

𝐴𝑀𝑃𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13(𝑇) = 𝐴𝑀𝑃0𝑘𝑚 ≤ 𝑅𝑟𝑢𝑝≤15𝑘𝑚
𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13 (𝑇) Rrup≤15km     5.21a 

𝐴𝑀𝑃𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13(𝑇) = 

     𝐴𝑀𝑃0𝑘𝑚 ≤ 𝑅𝑟𝑢𝑝≤15𝑘𝑚
𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13 (𝑇) + 

[(1 − 𝐴𝑀𝑃0𝑘𝑚 ≤ 𝑅𝑟𝑢𝑝≤15𝑘𝑚
𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13 (𝑇)) ∙ (

𝑅𝑟𝑢𝑝 − 15

15
)] 

15km<Rrup≤30km      5.21b 

𝐴𝑀𝑃𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13(𝑇) = 1 Rrup>30km 5.21c 
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Figure 5.25 Distance Tapering of Directivity Amplification Factor 

 

The parameter 𝐴𝑀𝑃𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13(𝑇) is the directivity amplification estimated either 

from SHB11 or CHS13 directivity models. 𝐴𝑀𝑃0𝑘𝑚 ≤ 𝑅𝑟𝑢𝑝≤15𝑘𝑚
𝑆𝐻𝐵11 𝑜𝑟 𝐶𝐻𝑆13 (𝑇) is the directivity 

amplification computed either from SHB11 or CHS13 directivity models by 

considering the simplified expressions given in the previous two sections. Note that 

Equation 5.21b is a linear taper 15km≤Rrup≤30km that goes down to unity with 

increasing distance. 

The distance tapering presented above is verified by using the observed trends from 

PSHA. Figure 5.26 shows the variation of observed SHB11-based directivity 

amplifications at Tmax as a function of Ry (0km≤Ry≤30km). Figure 5.27 displays the 

same information for CHS13 directivity model but this time directivity amplifications 

are given at Tcorner. Both figures consider the target return periods of this study: 475-

year and 2475-year return periods. The red circles display the aforementioned 

observed directivity amplifications whereas dark red diamonds along each stripe is 

the median of observed directivity amplifications. The stripes at each discrete Ry (i.e., 

Ry = 0km to Ry = 30km) display the directivity amplifications at all Rx/L values (Rx/L 

= 0 to Rx/L = 0.8). This way, the reader gets an overall picture on the distance tapering 

at a discrete period (Tmax or Tcorner in these comparisons but the period can be any 

other specific value as well). The corresponding estimated directivity amplifications 

are given as grey circles and their median at each stripe is given in black.  

AMP(T) 

Distance (km) 
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Figure 5.26 Observed ad estimated directivity amplifications as a function of Ry for 

simplified SHB11 model 

 

The estimated and observed medians compare fairly well for SHB11 (in particular 

for 475-year return period) whereas the estimated directivity amplifications for 

CHS13 show some level of discrepancy with respect to the PSHA results. The 

simplified expressions for CHS13 are conservative with respect to the observed 
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trends for 10km≤Ry≤25km. As indicated above such discrepancies are not significant 

in the simplified SHB11 directivity amplification model.  

 

 

Figure 5.27 Observed ad estimated directivity amplifications as a function of Ry for 

CHS13 model 

 

Note that the problem tackled in this chapter (development of simplified expressions 

for directivity amplification) is not straightforward as the proposed expression are 

tailored for their use in seismic design codes. Handful approximations and 
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simplifications are done to achieve this objective. The results should be evaluated 

under this perspective. The next section displays the residual analyses for both 

simplified expressions to assess their performance in a wider perspective.  

5.3.5 Residual Analyses 

The unbiased directivity amplification estimations of the proposed expressions are 

verified by classical residual (difference between observed and estimated quantities) 

analysis. Figure 5.28 and Figure 5.29 display the residual scatters for simplified 

SHB11-based expressions together with distance tapering approach as discussed in 

Section 5.3.4. The observations are the resulting directivity amplifications from 

PSHA. The residuals are plotted in terms of Rx/L, Ry and spectral period for the 475-

year (Figure 5.28) and 2475-year (Figure 5.29) return periods. Each residual plot also 

shows the mean as well as  standard deviation of residuals at discrete Rx/L, Ry and 

spectral periods. Residual scatters without showing any specific trend about zero line 

suggest the unbiased directivity amplification estimates of the proposed expressions. 

The residual trends for the considered parameters suggest a fairly unbiased directivity 

amplification estimations by the proposed simplified equations for SHB11. The 

2475-year on fault directivity estimations are slightly smaller than the observed 

directivity amplifications. This observation is consistent with Figure 5.26 since the 

distance tapering comparisons also suggest smaller estimations of the simplified 

SHB11 model for Ry = 0km.  

Similar residual analyses are also run for the simplified CHS13 directivity 

amplification expressions. The results are given in Figure 5.30 and Figure 5.31 for 

475-year and 2475-year return periods, respectively. The residual trends depicted 

from mean  standard deviation values suggest smaller directivity estimations with 

respect to the observed values. This observation is generally valid for all the 

independent parameters considered in the analysis: Rx/L, Ry and period. The smaller 

estimations of the CHS13-based expressions are partly due to distance tapering 

approach and are consistent with the overall distance tapering picture given in Figure 

5.27. Nonetheless the smaller directivity estimations do not endanger the accuracy of 

the proposed model because the mean residual values are very close to zero.   
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Figure 5.28 Residuals computed from PSHA (observed) and estimated directivity 

amplifications for SHB11 narrow-band directivity model, for the 475-year return 

period 
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Figure 5.29  Residuals computed from PSHA (observed) and estimated directivity 

amplifications for SHB11 narrow-band directivity model for the 2475-year return 

period 
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Figure 5.30 Residuals of PSHA and estimated amplification factors for CHS13 

model, for the 475-year return period 
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Figure 5.31 Residuals of PSHA and estimated amplification factors for CHS13 

model, for the 475-year return period 
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Figure 5.32 Return periods related to the spectral amplitudes of pulse-like and 

nonpulse recordings 

5.4 Consideration of Proposed Directivity Amplification Models for 

Directivity Dominant Maximum Direction Spectrum 

The two directivity models utilized in this study (SHB11 and CHS13) estimate 

different horizontal components of ground motions. SHB11 is used for determining 

directivity amplifications to convert no-directivity GMRotI50 (can be referred to as 

geometric mean; Beyer and Bommer, 2006) component to directivity dominated fault 
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normal (FN) component. The amplification factors by CHS13 modify nondirectivity 

RotD50 component for directivity dominated ground motions (RotD50Directivity). In 

brief, SHB11 amplification factors estimate SaFNDirectivity/SaGeomean whereas CHS13 

amplification factors compute SaRotD50directivity/SaRotD50nodirectivity. Equation 5.22 shows 

the relationship for the directivity-dominated spectral estimations for SHB11 model 

whereas Equation 5.23 gives the same relationship for CHS13. 

𝑆𝑎𝐹𝑁𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐴𝑀𝑃𝑆𝐻𝐵11 ∙ 𝑆𝑎𝐺𝑒𝑜𝑚𝑒𝑎𝑛 5.22 

𝑆𝑎𝑅𝑜𝑡𝐷50𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐴𝑀𝑃𝐶𝐻𝑆13 ∙ 𝑆𝑎𝑅𝑜𝑡𝐷50𝑛𝑜𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 5.23 

If SaRotD100directivity is defined as in Equation 4.3, the ratio between SaFNdirectivity and 

SaRotD100directivity is given in Equation (5.24) provided that SaGeomean  SaRotD50 

𝑆𝑎𝐹𝑁𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑎𝑅𝑜𝑡𝐷100𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
=

𝐴𝑀𝑃𝑆𝐻𝐵11(𝑇)

𝐴𝐹𝑅𝑜𝑡𝐷100 ∙ 𝐴𝐹𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 5.24 

The directivity spectral amplification by SHB11 (AMPSHB11(T)) is already defined in 

Section 5.3.2 whereas AFRotD100 and AFDirectivity can be described through Shahi and 

Baker (2014) the SaRotD100directivity/SaRotD100nodirectivity ratio statistics described in 

Chapter 4. In a similar way, combination of SaRotD100directivity/SaRotD50nodirectivity ratio 

statistics in Chapter 4 with Equation 5.24 would give an approximate estimation for 

SaRotD100directivity for CHS13 directivity model. 

The latter approach would lead to an average spectral amplitude increase of 25% to 

30% when SaRotD100directivity is estimated from SaRotD50directivity by CHS13. However, 

the conversion of SaFNDirectivity to SaRotD100directivity (when SaFNDirectivity is determined 

from SHB11 directivity model) requires significantly large multiplicants (greater 

than 3 in many cases) since AFDirectivity factors computed in Chapter 4 (depicted in 

Figure 4.10 and Figure 4.14) may attain very large values confined to the coarse 

magnitude and distance intervals given in Table 4.2. The large difference between 

SaRotD100directivity between these two different approaches may stem from the specific 

features of the compiled pulse-like and non-pulse strong-motion database used in 

Chapter 4. 
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As indicated in Chapter 4, the directivity to nondirectivity ratio statistics presented in 

Sections 4.5 and 4.6 can only be a first-order approximation because the source-site 

geometry (or other factors affecting the directivity spectral amplitudes that are 

important in diertivity spectral amplitudes) is not well constrained in the absence of 

abundant pulse-like and non-pulse records. Besides, when the spectral amplitudes of 

pulse-like and nonpulse strong-motions are compared with the hazard curves 

determined from the PSHA results of this study, one can infer a significant difference 

between these two data classes in terms of annual exceedance rates (return periods). 

The observations are such that the spectral amplitudes of pulse-like recordings would 

represent very large return periods with respect to those of nonpulse recordings. This 

observation is presented in Figure 5.32 which suggests significantly conservative 

SaRotD100directivity/SaRotD100nodirectivity (AFDirectivity) spectral ratios. 
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CHAPTER 6 

 

 

 CONCLUSION AND DISCUSSIONS 

 

 

 

6.1 Summary and Conclusions 

This study investigates the effect of ground motion polarization on the amplification 

of response spectrum. In essence, the study concentrates on the forward-directivity 

ground motions since they are known to have highly polarized characteristics. It 

should be noted that the aim of this study is not to develop directivity models. This 

study utilizes the developed directivity models to capture the amplifying effects of 

directivity for different seismological and geometrical situations with PSHA. Two 

directivity models (SHB11 and CHS13) were utilized in order to simulate the 

directivity effect on PSHA for different earthquake scenarios. The significance of 

different seismological and geometrical parameters on the forward-directivity 

amplification are investigated for each utilized directivity model. Simple 

amplification models are then proposed to incorporate the directivity effects on the 

design spectrum.  

The study also investigates the effect of directionality in determination of maximum 

rotated component for near fault forward-directivity ground motions. To this end, 

near fault ground motions with 6.0<Mw<8.0 and Rrup<30km are selected from NGA-

WEST2 database (http://ngawest2.berkeley.edu; Ancheta et al. (2014)). The ground 

motions are classified as pulselike and non-pulselike. The geometrical parameters 

defined by Somerville et. al. (1997) (θ, φ, X·cos θ and Y·cos φ) are utilized to classify 

the ground motions as pulselike and non-pulselike. The ratio of maximum rotated 

component for pulselike and non-pulselike ground motions (RotD100Directivity/ 

RotD100NoDirectivity) is calculated and a conversion model is proposed for the 

http://ngawest2.berkeley.edu/
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estimation of maximum rotated horizontal component for forward-directivity ground 

motions.  

The most important observations and achieved results are as follows: 

- SHB11 (the first directivity model utilized in this study) modifies GMRotI50 

component of its counterpart GMPE (Boore and Atkinson 2008) to estimate 

the response spectrum in a desired orientation with respect to fault strike. The 

model considers pulse period and probability of pulse occurrence in its 

probabilistic framework for estimation of response spectrum. The fault 

normal component is selected in this study in order to extract forward-

amplifications for SHB11 model. This is because the impulsive signals 

stemming from forward-directivity are mostly seen in this direction.  

- CHS13 (the second directivity model utilized in this study) modifies the 

RotD50 component of its counterpart GMPE (Chiou and Young 2014) to 

estimate the same component for forward directivity ground motions 

(RotD50Directivity). 

- PSHA is calculated with and without considering directivity effect and the 

response spectrum is extracted for different fault-site geometries, 

seismological parameters and two hazard levels. 

- The amplification factors are extracted from normalization of directivity 

response spectrum (SaDirectivity) to conventional response spectrum 

(SaNoDirectivity) for different earthquake scenarios. 

- The extracted amplification model for SHB11 has an increasing trend up to 

the maximum amplification period (referred to as Tmax) which is followed by 

a descending trend for larger period ranges. Amplification model of CHS13 

also shows an increasing trend up to its maximum amplification period 

(referred to as Tcorner). However, the amplification factor takes almost a 

constant value for larger periods in this model. 

- For the case of SHB11 directivity model the results of analysis show that, slip 

rate, fault length (or characteristic magnitude of the fault), hazard level and 

source-to-site geometry play important role in the determination of 

amplification amplitude. On the other hand, characteristic magnitude and 

source-to-site geometry are determining parameters in CHS13 model, 
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whereas slip rate and hazard level do not change the amplification amplitude 

considerably. 

- The amplification amplitude shows greater values for larger return periods 

(2475-year) and slip rate values in SHB11. The effect of slip rate on 

amplification amplitude is more prominent in smaller return periods (475-

year). 

- In both SHB11 and CHS13 models the larger amplification amplitudes are 

observed for the faults with greater characteristic magnitudes. However, this 

increment trend is saturated for the faults with characteristic magnitude 

greater than 7.25 in both SHB11 and CHS13 models.  

- The characteristic magnitude also changes the spectral period in which the 

maximum amplification occurs (Tmax in SHB11 and Tcorner in CHS13). It is 

shown that the period values at which the directivity amplifications are 

maximized (Tmax and Tcorner) are the same for both SHB11 and CHS13 

models. It is also shown that there is a linear relationship between 

characteristic magnitude and maximum amplification period (Tmax or Tcorner). 

- In terms of spatial distribution of directivity amplification, SHB11 and 

CHS13 exhibit different patterns. In SHB11 model the directivity dominant 

regions are located near the fault edges while in CHS13, they extend to the 

sites located beyond the fault edges in strike parallel direction. 

- In strike normal direction the directivity dominant regions can exceed 30km 

in both SHB11 and CHS13 models for the fault lengths greater than 150km.  

- These observations are utilized in order to set simple rules for forward-

directivity amplifications. These amplification models consider the effect of 

all aforementioned seismological and geometrical parameters in their 

functional forms. They preserve, at the same time, a compromise between 

accuracy and simplicity because these models are proposed to be 

implemented on seismic design codes. 

- The amplification factor of SHB11 model which estimates fault normal 

component reaches up to 1.8 in its maximum case while the largest 

amplification factor calculated from CHS13 which modifies RotD50 

component forward directivity is equal to 1.5. However if this amplification 
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factor is integrated with conversion factor of Shahi and Baker (2013) for the 

estimation of maximum rotated component (SaRotD100Directivity) the generic 

amplification factor will be equal to 1.87 which is slightly larger than that of 

SHB11. 

- It should be noted that the seismological aspects of directivity effect are not 

still verified very clearly due to lack of data in this field. Therefore, the 

proposed directivity models illustrate different results for directivity 

amplification in terms of amplitude and spatial distribution around the fault.  

- A conversion factor is proposed for the estimation of maximum rotated 

component for forward-directivity ground motions in Chapter four. To this 

end, RotD100 spectral ratios of pulselike and non-pulse records (i.e., 

AFdirectivity = SaRotD100directivity/SaRotD100nodirectivity) are calculated for different 

magnitude and distance intervals.  

- The AFdirectivity ratios exhibit significantly large values (AFdirectivity ≈ 6.5 for 

T>2s) which seems to be too conservative. This is supposed to be due to the 

scarce number of near fault ground motions utilized in development of the 

conversion model. Besides, there is an inconsistency between the return 

periods of pulselike and non-pulselike spectral amplitudes which can be 

another reason of overestimation for AFdirectivity ratios. The return periods are 

determined from the hazard curves of PSHA results. However, this type of 

relationship (SaRotD100directivity/ SaRotD100nodirectivity) is presented for the first time 

in the literature and it emphasizes on the importance of compound effects of 

directionality (along maximum direction) and directivity. 

6.2 Recommendations for further research 

- Directivity models are consistently updated. The new models try to propose a 

better description of the relationship between directivity amplification in one 

hand and the seismological and geometrical parameters in the other hand. 

These new directivity models which are capable of taking more complicated 

geometrical characteristics of the faults can be utilized in PSHA to catch the 

amplifying characteristics of forward directivity effects for near fault ground 

motions.  
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- Real case studies with application of these new directivity models can be 

carried out for multi-segment faults with more complicated geometries. 

- The national seismic hazard maps should be updated considering the 

directivity and near-fault effects in a long-term plan. 

- Further studies are required to determine the best horizontal component 

definition that should be utilized in seismic design codes. 

- The adequacy of existing limit-state acceptance criteria for both global and 

local structural demands under pulselike ground motions should be further 

investigated. The structural performance should be evaluated in terms of 

energy dissipation capacity for different hazard levels and drift demand limit-

state for forward-directivity ground motions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



153 

 

 

REFERENCES 

 

Abrahamson, N. et al., 2008. Comparisons of the NGA ground-motion relations. 

Earthquake Spectra, 24(1), pp.45–66. 

Abrahamson, N.A., 2000. Effects of rupture directivity on probabilistic seismic 

hazard analysis. In Proceedings of the Sixth International Conference on 

Seismic Zonation: Managing Earthquake Risk in the 21st Century, Palm 

Springs, CA, 12-15 November 2000. Available at: 

http://nisee.berkeley.edu/elibrary/Text/200803124. 

Abrahamson, N.A. & Silva, W.J., 1997. Empirical response spectral attenuation 

relationships for shallow crustal earthquakes. Seismological Research Letters, 

68(1), pp.94–127. 

Akkar, S. & Gulkan, P., 2001. Near-field earthquakes and their implications on 

seismic design codes. Report No. METU/EERC 01-01, Earthquake 

Engineering Research Center, Middle East Technical University, Ankara, 

Turkey. 

Akkar, S.D., Yazgan, U. & Gülkan, P., 2004. Deformation Limits for simple Non-

Degrading Systems subjected to Near-Fault Ground Motions. In Proceedings 

13th World Conference on Earthquake Engineering. pp. 1–14. 

Alavi, B. & Krawinkler, H., 2004. Behavior of moment-resisting frame structures 

subjected to near-fault ground motions. Earthquake Engineering and 

Structural Dynamics, 33(6), pp.687–706. 

Alavi, B. & Krawinkler, H., 2001. Effects of Near Fault Ground Motions on Frame 

Structures, Available at: Blume/TRList.htm [accessed 31 May 2006]. 

Almufti, I. et al., 2015. Incorporation of velocity pulses in design ground motions 

for response history analysis using a probabilistic framework. Earthquake 

Spectra, 31(3), pp.1647–1666. 

Ambraseys, N.. & Douglas, J., 2003. Near-field horizontal and vertical earthquake 

ground motions. Soil Dynamics and Earthquake Engineering, 23(1), pp.1–18. 

Anderson, J.C. & Bertero, V. V., 1987. Uncertainties in Establishing Design 

Earthquakes. Journal of Structural Engineering, 113(8), pp.1709–1724. 

Anderson, J.C. & Naeim, F., 1984. Design criteria and ground motion effects in the 

seismic response of multi-story buildings. Proc. Applied Technology Council, 

ATC 10-1, Seminar on Earthquake Ground Motion and Building Damage 

Potential, San Francisco. 

Anderson, N. et al., 2003. Vertical shear-wave velocity profiles generated from 

spectral analysis of surface waves: field examples. Prepared for Missouri 

Department of Transportation Final Report, RDT 03-006. 

ASCE7-10, 2010. Minimum Design Loads for Buildings and Other Structures. SEI 

7-10. 

Baker, J.W., 2007. Quantitative classification of near-fault ground motions using 

wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 

pp.1486–1501. 

Baltzopoulos, G., Chioccarelli, E. & Iervolino, I., 2015. The displacement 

coefficient method in near-source conditions. Earthquake Engineering and 



154 

 

Structural Dynamics, 44(7), pp.1015–1033. 

Baltzopoulos, G., Vamvatsikos, D. & Iervolino, I., 2016. Analytical modelling of 

near-source pulse-like seismic demand for multi-linear backbone oscillators. 

Earthquake Engineering & Structural Dynamics, 45(11), pp.1797–1815. 

Available at: http://doi.wiley.com/10.1002/eqe.2729 [Accessed February 27, 

2017]. 

Bertero, V., Mahn, S. & Herrera, R., 1978. Aseismic design implications of near-

fault San Fernando earthquake records. Earthquake Engineering & Structural 

Dynamics, 6(July 1976), pp.31–42. Available at: 

http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290060105/abstract. 

Beyer, K. & Bommer, J.J., 2006. Relationships between median values and between 

aleatory variabilities for different definitions of the horizontal component of 

motion. Bulletin of the Seismological Society of America, 96(4 A), pp.1512–

1522. 

Boore, D.M., 2010. Orientation-Independent, Nongeometric-Mean Measures of 

Seismic Intensity from Two Horizontal Components of Motion. Bulletin of the 

Seismological Society of America, 100(4), pp.1830–1835. 

Boore, D.M., 2006. Orientation-Independent Measures of Ground Motion. Bulletin 

of the Seismological Society of America, 96(4A), pp.1502–1511. Available at: 

http://www.bssaonline.org/cgi/doi/10.1785/0120050209. 

Boore, D.M., Watson-Lamprey, J. & Abrahamson, N.A., 2006. Orientation-

Independent Measures of Ground Motion. Bulletin of the Seismological Society 

of America, 96(4A), pp.1502–1511. 

Boore, D.M. & Zoback, M.D., 1974. Two-dimensional kinematic fault modeling of 

the Pacoima Dam strong-motion recordings of the February 9, 1971, San 

Fernando earthquake. Bulletin of the Seismological Society of America, 64(3–

1), pp.555–570. Available at: http://bssa.geoscienceworld.org/content/64/3-

1/555%5Cnfiles/772/Boore_Zoback_1974_Two-dimensional kinematic fault 

modeling of the Pacoima Dam strong-motion.pdf%5Cnfiles/808/555.html. 

Bozorgnia, Y. et al., 2014. NGA-West2 research project. Earthquake Spectra, 

30(3), pp.973–987. 

Bradley, B.A. & Baker, J.W., 2015. Ground motion directionality in the 2010-2011 

Canterbury earthquakes. Earthquake Engineering and Structural Dynamics, 

44(3), pp.371–384. 

Bradley, B.A. & Cubrinovski, M., 2011. Near-source strong ground motions 

observed in the 22 February 2011 Christchurch earthquake. Bulletin of the New 

Zealand Society for Earthquake Engineering, 44(4), pp.181–194. 

Bray, J.D. & Rodriguez-Marek, A., 2004. Characterization of forward-directivity 

ground motions in the near-fault region. Soil Dynamics and Earthquake 

Engineering, 24(11), pp.815–828. 

BSSC., 2009. NEHRP Recommended Seismic Provisions for New Buildings and 

Other Structures. Washington, D.C.: Federal Emergency Management Agency. 

CALTRANS, 2013. Seismic design criteria. California Department of 

Transportation: Sacramento, CA, U.S. Version 1.7. 

Campbell, K. & Bozorgnia, Y., 1994. Empirical analysis of strong ground motion 

from the 1992 Landers, California, earthquake. Bulletin of the Seismological 

Society of America, 84(3), p.573. 

Campbell, K.W. & Bozorgnia, Y., 2008. NGA ground motion model for the 



155 

 

geometric mean horizontal component of PGA, PGV, PGD and 5% damped 

linear elastic response spectra for periods ranging from 0.01 to 10 s. 

Earthquake Spectra, 24(1), pp.139–171. 

Chai, J.F., Loh, C.H. & Chen, C.Y., 2000. Consideration of the near fault effect on 

seismic design code for sites near the Chelungpu fault. Journal of the Chinese 

Institute of Engineers, 23(4), pp.447–454. 

Chai, J.F. & Teng, J., 2012. Seismic design force for buildings in Taiwan. National 

Center for Research on Earthquake Engineering. Taiwan 15WCEE. 

Chai, J.F., Teng, J. & Loh, H., 2001. Current Development of Seismic Design Code 

to Consider the Near-fault Effect in Taiwan. Earthquake Engineering and 

Engineering Seismology, 3(2), pp.47–56. 

Champion, C. & Liel, A., 2012. The effect of near-fault directivity on building 

seismic collapse risk. Earthquake Engineering and Structural Dynamics, 

41(10), pp.1391–1409. 

Chen, K.-C. et al., 2001. An Observation of Rupture Pulses of the 20 September 

1999 Chi-Chi, Taiwan, Earthquake from Near-Field Seismograms. Bulletin of 

the Seismological Society of America , 91(5), pp.1247–1254. Available at: 

http://www.bssaonline.org/content/91/5/1247.abstract. 

Chioccarelli, E. & Iervolino, I., 2010. Near-source seismic demand and pulse-like 

records: A discussion for L’Aquila earthquake. Earthquake Engineering and 

Structural Dynamics, 39(9), pp.1039–1062. 

Chioccarelli, E. & Iervolino, I., 2013. Near-source seismic hazard and design 

scenarios. Earthquake Engineering and Structural Dynamics, 42(4), pp.603–

622. 

Chiou, B.S.J. & Youngs, R.R., 2014. Update of the Chiou and Youngs NGA model 

for the average horizontal component of peak ground motion and response 

spectra. Earthquake Spectra, 30(3), pp.1117–1153. 

Dalguer, L.A. & Day, S.M., 2007. Staggered-grid split-node method for 

spontaneous rupture simulation. Journal of Geophysical Research: Solid 

Earth, 112(2). 

Dunham, E.M. & Archuleta, R.J., 2005. Near-source ground motion from steady 

state dynamic rupture pulses. Geophysical Research Letters, 32(3), pp.1–4. 

Fukushima, Y. et al., 2000. Characteristics of observed peak amplitude for strong 

ground motion from the 1995 Hyogoken Nanbu (Kobe) earthquake. Bulletin of 

the Seismological Society of America, 90(3), pp.545–565. 

Gregor, N. et al., 2014. Comparison of NGA-West2 GMPEs. Earthquake Spectra, 

30(3), pp.1179–1197. 

Gupta, A. & Krawinkler, H., 1999. Seismic demands for performance evaluation of 

steel moment resisting frame structures. Report No. 132, Stanford University, 

Stanford, CA, (132). 

Hall, J.F. et al., 1995. Near Source Ground Motion and its Effects on Flexible 

Buildings. Earthquake Spectra, 11, pp.569–605. 

Heaton, T.H. et al., 1995. Response of high-rise and base-isolated buildings to a 

hypothetical mw 7.0 blind thrust earthquake. Science (New York, N.Y.), 

267(5195), pp.206–211. 

Hong, H.P. & Goda, K., 2007. Orientation-Dependent Ground-Motion Measure for 

Seismic-Hazard Assessment. Bulletin of the Seismological Society of America , 

97(5), pp.1525–1538. Available at: 



156 

 

http://www.bssaonline.org/content/97/5/1525.abstract. 

Housner, G.W. & Hudson, D.E., 1958. The Port Hueneme earthquake of March 18, 

1957. Bulletin of the Seismological Society of America, 48(2), pp.163–168. 

Available at: http://www.bssaonline.org/content/48/2/163.short. 

Housner, G.W. & Trifunac, M.D., 1967. Analysis of accelerograms--Parkfield 

earthquake. Bulletin of the Seismological Society of America, 57(6), pp.1193–

1220. Available at: http://www.bssaonline.org/cgi/content/abstract/57/6/1193. 

Huang, Y. et al., 2008. Relocation of the M8.0 Wenchuan earthquake and its 

aftershock sequence. Science in China Series D: Earth Sciences, 51(12), 

pp.1703–1711. Available at: http://dx.doi.org/10.1007/s11430-008-0135-z. 

Iervolino, I., Chioccarelli, E. & Baltzopoulos, G., 2012. Inelastic displacement ratio 

of near-source pulse-like ground motions. Earthquake Engineering and 

Structural Dynamics, 41(15), pp.2351–2357. 

Iervolino, I. & Cornell, C.A., 2008. Probability of occurrence of velocity pulses in 

near-source ground motions. Bulletin of the Seismological Society of America, 

98(5), pp.2262–2277. 

Kalkan, E., Adalier, K. & Pamuk, A., 2004. Near source effects and engineering 

implications of recent earthquakes in Turkey. In Proceedings of the 5th 

International Conference on Case Histories in Geotechnical Engineering. pp. 

1–6. Available at: 

http://nsmp.wr.usgs.gov/ekalkan/PDFs/Conferences/C8_Kalkan_et_al.pdf. 

Kalkan, E. & Kunnath, S.K., 2006. Effects of fling step and forward directivity on 

seismic response of buildings. Earthquake Spectra, 22(2), pp.367–390. 

Li, X. Le et al., 2007. Response spectrum of seismic design code for zones lack of 

near-fault strong earthquake records. Acta Seismologica Sinica English 

Edition, 20(4), pp.447–453. 

Mai, P.M., Spudich, P. & Boatwright, J., 2005. Hypocenter locations in finite-

source rupture models. Bulletin of the Seismological Society of America, 95(3), 

pp.965–980. 

Malhotra, P.K., 1999. Response of buildings to near-field pulse-like ground 

motions. Earthquake Engineering and Structural Dynamics, 28(2), pp.1309–

1326. 

Mavroeidis, G.P., Dong, G. & Papageorgiou, A.S., 2004. Near-fault ground 

motions, and the response of elastic and inelastic single-degree-of-freedom 

(SDOF) systems. Earthquake Engineering and Structural Dynamics, 33(9), 

pp.1023–1049. 

Mavroeidis, G.P. & Papageorgiou, A.S., 2003. A mathematical representation of 

near-fault ground motions. Bulletin of the Seismological Society of America, 

93(3), pp.1099–1131. 

Menun, C. & Fu, Q., 2002. An analytical model for near-fault ground motions and 

the response of SDOF systems. In Proc. of the 7th U.S. National Conf. on 

Earthquake Engineering, Boston, MA. Available at: 

http://peer.berkeley.edu/research/peertestbeds/Cct/Menun and Fu 2002.pdf. 

New Zealand Standard, NZS, 1170.5:2004, 2004. Structural design actions part 5: 

earthquake actions. New Zealand – Commentary. 

Niazy, A., 1975. An exact solution for a finite, two-dimensional moving dislocation 

in an elastic half-space with application to the San Fernando earthquake of 

1971. Bulletin of the Seismological Society of America, 65(6), pp.1797–1826. 



157 

 

Oglesby, D.D., Archuleta, R.J. & Nielsen, S.B., 2000. The three-dimensional 

dynamics of dipping faults. Bulletin of the Seismological Society of America, 

90(3), pp.616–628. 

Power, M. et al., 2008. An overview of the NGA project. Earthquake Spectra, 

24(1), pp.3–21. 

Rowshandel, B., 2010. Directivity correction for the next generation attenuation 

(NGA) relations. Earthquake Spectra, 26(2), pp.525–559. 

Rupakhety, R. et al., 2011. Quantification of ground-motion parameters and 

response spectra in the near-fault region. Bulletin of Earthquake Engineering, 

9(4), pp.893–930. 

Sasani, M. & Bertero, V.V., 2000. Importance of Severe Pulse-Type Ground 

Motions in Performance-Based Engineering: Historical and Critical. In 

Proceedings of the 12th World Conference on Earthquake Engineering, New 

Zealand Society for Earthquake Engineering, Upper Hutt, New Zealand, 2000. 

Schmedes, J. & Archuleta, R.J., 2008. Near-surface ground motion along strike-slip 

faults: Insights into magnitude saturation of PGV and PGA. Bulletin of the 

Seismological Society of America, 98(5), pp.2278–2290. 

Seekins, L.C. & Boatwright, J., 2010. Rupture Directivity of Moderate Earthquakes 

in Northern California. Bulletin of the Seismological Society of America , 

100(3), pp.1107–1119. Available at: 

http://www.bssaonline.org/content/100/3/1107.abstract. 

Shahi, S.K., 2013. A probabilistic framework to include the effects of near-fault 

directivity in seismic hazard assessment. PhD Thesis, Dept. of Civil and 

Environmental Engineering, Stanford University, Stanford, CA. 

Shahi, S.K. & Baker, J.W., 2011. An empirically calibrated framework for 

including the effects of near-fault directivity in probabilistic seismic hazard 

analysis. Bulletin of the Seismological Society of America, 101(2), pp.742–755. 

Somerville, P. et al., 1999. Characterizing Crustal Earthquake Slip Models for the 

Prediction of Strong Ground Motion. Seismological Research Letters, 70(1), 

pp.59–80. 

Somerville, P. et al., 1996. Implications of the Northridge earthquake for strong 

ground motions from thrust faults. Bulletin of the Seismological Society of 

America , 86(1B), pp.S115–S125. Available at: 

http://www.bssaonline.org/content/86/1B/S115.abstract. 

Somerville, P.G., 2002. Characterizing Near Fault Ground Motion For The Design 

And Evaluation Of Bridges. In Proceedings 3rd National Seismic Conference 

& Work shop on Bridges & Highways, Portland, Oregon. pp. 137–148. 

Somerville, P.G. et al., 1997. Empirical strong ground motion attenuation relations 

to include the amplitude and duration effects of rupture directivity. 

Seismological Research Letters, 68(1), pp.199–222. 

Somerville, P.G., 2003. Magnitude scaling of the near fault rupture directivity 

pulse. Physics of the Earth and Planetary Interiors, 137(1–4), pp.201–212. 

Spudich, B.P. et al., 2004. A formulation of directivity for earthquake sources using 

Isochrone Theory. U.S. Geol. Surv. Open-File Rept. 2004-1268, p.54. 

Spudich, P. et al., 2014. Comparison of NGA-West2 directivity models. Earthquake 

Spectra, 30(3), pp.1199–1221. 

Spudich, P. et al., 2013. Final Report of the NGA-West2 Directivity Working Group, 

Spudich, P. & Chiou, B.S.J., 2008. Directivity in NGA earthquake ground motions: 



158 

 

Analysis using isochrone theory. Earthquake Spectra, 24(1), pp.279–298. 

TEC, 2007. “Specification for Buildings to be Built in Seismic Zones, (in Turkish) 

Ministry of Public Works and Settlement, Ankara.” 

Tothong, P. & Cornell, C.A., 2006. An empirical ground-motion attenuation 

relation for inelastic spectral displacement. Bulletin of the Seismological 

Society of America, 96(6), pp.2146–2164. 

Tothong, P. & Cornell, C.A., 2008. Structural performance assessment under near-

source pulse-like ground motions using advanced ground motion intensity 

measures. Earthquake Engineering and Structural Dynamics, 37(7), pp.1013–

1037. 

Tothong, P., Cornell, C.A. & Baker, J.W., 2007. Explicit directivity-pulse inclusion 

in probabilistic seismic hazard analysis. Earthquake Spectra, 23(4), pp.867–

891. 

Tothoug, P. & Cornell, C.A., 2007. Probabilistic Seismic Demand Analysis Using 

Advanced Ground Motion Intensity Measures, Attenuation Relationships, and 

Near-Fault Effects. Pacific Earthquake Engineering Research Center, 

(March), pp.185–195. 

UBC, 1994. “Uniform Building Code.” International Conference of Building 

Officials, Whittier, California, 

UBC, 1997. “Uniform Building Code.” International Conference of Building 

Officials, Whittier, California, 

Watson-Lamprey, J.A. & Boore, D.M., 2007. Beyond SaGMRotI: Conversion to 

SaArb, SaSN, and SaMaxRot. Bulletin of the Seismological Society of 

America, 97(5), pp.1511–1524. 

Wells, D.L. & Coppersmith, K.J., 1994. New Empirical Relationships among 

Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface 

Displacement. Bulletin of the Seismological Society of America, 84(4), pp.974–

1002. 

Yaghmaei-Sabegh, S. & Mohammad-Alizadeh, H., 2012. Improvement of Iranian 

Seismic Design Code Considering the Near-Fault Effects. International 

Journal of Engineering, 25(2 (C)), pp.147–158. Available at: 

http://www.ije.ir/Vol25/No2/C/8.pdf. 

Youngs, R.R. & Coppersmith, K.J., 1985. Implications of fault slip rates and 

earthquake recurrence models to probabilisic seismic hazrad estimates. 

Bulletin of the Seismological Society of America, 75(4), pp.939–964. 

 

 

 

 

 

 

 

 

 



159 

 

 

APPENDIX A 

 

 

GEOMETRICAL CALCULATIONS FOR SEISMIC HAZARD 

ANALYSIS WITH THE DIRECTIVITY MODELS 

 

 

 

 

A.1 Geometrical Calculations for Chiou and Spudich (2013) model 

The normal vector to the fault plane is calculated from Equation A1: 

normvect =
vect1 × vect2
|vect1 × vect2|

 A1 

In which vect1 and vect2 are the vectors in the direction of fault sides (Figure A1). 

Three components of normal vector is shown by: 

normvect = (n1, n2, n3) 

 

Figure A.1 Fault normal vector 

The equation of the fault plane is given by:  

ax + by + cz − d = 0 A2 

Coordinates of the point normal to the fault plane from the site is calculated from the 

Equation A3: 
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xp = n1. t + xsite  

yp = n2. t + ysite A3 

zp = n3. t + zsite  

In which 

t =
n1. xSC1 + n2. ySC1 + n3. zSC1

√n12 + n22 + n32
 A4 

SC1 is the line that connects the site to the first corner of the fault (Figure A2). SC1 is 

calculated from Equation A5: 

SC1 = (xsite, ysite, zsite) − (xC1, yC1, zC1) A5 

The point normal to the fault plane is the closest point of the fault plane to the site 

and is shown by Vp: 

Vp = (xp, yp, zp) 

 

Figure A.2 Closest point of the site to the fault plane 

 

- Calculation of PD (Direct Point): 

In order to find the direct point it is needed to know that the vertical point from the 

site to the fault plane is either inside the rupture area or not. 

areavp = area1 + area2 + area3 + area4 A6 

If areavp is equal to rupture area PD (Direct Point) is the same is VP (Vertical Point) 

(Figure A3). If the areavp is greater than rupture area it means that VP is out of the 

rupture segment. If the VP-hyp line intersects the rupture area on the 2-4 side of the 
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rupture segment (Figure A4) then the PD will be calculated from the equations shown 

below: 

PD = (xD, yD, zD) 

 

 

Figure A.3 Calculation of direct point for the case that closest point is located 

inside the rupture area 

 

xD = xm24. t24 + x_P2seg  

yD = ym24. t24 + y_P2seg A7 

zD = zm24. t24 + z_P2seg  

In which P2seg is the coordinates of rupture corner in point 2,  m24 is the unit vector 

of the line between points 2 and 4 on the rupture segment and t24 is calculated with 

Equations A8 to A11: 

t24xy =
ymhv. xmhr2 − xmhv. ymhr2

xm24. ymhv − ym24. xmhv
 A8 

t24xz =
zmhv. xmhr2 − xmhv. zmhr2

xm24. zmhv − zm24. xmhv
 A9 

t24yz =
zmhv. ymhr2 − ymhv. zmhr2

ym24. zmhv − zm24. ymhv
 A10 

here mhv is the unit vector between the hypocenter and vertical point, 

and mhr2 is the unit vector between the hypocenter and point 2 on the corner of the 

rupture area. 

t24 = max (t24xy, t24xz, t24yz) A11 
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For some cases the projection of mhv and mhr2 vectors on the xy, xz and yz planes 

may lie on each other. In this case one of the t24xy, t24xz or t24yz will be equal to zero 

which is not the correct answer. In order to avoid the error from these cases the 

maximum value of t24xy, t24xz and t24yz for t24 is used. 

 

Figure A.4 Calculation of direct point for the case that closest point is located 

outside the rupture area 

 

- Calculation of the average scalar radiation pattern 𝐅𝐒̅̅ ̅: 

In order to find (FS) ̅ value first Ix, In and Iφ parameters should be calculated. For 

the calculation of Ix, In and Iφ the following information is needed (Figure A5): 

u ⃗ is the unit vector of slip direction, 

n is the unit vector of fault normal direction, 

x ⃗ is the unit vector projected direct ray (𝑃𝐻𝑃𝑃). 

u ⃗  is calculated from the direction of fault top edge which is the same as the direction 

of fault slip. 

Vector n has already been calculated from Equation 1 and x⃗⃗ is calculated from 

Equation 12: 

n⃗⃗ =
VP−hyp

|VP−hyp|
  A12 

φ = arc tan
|u⃗⃗ × x⃗⃗|

|u⃗⃗. x⃗⃗|
 

A13 

zs = √(xvp − xsite)2+(yvp − ysite)2 + (zvp − zsite)2  
A14 

zs is the signed distance between PS (site) and Pp (vertical point). 
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l2 = |VP − hyp| A15 

𝑙2 is the fixed distance between PH and PP. 

Rhyp = |(xsite, ysite, zsite) − (xhyp, yhyp, zhyp)| A16 

Rhyp is the distance between hypocenter and the site. 

 

Figure A.5 Geometrical information for the calculation of average scalar radiation 

pattern ( 𝐅𝐒̅̅ ̅) parameter (Spudich et al. 2013) 

 

RD = |(xsite, ysite, zsite) − (xD, yD, zD)| A17 

RD is the distance between site and the direct point. 

RE = |(xD, yD, zD) − (xhyp, yhyp, zhyp)| A18 

RE is the distance between hypocenter and direct point. 

Ix = cos𝜑. {2𝑧𝑠. (
𝑙2
𝑅ℎ𝑦𝑝

−
𝑙2 − 𝑅𝐸
𝑅𝐷

) − 𝑧𝑠. 𝑙𝑛
𝑙2 + 𝑅ℎ𝑦𝑝

𝑙2 − 𝑅𝐸 + 𝑅𝐷
} A19 

In = cos𝜑. {−2𝑧𝑠
2. (

1

𝑅ℎ𝑦𝑝
−

1

𝑅𝐷
) − (𝑅ℎ𝑦𝑝 − 𝑅𝐷)} 

A20 

Iφ = sin𝜑. {𝑧𝑠. 𝑙𝑛
𝑙2 + 𝑅ℎ𝑦𝑝

𝑙2 − 𝑅𝐸 + 𝑅𝐷
} 

A21 

After the Ix, In and Iφ are calculated the average scalar radiation pattern  𝐅𝐒̅̅ ̅ is 

calculated from Equation 22: 

FS̅̅ ̅ =
√Ix

2 + I𝑛
2 + I𝜑

2

𝐸
 

A22 
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A.2 Geometrical Calculations for Shahi and Baker (2011) Model (r and s) 

In order to calculate the closest distance of the site to the fault first the direction of 

the rupture should be calculated. Rupture corners are shown by P1, P2, P3 and P4. 

 

Figure A.6 Geometrical calculations for Shahi and Baker (2011) model 

Calculation of direction of line P1P2: 

𝑎𝑝1𝑝2 = x_P2seg − x_P1seg A23 

𝑏𝑝1𝑝2 = y_P2seg − y_P1seg A24 

After the direction of P1P2 line is determined the location of closest distance of the 

site to the fault (VP) can be calculated from Equations 25, 26 and 27: 

tvp =
(𝑎𝑝1𝑝2. xsite − 𝑎𝑝1𝑝2. xP1seg) + (𝑏𝑝1𝑝2. 𝑦site − 𝑏𝑝1𝑝2. yP1seg)

(𝑎𝑝1𝑝22 + 𝑏𝑝1𝑝2
2)

 A25 

xvp = 𝑎𝑝1𝑝2. tvp + x_P1seg A26 

yvp = 𝑏𝑝1𝑝2. tvp + y_P1seg A27 

If the vertical point (closest distance of the fault to the site) is located outside the 

rupture length (Figure A6a) the s will be equal to the half of the rupture length and 

it will be calculated from the Equation 28. For this case r value is also calculated 

from equation 29: 

s =
|P2seg(x, y) − P1seg(x, y)|

2
 A28 

r = |P2seg(x, y) − site(x, y)| A29 

If the vertical point (closest distance of the fault to the site) is located within the 

rupture length (Figure A6b) the s will be equal to the distance between epicenter 
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and vertical point and it will be calculated from Equation 30. For this case r value is 

also calculated from Equation 31: 

s = |epic(x, y) − VP(x, y)| A30 

r = |𝑉𝑃(x, y) − site(x, y)| A31 
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APPENDIX B 

 

 

A. THE MATHEMATICAL MODEL AND THE ALGORITHM USED IN 

THE PSHA CALCULATIONS FOR THE SHB11 MODEL 

 

 

B.1 Algorithm used in SHB11 PSHA 

 

The algorithm used in PSHA are discussed in Chapter3. Here the utilized algorithm 

in SHB11 model is presented with more detail. The following paragraphs summarize 

the algorithm. In this algorithm i, j and k parameters denote to the discretized 

magnitude, rupture length and the pulse period counters. 

- From the seismological input data, the magnitude range, fault length, fault 

width, style of faulting, recurrence model, minimum rate of occurrence (νmin), 

fault and site coordinates and shear wave velocity are prepared. 

- The magnitude range is discretized into smaller intervals. For each magnitude 

interval (Mi), the probability of occurrence P(Mi) is calculated from the 

selected recurrence model (characteristic recurrence model has been used in 

this study, Youngs and Coppersmith 1985). 

- For each magnitude (Mi) the rupture area is calculated from the corresponding 

equations (Wells and Coppersmith 1994).  

- Position of rupture and hypocenter of rupture is determined on the fault 

surface. Uniform distribution model is used for assigning the position of this 

rupture area on the fault.  

- Geometric parameters are calculated for each rupture area and location (Rij, 

Zij). Here Zij is representative of source-to-site geometric parameters (r and s). 

- Probability of pulse occurrence is calculated for given geometric parameters 

(with Mi, Rij and Zij values) from the Equations B1. 
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(𝑝𝑢𝑙𝑠𝑒⃓ 𝑟, 𝑠) =
1

1 + 𝑒⃓(0.642+0.167.𝑟−0.075.𝑠)
 B1 

- In SB-11 method, the probability of pulse occurrence can be calculated for 

any orientation. After the probability of pulse occurrence in a specific site is 

calculated from Equation B1 the probability of pulse occurrence is calculated 

in a desired direction (α) given that a pulse is observed at that site (Equation 

B2). The probability of pulse occurrence in a site in the direction of α can be 

calculated from Equation B3.  

𝑃(𝑝𝑢𝑙𝑠𝑒⃓ 𝑎𝑡 𝛼|𝑝𝑢𝑙𝑠𝑒⃓) = min [0.67, 0.67 − 0.0041 . (77.5 − 𝛼) B2 

𝑃(𝑝𝑢𝑙𝑠𝑒⃓ 𝑎𝑡 𝛼) = 𝑃(𝑝𝑢𝑙𝑠𝑒⃓ 𝑎𝑡 𝛼 𝑝𝑢𝑙𝑠𝑒⃓). 𝑃(𝑝𝑢𝑙𝑠𝑒⃓) B3 

- For each magnitude (Mi), mean value of logarithm of pulse period (μln Tp) is 

calculated from Equation B4. The log standard deviation for pulse period is 

constant for all magnitude ranges (σln Tp = 0.56). 

𝜇𝑙𝑛 𝑇𝑝𝑖  = −5.73+0.99 𝑀𝑖
 B4 

- For each magnitude (Mi), lognormal distribution of pulse period is calculated 

with μln TPi and σln Tp. Pulse period range is discretized into small intervals 

(Tp,ik) and the probability of pulse period P(Tp,ik) is calculated for each 

interval. 

- For each pulse period (Tp,ik) the mean vale of logarithm of the amplification 

is determined. The amplification is a function of spectral period to pulse 

period ratio (T/Tp) (Equation 17 in Shahi and Baker 2011).   

- Mean value of natural logarithm of spectral acceleration (μlnSa, pulse) for pulse-

type cases will be calculated from Equation B5. 

𝜇𝑙𝑛 𝑆𝑎,𝑃𝑢𝑙𝑠𝑒 = 𝜇𝐴𝑓 + 𝜇𝑙𝑛 𝑆𝑎,𝑔𝑚𝑚 B5 

- For non-pulse-type cases, deamplification factor is calculated. 

Deamplification factor is a function of magnitude (Mi) and source-to-site 

distance (Rij) parameters (Equation 22 in Shahi and Baker 2011).   

- Mean value of natural logarithm of spectral acceleration (μlnSa, no pulse) for non-

pulse-type cases is calculated from Equation B6. 

𝜇𝑙𝑛 𝑆𝑎,𝑁𝑜 𝑃𝑢𝑙𝑠𝑒 = 𝜇𝐷𝑓 + 𝜇𝑙𝑛 𝑆𝑎,𝑔𝑚𝑚 B6 
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Figure B.1 Algorithm for SHB11 PSHA narrow-band model 
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-  The algorithm is repeated from step 2 and mean logarithm of Sa (μlnSa,) is 

calculated for all magnitude ranges (Mi), rupture locations (Rij and Zij) and 

pulse period range (Tpik) and both pulse-type and non-pulse-type cases. 

- For pulse-type cases, the probability of exceedance is calculated from 

Equation B7 for each intensity level (x). 

𝑃 (𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑧, 𝑝𝑢𝑙𝑠𝑒⃓) = 1 − 𝛷(
𝑙𝑛(𝑥) − 𝜇𝑙𝑛 𝑆𝑎,   𝑝𝑢𝑙𝑠𝑒

𝜎𝑙𝑛 𝑆𝑎,𝑝𝑢𝑙𝑠𝑒
) B7 

- For non-pulse-type cases the probability of exceedance is calculated from 

Equation B8 for each intensity level (x). 

𝑃 (𝑆𝑎 > 𝑥 𝑚, 𝑟, 𝑛𝑜 𝑝𝑢𝑙𝑠𝑒⃓) = 1 − 𝛷(
𝑙𝑛(𝑥) − 𝜇𝑙𝑛 𝑆𝑎,   𝑛𝑜 𝑝𝑢𝑙𝑠𝑒

𝜎𝑙𝑛 𝑆𝑎,𝑛𝑜 𝑝𝑢𝑙𝑠𝑒
) B8 

The total hazard curve is calculated Equations 3.1 and 3.2. As can be seen from 

Equation 3.1 the total hazard curve is calculated from the summation of pulse-type 

and non-pulse-type cases. The flowchart of the algorithm for SHB11 model is shown 

in Figure B1. 

B.2 The Numerical eEvaluation of Integral in PSHA 

The discretized values of random variables are used in PSHA. Proper distribution is 

considered for each random variable with sufficient discretization values. The 

discretized values and considered distributions are given below. 

 Magnitude is discretized in 0.1 ranges. 

 For each discretized magnitude range, mean rupture area is calculated from 

the Wells and Coppersmith (1994). 

 The rupture area is uniformly distributed within the fault area. The epicenter 

of rupture area is shifted every 5km in the fault strike direction and every 3km 

in the fault dip direction. 

 Lognormal distribution is considered for Tp and Tp is discretized in 0.2sec 

ranges. 

The probability of magnitude and rupture location is the same as conventional PSHA 

procedure. The distribution considered for the pulse period and the process for 

calculation of its probability are explained with more detail in the next paragraphs.  
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For each discretized magnitude the mean pulse period is calculated from Equation 

B4. A lognormal distribution is considered for each discretized magnitude-pulse 

period as shown in Figure B2. 

 

 

Figure B.2 Illustration of lognormal distribution for magnitude-pulse period and 

related probability of pulse period 

The red line in this figure are the points that maximums of P(Tp) occur for different 

discretized magnitudes. The red line is plotted again in Mw-Tp plane (illustrated with 

scatter red points in Figure B3). An exponential line is also fitted to the red line (The 

blue line). The black line is the equation proposed for the maximum amplification 

points (Tmc-Mw relationship) in this study (Equation 5.8). As can be seen from this 

figure, the Tmc-Mw relationship (Equation 5.8) and the maximum probability of pulse 

occurrence curve have a very similar trend. This is because the probability of pulse 

occurrence is the determining parameter in determination of directivity amplification 

range in PSHA. Figure B3 is again plotted in Mw-Ln(Tp) coordinate. As can be seen 

the relationship between Mw and Ln(Tp) is linear as stated in Shahi and Baker (2011).  
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Figure B.3 Relation between magnitude and pulse period with maximum 

probability 

 

 

 

Figure B.4 Relation between magnitude and pulse period with maximum 

probability 

The PSHA results were compared with EZ-FRISK software for the simple line source 

model used in this study. The comparisons were made to test the sufficiency of 

magnitude, rupture length and epicenter location discretization. Figure B5 shows the 
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site definition and discretized values applied in EZ-FRISK for PSHA for FL=20km 

and 𝑆̇=1.0com/year and site located 15km away from the fault.  

a) 

 

b) 

 

Figure B.5 a) Site definition b) Discretized values applied in EZ-FRISK 

The results of PSHA code are consistent with the results of EZF-RISK. The 

comparisons are done for “no directivity” case with Boore and Atkinson (2008) 
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GMPM. Figure B6 shows the response spectrum calculated from EZ-FRISK and the 

code. The comparisons indicate the sufficiency of magnitude, distance and epicenter 

discretization. 

 

 

Figure B.6 Response spectrum calculated for FL=20km, 𝑆̇=1.0com/year for site 

15 with EZ-FRISK and the Matlab code (2475-year return period) 
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B.3 The Matlab Code developed for PSHA 

- Input File Format 

 

 

 

Figure B.7 Input file format for PSHA 
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- PSHA File: 

function PSHA(inputname) 

ex_input_data=strcat('outputs\',inputname,'.xlsx'); 

Input_Data=xlsread(ex_input_data,'Input_Data'); 

GMPE_Data=xlsread(ex_input_data,'GMPEs'); 

if GMPE_Data(24,4)~=1 

    disp('Weights should sum up to 1') 

    return 

end 

[gmpe_id]=find(GMPE_Data(:,3)>0); 

GMPE_ID(:,1) =GMPE_Data(gmpe_id,1); 

weigth(:,1)=GMPE_Data(gmpe_id,3); 

GMPE=[GMPE_ID weigth]; 

  

Period_p=[0 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 

1.5 2 3 4 5 7.5 10]; 

  

F_AS=0; 

F_RV=0; 

F_NM=0; 

F_HW=0; 

rake=-999; 

Ry0=0; 

  

format long 

%%% General declarations 

pi=3.14159265358979; 

M_stepsize=0.1; 

epsilon_step_size=0.1; 

max_dis_btw_segcen=2; 

  

%%% fault source assignments 

nof_h_max_segments=20; 

nof_v_max_segments=5; 

nof_max_bg_segments=10; 

  

%% Modified Rupture Distribution 

ver_incrmnt=3; 

hor_incrmnt=5; 

  

%% Start reading input data 

nof_stations=Input_Data(1,9); 

for scon=1:nof_stations 

    coords(1,scon)=Input_Data(3,7+scon); 

    coords(2,scon)=Input_Data(4,7+scon); 

    coords(3,scon)=Input_Data(5,7+scon); 

end 

nof_fault_sources=Input_Data(1,1); 

con=2; 

for sco=1:nof_fault_sources 

    fault_data(1,sco)=Input_Data(1+con,3); 

    fault_data(2,sco)=Input_Data(2+con,3); 

    fault_data(3,sco)=Input_Data(3+con,3); 

    fault_data(4,sco)=Input_Data(4+con,3); 

    fault_data(5,sco)=Input_Data(5+con,3); 

    fault_data(6,sco)=Input_Data(6+con,3); 

    fault_data(7,sco)=Input_Data(7+con,3); 

    fault_data(8,sco)=Input_Data(8+con,3); 

    fault_data(9,sco)=Input_Data(9+con,3); 

    fault_data(10,sco)=Input_Data(10+con,3); 

    fault_data(11,sco)=Input_Data(11+con,3); 

    fault_data(12,sco)=Input_Data(12+con,3); 

    fault_data(13,sco)=Input_Data(13+con,3); 

    fault_data(14,sco)=Input_Data(14+con,3); 

    fault_data(15,sco)=Input_Data(15+con,3); 
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    fault_data(16,sco)=Input_Data(16+con,3); 

    fault_data(17,sco)=Input_Data(17+con,3); 

    fault_data(18,sco)=Input_Data(18+con,3); 

    con=con+20; 

end 

  

%% End input data reading 

if nof_fault_sources>0 

    %     input('Do you want to include the line source/s in hazard curve 

calculations ? Y/N   ', 's'); 

    anss='Y'; 

    if anss=='N' | anss=='n'; 

        nof_fault_sources=0; 

        disp('Skip fault sources'); 

        single_fault_flag=0; 

    else 

        single_fault_flag=1; 

    end 

end 

  

  

for kl=1:nof_stations 

    j=stations(kl) 

    cas_count=1; 

    station(j,1)=coords(1,j); 

    station(j,2)=coords(2,j); 

    station(j,3)=coords(3,j); 

    if single_fault_flag==1, run fault_sources; end 

    if exist('outputs','dir')==7 

    else 

        mkdir 'outputs'; 

    end 

    run eps_calc 

     

    %% Pulse Type Hazard Calculation 

    for sp=1:length (Period_p) 

        Per=Period_p (sp); 

        for sal=1:2 

            if sal==1 

                alfa=0; 

            elseif sal==2 

                alfa=90; 

            end 

            for k=1:cas_count-1 

                l=1; 

                HT_dummy1=['epsilon_',num2str(TS(k,13))]; 

                HT_dummy2=eval(HT_dummy1); 

                nof_epsilon=length(HT_dummy2); 

                HT_dummy3=['pepsilon_',num2str(TS(k,13))]; 

                HT_dummy4=eval(HT_dummy3); 

                HT_P=zeros(length(HT_dummy2)*(nof_Tp_steps),17); 

                P_alpha_dir=TS_P_alpha(k,sal); 

                 

                % GMPE calculation 

                cd('.\GMPEs_02.03.2014') 

                

InpMag=[TS(k,1),TS(k,2),TS(k,3),Vs_30,Fault_Mech,abs(TS(k,20)),TS(k,17),TS(

k,19),rake,TS(k,6),abs(TS(k,18)),TS(k,16),TS(k,21),Per]; 

                [IM_median,sig_total,logIM,IM_median_NP,sig_total_NP] = 

GMPE_Trellis_Plots_Mag(InpMag,GMPE); 

                cd('..\') 

                 

                IM_median_M(k,1)=IM_median; 

                sig_total_M(k,1)=sig_total; 

                IM_median_NP_M(k,1)=IM_median_NP; 
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                sig_total_NP_M(k,1)=sig_total_NP; 

                 

                for sk=1:nof_Tp_steps 

                    cass=1; 

                    Tp=TS_Tp(sk); 

                    P_Tp=TS_P_Tp(k,sk); 

                    if Tp<0.6 

                        Mean_ln_Af=0; 

                        Rf=1; 

                    else 

                        if Per<=0.88*Tp 

                            Mean_ln_Af=1.131*exp(-

3.11*(log(Per/Tp)+0.127)^2)+0.058; 

                        elseif Per>0.88*Tp 

                            Mean_ln_Af=0.924*exp(-

2.11*(log(Per/Tp)+0.127)^2)+0.255; 

                        end 

                        if Per<=0.21*Tp 

                            Rf=1-0.2*exp(-0.96*(log(Per/Tp)+1.56)^2); 

                        elseif Per>0.21*Tp 

                            Rf=1-0.21*exp(-0.24*(log(Per/Tp)+1.56)^2); 

                        end 

                    end 

                    %Amplification Due to Presence of Pulse 

                    logIM_P=logIM+Mean_ln_Af; 

                    IM_median_P=exp(logIM_P); 

                     

                    %Reduction of Standard Deviation for Pulse Type Because 

of Modified Ground-Motion Model 

                    sig_total_P=Rf*sig_total; 

                    IM_sigma_P=sig_total_P; 

                     

                    for 

dummy_counter=min(HT_dummy2):epsilon_step_size:max(HT_dummy2);%(nof_epsilon

)*(k-1)+1:(nof_epsilon)*k 

                        HT_P(l,1)=TS(k,1); 

                        HT_P(l,2)=TS(k,2); 

                        HT_P(l,3)=TS(k,9); 

                        HT_P(l,4)=TS(k,12); 

                        HT_P(l,5)=TS(k,11); 

                        HT_P(l,6)=TS(k,5); 

                        HT_P(l,7)=TS(k,7); 

                        HT_P(l,8)=TS(k,10); 

                        HT_P(l,9)=HT_dummy2(cass); 

                        HT_P(l,10)=HT_dummy4(cass); 

                        HT_P(l,11)=IM_median_P; 

                        HT_P(l,12)=IM_sigma_P;                                                                                                                

                        HT_P(l,13)=exp(log(HT_P(l,11)) + 

                                   HT_P(l,9)*IM_sigma_P);    

                        HT_P(l,14)= HT_P(l,4)*HT_P(l,5) *HT_P(l,6)  

                                    *HT_P(l,7) * HT_P(l,8) *  

                                     HT_P(l,10)*P_Tp*P_alpha_dir; 

                        HT_P(l,15)=Tp; 

                        HT_P(l,16)=P_Tp; 

                        HT_P(l,17)=P_alpha_dir; 

                        cass=cass+1; 

                        l=l+1; 

                    end 

                    clear nof_epsilon 

                end 

                [sm,sn]=size(HT_P); 

                Hazard_Table_P(((k-1)*(sm)+1):k*(sm),1:sn)=HT_P; 

            end 

             

            Sorted_Hazard_Table_P=sortrows(Hazard_Table_P,-13); 
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            Sorted_Hazard_Table_P(1,18)=Sorted_Hazard_Table_P(1,14); 

            for m=2:length(Sorted_Hazard_Table_P(:,13)); 

                Sorted_Hazard_Table_P(m,18)=Sorted_Hazard_Table_P(m,14)+ 

Sorted_Hazard_Table_P(m-1,18); 

            end 

             

            

Hazard_PT=[Sorted_Hazard_Table_P(:,13),Sorted_Hazard_Table_P(:,18)]; 

             

            %% Non Pulse Hazard Calculation 

            l=1; 

            for k=1:cas_count-1 

                cass=1; 

                P_no_alpha_dir=1-(TS_P_alpha(k,sal)); 

                HT_dummy1=['epsilon_',num2str(TS(k,13))]; 

                HT_dummy2=eval(HT_dummy1); 

                nof_epsilon=length(HT_dummy2); 

                HT_dummy3=['pepsilon_',num2str(TS(k,13))]; 

                HT_dummy4=eval(HT_dummy3); 

                 

                for 

dummy_counter=min(HT_dummy2):epsilon_step_size:max(HT_dummy2);%(nof_epsilon

)*(k-1)+1:(nof_epsilon)*k 

                    Hazard_Table_NP(l,1)=TS(k,1); 

                    Hazard_Table_NP(l,2)=TS(k,2); 

                    Hazard_Table_NP(l,3)=TS(k,9); 

                    Hazard_Table_NP(l,4)=TS(k,12); 

                    Hazard_Table_NP(l,5)=TS(k,11); 

                    Hazard_Table_NP(l,6)=TS(k,5); 

                    Hazard_Table_NP(l,7)=TS(k,7); 

                    Hazard_Table_NP(l,8)=TS(k,10); 

                    Hazard_Table_NP(l,9)=HT_dummy2(cass); 

                    Hazard_Table_NP(l,10)=HT_dummy4(cass); 

                    Hazard_Table_NP(l,11)=IM_median_NP_M(k,1); 

                    Hazard_Table_NP(l,12)=sig_total_NP_M(k,1); 

                    Hazard_Table_NP(l,13)=exp(log(Hazard_Table_NP(l,11)) + 

Hazard_Table_NP(l,9)*sig_total_NP_M(k,1));   %%% 999 This line can be 

changed according to the PE 

                    Hazard_Table_NP(l,14)= 

Hazard_Table_NP(l,4)*Hazard_Table_NP(l,5) *Hazard_Table_NP(l,6) 

*Hazard_Table_NP(l,7) * Hazard_Table_NP(l,8) * 

Hazard_Table_NP(l,10)*P_no_alpha_dir; 

                    cass=cass+1; 

                    l=l+1; 

                end 

                clear nof_epsilon 

            end 

             

            Sorted_Hazard_Table_NP=sortrows(Hazard_Table_NP,-13); 

            Sorted_Hazard_Table_NP(1,15)=Sorted_Hazard_Table_NP(1,14); 

            for m=2:length(Sorted_Hazard_Table_NP(:,13)); 

                Sorted_Hazard_Table_NP(m,15)=Sorted_Hazard_Table_NP(m,14)+ 

Sorted_Hazard_Table_NP(m-1,15); 

            end 

            

Hazard_NPT=[Sorted_Hazard_Table_NP(:,13),Sorted_Hazard_Table_NP(:,15)]; 

             

            %% Conventional Method 

            l=1; 

            for k=1:cas_count-1 

                cass=1; 

                HT_dummy1=['epsilon_',num2str(TS(k,13))]; 

                HT_dummy2=eval(HT_dummy1); 

                nof_epsilon=length(HT_dummy2); 

                HT_dummy3=['pepsilon_',num2str(TS(k,13))]; 
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                HT_dummy4=eval(HT_dummy3); 

                 

                for 

dummy_counter=min(HT_dummy2):epsilon_step_size:max(HT_dummy2); 

                    Hazard_Table(l,1)=TS(k,1); 

                    Hazard_Table(l,2)=TS(k,2); 

                    Hazard_Table(l,3)=TS(k,9); 

                    Hazard_Table(l,4)=TS(k,12); 

                    Hazard_Table(l,5)=TS(k,11); 

                    Hazard_Table(l,6)=TS(k,5); 

                    Hazard_Table(l,7)=TS(k,7); 

                    Hazard_Table(l,8)=TS(k,10); 

                    Hazard_Table(l,9)=HT_dummy2(cass); 

                    Hazard_Table(l,10)=HT_dummy4(cass); 

                    Hazard_Table(l,11)=IM_median_M(k,1); 

                    Hazard_Table(l,12)=sig_total_M(k,1); 

                    Hazard_Table(l,13)=exp(log(Hazard_Table(l,11)) +  

         Hazard_Table(l,9)*sig_total_M(k,1));    

                    Hazard_Table(l,14)= Hazard_Table(l,4)*Hazard_Table(l,5)  

           *Hazard_Table(l,6) *Hazard_Table(l,7) *  

                                  Hazard_Table(l,8) * Hazard_Table(l,10); 

                    cass=cass+1; 

                    l=l+1; 

                end 

            end 

            Sorted_Hazard_Table=sortrows(Hazard_Table,-13); 

            Sorted_Hazard_Table(1,15)=Sorted_Hazard_Table(1,14); 

            for m=2:length(Sorted_Hazard_Table(:,13)); 

                Sorted_Hazard_Table(m,15)=Sorted_Hazard_Table(m,14)+ 

Sorted_Hazard_Table(m-1,15); 

            end 

            Hazard_T=[Sorted_Hazard_Table(:,13),Sorted_Hazard_Table(:,15)]; 

             

            %% Calculation of Total Hazard of Non-Pulse and Pulse Like 

Results (Hazard Total=Hazard_P+Hazard_NP 

            % Elimination of Repeated Data 

            differ=diff(Hazard_PT,1); 

            Hazard_P(:,1)=Hazard_PT(find(differ(:,1)),1); 

            Hazard_P(:,2)=Hazard_PT(find(differ(:,1)),2); 

            slk=length(Hazard_P)+1; 

            ii=length(Hazard_PT); 

            Hazard_P(slk,:)=Hazard_PT(ii,:); 

            clear differ 

             

            differ=diff(Hazard_NPT,1); 

            Hazard_NP(:,1)=Hazard_NPT(find(differ(:,1)),1); 

            Hazard_NP(:,2)=Hazard_NPT(find(differ(:,1)),2); 

            slk=length(Hazard_NP)+1; 

            ii=length(Hazard_NPT); 

            Hazard_NP(slk,:)=Hazard_NPT(ii,:); 

            clear differ 

             

            differ=diff(Hazard_T,1); 

            Hazard(:,1)=Hazard_T(find(differ(:,1)),1); 

            Hazard(:,2)=Hazard_T(find(differ(:,1)),2); 

            slk=length(Hazard)+1; 

            ii=length(Hazard_T); 

            Hazard(slk,:)=Hazard_T(ii,:); 

             

            %Intrapolation to Make the Hazard Results Consistent for Non-

Pulse Like, Pulse Like and Conventional Methods 

            Hazard_P_M(:,1)=Hazard_NP(:,1); 

            Hazard_P_M(:,2) = 

interp1(Hazard_P(:,1),Hazard_P(:,2),Hazard_NP(:,1)); 

            Hazard_tot(:,1)=Hazard_P_M(:,1); 
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            Hazard_tot(:,2)= Hazard_P_M(:,2)+Hazard_NP(:,2); 

             

            Hazard_M(:,1)=Hazard_NP(:,1); 

            Hazard_M(:,2) = 

interp1(Hazard(:,1),Hazard(:,2),Hazard_NP(:,1)); 

             

            %% Probability of Exceedance for Return Period of 50 Years 

            Hazard_P_50(:,2)=1-exp(-Hazard_tot(:,2)*50); 

            Hazard_P_50(:,1)=Hazard_tot(:,1); 

            Hazard_50(:,2)=1-exp(-Hazard_M(:,2)*50); 

            Hazard_50(:,1)=Hazard_M(:,1); 

             

            %% Calculation of 2% and 10% in 50 Years Spectra(just for Alpha 

= 0 or 90 Degree) 

            if sal==1 

                for sf=1:length (Hazard_P_50) 

                    if Hazard_P_50(sf,2)==0.1 

                        spec_0_10P(sp,1)=Per; 

                        spec_0_10P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                    if Hazard_P_50(sf,2)==0.02 

                        spec_0_2P(sp,1)=Per; 

                        spec_0_2P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                end 

                for sf=1:length (Hazard_P_50)-1 

                    if  Hazard_P_50(sf,2)<0.1 && Hazard_P_50(sf+1,2)>0.1 

                        spec_0_10P(sp,1)=Per; 

                        

spec_0_10P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.1-

Hazard_P_50(sf,2)); 

                    end 

                    if  Hazard_P_50(sf,2)<0.02 && Hazard_P_50(sf+1,2)>0.02 

                        spec_0_2P(sp,1)=Per; 

                        

spec_0_2P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.02-

Hazard_P_50(sf,2)); 

                    end 

                end 

            end 

            if sal==2 

                for sf=1:length (Hazard_P_50) 

                    if Hazard_P_50(sf,2)==0.1 

                        spec_15_10P(sp,1)=Per; 

                        spec_15_10P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                    if Hazard_P_50(sf,2)==0.02 

                        spec_15_2P(sp,1)=Per; 

                        spec_15_2P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                end 

                for sf=1:length (Hazard_P_50)-1 

                    if  Hazard_P_50(sf,2)<0.1 && Hazard_P_50(sf+1,2)>0.1 

                        spec_15_10P(sp,1)=Per; 

                        

spec_15_10P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.1-

Hazard_P_50(sf,2)); 

                    end 

                    if  Hazard_P_50(sf,2)<0.02 && Hazard_P_50(sf+1,2)>0.02 

                        spec_15_2P(sp,1)=Per; 

                        

spec_15_2P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-
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Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.02-

Hazard_P_50(sf,2)); 

                    end 

                end 

            end 

            if sal==3 

                for sf=1:length (Hazard_P_50) 

                    if Hazard_P_50(sf,2)==0.1 

                        spec_30_10P(sp,1)=Per; 

                        spec_30_10P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                    if Hazard_P_50(sf,2)==0.02 

                        spec_30_2P(sp,1)=Per; 

                        spec_30_2P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                end 

                for sf=1:length (Hazard_P_50)-1 

                    if  Hazard_P_50(sf,2)<0.1 && Hazard_P_50(sf+1,2)>0.1 

                        spec_30_10P(sp,1)=Per; 

                        

spec_30_10P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.1-

Hazard_P_50(sf,2)); 

                    end 

                    if  Hazard_P_50(sf,2)<0.02 && Hazard_P_50(sf+1,2)>0.02 

                        spec_30_2P(sp,1)=Per; 

                        

spec_30_2P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.02-

Hazard_P_50(sf,2)); 

                    end 

                end 

            end 

            if sal==4 

                for sf=1:length (Hazard_P_50) 

                    if Hazard_P_50(sf,2)==0.1 

                        spec_45_10P(sp,1)=Per; 

                        spec_45_10P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                    if Hazard_P_50(sf,2)==0.02 

                        spec_45_2P(sp,1)=Per; 

                        spec_45_2P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                end 

                for sf=1:length (Hazard_P_50)-1 

                    if  Hazard_P_50(sf,2)<0.1 && Hazard_P_50(sf+1,2)>0.1 

                        spec_45_10P(sp,1)=Per; 

                        

spec_45_10P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.1-

Hazard_P_50(sf,2)); 

                    end 

                    if  Hazard_P_50(sf,2)<0.02 && Hazard_P_50(sf+1,2)>0.02 

                        spec_45_2P(sp,1)=Per; 

                        

spec_45_2P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.02-

Hazard_P_50(sf,2)); 

                    end 

                end 

            end 

            if sal==5 

                for sf=1:length (Hazard_P_50) 

                    if Hazard_P_50(sf,2)==0.1 

                        spec_60_10P(sp,1)=Per; 
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                        spec_60_10P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                    if Hazard_P_50(sf,2)==0.02 

                        spec_60_2P(sp,1)=Per; 

                        spec_60_2P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                end 

                for sf=1:length (Hazard_P_50)-1 

                    if  Hazard_P_50(sf,2)<0.1 && Hazard_P_50(sf+1,2)>0.1 

                        spec_60_10P(sp,1)=Per; 

                        

spec_60_10P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.1-

Hazard_P_50(sf,2)); 

                    end 

                    if  Hazard_P_50(sf,2)<0.02 && Hazard_P_50(sf+1,2)>0.02 

                        spec_60_2P(sp,1)=Per; 

                        

spec_60_2P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.02-

Hazard_P_50(sf,2)); 

                    end 

                end 

            end 

            if sal==6 

                for sf=1:length (Hazard_P_50) 

                    if Hazard_P_50(sf,2)==0.1 

                        spec_75_10P(sp,1)=Per; 

                        spec_75_10P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                    if Hazard_P_50(sf,2)==0.02 

                        spec_75_2P(sp,1)=Per; 

                        spec_75_2P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                end 

                for sf=1:length (Hazard_P_50)-1 

                    if  Hazard_P_50(sf,2)<0.1 && Hazard_P_50(sf+1,2)>0.1 

                        spec_75_10P(sp,1)=Per; 

                        

spec_75_10P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.1-

Hazard_P_50(sf,2)); 

                    end 

                    if  Hazard_P_50(sf,2)<0.02 && Hazard_P_50(sf+1,2)>0.02 

                        spec_75_2P(sp,1)=Per; 

                        

spec_75_2P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.02-

Hazard_P_50(sf,2)); 

                    end 

                end 

            end 

             

            if sal==7 

                for sf=1:length (Hazard_P_50) 

                    if Hazard_P_50(sf,2)==0.1 

                        spec_90_10P(sp,1)=Per; 

                        spec_90_10P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                    if Hazard_P_50(sf,2)==0.02 

                        spec_90_2P(sp,1)=Per; 

                        spec_90_2P(sp,2)=Hazard_P_50(sf,1); 

                    end 

                end 

                for sf=1:length (Hazard_P_50)-1 
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                    if  Hazard_P_50(sf,2)<0.1 && Hazard_P_50(sf+1,2)>0.1 

                        spec_90_10P(sp,1)=Per; 

                        

spec_90_10P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.1-

Hazard_P_50(sf,2)); 

                    end 

                    if  Hazard_P_50(sf,2)<0.02 && Hazard_P_50(sf+1,2)>0.02 

                        spec_90_2P(sp,1)=Per; 

                        

spec_90_2P(sp,2)=Hazard_P_50(sf,1)+((Hazard_P_50(sf+1,1)-

Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)-Hazard_P_50(sf,2)))*(0.02-

Hazard_P_50(sf,2)); 

                    end 

                end 

            end 

            % Spectra for Conventional Method 

            for sf=1:length (Hazard_50) 

                if Hazard_50(sf,2)==0.1 

                    spec_con_10P(sp,1)=Per; 

                    spec_con_10P(sp,2)=Hazard_50(sf,1); 

                end 

                if Hazard_50(sf,2)==0.02 

                    spec_con_2P(sp,1)=Per; 

                    spec_con_2P(sp,2)=Hazard_50(sf,1); 

                end 

            end 

             

            for sf=1:length (Hazard_50)-1 

                if  Hazard_50(sf,2)<0.1 && Hazard_50(sf+1,2)>0.1 

                    spec_con_10P(sp,1)=Per; 

                    spec_con_10P(sp,2)=Hazard_50(sf,1)+((Hazard_50(sf+1,1)-

Hazard_50(sf,1))/(Hazard_50(sf+1,2)-Hazard_50(sf,2)))*(0.1-

Hazard_50(sf,2)); 

                end 

                if  Hazard_50(sf,2)<0.02 && Hazard_50(sf+1,2)>0.02 

                    spec_con_2P(sp,1)=Per; 

                    spec_con_2P(sp,2)=Hazard_50(sf,1)+((Hazard_50(sf+1,1)-

Hazard_50(sf,1))/(Hazard_50(sf+1,2)-Hazard_50(sf,2)))*(0.02-

Hazard_50(sf,2)); 

                end 

            end 

             

            if j==1 

                mkdir ('outputs',inputname); 

            end 

            clear Hazard_Table_P HT_P Hazard_PT Hazard_Table_NP 

Hazard_Table Sorted_Hazard_Table_P Sorted_Hazard_Table_NP 

Sorted_Hazard_Table Hazard_tot Hazard_P_M Hazard_NP Hazard_P Hazard_PT 

Hazard_NPT Hazard_T Hazard Hazard_M Hazard_P_50 Hazard_50 IM_median_M 

sig_total_M IM_median_NP_M sig_total_NP_M differ A B C 

        end 

    end 

    A=zeros(length(spec_0_10P),1); 

    

B={['Period'],['P_sa(Alpha=0'],[],['Period'],['P_sa(Alpha=15'],[],['Period'

],['P_sa(Alpha=30'],[],['Period'],['P_sa(Alpha=45'],[],['Period'],['P_sa(Al

pha=60'],[],['Period'],['P_sa(Alpha=75'],[],['Period'],['P_sa(Alpha=90'],[]

,['Period'],['P_sa(Conv'],[],}; 

    

C2P=[spec_0_2P,A,spec_15_2P,A,spec_30_2P,A,spec_45_2P,A,spec_60_2P,A,spec_7

5_2P,A,spec_90_2P,A,spec_con_2P]; 

    

C10P=[spec_0_10P,A,spec_15_10P,A,spec_30_10P,A,spec_45_10P,A,spec_60_10P,A,

spec_75_10P,A,spec_90_10P,A,spec_con_10P]; 
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    xlswrite(ex_name,B,'Spectra_2P',('A1')); 

    xlswrite(ex_name,B,'Spectra_10P',('A1')); 

    xlswrite(ex_name,C2P,'Spectra_2P',('A2')); 

    xlswrite(ex_name,C10P,'Spectra_10P',('A2')); 

    clear Dummy P_alpha TS TS_P_alpha TS_P_Tp sp_0 sp_90 sp_con A B C10P 

C2P 

end 

end 

 

 

- fault_sources File: 

for i=1:nof_fault_sources 

    disp('Analyzing the single line fault sources.') 

     

    x_fault(i)=fault_data(1,i); 

    y_fault(i)=fault_data(2,i); 

    z_fault(i)=fault_data(3,i); 

     

    fault_length(i)=fault_data(4,i);  

    fault_width(i)=fault_data(5,i);  

    slip_rate(i)=fault_data(6,i);  

    mu(i)=fault_data(7,i);         

    fault_cdf_type(i)=int16(fault_data(8,i)); 

    strike_deg(i)=fault_data(9,i); 

    dip_deg(i)=fault_data(10,i); 

    Fn=fault_data(11,i); 

    Fr=fault_data(12,i); 

    Fault_Mech=fault_data(15,i); 

    Vs_30=fault_data(16,i); 

    F_as=fault_data(17,i); 

    F_mes=fault_data(18,i); 

    if Fault_Mech==0 

        U=0; 

        SS=0; 

        NS=1; 

        RS=0; 

        a=2.87; 

        b=0.82; 

        am=3.93; 

        bm=1.02; 

        F_NM=1; 

    elseif Fault_Mech==1 

        U=0; 

        SS=0; 

        NS=0; 

        RS=1; 

        a=3.99; 

        b=0.98; 

        am=4.33; 

        bm=0.9; 

        F_RV=1; 

    elseif Fault_Mech==2 

        U=0; 

        SS=1; 

        NS=0; 

        RS=0; 

        a=3.42; 

        b=0.9; 

        am=3.98; 

        bm=1.02; 

    end 

    %----------------- 

    fault_M_stepsize(i)=M_stepsize; 

    fault_area(i)=(fault_length(i)*fault_width(i)); 
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    strike_rad(i) = (strike_deg(i)+ 90) / 180 * pi; 

    dip_rad(i)= (dip_deg(i) + 180) / 180 * pi; 

     

    fault_corners(1,1)=x_fault(i); 

    fault_corners(1,2)=y_fault(i); 

    fault_corners(1,3)=z_fault(i); 

     

    fault_corners(2,1)= fault_corners(1,1) + fault_length(i) * 

cos(strike_rad(i)); 

    fault_corners(2,2)= fault_corners(1,2) + fault_length(i) * 

sin(strike_rad(i)); 

    fault_corners(2,3)= fault_corners(1,3); 

     

    if dip_deg(i) < 90 

        fault_corners(3,1) = fault_corners(1,1) + fault_width(i) * 

cos((strike_rad(i)+pi/2)) * abs(cos(dip_rad(i))); 

        fault_corners(3,2) = fault_corners(1,2) + fault_width(i) * 

sin((strike_rad(i)+pi/2)) * abs(cos(dip_rad(i))); 

        fault_corners(4,1) = fault_corners(2,1) + fault_width(i) * 

cos((strike_rad(i)+pi/2)) * abs(cos(dip_rad(i))); 

        fault_corners(4,2) = fault_corners(2,2) + fault_width(i) * 

sin((strike_rad(i)+pi/2)) * abs(cos(dip_rad(i))); 

    else 

        fault_corners(3,1) = fault_corners(1,1) + fault_width(i) * 

cos((strike_rad(i)+3*pi/2)) * abs(cos(dip_rad(i))); 

        fault_corners(3,2) = fault_corners(1,2) + fault_width(i) * 

sin((strike_rad(i)+3*pi/2)) * abs(cos(dip_rad(i))); 

        fault_corners(4,1) = fault_corners(2,1) + fault_width(i) * 

cos((strike_rad(i)+3*pi/2)) * abs(cos(dip_rad(i))); 

        fault_corners(4,2) = fault_corners(2,2) + fault_width(i) * 

sin((strike_rad(i)+3*pi/2)) * abs(cos(dip_rad(i))); 

    end 

    fault_corners(3,3) = fault_corners(1,3) + fault_width(i) * 

sin(dip_rad(i)); 

    fault_corners(4,3) = fault_corners(2,3) + fault_width(i) * 

sin(dip_rad(i)); 

     

    % Write Fault Corner Coordinates to Excel Input File 

    if i==1 

        Scc=3; 

    end 

    rcc=num2str(Scc); 

    s_ex=strcat('E',rcc); 

    xlswrite(ex_input_data,fault_corners','Input_Data',s_ex); 

    Scc=Scc+20; 

    % Calculatin of Fault Normal Vector 

    Vectr_1=fault_corners(3,:)-fault_corners(1,:); 

    Vectr_2=fault_corners(2,:)-fault_corners(1,:); 

    norm_vectr=cross(Vectr_1,Vectr_2); 

    norm_vectr=norm_vectr/max(abs(norm_vectr)); 

    %----------------- 

    fault_cline(1,1)=(fault_corners(1,1)+fault_corners(3,1))/2; 

    fault_cline(1,2)=(fault_corners(1,2)+fault_corners(3,2))/2; 

    fault_cline(1,3)=(fault_corners(1,3)+fault_corners(3,3))/2; 

    fault_cline(2,1)=(fault_corners(2,1)+fault_corners(4,1))/2; 

    fault_cline(2,2)=(fault_corners(2,2)+fault_corners(4,2))/2; 

    fault_cline(2,3)=(fault_corners(2,3)+fault_corners(4,3))/2; 

     

    fault_u(1,1)=(fault_cline(2,1)-fault_cline(1,1))/fault_length(i); 

    fault_u(1,2)=(fault_cline(2,2)-fault_cline(1,2))/fault_length(i); 

    fault_u(1,3)=(fault_cline(2,3)-fault_cline(1,3))/fault_length(i); 

     

    fault_u(2,1)=(fault_corners(3,1)-fault_corners(1,1))/fault_width(i); 

    fault_u(2,2)=(fault_corners(3,2)-fault_corners(1,2))/fault_width(i); 

    fault_u(2,3)=(fault_corners(3,3)-fault_corners(1,3))/fault_width(i); 
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    fault_u(3,1)=fault_u(1,2)*fault_u(2,3)-fault_u(1,3)*fault_u(2,2); 

    fault_u(3,2)=-fault_u(1,1)*fault_u(2,3)+fault_u(1,3)*fault_u(2,1); 

    fault_u(3,3)=fault_u(1,1)*fault_u(2,2)-fault_u(1,2)*fault_u(2,1); 

     

    switch fault_cdf_type(i) 

        case 1 % Truncated Normal Distribution 

            fault_sigma(i)=fault_data(13,i); 

            fault_nsigmax(i)=fault_data(14,i); 

            fault_finsigmax(i)=normcdf(fault_nsigmax(i),0,1); 

            fault_Mchar(i)=roundn(bm*log10(fault_area(i))+am,-1); 

            fault_M_min(i)=fault_Mchar(i)-

roundn(fault_sigma(i)*fault_nsigmax(i),-1); 

            

fault_M_max(i)=fault_Mchar(i)+roundn(fault_sigma(i)*fault_nsigmax(i),-1); 

            dumm=fault_M_min(i); 

            mag=roundn(dumm,-3); 

            dummy(1)=(1/(fault_sigma(i)*(2*pi)^0.5)*exp(-((fault_M_min(i) - 

fault_Mchar(i))^2)/(2*fault_sigma(i)^2))/(2*fault_finsigmax(i)-1))*10^(1.5* 

fault_M_min(i) +16.05)*0.0005; 

            for k=2:((fault_M_max(i)-fault_M_min(i))/0.001+1) 

                dumm=mag+0.001; 

                mag=roundn(dumm,-3); 

                dummy(k)=(1/(fault_sigma(i)*(2*pi)^0.5)*exp(-((mag - 

fault_Mchar(i))^2)/(2*fault_sigma(i)^2))/(2*fault_finsigmax(i)-1))*10^(1.5* 

mag +16.05)*0.001; 

            end 

            dummy(k+1)=(1/(fault_sigma(i)*(2*pi)^0.5)*exp(-((fault_M_max(i) 

- fault_Mchar(i))^2)/(2*fault_sigma(i)^2))/(2*fault_finsigmax(i)-

1))*10^(1.5* fault_M_max(i) +16.05)*0.0005; 

            dummy2=sum(dummy); 

             

            activity_rate(i)=mu(i)*fault_area(i)*1e10*slip_rate(i)/dummy2; 

             

            if i==1 

                Scs=7; 

            end 

            rcc=num2str(Scc); 

            rcs=num2str(Scs); 

            s_ex=strcat('F',rcc); 

            s_fx=strcat('F',rcs); 

            xlswrite(ex_input_data,activity_rate(i),'Input_Data',s_ex); 

            xlswrite(ex_input_data,fault_M_max(i),'Input_Data',s_fx); 

            Scc=Scc+20; 

            Scs=Scs+20; 

             

            M_mi=fault_M_min(i); 

            M_ma=fault_M_max(i); 

            M_steps=fault_M_stepsize(i); 

            [M_strt,M_fin]=Magnitude_threshold_TN(M_mi,M_ma,M_steps); 

            fault_M_start(i)=M_strt; 

            fault_M_finish(i)=M_fin; 

            syms mag real 

            dumm=(1/(fault_sigma(i)*(2*pi)^0.5)*exp(-((mag - 

fault_Mchar(i))^2)/(2*fault_sigma(i)^2))/(2*fault_finsigmax(i)-1)); 

            cdf=int(dumm); 

            fault_nof_magnitudes(i)=int16((fault_M_finish(i)-

fault_M_start(i))/fault_M_stepsize(i))+1; 

            for k=1:fault_nof_magnitudes(i) 

                if k==1 

                    M_of_TS=fault_M_start(i); 

                    

PM_of_TS=double(subs(cdf,fault_M_start(i)+0.5*fault_M_stepsize(i))-

subs(cdf,fault_M_start(i))); 

                elseif k<fault_nof_magnitudes(i) 
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                    M_of_TS=fault_M_start(i)+(double(k)-

1)*fault_M_stepsize(i); 

                    

PM_of_TS=double(subs(cdf,M_of_TS+0.5*fault_M_stepsize(i))-subs(cdf,M_of_TS-

0.5*fault_M_stepsize(i))); 

                elseif k==fault_nof_magnitudes(i) 

                    M_of_TS=fault_M_finish(i); 

                    PM_of_TS=double(subs(cdf,fault_M_finish(i))-

subs(cdf,fault_M_finish(i)-0.5*fault_M_stepsize(i))); 

                end 

                 

                M_of_TS=roundn(M_of_TS,-6); 

                Area_of_TS=10^(b*M_of_TS-a); 

                PA_of_TS=1.0; 

                PW_of_TS=1.0; 

                %% 

                if sqrt(Area_of_TS)>fault_width(i) 

                    W_of_TS=fault_width(i); 

                    nof_V_segments=1; 

                else 

                    W_of_TS=sqrt(Area_of_TS); 

                    nof_V_segments=ceil(fault_width(i)/W_of_TS); 

                end 

                if nof_V_segments>nof_v_max_segments 

                    nof_V_segments=nof_v_max_segments; 

                end 

                L_of_TS=Area_of_TS/W_of_TS; 

                if L_of_TS>fault_length(i) 

                    L_of_TS=fault_length(i); 

                    nof_H_segments=1; 

                else 

                    nof_H_segments=ceil(fault_length(i)/L_of_TS); 

                end 

                if nof_H_segments>nof_h_max_segments 

                    nof_H_segments=nof_h_max_segments; 

                end 

                nof_segments=nof_H_segments*nof_V_segments; 

                 

                %% 

                if nof_V_segments>1 

                    dist_v_btw_segments=(fault_width(i) - W_of_TS) / 

(nof_V_segments - 1); 

                else 

                    dist_v_btw_segments=0; 

                end 

                 

                if nof_H_segments > 1 

                    dist_H_btw_segments = (fault_length(i) - L_of_TS) / 

(nof_H_segments - 1); 

                else 

                    dist_H_btw_segments = 0; 

                end 

                %% 

                

fault_cline_1(1,1)=fault_corners(1,1)+W_of_TS/2*fault_u(2,1); 

                

fault_cline_1(1,2)=fault_corners(1,2)+W_of_TS/2*fault_u(2,2); 

                

fault_cline_1(1,3)=fault_corners(1,3)+W_of_TS/2*fault_u(2,3); 

                if nof_V_segments>1 

                    for vse=2:nof_V_segments 

                        fault_cline_1(vse,1)=fault_cline_1(vse-

1,1)+dist_v_btw_segments*fault_u(2,1); 

                        fault_cline_1(vse,2)=fault_cline_1(vse-

1,2)+dist_v_btw_segments*fault_u(2,2); 
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                        fault_cline_1(vse,3)=fault_cline_1(vse-

1,3)+dist_v_btw_segments*fault_u(2,3); 

                    end 

                end 

                 

                

fault_cline_2(1,1)=fault_corners(2,1)+W_of_TS/2*fault_u(2,1); 

                

fault_cline_2(1,2)=fault_corners(2,2)+W_of_TS/2*fault_u(2,2); 

                

fault_cline_2(1,3)=fault_corners(2,3)+W_of_TS/2*fault_u(2,3); 

                if nof_V_segments>1 

                    for vse=2:nof_V_segments 

                        fault_cline_2(vse,1)=fault_cline_2(vse-

1,1)+dist_v_btw_segments*fault_u(2,1); 

                        fault_cline_2(vse,2)=fault_cline_2(vse-

1,2)+dist_v_btw_segments*fault_u(2,2); 

                        fault_cline_2(vse,3)=fault_cline_2(vse-

1,3)+dist_v_btw_segments*fault_u(2,3); 

                    end 

                end 

                 

                %% 

                for iv=1:nof_V_segments 

                    Cen_of_segs(iv,1)=fault_cline_1(iv,1) + (L_of_TS / 2) * 

fault_u(1,1); 

                    Cen_of_segs(iv,2)=fault_cline_1(iv,2) + (L_of_TS / 2) * 

fault_u(1,2); 

                    Cen_of_segs(iv,3)=fault_cline_1(iv,3) + (L_of_TS / 2) * 

fault_u(1,3); 

                end 

                for ih=nof_V_segments+1:nof_segments 

                    Cen_of_segs(ih,1)=Cen_of_segs(ih-nof_V_segments,1) + 

(dist_H_btw_segments) * fault_u(1,1); 

                    Cen_of_segs(ih,2)=Cen_of_segs(ih-nof_V_segments,2) + 

(dist_H_btw_segments) * fault_u(1,2); 

                    Cen_of_segs(ih,3)=Cen_of_segs(ih-nof_V_segments,3) + 

(dist_H_btw_segments) * fault_u(1,3); 

                end 

                % Calculation of Probability Distribution of Pulse Period 

                Tp_min=0.2; 

                Tp_max=20.2; 

                tp=Tp_min; 

                Tp_step_size=0.2; 

                Tp_medi=exp(-5.73+0.99.*M_of_TS); 

                Tp_sigma=0.56; 

                syms Tp 

                dumm_Tp=(1/(Tp*Tp_sigma*(2*pi)^0.5))*(exp((-((log(Tp) - log 

(Tp_medi)))^2)/(2*Tp_sigma^2))); 

                cdf_Tp=int(dumm_Tp); 

                nof_Tp_steps=int16((Tp_max-Tp_min)/Tp_step_size)+1; 

                for ks=1:nof_Tp_steps 

                    if ks==1 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,Tp_min+0.5*Tp_step_size)-

subs(cdf_Tp,Tp_min-0.45*Tp_step_size)); 

                    elseif ks<nof_Tp_steps 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,tp+0.5*Tp_step_size)-subs(cdf_Tp,tp-

0.5*Tp_step_size)); 

                    elseif ks==nof_Tp_steps 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,Tp_max+0.5*Tp_step_size)-

subs(cdf_Tp,Tp_max-0.5*Tp_step_size)); 

                    end 
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                    tp=tp+Tp_step_size; 

                end 

                sum_tp=sum(Pr_of_Tp); 

                Pr_of_Tp=Pr_of_Tp/sum_tp; 

                TS_Tp=[Tp_min:Tp_step_size:Tp_max]; 

                %% 

                for m=1:nof_segments 

                    run single_line_fault_segments 

                    run Rjb_calc 

                    run P_pulse_calc 

                    TS(cas_count,1)=M_of_TS; 

                    TS(cas_count,2)=Rjb; 

                    TS(cas_count,3)=R_rup; 

                    TS(cas_count,4)=Area_of_TS; 

                    TS(cas_count,5)=PA_of_TS; 

                    TS(cas_count,6)=W_of_TS; 

                    TS(cas_count,7)=PW_of_TS; 

                    TS(cas_count,8)=L_of_TS; 

                    TS(cas_count,9)=m; 

                    TS(cas_count,10)=1/nof_segments; 

                    TS(cas_count,11)=PM_of_TS; 

                    TS(cas_count,12)=activity_rate(i); 

                    TS(cas_count,13)=100+i;                     

                    TS(cas_count,14)=sd_dir(m); 

                    TS(cas_count,15)=r_dir(m); 

                    TS(cas_count,16)=R_x; 

                    TS(cas_count,17)=F_HW; 

                    TS(cas_count,18)=z_tor; 

                    TS(cas_count,19)=dip_deg(i); 

                    TS(cas_count,20)=Cen_of_segs(m,3); 

                    TS(cas_count,21)=Ry0; 

                    TS_P_alpha(cas_count,1:num_alp_steps)=P_pu_alpha(m,:); 

                    TS_P_Tp(cas_count,1:nof_Tp_steps)=Pr_of_Tp; 

                    cas_count=cas_count+1; 

                end 

                clear P1_of_segs P2_of_segs P3_of_segs P4_of_segs 

Cen_of_segs H_dist_from_station epi_of_seg fault_cline_1 fault_cline_2 

sd_dir r_dir P_pu_rs P_pu_alpha Pr_of_Tp fault_cline_1 fault_cline_2 x_h 

y_h x_hc y_hc fi 

            end 

        case 2 % YC Model 

            fault_M_min(i)=roundn(fault_data(13,i),-1); 

            fault_bvalue(i)=fault_data(14,i); 

            fault_Mchar(i)=roundn(bm*log10(fault_area(i))+am,-1); 

            fault_M_max(i)=fault_Mchar(i)+0.25; 

            beta=fault_bvalue(i)*log(10); 

            dumm=fault_M_min(i); 

            mag=roundn(dumm,-3); 

            c_coeff=0.5*beta*exp(-beta*(fault_Mchar(i)-fault_M_min(i)-

1.25))/(1-exp(-beta*(fault_Mchar(i)-fault_M_min(i)-0.25))); 

            dummy(1)=((1/(1+c_coeff))*beta*exp(-beta*(mag-

fault_M_min(i)))/(1-exp(-beta*(fault_Mchar(i)-fault_M_min(i)-

0.25))))*10^(1.5* mag +16.05)*0.0005; 

            Mw(1)=mag; 

            for k=2:int16((fault_Mchar(i)-0.25-fault_M_min(i))/0.001+1) 

                dumm=mag+0.001; 

                mag=roundn(dumm,-3); 

                Mw(k)=mag; 

                if k==int16((fault_Mchar(i)-0.25-fault_M_min(i))/0.001+1); 

                    dummy(k)=((1/(1+c_coeff))*beta*exp(-beta*(mag-

fault_M_min(i)))/(1-exp(-beta*(fault_Mchar(i)-fault_M_min(i)-

0.25))))*10^(1.5* mag +16.05)*0.0005; 

                else 
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                    dummy(k)=((1/(1+c_coeff))*beta*exp(-beta*(mag-

fault_M_min(i)))/(1-exp(-beta*(fault_Mchar(i)-fault_M_min(i)-

0.25))))*10^(1.5* mag +16.05)*0.001; 

                end 

            end 

            for k=int16((fault_Mchar(i)-0.25-

fault_M_min(i))/0.001+2):int16((fault_M_max(i)-fault_M_min(i))/0.001+1) 

                if k==int16((fault_Mchar(i)-0.25-fault_M_min(i))/0.001+2); 

                    dummy(k)=((1/(1+c_coeff))*beta*exp(-

beta*(fault_Mchar(i)-fault_M_min(i)-1.25))/(1-exp(-beta*(fault_Mchar(i)-

fault_M_min(i)-0.25))))*10^(1.5* mag +16.05)*0.0005; 

                else 

                    dumm=mag+0.001; 

                    mag=roundn(dumm,-3); 

                    Mw(k)=mag; 

                    dummy(k)=((1/(1+c_coeff))*beta*exp(-

beta*(fault_Mchar(i)-fault_M_min(i)-1.25))/(1-exp(-beta*(fault_Mchar(i)-

fault_M_min(i)-0.25))))*10^(1.5* mag +16.05)*0.001; 

                end 

            end 

            dummy(k+1)=((1/(1+c_coeff))*beta*exp(-beta*(fault_Mchar(i)-

fault_M_min(i)-1.25))/(1-exp(-beta*(fault_Mchar(i)-fault_M_min(i)-

0.25))))*10^(1.5* fault_M_max(i)+16.05)*0.0005; 

            dummy2=sum(dummy); 

            dumm=mag+0.001; 

            mag=roundn(dumm,-3); 

            Mw(k+1)=mag; 

            activity_rate(i)=mu(i)*fault_area(i)*1e10*slip_rate(i)/dummy2; 

            if i==1 

                Scs=7; 

            end 

            rcc=num2str(Scc); 

            rcs=num2str(Scs); 

            s_ex=strcat('F',rcc); 

            s_fx=strcat('F',rcs); 

            xlswrite(ex_input_data,activity_rate(i),'Input_Data',s_ex); 

            xlswrite(ex_input_data,fault_M_max(i),'Input_Data',s_fx); 

            Scc=Scc+20; 

            Scs=Scs+20; 

            M_steps=fault_M_stepsize(i); 

            if mod(fault_Mchar(i)-0.25-

fault_M_min(i),fault_M_stepsize(i))==0; 

                M_strt=fault_M_min(i); 

            else 

                M_strt=mod(fault_Mchar(i)-0.25-

fault_M_min(i),fault_M_stepsize(i))+fault_M_min(i); 

            end 

            M_fin=fault_Mchar(i)+0.25; 

            fault_M_start(i)=M_strt; 

            fault_M_finish(i)=M_fin; 

            syms mag real 

            dumm1=(1/(1+c_coeff))*beta*exp(-beta*(mag-fault_M_min(i)))/(1-

exp(-beta*(fault_Mchar(i)-fault_M_min(i)-0.25))); 

            cdf1=int(dumm1); 

            dumm2=(1/(1+c_coeff))*beta*exp(-beta*(fault_Mchar(i)-

fault_M_min(i)-1.25))/(1-exp(-beta*(fault_Mchar(i)-fault_M_min(i)-0.25))); 

            cdf2=dumm2*mag; 

            fault_nof_magnitudes(i)=int16((fault_M_finish(i)-

fault_M_start(i))/fault_M_stepsize(i))+1; 

            for k=1:fault_nof_magnitudes(i) 

                if k==1 

                    M_of_TS=fault_M_start(i); 

                    

PM_of_TS=double(subs(cdf1,fault_M_start(i)+0.5*fault_M_stepsize(i))-

subs(cdf1,fault_M_start(i))); 
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                elseif k<fault_nof_magnitudes(i) 

                    M_of_TS=fault_M_start(i)+(double(k)-

1)*fault_M_stepsize(i); 

                    if M_of_TS<fault_Mchar(i)-0.25 

                        

PM_of_TS=double(subs(cdf1,M_of_TS+0.5*fault_M_stepsize(i))-

subs(cdf1,M_of_TS-0.5*fault_M_stepsize(i))); 

                    elseif M_of_TS==fault_Mchar(i)-0.25 

                        

PM_of_TS=double(subs(cdf2,M_of_TS+0.5*fault_M_stepsize(i))-

subs(cdf2,M_of_TS)+subs(cdf1,M_of_TS)-subs(cdf1,M_of_TS-

0.5*fault_M_stepsize(i))); 

                    elseif M_of_TS>fault_Mchar(i)-0.25 

                        

PM_of_TS=double(subs(cdf2,M_of_TS+0.5*fault_M_stepsize(i))-

subs(cdf2,M_of_TS-0.5*fault_M_stepsize(i))); 

                    end 

                elseif k==fault_nof_magnitudes(i); 

                    M_of_TS=fault_M_start(i)+(double(k)-

1)*fault_M_stepsize(i); 

                    M_of_TS=fault_M_finish(i); 

                    PM_of_TS=double(subs(cdf2,fault_M_finish(i))-

subs(cdf2,fault_M_finish(i)-0.5*fault_M_stepsize(i))); 

                end 

                M_of_TS=roundn(M_of_TS,-6); 

                dummy=roundn(M_of_TS,-2); 

                Area_of_TS=10^(b*M_of_TS-a); 

                PA_of_TS=1.0; 

                PW_of_TS=1.0; 

                %% 

                if sqrt(Area_of_TS)>fault_width(i) 

                    W_of_TS=fault_width(i); 

                    nof_V_segments=1; 

                else 

                    W_of_TS=sqrt(Area_of_TS); 

                    nof_V_segments=ceil(fault_width(i)/W_of_TS); 

                end 

                if nof_V_segments>nof_v_max_segments 

                    nof_V_segments=nof_v_max_segments; 

                end 

                L_of_TS=Area_of_TS/W_of_TS; 

                if L_of_TS>fault_length(i) 

                    L_of_TS=fault_length(i); 

                    nof_H_segments=1; 

                else 

                    nof_H_segments=ceil(fault_length(i)/L_of_TS); 

                end 

                if nof_H_segments>nof_h_max_segments 

                    nof_H_segments=nof_h_max_segments; 

                end 

                nof_segments=nof_H_segments*nof_V_segments; 

                %% 

                if nof_V_segments>1 

                    dist_v_btw_segments=(fault_width(i) - W_of_TS) / 

(nof_V_segments - 1); 

                else 

                    dist_v_btw_segments=0; 

                end 

                 

                if nof_H_segments > 1 

                    dist_H_btw_segments = (fault_length(i) - L_of_TS) / 

(nof_H_segments - 1); 

                else 

                    dist_H_btw_segments = 0; 

                end 
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                %% 

                

fault_cline_1(1,1)=fault_corners(1,1)+W_of_TS/2*fault_u(2,1); 

                

fault_cline_1(1,2)=fault_corners(1,2)+W_of_TS/2*fault_u(2,2); 

                

fault_cline_1(1,3)=fault_corners(1,3)+W_of_TS/2*fault_u(2,3); 

                if nof_V_segments>1 

                    for vse=2:nof_V_segments 

                        fault_cline_1(vse,1)=fault_cline_1(vse-

1,1)+dist_v_btw_segments*fault_u(2,1); 

                        fault_cline_1(vse,2)=fault_cline_1(vse-

1,2)+dist_v_btw_segments*fault_u(2,2); 

                        fault_cline_1(vse,3)=fault_cline_1(vse-

1,3)+dist_v_btw_segments*fault_u(2,3); 

                    end 

                end 

                

fault_cline_2(1,1)=fault_corners(2,1)+W_of_TS/2*fault_u(2,1); 

                

fault_cline_2(1,2)=fault_corners(2,2)+W_of_TS/2*fault_u(2,2); 

                

fault_cline_2(1,3)=fault_corners(2,3)+W_of_TS/2*fault_u(2,3); 

                if nof_V_segments>1 

                    for vse=2:nof_V_segments 

                        fault_cline_2(vse,1)=fault_cline_2(vse-

1,1)+dist_v_btw_segments*fault_u(2,1); 

                        fault_cline_2(vse,2)=fault_cline_2(vse-

1,2)+dist_v_btw_segments*fault_u(2,2); 

                        fault_cline_2(vse,3)=fault_cline_2(vse-

1,3)+dist_v_btw_segments*fault_u(2,3); 

                    end 

                end 

                %% 

                for iv=1:nof_V_segments 

                    Cen_of_segs(iv,1)=fault_cline_1(iv,1) + (L_of_TS / 2) * 

fault_u(1,1); 

                    Cen_of_segs(iv,2)=fault_cline_1(iv,2) + (L_of_TS / 2) * 

fault_u(1,2); 

                    Cen_of_segs(iv,3)=fault_cline_1(iv,3) + (L_of_TS / 2) * 

fault_u(1,3); 

                end 

                for ih=nof_V_segments+1:nof_segments 

                    Cen_of_segs(ih,1)=Cen_of_segs(ih-nof_V_segments,1) + 

(dist_H_btw_segments) * fault_u(1,1); 

                    Cen_of_segs(ih,2)=Cen_of_segs(ih-nof_V_segments,2) + 

(dist_H_btw_segments) * fault_u(1,2); 

                    Cen_of_segs(ih,3)=Cen_of_segs(ih-nof_V_segments,3) + 

(dist_H_btw_segments) * fault_u(1,3); 

                end 

                %% Calculation of Probability Distribution of Pulse Period 

                Tp_min=0.2; 

                Tp_max=20.2; 

                tp=Tp_min; 

                Tp_step_size=0.2; 

                Tp_medi=exp(-5.73+0.99.*M_of_TS); 

                Tp_sigma=0.56; 

                syms Tp 

                dumm_Tp=(1/(Tp*Tp_sigma*(2*pi)^0.5))*(exp((-((log(Tp) - log 

(Tp_medi)))^2)/(2*Tp_sigma^2))); 

                cdf_Tp=int(dumm_Tp); 

                nof_Tp_steps=int16((Tp_max-Tp_min)/Tp_step_size)+1; 

                for ks=1:nof_Tp_steps 

                    if ks==1 
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Pr_of_Tp(ks)=double(subs(cdf_Tp,Tp_min+0.5*Tp_step_size)-

subs(cdf_Tp,Tp_min-0.45*Tp_step_size)); 

                    elseif ks<nof_Tp_steps 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,tp+0.5*Tp_step_size)-subs(cdf_Tp,tp-

0.5*Tp_step_size)); 

                    elseif ks==nof_Tp_steps 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,Tp_max+0.5*Tp_step_size)-

subs(cdf_Tp,Tp_max-0.5*Tp_step_size)); 

                    end 

                    tp=tp+Tp_step_size; 

                end 

                sum_tp=sum(Pr_of_Tp); 

                suml(k)=sum_tp; 

                Pr_of_Tp=Pr_of_Tp/sum_tp; 

                TS_Tp=[Tp_min:Tp_step_size:Tp_max]; 

                %% 

                for m=1:nof_segments 

                    run single_line_fault_segments 

                    run Rjb_calc 

                    run P_pulse_calc 

                    TS(cas_count,1)=M_of_TS; 

                    TS(cas_count,2)=Rjb; 

                    TS(cas_count,3)=R_rup; 

                    TS(cas_count,4)=Area_of_TS; 

                    TS(cas_count,5)=PA_of_TS; 

                    TS(cas_count,6)=W_of_TS; 

                    TS(cas_count,7)=PW_of_TS; 

                    TS(cas_count,8)=L_of_TS; 

                    TS(cas_count,9)=m; 

                    TS(cas_count,10)=1/nof_segments; 

                    TS(cas_count,11)=PM_of_TS; 

                    TS(cas_count,12)=activity_rate(i); 

                    TS(cas_count,13)=100+i; 

                    TS(cas_count,14)=sd_dir(m); 

                    TS(cas_count,15)=r_dir(m); 

                    TS(cas_count,16)=R_x; 

                    TS(cas_count,17)=F_HW; 

                    TS(cas_count,18)=z_tor; 

                    TS(cas_count,19)=dip_deg(i); 

                    TS(cas_count,20)=Cen_of_segs(m,3); 

                    TS(cas_count,21)=Ry0; 

                    TS_P_alpha(cas_count,1:num_alp_steps)=P_pu_alpha(m,:); 

                    TS_P_Tp(cas_count,1:nof_Tp_steps)=Pr_of_Tp; 

                    cas_count=cas_count+1; 

                end 

                clear P1_of_segs P2_of_segs P3_of_segs P4_of_segs 

Cen_of_segs H_dist_from_station epi_of_seg fault_cline_1 fault_cline_2 

sd_dir r_dir P_pu_rs P_pu_alpha Pr_of_Tp fault_cline_1 fault_cline_2 x_h 

y_h x_hc y_hc fi 

            end 

        case 3 % Pure characteristic 

            fault_M_min(i)=roundn(fault_data(13,i),-1); 

            fault_M_max(i)=roundn(fault_data(14,i),-1); 

            fault_Mchar(i)=roundn(bm*log10(fault_area(i))+am,-1); 

            dumm=fault_M_min(i)+0.0005; 

            mag=roundn(dumm,-4); 

            dummy(1)=(((mag+0.0005)-(mag-0.0005)))*10^(1.5* mag +16.05); 

            Mw(1)=mag; 

            for k=2:int16((fault_M_max(i)-fault_M_min(i))/0.001) 

                dumm=mag+0.001; 

                mag=roundn(dumm,-4); 

                Mw(k)=mag; 
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                dummy(k)=(((mag+0.0005)-(mag-0.0005)))*10^(1.5* mag 

+16.05); 

            end 

            dummy2=sum(dummy); 

            dumm=mag+0.001; 

            mag=roundn(dumm,-4); 

            Mw(k+1)=mag; 

            activity_rate(i)=mu(i)*fault_area(i)*1e10*slip_rate(i)/dummy2; 

            if i==1 

                Scs=7; 

            end 

            rcc=num2str(Scc); 

            rcs=num2str(Scs); 

            s_ex=strcat('F',rcc); 

            s_fx=strcat('F',rcs); 

            xlswrite(ex_input_data,activity_rate(i),'Input_Data',s_ex); 

            xlswrite(ex_input_data,fault_M_max(i),'Input_Data',s_fx); 

            Scc=Scc+20; 

            Scs=Scs+20; 

            M_steps=fault_M_stepsize(i); 

            M_strt=fault_M_min(i); 

            M_fin=fault_M_max(i); 

            fault_M_start(i)=M_strt; 

            fault_M_finish(i)=M_fin; 

            fault_nof_magnitudes(i)=double(int16((fault_M_finish(i)-

fault_M_start(i))/fault_M_stepsize(i))+1); 

            for k=1:fault_nof_magnitudes(i) 

                if k==1 

                    M_of_TS=fault_M_start(i); 

                    PM_of_TS=1/(2*fault_nof_magnitudes(i)); 

                elseif k<fault_nof_magnitudes(i) 

                    M_of_TS=fault_M_start(i)+(double(k)-

1)*fault_M_stepsize(i); 

                    PM_of_TS=(1/fault_nof_magnitudes(i)); 

                elseif k==fault_nof_magnitudes(i); 

                    M_of_TS=fault_M_finish(i); 

                    PM_of_TS=1/(2*fault_nof_magnitudes(i)); 

                end 

                M_of_TS=roundn(M_of_TS,-6); 

                dummy=roundn(M_of_TS,-2); 

                Area_of_TS=10^(b*M_of_TS-a); 

                PA_of_TS=1.0; 

                PW_of_TS=1.0; 

                %% 

                if sqrt(Area_of_TS)>fault_width(i) 

                    W_of_TS=fault_width(i); 

                    nof_V_segments=1; 

                else 

                    W_of_TS=sqrt(Area_of_TS); 

                    nof_V_segments=ceil(fault_width(i)/W_of_TS); 

                end 

                if nof_V_segments>nof_v_max_segments 

                    nof_V_segments=nof_v_max_segments; 

                end 

                L_of_TS=Area_of_TS/W_of_TS; 

                if L_of_TS>fault_length(i) 

                    L_of_TS=fault_length(i); 

                    nof_H_segments=1; 

                else 

                    nof_H_segments=ceil(fault_length(i)/L_of_TS); 

                end 

                if nof_H_segments>nof_h_max_segments 

                    nof_H_segments=nof_h_max_segments; 

                end 

                nof_segments=nof_H_segments*nof_V_segments; 
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                %% 

                if nof_V_segments>1 

                    dist_v_btw_segments=(fault_width(i) - W_of_TS) / 

(nof_V_segments - 1); 

                else 

                    dist_v_btw_segments=0; 

                end 

                 

                if nof_H_segments > 1 

                    dist_H_btw_segments = (fault_length(i) - L_of_TS) / 

(nof_H_segments - 1); 

                else 

                    dist_H_btw_segments = 0; 

                end 

                %% 

                

fault_cline_1(1,1)=fault_corners(1,1)+W_of_TS/2*fault_u(2,1); 

                

fault_cline_1(1,2)=fault_corners(1,2)+W_of_TS/2*fault_u(2,2); 

                

fault_cline_1(1,3)=fault_corners(1,3)+W_of_TS/2*fault_u(2,3); 

                if nof_V_segments>1 

                    for vse=2:nof_V_segments 

                        fault_cline_1(vse,1)=fault_cline_1(vse-

1,1)+dist_v_btw_segments*fault_u(2,1); 

                        fault_cline_1(vse,2)=fault_cline_1(vse-

1,2)+dist_v_btw_segments*fault_u(2,2); 

                        fault_cline_1(vse,3)=fault_cline_1(vse-

1,3)+dist_v_btw_segments*fault_u(2,3); 

                    end 

                end 

                

fault_cline_2(1,1)=fault_corners(2,1)+W_of_TS/2*fault_u(2,1); 

                

fault_cline_2(1,2)=fault_corners(2,2)+W_of_TS/2*fault_u(2,2); 

                

fault_cline_2(1,3)=fault_corners(2,3)+W_of_TS/2*fault_u(2,3); 

                if nof_V_segments>1 

                    for vse=2:nof_V_segments 

                        fault_cline_2(vse,1)=fault_cline_2(vse-

1,1)+dist_v_btw_segments*fault_u(2,1); 

                        fault_cline_2(vse,2)=fault_cline_2(vse-

1,2)+dist_v_btw_segments*fault_u(2,2); 

                        fault_cline_2(vse,3)=fault_cline_2(vse-

1,3)+dist_v_btw_segments*fault_u(2,3); 

                    end 

                end 

                %% 

                for iv=1:nof_V_segments 

                    Cen_of_segs(iv,1)=fault_cline_1(iv,1) + (L_of_TS / 2) * 

fault_u(1,1); 

                    Cen_of_segs(iv,2)=fault_cline_1(iv,2) + (L_of_TS / 2) * 

fault_u(1,2); 

                    Cen_of_segs(iv,3)=fault_cline_1(iv,3) + (L_of_TS / 2) * 

fault_u(1,3); 

                end 

                for ih=nof_V_segments+1:nof_segments 

                    Cen_of_segs(ih,1)=Cen_of_segs(ih-nof_V_segments,1) + 

(dist_H_btw_segments) * fault_u(1,1); 

                    Cen_of_segs(ih,2)=Cen_of_segs(ih-nof_V_segments,2) + 

(dist_H_btw_segments) * fault_u(1,2); 

                    Cen_of_segs(ih,3)=Cen_of_segs(ih-nof_V_segments,3) + 

(dist_H_btw_segments) * fault_u(1,3); 

                end 
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                %% Calculation of Probability Distribution of Pulse Period 

                Tp_min=0.2; 

                Tp_max=20.2; 

                tp=Tp_min; 

                Tp_step_size=0.2; 

                Tp_medi=exp(-5.73+0.99.*M_of_TS); 

                Tp_sigma=0.56; 

                syms Tp 

                dumm_Tp=(1/(Tp*Tp_sigma*(2*pi)^0.5))*(exp((-((log(Tp) - log 

(Tp_medi)))^2)/(2*Tp_sigma^2))); 

                cdf_Tp=int(dumm_Tp); 

                nof_Tp_steps=int16((Tp_max-Tp_min)/Tp_step_size)+1; 

                for ks=1:nof_Tp_steps 

                    if ks==1 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,Tp_min+0.5*Tp_step_size)-

subs(cdf_Tp,Tp_min-0.45*Tp_step_size)); 

                    elseif ks<nof_Tp_steps 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,tp+0.5*Tp_step_size)-subs(cdf_Tp,tp-

0.5*Tp_step_size)); 

                    elseif ks==nof_Tp_steps 

                        

Pr_of_Tp(ks)=double(subs(cdf_Tp,Tp_max+0.5*Tp_step_size)-

subs(cdf_Tp,Tp_max-0.5*Tp_step_size)); 

                    end 

                    tp=tp+Tp_step_size; 

                end 

                sum_tp=sum(Pr_of_Tp); 

                Pr_of_Tp=Pr_of_Tp/sum_tp; 

                TS_Tp=[Tp_min:Tp_step_size:Tp_max]; 

                %% 

                for m=1:nof_segments 

                    run single_line_fault_segments 

                    run Rjb_calc 

                    run P_pulse_calc 

                    TS(cas_count,1)=M_of_TS; 

                    TS(cas_count,2)=Rjb; 

                    TS(cas_count,3)=R_rup; 

                    TS(cas_count,4)=Area_of_TS; 

                    TS(cas_count,5)=PA_of_TS; 

                    TS(cas_count,6)=W_of_TS; 

                    TS(cas_count,7)=PW_of_TS; 

                    TS(cas_count,8)=L_of_TS; 

                    TS(cas_count,9)=m; 

                    TS(cas_count,10)=1/nof_segments; 

                    TS(cas_count,11)=PM_of_TS; 

                    TS(cas_count,12)=activity_rate(i); 

                    TS(cas_count,13)=100+i; 

                    TS(cas_count,14)=sd_dir(m); 

                    TS(cas_count,15)=r_dir(m); 

                    TS(cas_count,16)=R_x; 

                    TS(cas_count,17)=F_HW; 

                    TS(cas_count,18)=z_tor; 

                    TS(cas_count,19)=dip_deg(i); 

                    TS(cas_count,20)=Cen_of_segs(m,3); 

                    TS(cas_count,21)=Ry0; 

                    TS_P_alpha(cas_count,1:num_alp_steps)=P_pu_alpha(m,:); 

                    TS_P_Tp(cas_count,1:nof_Tp_steps)=Pr_of_Tp; 

                    cas_count=cas_count+1; 

                end 

                clear P1_of_segs P2_of_segs P3_of_segs P4_of_segs 

Cen_of_segs H_dist_from_station epi_of_seg fault_cline_1 fault_cline_2 

sd_dir r_dir P_pu_rs P_pu_alpha Pr_of_Tp fault_cline_1 fault_cline_2 x_h 

y_h x_hc y_hc fi 
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            end 

             

    end 

    Distance_metric='Rjb'; 

    eps_f_min(i)=-5; 

    if mod(eps_f_min(i)*10,2)==0; 

        eps_f_min(i)=eps_f_min(i)-.1; 

    else 

        eps_f_min(i)=eps_f_min(i); 

    end 

    eps_f_max(i)=5; 

    if mod(eps_f_max(i)*10,2)==0; 

        eps_f_max(i)=eps_f_max(i)+.1; 

    else 

        eps_f_max(i)=eps_f_max(i); 

    end 

end 

clear mag cdf 

disp('Task Finished'); 

 

- single_line_fault_segments File 

P1_of_segs(m,1)=Cen_of_segs(m,1)-(L_of_TS/2)*fault_u(1,1)-

(W_of_TS/2)*fault_u(2,1); 

P1_of_segs(m,2)=Cen_of_segs(m,2)-(L_of_TS/2)*fault_u(1,2)-

(W_of_TS/2)*fault_u(2,2); 

P1_of_segs(m,3)=Cen_of_segs(m,3)-(L_of_TS/2)*fault_u(1,3)-

(W_of_TS/2)*fault_u(2,3); 

  

P2_of_segs(m,1)=Cen_of_segs(m,1)+(L_of_TS/2)*fault_u(1,1)-

(W_of_TS/2)*fault_u(2,1); 

P2_of_segs(m,2)=Cen_of_segs(m,2)+(L_of_TS/2)*fault_u(1,2)-

(W_of_TS/2)*fault_u(2,2); 

P2_of_segs(m,3)=Cen_of_segs(m,3)+(L_of_TS/2)*fault_u(1,3)-

(W_of_TS/2)*fault_u(2,3); 

  

P3_of_segs(m,1)=Cen_of_segs(m,1)-

(L_of_TS/2)*fault_u(1,1)+(W_of_TS/2)*fault_u(2,1); 

P3_of_segs(m,2)=Cen_of_segs(m,2)-

(L_of_TS/2)*fault_u(1,2)+(W_of_TS/2)*fault_u(2,2); 

P3_of_segs(m,3)=Cen_of_segs(m,3)-

(L_of_TS/2)*fault_u(1,3)+(W_of_TS/2)*fault_u(2,3); 

  

P4_of_segs(m,1)=Cen_of_segs(m,1)+(L_of_TS/2)*fault_u(1,1)+(W_of_TS/2)*fault

_u(2,1); 

P4_of_segs(m,2)=Cen_of_segs(m,2)+(L_of_TS/2)*fault_u(1,2)+(W_of_TS/2)*fault

_u(2,2); 

P4_of_segs(m,3)=Cen_of_segs(m,3)+(L_of_TS/2)*fault_u(1,3)+(W_of_TS/2)*fault

_u(2,3); 

  

H_dist_from_station(m,1)=((station(j,1)-P1_of_segs(m,1))^2+(station(j,2)-

P1_of_segs(m,2))^2)^0.5; 

H_dist_from_station(m,2)=((station(j,1)-P2_of_segs(m,1))^2+(station(j,2)-

P2_of_segs(m,2))^2)^0.5; 

H_dist_from_station(m,3)=((station(j,1)-P3_of_segs(m,1))^2+(station(j,2)-

P3_of_segs(m,2))^2)^0.5; 

H_dist_from_station(m,4)=((station(j,1)-P4_of_segs(m,1))^2+(station(j,2)-

P4_of_segs(m,2))^2)^0.5; 

  

Dist_from_station(m,1)=((station(j,1)-P1_of_segs(m,1))^2+(station(j,2)-

P1_of_segs(m,2))^2+(station(j,3)-P1_of_segs(m,3))^2)^0.5; 

Dist_from_station(m,2)=((station(j,1)-P2_of_segs(m,1))^2+(station(j,2)-

P2_of_segs(m,2))^2+(station(j,3)-P2_of_segs(m,3))^2)^0.5; 



199 

 

Dist_from_station(m,3)=((station(j,1)-P3_of_segs(m,1))^2+(station(j,2)-

P3_of_segs(m,2))^2+(station(j,3)-P3_of_segs(m,3))^2)^0.5; 

Dist_from_station(m,4)=((station(j,1)-P4_of_segs(m,1))^2+(station(j,2)-

P4_of_segs(m,2))^2+(station(j,3)-P4_of_segs(m,3))^2)^0.5; 

 

- Rjb_calc File 

min_distance(m)=min([H_dist_from_station(m,1);H_dist_from_station(m,2);H_di

st_from_station(m,3);H_dist_from_station(m,4)]); 

  

u_btw_stat(1,1)=(station(j,1)-P1_of_segs(m,1))/H_dist_from_station(m,1); 

u_btw_stat(1,2)=(station(j,2)-P1_of_segs(m,2))/H_dist_from_station(m,1); 

  

u_btw_stat(2,1)=(station(j,1)-P2_of_segs(m,1))/H_dist_from_station(m,2); 

u_btw_stat(2,2)=(station(j,2)-P2_of_segs(m,2))/H_dist_from_station(m,2); 

  

u_btw_stat(3,1)=(station(j,1)-P3_of_segs(m,1))/H_dist_from_station(m,3); 

u_btw_stat(3,2)=(station(j,2)-P3_of_segs(m,2))/H_dist_from_station(m,3); 

  

u_btw_stat(4,1)=(station(j,1)-P4_of_segs(m,1))/H_dist_from_station(m,4); 

u_btw_stat(4,2)=(station(j,2)-P4_of_segs(m,2))/H_dist_from_station(m,4); 

  

H_width=((P1_of_segs(m,1)-P3_of_segs(m,1))^2+(P1_of_segs(m,2)-

P3_of_segs(m,2))^2)^0.5; 

  

u_btw_1_2(1)=fault_u(1,1); 

u_btw_1_2(2)=fault_u(1,2); 

  

if H_width==0 

    H_cos_angle_1=u_btw_stat(1,1)*u_btw_1_2(1)+ 

u_btw_stat(1,2)*u_btw_1_2(2); 

    H_distance_at_1_2=H_cos_angle_1*H_dist_from_station(m,1); 

    if H_distance_at_1_2 >= 0 && H_distance_at_1_2 <= L_of_TS; 

        perp1_x = P1_of_segs(m,1) + H_distance_at_1_2 * u_btw_1_2(1); 

        perp1_y = P1_of_segs(m,2) + H_distance_at_1_2 * u_btw_1_2(2); 

        perp2_x = P3_of_segs(m,1) + H_distance_at_1_2 * u_btw_1_2(1); 

        perp2_y = P3_of_segs(m,2) + H_distance_at_1_2 * u_btw_1_2(2); 

        shortest1 = ((perp1_x - station(j,1)) ^ 2 + (perp1_y - 

station(j,2)) ^ 2) ^ 0.5; 

        shortest2 = ((perp2_x - station(j,1)) ^ 2 + (perp2_y - 

station(j,2)) ^ 2) ^ 0.5; 

        if shortest1 >= shortest2 

            Rjb = shortest2; 

        else 

            Rjb = shortest1; 

        end 

    else 

        Rjb = min_distance(m); 

    end 

else 

    u_btw_1_3(1)=(P3_of_segs(m,1)-P1_of_segs(m,1))/H_width; 

    u_btw_1_3(2)=(P3_of_segs(m,2)-P1_of_segs(m,2))/H_width; 

    

H_cos_angle_1=(u_btw_stat(1,1)*u_btw_1_2(1)+u_btw_stat(1,2)*u_btw_1_2(2)); 

    

H_cos_angle_2=(u_btw_stat(1,1)*u_btw_1_3(1)+u_btw_stat(1,2)*u_btw_1_3(2)); 

    H_distance_at_1_2=H_cos_angle_1*H_dist_from_station(m,1); 

    H_distance_at_1_3=H_cos_angle_2*H_dist_from_station(m,1); 

    if H_distance_at_1_2 >= 0 & H_distance_at_1_2 <= L_of_TS & 

H_distance_at_1_3>=0 & H_distance_at_1_3<=H_width; 

        Rjb=0.0; 

    elseif H_distance_at_1_2 >= 0 & H_distance_at_1_2 <= L_of_TS; 

        perp1_x=P1_of_segs(m,1)+H_distance_at_1_2*u_btw_1_2(1); 

        perp1_y=P1_of_segs(m,2)+H_distance_at_1_2*u_btw_1_2(2); 

        perp2_x=P3_of_segs(m,1)+H_distance_at_1_2*u_btw_1_2(1); 
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        perp2_y=P3_of_segs(m,2)+H_distance_at_1_2*u_btw_1_2(2); 

        shortest1 = ((perp1_x - station(j,1)) ^ 2 + (perp1_y - 

station(j,2)) ^ 2) ^ 0.5; 

        shortest2 = ((perp2_x - station(j,1)) ^ 2 + (perp2_y - 

station(j,2)) ^ 2) ^ 0.5; 

        Rjb=min([shortest1;shortest2]); 

    elseif H_distance_at_1_3 >= 0 & H_distance_at_1_3 <= H_width; 

        perp3_x=P1_of_segs(m,1)+H_distance_at_1_3*u_btw_1_3(1); 

        perp3_y=P1_of_segs(m,2)+H_distance_at_1_3*u_btw_1_3(2); 

        perp4_x=P2_of_segs(m,1)+H_distance_at_1_3*u_btw_1_3(1); 

        perp4_y=P2_of_segs(m,2)+H_distance_at_1_3*u_btw_1_3(2); 

        shortest3 = ((perp3_x - station(j,1)) ^ 2 + (perp3_y - 

station(j,2)) ^ 2) ^ 0.5; 

        shortest4 = ((perp4_x - station(j,1)) ^ 2 + (perp4_y - 

station(j,2)) ^ 2) ^ 0.5; 

        Rjb=min([shortest3;shortest4]); 

    else 

        Rjb=min_distance(m); 

        if Rjb<0.001 

            Rjb=0.0; 

        end 

    end 

end 

%% R_rup Calculation     

tt=(norm_vectr(1,1)*(fault_corners(1,1)-

station(j,1))+norm_vectr(1,2)*(fault_corners(1,2)-

station(j,2))+norm_vectr(1,3)*(fault_corners(1,3)-

station(j,3)))/(norm_vectr(1,1)^2+norm_vectr(1,2)^2+norm_vectr(1,3)^2); 

x_h=norm_vectr(1,1)*tt+station(j,1); 

y_h=norm_vectr(1,2)*tt+station(j,2); 

z_h=norm_vectr(1,3)*tt+station(j,3); 

ver_p=[x_h y_h z_h];                       

vec1=P1_of_segs(m,:)-ver_p; 

vec2=P2_of_segs(m,:)-ver_p; 

vec3=P3_of_segs(m,:)-ver_p; 

vec4=P4_of_segs(m,:)-ver_p; 

cros1=cross(vec1,vec2); 

cros2=cross(vec1,vec3); 

cros3=cross(vec2,vec4); 

cros4=cross(vec3,vec4); 

area1=(cros1(1)^2+cros1(2)^2+cros1(3)^2)^0.5; 

area2=(cros2(1)^2+cros2(2)^2+cros2(3)^2)^0.5; 

area3=(cros3(1)^2+cros3(2)^2+cros3(3)^2)^0.5; 

area4=(cros4(1)^2+cros4(2)^2+cros4(3)^2)^0.5; 

  

area_vp=(area1+area2+area3+area4)/2; 

  

vec_edge12=P2_of_segs(m,:)-P1_of_segs(m,:); 

vec_edge13=P3_of_segs(m,:)-P1_of_segs(m,:); 

vec_edge42=P2_of_segs(m,:)-P4_of_segs(m,:); 

vec_edge43=P3_of_segs(m,:)-P4_of_segs(m,:); 

  

cros_seg1=cross(vec_edge12,vec_edge13); 

cros_seg2=cross(vec_edge42,vec_edge43); 

  

area_seg1=(cros_seg1(1)^2+cros_seg1(2)^2+cros_seg1(3)^2)^0.5; 

area_seg2=(cros_seg2(1)^2+cros_seg2(2)^2+cros_seg2(3)^2)^0.5; 

  

area_seg=(area_seg1+area_seg2)/2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cof_rup_12=P2_of_segs(m,:)-P1_of_segs(m,:); 

tt=(cof_rup_12(1)*ver_p(1,1)-cof_rup_12(1)* 

P1_of_segs(m,1)+cof_rup_12(2)*ver_p(1,2)-cof_rup_12(2)* 

P1_of_segs(m,2)+cof_rup_12(3)*ver_p(1,3)-cof_rup_12(3)* 

P1_of_segs(m,3))/(cof_rup_12(1)^2+cof_rup_12(2)^2+cof_rup_12(3)^2); 



201 

 

x_h_12=cof_rup_12(1)*tt+P1_of_segs(m,1); 

y_h_12=cof_rup_12(2)*tt+P1_of_segs(m,2); 

z_h_12=cof_rup_12(3)*tt+P1_of_segs(m,3); 

cord_pver_12=[x_h_12 y_h_12 z_h_12];                 

l_seg12=sqrt(dot(cof_rup_12,cof_rup_12)); 

l1_seg12=sqrt(dot((cord_pver_12-P1_of_segs(m,:)),(cord_pver_12-

P1_of_segs(m,:)))); 

l2_seg12=sqrt(dot((cord_pver_12-P2_of_segs(m,:)),(cord_pver_12-

P2_of_segs(m,:)))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cof_rup_13=P3_of_segs(m,:)-P1_of_segs(m,:); 

tt=(cof_rup_13(1)*ver_p(1,1)-cof_rup_13(1)* 

P1_of_segs(m,1)+cof_rup_13(2)*ver_p(1,2)-cof_rup_13(2)* 

P1_of_segs(m,2)+cof_rup_13(3)*ver_p(1,3)-cof_rup_13(3)* 

P1_of_segs(m,3))/(cof_rup_13(1)^2+cof_rup_13(2)^2+cof_rup_13(3)^2); 

x_h_13=cof_rup_13(1)*tt+P1_of_segs(m,1); 

y_h_13=cof_rup_13(2)*tt+P1_of_segs(m,2); 

z_h_13=cof_rup_13(3)*tt+P1_of_segs(m,3); 

cord_pver_13=[x_h_13 y_h_13 z_h_13];                

l_seg13=sqrt(dot(cof_rup_13,cof_rup_13)); 

l1_seg13=sqrt(dot((cord_pver_13-P1_of_segs(m,:)),(cord_pver_13-

P1_of_segs(m,:)))); 

l2_seg13=sqrt(dot((cord_pver_13-P3_of_segs(m,:)),(cord_pver_13-

P3_of_segs(m,:)))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cof_rup_34=P4_of_segs(m,:)-P3_of_segs(m,:); 

tt=(cof_rup_34(1)*ver_p(1,1)-cof_rup_34(1)* 

P3_of_segs(m,1)+cof_rup_34(2)*ver_p(1,2)-cof_rup_34(2)* 

P3_of_segs(m,2)+cof_rup_34(3)*ver_p(1,3)-cof_rup_34(3)* 

P3_of_segs(m,3))/(cof_rup_34(1)^2+cof_rup_34(2)^2+cof_rup_34(3)^2); 

x_h_34=cof_rup_34(1)*tt+P3_of_segs(m,1); 

y_h_34=cof_rup_34(2)*tt+P3_of_segs(m,2); 

z_h_34=cof_rup_34(3)*tt+P3_of_segs(m,3); 

cord_pver_34=[x_h_34 y_h_34 z_h_34];               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cof_rup_24=P4_of_segs(m,:)-P2_of_segs(m,:); 

tt=(cof_rup_24(1)*ver_p(1,1)-cof_rup_24(1)* 

P2_of_segs(m,1)+cof_rup_24(2)*ver_p(1,2)-cof_rup_24(2)* 

P2_of_segs(m,2)+cof_rup_24(3)*ver_p(1,3)-cof_rup_24(3)* 

P2_of_segs(m,3))/(cof_rup_24(1)^2+cof_rup_24(2)^2+cof_rup_24(3)^2); 

x_h_24=cof_rup_24(1)*tt+P2_of_segs(m,1); 

y_h_24=cof_rup_24(2)*tt+P2_of_segs(m,2); 

z_h_24=cof_rup_24(3)*tt+P2_of_segs(m,3); 

cord_pver_24=[x_h_24 y_h_24 z_h_24];               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%      

if abs(area_vp-area_seg)<=0.001 

    R_rup=((station(j,1)-x_h)^2+(station(j,2)-y_h)^2+(station(j,3)-

z_h)^2)^0.5 ; 

elseif l1_seg12<=l_seg12 && l2_seg12<=l_seg12 

    R_rup12=sqrt(dot((station(j,:)-cord_pver_12),(station(j,:)-

cord_pver_12)));    

    R_rup34=sqrt(dot((station(j,:)-cord_pver_34),(station(j,:)-

cord_pver_34))); 

    R_rup=min(R_rup12,R_rup34); 

elseif l1_seg13<=l_seg13 && l2_seg13<=l_seg13 

    R_rup13=sqrt(dot((station(j,:)-cord_pver_13),(station(j,:)-

cord_pver_13))); 

    R_rup24=sqrt(dot((station(j,:)-cord_pver_24),(station(j,:)-

cord_pver_24))); 

    R_rup=min(R_rup13,R_rup24); 

else 

    R_rup1=sqrt(dot((station(j,:)-P1_of_segs(m,:)),(station(j,:)-

P1_of_segs(m,:)))); 

    R_rup2=sqrt(dot((station(j,:)-P2_of_segs(m,:)),(station(j,:)-

P2_of_segs(m,:)))); 
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    R_rup3=sqrt(dot((station(j,:)-P3_of_segs(m,:)),(station(j,:)-

P3_of_segs(m,:)))); 

    R_rup4=sqrt(dot((station(j,:)-P4_of_segs(m,:)),(station(j,:)-

P4_of_segs(m,:)))); 

    R_rup_corners=[R_rup1,R_rup2,R_rup3,R_rup4]; 

    R_rup=min(R_rup_corners); 

end 

  

%% Calculation of Ry0 

aa=P1_of_segs(m,1)-P2_of_segs(m,1); 

bb=P1_of_segs(m,2)-P2_of_segs(m,2); 

cc=P1_of_segs(m,3)-P2_of_segs(m,3); 

tt=(aa*station(j,1)-aa* P1_of_segs(m,1)+bb*station(j,2)-bb* 

P1_of_segs(m,2))/(aa^2+bb^2); 

xc_h=aa*tt+P1_of_segs(m,1);                            

yc_h=bb*tt+P1_of_segs(m,2); 

  

cen_of_segment=(P1_of_segs(m,:)+P2_of_segs(m,:))/2; 

Ry_dummy=((xc_h-cen_of_segment(1,1))^2+(yc_h-cen_of_segment(1,2))^2)^0.5; 

Ry0=Ry_dummy-L_of_TS/2; 

if Ry0<0 

    Ry0=0; 

end 

%% Calculation of Rx 

cof_rup_u=P2_of_segs(m,:)-P1_of_segs(m,:); 

tt=(cof_rup_u(1)*station(j,1)-cof_rup_u(1)* 

P1_of_segs(m,1)+cof_rup_u(2)*station(j,2)-cof_rup_u(2)* 

P1_of_segs(m,2)+cof_rup_u(3)*station(j,3)-cof_rup_u(3)* 

P1_of_segs(m,3))/(cof_rup_u(1)^2+cof_rup_u(2)^2+cof_rup_u(3)^2); 

x_h_rup_u=cof_rup_u(1)*tt+P1_of_segs(m,1); 

y_h_rup_u=cof_rup_u(2)*tt+P1_of_segs(m,2); 

z_h_rup_u=cof_rup_u(3)*tt+P1_of_segs(m,3); 

  

cord_pver_u=[x_h_rup_u y_h_rup_u z_h_rup_u];               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cof_rup_d=P4_of_segs(m,:)-P3_of_segs(m,:); 

  

tt=(cof_rup_d(1)*station(j,1)-cof_rup_d(1)* 

P3_of_segs(m,1)+cof_rup_d(2)*station(j,2)-cof_rup_d(2)* 

P3_of_segs(m,2)+cof_rup_d(3)*station(j,3)-cof_rup_d(3)* 

P3_of_segs(m,3))/(cof_rup_d(1)^2+cof_rup_d(2)^2+cof_rup_d(3)^2); 

x_h_rup_d=cof_rup_d(1)*tt+P3_of_segs(m,1); 

y_h_rup_d=cof_rup_d(2)*tt+P3_of_segs(m,2); 

z_h_rup_d=cof_rup_d(3)*tt+P3_of_segs(m,3); 

  

cord_pver_d=[x_h_rup_d y_h_rup_d z_h_rup_d];                

R_x_d=sqrt((station(j,1)-cord_pver_d(1,1))^2+(station(j,2)-

cord_pver_d(1,2))^2); 

R_x_u=sqrt((station(j,1)-cord_pver_u(1,1))^2+(station(j,2)-

cord_pver_u(1,2))^2); 

R_ud=sqrt((cord_pver_d(1,1)-cord_pver_u(1,1))^2+(cord_pver_d(1,2)-

cord_pver_u(1,2))^2); 

  

R_x=R_x_u; 

  

if dip_deg(i)~=90 && abs(R_x_d-R_x_u-R_ud)<0.001 

    R_x=-1*R_x; 

end 

z_tor=P1_of_segs(m,3); 

if R_x>=0 

    F_HW=1; 

else 

    F_HW=0; 

    Ry0=0; 

end 
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- P_pulse_calc File 

%% Calculation for Directivity Parameters for Strike Slip Faults 

if SS==1 

    kks=m-nof_V_segments*(ceil(m/(nof_V_segments))-1); 

    aa=fault_cline_2(kks,1)-fault_cline_1(kks,1); 

    bb=fault_cline_2(kks,2)-fault_cline_1(kks,2); 

    cc=fault_cline_2(kks,3)-fault_cline_1(kks,3); 

    tt=(aa*station(j,1)-aa* fault_cline_1(kks,1)+bb*station(j,2)-bb* 

fault_cline_1(kks,2))/(aa^2+bb^2); 

    x_h(m)=aa*tt+fault_cline_1(kks,1); 

    y_h(m)=bb*tt+fault_cline_1(kks,2); 

    epi_of_seg(m,:)=Cen_of_segs(m,:); 

    epi_of_seg(m,3)=0; 

    sd_dir(m)=((epi_of_seg(m,1)-x_h(m))^2+(epi_of_seg(m,2)-y_h(m))^2)^0.5; 

    if sd_dir(m)>L_of_TS/2 

        sd_dir(m)=L_of_TS/2; 

    end 

    r_dir(m)=R_rup; 

    P_pu_rs(m)=1/(1+exp(0.642+0.167*r_dir(m)-0.075*sd_dir(m)));     

else     

    % Calculation for Directivity Parameters for Non-Strike Slip Faults 

    tt=(norm_vectr(1,1)*(fault_corners(1,1)-

station(j,1))+norm_vectr(1,2)*(fault_corners(1,2)-

station(j,2))+norm_vectr(1,3)*(fault_corners(1,3)-

station(j,3)))/(norm_vectr(1,1)^2+norm_vectr(1,2)^2+norm_vectr(1,3)^2); 

    x_h(m)=norm_vectr(1,1)*tt+station(j,1); 

    y_h(m)=norm_vectr(1,2)*tt+station(j,2); 

    z_h(m)=norm_vectr(1,3)*tt+station(j,3); 

     

    kks=m-nof_V_segments*(ceil(m/(nof_V_segments))-1); 

     

    aa=fault_cline_2(kks,1)-fault_cline_1(kks,1); 

    bb=fault_cline_2(kks,2)-fault_cline_1(kks,2); 

    cc=fault_cline_2(kks,3)-fault_cline_1(kks,3); 

    tt=(aa*x_h(m)-aa* fault_cline_1(kks,1)+bb*y_h(m)-bb* 

fault_cline_1(kks,2)+cc*z_h(m)-cc* fault_cline_1(kks,3))/(aa^2+bb^2+cc^2); 

    x_hc(m)=aa*tt+fault_cline_1(kks,1); 

    y_hc(m)=bb*tt+fault_cline_1(kks,2); 

    z_hc(m)=cc*tt+fault_cline_1(kks,3); 

     

    r_fi(m)=((x_h(m)-station(j,1))^2+(y_h(m)-station(j,2))^2+(z_h(m)-

station(j,3))^2)^0.5; 

    d_fi(m)=((x_h(m)-Cen_of_segs(m,1))^2+(y_h(m)-

Cen_of_segs(m,2))^2+(z_h(m)-Cen_of_segs(m,3))^2)^0.5; 

     

    sd_dir(m)=((x_hc(m)-x_h(m))^2+(y_hc(m)-y_h(m))^2+(z_hc(m)-

z_h(m))^2)^0.5; 

    r_dir(m)=R_rup; 

    fi(m)=(atan(r_fi(m)/d_fi(m)))*180/pi; 

    P_pu_rs(m)=1/(1+exp(0.128+0.055*r_dir(m)-0.061*sd_dir(m)+0.036*fi(m))); 

end 

alpha=[0 90]; 

num_alp_steps=length(alpha); 

if SS==1 

    P_alpha=min(0.67,0.67-0.0041*(77.5-alpha)); 

else 

    P_alpha=min(0.53,0.53-0.0041*(70.2-alpha)); 

end 

P_pu_alpha(m,:)= P_pu_rs(m)*P_alpha; 
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APPENDIX C 

 

 

LIST OF PULSE-TYPE AND NON-PULSE-TYPE NEAR-FAULT 

GROUND MOTIONS 

 

 

Table C. 1 List of near-fault pulse type ground motions (Last access 20/09/2016) 

Seq_Num Earthquake Name  Station Name  Mw R_rup I_Direct 

143 Tabas, Iran Tabas 7.35 2.05 1 

159 Imperial Valley-06 Agrarias 6.53 0.65 1 

161 Imperial Valley-06 Brawley Airport 6.53 10.42 1 

170 Imperial Valley-06 EC County Center FF 6.53 7.31 1 

171 Imperial Valley-06 El Centro - Meloland Geot. Array 6.53 0.07 1 

173 Imperial Valley-06 El Centro Array #10 6.53 8.6 1 

178 Imperial Valley-06 El Centro Array #3 6.53 12.85 1 

179 Imperial Valley-06 El Centro Array #4 6.53 7.05 1 

180 Imperial Valley-06 El Centro Array #5 6.53 3.95 1 

181 Imperial Valley-06 El Centro Array #6 6.53 1.35 1 

182 Imperial Valley-06 El Centro Array #7 6.53 0.56 1 

184 Imperial Valley-06 El Centro Differential Array 6.53 5.09 1 

185 Imperial Valley-06 Holtville Post Office 6.53 7.5 1 

285 Irpinia, Italy-01 Bagnoli Irpinio 6.9 8.18 1 

451 Morgan Hill 
Coyote Lake Dam - Southwest 

Abutment 
6.19 0.53 1 

459 Morgan Hill Gilroy Array #6 6.19 9.87 1 

723 Superstition Hills-02 Parachute Test Site 6.54 0.95 1 

764 Loma Prieta Gilroy - Historic Bldg. 6.93 10.97 1 

766 Loma Prieta Gilroy Array #2 6.93 11.07 1 

767 Loma Prieta Gilroy Array #3 6.93 12.82 1 

802 Loma Prieta Saratoga - Aloha Ave 6.93 8.5 1 

803 Loma Prieta Saratoga - W Valley Coll. 6.93 9.31 1 

900 Landers Yermo Fire Station 7.28 23.62 1 

982 Northridge-01 
Jensen Filter Plant Administrative 

Building 
6.69 5.43 1 

983 Northridge-01 
Jensen Filter Plant Generator 

Building 
6.69 5.43 1 

1004 Northridge-01 LA - Sepulveda VA Hospital 6.69 8.44 1 

1013 Northridge-01 LA Dam 6.69 5.92 1 

1044 Northridge-01 Newhall - Fire Sta 6.69 5.92 1 

1045 Northridge-01 Newhall - W Pico Canyon Rd. 6.69 5.48 1 

1052 Northridge-01 Pacoima Kagel Canyon 6.69 7.26 1 
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  Table C.1 (Continued)  
1054 Northridge-01 Pardee - SCE 6.69 7.46 1 

1063 Northridge-01 Rinaldi Receiving Sta 6.69 6.5 1 

1084 Northridge-01 Sylmar - Converter Sta 6.69 5.35 1 

1085 Northridge-01 Sylmar - Converter Sta East 6.69 5.19 1 

1086 Northridge-01 Sylmar - Olive View Med FF 6.69 5.3 1 

1106 Kobe, Japan KJMA 6.9 0.96 1 

1114 Kobe, Japan Port Island (0 m) 6.9 3.31 1 

1119 Kobe, Japan Takarazuka 6.9 0.27 1 

1120 Kobe, Japan Takatori 6.9 1.47 1 

1148 Kocaeli, Turkey Arcelik 7.51 13.49 1 

1161 Kocaeli, Turkey Gebze 7.51 10.92 1 

1176 Kocaeli, Turkey Yarimca 7.51 4.83 1 

1182 Chi-Chi, Taiwan CHY006 7.62 9.76 1 

1193 Chi-Chi, Taiwan CHY024 7.62 9.62 1 

1244 Chi-Chi, Taiwan CHY101 7.62 9.94 1 

1476 Chi-Chi, Taiwan TCU029 7.62 28.04 1 

1480 Chi-Chi, Taiwan TCU036 7.62 19.83 1 

1481 Chi-Chi, Taiwan TCU038 7.62 25.42 1 

1482 Chi-Chi, Taiwan TCU039 7.62 19.89 1 

1483 Chi-Chi, Taiwan TCU040 7.62 22.06 1 

1485 Chi-Chi, Taiwan TCU045 7.62 26 1 

1486 Chi-Chi, Taiwan TCU046 7.62 16.74 1 

1489 Chi-Chi, Taiwan TCU049 7.62 3.76 1 

1491 Chi-Chi, Taiwan TCU051 7.62 7.64 1 

1492 Chi-Chi, Taiwan TCU052 7.62 0.66 1 

1493 Chi-Chi, Taiwan TCU053 7.62 5.95 1 

1496 Chi-Chi, Taiwan TCU056 7.62 10.48 1 

1498 Chi-Chi, Taiwan TCU059 7.62 17.11 1 

1501 Chi-Chi, Taiwan TCU063 7.62 9.78 1 

1502 Chi-Chi, Taiwan TCU064 7.62 16.59 1 

1503 Chi-Chi, Taiwan TCU065 7.62 0.57 1 

1505 Chi-Chi, Taiwan TCU068 7.62 0.32 1 

1510 Chi-Chi, Taiwan TCU075 7.62 0.89 1 

1511 Chi-Chi, Taiwan TCU076 7.62 2.74 1 

1515 Chi-Chi, Taiwan TCU082 7.62 5.16 1 

1519 Chi-Chi, Taiwan TCU087 7.62 6.98 1 

1528 Chi-Chi, Taiwan TCU101 7.62 2.11 1 

1529 Chi-Chi, Taiwan TCU102 7.62 1.49 1 

1530 Chi-Chi, Taiwan TCU103 7.62 6.08 1 

1531 Chi-Chi, Taiwan TCU104 7.62 12.87 1 

1548 Chi-Chi, Taiwan TCU128 7.62 13.13 1 

1550 Chi-Chi, Taiwan TCU136 7.62 8.27 1 

1602 Duzce, Turkey Bolu 7.14 12.04 1 

2114 Denali, Alaska TAPS Pump Station #10 7.9 2.74 1 



207 

 

  Table C.1 (Continued) 
2734 Chi-Chi, Taiwan-04 CHY074 6.2 6.2 1 

3473 Chi-Chi, Taiwan-06 TCU078 6.3 11.52 1 

3475 Chi-Chi, Taiwan-06 TCU080 6.3 10.2 1 

3965 Tottori, Japan TTR008 6.61 6.88 1 

4040 Bam, Iran Bam 6.6 1.7 1 

4065 Parkfield-02, CA PARKFIELD - EADES 6 2.85 1 

4097 Parkfield-02, CA Slack Canyon 6 2.99 1 

4098 Parkfield-02, CA Parkfield - Cholame 1E 6 3 1 

4100 Parkfield-02, CA Parkfield - Cholame 2WA 6 3.01 1 

4101 Parkfield-02, CA Parkfield - Cholame 3E 6 5.55 1 

4102 Parkfield-02, CA Parkfield - Cholame 3W 6 3.63 1 

4103 Parkfield-02, CA Parkfield - Cholame 4W 6 4.23 1 

4107 Parkfield-02, CA Parkfield - Fault Zone 1 6 2.51 1 

4113 Parkfield-02, CA Parkfield - Fault Zone 9 6 2.85 1 

4115 Parkfield-02, CA Parkfield - Fault Zone 12 6 2.65 1 

4126 Parkfield-02, CA Parkfield - Stone Corral 1E 6 3.79 1 

4211 Niigata, Japan NIG021 6.63 11.26 1 

4228 Niigata, Japan NIGH11 6.63 8.93 1 

4458 Montenegro, Yugo. Ulcinj - Hotel Olimpic 7.1 5.76 1 

4480 L'Aquila, Italy 
L'Aquila - V. Aterno - Centro 

Valle 
6.3 6.27 1 

4482 L'Aquila, Italy L'Aquila - V. Aterno -F. Aterno 6.3 6.55 1 

4483 L'Aquila, Italy L'Aquila - Parking 6.3 5.38 1 

6887 Darfield, New Zealand Christchurch Botanical Gardens 7 18.05 1 

6897 Darfield, New Zealand DSLC 7 8.46 1 

6906 Darfield, New Zealand GDLC 7 1.22 1 

6927 Darfield, New Zealand LINC 7 7.11 1 

6928 Darfield, New Zealand LPCC 7 25.67 1 

6942 Darfield, New Zealand 
NNBS North New Brighton 

School  
7 26.76 1 

6959 Darfield, New Zealand Christchurch Resthaven  7 19.48 1 

6960 Darfield, New Zealand Riccarton High School  7 13.64 1 

6962 Darfield, New Zealand ROLC 7 1.54 1 

6966 Darfield, New Zealand Shirley Library 7 22.33 1 

6969 Darfield, New Zealand Styx Mill Transfer Station  7 20.86 1 

6975 Darfield, New Zealand TPLC 7 6.11 1 

8119 
Christchurch, New 

Zealand 
Pages Road Pumping Station 6.2 1.98 1 

8123 
Christchurch, New 

Zealand 
Christchurch Resthaven  6.2 5.13 1 

8161 El Mayor-Cucapah El Centro Array #12 7.2 11.26 1 

8164 Duzce, Turkey IRIGM 487 7.14 2.65 1 

8606 El Mayor-Cucapah Westside Elementary School 7.2 11.44 1 
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Table C. 2 List of near-fault nonpulse ground motions (Last access 20/09/2016) 

Seq_Num Earthquake Name  Station Name  Mw R_rup I_Direct 

230 Mammoth Lakes-01 Convict Creek 6.06 6.63 0 

297 Irpinia, Italy-02 Bisaccia 6.2 14.74 0 

495 Nahanni, Canada Site 1 6.76 9.6 0 

527 N. Palm Springs Morongo Valley Fire Station 6.06 12.03 0 

558 Chalfant Valley-02 Zack Brothers Ranch 6.19 7.58 0 

725 Superstition Hills-02 Poe Road (temp) 6.54 11.16 0 

727 Superstition Hills-02 Superstition Mtn Camera 6.54 5.61 0 

827 Cape Mendocino Fortuna - Fortuna Blvd 7.01 19.95 0 

830 Cape Mendocino Shelter Cove Airport 7.01 28.78 0 

864 Landers Joshua Tree 7.28 11.03 0 

901 Big Bear-01 Big Bear Lake - Civic Center 6.46 8.3 0 

959 Northridge-01 Canoga Park - Topanga Can 6.69 14.7 0 

1111 Kobe, Japan Nishi-Akashi 6.9 7.08 0 

1234 Chi-Chi, Taiwan CHY086 7.62 28.42 0 

1512 Chi-Chi, Taiwan TCU078 7.62 8.2 0 

1520 Chi-Chi, Taiwan TCU088 7.62 18.16 0 

1521 Chi-Chi, Taiwan TCU089 7.62 9 0 

1651 Northridge-02 Arleta - Nordhoff Fire Sta 6.05 8.04 0 

2628 Chi-Chi, Taiwan-03 TCU078 6.2 7.62 0 

2629 Chi-Chi, Taiwan-03 TCU079 6.2 8.48 0 

2632 Chi-Chi, Taiwan-03 TCU084 6.2 9.32 0 

2635 Chi-Chi, Taiwan-03 TCU089 6.2 9.81 0 

3746 Cape Mendocino Centerville Beach, Naval Fac 7.01 18.31 1 

3748 Cape Mendocino Ferndale Fire Station 7.01 19.32 0 

3750 Cape Mendocino Loleta Fire Station 7.01 25.91 0 

3947 Tottori, Japan SMNH01 6.61 5.86 0 

3966 Tottori, Japan TTR009 6.61 8.83 0 

4067 Parkfield-02, CA PARKFIELD - GOLD HILL 6 3.43 0 

4068 Parkfield-02, CA 
PARKFIELD - HOG 

CANYON 
6 2.65 0 

4116 Parkfield-02, CA Parkfield - Fault Zone 14 6 8.81 0 

4118 Parkfield-02, CA Parkfield - Gold Hill 1W 6 2.67 0 

4119 Parkfield-02, CA Parkfield - Gold Hill 2E 6 3.84 0 

4120 Parkfield-02, CA Parkfield - Gold Hill 2W 6 3.38 0 

4121 Parkfield-02, CA Parkfield - Gold Hill 3E 6 6.3 0 

4122 Parkfield-02, CA Parkfield - Gold Hill 3W 6 5.41 0 

4123 Parkfield-02, CA Parkfield - Gold Hill 4W 6 8.27 0 

4127 Parkfield-02, CA Parkfield - Stone Corral 2E 6 5.8 0 

4128 Parkfield-02, CA Parkfield - Stone Corral 3E 6 8.08 0 

4139 Parkfield-02, CA PARKFIELD - UPSAR 02 6 9.95 0 

4140 Parkfield-02, CA PARKFIELD - UPSAR 03 6 9.95 0 

4141 Parkfield-02, CA PARKFIELD - UPSAR 05 6 9.61 0 

4142 Parkfield-02, CA PARKFIELD - UPSAR 06 6 9.61 0 
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     Table C.2 (Continued) 
4143 Parkfield-02, CA PARKFIELD - UPSAR 07 6 9.61 0 

4144 Parkfield-02, CA PARKFIELD - UPSAR 08 6 9.41 0 

4145 Parkfield-02, CA PARKFIELD - UPSAR 09 6 9.34 0 

4146 Parkfield-02, CA PARKFIELD - UPSAR 10 6 9.14 0 

4147 Parkfield-02, CA PARKFIELD - UPSAR 11 6 9.41 0 

4148 Parkfield-02, CA PARKFIELD - UPSAR 12 6 9.47 0 

4149 Parkfield-02, CA PARKFIELD - UPSAR 13 6 9.47 0 

4209 Niigata, Japan NIG019 6.63 9.88 0 

4218 Niigata, Japan NIG028 6.63 9.79 0 

4219 Niigata, Japan NIGH01 6.63 9.46 0 

4349 
Umbria Marche, 

Italy 
Colfiorito 6 6.92 0 

4456 Montenegro, Yugo. Petrovac - Hotel Olivia 7.1 8.01 0 

4481 L'Aquila, Italy 
L'Aquila - V. Aterno -Colle 

Grilli 
6.3 6.81 0 

5657 Iwate IWTH25 6.9 4.8 0 

5832 El Mayor-Cucapah TAMAULIPAS 7.2 26.55 0 

6961 
Darfield, New 

Zealand 
RKAC 7 16.47 0 
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