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ABSTRACT

ADDRESSING THE NEAR-FAULT DIRECTIVITY EFFECTS FOR THEIR
IMPLEMENTATION TO DESIGN SPECTRUM

Moghimi, Saed
Ph.D., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Yalin Arici

SEPTEMBER 2017, 213 pages

Near-Fault Forward-Directivity (NFFD) ground motions are highly polarized and
they have the potential to impose larger seismic demands on the structures. This is
due to the presence of impulsive signals in the beginning of their velocity waveforms,
which amplifies the response spectrum in periods close to pulse period.

Different directivity models proposed recently can be used together with Ground
Motion Prediction Equations (GMPES) to estimate the response spectrum exposed to
pulse-type ground motions. This study utilizes two directivity models to investigate
the effect of different seismological and geometrical parameters on the amplification
level that the directivity effect imposes on the response spectrum. It is shown that in
Shahi and Baker (2011) (the first directivity model utilized in this study) slip rate,
fault characteristic magnitude, hazard level and source-site geometric parameters
play important role, on the response spectrum amplification. In Chiou and Spudich
(2013) (the second directivity model), the characteristic magnitude and source-site
geometry are the determining parameters. The observations from the case studies are
used to set some simple rules for reflecting the forward-directivity effects on design

spectra at the 475-year and 2475-year return periods.

The concept of ground motion polarization (directionality) is also utilized in the

determination of maximum rotated component (RotD100) for NFFD ground motions.
v



For this purpose RotD100 is calculated for the near fault ground motions with and
without forward-directivity effect and a conversion factor is proposed by taking the
ratios of spectral demands of RotD100 horizontal component between pulselike and

non-pulse recordings.

Keywords: Forward-directivity, Directionality, Ground motion prediction models,
Probabilistic seismic hazard assessment, Pulse-type ground motion, Seismic design

code
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Oz

YAKIN FAY YONELIM ETKIiLERININ TASARIM SPEKTRUMLARINA
UYGULANMALARI iCIN IRDELENMELERI

Moghimi, Saed
Doktora, insaat Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Yalin Arici

Eylil 2017, 213 sayfa

Faya Yakin leri Direktivite (FYID) zemin hareketleri oldukg¢a polarize olup yapilar
uzerinde yuksek sismik talepler olusturma potansiyeline sahiptir. Bu olay, hiz
dalgasinin bagsinda yer alan atim-tipi sinyallerin titresim periyotlaria yakin
periyotlarda tepki spektrumunu arttirmasindan dolayidir.

Atim-tipi zemin hareketlerine maruz kalan tepki spektrumunun tahmini i¢in, Zemin
Hareketleri Tahmin Denklemleri (ZHTD) ile birlikte kullanilabilecek farkli
direktivite modelleri son zamanlarda onerilmistir. Bu ¢alismada iki direktivite modeli
kullanilarak farkli sismolojik ve geometrik parametrelerin, direktivite etkisinden
dolay1 tepki spektrumu iizerinde olusturduklari amplifikasyon seviyesi incelenmistir.
Bu ¢alismada kullanilan birinci direktivite modeli olan Shahi ve Baker (2011) ‘de
gosterildigi lizere kayma orani, fayin karakteristik biiyiikliigii, tehlike seviyesi ve
kaynak-saha geometrik parametreleri, tepki spektrumunu arttirmada 6nemli roller
oynamaktadir. ikinci model olarak kullanilan Chiou ve Spudich (2013) de ise,
karakteristik blyuklik ve kaynak-saha geometrisi belirleyici parametrelerdir. Ornek
caligmalardan yapilan gozlemler, 475 yil ve 2475 yillik doniisiim periyotlar1 tasarim
spektrumlart iizerindeki ileri direktivite etkisini yansitmak {izere bazi basit kurallar

olusturmak i¢in kullanilmistir.
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Zemin hareketi kutuplasmas: (yonliiliik) konsepti ayn1 zamanda FYID zemin
hareketleri i¢cin maksimum doniik bilesen (RotD100) belirlenmesinde de
kullanilmistir. Bu amagcla, direktivite etkisi 6zelligini tasiyan ve tagimayan faya yakin
yer hareketleri i¢in RotD100 bileseni hesaplanmustir. Ardindan puls-tipi ve puls-tipi
olmayan kayitlar arasindaki RotD 100 spektral taleplerinin oran1 alinarak bir doniistim

faktor Onerilmistir.

Anahtar Kelimeler: Ileri direktivite, Yonliilik, Yer hareketi tahmin modelleri,

Olasilik sismik tehlike analizi, Atim-tipi yer hareketi, Deprem tasarim yonetmelikleri
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The near-fault ground motions have been the subject of studies in both seismology
and earthquake engineering fields in the last two decades. The developments in strong
ground-motion instrumentation as well as strong-ground motion databases led to rich
and high-quality near-fault ground motions that provided valuable opportunities to
study the different aspects of near-fault ground motions. In particular, with the
increased number of near-fault records, the ground-motion prediction equations
(GMPEs) have started to update their models to reflect the eminent features of near-
fault recordings on the estimated spectral ordinates.

Estimation of seismic demands on structures is a challenging step in Performance
Based Seismic Engineering (PBSE). The specific features of near-fault ground
motions should be considered properly by seismic design spectrum at different hazard
levels (represented by return periods in the seismic design codes) in order to provide
solid information on the proper performance assessment of buildings against such
ground motions. For example, some near-fault ground motions impose large
amplitude and impulsive waveforms due to directivity effects that result in significant
deformation demands on structures. Hence, defining these effects via simple rules for
their incorporation in seismic design codes is important.

In recent years, the researchers modeled the directivity amplifications on the response
spectrum either by increasing the spectral ordinates monotonically over a range of
periods (e.g., Somerville et al., 1997; Abrahamson, 2000) or by amplifying the
response spectra in a narrow period range close to the period of impulsive waveforms
(pulse period, Tp) (e.g., Tothong et al., 2007; Shahi and Baker, 2011). Both of these

1



approaches cause significant changes on the spectral amplitudes, which should be
studied carefully to devise proper rules for near-fault directivity effects for seismic
design codes. These rules would also be useful for quick assessment of structural
damage against directivity-dominated seismic demand via different approaches in
PBEE (e.g., probabilistic structural damage assessment).

While some seismic codes like the 1997 edition of the Uniform Building Code (UBC,
1997) incorporate the near-fault effects in design spectrum, a robust methodology to
include directivity effects in design spectrum is still unavailable. Depending on the
seismological features of directivity-dominated ground motions as well as source-site
geometry the design spectrum can change considerably. For example, the pulse
period of pulselike ground motions (one of the salient features of directivity
dominated records) change the spectral period band where directivity related spectral
amplification is prominent. Because pulse period to fundamental building period ratio
is important to understand the maximum demand on structures subjected to directivity
dominated ground motions, addressing the pulse-period effect on design spectrum is
important.

Apart from directivity effects, the horizontal component orientation that gives the
maximum spectral demands is important for sites located in the vicinity of active
faults. The maximum horizontal component is simply referred to as directionality in
the literature and its effects are different than the directivity effects. For sites close to
the active faults the inclusion of these two effects would amplify the spectral
ordinates significantly. The currently GMPEs consider the directionality effects on
the response spectrum estimates because this spectral demand is assumed to be more
critical in some codes (e.g., ASCE, 2010; BSSC, 2009; 2015) for design, in particular
for structures having symmetric stiffness in all directions (azimuth-independent
structures). However, the directionality effects are considered as generic cases by
current GMPEs and there are currently no ground-motion predictive models that
explicitly consider the directivity and directionality effects at the same time. To this
end, updating seismic design codes based on incorporation of forward-directivity
effect and ground motion polarization seems to be an urgent need. To this end the
seismic design spectrum in the near future should consider directivity and

directionality effects at the same time.



1.2 Objective and Scope of the Research

The main goal of this study is to determine the seismic load levels for near-fault
directivity-dominant ground motions. For this purpose, two directivity models (Shahi
and Baker, 2011; Chiou and Spudich, 2013) are used in the context of probabilistic
seismic hazard assessment (PSHA) methodology to extract the directivity
amplification factors for response spectrum by considering a suit of earthquake
scenarios. The earthquake scenarios account for seismological parameters and
source-site geometry that can be important in the spectral amplitude variation when
directivity is prominent. In essence, the thesis proposes models to account for
directivity effects on design response spectra at two return periods: 475-year and
2475-year.

The ground-motion polarization (or directionality effect) is the second important
topic investigated by this study to demonstrate the level of amplification in response
spectrum for sites close to the fault when both directivity and directionality are
effective. To this end, pulselike (directivity dominant) ground motions are utilized
and their spectra for maximum direction are compared (ratios are computed) with

those of near-fault records where directivity is insignificant.

1.3 Outline of the Thesis

The overall structure of the study takes the form of six chapters, including this
introductory chapter. In Chapter two the most important characteristics of near-fault
directivity-dominated ground motions are introduced. Theoretical backgrounds,
fundamental concepts of the renown directivity models are presented. The functional
forms of proposed directivity models are also introduced in this chapter. The concept
of ground-motion polarization “known as directionality” is discussed briefly. (This
topic is further studied in Chapter four). Finally, the incorporation of near-fault
effects in seismic design codes are discussed in the last part of this chapter.

In the third chapter the fundamental features of two directivity models utilized in
this study (SHB11 and CHS13) are presented. The mathematical and conceptual
differences between these models are discussed using probabilistic earthquake
scenarios. The selected seismological and geometrical input parameters utilized in

the PSHA are introduced and the effect of these parameters on the level of
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amplification are discussed. The interrelation between these parameters in the
amplification models are also investigated.

In Chapter four different horizontal component definitions of ground motions
together with related important conversion models are presented. The importance of
ground-motion polarization is discussed for near-fault directivity-dominated ground
motions. Finally, a conversion model is proposed for estimation of the maximum
rotated component for forward-directivity near fault ground motions.

The results and discussions of chapter three are utilized in Chapter five to propose
directivity induced spectral amplification models for use in design spectrum. The
proposed amplification equations consider the source-site geometry in its functional
form. The effects of fault-site configuration for the estimation of directivity-
dominated spectral ordinates are discussed through complicated and simplified
models proposed in this study. Finally, comparisons are done in terms of
amplification models proposed in this chapter and the conversion model proposed in
Chapter four.

Chapter six summarizes the work and highlights the main conclusions. In addition,
recommendations are provided for the future studies. There are three appendices at
the end of this dissertation showing the PSHA and maximum direction codes as well

as the ground-motion database used in chapter four.



CHAPTER 2

METHODOLOGY, LITERATURE SURVEY AND THEORITICAL
PRINCIPLES

2.1 Introduction

One of the significant features of near-fault directivity-dominant ground motions is
the presence of impulsive signals in their waveforms. In principle, when an
earthquake fault ruptures and propagates towards a site at a speed close to the shear-
wave velocity, the generated waves arrive at the site, generating a “distinct” velocity
pulse in the ground-motion time history, which is dominantly observed in the strike-
normal direction. This velocity pulse usually occurs at the beginning of the velocity
waveform of the directivity-dominated record. Such ground motions are known for
their severe damage potential on structures, which is known for several decades. In
contrast, for sites opposite to the direction of rupture propagation, the seismic energy
arrives during a longer time interval, generating lower-frequency motions with
smaller amplitudes. This phenomenon is known as backward directivity. Records of

backward directivity are potentially less damaging.

Directivity affects the amplitude, duration and frequency content of the near-fault
ground motions for medium-to-large magnitude earthquakes due to magnitude-
sensitive velocity pulses. Forward-directivity also causes azimuthal variations in
ground-motion amplitudes between strike-normal and strike-parallel components,
which also change as a function of ruptured fault-site geometry (i.e., spatial variation
around the fault). These azimuth-dependent changes in the amplitude, duration and
frequency content of the directivity-dominated incident seismic waveforms make the
description of this phenomenon for engineering use (its effects on response spectrum

or structural behavior) quite complicated.
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Figure 2.1 Strike normal forward-directivity and backward-
directivity ground velocities from the 1992 Landers earthquake
(Somerville et al. 1997)

Housner and Trifunac (1967) were the first researchers who observed ground motions
with long-period, strong velocity and displacement pulses in the 1966 Parkfield
earthquake. The second earthquake with impulsive signals in some of the fault-
normal components is the 1971 San Fernando earthquake (Boore and Zoback 1974;
Niazy 1975). Since then, several near-fault pulselike ground motions carrying
directivity features are recorded (e.g., 1992 Landers earthquake, 1994 Northridge
earthquake, 1995 Kobe earthquake, 1999 Kocaeli earthquake; 1999 Duzce
earthquake, 1999 ChiChi earthquake, etc.). However, pulse-type records with

forward-directivity effect are not observed in all near-fault ground motions.
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Figure 2.2 Illustration of orientations of motion from fling step and
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2002)

Figure 2.1 shows the velocity time histories of the 1992 Landers earthquake for two
sites, which experienced both forward- and backward-directivity. Studies show that
impulsive ground motions having long-period pulses impose severe inelastic
demands on medium-to-high rise buildings due to their large amplitudes (Hall et al.
1995; Alavi and Krawinkler 2004). Strike-normal components of ground motions
with forward-directivity effects usually impose larger demands than the other
horizontal components on buildings hence the structures are more vulnerable for
structural damage against this component. Bertero et al. (1978) studied the destructive
effect of pulse-type ground motions on medium-to-high rise buildings but the
observed structural damage in the 1994 Northridge earthquake also revealed the
vulnerability of high-rise buildings against pulse-type ground motions (Gupta and
Krawinkler 1999). The earthquakes following the Northridge earthquake with
directivity dominated recordings (1995 Kobe, 1999 Kocaeli and 2009 L’Aquila
earthquakes) reconfirmed the destructive potential of near-fault ground motions as
well as their socio-economic impact (Alavi and Krawinkler 2001; Chioccarelli and
lervolino 2010).



The other important characteristic of near-fault records is known as “fling-step”.
Unlike the pulselike effect, which is a dynamic action of the fault movement during
the earthquake, fling step is the static feature of the fault movement. In the near-fault
directivity-dominated records the fling-step effect (or residual displacement) is
observed in the displacement waveforms.

Figure 2.2 illustrates and compares the most important features of pulselike and fling-
step waveforms for near-fault directivity-dominated ground motions. As it can be
seen from this figure the residual displacements (fling-step) are observed in the strike-
parallel direction in strike-slip faults as in the case of the 1999 Kocaeli and Duzce
earthquakes (Kalkan et al. 2004; Akkar and Gilkan, 2001). On the other hand, the
residual displacement is observed in the strike-normal direction for dip-slips faults as
in the case of the 1999 Chi-Chi (reverse) earthquake (Mavroeidis and Papageorgiou
2003). As fling-step occurs in the fault slip direction (unlike the pulselike signal)
some researchers (Kalkan and Kunnath 2006) assumed that it is independent of
forward-directivity.

Conventional GMPEs (ground-motion prediction equations) do not consider the
effect of directivity in the estimation of response spectrum ordinates for near-fault
ground motions. Therefore they may under-predict the seismic demand for the sites,
which experience forward-directivity and over-predict it for sites with backward
directivity effects. Individual forward-directivity models were developed for their use
together with conventional GMPEs to estimate the response spectrum exposed to
pulse-type ground motions (e.g., Somerville et al. 1997, later modified by
Abrahamson 2000; Tothong et al. 2007; Shahi and Baker 2011). However, since the
databases used to develop most of the conventional GMPEs include pulselike
directivity-dominated ground motions the blind usage of such directivity models may
double count the directivity effects in the estimated spectral ordinates. In fact, the
directivity models developed under NGA-WEST1 (Power et al. 2008) could not be
used practically for this reason. The conventional GMPEs developed in this project
could not provide reference ground-motion estimates near the faults so that a specific
directivity model (developed from the same project) could not correct the reference
estimations for forward directivity. In order to prevail this problem, NGA-WEST2
(Bozorgnia et al. 2014) directivity group (Spudich et al. 2013) developed directivity
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functions for reference estimations of conventional GMPEs or they proposed

directivity models that can be embedded into the original predictive model.
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Figure 2.3 Response spectrum of pulse-type records with a) 0.6<Tp<1.5 (mean
Tp=1.0s) and b) 1.5<T,<2.5 (mean Tp=1.9s). The plots also show the response
spectrum computed from conventional Abrahamson and Silva (1997) GMPE and
the braod-band model by Somerville et al. (1997) (Tothong et al. 2007)

The directivity models proposed up to now can be classified in two groups that are
known as broad-band and narrow-band models. Broad-band models amplify the
response spectrum uniformly in medium-to-long period range while the narrow-band
models amplify the response spectrum in a narrow range of periods close in the
vicinity of pulse period (Tp). The narrow-band effect of pulse-type records are given
in Figure 2.3 (Tothong et al., 2007) that shows the median response spectra of fault
normal pulse-type ground motions for two different Ty bins. The mean pulse period
of first group is T, = 1.0s and the mean pulse period of second type group is equal to
T, = 1.9s. The response spectrum estimated from conventional Abrahamson and
Silva (1997) GMPE as well as the broad-band model of Somerville et al. (1997) are
also plotted in Figure 2.3. The pulse-type spectrum (representative of narrow-band
model) shows a peak amplification close to the pulse period. The pick amplification
flattens down and approaches to the conventional GMPE as the periods shift away
from Tp. The broad-band model of Somerville et al. (1997) estimates larger response
spectrum values with respect to conventional Abrahamson and Silva (1997) GMPE
starting from T = 0.6s. The broad-band spectral amplification monotonically
continues towards longer periods. The amplifications imposed by the broad-band

model are smaller with respect to those of spectra representing narrow-band model.
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As depicted in Figure 2.3 the narrow-band nature of pulse-type records results in
peaked response spectrum shapes close to Tp. The pulse period is a function of
earthquake magnitude (Mavroeidis and Papageorgiou 2003; Somerville 2003; Baker
2007): larger the magnitude of an earthquake, the greater is the pulse period. Thus,
the earthquakes with impulsive signals and smaller magnitudes will have shorter
pulse periods, which results in amplified spectral ordinates from small-to-medium
period range. On the other hand, large magnitude earthquakes possesses larger pulse
periods and the response spectrum peaks at a larger period range.

Figure 2.4 illustrates the velocity time histories and corresponding response spectra
of fault normal, fault parallel and vertical component of pulselike ground motions
having magnitudes in two intervals: 6.7<Mw<7.0 and 7.2<Mu<7.6 (Somerville 2003).
Besides this figure shows the design spectrum of the 1994 edition of Uniform
Building Code (UBC 1994) as reference. The fault normal components (shown as
solid lines) of 6.7<Mw<7.0 records show peak spectral values in the period range
between 0.5s < T < 2.5s that are considerably larger than those proposed by UBC
(abbreviated as UBC 94). The fault normal response spectra of 6.7<Mw<7.0 records
are also greater than the response spectrum of 7.2<Mw<7.6 records in the intermediate
period range. The larger magnitude records (7.2<Mw<7.6) exhibit a clear bump in the
period interval close to T = 4s in their fault normal components, which are (in some
cases) larger than the UBC 94 response spectrum. The fault parallel components of
these records (shown by long dashed lines) are also illustrated in this figure. This
component exhibits smaller response spectrum amplitudes with respect to their fault
normal counterparts for both moderate and large magnitudes.

Baker (2007) proposed a quantitative model for identification of pulselike waveform
in a ground-motion time history using wavelet analysis. He uses the pulse indicator
parameter in order to classify the ground motion as pulse-type or non-pulse-type in
which the ground motions having pulse indicators greater than 0.85 are considered to
contain dominant pulse signals. Baker (2007) applies two additional criteria for
identifying the pulselike ground motions, which are most likely caused by directivity
effects. These additional criteria are (1) the pulse waveforms should arrive early in
the time history and (2) the corresponding peak ground velocity (PGV) should be
greater than 30cm/s.

10



(£00Z 9|1M1BWOS) 92UBIBYBI SB UMOYS WNARads 6 DN 3yl Yim Jaylaboy eijoads asuodsal

uoI1eJI3|399k Bulpuodsali0d pue saxenbylies apniiubew abie| pue ayelspow JO Sa1I0ISIY aul} A1190|3A Jewou 1jne g ainbi4

(s) pouad (s) pouad Spuooag Spuooasg
S % € z L 0 g v € 2 1 0 st oL S 0 Si oL S )
[ : , . : T - ooe-
w <
o 1 ©
% g
¥661 O8N 2 g =
[BOIJOA oo E =)
jellesed yneq - — - Q >
[eusoN Hned - oz = =z
4 7o) unjoes | -uemie | Ipleuly-abpuyuo
unjoes | -uemie | Ipreury-abpuyuoN i = - - ooe
o] T T T r T T 00c-
(%) <
] 1 @
B g
= 0 =
z s
8 | 3
i z 2 ©
o) eowieA-Aayin | YN @qoM-2q0)
eowle A-Aayn | VNI @90M-290) = - - 0oe
o] r T T r T T 0o0c-
(%) <
° o
% g
o 0 =3
z s
8 1 3
z 2 <
o auJaonT-siapue DdDH1-eldld 'wo
sulsonT-siepue] OdD-e18ld ewon = ooe
9°/L-2¢° L MN 0°L-L'9 MIN 9'L-2L MN 0°L-L'9 MIN
FHNLdNY I0V4HNS DUV FHNLdNY d3idng Aﬁ—.v FHNLdNY 30V4dHNS 3DVl JdNLldNd a3idnNg A@v

11



Determination of pulse period is another important parameter in pulselike ground
motions. Several methods are proposed for the determination of pulse period. The
pulse period is the period related to the peak of velocity response spectrum of pulse-
type ground motion in one of these methods. Baker (2007) used the wavelet analysis
method for the measurement of pulse period. He defined the period of maximum
Fourier amplitude of wavelet as the pulse period. He also showed that the pulse period
determined from these two approaches (Fourier spectrum vs. velocity response
spectrum) are close to each other in most cases. The pulse period obtained from the
Fourier amplitude of wavelet is slightly larger than the pulse period from the spectral
velocity method.

The excessive structural damage induced by near-fault ground motions made a
number of codes revise their provisions to reduce the risk against similar future
excitations (e.g., UBC, 1997). For example, the 1997 version of UBC (UBC 97)
considers the effects of near-fault ground motions in terms of elastic acceleration
response spectrum. However, the information about the displacement demand on
structures exposed to directivity-dominant ground motions is not still firmly available
(Alavi and Krawinkler 2001; Alavi and Krawinkler 2004; Gupta and Krawinkler
1999). Depending on the pulse period occurring due to directivity, characteristics of
design spectrum can change considerably and UBC 97 was criticized to fail capturing
the critical changes (Akkar and Gulkan 2001).

This chapter summarizes the background theory for important and recently proposed
directivity models. Inaddition, the consideration of near-fault effects in some seismic
design codes are discussed. The concept of directionality is introduced briefly here
because it is discussed together with directivity in detail in Chapter 4.

2.2 Directivity Models

Since directivity effect is identified as one of the most important features of near-fault
ground motions, several research groups proposed models in order to incorporate the
directivity effect in GMPEs. These models were developed from databases containing
ground-motion recordings of active crustal region (ACR) earthquakes. In general, the
models follow a similar approach to improve the spectral acceleration estimations due

to directivity: the model developers use an existing GMPE as base ground-motion
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predictor and modify the median estimations and log standard deviations of GMPESs
through additional functions for directivity effects. The directivity functions need
some detailed information about finite fault rupture, hypocenter location and slip
direction. They generally consider fault rupture location and source-site geometry.
As indicated previously, directivity models are categorized in two major groups:
broad-band and narrow-band models. The response spectrum is increased
monotonically in broad-band models for medium-to-long period range when
directivity is of concern. However, as discussed in the above paragraphs, the recent
studies showed that the response spectrum ordinates of pulselike (directivity-
dominated) ground motions are amplified in a narrow period range, which is close to
pulse period (Alavi and Krawinkler 2001; Mavroeidis and Papageorgiou 2003;
Somerville 2003; Tothong et al. 2007; Tothog and Cornell 2007). Thus, the more
recent directivity models focus on this specific feature of directivity dominant ground
motions to reflect it on the spectral acceleration estimates.

The next subsection covers the important directivity models. Somerville et. al (1997)
directivity model, which is modified by Abrahamson (2000) is considered first
because it is the most well-known and earliest directivity model in the literature.
NGA-WEST?2 (Bozorgniaet al., 2014) directivity models (Spudich et al. 2013) follow
this review because they are the most recent and comprehensive directivity models.
Note that the NGA-WEST1 (Power et al., 2008) directivity models (Spudich and
Chiou 2008; Rowshandel 2010) are excluded in the review because they are updated
by the successor NGAWEST?2 directivity models.

In the NGA-WEST?2 project, the directivity models were included in GMPEs ab initio
with the coefficients determined simultaneously with all other estimator coefficients
of GMPE. The directivity predictors were centered on their average value. In addition,
the NGA-WEST2 directivity models use distance metrics (rupture distance; Rrp and
Joyner-Boore distances Rjb) instead of normalized distance parameters, like the
parameters used in Somerville et al. (1997). Rowshandel, Shahi and Baker, Spudich
and Chiou and Chiou and Spudich directivity models of NGAWEST?2 are explicitly
“narrow-band” while the Bayless and Somerville model is classified as “broad-band”.
The closest point concept (point on the fault plane closest to the site of interest) is
used in all NGA-WEST?2 directivity models except Shahi and Baker. However, the
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main disadvantage of the closest point concept is that it results in large shifts in the
location of closest point for small shifts in the site location. This is referred to as
“discontinuity” by the model developers. The model proposed by Chiou and Spudich
also uses a linear integration for the definition of “so-called” DPP parameter, which
results in smoother maps of directivity compared to the IDP parameter of the Spudich
and Chiou model. (These parameters are discussed in detail in the next section). It
should be noted that the Shahi and Baker (2011) and Chiou and Spudich (2013)
models, which have been used as the directivity predictor models in this study will be

discussed in more detail in the next chapters.

2.2.1 Somerville et. al (1997) and Abrahamson (2000) Directivity Models

The model proposed by Somerville et al. (1997) is known as the first directivity model
established under a physical model. This model uses two geometric parameters to
incorporate directivity effects on the ground-motion equations. First, the angle
between the direction of rupture propagation and the direction of waves traveling
from the fault to the site, and second, the fraction of the fault rupture surface that lies
between the hypocenter and the site (Figure 2.5). Somerville et al. (1997) modify the
average horizontal acceleration response spectrum and the duration of acceleration
time history to incorporate the directivity effect in ground motions. The model also
proposes a spectral ratio of strike-normal to strike-parallel components for ground
motions with directivity effect. Equation 2.1 shows the functional form of the
directivity model for the average horizontal component used in Somerville et al.
(1997) model.

In(y) = C,(T) + C,(T).X.cos(0) for strike slip faults 2.1a
In(y) = C,(T) + C,(T).Y.cos(p) for dip slip faults 2.1b

This model was modified by Abrahamson (2000) in order to incorporate the effect
magnitude and distance saturation in directivity model. Abrahamson (2000) has used

Equation 2.2 as the functional form of base directivity model.

In(y) = C;(T) + 1.88C,(T) - X - cos(0) for cos(f) < 0.4 223
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In(y) = C;(T) + 1.88C,(T) - 0.4 for cos(6) > 0.4 2.2

Strike Slip Dip Slip

site site
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Figure 2.5 Geometric parameters used in Somerville (1997)

directivity model.

Abrahamson (2000) used a cap of 0.4 for Xcos(0) for the model because his
evaluations of empirical data did not show any evidence that Xcos(0) exceeds 0.4 for
directivity-dominated ground motions. Abrahamson (2000) also used the distance and
magnitude taper functions to reduce the directivity effect to zero for distances greater
than 60km and magnitudes smaller than 6. The distance and magnitude taper
functions are shown in Equations 2.3 and 2.4. The C1(T) and C»(T) coefficients used
in this model are listed in Table 2.1. Ry and M denote to rupture distance and
moment magnitude respectively in Equations 2.3 and 2.4. Abrahamson (2000)
showed that the implementation of this directivity model in GMPEs reduces the

logarithmic standard deviation up to 0.05 at T=3sec.
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Ta(Rrup) =1

Ty (Rrup) = 30

Ta(Rrup) =1

T, (M) =1

1-(m—6.5)

Tn(M) = 05

T,,(M) = 0

1-(r—30)

for Rrup<30km
for 30km<Rrp<60km

for Rrup>60km

for M>6.5
for 6<M<6.5

for M<6.5

2.3

2.4

Table 2.1 Coefficients used in the modified Somerville et al. (1997) directivity
model by Abrahamson (2000) for average horizontal spectral component

Period (sec) C1 C2
0.6 0 0

0.75 -0.084 0.185

1 -0.192 0.423

1.5 -0.344 0.759

2 -0.452 0.998

3 -0.605 1.333

4 -0.713 1,571

5 -0.797 1.757

2.2.2 Bayless and Somerville (2013) Directivity Model (NGA-WEST?2)

This model (explained in detail in Chapter 2 of Spudich et al., 2013) is basically an

updated form of Somerville et al. (1997) directivity model. The functional form of
the model for predicting the median spectral acceleration for directivity effect is

shown in Equation 2.5:

where fp is the directivity parameter. The directivity parameter is a function of
geometric directivity predictor, the distance, magnitude, and azimuth tapers, which

are shown in Equation 2.6.

In(Sag;y) = In(Sa) + fp
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fo = (Co + Cl-fgeom) “Tep " Tuw * Taz 2.6

where Co and Ci; are period, fault type and horizontal component dependent
coefficients. Geometric directivity predictor (fgeom) for strike-slip and dip-slip faults

is shown in Equation 2.7.

fgeom =In(s) - (0.5 X cos(26) + 0.5) for strike slip faults 2 7a

fyeom = In(d) - cos (RX/W) for dip slip faults 2.7p
where:
s is the length of striking fault rupturing towards site,

0 is the angle between the direction of rupture propagation and the direction of waves

traveling from fault to site,

d is the length of dipping fault rupturing toward site,

Rx is the horizontal distance from top edge of the rupture,
W is the fault width (km),

Tcp is distance taper function,

Twmw IS magnitude taper function, and

Taz is azimuth taper function.

The distance taper functions reduce the directivity effect from maximum to zero for
0.5<Ryyp/L<1.0 and 1.5<Ryy,p/W<2.0 for strike-slip and dip-slip faulting mechanisms,
respectively. The magnitude taper function also reduces the directivity effect from
maximum to zero for 6.5>My>5.0 for both strike-slip and dip-slip faulting
mechanisms. Azimuth taper function is only applied to dip-slip faulting mechanisms

and it is in Equation 2.8.
T,,(Az) =1 for strike slip faults 283
T,,(Az) = sin(|Az?|) for dip slip faults 28p
where Az is the NGA source to site azimuth.
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2.2.3 Rowshandel (2013) Directivity Model (NGA-WEST?2)

This model (explained in detail in Chapter 3 of Spudich et al., 2013) keeps the
directivity parameter & developed in the previous directivity models of Rowshandel
(2006) and Rowshandel (2010). Some modifications were applied to the previous
predecessor models so that directivity parameter &’ can be computed based on the
direction of rupture or the direction of slip, or the combination. Also the centered
value of directivity parameter (§) is used in this model instead of &’ as can be seen in

Equation 2.9.
§=@" -¢)LD-DT-WP 2.9
where
&’ is the traditional wide-band directivity parameter before applying any corrections,
LD is the rupture length de-normalization factor,
&’ is the directivity-centering parameter,
DT is the distance-taper, and
WP is the narrow-band multiplier.

Roshandel (2013) defines the “rupture unit vector” (p) (along the vector connecting
hypocenter and sub-fault i), “rupture-to-site unit vector” (q) (along the vector
connecting the sub-fault i and site) and “unit slip vector” (s) (unit vector along the
slip direction) geometric parameters in order to calculate the slip-based (¢¢) and
rupture-based (&) directivity parameters. The slip-based directivity parameter (S) is
the scalar product of “unit slip vector” (s) and “rupture-to-site unit vector” (q) while
the rupture-based directivity parameter () is the scalar product of “rupture unit
vector” (p) and “rupture-to-site unit vector” (q). The directivity parameter (£’) is taken

as the weighted average of these two parameters as shown in Equation 2.10.
f=a-é+(1-a)-§ 2.10

where a and (1-a) are the relative weights contributing to the slip-based (¢;) and
rupture-based (&) directivity parameters. Rupture length de-normalization factor is

used in this model to ensure that the same directivity effect is obtained for the same
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length of rupture. Rowshandel (2013) proposes a distance taper function for his
model, which is dependent on the period of ground motion. A narrow-band multiplier
is used in this model, which amplifies the directivity effect in the vicinity of pulse

period with a normal distribution centered at Tp.

2.2.4 Shahi and Baker (2013) Directivity Model (NGA-WEST?2)

Shahi and Baker (2013) as a follow up of their research published in 2011 (i.e., Shahi
and Baker, 2011), propose another narrow-band directivity model (Chapter 4 in
Spudich et al., 2013) by refitting the Campbell and Bozorgnia (2008) functional form
for with and without directivity effects. The model is represented in Equations 2.11
and 2.12.

InSa;; =f (Mi'Rj'T: Vs3oj;9) + Lairectiviey - MAmp(T, Ty) + i + &5 2.11

T 2 212
InAmp(T,T,) = boexp(by (ln <T_> - b2> )
p

The f(M;,R;,T,Vs30j,0) is the base ground-motion model (functional form is inherited
from CBO08) fitted to NGA-West2 database for predicting the intensity of records
without any pulse effect (designated as CBR by Shahi and Baker, 2013). The indices
i and j refer to i earthquake and j™" station in Equation 2.11. INnAmp(T,T,) computes
the amplification of InSa at periods close to Ty due to presence of directivity pulse.
Shahi (2013) computed bo, b1 and b, by fitting CBO08 functional form with this
directivity model to NGA-West2 data (designated as CBSB by the proponents).
lairectivity takes a value of unity upon the existence of pulselike waveforms. Otherwise,
its value is zero. Tp and lairectivity are treated as random variables in SHB13 for use
within a probabilistic framework.

2.2.5 Spudich and Chiou (2013) Directivity Model (NGA-WEST?2)

This model (explained in detail in Chapter 5 of Spudich et al., 2013) is an updated
form of Spudich and Chiou (2008) which uses “Isochrone Theory” in order to
characterize the directivity effect in GMPEs. The functional form of the directivity

parameter is given in Equation 2.13.
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fo(x) = £r(R, Ry, Ry).b(M,T). (IDP(x) — IDP(R)) 2.13

where IDP is the isochrone directivity parameter and b(M,T) and (M, T) are given in

Equations 2.14 and 2.15 respectively.
b(M,T) = c; + c3. max(M — ¢4,0) .exp(q(M, T)) 2.14

[log10(T) — (¢4 + cs. M)]Z

M,T) = —
q(M,T) 297

2.15

C1, Co, C3, C4, Cs and g are period-independent coefficients. f; is the distance taper
function which reduces the directivity effect from maximum to zero for
40<Ryp<70km and x is the site location of interest. The model is narrow-band and
the period that maximum amplification occurs is a function of earthquake magnitude.
The centered value of Isochrone Directivity Parameter (IDP) is used in the model in

which IDP(R) is the average value of the IDP over the footprint of constant R.

2.3 Consideration of Near-Fault Effects in Earthquake Design Codes

The discussions in the previous sections indicate that the seismic design spectrum
needs to be updated to reflect the directivity effects. One important point that should
be noted here is that the higher intensity of near-fault ground motions and
consequently larger response spectrum amplitudes due to the close distance to the
ruptured fault is different from the spectral amplifications that are imposed by
directivity effects. Therefore, the effect of near-fault ground motions and forward-
directivity effects should not be treated in the same way in design spectrum. In this
section, a brief review about the approaches that are utilized to address the directivity
effects on seismic design codes will be discussed.

UBC 97 is the first earthquake code that applies the distance and seismic activity
dependent near-fault factors on the design response spectrum. The near-fault related
provisions in UBC 97, in a way, aimed to minimize the near-fault originated damage
risk experienced after the 1994 Northridge earthquake.

Design response spectrum of UBC 97 is represented by the seismic coefficients Ca
and Cy together with spectral periods To and Ts. The code has four seismic zones that

are represented by seismic zone factor Z. In addition, the code has defined three
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seismic source types addressing high, medium and low seismicity. Seismic source

types and their definitions are illustrated in Table 2.2.

Table 2.2 Seismic source type (from Table 16-U of UBC-97)

Seismic Source

Seismic Definition
Source Seismic Source Description ) Slip Rate,
- Maximum SR
ype
Mw
(mm/year)

Faults that are capable of producing

A large magnitude events and that M>7.0 SR>5
have a high rate of seismic activity

M>7.0 SR<5

B All faults other than Types A and C M<7.0 SR>2

M>6.5 SR<2

Faults that are not capable of producing
large magnitude earthquakes

C ) M>7.0 SR=2
and that have a relatively low rate of

seismic activity

Near-fault effects are represented by the near source factors Na and Nv. Na represents
the near-source effects for short period range (or acceleration controlled spectral
region) and Ny represents the near-source effects for medium-to-long period range
(or velocity controlled spectral region) of response spectrum. These factors are
defined in terms of closest distance to the seismic sources as well as the seismic
source type (depending on maximum moment magnitude, My and slip rate in
mm/year). The factors are applied on the seismic coefficients C, and Cy for the sites
located in high seismicity regions (seismic zone 4). Near source coefficients, N. and
Ny are shown in Table 2.3 and Table 2.4. Figure 2.6 shows the design spectrum of
UBC 97 calculated for seismic zone 4, soil type Sp and seismic source type A for
closest distances 2, 5, 10 and 15km. The UBC97 equations that are used to calculated
the response spectrum are also shown in Figure 2.6.
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Table 2.3 Near source factor Na (from Table 16-S from UBC-97)

Closest distance to known seismic source
Seismic <2km 5km 10km
source type
A 15 1.2 1.0
B 1.3 1.0 1.0
C 1.0 1.0 1.0

Table 2.4 Near source factor Ny (from Table 16-T from UBC-97)

Closest distance to known seismic source
Seismic <2km 5km 10km >15km
source type

A 2.0 1.6 1.2 1.0
B 1.6 1.2 1.0 1.0
C 1.0 1.0 1.0 1.0

1.8

25C,
1.6 —— Rrup=2km
o— Rrup=5km
T.=C.12.5Cs =
To=0.2Ts P
1.2
Seismic Zone: Z=4

5 0 Soil Type S,
» 55 CJT Seismic Source A

Ca

0.6 -

0.4 -

0.2 -

0.0 : . . ; —]

To Ts 2 4 6 8 10

Period (sec)

Figure 2.6 UBC 97 design spectrum calculated for seismic zone 4, soil

type Sp and seismic source type A for closest distances 2, 5, 10 and

15km.
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Chai et al. (2000) followed the same approach in UBC 97 to incorporate the near-
fault effects in Taiwanese seismic design code. They used the data recorded from the
Chi-Chi earthquake in CWB stations with source-to-site distances less than 15km
from the Chelungpu Fault in order to update the near-fault factors proposed in UBC
97 for Taiwanese seismic design code. These coefficients are updated for rock site
conditions (Type 1 soil profile) and the seismic zone A with zone factor Z=0.33
according to Taiwanese seismic design code. The updated near-source factor Na and
Nv for Taiwanese seismic design code at rock sites near the Chelungpu Fault are given
in Table 2.5 and Table 2.6.

Table 2.5 Near-Fault factor Na for the sites near the Chelungpu Fault in Taiwanese
seismic design code (Chai et al. 2000)

Distance <2km 4km >6km
Na 1.34 1.16 1.0

Table 2.6 Near-Fault factor Nv for the sites near the Chelungpu Fault in Taiwanese
seismic design code (Chai et al. 2000)

Distance <2km 6km >10km
Nv 1.7 1.3 1.0

Table 2.7 Proposed near-fault factors for Chinese Seismic Design Code in stiff soil
site (Li et al. 2007)

Intensity Distance
i Na Nv
(Mercalli) (km)
2 1.0 1.7
VII
15 1.0 1.0
2 1.8 1.9
VI 8 - 1.0
15 1.2 1.0
2 1.2 1.8
6 1.2 -
IX
9 - 1.6
15 1.0 1.5
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Lietal. (2007) used the data from 137 earthquakes from United States, Turkey, Japan,
Taiwan and China that are recorded at distances less than 15km from the ruptured
fault to update a ground-motion attenuation relationship. Subsequently they used this
equation to calculate the near-fault factors for Chinese seismic design code. They also
use the same concept of UBC 97 for the consideration of near-fault effects. The
proposed coefficients for Chinese seismic design code at spectral periods of T=0.3s
(short period) and T=1.0s (long period) are given in Table 2.7. These coefficients are
given for stiff soil condition type.

Yaghmaei-Sabegh and Mohammad-Alizadeh (2012) used 143 near-fault records
from 26 earthquakes from different parts of the world including United States, Iran,
Japan, Turkey and Taiwan in order to update their ground-motion attenuation
relationship for near-fault earthquakes. The near-fault factors in short and long
periods (Na and Ny) are proposed for the highest seismicity zone in Iran (with an
effective peak ground acceleration of 0.35g) and spectral periods T=0.3 and 1.0sec
respectively. These factors are given in Tables 2.9 and 2.10 for different soil types

and magnitude ranges.

Table 2.8 Near-fault factors for Iranian seismic design code, Mw<6.5 (Yaghmaei-
Sabegh and Mohammad-Alizadeh 2012)

Distance (km) R<2 R=6
Soil Type/ Mw 6.0 6.2 6.4 6.0 6.2 6.4
I 1.0 1.0 1.0 1.0 1.0 1.0
Na I 1.0 1.0 1.0 1.0 1.0 1.0
g 1.0 1.0 1.05 1.0 1.0 1.0
IV 1.0 1.0 1.0 1.0 1.0 1.0
| 1.0 1.0 11 1.0 1.0 1.0
Ny 1 1.0 1.0 1.05 1.0 1.0 1.0
i 1.0 1.05 11 1.0 1.0 1.0
IV 1.0 11 11 1.0 1.0 1.0
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Table 2.9 Near-fault factors for Iranian seismic design code, 6.5< My<7.0
(Yaghmaei-Sabegh and Mohammad-Alizadeh 2012)

Distance
R<2 R=6 R=12

(km)

Soil Type/
66 | 68 | 70 | 66 | 68 | 70 | 66 | 6.8 | 7.0

Muw
I 10 | 10| 11 | 10 | 10 | 20 | 10 | 1.0 | 1.0
Na I 10 | 11 | 115 10 | 10 | 20 | 1.0 | 1.0 | 1.0

i | 10 | 31 | 11 | 10 | 10 | 120 | 1.0 | 1.0 | 1.0

IV |10 | 11 | 11 |10 | 10| 120 | 1.0 | 1.0 | 1.0
| 1.2 14 15 1.0 1.1 1.1 1.0 1.0 1.0

I 1251135 | 15 10 | 115 | 1.2 1.0 1.0 1.0
i 13 | 135|145 | 11 | 115 | 1.2 1.0 1.0 1.0
IV | 135 | 14 1.4 11 1.2 1.2 1.0 1.0 1.0

Nv

Table 2.10 Maximum near fault factor Nmax(T) (New Zealand Standard, NZS 2004)

Period (sec) Nmax(T)
<1.5 1.0
2.0 1.12
3.0 1.36
4.0 1.60
>5.0 1.72

The New Zealand seismic design code (New Zealand Standard, NZS 2004) considers
a uniform amplification of response spectrum for near-fault effects. The amplification
factor, N(T,D) is function of spectral period, hazard level and distance. The
amplification factor is calculated from Equations 2.16 and 2.17. The period dependent
maximum near fault factor, Nmax is given in Table 2.10.

- for annual probability of exceedance>1/250:

N(T,D) =1 2.16
- for annual probability of exceedance<1/250:
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N(T,D) = Ny (T) D<2km 2.17a

20-D
N(T,D) = 1+ (Npax(T) = 1) X — 2km<D<20km 2.17b
N(T,D) = 1.0 D>20km 2.17c
Near-Fault Factor with Respect to Distance Near-Fault Factor with Respect to Period
1.3 1 13
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Figure 2.7 Near-Fault adjustment factor as a function of distance and spectral
period (CALTRANS 2013).

The Caltrans seismic design criteria (CALTRANS, 2013) proposed by California
Department of Transportation offers near-fault adjustment factors as a function of
distance and spectral period. This seismic design code considers a maximum
amplification factor equal to 1.2 for sites located within 15km around the fault. The
amplification factor is applied for spectral ranges larger than 0.5s increasing from 1.0
for spectral period T=0.5s to 1.2 for spectral period T=1.0sec. The amplification
factor given in CALTRANS (2013) is shown in Figure 2.7. The distance measure in
this proposed factor is based on the closest distance to any point on the fault plane.
The most recent building and non-building seismic design codes in the U.S: ASCE
7-10 (ASCE, 2010) and FEMA P-750 (BSSC, 2009) as well as FEMA P-1090 (BSSC,
2015) use maximum direction of spectral acceleration (referred to as directionality —
see following subsection) however they do not include near-fault effects explicitly.
For the sake of completeness it should be noted that current version of Turkish
Seismic Design Code (TEC 2007) does not apply any amplification on design
response spectrum due to near fault effects.

As discussed in this section the near-fault effects are incorporated in seismic design

codes via either a uniform scaling of a fixed spectral shape (UBC 1997; Taiwanese
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seismic design code Chai et al. 2000) or a monotonic increase of amplitudes with
magnitude (New Zealand Standard, NZS 2004). Both approaches are not entirely the
correct way to consider the near-fault effects and they are not able to resolve the
problem consistently, because design procedures should pay attention to the special
distribution characteristics of near-fault ground motions around the seismic source
(Alavi and Krawinkler 2004). In the following chapters, this study will provide some
useful rules to surmount the current inconsistencies about the inclusion of directivity

effects in seismic design codes.

2.4  Directionality (Maximum Direction Component)

In addition to directivity, another parameter of potential interest is ground motion
directionality. When using a GMPE to predict a response spectrum parameter
associated with horizontal shaking, the two-directions of horizontal components must
be considered. The predicted ground motion parameters (e.g., spectral acceleration at
a specified period, peak ground acceleration, or peak ground velocity) can be defined
in a variety of ways with regard to multi-component horizontal shaking. Common
methods that are used to quantify spectral acceleration from two horizontal
components take the geometric mean of the spectral accelerations of the two as-
recorded ground motion components. Different definitions of horizontal components
of ground motions are proposed recently to take the maximum or the median spectral
acceleration observed when looking over all horizontal orientations. Figure 2.8 shows
the response spectrum of Gebze station-1999 Kocaeli earthquake. The response
spectrum is calculated for different orientations of rotated ground motion (0<6<180).
For this purpose two horizontal components of the ground motion time series are
combined into a single component which is 0 degree rotated from H; component. The
response spectrum is then computed for the rotated component and this calculation is
repeated for all orientations (0<6<180). The median value of all rotated response
spectrum amplitudes at a specific spectral period is called as RotD50 and the
maximum value is known as RotD100 component (Boore, 2010). These components
are also shown in this figure together with geometric mean value of two horizontal as

recorded components. This figure shows very clearly the effect of ground motion
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orientation in variation of spectral amplitude. The issue of directionality is discussed

with more detail in Chapter four.

a) Response spectrum
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Figure 2.8 Response spectrum of Gebze station-1999 Kocaeli earthquake

calculated for different rotated orientations of two horizontal components,

together with geometric mean, RotD50 and RotD100 components illustrated

for different spectral periods
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CHAPTER 3

A STUDY ON MAJOR SEISMOLOGICAL AND FAULT-SITE
PARAMETERS AFFECTING NEAR-FAULT DIRECTIVITY GROUND-
MOTION DEMANDS DUE TO STRIKE-SLIP FAULTING FOR THEIR

POSSIBLE INCLUSION IN SEISMIC DESIGN CODES

This chapter is submitted to the journal of Soil Dynamics and Earthquake
Engineering with the title of
A study on major seismological and fault-site parameters affecting near-fault
directivity ground-motion demands due to strike-slip faulting for their possible
inclusion in seismic design codes
Sinan Akkar, Saed Moghimi and Yalin Arici
Soil Dynamics and Earthquake Engineering, Ref: SOILDYN_2017_192

3.1 Introduction

When the horizontally polarized S-wave (SH-wave) radiation pattern aligns with the
direction of rupture propagation and direction to the site, the ground motions are
largest. This phenomenon is the major principle behind forward-directivity according
to Somerville et al. (1997). The forward-directivity is more prominent within the ends
of the strike-slip fault that suggests directivity being more significant when rupture
travels longer distances (Spudich and Chiou 2008). The coincidence of the maximum
SH-wave radiation pattern and the rupture propagation toward the site produces a
large displacement pulse normal to the fault strike. The minimum in the radiation
pattern of vertically polarized S-wave (SV-wave) that is in the direction of seismic
wave propagation produces small dynamic displacements superimposed on a larger
static displacement (fling step) parallel to the fault. Instead of large pulses, the

waveforms are dominated by low-amplitude and long-duration motions when the

29



rupture propagates away from the site. This phenomenon is called as backward
directivity and it is not within the scope of this chapter.

The near-fault forward-directivity (NFFD) ground motions have been recorded in
many earthquakes during the past 50 years [e.g., Port Hueneme earthquake in 1957
(Housner and Hudson 1958); Parkfield earthquake in 1966 (Housner and Trifunac
1967); San Fernando earthquake in 1971 (Boore and Zoback 1974; Niazy 1975);
Landers earthquake in 1992 (Campbell and Bozorgnia 1994); Northridge earthquake
in 1994 (Somerville et al. 1996); Kobe earthquake in 1995 (Fukushima et al. 2000);
Marmara earthquakes in 1999 (Akkar and Gulkan 2001); Chi-Chi earthquake in 1999
(Chen et al. 2001); L’Aquila earthquake in 2009 (Chioccarelli and lervolino 2010);
Christchurch earthquake in 2011 (Bradley and Cubrinovski 2011)]. Their distinct
features in terms of dynamic source characteristics as well as the large-amplitude
impulsive horizontal and vertical waveforms that increase the damage potential on
structures have led to many seismological and engineering studies. Modelling of
high-slip zones and directivity (e.g., Somerville et al. 1999; Mai et al. 2005; Seekins
and Boatwright 2010; Spudich et al. 2004; Schmedes and Archuleta 2008), influence
of fault mechanisms on directivity (e.g., Oglesby et al. 2000) and dynamic rupture
modeling to characterize super shear zones (e.g., Dalguer and Day 2007; Dunham
and Archuleta 2005) are among the topics investigated by the seismological
community to explain the physics behind the directivity-dominant ground motions.
Inherently, the engineering community is interested in the damaging effects of such
ground motions on different structural systems (e.g., Bertero et al. 1978; Anderson
and Naeim 1984; Anderson and Bertero 1987; Heaton et al. 1995; Sasani and Bertero
2000; Anderson et al. 2003; Alavi and Krawinkler 2004; Champion and Liel 2012).
The variations in the elastic and inelastic horizontal spectral quantities under NFFD
ground motions were investigated thoroughly (e.g., Malhotra 1999; Ambraseys and
Douglas 2003; Mavroeidis et al. 2004; Menun and Fu 2002; Akkar et al. 2004; Bray
and Rodriguez-Marek 2004; Tothong and Cornell 2006; Chioccarelli and lervolino
2010; Rupakhety et al. 2011; lervolino et al. 2012; Chiou and Youngs 2014). The
engineering studies on the definition of the response spectrum for NFFD ground
motions consider the pulse period (Tp), the peak ground velocity to peak ground
acceleration (PGV/PGA) and the peak ground displacement to peak ground velocity
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(PGD/PGV) ratios as well as the pseudo-velocity spectrum (PSV) to account for the
dominant impulsive signal effect on the spectral shape. Recently, there is an
increasing effort to incorporate the directivity effects within the probabilistic seismic
hazard and damage assessment procedures using linear and nonlinear structural
response quantities (Tothong and Cornell 2006; Tothong and Cornell 2008; Tothong
et al. 2007; lervolino and Cornell 2008; Shahi and Baker 2011; Shahi 2013;
Chioccarelli and lervolino 2013; Chiou and Youngs 2014; Baltzopoulos et al. 2015;
Baltzopoulos et al. 2016; Almufti et al. 2015).

One of the most important contributions on the modelling of forward-directivity is
developed by Somerville et al. (1997). This model estimates the spectral
amplifications along the strike-normal and strike-parallel components as well as their
geometric average due to rupture directivity to modify the spectral ordinates predicted
by conventional (no-directivity) ground-motion predictive models (GMPMs). The
model estimations are valid for moment magnitudes Mw> 6.5 with a dependence on
normalized rupture to fault length and the angle between the rupture propagation
direction and the site. The spectral amplifications by Somerville et al. (1997) increase
monotonically after T = 0.6s. This type of forward-directivity model is referred to as
the broad-band model in the literature. Later, Abrahamson (2000) proposed some
modifications to the Somerville et al. (1997) directivity model for improving the
limitations in directivity scaling of large magnitude events due to the use of
normalized distance. The response spectrum amplifications due to directivity are
investigated more systematically in the NGA-Westl (Power et al. 2008) and NGA-
West2 (Bozorgnia et al. 2014) projects. The forward-directivity modelers in NGA-
Westl (Spudich and Chiou 2008; Rowshandel 2010) propose corrections to the
median predictions of the NGA-West1 no-directivity GMPMSs. The implementation
of these directivity models to the NGA-Westl GMPMs experienced conceptual
difficulties because the median predictions of the no-directivity NGA-Westl
GMPMs already include the NFFD ground motions in their datasets. Thus, the
identification of reference directivity conditions corresponding to the median
estimations of NGA-Westl GMPMs are unclear while implementing the corrections
of the forward-directivity models. As a surrogate to this shortcoming, the NGA-
West2 forward-directivity modelers (Bayless and Somerville, Rowshandel, Shahi and
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Baker, Spudich and Chiou, and Chiou and Spudich — see Spudich et al. 2013)
developed their models for their direct inclusion to the functional forms of the NGA-
West2 GMPMs. Besides, the NGA-West2 directivity models utilize either the Joyner-
Boore (RJB) or rupture (Rrup) distance in order to provide consistent scaling of
forward-directivity for the entire magnitude range of interest (Spudich et al. 2014).
The NGA-West2 directivity models by Rowshandel, Shahi and Baker, Spudich and
Chiou, and Chiou and Spudich are defined as narrow-band models because the
spectral ordinates are amplified only within a specific period interval that is sensitive
to the magnitude. The Chiou and Spudich directivity model is adopted by the NGA-
West2 Chiou and Youngs (2014) GMPM. The Shahi and Baker model is based on an
older version of the directivity model proposed by the same authors (Shahi and Baker,
2011) that makes use of the Boore and Atkinson (2008) functional form from NGA-
Westl. The other directivity modelers published their functional forms and regression
coefficients for their implementation to either the NGA-Westl or NGA-West2
GMPMs. Most of the NGA-West2 forward-directivity models suggest a maximum
distance of 70km to 80km from the ruptured fault surface for the directivity effect.
Although the NGA-West2 directivity models account for the sophisticated features
of directivity phenomenon, there is still some room for their further improvement.
For example, except for Rowshandel, no other model can clearly distinguish the
directivity effects between the reverse and normal faults. However, Oglesby et al.
(2000) have already shown the rupture-dynamic reasons for expecting larger
amplitude near-fault motions from the reverse events rather than the normal ruptures.
The wide range of studies on the NFFD ground motions are yet to show their full
implications on the seismic design codes. To the best knowledge of the authors, the
1997 version of the Uniform Building Code (UBC, 1997) is the first seismic design
code with a design spectrum explicitly accounting for the near-source effects. This
code introduces two near-fault factors N and Ny to amplify the short-period and the
long-period range in the design spectrum. Both Na and Ny depend on the seismic
activity of the fault and amplify the design spectrum for directivity effects for
Rrup<15km. The Taiwanese (Chai and Teng 2012; Chai et al. 2001), Chinese and
Iranian (Yaghmaei-Sabegh and Mohammad-Alizadeh 2012) seismic design codes
use the UBC-97 approach to include the forward-directivity effects on the definition
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of design spectrum ordinates. The current seismic design code in China incorporates
the near-source effects for base isolated structures with distance-dependent
amplification factors. The New Zealand seismic code (New Zealand Standard, NZS
2004) includes the forward-directivity effects for distances up to 20km to the ruptured
fault and spectral periods T>1.5s provided that the spectrum’s return period is 250-
year or more. The Caltrans seismic design guidelines (CALTRANS 2013) amplify
the design spectrum for T>0.5s by a distance and period dependent near-fault
adjustment factor. The adjustment factor increases spectral ordinates by 20% for
Rrup<15km and it linearly tapers to zero between rupture distances
15km<Rrup<25km. Caltrans (2013) states the validity of above amplifications for
horizontal spectral ordinates having equal probability in all orientations [e.g.,
GMRotI50 or RotD501 horizontal component definitions as proposed in Boore et al.
(2006) and Boore (2010) that are used by NGA-Westl and NGA-West2 GMPMs,
respectively]. Upon the use of maximum direction (RotD100) horizontal spectral
ordinates (Boore 2010) in which their occurrences are not equally probable in all
orientations, Caltrans (2013) suggests an additional 15% to 25% spectral
amplification over the previously suggested amplifications for a full coverage of
NFFD effects. The suggested additional spectral amplifications are in line with the
findings of Huang et al. (2008), Watson-Lamprey and Boore (2007) and Beyer and
Bommer (2006) for Rrup<5km. It should be noted that the 2009 edition of the
NEHRP provisions (BSSC. 2009) as well as the 2010 edition of the ASCE 7-10
standards (ASCE7-10) have started to use the maximum direction component in the
definition of horizontal design spectrum since the collapse probability would be
reduced for structures designed against maximum direction spectral demands (BSSC,
2009). This horizontal component definition can also capture the strong polarization
of directivity-dominant recordings (Boore 2006; Boore 2010).

This chapter investigates the influence of the magnitude, pulse period (or magnitude-
dependent period band where the elastic response spectrum is amplified due to
directivity), fault length, seismic activity, fault-site geometry, orientation of incident
seismic wave with respect to fault-strike as well as the annual exceedance rate on the
NFFD spectral amplitudes. A suite of strike-slip earthquake scenarios are generated

via probabilistic seismic hazard assessment (PSHA) and implemented the narrow-
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band directivity models of Shahi and Baker (SHB11; Shahi and Baker 2011) and
Chiou and Spudich (CHS13; Chapter 6 in Spudich et al., 2013) that is adopted by the
Chiou and Youngs (2014) GMPM to study the effects of the above mentioned
parameters on NFFD. The use of multiple directivity models provided us an
opportunity to understand the influence of different methodologies in estimating the
directivity response spectral amplifications. The important features of the considered
directivity models are explained at first. The discussion continues by presenting the
spectral amplitude distributions conditioned on the investigated seismological and
geometrical parameters to assess their significance in directivity-based spectral
amplifications. The chapter is finalized by mapping the spatial influence of directivity
for different probabilistic earthquake scenarios that could be of interest to the modern
seismic design codes. The outcomes highlighted in the chapter provide a good ground

for the robust implementation of directivity effects on the code-based design spectra.

3.2 Narrow-Band Forward-directivity Models

The following subsections discuss the main features of SHB11 and CHS13 directivity
models to highlight their underlying conceptual differences. The reader can refer to

the relevant literature cited in this study to understand the details of each model.

3.2.1 Shahi and Baker (2011) Model (SHB11)

SHB11 establishes a probabilistic seismic hazard assessment model to consider the
spectral amplitude modifications at sites subjected to pulselike waveforms due to
directivity. The premise in SHB11 is that the directivity is the primary source for
pulse dominated ground motions recorded at locations close to the ruptured fault.
This probabilistic model follows the approach used in Tothong et al. (2007) and
includes the probability of pulse occurrence for a given fault-site geometry as well as
the probability of observing a pulse in a particular orientation given a pulse is
observed at the site and the distribution of magnitude-dependent pulse period, Tp.

The proponents of SHB11 use the quantitative pulse classification algorithm by Baker
(2007) that employs wavelet theory to extract the impulsive signal features from the
ground velocity of near-fault recordings. Shahi and Baker (2011) rotated such ground

motions in all possible directions and classified them as pulselike whenever any one
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of the rotated components is dominated by an impulsive waveform according to the
pulse indicator index® (Baker 2007). The period associated with the maximum
Fourier amplitude of the extracted pulse was used as a measure of pulse-period, Tp in
SHB11.

SHB11 estimates the amplification (and deamplification) of response spectrum
ordinates for the existence (and absence) of pulse in near-source region. Equation 3.1
shows the conceptual approach behind SHB11 while calibrating ground-motion
spectral amplitudes for directivity. Here, P"(Sa > x |m, r, z) is the probability of
spectral ordinate, Sa, exceeding X (Sa > X) given the occurrence of an earthquake of
magnitude m at distance r under modified GMPM. z represents fault-to-site geometry
information that has an important impact on marking the directivity effects. It is
comprised of the parameters s and o where s is the distance along the rupture plane
from the epicenter toward the site and « is the smallest angle between incident S-
wave and the fault strike. (See the illustrations in Error! Reference source not
found.a as well as further discussions in the paragraph below for the parameters
described here).

P*(S,>xIm,r,z) =
P (pulse I1m,r,z) - P (S, > x Im,r, z, pulse) + 3.1
[1 — P (pulse Im,r,2)]*P (S, > x Im,r,no pulse)

Equation 3.1 splits the probability of Sa > x into two cases depending on whether or
not the pulselike ground motion is observed: the first two probabilities on the right
hand side are probabilities of observing a pulse and Sa > x upon the occurrence of
pulse. The last two probabilities consider observing no pulse and Sa > x when no pulse
is observed. Thus, the modification of spectral intensities, Sa, depend on the pulse
occurrence or non-occurrence cases.

The pulse occurrence is taken as the probability of observing a pulselike ground
motion at a site in the direction « degrees from the strike of the fault. The pulse

occurrence, at any orientation with respect to fault strike, is a function of source-site

1 Baker (2007) requires (a) pulse indicator index to be greater than 0.85, (b) impulsive signal
occurring at the beginning of the ground-velocity waveform and (c) peak ground velocity being
greater than 30 cm/s for a ground motion to be classified as directivity dominated.
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geometry and SHB11 uses a logistic regression to model this probability (Equation
2). Error! Reference source not found.b shows the contour map of the estimated
pulse occurrence probabilities by Equation 3.2 for a rupture originating at the middle
of fault segment. Note that the occurrence probability of the pulse increases towards
the edges of the fault that is consistent with the basics of forward-directivity discussed
in (Shahi and Baker 2011). SHB11 uses Equation 3.2 to estimate the probability of
pulse at a given orientation « with respect to fault strike. In essence, the product of
Equations 3.2 and 3.3 gives the pulse occurrence probability for a given source-site
geometry and orientation with respect to fault strike: P(pulse | m, r, z). Inherently, the
no-pulse occurrence case is 1 - P(pulse | m, r, z) that is given in the last term on the
right hand side of Equation 3.1.
P(pulse|r,s) = 1/[1 + ¢(0-642+01677-0.0755)] 3.2

P(pulse at a|pulse) = min[0.67,0.67 — 0.0041(77.5 — a)] 3.3
The exceedance probability of S, for pulse observed case (i.e., P(Sa> x| m, r, z, pulse)
as well as its counterpart (Sa exceedance for “no pulse observed” case; P(Sa > X | m,

r, no pulse) are lognormal as given in Equations 3.4 and 3.5, which require the

computation of zansapulse, Olnsa,pulse; £insa,nopulse AN Olnsa,nopulse-

In(x) — Hinsg puise
P(S,>xIm,r,z,pulse) =1—-@ 3.4
Glnsa,pulse
ln(x) - :ulnSa no pulse
P(S,>xImr,nopulse) =1—-@ ‘ 35
O-lnsa,no pulse

Here, xzand orepresent the mean and standard deviation of the logarithmic Sa values,
respectively that are obtained from GMPMs. The “pulse observed” case represents
the amplification of the spectral ordinates in the vicinity of Tp whereas the “no pulse
observed” case accounts for the inherent reduction in the spectral ordinates for non-
pulselike ground motions. These two phenomena cannot be mimicked properly by
traditional (conventional) GMPMs because they do not model the distinctive effects
of pulselike and non-pulselike ground motions separately. (They rather combine
these two effects with tradeoffs depending on the distributions of their ground-motion
datasets). The following lines summarize the rationale behind the development of

these parameters for the “pulse observed” and “no pulse observed” cases.
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Figure 3.1 (a) the parameters defining fault-site geometry in SHB11 for a strike-
slip fault (b) contours of pulse occurrence probability for a rupture nucleating at
the center of the fault

According to SHB11, S, only for pulselike motions (Sapuise) can be represented by
modifying their pulse-removed spectral ordinates (Sa") with an amplification factor
(As). Thus, the average of logarithmic spectral amplitudes only for pulselike motions
(£ansa pulse) 1

Hinsg puise = Hinap + Hinsg 3.6
The logarithmic average estimated from a conventional GMPM (zansa,gmm) 1S assumed

to approximate p,gr in Shahi and Baker (2011). Thus, Equation 3.6 simplifies to

Hinsg puise = Hinap t Binsg gmm 3.7
SHB11 reduces the standard deviation of the traditional GMPM (otnsa,gmm) by a factor
Rt to represent oinsapuise (Equation 3.8). This is because the modified ground-motion
model in SHB11 only accounts for pulse-like ground motions that, presumably,

yields lower aleatory variability than that of the traditional GMPM.
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OinSapuise — Rf * OnSg gmm 3.8
Following a similar approach as in the case of pulse-like ground motions, SHB11
applies a correction (deamplification, Dy) factor to the logarithmic average of a
traditional GMPM  (ansagmm) to approximate the logarithmic average spectral

ordinates (zansanoputse) Of non-pulse-like ground motions (Equation 3.9).

HinSgnopuise — Hinby T Hinsg gmm 3.9
SHB11 does not foresee any modification for the standard deviation of the non-
pulselike ground motions (onsanopuise) and uses the standard deviations reported by
conventional GMPMSs (oinsagmm). The empirical relationships for fansapulse, Olnsa,pulse,
Minsanopulse aNd Olnsanopulse @S Well as an algorithm for their implementation to PSHA
are given in Shahi and Baker (2011). The authors calibrated their narrow-band model
by using the conventional GMPM proposed by Boore and Atkinson (2008)
indicating, however, that it can be equally applicable to other conventional GMPMs.
Under the light of above discussions, the mean annual frequency by which S, at the

site subjected to directivity exceeds a value X is.

Vgq () =v]ij(pulse|m,r,z)
myur Z
' jP(Sa > le,T;Z, tp) “fryzmr  fzmr  fugr - dm
tp
3.10
dr-dz-dt,

- j]JP(S“ > x Im,r,no pulse)

mr z
. (1 — P(pulse|m,, Z)) ‘fzmr* fug-dm-dr-dz
In Equation 3.10 v is the mean rate of occurrence of earthquakes on the fault above a
minimum threshold. The capital letters denote random variables whereas the
lowercase letters indicate realizations of these random variables. pr|Z,M,R, fzim g are
joint probability density functions (PDFs) but the research showed that the pulse
period Tp only depends on magnitude and the first PDF reduces to fryim- Upon the
existence of multiple faults, Equation 3.10 should be calculated separately for each

one and the summation of the resulting mean annual exceedance frequencies should
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be used to obtain the total directivity induced seismic hazard. Figure 3.2 shows the
algorithm used in the computation of 1sa (x) by SHB11.

For a given period
Set o (0=90° to represent strike normal component)
Set P=0
Compute minimum rate of occurrence (Vp;,) from Equation 4.6 (McGuire 2004) [52]
for All magnitudes i (m;)
Compute P (M=m,) from characteristic recurrence model in [81]
Compute mean rupture area (RA) from RA vs. M,, relationship in [79] (log (ra;)=-3.42 + 0.9xm;)
for all positions of rupture j (ra;)
Compute geometric parameters (r; and z;) - z; is source-to-site geometric parameters (r and s) shown in Figure 1.a
Compute P(R=ry)
Compute P(Z=z;)
Compute P(pulse | ;; z;) from Equation (2)
Compute P(pulse at 0=90° | pulse) from Equation (3)
P(pulse | m;, 1y, z;)=P(pulse | r;, z;)*P(pulse at 0=90° | pulse)
Compute P (S, > x | m;, r =;; no pulse) from Equation (5)
Compute Hiry; and Oy, ; from: pr=-5.73 + 0.99xm and 61,1,=0.56
for all pulse period values k (T, 4)
Compute P(T,= T}, ;) — given [, ,; and oy, 1,; and considering lognormal distribution for pulse period
Compute P (S,>x | m, 1y =y pulse) from Equation (4)
Compute P'(Sa1 > x Imy, 1y, ZU) from Equation (1)
P=P+P(M=m;)*P (r=ry)x P (z=zy)x P(Tp=1p,»;,)XP'(Sa > X Inl,,n,,z,/)
end
end
end
Viota™ Vania X P

Figure 3.2 Algorithm implemented to run PSHA with SHB11 directivity model

Geometrical calculations and the algorithm utilized in PSHA are explained in

Appendices A and B in more detail.

3.2.2 Chiou and Young-2014 (CHY-14) and Chiou and Spudich-2013 (CHS13)
Directivity Model

Chiou and Spudich (Chapter 6 in Spudich et al., 2013) define Direct Point Parameter
(DPP) as an alternative to Isochrone Directivity Parameter (IDP) (Spudich and
Chiou, 2008; Chapter 5 of Spudich and Chiou in Spudich et al., 2013) to model
directivity by considering the effects of the slip distribution and radiation pattern of
a finite source as well as the isochrone velocity (a quantity closely related to rupture
velocity — high isochrone velocity is an indication of strong directivity effects).
Besides its stronger theoretical foundation, DPP is also advantageous from a
calculation standpoint with respect to IDP (Chapter 6 in Spudich et al., 2013).
Figure 3.3 illustrates DPP on a simplified fault-site geometry. It is the intersecting
point of the fault projected direct ray P, P, with the slipped area boundary, 7 Chiou
and Spudich formulate DPP as given in Equation 3.11:
DPP = In(¢'.max(E,0.1f) .max(FS,0.2) 3.11a
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¢' = T Faprrp, for >0 3.11b
0.8 E
¢'=0.8 for E=0 3.11c

As one can infer from Equation 3.11a, DPP is the convolution of isochrone velocity
ratio (c’), length of E-path (E or the larger of fault length or width, f see Figure 3.3a)
that is closely associated with the highest isochrone velocity, hence an indicator of
pulse dominance, and the average S-wave radiation pattern over E-path (FS).
Equation 3.11b indicates that the isochrone velocity ratio is proportional to the

difference between hypocentral distance, Ruyp (PyPs) and the distance to the Direct

Point, Rp (P, Ps). The same expression also suggests an inverse relation between ¢’
and E. The physical interpretations of these observations advocate maximized
directivity effects towards the edges of the faults where E is large and Rnyp-Rp
difference is small.

The GMPM by Chiou and Youngs (2014) (CY14) uses DPP as the predictor of
forward-directivity effect. Equation 3.12 shows the directivity function used in
CY14. Given an earthquake scenario, CY 14 centers DPP on its mean (DPPmean) oOver
a suite of sites located at the same distance (Figure 3.3b). The particular influence of
forward-directivity at a specific site i along the same racetrack is determined by
subtracting the DPPmean from DPP; (ADPP; Equation 3.12a). For a given site i, a
large difference between the DPP; and DPPean (i.€., large ADPP) indicates stronger
forward-directivity effects in CY14. However, when ADPP is zero, one can infer that
the directivity does not dominate the spectral amplitudes at the site of interest for

CY14.
fopp = Cg - fr - fu . e 8aM=Cep)* ADPP; ADPP = DPP; — DPP 3.12a

max(Rrup - 40)]

30 3.12b

fr =max[0,1 —

B max(M — 5.5, 0))
fiu = max[1, 2 ) 3.2

In the above expressions, fr and fm are the taper functions for the distance and

magnitude, respectively. fu reduces fppp to zero over the magnitude range from My
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6.3 to 5.5. The distance taper function fr does not reduce fopp for Rrup<40km but fopp
is linearly tapered down to zero starting from 40km to 70km. In Equation 3.12a cg,
Csa and cgp are the regression coefficients computed by CY14. CHS13 is used via
CY14 in this study but continue to refer this compound model as CHS13 in this
chapter. Figure 3.4 presents the simplified algorithm used for the implementation of
CHS13 in PSHA.

a) Site (Py)
Fault Area
Rupture Area PP
(Direct Point)
r
(Hypocenter)
b)
DPP, DPP,
DPPy = v ¥ v * DPP;
& epicenter
L 4
4+ rupturelength — |

v v A4 v

fault length

Figure 3.3 a) Illustration of Direct Point Parameter (DPP) from a fictitious

source-site geometry: Py Pp is the E-path with length E and Pp is the direct point,
b) Sites along the same racetrack and the computed DPP; (i = 1 to n)
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T=Period of interest
Set P=0
Compute minimum rate of occurrence (Vo) from Equation 4.6 (McGuire 2004) [52]
for All magnitudes i (my;)
Compute P (M=m,) from characteristic recurrence model in [81]
Compute mean rupture area (RA) from RA vs. M, relationship in [79] (log (ra;)=-3.42 + 0.9xm;)
for all positions of rupture j (ra;)
Compute geometric parameters (r;;)
Compute P(R=r)
Compute frpp from Equations (11) and (12)
Compute P (S;>x | m;, 7y, forp)
P=P+P (M=m,) x P(R=r;)xP (S;>X | m; 1y forr)
end
end
Viotal™ meXP

Figure 3.4 Algorithm implemented to run PSHA with SHB11 directivity model

3.2.3 Specific Comparisons Between SHB11, CHS13

This section compares the two directivity models introduced in the previous section
using some PSHA case studies to have insight about their prominent features. The
comparisons would help the reader to follow the discussions in the next section that
examines the sensitivity of response spectrum amplifications against the chosen

seismological parameters under directivity dominant hazard scenarios.

Ry(km)
Site 37 Site 38 Site39  Site40  Site41  Site 42
30 ] ] 8 ] ]
Site 31 Site 32 Site33  Site34 Site35 Site 36
25 . [} ] ] ]
Site 25 Site 26 Site 27  Site 28  Site 29 Site 30
20 [] ] ] ] ]
Site 19 Site 20 Site21 Site22 Site23  Site 24
15 ] ] L] ] (]
Site 13 Site 14 Site 15 Site 16 Si i
10 s |; te. Slt%17 Slt%18
Site 7 I Site 8 Site9  Site 10| Site 11 Site 12
5 [} ] (] ] @
Site 1 Site 2 Site3  Sited  Site5  Site s
-
0 0.25 05 06 07 08 RxL
‘ fault length ‘

| |

Figure 3.5 Plan view of fault-site configuration used in this study. (The red
rectangle encloses the sites 8, 9 and 10 that are used in the deterministic scenario)

The discussions in this section as well as the subsequent sections make use of the

fault-site geometry layout given in Figure 3.5. The site distributions are symmetric

with respect to vertical axis (Ry) that crosses at the mid-length of the fault. Thus, there

is a mirror image distribution of the sites on the left-hand side with respect to the fault
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center (designated by Ry/L = 0 in Figure 3.5). The fault length normalized horizontal
axis (Rx/L) runs parallel to the fault strike. The sites are located at every 5km in the
strike-normal direction whereas their distribution is extended beyond the fault edges
by 0.3L in the strike parallel direction to capture the spatial variation in forward-
directivity along the horizontal plane. Strike-slip fault mechanism is considered in
earthquake scenarios because directivity models cannot fully capture the directivity
effects for dip-slip faulting mechanisms (Spudich et al. 2013). The site condition is
also represented by a generic rock site of Vs = 760m/s throughout the study.

Figure 3.6 compares the 2475-year return period? spectral estimates by SHB11 and
CHS13 (top row) and corresponding spectral amplifications (bottom row) at sites 8,
9 and 10 (enclosed by a red rectangle in Figure 3.5) for a vertically dipping strike-
slip fault segment of length L = 150km and width w = 10km. The slip rate of the
fictitious fault is chosen as s = 1cm/yr and the mean magnitude vs. ruptured area
(RA) relationship by Wells and Coppersmith (1994) yields characteristic magnitude
of Mch 7.2 for this fault when the entire segment is ruptured. (Side note: The mean
moment magnitude, My, that is estimated from the empirical Mw vs. RA relationship
of Wells and Coppersmith is used in the Mc computations of fault segments
considered in the probabilistic earthquake scenarios in this study). The Youngs and
Coppersmith (1985) characteristic earthquake recurrence model is used in this case
study as well as in all PSHA runs to define the temporal distribution of earthquakes.
The characteristic model is illustrated in Figure 3.7 for convenience. The exponential
part of the model considers earthquake activities between 5.0<Myw<M¢cn-0.25. The
uncertainty in characteristic earthquake magnitudes is represented as a uniform
distribution within Mch+0.25 in the earthquake recurrence model. These specific
features of the stochastic earthquake recurrence model are the same in all
probabilistic earthquake scenarios. The discrete magnitudes varying from My 5 to
Mcn+0.25 (dependent of fault length) and the corresponding mean rupture areas
obtained from RA vs. My, relationships of Wells and Coppersmith (1994) are used in
the PSHA runs presented in this section as well as those discussed in the other

sections (See Figure 3.2 and Figure 3.4 for the PSHA algorithms).

2 Return period is the reciprocal of mean annual exceedance rate of a spectral ordinate exceeding a
specific threshold.
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Rupture lengths of discrete scenarios in PSHA are determined by dividing the mean
rupture areas with the constant fault width (w=10km) whenever vVRA >w. For
VRA<w, rupture length is computed as vVRA in this study. The hypocenter of the
rupture is taken at the center of the ruptured area. This information is necessary in the
computation of APP at the sites of interest. For completeness, the “directivity” and
“no directivity” spectra are both plotted. The latter case is represented by the
conventional GMPM counterpart of each directivity model (i.e., BA08 for SHB11
and CY14 with APP = 0 for CHS13). The spectral amplifications are the normalized
plots of “directivity” and “no directivity” cases. The magnitude-dependent pulse
period for SHB11 is estimated from the Tp-Mw expression in Shahi (2013). SHB11
estimates strike-normal (fault-normal; FN « = 90°) horizontal spectrum for the
“directivity” case because the model first fits to strike-normal case and then modifies
the amplitudes for different « according to pulse occurrence conditioned on «. Thus,
the spectral amplifications of SHB11 represent strike-normal to GMRotI50 (Boore et
al. 2006) horizontal component ratios; the latter component definition is used by
BAO08. The other model uses RotD50 (Boore 2010) horizontal component definition

for both the “directivity” and “no directivity” cases.

Exponential
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Figure 3.7 The Youngs and Coppersmith (1985) stochastic model to describe the

earthquake recurrence in PSHA runs. The minimum magnitude, Mmin, is always

considered as My 5 in the probabilistic earthquake scenarios. The characteristic

magnitude, Mch, is determined from the mean My, estimated from the empirical
Muw vs. RA relationship in (Wells and Coppersmith 1994).

The comparative plots in Figure 3.6 indicate similar spectra for the “no directivity”

case. The observed discrepancies are within tolerable ranges and can be the attributes
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of different modeling perspectives. The observed similarity in the spectral estimates
of “no directivity” can be explained by previous research (e.g., Abrahamson et al.
2008; Gregor et al. 2014) that advocate similar trends in conventional GMPMs
provided that the hazard is dominated by large magnitudes. The negligible difference
between GMRotI50 and RotD50 horizontal component definitions (Boore 2010) is
the other supporting factor for the similar spectra in the “no directivity” case. The
spectral amplitudes as well as the spectral amplifications by SHB11 is larger with
respect to CHS13, which can be attributed to the fault-normal spectral amplitude
estimations of this model. In fact, Figure 3.8 shows the variation of forward-
directivity spectral amplifications for different pulse orientation angles (0°<a<90°;
see Error! Reference source not found.b) at Site 9 by SHB11. Figure 3.8 indicates
that the difference in forward-directivity spectral amplitudes can reach up to 50% to
60% between the strike-parallel (« = 0°) and strike-normal (a = 90°) pulse
orientation. This observation brings forward the importance of horizontal component
definition while addressing the directivity effects on the spectral amplitudes. This

issue is partially addressed by Huang et al. (2008).

Amplification Factor for FL=150 - SR=1cm/year - Site 9
2.0

1.8 1

1.6

1.4 4

Amplification

1.2 4

1.0

Period(sec)

Figure 3.8 Variation of forward-directivity spectral amplifications as a function of
o (alpha) at Site 9 for the fictitious PSHA scenario considered in Figure 3.6.

Figure 3.6 also indicates that SHB11 reaches its maximum at T ~ 4.0s that is close to
the median T, for a characteristic earthquake of My 7.2 (Shahi and Baker 2011; Shahi

2013). (This period is called as Tmax throughout the text because Ty is a log-normally
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distributed random variable in the PSHA runs that use SHB11 directivity model -
Figure 3.2). The spectral amplification factors estimated by SHB11 are less sensitive
to the fault-site geometry with respect to CHS13 because the variation of
amplifications from one site to the other are not as significant as in the case of CHS13
(bottom row panels in Figure 3.6). CHS13 does not estimate any spectral
amplification due to directivity at site 8 because APP = 0. The directivity
amplifications by CHS13 are quite prominent at Site 10 that is slightly beyond the
fault’s right end whereas SHB11 estimates maximum directivity amplifications at
Site 9 that is located at the right end of the subject fault. Previous studies (Schmedes
and Archuleta 2008; Spudich and Chiou 2008) showed that the maximum directivity
amplifications occur within the ends of the fault due to stronger directivity as the
distance the rupture travels is longer. Thus, the observed spectral amplification
estimates by CHS13 as well as SHB11 are consistent and they display physically
justifiable patterns. Nevertheless the conceptual differences in the model
development phase between SHB11 and CHS13 are reflected on to the observed
discrepancies in the directivity amplification. It should be noted that the directivity
model proposed by Shahi and Baker accounts for the fault-site geometry in the
probabilistic framework by increasing the likelihood of observing pulse occurrence
towards the ends of the faults (e.g., Error! Reference source not found.b depicting
pulse occurrence probability contours of SHB11 for different fault-site locations).
CHS13, on the other hand, relies on APP that is based on the wave propagation theory
while addressing the directivity for different fault-site patterns. Figure 3.9 further
discusses this specific issue (pulse occurrence conditioned on fault-site geometry) to
highlight the overall picture of modeling perspectives between SHB11 and CHS13.

Another important observation from Figure 3.6 is the different spectral amplification
trends between CHS13 and SHB11. Spectral amplifications by CHS13 tend to
increase for periods up to T ~ 4sec displaying a more stable pattern after this spectral
period. SHB11 becomes maximum in the vicinity of the same spectral period and
then decreases for longer periods. T ~ 4sec is close to the median pulse period (Tp)
for a characteristic earthquake of Mch 7.2 according to the empirical magnitude vs.
pulse period expressions by Shahi (2013) or Shahi and Baker (2011). T, is considered

as log-normally distributed in the PSHA runs (Figure 3.2) per recommendations in
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Shahi (2013) and Tmax =~ T, for the given case study suggests that median T, can
grossly describe the locus of maximum spectral amplification due to directivity for
return periods about 2475-year. Although CHS13 does not explicitly predict the pulse
occurrence, the isochrones theory employed by this model is consistent with pulse
period scaling with magnitude. That’s why spectral amplifications by CHS13 show
an increasing trend at periods close to Tp. They maintain a more stable trend for T>Tp
as the model is not devised for the sole amplification of spectral ordinates in the
vicinity of Tp. To distinguish the different theoretical backgrounds employed by
CHS13 and SHB11 in this aspect, the spectral period at which the directivity-
dominant spectral amplification is maximized is called as Tcorner in CHS13.

Figure 3.9 compares the 475-year return period spectral amplification contours of
SHB11 and CHS13 to illustrate an overall picture about how the directivity effects
are interpreted by these models in the probabilistic seismic hazard context. The
illustrations are particularly useful to understand the consideration of fault-site
geometry by SHB11 and CHS13 while addressing the directivity influence on
spectral amplitudes. The spectral amplifications are computed for T = 4sec. The
fictitious fault segment is a 90° dipping strike-slip fault of L = 100km with a slip rate
($) equal to 2cm/year. The spectral amplification contours of SHB11 (Figure 3.9a)
are larger than those of CHS13 (Figure 3.9b) because « = 90° is used in SHB11 to
estimate FN spectral amplitudes as discussed in the previous paragraphs. Both models
tend to estimate the largest directivity amplifications close to the ends of the fault
whereas no amplification is computed by the two models at the center of the fault.
This is consistent with the Somerville et al. (1997) model. The directivity
amplifications of CHS13 are exclusively concentrated at the ends of the fault and they
extend beyond the fault edges. This is inherited from the isochrone theory as
explained while discussing the case study in Figure 3.6 as well as the theoretical
background of this model. The directivity amplifications by SHB11 are shaped by the
consideration of pulse occurrence probability that systematically increases towards
the ends of the fault (e.g., Error! Reference source not found.b). Otherwise, SHB11
would not change the spectral amplifications at equidistant sites from the fault strike.
Note that SHB11 directivity amplifications significantly decrease for Ry/L>0.6, which
is, again, due to the decreased probability of observing pulse occurrence at sites
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located slightly remote from the far ends of the fault segment. Such modeling
constraints do not exist in CHS13.

30

230 0. -
-08 06 -04 02 0 02 04 06 08 388 06 -04 -02 0 02 04 06 08
Rx/L Ry/L

Figure 3.9 475-year probabilistic spectral amplifications for forward-directivity
computed by (a) SHB11 and (b) CHS13 (via CY14) for a fault length of L =
100km and s = 2cm/year

Discussions on the probabilistic scenarios in Figure 3.6 and Figure 3.9 indicate that
different narrow-band models impose different trends to describe directivity effects
on spectral amplitudes because their theoretical backgrounds differ. SHB11 opts to
modify traditional GMPMs for directivity effects in the vicinity of pulse period and
they consider pulse occurrence probability to emphasize the fault-site geometry in
directivity-dominant spectral amplifications. CHS13 applies isochrone theory to
measure the directivity-induced amplification of an S-wave to model forward-
directivity effects. Thus, CHS13 combines source kinematics as well as the rupture
dynamics together with the empirical data to explain forward-directivity spectral
amplitudes whereas the models by Shahi and Baker structure the directivity effects
using a probabilistic platform from empirical observations. The next section
discusses the overall roles of some important seismological and geometrical
parameters in directivity dominated spectral ordinates through the modeling
perspectives of SHB11 and CHS13.

3.3 Significance of Major Seismological Parameters in NFFD Spectral
Amplitudes

The site configuration for the probabilistic scenarios are already given in Figure 3.5.

Five different fault lengths (L = 20km, 50km, 100km, 150km and 300km) are utilized

that are capable of generating characteristic earthquakes with characteristic
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magnitudes (Mcn) of Mw 6.25, 6.7, 7.0, 7.2 and 7.5, respectively under full rupture
conditions according to Wells and Coppersmith (1994) Mw vs. rupture area (Arup)
relations. The seismogenic fault width is assumed 10km in all cases. Three different
slip rates of $;,:q; = 0.5cm/year, 1.0cm/year and 2.0 cm/year are assumed to account
for different seismic activities. These slip rates represent average seismic activities
for the considered fictitious faults and can be referred to as the long-term slip rates.
The characteristic earthquake recurrence model proposed in Youngs and
Coppersmith (1985) is used (Figure 3.7) for stochastic earthquake recurrence (see
relevant discussions in Section 3.2.3). Table 3.1 lists the slip rate decomposition of
the exponential and characteristic earthquakes for each fictitious fault. The long-term
slip rates (S:otq;) are entirely dominated by the characteristic slip rates (Scnar)
indicating that the forward-directivity related demands are mainly represented by the
characteristic earthquakes.

For each fictitious fault, PSHA was run using SHB11 and CHS13 directivity models
and the spectral amplifications were computed at each site by normalizing “directivity
considered” spectra with “no directivity” spectra. The spectral amplification
computations are the same as those described in Section 3.2.3. The “no directivity”
spectra are computed using BAO08 (counterpart of SHB11) and CY 14 with APP =0
(counterpart of CHS13).

Given a set of Ry/L, T/Tmax (for SHB11) and T/Tcomer (for CHS13) ratios, Figure 3.13
and Figure 3.11 show the non-exceedance probabilities of spectral amplifications
(i.e., P(A<amp) computed from SHB11 and CHS13, respectively. The presented
non-exceedance probabilities are actually count statistics and are obtained from the
discrete cumulative densities of As for each directivity model. Given a specific Ry/L
and T/Tmax (Or T/Tcomer in the case of CHS13) each cumulative density plot is
computed from the spectral amplifications at 7 sites located between Okm< Ry< 30km
(Figure 3.5). Since each site contains 5 spectral amplifications resulting from the
PSHA runs of 5 fictitious faults, the cumulative density plots are computed from 35
spectral amplification points. They can show the influence of the fault-site geometry
(as a function of Ry/L), T/Tmax (0r T/Tcorner) and the slip rate on directivity dominant
spectral intensities. The cumulative densities (CDFs) in the first three rows show the
475-year return period spectral amplifications whereas the last three rows show the

50



same cumulative densities for 2475-year return period. Hence, the plots in Figure
3.10 and Figure 3.11 also describe the importance of mean annual exceedance rate

(or return period) for directivity dominated spectral amplifications.

Table 3.1 Decomposition of average slip rates for the exponential and characteristic
earthquakes represented by the stochastic earthquake recurrence model used in the
fictitious fault segments

L =20 km / Meh 6.25 L =50 km / Meh 6.7
) Exponential Characteristic Exponential Characteristic
Stotal 5.0<sMu<6.0 6.0<Mw=<6.5 5.0sMw=6.45 6.45<Mw<6.95
(cmlyr) . 5 ; 5
Sexp Schar Sexp Schar
0.5 0.024 0.476 0.0278 0.4722
1.0 0.050 0.950 0.0556 0.9444
2.0 0.099 1.901 0.1112 1.8888
L=100km /M 7.0 L=150km/ M 7.2
. Exponential Characteristic Exponential Characteristic
Stotal 5.0<Mu<6.75 6.75<Mu<7.25 5.0=Mw<6.95 6.95<Mu<7.45
(cmiyr) ' . . :
Sexp Schar Sexp Schar
0.5 0.0292 0.4708 0.0298 0.4702
1.0 0.0584 0.9416 0.0597 0.9403
2.0 0.1168 1.8832 0.1194 1.8806
L =300 km/ Men 7.5
) Exponential Characteristic
Stotal 5.0=sMu=7.25 7.25<Mu<7.75
(cmlyr) S B
exp char
0.5 0.0305 0.4695
1.0 0.0611 0.9389
2.0 0.1221 1.8779

The 475-year CDFs in Figure 3.10 indicate the prominence of slip rate in directivity
dominant spectral amplitudes by SHB11 because the non-exceedance probabilities
are sensitive to the variations in slip rate for the directivity dominant sites
(0.25<Ry/L< 0.5). The slip rate, however, becomes less important for 2475-year
directivity-based spectral amplifications in SHB11. The directivity effects are
minimum in SHB11 at Ry/L = 0.7 (sites remotely located from the ends of the fault)
for both 475-year and 2475-year return periods (more visible in 475-year CDFs). This
specific feature of SHB11 is related to pulse occurrence probability that becomes
fairly small at large Rx/L that is already discussed in the case studies in Section 3.2.3
(Figure 3.6 and Figure 3.9). The non-exceedance probabilities in Figure 3.10 also
suggest higher spectral amplifications for T >Tmax especially for directivity dominant
cases according to SHB11 (i.e., 0.25<Ry/L<0.5).
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Shahi and Baker (2011) 475-year
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Figure 3.10 Non-exceedance probabilities (cumulative density functions) of

directivity spectral amplifications according to Shahi and Baker (2011) directivity

model given a range of Ry/L, T/Tmax and average slip rate. First three rows show

the probabilities for the 475-year return period. The last three rows pertain to the

2475-year return period probabilities

Contrary to the observations in SHB11, the CDFs by CHS13 presented in Figure 3.11
suggest independency of the forward-directivity spectral amplifications on slip rate
for both the 475-year and 2475-year return periods. Besides, the spectral
amplifications in Figure 3.11 are significant for sites located along Ry/L = 0.5 and
Rx/L = 0.7. The large non-exceedance probabilities at Ry/L = 0.7 by CHS13 are
exactly the opposite of SHB11. This observation is not surprising because CHS13
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considers the directivity related spectral amplifications only for regions extending
beyond the fault ends (i.e., R«/L>0.5; see Figure 3.9b and relevant discussions). That’s
why the directivity related spectral amplifications are barely significant for R«/L=0.25
in CHS13 (first and fourth row CDFs in Figure 3.11). As in the case of SHB11,
CHS13 directivity-based spectral amplifications are larger for T>Tcomer. Note that
spectral amplifications by SHB11 are larger than those computed from CHS13 that
can partially originate from the different horizontal component definitions by the two
models. SHB11 spectral amplifications are computed by normalizing FN directivity
spectra by GMRotI50 no directivity spectra. CHS13 computes spectral amplifications
from directivity and no directivity spectral ratios of RotD50 horizontal component
definition. The 2475-year spectral amplifications are larger than those of 475-year
spectral amplifications for the SHB11 directivity model whereas CHS13 spectral
amplifications are almost insensitive to return period.

The period-dependent variations of directivity spectral amplifications are presented
in Figure 3.12 for different fault lengths (L = 100km, 150km, 300km) for a slip rate
of $;o:a1 = 2.0cm/year. The spectral amplifications represent a hazard level of 2475-
year return period. Given a fault length, the period-dependent forward-directivity
spectral amplifications in each panel are plotted for the entire site distribution (i.e.,
42 sites as shown in Figure 3.5) that are displayed in light gray color. In order to
underline the variation of spectral amplifications for fault-site geometries along
perpendicular and parallel directions to the fault strike, the median period-dependent
spectral amplifications for constant Ry/L (Rx/L =0, 0.25, 0.5, 0.6, 0.7, 0.8) and Ry (Ry
= Okm, 5km, 10km, 15km, 20km, 25km and 30km) are also shown. The spectral
amplifications of 7 sites located along the same Ry/L are used to compute the median
spectral amplifications for a given Ry/L. Similarly, the median spectral amplification
for a specific Ry is computed from the spectral amplifications of 6 stations located
along the same Ry. The first two columns in Figure 3.12 show the median spectral
amplitude variations for constant Ry computed from SHB11 (first column) and
CHS13 (second column) for the fault lengths of L = 100km (1% row), L = 150km (2"
row) and L = 300km (3" row). The last two columns display the same median spectral
amplitude variations for constant Ry/L. The changes in fault length (affecting the

characteristic magnitude) as well as the fault-site geometry (in terms of Ry/L and Ry)
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are important to understand the sensitivity of directivity-dominated spectral
amplifications against these two parameters.
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Figure 3.11 Same as Figure 3.10 but the forward-directivity model is Chiou and
Spudich (2013; Chapter 6 in Spudich et al., 2013) implemented in Chiou and
Youngs (2014) GMPM

One can make interesting observations from Figure 3.12. Firstly, there is a clear
difference between the period-dependent spectral amplification shapes estimated
from the SHB11 and CHS13 directivity models. This difference is already discussed
in Section 3.2.3 under specific probabilistic scenarios. The SHB11 spectral
amplifications shows a steep increase until a peak. This is followed by a decrease
with a steep slope. The CHS13 spectral amplifications also increase until a maximum
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but this trend is milder with respect to SHB11. The increase in spectral amplifications
follows either a stable trend or a slight reduction that can even be neglected compared
to the steep decreasing trends observed in SHB11.
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Figure 3.12 Period-dependent 2475-year forward-directivity spectral
amplifications estimated by SHB11 and CHS13 for PSHA scenarios of fault
lengths L = 100km (top row), L = 150km (middle row) and L = 300km (bottom
row) having S;o¢q; = 2.0cm/year. The first two columns show mean spectral
amplifications of SHB11 (first column) and CHS13 (second column) for sites
located at a constant Ry and the last two columns show mean spectral
amplifications of SHB11 (third column) and CHS13 (fourth column) for sites
located at a constant Ry/L
The locus of maximum spectral amplifications for both directivity models shift
towards longer periods as the fault length increases. The increase in fault length is
associated with a larger Mcn (discussed in the previous paragraphs) that eventually
yields longer periods (Tmax Or Tcomer) Where directivity-dominant spectral
amplifications are maximized. Since SHB11 relies on the pulse occurrence
probability (Section 3.2.1 and Figure 3.2), Tmax is inherently related to Ty due to the
relation between magnitude and pulse period (Alavi and Krawinkler 2004; Shahi

2013; Somerville 2003). CHS13 does not explicitly consider pulse period occurrence
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but the isochrone theory recaps the Tp effect SO Tcorner approximates Tmax. However,
the directivity-based spectral amplification trends differ between CHS13 and SHB11
for differences underlying the background theory of each model. The probabilistic
case studies presented in this study suggest that Tmax Or Tcorner Can be approximated
by the median T, of empirical pulse period relationships for 475-year and 2475-year
return periods.

The forward-directivity spectral amplifications are inversely proportional to Ry: the
median amplifications are maximum at on-fault sites (Ry = Okm) and they decrease
as Ry increases. However, the fault length seems to be prominent on Ry dependent
median spectral amplifications because increase in fault length reduces the difference
between the median spectral amplifications of consecutive Ry values. This
observation is more noticeable in CHS13: the differences between the median
spectral amplifications of two consecutive Ry values for L = 300km fault are almost
negligible with respect to the same median trends of L = 100km fault. This
phenomenon may suggest that the directivity dependent spectral amplifications at
some equidistant sites from the fault strike decrease drastically with the increase in
fault length. In other words, sites located at identical Ry would be subject to
significant variation in the directivity dependent spectral amplifications depending
on the fault length.

The directivity spectral amplifications have a more intricate relationship with Ry/L.
The investigated directivity models behave differently against variations in this
parameter. The median spectral amplifications along R«/L = 0.5 and Ry/L = 0.6 are
estimated to be the maximum by SHB11. These two locations represent the fault ends
where the pulse occurrence is more likely according to SHB11, which essentially
promotes larger directivity spectral amplifications. SHB11 advocates Ry/L = 0.25 as
another potential location for large spectral amplifications and, in fact, Ry/L = 0.25
becomes as critical as the fault ends for the ruptures occurring on large fault lengths
(represented by L = 300km in this study). SHB11 gives almost no credit for
directivity-based spectral amplification for sites remotely located from the fault ends
(represented by Ry/L = 0.8 in the case studies). The directivity spectral amplifications
by CHS13 show a more complicated pattern. CHS13 estimates large spectral
amplifications at the sites located along and beyond the fault ends (i.e., Ry/L>0.5).
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However, the increase in the fault length decreases the possibility of observing large
spectral amplifications at sites remotely located from the fault ends (R«/L>0.7). In
contrast to SHB11, this directivity model does not give any credit to sites located

along Ry/L = 0.25 for directivity based spectral amplifications.

3.4 Spatial Extension of Directivity Dominated Sites (Regions) in the Fault
Vicinity

The discussions in the previous sections indicate the significance of the fault length
(hence the characteristic earthquake generated by the fault that also puts forward the
importance of Tmax Or Tcomer), the slip rate as well as the return period in NFFD
spectral amplifications. The fault-site geometry brings additional complexity to the
directivity dominated spectral amplifications that further invokes the constraints
imposed by the different directivity models. However, one can still develop some
practical rules to delineate the directivity-dominated regions within the ruptured fault
segment by making use of the probabilistic scenarios discussed throughout this study.
These rules would be expressed in terms of the aforementioned seismological and
geometrical parameters. Figure 3.13 and Figure 3.14 show the spatial distribution of
directivity based spectral amplifications for SHB11 and CHS13, respectively. They
are compiled from the entire set of probabilistic scenarios considered in this study.
Both figures display the maximum spectral amplifications in the vicinity of Tmax or
Teorner (dependent of fault length thus the characteristic earthquake magnitude) for the
475-year (top 5 panels) and the 2475-year (bottom 5 panels) return periods. Each
column in the figures represents a specific slip rate (first column - $;,.4,=0.5cm/year,
second column - $;,.4;=1.0cm/year, third column - $;,.4,=2.0cm/year). The five rows
for each return period represent the PSHA results of the fault lengths L = 20km, 50km,
100km, 150km and 300km.

The panels in Figure 3.13 and Figure 3.14 show the overall influence of the slip rate,
the fault length and the return period on the directivity spectral amplifications. They
also suggest the existence of a spatial distribution pattern for the spectral
amplifications to delineate the directivity affected sites. The geometry of the spatial
distribution pattern of the directivity affected region as well as the level of spectral

amplifications enclosed by this region is directivity model dependent.
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Figure 3.15 shows the proposed geometry for each directivity model to idealize the
spatial distribution of the directivity-affected regions for spectral amplifications
greater than 1.1. In other words, the regions enclosed by the proposed geometrical
shape possess a spectral amplitude of 1.1 or above. Table 3.2 lists the proposed rules
to establish the geometrical shapes for SHB11 and CHS13 in terms of the slip rate,
the return period and the fault length.
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Figure 3.13 The spatial distribution of the forward-directivity spectral
amplifications by SHB11 in terms of the return period, slip rate and the fault
length (thus the characteristic earthquake magnitude)
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CHS-13 - 475 Year Return Period
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Figure 3.14 The spatial distribution of the forward-directivity spectral
amplifications by CHS13 in terms of the return period, slip rate and the fault

length (thus the characteristic earthquake magnitude)

The proposed geometry for SHB11 suggests perpendicular fault distances (Dy:1 and
Dy2) ranging between 10km to 20km for the strike-normal extension of directivity
dominated regions in 475-year spectral amplifications. Dy, can exceed 30km for fault
lengths of 150km and above for the 2475-year spectral amplifications. SHB11
imposes a wide perpendicular distance coverage from the fault strike for directivity-
dominated regions that tends to increase towards the edges of the fault (Figure 3.15,

left panel). SHB11 suggests the extension of directivity effects beyond the fault edges
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for horizontal distances (Dx) of 20% to 30% fault length. Dy can attain even larger
values (i.e., Dx>0.3L) for the relatively shorter faults (L<50km) in particular for the
2475-year spectral amplifications.

The geometry to define directivity-dominated regions draws a simpler pattern for
CHS13 because this model lumps the directivity effects at the edges of the faults
(Figure 3.15, right panel). The directivity effects generally commence in the last
quarter length of the fault (Dx1) and they extend beyond the fault edges by 30% of
fault length (Dx2) regardless of the slip rate and the return period. The perpendicular
fault distance (Dy) ranges from 5km to 30km (and even larger for the long faults and

the 2475-year return period) from one side of the fault strike.
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Figure 3.15 Simplified geometries to highlight the directivity affected regions in
the ruptured fault vicinity for directivity spectral amplitudes greater than 1.1. Left
panel: SHB11, Right panel: CHS13

Table 3.2 Proposed rules for (a) SHB11 and (b) CHS13 to define the spatial
distribution of directivity affected spectral amplifications within the fault

(a) SHB11
475 year Dx" | Dyl" | Dy2"
FL SR=05 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0

L =20km 0.2L >0.3L >0.3L 5km 10km 10km 10km 15km 15km
L =50km 0.2L 0.3L >0.3L 10km 10km 10km 15km 15km 15km
L = 100km 0.2L 0.2L 0.2L 10km 10km 10km 15km 20km 20km
L = 150km 0.2L 0.2L 0.2L 10km 10km 10km 20km 30km | >30km
L = 300km 0.2L 0.2L 0.2L 20km 20km 20km | >30km | >30km | >30km
2475 year Dx" Dyl" Dy2"

FL SR=0.5 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0
L = 20km >0.3L >0.3L >0.3L 10km 15km 15km 15km 15km 20km

L =50km >0.3L >0.3L >0.3L 15km 15km 15km 20km 20km 20km
L = 100km 0.3L 0.3L 0.3L 15km 15km 15km 25km 30km 30km
L = 150km 0.3L 0.3L 0.3L 15km 15km 15km | >30km | >30km | >30km
L = 300km 0.2L 0.2L 0.2L 25km 25km 25km | >30km | >30km | >30km
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Table 3.2 (Continued)

(b) CHS13
475 year Dx1* Dx2* Dy"
FL SR=0.5 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0

L = 20km 0.50L 0.50L 0.50L 0.3FL 0.3L 0.3L 5km 5km 5km

L = 50km 0.25L 0.25L 0.25L 0.3FL 0.3L 0.3L 15km 15km 15km
L =100km | 0.25L 0.25L 0.25L 0.3FL 0.3L 0.3L 25km 25km 25km
L =150km | 0.25L 0.25L 0.25L 0.3FL 0.3L 0.3L 30km 30km 30km
L =300km | 0.25L 0.25L 0.25L 0.2FL 0.2L 0.2L 10km 30km | >30km

2475 year Dx1* Dx2* Dy"
FL SR=0.5 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0 | SR=0.5 | SR=1.0 | SR=2.0
L = 20km 0.50L 0.50L 0.50L 0.3L 0.3L 0.3L 5km 5km 5km

L = 50km 0.25L 0.25L 0.25L 0.3L 0.3L 0.3L 15km 15km 15km
L =100km | 0.25L 0.25L 0.25L 0.3L 0.3L 0.3L 30km 30km 30km
L =150km | 0.25L 0.25L 0.25L 0.3L 0.3L 0.3L >30km | >30km | >30km
L =300km | 0.25L 0.25L 0.25L 0.2L 0.2L 0.2L >30km | >30km | >30km

* Refer to Figure 3.15 for the definition of geometrical parameters

3.5 Summary and Conclusion

This chapter investigated the influence of some seismological and geometrical
parameters on the spatial distribution and the amplitude variation of directivity
dominated elastic spectral amplitudes by using the directivity models by Shahi and
Baker (2011) (SHB11) and Chiou and Spudich (CHS13;(Spudich et al. 2013; Chiou
and Youngs 2014)). SHB11 and CHS13 are narrow-band directivity models utilizing
different approaches to consider spectral amplitude modifications for directivity
dominant waveforms at sites relatively closer to the ruptured fault segment. SHB11
uses a probabilistic framework and computes the exceedance probabilities of spectral
ordinates by convolving the occurrence probabilities of pulses with the “pulse
observed” and the “no pulse observed” cases. The fault-site geometry in SHB11
accounts for the orientation of the incident pulselike waveform with respect to the
fault strike (o). The pulse occurrence probability is also related to fault-site geometry
in SHB11. CHS13 is based on the DPP predictor that accounts for the fault-site
geometry to physically explain the directivity effects. Given a site, CHS13 considers
the forward-directivity effect by measuring the offset between the site-specific DPP
and the average DPP computed from the equidistant sites surrounding the ruptured

fault segment. It does not explicitly consider the pulse occurrence or orientation of
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incident pulselike waveform with respect to the fault strike. SHB11 is calibrated by
using BAO8 whereas CHS13 is integrated with CY 14 to address the directivity effects

for elastic spectral amplitudes. Shahi and Baker (2011) state that SHB11 can equally

be applicable to any other conventional GMPM whereas CY 14 tailored CHS13 as

part of its functional form via regression analysis.

The observations made from this study rely on the probabilistic earthquake scenarios

of strike-slip faults. They can be useful for the explicit consideration of the directivity

effects in the future seismic design codes. The following conclusive remarks

constitute the major outcomes of this study.

SHB11 and CHS13 estimate the largest spectral amplifications in the vicinity
of spectral periods that are called as Tmax and Tcorner, respectively. These
periods shift towards longer spectral intervals with increasing characteristic
earthquake magnitude, Mcn (thus, longer fault length). SHB11 relies on the
occurrence of pulses, hence Tmax is eventually related to T, that is a function
of Mw. CHS13 uses isochrone theory and it does not rely on pulse occurrence
but accounts for the relation between magnitude and Tp. Thus, Tcorner IS
correlated to pulse period but it would be inappropriate to make a direct
comparison between these concepts. For the return periods of interest (475-
year and 2475-year), median Tp can fairly represent Tmax and Tcorner.
Period-dependent spectral amplifications by SHB11 show a steep increase
until the maximum spectral amplification is reached in the vicinity of Tmax.
This trend is followed by a decrease with a steep slope. The spectral
amplifications by CHS13 also increase until a maximum in the vicinity of
Teorner. Contrary to spectral amplifications estimated by SHB11, they almost
fluctuate about the maximum for T >Tcorner.

Spectral amplifications of SHB11 are larger than those of CHS13 that can be
partially explained by the differences in their horizontal component
definitions. Fault-normal horizontal component metric is used in SHB11
while considering the forward-directivity effects. CHS13 inherently uses
RotD50 horizontal component definition in the computation of directivity

dominated spectral amplifications.
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SHB11 is sensitive to the variations in slip rate while estimating the directivity
dominated spectral amplifications. Its influence seems to be more prominent
for smaller return-period spectral amplifications (475-year return period in the
case studies). The variations in the slip rate do not significantly affect the
spectral amplifications of CHS13.

Longer return periods result in larger spectral amplifications due to forward-
directivity for SHB11. This observation is barely significant for CHS13.
SHB11 estimates large spectral amplifications for sites between
0.25<R«/L<0.5. The effect of directivity vanishes after Ry/L = 0.7. The
directivity spectral amplifications of CHS13 are concentrated between
0.5<R,/L<0.7. The observed differences in the spectral amplification locations
along the fault strike originate from theoretical backgrounds of SHB11 and
CHS13 for the consideration of fault-site geometry in directivity
phenomenon. The directivity-based spectral amplifications by CHS13 are
inherited from the isochrone theory that maximizes the directivity effect
towards and beyond the fault edges. SHB11l uses pulse occurrence
probabilities that are larger at the fault ends and amplify spectral ordinates in
the vicinity of corresponding pulse period.

Fault length (L) is an important parameter in the observed spectral
amplifications. Larger fault lengths reduce the significance of perpendicular
fault distances (designated by Ry in this study) in forward-directivity spectral
amplifications. In other words, the difference between the spectral
amplifications of two consecutive Ry values decreases as the fault length
increases.

The spatial distribution of directivity affected sites are dependent on the slip
rate, return period and the fault length. The first two parameters are
particularly effective in the directivity dominated spatial distribution patterns
suggested by SHB11. The directivity affected sites can exceed 30km in the
fault normal direction. One can observe significant directivity dominated
spectral amplifications within 60km radial distance from the fault ends for

2475-year return period and for fault lengths of L>150km.
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CHAPTER 4

A PROPOSED RELATIONSHIP BETWEEN DIRECTIVITY AND
NONDIRECTIVTY SPECTRAL AMPLITUDES FOR MAXIMUM
DIRECTION

4.1 Introduction

The orientation of horizontal ground-motion components can affect the spectral
demand level. This phenomenon is referred to as “directionality” that reflects the
effect of ground-motion polarization on the spectral amplitude variation at different
orientations. Since ground-motion predictive models (GMPMs) represent the spectral
effects of two horizontal ground-motion components as a single component, they
employ a variety of horizontal component definitions among which the geometric
mean (GM), GMRotI50 (Boore et al., 2006), RotD50 (Boore, 2010) (Table 4.1) are
the most popular in recently developed GMPEs. Notwithstanding, many researchers
tend to focus on the strike-normal component of horizontal ground-motions to
address the high spectral demands in directivity dominant ground motions (Huang et
al., 2008).

The horizontal component definition, in particular the directivity, becomes even more
important since recent seismic design codes such as ASCE/SEI 7-10 (ASCE, 2010),
the 2009 and 2015 editions of NEHRP provisions (BSSC, 2009; 2015) built their
design strategies for maximum direction. This is because the earthquake spectral
demands resulting from the geometrical mean of two horizontal components
(geomean of horizontal components) are lesser with respect to those determined from
the maximum direction (i.e., the direction corresponding to maximum of rotated
horizontal components; Sarotpio0). Since structures will have different levels of
resistance at different orientations, their design that is based on the maximum

65



direction of horizontally rotated components sounds a reasonable strategy to many
engineers. This strategy could be particularly relevant for structural systems having
symmetry in all directions (known as azimuth-independent structures).

Many studies in the literature address the directionality issue to harmonize the
horizontal component definitions. For example, Beyer and Bommer (2006) provide
a suite of expressions to convert one horizontal component definition to the other. Of
those definitions, they propose empirical expressions to convert GMRotl50 to
maximum of horizontally rotated component (RotD100) without making any
distinction between near-fault and far-fault recordings. Hong and Goda (2007) define
a model to estimate the spectral demands at any desired azimuthal angle from
Sarotpioo. Huang et al. (2008) seek relationships between geomean-based
(GMRotI50) and maximum direction horizontal component definitions for near-fault
records. Shahi and Baker (2014) propose horizontal-component conversion
expressions between RotD50 and RotD100 without making any classification about
directivity and non-directivity records.

The directionality becomes even more important when directivity effect is of concern
for sites close to the ruptured fault segment. As discussed in the previous chapter,
directivity models such as the one proposed by Chiou and Spudich (Spudich et al.,
2013) evaluates the directivity effects by considering the RotD50 horizontal
component definition. In other words, Chiou and Spudich directivity model
intermediates between SaRotD50 and SaRotD504irectivity (SaR0tD50 component when
directivity is dominant). In a similar manner, the Shahi and Baker (2011) directivity
model modifies the GMPEs estimating geomean-based (i.e., GMRotI150) spectrum
for arbitrary orientations relative to fault strike. This study uses the Shahi and Baker
(2011) directivity model to compute the directivity spectral amplifications for strike-
normal horizontal component (see discussions in Chapter 5). As there is no specific
scaling model to understand the relation between directivity and no-directivity
Sarotn100 (i.€., Sarotdioodirectivity VS. SaRrotDi00nodirectivty -OF SIMply Sarotpico-), the
directivity amplification expressions developed from Shahi and Baker (2011)
directivity model cannot be assessed for its use to represent Sarotp100 directivity 1N code-
based approaches. Note that a relationship between Saretbioodirectivity VS.

Sarotd10onodirectivty Would also be useful to understand the level of additional
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amplification to scale Sarotpsodirectivity 10 Sarotbioodirectivity. Currently, CALTRANS
(2013) recommends a 20% increase in Sarotpsodirectivity t0 MIMIC Sarotd100directivity-

This chapter aims to establish a relationship between Sarotpioodirectivity VS.
Sarotb1oonodirectivty 1N order to respond to the discussions posed in the previous
paragraph. In other words, the relationship established between Sarotpioodirectivity and
Sarotbioonadirectivty Would be useful to see if the directivity spectral amplification
expressions developed for SN horizontal component from SHB11 directivity model
is sufficient while addressing Sarotp1oodirectivity for seismic guidelines. The next section
describes the horizontal component metrics for establishing the terminology and then
explains the database as well as the methodology while developing the relationship
between Sarotbioodirectivity aNd Sarotbioonodirectivy. 1he expressions developed in this
chapter would also be useful to assess the suggestions by CALTRAN (2013) to obtain

SaRrotb10odirectivity from SaRrotDsodirectivity-

4.2 Horizontal Component Definitions

The early versions of ground-motion predictive models use the spectral ordinates of
(@) both “as recorded” horizontal components (referred to as random horizontal
component metric) or (b) the maximum of spectral ordinate of “as recorded”
horizontal components (referred to as maximum horizontal component metric). Later,
the model developers have started to use either the arithmetic mean or geometric
mean of “as recorded” horizontal ground motions as the ground-motion component
metric. These metric definitions, however, disregard the ground motion orientation
in component definition and they depend on the orientation of the recording device
(Boore et al, 2006). In recent years, there is a growing effort among the engineering
seismology and earthquake engineering community to surmount these drawbacks by
adopting different horizontal component metrics that can reflect the ground-motion
characteristics at different orientations. This is also important for describing
earthquake demands in seismic design. The importance of an efficient horizontal
component definition is more evident in highly polarized records (e.g., forward-
directivity records at which one of the horizontal components are under the influence
of a strong pulse). Component definitions such as geometric mean would certainly

fail to capture the polarization effect, as it would simply take the arithmetic average
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of the two horizontal components in the logarithmic domain. An example of a highly
polarized ground-motion record is given in Figure 4.1.a: Rolleston station recording
from the 24 September 2010 M\ 7.1 Darfield earthquake (Bradley and Baker, 2015).
As depicted from this figure, the oscillator displacements of two mutually
perpendicular horizontal axes at T= 2.0s show a strong polarization in the NW-SE
directions (120°-300° axis).
(a)
Station: ROLC 90 40cm

4 Sept 2010
T=2.0s

’\*Rotalion,
\ 0

=2.0s)

0.3

0.25 ¢

0.2

Station: ROLC
4 September 2010

0 45 90 135 180

Spectral acceleration, Sa(T

0.15

Rotation of as-recorded orientation, 6 (deg)

Figure 4.1 (a) Hllustration of polarization by plotting the displacement response
of horizontal components at T = 2s for at the Rolleston station from the 24
September 2010 My 7.1 Darfield earthquake), (b) Sa values at T = 2.0s obtained
by rotating the horizontal ground-motion components at 0°<0<179° (Bradley
and Baker 2015)
Boore et al. (2006) proposed GMRotDpp and GMRotlpp horizontal component
metrics that are independent of sensor orientations. Given a set of spectral periods,
these component metrics are based on a set of geometric means at each spectral period

computed from “as recorded” orthogonal horizontal motions rotated through all

possible non-redundant rotation angles. Here, “GM?” refers to the geometric mean of
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horizontal spectral ordinates at the designated spectral periods, “RotD” or “Rotl”
indicate rotation-dependency or rotation-independency as a function of spectral
period and “pp” describes the designated percentile from the distribution of spectral
ordinates at a given period at non-redundant rotation angles. In GMRotlpp, the most
common rotation angle that minimizes the spread of the rotation-dependent geometric
mean is chosen from the considered period range in the spectrum calculations.
Boore (2010) introduces RotDpp and Rotlpp that represent the ppth fractile of rotated
horizontal ground motions at non-redundant rotation angles without computing
geometric means. The computation of horizontal ground motion for RotDpp or
Rotlpp is given in equation (4.1).

0SC(t,0) = 0SC,(t) - cos @ + 0SC,(t) - sin 6 4.1
The variable OSC(t,0) is the resultant horizontal ground-motion vector at angle 6
computed from the mutually perpendicular horizontal ground-motion components of
OSC(t) and OSC>(t). The angle 0 is the rotation angle measured from the horizontal
axis along OSCy and t refers to time. Given a period T, one can compute the spectral
ordinates for non-redundant angles 0°<0<179° and select the ppth fractile from the
populated spectral ordinates at all angles. In case pp = 50, the corresponding spectral
value is the median spectral amplitude (probability of exceedance is 50%) whereas if
pp = 100, the corresponding spectral value is the maximum of all rotated components
(and the corresponding direction is maximum direction) because the probability of
exceedance is 0%. As in the case of GMRotDpp, RotDpp indicates rotation-
dependent spectral ordinates in terms of period whereas Rotlpp is rotation-
independent spectral ordinates for the period of concern in the spectrum
computations. In other words, the analyst selects the rotation angle such that the
variation of rotation angles is minimum along the entire period range at the pre-
selected fractile, pp for Rotlpp component metric.
Figure 4.1b graphically illustrates the differences between geometric mean of “as
recorded” components (Sagm) together with Sarotpico, Sarotoso as well as the
orientation dependency (Sarot) of spectral ordinates at T = 2s for the recording given
in Figure 4.1a. Note that Saretp100 Occurs at about 6 = 120° whereas Sarotpso 0CCUrS

at about © = 70°. The variation of spectral ordinates is significant in terms of rotation

angle 6.
69



Table 4.1 Definitions of horizontal component metrics

Horizontal Parameter

Definition

As recorded

The orientation of the recording instruments is
commonly arbitrary with respect to the fault
alignment (very often north—south and east—west)
and is generally not correlated to the orientation of
nearby faults

Geometric Mean

Geometric mean of spectra of x and y components

SaGMxy(Ti) = \/SClx(Ti) ) Say(Ti)

FN and FP

Fault-normal and fault-parallel components with

respect to fault-strike

GMRotDpp

This component definition accounts for the random
orientation of the horizontal axis system by
choosing, at each response period, the ppth
percentile of the geometric mean from all possible

orientations (Boore et al. 2006)

GMRotlpp

This ground-motion measure is an approximation
of GMRotDpp with a constant axis orientation for
all periods, which minimizes the sum of differences
between GMRotlpp and GMRotDpp over all
considered periods (Boore et al. 2006)

RotDpp

This component is a measure of horizontal-
component seismic intensity that represent any
fractile in a consistent way with GMRotDpp
without computing geometric means but yet still
independent of the in situ orientations of the

recorded ground motions (Boore 2010)

Rotlpp

This ground-motion measure is an approximation
of RotDpp with a constant axis orientation which is
the most representative of the SaRotDnn spectrum

over all considered periods (Boore 2010)

70




As indicated, for this specific period (T = 2s), the maximum direction spectral
acceleration occurs when 6 ~ 120° but this angle would be different for the rest of the
spectral periods. In passing, it should be noted that the fault-normal and fault parallel
component definitions are frequently used in the literature to emphasize some
important features of the directivity-dominated ground motions. As already described
in the previous chapters, fault normal is perpendicular to the azimuthal strike of the
ruptured fault plane whereas fault parallel is the component along the azimuthal strike
of the ruptured fault. Table 4.1 lists the definitions of horizontal component metrics
discussed in this section.

4.3 Ground-motion Data Set

The ground-motion database used in this study is a subset of PEER (Pacific
Earthquake Research Center) NGA-West2 database (http://ngawest2.berkeley.edu;
Ancheta et al. (2014)). The ground motions with 6.0<Mw<8.0 and Rrp<30km are
selected from the PEER NGA-West2 database for pulselike and non-pulse cases. The

magnitude range covers the characteristic magnitudes considered in this study. The
distance range of these records is also consistent with the distance interval of interest
(i.e., Ry<30km). The basic premise about non-pulse recordings is that they mainly
represent the backward directivity phenomenon whereas the pulselike ground
motions in the dataset are recordings of forward-directivity. The studies by Baker
(2007) and Shahi and Baker (2014) are used while determining the pulselike
recordings in the NGA-West2 strong-motion database. These studies determine
pulselike records near the ruptured fault segment through wavelet analysis and use a
set of criteria such as pulse indicator index being greater than 0.85, occurrence of
impulsive signals at the beginning of ground-velocity waveform and amplitudes of
peak ground velocities greater than 30 cm/s. (Already stated in Chapter 3). A total of
58 non-pulse and 113 pulselike ground-motions are compiled for the designated
magnitude and distance intervals. The pulselike records used in this study are also
used by Shahi (2013) to develop the directivity model (SHB13) discussed in Chapter
3.
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Figure 4.2 Magnitude versus distance distribution of (a) pulselike and (b) non-pulse

ground motions for different styles of faults (dip-slip and strike-slip)
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Strong motion recordings that exhibit unequal durations in their horizontal
components or recordings from very soft soil conditions (Vs30<140m/s) as well as
those having Vs30>900m/s are disregarded in the database. The accelerograms with
unequal durations are disregarded as Sarotpioo Spectral computations require
acceleration time series with equal lengths. Sarotpi00 Spectrum is required in the
derivation of proposed spectral amplification factor between maximum direction
pulselike and non-pulse horizontal ground motions. Very soft and hard rock records
are also disregarded because the proposed spectral amplification factor is established
from a limited number of ground-motion records and a dataset showing large Vs3o
variations may yield biased spectral amplifications in terms of soil conditions. The
current Vszo interval (140m/s<Vs30<800m/s) of the dataset represents stiff soil
conditions and the proposed amplification factor would be suitable for this Vs3o
interval. Figure 4.2 shows the magnitude vs. distance distributions of pulselike
(Figure 4.2a) and non-pulse (Figure 4.2b) records. The scatters use different color
codes for dip-slip (normal and reverse) and strike-slip records. The pulselike records
display a fairly uniform Mw vs. Rep distribution for Ryp<15km. The non-pulse
records are sparse and lack uniformity in terms of My and Rrp. Appendix C lists the
pulselike and non-pulse ground motions with their important features.

As discussed in Chapters 2 and 3, Somerville et al. (1997) is one of the first systematic
studies to distinguish the general features of directivity dominated pulselike ground
motions. The Somerville et al. (1997) forward-directivity model makes use of some
fault-site geometry parameters to identify the important properties of directivity-
dominated ground. These parameters are length ratio for strike-slip faults, X; a width
ratio for dip-slip faults, Y; an azimuth angle between the fault plane and ray path to
site for strike-slip faults, 0; and a zenith angle between the fault plane and ray path to
the site for dip-slip faults, ¢. (See relevant discussions in Chapter 2). These
parameters are still used to identify the directivity dominated (pulselike) recordings
(e.g., Huang et al., 2008). According to Somerville et al. (1997) (a) Xcos(6) or
Ycos(¢) is greater than 0.5 in the forward-directivity region, and for Mw>6.5 and for
T>0.6s the geomean spectral demands of directivity dominated records are larger than

those estimated from the conventional GMPEs, (b) for Mw>6 and T>0.5s, strike-
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normal (SN or fault-normal; FN) spectral demands are, on average, greater than the

strike-parallel (SP or fault parallel; FP) spectral demands when 6 or ¢ is less than 45°.
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Figure 4.3 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by
considering the 6 = 45° criterion as the boundary between pulselike and non-pulse
strike-slip recordings. The red solid lines show the average of pulselike and non-
pulse SN/SP ratios.

Figure 4.3 compares the SN-to-SP (SN/SP) spectral ratios of strike-slip pulselike and
non-pulse datasets at T = 2s, 3s, 4s and 5s by considering the second observation of
Somerville et al. (1997). The pulselike recordings are those having 6<45° and the
non-pulse recordings are designated by 6>45°. The panels in Figure 4.3 also show
the average of SN/SP spectral ratios (SN /SP) for pulselike and non-pulse records.
The SN/SP pulselike records attain larger values that is also certified by their larger

mean (i.e., SN/SP) with respect to non-pulse recordings. Figure 4.4 displays the
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same comparison for dip-slip (i.e., normal and reverse faults) recordings. The same
observations are also valid for this case: SN/SP spectral ratios of pulselike ground
motions exhibit larger values with respect to those of non-pulse records.
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Figure 4.4 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by
considering the ¢ = 45° criterion as the boundary between pulselike and non-pulse
dip-slip recordings. The red solid lines show the average of pulselike and non-pulse
SN/SP ratios.

Figure 4.5 and Figure 4.6 further validate the above remarks by implementing the
first observation of Somerville et al. (1997) to data in hand. This time the SN/SP
spectral ratios at T = 2s, 3s, 4s and 5s are compared between pulselike and non-pulse
records by making use of Xcos6 = 0.5 (strike-slip) and Ycos¢ = 0.5 border (dip-slip).
The pulselike SN/SP spectral ratios are populated in the Xcos® > 0.5 (stike-slip
events; Figure 4.5) or Ycosd > 0.5 regions (dip-slip events; Figure 4.6). As expected,

these figures also depict larger SN/SP ratios for pulselike recordings.
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The discussions in this section suggest that the compiled pulselike and non-pulse
recordings follow the observations made by Somerville et al. (1997) that is a one of
the renown studies in the literature to identify the distinctive features of directivity-
dominated ground motions. Thus, these recordings can be used in confidence to
develop the empirical modification factors to estimate the maximum rotated
horizontal component for directivity effects (RotD1004girectivity). The following
sections describe the methodology followed to reach this objective.
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Figure 4.5 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by
considering the Xcos(0) = 0.5 criterion as the boundary between pulselike and non-
pulse strike-slip recordings. The red solid lines show the average of pulselike and

non-pulse SN/SP ratios.
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Figure 4.6 Comparisons of SN/SP spectral ratios at T = 2s, 3s, 4s and 5s by
considering the Ycos(¢) = 0.5 criterion as the boundary between pulselike and non-
pulse dip-slip recordings. The red solid lines show the average of pulselike and non-

pulse SN/SP ratios.

4.4 Conceptual Discussions on RotD100directivity

In recent years, several studies have proposed conversion factors to estimate the
maximum rotated horizontal component of ground motions (RotD100) from an
arbitrary horizontal component definition. (In fact, most of the time the proposed
conversion factors aim to convert geomean type horizontal components -
GMRotlI50). This is because the specification of maximum direction ground motions
(i.e., RotD100), referred to as directionality, gains popularity in seismic design codes
(ASCE, 2010; BSSC 2009; 2015). The studies by Beyer and Bommer (2006),
Campbell and Bozorgnia (2008) and Huang et al. (2008) proposed conversion factors

to estimate maximum rotated horizontal spectral acceleration component (Sarotp100)
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from GMRot150 spectral acceleration (Sacmrotiso). These studies use the Sarotp1oo t0
Sacmrotiso ratios from observed ground-motion data to propose their empirical
conversion factors. The 2009 NEHRP provisions (FEMA P-750; BSSC, 2009) also
propose similar conversion factors that are based on the studies of Huang et al.
(2008). Shahi and Baker (2014) propose a conversion factor that scales Sarotpso
component for the maximum rotated component (Sarotp100). Shahi and Baker (2014)
use the scaling factors provided by Boore (2010) to modify their conversion
expression (i.e., Sarotp100/Sarotpso) t0  (Sarotbioo/Sacmrotiso). The later study
investigates the relation between Sarotpso and Sasmrotiso indicating that, on average,
there are slight differences between the spectral amplitudes of these two horizontal
component definitions and the differences are insignificant for many engineering
studies. Hence, these two conversion factors (i.e., Sarotpi0o/Sarotpso and
Sarotp100/Sacmrotiso) can be assumed the same without losing significant accuracy.
Figure 4.7 compares different conversion models proposed for Sarotpi00/SacMmRotiso
ratio. Note that the 2015 NEHRP provisions (FEMA P-1050; BSSC, 2015) still use
the same scaling factors of the 2009 edition of NEHRP provisions to convert geomean

horizontal component definitions for maximum rotated component.
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Figure 4.7 Comparison of different scaling (conversion) models proposed for

Sarotp100/SacMRotiso ratio
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The curves by Campbell and Bozorgnia (2007), Beyer and Bommer (2006), and
Shahi and Baker (2014) follow very similar trends as given in Figure 4.7 because
these conversion models blend the near-fault and far-fault records in the same
ground-motion dataset. The 2009 edition of NEHRP curve is a compromise between
Huang et al. (2008) “all earthquakes” and “no Chi-Chi” cases. Note that the Huang
et al. (2008) curves are developed from near-fault recordings but they are classified
into different bins including (a) those of forward-directivity dominant ground
motions, (b) all near-fault recordings in the database, and (c) near-fault ground
motions excluding those of the 1999 Chi-Chi, Taiwan earthquake. That’s why the
curves by Huang et al. (2008) follow a different path with respect to other conversion
models. As a matter of fact, the Huang et al. (2008) ““forward-directivity”” conversion
factor imposes significantly larger values with respect to the other models since it
combines the directivity as well as directionality effects in a single curve. In other
words, the “forward-directivity” conversion factors by Huang et al. (2008) establish
a relationship between the geomean horizontal component and the maximum
direction horizontal component including forward-directivity. It should be noted that
the curves presented in Figure 4.7 display median conversion values whereas the
compared models also provide the 84" percentile curves to account for ground-
motion variability.

The comparative plots in Figure 4.7 indicate the lack of an intermediate relationship
between Sarotpi00 and directivity-dominated maximum-direction spectral amplitudes
(Sarotbioodirectivity). The significance of directivity-dominated spectral demands for
maximum rotated component is emphasized by Bradley and Baker (2015) by
studying the directivity-dominated ground motions of the 2010 Canterbury
earthquake. Huang et al. (2008) estimate the maximum rotated component for
forward-directivity effects (RotD1004irectivity) from a geomean horizontal component
definition (GMRotl50). The same study indicates the similarity between SN
horizontal component spectral demands (Sarn) and SArotpio0 (Mmaximum rotated
component spectral demands) at sites very close to the ruptured fault segment
(Rrup<3km) when forward-directivity conditions are met. However, this assertion

loses its validity as rupture distance increases even if the directivity effects are still
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prominent. Thus, a conversion factor between the spectral demands of maximum
rotated component (Sarotbio0) and maximum rotated component dominated by
directivity (Sarotbioodirectivity) Would have practical implications for code-based
spectrum development. In essence, this chapter provides this model by taking the
ratios of spectral demands of RotD100 horizontal component between pulselike and
non-pulse recordings. This is given in Equation 4.2.

SaRotD100directivity,observed

AFdirectivity = 4.2

SaRotD1OOnodirectivity,observed

Note that the spectral demands of maximum rotated component dominated by

directivity can be computed from Equation 4.3.
SAgotpioo,pirectivity = SArotns0 " AFrotpioo * AFdirectivity 4.3

where AFrotp100 Can be the directionality conversion factor proposed by Shahi and
Baker (2014) or it could be the conversion factor by Beyer and Bommer (2006) if
RotD50 spectral demands are assumed to be the same as GMRotl50 spectral
demands. In fact, the next chapter presents directivity amplification expressions for
strike-normal spectral demands from the Shahi and Baker (2011) narrow-band
directivity model by modifying the GMRotI50 elastic spectrum. Thus, comparisons
of AFRrotp100- AF directivity With the proposed model in the next chapter would lead to
useful observations about (a) directivity models presented in this chapter and the next
chapter as well as their implications on code spectrum for directivity effects, and (b)
the similarity (as well as validity) between SN and maximum rotated component
spectral demands under directivity dominant cases. The next chapter also develops
an alternative directivity amplification equation for Sarotpsodirectivity DY considering the
Chiou and Spudich (2013) directivity model. Thus, the developed AFudirectivity
expression can be useful to understand the level of difference between Sarotpsodirectivity

and Sarotp1oodirectivity- ThiS iS again a topic considered in the next chapter.

4.5 Proposed Model for Calculation of RotD100directivity

The database presented in Section 4.3 is used for the computation AFagirectivity. The
dataset is divided into different bins considering different magnitude and distance
intervals. The bins are generated whenever the number of data (either in pulselike or

non-pulse ground-motion groups) are greater than 4. This limitation is necessary

80



since the ratio expression given in Equation (4.2) is developed from the median
spectrum computed from each bin. Average statistics determined from a small
number of data would be dubious for computing reasonable spectral amplifications.
Table 4.2 lists the ground-motion bins, the number of data in each bin as well as their
magnitude and distance intervals. In brief, the ground-motion bins are classified into
two broad magnitude bins (6.0<Mw<7.0 and 7.0<Mw<8). The bins having close
distance (Rrup<15km) recordings are the majority. There is one pulselike and non-
pulse ground-motion bin pair from the larger magnitude interval (7.0<Mw<8.0)
representing recordings of distances between 15km<R,<30km. The sparse data do
not allow a rupture-mechanism (dip slip vs. strike-slip) type classification in the

computation of AFgirectivity-

Table 4.2 Classification of the records for different magnitude, distance and site
class ranges and the related subgroups

Moment Rrup Number of Number of non-
Magnitude (km) pulselike records pulse records
6.0< Mw<7.0 0 <Rp< 5 23 6
6.0< Mw<7.0 5<Rpyp< 10 29 36
6.0< Mw<7.0 10<Ryyp< 15 8 5
7.0< Mw<8.0 0< Rryp<15 37 4
7.0< Mw<8.0 15< Rpyp<30 16 7

The median spectral amplitudes (log mean of spectral amplitudes) as well as
Sarotb100directivity aNd Sarotb1oonondirectivity SPectra of individual ground motions in the
ground-motion bins listed in Table 4.2 are given in Figure 4.8 and Figure 4.9,
respectively. Note that no attempt is made to eliminate some of the outlier spectral
variations since data is quite limited. These outlier spectral shapes are considered as
the cases showing intricate nature of the ground motions and in a way depict record-
to-record variability.

The median ratio curves (medians of Sarotbioodirectivity 10 Sarotbioonodirectivity from
pulselike and non-pulse bin pairs) are displayed in Figure 4.10. Larger spectral
amplifications due to directivity are observed at closer sites independent of magnitude

(i.e., AFdirectivity values of 6<Mw<7, Okm<Rr,p<5km are the largest with respect to all
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other amplification values). Although vague, in general, the AFudirectiviy Variations
show an increasing trend up to a certain spectral period that is followed by a more
stable trend towards longer periods. This trend is similar to the one observed from
Chiou and Youngs (2013) narrow-band directivity model. (See discussions on
CHS13 directivity model held in Chapter 3 as well as Chapter 5).
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Figure 4.8 Sarotpioodirectivity (from pulselike records) spectral amplitudes of
individual ground motions of the bins given in Table 4.2
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Figure 4.9 Sarotbioonodirectiviy (from non-pulse records) spectral amplitudes of
individual ground motions of the bins given in Table 4.2

The aforementioned observation is violated only by the AFdirectivity curve of 7<My<8
and Okm<R,p<15km bin that follows a spectral amplification trend similar to SHB11
narrow-band directivity model. (See discussions on CHS13 directivity model held in
Chapter 3 as well as Chapter 5). However, this analogy can be considered as weak
and it would be difficult to justify because it is the only AFgirectivity Curve showing a

trend comparable to SHB11 narrow-band directivity model and, yet, the gradient of
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descending branch (after T = 7s) is very slow with respect to those of SHB11 model
presented in Chapters 3 and 5. Given the sparse data in the considered database, the
shape-wise similarity in SHB11 and AFudirectivity curve for the 7<Mw<8 and

Okm<Rp<15km bin is coincidental.
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Figure 4.10 AFgirectivity curves computed from median Sarotpioodirectivity t0
Sarotb1oonodirectivity ratios of the ground-motion bins presented in Table 4.2

For comparison  purposes, the same exercise is repeated for
SaRrotbsodirectivity/ SARotDs0nadirectivity USING the same ground-motion bins presented in
Table 4.2. The RotD50 spectra for directivity and nodirectivity bins are given in
Figure 4.11 and Figure 4.12, respectively. These plots also display the mean
logarithmic spectrum of each ground-motion bin as well. The log-mean
SaRrotbsodirectivity/ SARotDsonodirectivity ratios are presented in Figure 4.13. Note the
significant similarity between these spectral ratios and those presented in Figure 4.10
(log-mean  Sarotbioodirectivity/ SArotD100nondirectivity  ratios). The observed —similarity
between the spectral ratios for different horizontal component definitions requires
further investigation and may suggest that the pulselike and non-pulse ground-motion
databases as well as the ratio computations have some specific implications. This

topic would be discussed later in the last section of Chapter 5.
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Figure 4.11 Sarotpsodirectivity (from pulselike records) spectral amplitudes of

individual ground motions of the bins

given in Table 4.2. The solid black lines

are the log-mean (median) spectral curves of each bin.
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Figure 4.12 Sarotpsonadirectiviy (from non-pulse records) spectral amplitudes of

individual ground motions of the bins given in Table 4.2. The solid black lines

are the log-mean (median) spectral curves of each bin
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Figure 4.13 Median Sarotpsodirectivity {0 SaRrotpsonodirectivity ratios computed by
normalizing the median Sarotpsodirectivity Spectrum of each pulse-like ground-
motion bin in Table 4.2 with the corresponding median Sarotpsonodirectivity SPECtrum
of non-pulse ground-motion bin

4.6 Summary and Conclusion

This chapter emphasizes the significance of directionality in response spectrum
computations and investigates the relationship between directivity and nondirectivity
spectral amplifications for maximum direction (RotD100) (i.e., AFdirectiviy =
Sarotb10odirectivity/ SARotD100nodirectivity) . A Specific dataset is compiled from pulselike and
non-pulse ground motions having magnitudes between 6<Mw<8 and rupture
distances up to Rryp = 30km. The rupture mechanisms of the compiled ground motions
are either dip-slip or strike-slip whereas Vs3o values used as an indicator for site
conditions range between 140m/s<Vs3p<900m/s. The non-pulse data resemble
backward directivity phenomenon and pulselike data represent directivity-dominated
earthquake scenarios. To this end, RotD100 spectral ratios of pulselike and non-pulse
records populated under different magnitude and distance intervals would yield a
first-order approximation on spectral amplitude variations along maximum direction
between directivity-dominated and nondirectivity near-source recordings. The
AFqirectivity ratios computed under these conditions for earthquake scenarios (or
magnitude and distance intervals) given in Table 4.2 are presented in Figure 4.10.
Note that for very close distances to the ruptured fault segment (Rryp<5km), the
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AFirectivity ratios exhibit significantly large values (AFgirectivity = 6.5 for T>2s even if

the magnitude range is between 6<Mu<7).
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Figure 4.14 Median of Sarotbioodirectivity 10 Sarotb100nodirectivity ratios presented in
Figure 4.10

In fact, Figure 4.14 shows the period-dependent median variation of AFgirectivity CUTVeS
given in Figure 4.10 for an overall idea about the directivity-dominated spectral
amplification along maximum direction. Table 4.3 lists the period dependent
variation of this median curve.

As indicated above, the proposed relationships are developed from a limited number
of data that may pose questions about the reliability of the presented results. They do
not reveal any explicit information about fault-site geometry as discussed in Chapter
3. Besides the magnitude and distance intervals are quite large. Moreover, the median
SaRrotdsodirectivity/ SARotDsonadirectivity Fatios (Figure 4.13) that are computed for the same
ground-motion bins are very similar to those of Sarotbioodirectivity/ S@RotD100nodirectivity-
The observed similarity can be an indicator of some specific features in the compiled
pulselike and non-pulse ground-motion bins that are reflected on the the ratio
statistics. This topic will be discussed in the last section of Chapter 5.

Nevertheless, to the best knowledge of the author, this type of relationship
(Sarotbioodirectivity/ Sarotb1oonodirectivity) 1S presented for the first time in the literature.
Essentially, this first-order relationship can serve to understand the level of spectral
amplification for compound effects of directionality (along maximum direction) and

directivity. The discussions in this section are also useful to see the limits of
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directivity amplifications that are developed from SHB11 describing the relation
between directivity-dominated fault normal to nondirectivity geomean type
horizontal spectra. (See details in Chapter 5).

Table 4.3 Period-dependent variation of Sarotbi1oodirectivity t0 Sa@rotd100n0directivity

ratios presented in Figure 4.14

Period (s) | Median of Sarotbi0o ratio

0 1.25
0.01 1.25
0.02 1.22
0.03 1.16
0.04 1.17
0.05 1.11
0.075 1.00
0.1 1.01
0.12 1.07
0.15 1.08
0.17 1.08
0.2 1.08
0.25 1.29
0.3 1.37
0.4 1.34
0.5 1.61
0.75 1.44
1 1.96
1.5 2.55
2 2.43
3 3.14
4 3.56
5 4.15
7.5 4.47
10 451

Another useful relation that can be developed from the compiled pulselike and non-
pulse ground-motion bins is the period-dependent RotD100/RotD50 ratios of
pulselike and non-pulse records. These ratios are given in Figure 4.15 (for pulselike
bins) and Figure 4.16 (for non-pulse bins). Figure 4.17 shows the median curves of
the ground-motion bin specific ratios given in Figures 4.15 and 4.16. The presented
median curves can be a first-order modification factor for CHS13-based directivity

spectral amplifications (see Chapter 5) because, as it is already stated in Chapter 3,
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CHS13 model vyields spectral amplifications between Sarotpsodirectivity and
Sarotbnodirectivity Whereas the median directivity amplification presented in Figure 4.17
can rescale Sarotpsodirectivity fOr Sarotbioodirectivity. Table 4.4 lists the median

amplification curves presented in Figure 4.17.
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Figure 4.15 RotD100 to RotD50 spectral amplitude ratios for the pulselike bins in

Table 4.2
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Figure 4.16 RotD100 to RotD50 spectral amplitude ratios for the nonpulse bins in
Table 4.2
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Table 4.4 Period-dependent variation of Sarotp10o t0 Saretpso ratios presented in

Figure 4.17
. Median of Median of
Period
) RotD100 to RotD50 | RotD100 to RotD50
for pulselike for nonpulse
0 1.1861 1.1978
0.01 1.1861 1.1985
0.02 1.1895 1.1972
0.03 1.1787 1.1859
0.04 1.1816 1.2051
0.05 1.1974 1.2056
0.075 1.1803 1.1726
0.1 1.1887 1.2142
0.12 1.2161 1.1898
0.15 1.2016 1.2272
0.17 1.2210 1.2239
0.2 1.2031 1.1992
0.25 1.2348 1.2001
0.3 1.2204 1.1913
0.4 1.2538 1.2576
0.5 1.2400 1.1796
0.75 1.2419 1.2357
1 1.2446 1.2431
1.5 1.2853 1.2088
2 1.2496 1.2683
3 1.3039 1.2728
4 1.2984 1.2730
5 1.3210 1.2552
7.5 1.2835 1.2756
10 1.2942 1.2672

91



1.4

Median(Sagp100,/Saropso)
R

1.1 1
e Pulselike
——— NO Pulse

1.0 T T T 1

Period(sec)

Figure 4.17 Medians of RotD100 to RotD50 spectral ratio curves computed from
pulselike (Figure 4.15) and non-pulse (Figure 4.16) bins
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CHAPTER 5

AMPLIFICATION MODELS FOR FORWARD-DIRECTIVITY

5.1 Introduction

In Chapter 3 the effects of some salient seismological parameters such as slip rate
and fault characteristic magnitude on directivity dominant spectral amplifications are
investigated. In addition, the influence of target hazard level (mean annual
exceedance rate or return period) as well as source-site geometry are studied to
address the variations in spectral ordinate amplifications under directivity. The
observations show that the above parameters play important roles on the directivity
dominated spectral amplifications but different narrow-band models (SHB11 and
CHS13 in this case) consider their affects at different levels. SHB11 is sensitive to
all of the above parameters to describe the forward-directivity dominated spectral
amplitudes whereas CHS13 model is influenced by the characteristic magnitude and
source-site geometry while estimating spectral amplifications for directivity.

Based on the findings and observations of Chapter 3, the expressions for directivity
amplification are proposed in this chapter for their direct incorporation to elastic
response spectrum. The important point about the proposed expressions is their level
of complexity. In other words, the expressions proposed here are kept simple enough
to facilitate their implementation to seismic design codes with a balance of preserving
their effectiveness and efficiency in predicting the directivity dominated spectral
amplification factors.

In order to show how a model can be very complex, SHB11 narrow-band model is
used to propose two alternative forward-directivity spectral amplification expressions
for 475-year and 2475-year return periods. The complicated expressions developed
from SHB11 also showed the approach to develop the simpler formulations. Of the
two alternative SHB11 based expressions, the simpler one is compared with another
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formulation developed from the CHS13 narrow-band model to comprehend how
different narrow-band directivity models describe the spectral amplifications due to
directivity. A similar discussion already takes place in Chapter 3 while highlighting
the influence of seismological and geometrical parameters in directivity dominated
spectral amplitudes. However, this time the comparisons are focused on the

implications of different narrow-band directivity models on the design spectrum.

5.2 Complex Nature of Forward-directivity Spectral Amplification

The forward-directivity spectral amplification is affected by a set of geometrical and
seismological parameters as discussed in Chapter 3. The major objective in this
chapter is to propose spectral amplification expressions for directivity that can
represent the variations in elastic spectral ordinates under different directivity
scenarios. However, the contribution of several seismological and geometrical factors
(used as estimator parameters in the proposed expressions) to describe the directivity-
dominated spectral amplifications makes it difficult to propose a simple amplification
model. Besides, the interaction (correlation) between these parameters may
complicate the nature of proposed expressions. As an example, the fault characteristic
magnitude not only changes the spectral amplification amplitudes due to directivity
but also affects the period range where spectral amplifications become maximum
(discussed in Section 3.3). In order to address and illustrate the complexity of the
directivity-dominated spectral amplifications a set of equations is developed from
SHB11 narrow-band model by considering all the contributing seismological and
geometrical parameters. The expressions for estimating the spectral amplifications
due to directivity are developed from the normalized spectral ordinates: given a
specific return period directivity dominated spectral ordinates (Sadirectivity) are
normalized with their counterparts that disregard the directivity (Sano-directivity). In
other words, the developed expressions in this section as well as in the rest of this
chapter estimate Sagirectivity/ Sano-directivity ratio. Although the earthquake scenarios used
in the calculations of Sagirectivity/Sano-directivity are already given in Table 3.1, they are
repeated here for convenience. Five different fault lengths (FL = 20km, 50km,
100km, 150km and 300km) with a constant fault width (FW=10km) to represent five
different characteristic magnitude (Mcn 6.25, 6.7, 7.0, 7.2 and 7.5) together with three
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slip rates ($=0.5cm/year, 1.0cm/year and 2.0cm/year) corresponding to different
levels of seismic activity are used to establish the aforementioned earthquake
scenarios. The probabilistic seismic hazard computations are run over 42 sites that
are spatially distributed around the fault to address the influence of source-site
geometry on Sagirectivity/ Sano-directivity- 1 e proposed spectral amplification expressions
in this section consider the variation of all of the above estimator parameters as

explained in the following.

521 A Comprehensive 475-year Return Period Spectral Amplification
Expression from the SHB11 Narrow-band Model

As stated in Chapter 3 the directivity-dominated spectral amplifications become
maximum at sites located close to the edges of the faults in SHB11 model. This
behavior results in a bilinear trend for the spectral amplification curves along the fault
strike direction (designated by Ry/L in Chapter 3). The spatial distribution of the sites
around the fault used in this study is illustrated here once again (Figure 5.1) for
convenience together with the boundary regions highlighted with red boxes. These
boundary regions are used in the development of spectral amplification expressions
for 475-year return period.

Ry(km)
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30 [] 0 . ]
ite 31 Site 32 i i i i
25 e Si i 3 Slfi34 Slts35 Site B6
ite 25 Site 26 Sife R7 Site 28 Site 29 Sif 0
20 B . . ]
15 ite 19 Site 20 Site 22 Site 23 Si 4
10 Ji!e 13 Sitg14 Site 16 Site 17 Si 8
5 ite 7 Site 8 Site 10 Site 11 Sitel12
| ] [ ] [ ]
ite 1 Site2 Sited  Site5  Si
0 0.25 05 06 07 08 Rx/L
‘ fault length

Figure 5.1 Spatial distribution of sites around the fictitious fault and the sites
located in the boundary region enclosed by red rectangles

As an example to directivity-dominated bilinear spectral amplification trends along
Rx/L, Figure 5.2 shows the amplification curves (Sadirectivity/ S@no-directivity) at different

spectral periods for sites located 15km away from the fault in Ry direction (the sites
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along the green line as shown in Figure 5.1). The depicted amplification curves

correspond to an earthquake scenario of FL = 100km and $ = 1cm/year.

1.30
T=0.75sec
s | TS
:l::4.0scc
120 | —= Tl

1.15

1.10 -

Spectral Amplification

1.00

0.95 T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ry/L
Figure 5.2 Bilinear trend for directivity-dominated spectral amplifications along

fault strike, Rx/L, direction for a suit of spectral periods (FL = 100km, s =
1.0cm/year, Ry=15km)

As it can be seen in Figure 5.2, the maximum spectral amplifications due to forward-
directivity are observed at sites located along Rx/L = 0.5 and the amplification curves
follow a bilinear trend between the the sites located in the boundary regions. The
level of spectral amplifications is sensitive to spectral period that is proportional to
pulse period, Tp, in SHB11 (see relevant discussions in Chapter 3). For example, in
this specific earthquake scenario, the characteristic magnitude is Mc 7 since
FL=100km that corresponds to a pulse period of (T,) ~ 4sec. Eventually directivity
originated spectral amplifications are mostly maximized at T = 4sec in Figure 5.2.
This observation is common in most of the earthquake scenarios studied in this thesis
under SHB11 narrow-band directivity model. In fact, Figure 5.3 shows the 475-year
return period maximum Sauirectivity/ Sano-directivity SPectral amplification values that are
populated from all earthquake scenarios generated under different combinations of
fault length and slip rate at sites located 10km from the fault strike in Ry direction
(the sites along the blue line as shown in Figure 5.1). (Side note: maximum spectral
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amplification corresponds to the spectral period at which Sagirectivity/ Sano-directivity 1S
maximum for a specific earthquake scenario that is dictated by fault length, slip rate,
etc). As it can be seen in this figure the majority of maximum spectral amplifications
due to directivity occur at sites located on Rx/L = 0.5. These observations justify the
use of a bilinear functional form to express the directivity-dominated spectral
amplifications for SHB11 narrow-band model.

The bilinear trends discussed in the previous paragraphs require two functional forms
to describe the spectral amplifications at two regions: 0<Rx/L<0.5 and 0.5<Ry/L<0.8.
The maximum spectral amplifications at the sites located inside the boundary regions
(i.e., shown with red boxes in Figure 5.1 and they are located on Rx/L = 0 and Rx/L
= 0.5) are used to develop the maximum spectral amplification equations for sites
enclosed by these regions (Equations 5.1and 5.2). For sites located between these
boundary regions (0<Ry/L<0.5 or 0.5<R,/L<0.8), the maximum spectral
amplifications are calculated from linear interpolation as given in Equation 5.3.
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Figure 5.3 Maximum amplification values and location of the sites which
experience the maximum value

AMP(%=0,R}/,T) = Qp1 + all.Ry + a21.T + a31.T2 + a41.Ry. T 5.1

=X=0.5Ry,T

AMP(R_X‘ ) = Ay + alz.Ry + azz.T + a32.Ry2 + a42.T2 + asz.Ry.T
L

5.2
+ agp. RY%2.T + a;,.Ry. T? + ag,. Ry?. T?
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Rx
AMP (px =2X (—) X [AMP Rx — AMP /rx ]
——Ry,T L ——==0.5,Ry,T ——=0,Ry,T R
(L ) (L ) (L ) 0<Tx<0-5 5.3a

HAMP(Rs 1o
AMP r =(RTx)—_O.5x[1—AMPRx ]
(SEry.T) 0.3 (T=05v.7) 0.5 < % <08 5.3b
+AMP(Rx o)

As discussed throughout the text as well as in Sections 3.3 and 3.4, the directivity
dominated spectral amplifications are functions of the spectral period (T), Ry, Rx/L
and the slip rate values. The characteristic magnitude (that is proportional to fault
length) also determines the period range that maximum spectral amplifications occur.
(Characteristic magnitude, Men, is closely related to pulse period, Tp, for SHB11 as
discussed in Chapter 3). Therefore, the developed amplification equations (Equations
5.1 to 5.3) are dependent on these parameters (spectral period (T), Ry, Rx/L and slip
rate and Mcn) for the sites located along the first and second boundary regions (i.e.,
along Rx/L=0 and Rx/L=0.5). Regarding the discussions in Section 3.4 (Figure 3.13
and Table 3.2) the directivity-dominated spectral amplifications at sites located along
Rx/L = 0.8 can be taken as unity. Limited to the case studies in this study, directivity
amplifications are either insignificant or they do not exist at or beyond Ry/L =0.8.
The coefficients of Equation 5.1 (Ry/L = 0) and Equation 5.2 (RY/L = 0.5) are
computed from the regression analysis on the maximum spectral amplifications that
are extracted from the entire set of earthquake scenarios generated within the context
of this thesis (discussed and presented in Section 3.3). These coefficients are given in
Table 5.1 and Table 5.2. The general form of the spectral amplification expression
that can be used for all sites located around the fault is shown in Equation 5.3. The
first part of this expression (Equation 5.3a) gives the directivity-dominant spectral
amplifications for sites located between 0< R,/L<0.5 and the second part (Equation
5.3b) gives the directivity-dominant spectral amplifications for sites located between
0.5< Ry/L<0.8.

The residuals that show the differences between the spectral amplifications calculated
from PSHA (observed) and Equations 5.1 to 5.3 (estimated) are shown in Figure 5.4.
This basic statistical measure reveals information about the existence of bias in the

estimated spectral amplifications. Any apparent trend in the mean residuals indicate
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the existence of bias in the estimated spectral amplifications against a specific
estimator parameter. The residual trends are shown for Rx/L, Ry and the spectral
periods respectively. Mean and mean + standard deviation of the residuals are also
given in these figures (as error bars) to envisage the possibility of bias in the estimated
spectral amplifications for directivity. The plots show that the mean values of the
residuals are either zero or they are close to zero. This is consistent with the
theoretical expectations because residuals are expected to be normally distributed
zero mean varieties. The standard deviations of residuals show a dependency on the

selected estimator parameters (i.e., Rx/L, Ry and T).

Table 5.1 Coefficients of the directivity dominant spectral amplifications of
Equation (5.1) for sites located along Rx/L =0

Characteristic | Slip Rate
] ao1 ail azi asi aa1
Magnitude | (cm/year)

$§=05 | 1.12642 | -0.00397 | -0.02851 | 0.00146 | 0.00054
Mch=6.25 $§ =10 | 116436 | -0.00534 | -0.03444 | 0.00161 | 0.00072
§=2.0 | 1.22046 | -0.00771 | -0.04034 | 0.00148 | 0.00103
$§=0.5 | 106475 | -0.00209 | -0.01058 | 0.00039 | 0.00029

Mcnh=6.75 $§=10 | 107242 | -0.00245 | -0.01152 | 0.00043 | 0.00040

$§=2.0 | 1.12303 | -0.00487 | -0.01290 | -0.0001 | 0.00058

$=0.5 | 105341 | -0.00177 | -0.00659 | 0.00025 | 0.00025

Mcnh=7.0 $=1.0 | 105150 | -0.00179 | -0.00317 | -0.00015 | 0.00021

$§=2.0 | 107892 | -0.00363 | 0.00641 | -0.00135 | 0.00031

$§=0.5 | 105752 | -0.00177 | -0.00671 | 0.00017 | 0.00023

Mcn=7.25 $=1.0 | 1.04008 | -0.00125 | 0.00165 | -0.00045 | 0.00015

$=2.0 | 103573 | -0.00252 | 0.02337 | -0.00243 | 0.00015

$=0.5 1.07911 | -0.00222 | -0.01194 | 0.00049 | 0.00034

Mcnh=7.5 $=1.0 1.02404 | -0.00147 | 0.02584 | -0.00237 | 0.00019

§=2.0 0.96960 | -0.00160 | 0.08205 | -0.00628 | -0.00042
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Figure 5.4 Residuals between PSHA (observed) and the estimated directivity
amplifications for 475-year return period
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5.2.2 Estimating the 2475-year Return Period Spectral Amplifications from the
Complicated Formulations Developed from SHB11 Narrow-band

Directivity Model

The directivity-dominant spectral amplitudes for 2475-year return period (referred to
as Maximum Considerable Earthquake, MCE, in seismic design codes) are developed
by modifying the corresponding expressions (Equations 5.1 to 5.3) that are valid for
475-year return period spectral amplifications. This approach is explained in the
following paragraphs.

The Sadirectivity/ Sano-directivity ratios are extracted for 2475-year return period from the
PSHA runs of all earthquake scenarios. This step is similar to the one described in
the development of directivity-dominant spectral amplification expressions for the
475-year return period. Let this ratio be called as amp2a75 (T) that is given in Equation
5.4. Figure 5.5 presents a typical case of two spectra corresponding to Sagirectivity and
Sano-directivity, and amp2a7s (T) is essentially the ratio between these spectra.

Sadirectivity (T)

54
Sanodirectivity (T)

ampaa75(T) =

20

—e— Conventional
——— Narrow-Band

Spectral Acceleration (g)

Period (sec)

Figure 5.5 Normalization of 2475-year return period narrow-band spectrum to

conventional spectrum
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The similar amplification factors for 475-year return period can be called as
ampa7s(T) that are, in fact, already computed for the entire earthquake scenarios and
for all sites for the derivation of Equations 5.1 to 5.3 as explained in the previous
section. In essence, the ratio between these amplification factors (i.e.,
amp2475(T)/ampa7s(T)) that is given in Equation 5.5 would describe the spectral
amplification difference for the two return periods of concern when the directivity
effects are prevalent.

T
NRM g (T) = % 0.6sec <T<10sec 5.5

The normalized spectral amplification factor (NRMamp(T)) is unity for periods less
than 0.6s as SHB11 narrow-band directivity model inherently accounts for the
forward-directivity effects for T>0.6s. This is partially observed in Figure 5.5 for the
2475-year return period sample. Figure 5.6 shows NRMamp(T) variations of 42 sites
for two specific earthquake scenarios having different fault lengths (FL = 50km and
FL = 100km), thus exposed to different Mcn, and s = 1cm/year. The plots in Figure
5.6 include the logarithmic mean () and three different fractiles of NRMamp(T) (utoc
and pt2c) assuming that NRMamp(T) is lognormally distributed. Note that
NRMoamp(T) is above unity almost for the entire spectral period range. The exception
is the relatively shorter periods (T<1s) where the directivity-dominant spectral
amplifications are almost equal to 1.0 and directivity spectral amplifications of 475-
year return period (ampaszs(T)) are slightly larger than those of 2475-year return
period directivity spectral amplifications (amps7s(T)). This is an inherent feature of
the SHB11 narrow-band directivity model.

An approach similar to directivity dominant area concept that is discussed at the end
of Chapter 3 is used for utilizing NRMamp(T) distributions to modify the 475-year
return period directivity spectral amplifications for the 2475-year return period. The
region around the fault is divided into 4 regions by combining the fault-site geometry
and NRMoamp(T) distribution. For each region the NRMamp(T) distribution is
represented by a specific value: pin(NrRmamp), Lt In(NRMamp)£0 In(NRMamp) OT LL In(NRMamp) 20
In(NRMamp). As already explained, pn(nrmamp) and o im(nrmamp) denote the logarithmic

mean and logarithmic standard deviation of NRMamp(T) calculated from 42 sites
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given a specific earthquake scenario. The next paragraphs discuss how the directivity

dominated fault vicinity is divided into four regions.
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Figure 5.6 Normalized period-dependent 2475-year to 475-year directivity dominant
spectral amplification ratios of 42 sites (grey curves) and corresponding logarithmic
mean, +sigma as well as 2sigma over logarithmic mean a) fictitious fault with 50km

length and s = 1cm/year b) fictitious fault with 100km length and $ = 1cm/year

Figure 5.7 shows the NRMamp(T) contour maps at T = 2sec (top row) and T = 4sec

(bottom row) for faults having 20km and 100km lengths with 1cm/year slip rate. Next

to each contour map, the corresponding NRMamp(T) curves for 42 sites are plotted for

T up to 10s. These curves indicate that at T = 2sec and T = 4sec, the NRMamp(T)

values are maximized for 20km and 100km fault length earthquake scenarios,

respectively. The contour maps of corresponding earthquake scenarios deliberately
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display the distribution of NRMamp(T) at these periods to show the extent of
difference between the 475-year and 2475-year directivity dominant spectral
amplitudes. The NRMamp(T) curves also include p, utc and p+2c fractiles that are
given as red lines. (Note that pn(nRMamp) @and G in(NRMamp) are abbreviated as | and o,
respectively to increase the readability of the text). The comparisons between the
contour maps and maximum NRMamp(T) at p, pto and pt+2c suggest that the
directivity dominated region can be represented by four sub regions and each region

can attain one of the NRMamp(T) fractile values: p, p+c or pt+2c.
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Figure 5.7 Comparison of NRMamp and the related contour maps for classification
of the sites a8) NRMamp Vs T(sec) for FL=20km, S=1cm/year b) contour map of
NRMamp for T=2.0sec FL=20km, S=1cm/year ¢) NRMamp vs T(sec) for
FL=100km, S=1cm/year d) contour map of NRMamp for T=4.0sec FL=100km,
S=1cm/year
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Inherently, the sites located on the fault have the largest NRMamp(T) (Figure 5.7).
These on-fault sites are classified as Group 1 and p+2c° value of NRMamp(T) can
represent the amplification at these sites fairly well. The gradual decrease in
NRMoamp(T) values as depicted by the contour maps in Figure 5.7 suggest that one can
create three additional regions (Group 2, Group 3 and Group 4) and the sites within
the boundaries of these regions can be idealistically represented by p+o, p and p-o

NRMamp(T) values, respectively.

Table 5.3 Geometric parameters for determination of four region boundaries
defined for the calculation of amplifications

Cm;ggfﬁl:g;'c (Sc'r'np/;ztre) Rxi(km) | Rxe(km) Dy (km)
§=05 0.3 x FL 0 10
M 6.25 5=1.0 0.3 x FL 0 10
§=2.0 0.3 x FL 0 10
§=05 0.3 x FL 0 10
M 6.75 5=1.0 0.3 x FL 0 15
§=2.0 0.3 x FL 0 20
§=05 0.1 x FL 0.1 x FL 15
M 7.0 5=1.0 0.1 x FL 0.1 x FL 20
§=2.0 0.1 x FL 0.1 x FL 25
§=05 0.1 x FL 0.1 x FL 25
M 7.25 5=1.0 0.1 x FL 0.1 x FL 30
§=2.0 0.1 x FL 0.1 x FL 30
§=05 0.1 x FL 0.1 x FL 30
Mw 7.5 5=1.0 0.1 x FL 0.1 x FL 30
§=2.0 0.1 x FL 0.1 x FL 30

3 There is one exception to this rule: for on-fault sites that are exposed to Mc,>7.25 (or FL>150km),
one should use p+o NRMamp(T) value. This is due to the saturation of amplification factors for such
long faults.
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The idealized four regions are shown in Figure 5.8. The suggested pattern in Figure
5.8 is very similar to the one in Figure 3.15. However, the subregions in Figure 5.8
represent the overall variation of NRMamp(T) (2475-year to 475-year directivity
spectral amplification) whereas Figure 3.15 reveals information about the spatial
extent of directivity in the vicinity of the ruptured fault. In essence, NRMamp(T)
values of p+20, u+o, p and p-c can be used by the sites enclosed with red (Group 1),
green (Group 2), yellow (Group 3) and blue (Group 4) colors, respectively. The
boundaries in Figure 5.8 are given in Table 5.3 for different earthquake scenarios

considered in this study.

30km

Dy

Skm

(Rxi | Rxp :
\ Medisn
\; :/ 3 Mediin - 10 o

03 x fault length fault length

Figure 5.8 Classification of the area around the fault into four regions with
respect to NRMamp(T) intensities

Polynomial curves are fit by using the discrete logarithmic mean and standard
deviation values of NRMamp(T) at T = 0.75s, 1.0s, 1.5s, 2.0s, 3.0s, 4.0s, 5.0s, 7.5s and
10s. These expressions are given in Equations 5.6 and 5.7 for pnnNrRmamp) and o
In(NRMamp), respectively. Table 5.4 lists the regression coefficients for different
combinations of Mc, and s representing the entire set of earthquake scenarios
considered in this study.

Han NRMamp(ry) = IN(by " T* + b3 - T3 + by - T? 4+ by - T + by) 5.6

U(lnNRMamp(T)) = ln(C3 - T3 + Cy - T2 + (o T + Co) 5.7
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The estimation of directivity spectral amplifications for the 2475-year return period

is done by following the below expressions:

Group 1 Sites: amp,475(T) = ampy;s(T) - e#+2°
Group 2 Sites: ampy475(T) = amp,,5(T) - e#*?
Group 3 Sites: amp,475(T) = ampy;5(T) - e#
Group 4 Sites: amp,475(T) = amp,;5(T) - e#~°

In the above expressions ampazs(T) is determined from Equations 5.1 to 5.3 by
considering source-site geometry whereas Equations 5.6 and 5.7 are used in the
exponential terms to modify 475-year directivity amplifications for 2475-year. Note
that the resulting 2475-year directivity-dominated spectral amplifications are not
fully sensitive to the source-site geometry because a simplified regional classification
is used to reflect the proximity of the site to the fault. Thus, although the complicated
formulations given in this section tend to acknowledge the influence of all prominent
directivity parameters, they are not fully capable of capturing the entire physical
model for a precise description of directivity dominated spectral amplification. This
last statement is at least valid for the 2475-year return period directivity spectral
amplifications. Notwithstanding, the expressions presented in this section are far too
complex to be considered in the seismic design codes since an expert needs to use
many tabulated coefficients to obtain the directivity amplifications for a specific
scenario. The next sections provide alternative approaches to address the directivity

dominated spectral amplifications in a simplified manner.

5.3 Simplified Directivity Amplification Equations for SHB11 and CHS13

Spectral amplification equations proposed in the previous sections for SHB11 are
developed by considering the effect of slip rate, fault characteristic magnitude and
fault-site geometry as well as the interaction between these parameters. The
consideration of all these parameters adds significant complexity to the proposed
equations (significant number of coefficients to be considered to address the

directivity effects on spectral ordinates). The proposed equations suggest a good
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agreement with the results of PSHA (observed cases) for the 475-year return period
amplifications (Figure 5.4) but the 2475-year amplifications that are obtained by
modifying the corresponding estimations of 475-year values are not fully sensitive to
the fault-site geometry for a simplified regionalization approach as explained in the
previous section. Besides estimation of the 2475-year spectral amplifications over the
475-year spectral amplification predictions may not be very practical.

In this section, simpler expressions are proposed for the directivity amplifications
using the observed PSHA results of SHB11 and CHS13 models. The proposed
expressions prevail a compromise between accuracy and simplicity. To this end, a
different approach is used to incorporate the effect of fault-site geometry in the
directivity-based amplification equations: first amplification expressions are
developed for sites where the highest directivity spectral amplifications are observed.
This step is followed by defining source-site geometry scaling factors to estimate the
directivity spectral amplifications at the other locations around the fault. As it is
discussed at different parts of the text (e.g., Section 3.4), the largest directivity
spectral amplifications occur at the sites located along Rx/L=0.5 in SHB11 (the sites
inside the red box in Figure 5.9). The maximum directivity spectral amplifications
are observed at the sites located along Rx/L=0.6 in CHS13 (the sites inside the blue
box in Figure 5.9).

The base models are developed for the sites located inside the green buffer around
the fault (Figure 5.9). These sites are at the most 15km away from the fault strike
(along y direction). The premise is that the distance-dependent variation of directivity
spectral amplification beyond this buffer zone is more significant and tapers down
rather fast. A similar distance capping is also implemented in Caltrans seismic design
provisions (CALTRANS 2013) (Section 2.3, Figure 2.7). The proposed expressions
for SHB11 narrow-band directivity model considers the effects of slip rate, fault-site
geometry and hazard level. The proposed expressions that originate from CHS13
narrow-band directivity model are functions of source-site geometry and hazard level
as slip rate is not a critical parameter while determining the level of directivity
spectral amplification in CHS13 (refer to Figure 3.11). In order to develop the base

amplification equations, the medians of directivity-dominant spectral amplifications
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are calculated from the sites that experience the largest amplification (sites inside the

red box for SHB11 and the sites inside the blue box for CHS13 in Figure 5.9).
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Figure 5.9 Spatial distribution of the sites around the fault and the sites located in
the boundary region

The median amplifications are calculated at the spectral period where maximum
amplification occurs (AMPtmax) in SHB11 and AMP tcomer) in CHS13) as well as at
T = 10s for SHB11-based model. For spectral periods less than Tmax (Or Tcorner) OF for
periods between Tmax and T = 10s, the directivity amplifications are approximated
from linear interpolation. A scaling methodology is used to estimate the directivity
amplifications at locations other than the sites where directivity amplifications are

maximum. The details of entire process are discussed in the next sections.

5.3.1 Relationship between the Characteristic Magnitude and Amplification
Period Range

In Section 3.3 it is shown that the fault characteristic magnitude affects the amplitude
of directivity spectral amplification as well as the period interval where the maximum
amplification occurs. SHB11 and CHS13 narrow-band directivity models reflect this
effect on to spectral amplifications in different ways. To start developing the
simplified expressions, the relationship between the characteristic magnitude and the
period interval where the maximum directivity spectral amplification occurs is
investigated in this subsection. The directivity spectral amplification patterns for both

SHB11 and CHS13 are also highlighted while studying the above relationship.
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As it is depicted in Section 3.3 both SHB11 and CHS13 models show a bilinear trend
for period-dependent directivity amplifications. The spectral period where the
directivity amplification becomes maximum is called as Tmax and Tcomer in SHB11
and CHS13, respectively. The PSHA results indicate that given a specific fault
characteristic magnitude (or a specific fault length) Tmax and Tcomer attain similar
values. This observation is shown in Figure 5.10 that illustrates the 2475-year return
period directivity amplifications for a fault of 150km length (Mch = 7.25) at $=0.5,
1.0 and 2.0cm/year. The period-dependent directivity amplifications are plotted for
sites located within the 15km distance from the fault strike in y-direction. The upper
and lower panels display the results of SHB11 and CHS13, respectively and both
panels display the median directivity amplifications as well. The Tmax and Tcomer
values can be approximated as 4.0s for both SHB11 and CHS13 although the trends
in the directivity amplifications between the SHB11 and CHS13 are quite different.
SHB11 amplifications increase up to Tmax, decrease after Tmax Whereas CHS13
amplifications increase up to Tcomer, and keep almost a constant value after Tcomer.
Note that the amplification values are quite different between SHB11 and CHS13:
SHB11-based amplification values are larger than those of CHS13 because SHB11
estimates the directivity amplifications for fault-normal horizontal component
whereas the directivity amplifications by CHS13 are for RotD50 (Boore, 2010).

The period values at which the directivity amplifications are maximized increase with
the characteristic magnitude of the fault. Larger the characteristic magnitude, greater
is the period where that directivity amplification reaches its maximum (Tmax OF Tcorner
in SHB11 and CHS13, respectively). Figure 5.11 shows the median directivity
amplifications to describe the change in Tmax (SHB11) and Tcomer (CHS13) as Meh
shifts towards larger values. Each median directivity amplification curve is computed
from the directivity amplification curves of sites within the first 15km from the strike
of the fault that generates the designated Mcn earthquake. All three slip rates (s=0.5,
1.0 and 2.0cm/year) are considered in the calculations. The Tmax values picked from
the median directivity amplification curves are plotted against Mch in Figure 5.12a.
The Tmax values are linearly related with Mch. The same trend is also valid for Tcomer

since Tmax ~ Tcomer @S discussed in the above lines (Figure 5.12b).
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Figure 5.10 Tmax and Tcormer Values for directivity amplifications. The earthquake
scenario is FL=150km (Mch=7.25), $§ = 0.5cm/year, 1cm/year, 2 cm/year a)
SHB11 model b) CHS13 model

113



a) SHB11

20
- FL20km
1.8 - FL50km
- FL100km
1.6 1 - FL150km
- FL300km

Amplification
i

1.0 1
0.8
0 1 2 3 4 5 6 7 8 9 10
Pcriod(sce)
b) CHS13
1.6
1.5 1

,Zk
1.4 - 7
o
2
" 1.3 A
Q
=
=t |
g 1.2
<
1.1 1
1.0
0.9

Period(scc)

Figure 5.11 Median SHB11 and CHS13 directivity amplifications in terms of Mcn
and the variation of Tmax and Tcomer With the characteristic magnitudes
The almost linearly related characteristic magnitude and Tmax (Or Tcomer) IS
represented by Equation 5.8.

Tpe = 2.72 - My, — 15.37 5.8
where Tmc denotes either Tmax (SHB11) or Tcomer (CHS13) and Meh is the
characteristic magnitude of the fault. Note that the characteristic magnitude is
described by Mch in this study. Equation 5.8 is compared with the probability of pulse
occurrence for different pulse periods versus discretized magnitude. The figures of

these comparisons and related discussions are given in Appendix B.
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Figure 5.12 Relationship between characteristic magnitude and the spectral period
(Tmc) at which the maximum directivity amplification occur. Dashed red line is

the fit to the actual trend given in black
5.3.2 Simplified Amplification Equation for SHB11 Model

Firstly, a base expression is proposed for the sites where maximum directivity
amplification occurs. To this end, median directivity amplifications are computed at
Tmax for the sites located along Rx/L=0.5 and Ry<15km (i.e., sites 3, 9, 15 and 21 that
are enclosed by the red box in Figure 5.9). The same calculations (using the same
sites) are also repeated at T = 10s to compute the median directivity amplifications at
the end of the period range of interest in this study.

In Figure 5.13 the median directivity amplifications of sites 3, 9, 15 and 21 are plotted
as a function of Mcn at Tmax for the three slip rates (i.e., s = 0.5cm/year, 1.0cm/year
and 2cm/year) as well as for the two return periods of interest (475-year and 2475-
year). The directivity amplifications have a linearly increasing trend between
6.25<Mc<7.25. They tend to flatten (or either decrease) after Mcn 7.25 that is
interpreted as amplification saturation in this study. The amplification saturation is

experienced on long faults (thus, faults with large Mch) and the sites located close to
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the edges of such faults are not affected from directivity when ruptures occur at
remote locations with respect to the fault edges.

The relationship between Mch and directivity amplification at Tmax (AMPTmaxbase) IS
represented by linear curves fitted to the observed (from PSHA) data by least squares
method for magnitude range between 6.25<Mc<7.25. For magnitudes beyond Mcn
7.25, the directivity amplifications are assumed to follow a constant value. This
relationship is given in Equation 5.9.

AMPTmax,base = Artmax * MCh + ,BTmax 625<Mch§725 59a

AMPrimax pase = Xrmax 7.25 + Brmax Mcn>7.25 5.9b

AMPmaxpase €Stimates the median directivity amplifications at the sites 3, 9, 15 and
21 (shown in Figure 5.9) and Table 5.5 lists the values for armax and Brmax for different
slip rates as well as return periods.

Figure 5.14 shows the relationship between Mcn and the directivity amplification at
T=10s for the three slip rates (s = 0.5cm/year, 1.0cm/year and 2cm/year) and for the
two return periods (475-year and 2475-year). This figure also shows the linear curve
fitted to data for each slip rate value. The relationship between AMPT10pase and Mch

is given in Equation 5.10.

AMPri0pase = Ar10 * Mcn + Brio 5.10

where o110 and P10 denote the regression coefficients of the fitted curve and are given
in Table 5.6 for the slip rates and return periods considered in this study. Note again
that AMPT10ase €Stimates the median directivity amplifications of sites 3, 9, 15 and
21 at T=10s.

Alternative to Equation 5.10, a cubic relationship is also fitted to represent
AMPr10pase. The functional form of this expression is given in Equation 5.11 (Table
5.7 lists the coefficients) whereas Figure 5.15 compares the fitted expression with the
actual data. Although AMPriopase Can be calculated from either of these two
equations, Equation 5.10 is preferred for its simplicity.

AMPr10 pase = Q10 X Mep® + Brio X Mep® + Yri0 X Moy + 110 5.11
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Figure 5.13 SHB11-based directivity amplification vs Mch relationship together
with linear fits calculated for the sites 3, 9, 15 and 21 at spectral period Tmax a)
475-year return period b) 2475-year return period
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Figure 5.14 SHB11-based directivity amplification vs Mch relationship together
with linear fits calculated for the sites 3, 9, 15 and 21 at T = 10s a) 475-year
return period b) 2475-year return period
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Table 5.5 armax and Brmax coefficients for AMPTmaxbase — SHB11

AMPTmax 475-year Return Period 2475-year return period
SR(cm/year) O Tmax BTmax O Tmax BTmax
SR=0.5 0.146 0.149 0.495 -1.9
SR=1.0 0.241 -0.364 0.546 -2.168
SR=2.0 0.454 -1.664 0.554 -2.167

Table 5.6 ar10 and Prio coefficients for AMPT10base — SHB11

AMPTmax 475-year Return Period 2475-year return period
SR(cml/year) 0T10 Br10 0T10 Br10
SR=0.5 0.045 0.72 0.313 -0.95
SR=1.0 0.167 -0.04 0.384 -1.4
SR=2.0 0.229 -0.4 0.425 -1.65

Table 5.7 ar10, Br10, Y110 and {110 coefficients for AMPT10pase — SHB11

AMPTmax 475-year Return Period 2475-year return period
SR(cmlyear) | ati0 | Brio | yro | JT10 oT10 Brio | y1w0o | {110
SR=0.5 -0.012 | 0.162 | -0.502 | 0.72 |0.0448 | -0.606 | 2.35 | -0.95
SR=1.0 0.008 | -0.115 | 0.554 | -0.04 | 0.0515 | -0.695 | 2.718 | -1.4
SR=2.0 0.04 |-0531| 1979 | -04 |0.0511|-0.689 | 2.735 | -1.65

Equations 5.9, 5.10 and 5.11 are developed from directivity amplifications of sites
located along Rx/L=0.5 and Ry<15km. To estimate the directivity amplifications of
sites at other locations around the fault geometric scale factors (GSFrmax and GSFr10)
are used in the directivity amplification expressions. The geometric scale factors,
GSFrmax and GSFr10 modify AMPmaxbase and AMPT10pase t0 calculate AMPtmax and
AMPT1g for different locations around the fault. As in the case of AMPTmaxpase and
AMPT10pase, a linear trend is assumed between AMPtmax and AMPT10 to estimate the
directivity amplifications at the intermediate periods between 0.6s<T< Tmax and
Tmax<T<10s at locations other than Ry/L = 0.5. The derivations of relevant expression
are discussed in the following paragraphs.

Figure 5.16 and Figure 5.17 as well as Figure 5.18 to Figure 5.19 show the variations
of 475-year and 2475-year GSFrmax and GSFr1p along Ry/L = 0, 0.25, 0.5, 0.6, 0.7
and 0.8 for s = 0.5cm/year, 1.0cm/year and 2.0cm/year. The GSF computations are
done with the directivity amplifications of sites within Ry<15km because for

relatively remote sites (Ry>15km) a distance taper will be considered as explained
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later. Given a specific Mch, GSF is the normalized directivity amplifications at
Rx/L#0.5 by those at Ry/L=0.5. These plots suggest that the directivity amplifications
do not change dramatically at Mcn 6.25 for different Rx/L. Thus, the directivity
amplification is not affected seriously from the site location at small magnitudes.
Thus, the characteristic magnitude dependent variations of GSFrmax and GSFro start
with unity at Mch 6.25 and increases linearly up to Mcn 7.25. Both geometric scale
factors (GSFrmax and GSFr1o) attain a constant value after Mcn 7.25 that corresponds
to the geometric scale factor at Mch 7.25. The expressions for the computation of
GSFrmax and GSFT10 are given in Equations 5.12 and 5.13. The corresponding scale
factors (SFrmax and SFr10) values are given in Table 5.8.
GSFrmax = [1+ (SFrmax — 1) - (M, — 6.25)] 6.25<Mc<7.25 5.12a

GSFrmax = SFrmax Mch>7.25 5.12b
GSFTlO = SFTlO Mch>7.25 513b

Table 5.8 Scale factor values for Tmax and T = 10s for the computation of geometric
scale factors at different Rx/L values (SHB11 model)

Rx/L=0 | Rx/L=0.25 | R¥/L=0.5 | R/L=0.6 | R¥L=0.7 | Rx/L=0.8
2475-SFtmax | 0.67 0.89 1 0.93 0.7 0.6
2475-SFt10 | 0.78 0.94 1 0.93 0.83 0.78
475- SFrmax | 0.83 0.85 1 0.93 0.85 0.83
475- SF110 0.96 0.96 1 0.98 0.96 0.96

The directivity amplifications at Tmax and T =10s (AMPtmax and AMPT1o,
respectively) at locations other than Ry/L = 0.5 are computed from AMPTmax base,
AMP1=10pase, GSFtmax and GSFr1o per Equations 5.9, 5.10, 5.11, 5.12 and 5.13. For
convenience, the relevant expressions for AMPtmax and AMPtyo are given in
Equations 5.14 and 5.15.

AMPrygx = AMPrmax pase * GSFrmax =

(aTmax "M + ﬁTmax) . 6.25<Mcn<7.25 5.14a
[1 + (SFTmax - 1) ' (Mch - 6-25)]
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AMPrpax = AMPTmax,base " GSFrmax =

Mcn>7.25 5.14b
(aTmax 7.25 + ﬁTmax) ' SFTmax
AMPr, = AMPTlO,base *GSFr10 =
(ario0* Mcn + Prio) 6.25<Mcn<7.25 5.15a
[1 + (SFT10 - 1) ’ (Mch - 6-25)]
AMPry = AMPTlO,base *GSFr10 =
Mcen>7.25 5.15b

(ar10°7-25 + Br10) * SFr1o

As already stated the extension of directivity amplifications at periods other than Tmax
and T = 10s is done by assuming a bilinear variation of directivity amplifications
between 0.6s<T<Tmax and Tmax<T<10s. The general form of directivity amplification
function for this computation is given in Equation 5.16. This equation can be used to
compute the directivity amplifications between 0.6 sec<T<10 sec for 475-year and
2475-year return periods by using the auxiliary formulations given in Equations 5.9,

5.10, 5.11, 5.12 and 5.13. The functional form accounts for the particular influence

of Mcn and .
AMP(T) =1+
T—06 5.16a
[(AMPy,,,, — 1) - )] 0.65<T< Trax
AMP(T) = AMP;, _+
- 5.16b
[(AMPTlo - AMPTmax) " (ﬁ)] Tmax<T<1OS

The above expressions compute Tmax by considering the directivity amplifications for
distances up to 15km from the fault strike. In other words, the variation of Tmax IS
assumed to be dominated by the directivity effects up to Ry = 15km (Equation 5.8).
As explained in the beginning of this chapter and at different locations throughout the
text, the computed directivity amplifications from above expressions are assumed to
be constant for Ry<15km. The directivity amplifications taper down to unity between
15km<Ry<30km and this is discussed in the last part of this chapter (Section 5.3.4).
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Figure 5.16 Observed geometric scale factors for AMPtmax - 475-year return
period and s = 0.5cm/year, s = 1.0cm/year and $ = 2.0cm/year (SHB11)
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Figure 5.17 Observed geometric scale factors for AMPtmax - 2475-year return
period and s = 0.5cm/year, s = 1.0cm/year and s = 2.0cm/year (SHB11)
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Figure 5.18 Observed geometric scale factors for AMPr1o - 475-year return
period and s = 0.5cm/year, $§ = 1.0cm/year and s = 2.0cm/year (SHB11)
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Figure 5.20 Effect of characteristic magnitude and slip rate on the directivity
amplifications for SHB11 model computed from proposed simplified expressions
a) 475-year return period b) 2475-year return period

The directivity amplification expressions developed here are employed for different

earthquake scenarios to grasp the variations in directivity under different parameters.

Figure 5.20 illustrates the period-dependent variation of directivity amplifications at

Rx/L=0.5 when faults of different lengths rupture with Mcn 6.25 and Mch 7.25. The

plots include the slip rate effects confined to the slip rates considered in this study.
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As it is expected, the increase in slip rates as well as Mch lead to larger directivity
amplifications. Needless to say, the change in return periods from 475-year to 2475-
year) also lead to larger directivity amplifications. Note that the maximum directivity
amplifications occur at Tmax = 1.6 and Tmax = 4.4s for Mcn 6.25 and Mcn 7.25,

respectively. These values are comparable with the patterns observed from PSHA.
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Figure 5.21 Effect of fault-site geometry (Rx/L) on the directivity amplifications
of SHB11 narrow-band model computed from the proposed simplified
formulations a) 475-year return period b) 2475-year return period
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Figure 5.21 compares the period-dependent variation of directivity amplifications for
Rx/L=0 and Ry/L=0.6 at Mch 6.25 and Mch 7.25. The directivity amplifications also
account for the differences due to different return periods. There is a single curve for
Mc 6.25 as the model assumes indifferent spatial variation of directivity
amplifications at small magnitude events. (Side note: the smallest characteristic
magnitude considered in this study is Mch 6.25 that is approximately the lower bound
limit of narrow-band directivity models used in this study). The amplitude of
directivity amplifications are higher for R«/L=0.6 as the characteristic magnitude
attains larger values. This observation is even stronger for larger return periods (2475-
year in the comparative plots). These simple comparisons suggest that the important
features of forward-directivity as discussed in Chapter 3 are incorporated fairly well

with the proposed expressions in this section.

5.3.3 Simplified Directivity Amplification Equations for CHS13 Narrow-Band
Model

The directivity amplification equations that are developed from CHS13 narrow-band
directivity model follow a similar methodological pattern as in the case of SHB11-
based expressions (discussions in the previous section). As discussed in Chapter 3,
the directivity amplifications computed from CHS13 increase for spectral periods up
to Tcomer (between 0.5s<T<Tcomer) that is followed by a constant plateau towards very
long periods (between Tcomer<T<10s). In addition, CHS13 modifies RotD50
horizontal component for directivity effects (RotD50pirectivity) While SHB11 modifies
GMRotI50 horizontal component for directivity and the modified horizontal
component is along the strike normal direction (simply fault-normal component).
Similar to the methodology followed in SHB11, the reference (base) expressions for
CHS13 are developed from the median directivity amplifications at sites along Rx/L
= 0.6 and Ry<15km (Sites 4, 10, 16 and 22 in Figure 5.9). These sites show the
maximum directivity amplification in CHS13 and the median directivity
amplification (AMPrcomerpase) IS computed for the spectral period Tcomer in this case.
The spectral period Tcomer IS also calculated form Equation 5.8 as in the case of SHB11
because PSHA results suggest Tcomer = Tmax. The relationship between AMPcorner,base
and characteristic magnitude is given in Equation 5.17.
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AMPTcorner, base = Rx/L=0.6 - Ry<15km
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Figure 5.22 Base amplification factors and magnitude relationships together with
linear line fits calculated for sites 4, 10, 16 and 22 at spectral period Tcomer -
CHS13 model, 475- and 2475-year return period

AMPTcorner,base = QArcorner " Mcn + ﬁTcorner 6.25<Mcn<7.25 5.17a

AMPTcorner,base = UTcorner " 7.25 + ﬁTcorner MCh>7-25 5-17b

where atcomer and PBrcorner are the regression coefficients and are computed by fitting
a straight line over the observed data (Figure 5.22). The otcomer and PBrcorner

coefficients of Equation 5.17 are given in Table 5.9 for the return periods of interest

in this study.

Table 5.9 arcomer and Breomer COefficients for linearly fitted AMP(Tcomer) function -

CHS13
475-Year 2475-Year
Ol Tcorner BTcorner Ol Tcorner ﬁTcorner
0.4 -1.4931 | 0.464 -1.9

As it is depicted in Figure 5.22 the directivity amplifications are linearly related to
Mch between 6.25<M<7.25. The amplification saturation is also observed for this
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case as in SHB11, thus, AMPcormerbase Value at Mch 7.25 is assumed to be valid for
Mcr>7.25. Note that the slip rate does not play an important role in the directivity
amplification amplitudes so $ is disregarded in the formulations developed for
CHS13.

The effect of site location (spatial variation of sites around the fault) is incorporated
into this model via geometric scale factor (GSFrcomer). The approach is again similar
to the one followed in SHB11 model. The maximum scale factor (GSFrcomer) iS unity
for Mch 6.25 whereas it is the normalized directivity amplifications at locations Ry/L
# 0.6 with those at Ry/L = 0.6. The procedure for the computation of GSFcomer IS
given in Figure 5.23 for 475 and 2475-year return period. The related SFrcorer Values
are given in Table 5.10.

The geometric scale factor (GSFrcomer) IS assumed to vary linearly between
6.25<Mcn<7.25 whereas it is kept as constant between 7.25<Mc<7.5 with the
corresponding value at Mch 7.25. The relevant expressions for the computation of

GSFrcorner are given in Equation 5.18.

GSFrcorner = 1+ (SFrcorner — 1) X (M¢p, — 6-25)] 6.25<M¢<7.25 5.18a
GSFrcorner = SFrcorner Mch>7.25 5.18b

Table 5.10 Geometric scale factor for different Rx/L values -CHS13

Rx/L=0 |Rx/L=0.25|Rx/L=0.5|Rx/L=0.6 | Rx/L=0.7 | Rx/L=0.8
475-Tcorner 0.73 0.74 0.93 1 0.98 0.89
2475-Tcorer | 0.69 0.70 0.86 1 0.98 0.88

After determining AMPrcomerpase and geometric scale factor (GSFrcomer) the
directivity amplification at any location around the fault for CHS13 narrow-band
directivity model can be calculated (Equation 5.19). The AMPcomer in Equation 5.19
is the maximum directivity amplification corresponding to spectral period Tcorner. AS
noted previously, for spectral periods larger than Tcomer the directivity amplification
takes a constant value that is equal to AMPcomer.

AMPrcorner = AMPrcorner pase * GSFreorner =

(aTcorner ' Mch + ﬁcorner) ' 6-25<Mch§7-25 5.19a
[1 + (SFTcor - 1) ) (Mch - 6-25)]
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AMPrcorner = AMPTcorner,base *GSFrcorner =
Mcn>7.25 5.19b

(@rcorner * 7-25 + Breorner) * SFrcorner
The extension of directivity amplifications for periods other than Tcomer IS given in
Equation 5.20 where a linear trend is assumed between 0.55<T<Tcomer and a constant

value for T>Tcorner.

AMP(T) = 1+ [(AMProoner — 1) X ————| 055 <T<Teomer  5.20a

Tcorner—0.

AMP(T) = AMPrcorner Teomer<T <10s 5.20b
As already emphasized in the previous section, the corner periods (Tcomer) are
estimated from Equation 5.8 that is developed from the observed Tcomer (O Tmax In
case of SHB11) for Ry<15km. A distance taper is implemented for sites beyond Ry =
15km to account for the decrease in directivity effects and it will be discussed in

Section 5.3.4.
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Figure 5.24 Amplification Model for RotD50 Component of CHS13
a) 475-year Return Period b) 2475-year return period

Equations 5.19 and 5.20 are used to compute directivity amplifications to observe the
behavior of CHS13 narrow-band model under different combinations of Mch and site
location. Figure 5.24 shows the 475-year and 2475-year return period directivity
amplifications plotted for Mch 6.75 and Mch 7.25 at three site locations (Rx/L=0.25,
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0.5 and 0.6). The displayed directivity amplifications are assumed to be invariant of
fault-normal distance up to Ry = 15km. As it is depicted from this figure, the site
location and Meh can significantly affect the directivity amplifications. The corner
periods shift towards longer periods with increasing Mch that also results in increased
directivity amplifications. As Ry/L attains values closer to 0.6, the directivity
amplifications increase. Inherently, the larger return periods (2475-year vs. 475-year
return periods in this case) result in larger directivity amplifications. These
observations are similar to those highlighted from the simplified SHB11 narrow-band
directivity model. The difference is in the period-dependent directivity amplification
trend as well as the amplitudes of directivity amplifications (originates from different
horizontal component definitions of the two models).

5.3.4 Taper function for the distance

The simplified equations proposed for SHB11 and CHS13 directivity models assume
an invariant directivity amplification for distances up to Ry = 15km. The directivity
amplifications taper down linearly to unity between 15km<Ry<30km. In essence, the
simplified directivity amplification expressions given in the previous two section
estimate constant directivity amplifications that are valid for Ry<15km and these
values should be decreased linearly to unity between 15km<Ry<30km. This approach
is similar to the one used in the seismic design guidelines of CALTRANS
(CALTRANS, 2013). Equations 5.21 show the implementation of this approach as

discussed in this paragraph. The whole concept is presented in Figure 5.25.
AMPSHBILOTCHSI3 (T = AMPoin <R veisim(T)  Rup<15km 5.21a
AMPSHBll or CHS13 (T) —

AMPSHBl<1 or Ci-1513 T) +
0hem < Ry <15im (T) 15km<Rrp<30km 5.21b

Ry — 15
(1 - AMPSEELEr 8385, (1)) - (P2 =)

AMPSHB11 07 CHS13(T) = 1 Rrup>30km 5.21c
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Figure 5.25 Distance Tapering of Directivity Amplification Factor

The parameter AMPSHB11or CHS13(T) js the directivity amplification estimated either
from SHB11 or CHS13 directivity models. AMPyyin <% - (T) is the directivity

amplification computed either from SHB11 or CHS13 directivity models by
considering the simplified expressions given in the previous two sections. Note that
Equation 5.21b is a linear taper 15km<Rr,;<30km that goes down to unity with
increasing distance.

The distance tapering presented above is verified by using the observed trends from
PSHA. Figure 5.26 shows the variation of observed SHB11-based directivity
amplifications at Tmax as a function of Ry (Okm<Ry<30km). Figure 5.27 displays the
same information for CHS13 directivity model but this time directivity amplifications
are given at Tcomer. Both figures consider the target return periods of this study: 475-
year and 2475-year return periods. The red circles display the aforementioned
observed directivity amplifications whereas dark red diamonds along each stripe is
the median of observed directivity amplifications. The stripes at each discrete Ry (i.e.,
Ry = Okm to Ry = 30km) display the directivity amplifications at all Rx/L values (Rx/L
=0to Ry/L =0.8). This way, the reader gets an overall picture on the distance tapering
at a discrete period (Tmax Or Tcomer IN these comparisons but the period can be any
other specific value as well). The corresponding estimated directivity amplifications

are given as grey circles and their median at each stripe is given in black.
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Figure 5.26 Observed ad estimated directivity amplifications as a function of Ry for
simplified SHB11 model

The estimated and observed medians compare fairly well for SHB11 (in particular
for 475-year return period) whereas the estimated directivity amplifications for
CHS13 show some level of discrepancy with respect to the PSHA results. The

simplified expressions for CHS13 are conservative with respect to the observed
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trends for 10km<Ry<25km. As indicated above such discrepancies are not significant

in the simplified SHB11 directivity amplification model.
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Figure 5.27 Observed ad estimated directivity amplifications as a function of Ry for
CHS13 model

Note that the problem tackled in this chapter (development of simplified expressions
for directivity amplification) is not straightforward as the proposed expression are

tailored for their use in seismic design codes. Handful approximations and
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simplifications are done to achieve this objective. The results should be evaluated
under this perspective. The next section displays the residual analyses for both

simplified expressions to assess their performance in a wider perspective.
5.3.5 Residual Analyses

The unbiased directivity amplification estimations of the proposed expressions are
verified by classical residual (difference between observed and estimated quantities)
analysis. Figure 5.28 and Figure 5.29 display the residual scatters for simplified
SHB11-based expressions together with distance tapering approach as discussed in
Section 5.3.4. The observations are the resulting directivity amplifications from
PSHA. The residuals are plotted in terms of Rx/L, Ry and spectral period for the 475-
year (Figure 5.28) and 2475-year (Figure 5.29) return periods. Each residual plot also
shows the mean as well as + standard deviation of residuals at discrete Rx/L, Ry and
spectral periods. Residual scatters without showing any specific trend about zero line
suggest the unbiased directivity amplification estimates of the proposed expressions.
The residual trends for the considered parameters suggest a fairly unbiased directivity
amplification estimations by the proposed simplified equations for SHB11. The
2475-year on fault directivity estimations are slightly smaller than the observed
directivity amplifications. This observation is consistent with Figure 5.26 since the
distance tapering comparisons also suggest smaller estimations of the simplified
SHB11 model for Ry = Okm.

Similar residual analyses are also run for the simplified CHS13 directivity
amplification expressions. The results are given in Figure 5.30 and Figure 5.31 for
475-year and 2475-year return periods, respectively. The residual trends depicted
from mean + standard deviation values suggest smaller directivity estimations with
respect to the observed values. This observation is generally valid for all the
independent parameters considered in the analysis: Rx/L, Ry and period. The smaller
estimations of the CHS13-based expressions are partly due to distance tapering
approach and are consistent with the overall distance tapering picture given in Figure
5.27. Nonetheless the smaller directivity estimations do not endanger the accuracy of

the proposed model because the mean residual values are very close to zero.
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Figure 5.28 Residuals computed from PSHA (observed) and estimated directivity
amplifications for SHB11 narrow-band directivity model, for the 475-year return
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Figure 5.32 Return periods related to the spectral amplitudes of pulse-like and
nonpulse recordings

5.4 Consideration of Proposed Directivity Amplification Models for
Directivity Dominant Maximum Direction Spectrum

The two directivity models utilized in this study (SHB11 and CHS13) estimate
different horizontal components of ground motions. SHB11 is used for determining
directivity amplifications to convert no-directivity GMRotI50 (can be referred to as

geometric mean; Beyer and Bommer, 2006) component to directivity dominated fault
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normal (FN) component. The amplification factors by CHS13 modify nondirectivity
RotD50 component for directivity dominated ground motions (RotD50pirectivity). In
brief, SHB11 amplification factors estimate Sarnpirectivity/S@ceomean Whereas CHS13
amplification factors compute Sarotpsodirectivity/ S@rotD50nodirectivity- Equation 5.22 shows
the relationship for the directivity-dominated spectral estimations for SHB11 model

whereas Equation 5.23 gives the same relationship for CHS13.

SaFNDirectivity = AMPsyp11 * SAgeomean 5.22

SaRotDSODirectivity = AMPCH5‘13 ’ SaRotDSOnodirectivity 5.23

If Sarotbioodirectivity 1S defined as in Equation 4.3, the ratio between Sarndirectivity and

Sarotd1o0directivity IS given in Equation (5.24) provided that Saceomean ~ Sarotpso

S AFrNDirectivity AMPsypq11(T)

SaRotDlOOdirectivity AFRotDlOO ) AFDirectivity

5.24

The directivity spectral amplification by SHB11 (AMPsng11(T)) is already defined in
Section 5.3.2 whereas AFrotp100 and AFpirectivity Can be described through Shahi and
Baker (2014) the Sarotpioodirectivity/Sarotbioonodirectivity ratio statistics described in
Chapter 4. In a similar way, combination of Sarotpioodirectivity/ S@RotD50nodirectivity ratio
statistics in Chapter 4 with Equation 5.24 would give an approximate estimation for
Sarotp1oodirectivity for CHS13 directivity model.

The latter approach would lead to an average spectral amplitude increase of 25% to
30% when Sarotbioodirectivity 1S estimated from Sarotpsodirectivity By CHS13. However,
the conversion of Sarnpirectivity t0 Sarotbioodirectivity (When Saenpirectivity 1S determined
from SHB11 directivity model) requires significantly large multiplicants (greater
than 3 in many cases) since AFbpirectivity factors computed in Chapter 4 (depicted in
Figure 4.10 and Figure 4.14) may attain very large values confined to the coarse
magnitude and distance intervals given in Table 4.2. The large difference between
Sarotbioodirectivity Detween these two different approaches may stem from the specific
features of the compiled pulse-like and non-pulse strong-motion database used in
Chapter 4.
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As indicated in Chapter 4, the directivity to nondirectivity ratio statistics presented in
Sections 4.5 and 4.6 can only be a first-order approximation because the source-site
geometry (or other factors affecting the directivity spectral amplitudes that are
important in diertivity spectral amplitudes) is not well constrained in the absence of
abundant pulse-like and non-pulse records. Besides, when the spectral amplitudes of
pulse-like and nonpulse strong-motions are compared with the hazard curves
determined from the PSHA results of this study, one can infer a significant difference
between these two data classes in terms of annual exceedance rates (return periods).
The observations are such that the spectral amplitudes of pulse-like recordings would
represent very large return periods with respect to those of nonpulse recordings. This
observation is presented in Figure 5.32 which suggests significantly conservative

SarotD100directivity/ SARotD100nodirectivity (AF Directivity) Spectral ratios.
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CHAPTER 6

CONCLUSION AND DISCUSSIONS

6.1 Summary and Conclusions

This study investigates the effect of ground motion polarization on the amplification
of response spectrum. In essence, the study concentrates on the forward-directivity
ground motions since they are known to have highly polarized characteristics. It
should be noted that the aim of this study is not to develop directivity models. This
study utilizes the developed directivity models to capture the amplifying effects of
directivity for different seismological and geometrical situations with PSHA. Two
directivity models (SHB11 and CHS13) were utilized in order to simulate the
directivity effect on PSHA for different earthquake scenarios. The significance of
different seismological and geometrical parameters on the forward-directivity
amplification are investigated for each utilized directivity model. Simple
amplification models are then proposed to incorporate the directivity effects on the
design spectrum.

The study also investigates the effect of directionality in determination of maximum
rotated component for near fault forward-directivity ground motions. To this end,
near fault ground motions with 6.0<Mw<8.0 and Rr,p<30km are selected from NGA-
WEST?2 database (http://ngawest2.berkeley.edu; Ancheta et al. (2014)). The ground

motions are classified as pulselike and non-pulselike. The geometrical parameters

defined by Somerville et. al. (1997) (6, ¢, X-cos 6 and Y -cos o) are utilized to classify
the ground motions as pulselike and non-pulselike. The ratio of maximum rotated
component for pulselike and non-pulselike ground motions (RotD100pirectivity/

RotD100nopirectivity) 1S calculated and a conversion model is proposed for the
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estimation of maximum rotated horizontal component for forward-directivity ground

motions.

The most important observations and achieved results are as follows:

SHBL11 (the first directivity model utilized in this study) modifies GMRotI50
component of its counterpart GMPE (Boore and Atkinson 2008) to estimate
the response spectrum in a desired orientation with respect to fault strike. The
model considers pulse period and probability of pulse occurrence in its
probabilistic framework for estimation of response spectrum. The fault
normal component is selected in this study in order to extract forward-
amplifications for SHB11 model. This is because the impulsive signals
stemming from forward-directivity are mostly seen in this direction.

CHS13 (the second directivity model utilized in this study) modifies the
RotD50 component of its counterpart GMPE (Chiou and Young 2014) to
estimate the same component for forward directivity ground motions
(RotD50pirectivity)-

PSHA is calculated with and without considering directivity effect and the
response spectrum is extracted for different fault-site geometries,
seismological parameters and two hazard levels.

The amplification factors are extracted from normalization of directivity
response spectrum (Sapirectivity) t0 conventional response spectrum
(Sanobirectivity) for different earthquake scenarios.

The extracted amplification model for SHB11 has an increasing trend up to
the maximum amplification period (referred to as Tmax) Which is followed by
a descending trend for larger period ranges. Amplification model of CHS13
also shows an increasing trend up to its maximum amplification period
(referred to as Tcomer). However, the amplification factor takes almost a
constant value for larger periods in this model.

For the case of SHB11 directivity model the results of analysis show that, slip
rate, fault length (or characteristic magnitude of the fault), hazard level and
source-to-site geometry play important role in the determination of
amplification amplitude. On the other hand, characteristic magnitude and
source-to-site geometry are determining parameters in CHS13 model,
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whereas slip rate and hazard level do not change the amplification amplitude
considerably.

The amplification amplitude shows greater values for larger return periods
(2475-year) and slip rate values in SHB11. The effect of slip rate on
amplification amplitude is more prominent in smaller return periods (475-
year).

In both SHB11 and CHS13 models the larger amplification amplitudes are
observed for the faults with greater characteristic magnitudes. However, this
increment trend is saturated for the faults with characteristic magnitude
greater than 7.25 in both SHB11 and CHS13 models.

The characteristic magnitude also changes the spectral period in which the
maximum amplification occurs (Tmax in SHB11 and Tcomer in CHS13). It is
shown that the period values at which the directivity amplifications are
maximized (Tmax and Tcomer) are the same for both SHB11 and CHS13
models. It is also shown that there is a linear relationship between
characteristic magnitude and maximum amplification period (Tmax Or Tcorner).
In terms of spatial distribution of directivity amplification, SHB11 and
CHS13 exhibit different patterns. In SHB11 model the directivity dominant
regions are located near the fault edges while in CHS13, they extend to the
sites located beyond the fault edges in strike parallel direction.

In strike normal direction the directivity dominant regions can exceed 30km
in both SHB11 and CHS13 models for the fault lengths greater than 150km.

These observations are utilized in order to set simple rules for forward-
directivity amplifications. These amplification models consider the effect of
all aforementioned seismological and geometrical parameters in their
functional forms. They preserve, at the same time, a compromise between
accuracy and simplicity because these models are proposed to be
implemented on seismic design codes.

The amplification factor of SHB11 model which estimates fault normal
component reaches up to 1.8 in its maximum case while the largest
amplification factor calculated from CHS13 which modifies RotD50
component forward directivity is equal to 1.5. However if this amplification
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factor is integrated with conversion factor of Shahi and Baker (2013) for the
estimation of maximum rotated component (SaRotD100pirectivity) the generic
amplification factor will be equal to 1.87 which is slightly larger than that of
SHB11.

It should be noted that the seismological aspects of directivity effect are not
still verified very clearly due to lack of data in this field. Therefore, the
proposed directivity models illustrate different results for directivity
amplification in terms of amplitude and spatial distribution around the fault.
A conversion factor is proposed for the estimation of maximum rotated
component for forward-directivity ground motions in Chapter four. To this
end, RotD100 spectral ratios of pulselike and non-pulse records (i.e.,
AFdirectivity = Sarotb10oodirectivity/ S@RotD100nodirectivity) are calculated for different
magnitude and distance intervals.

The AFdirectivity ratios exhibit significantly large values (AFdirectivity = 6.5 for
T>2s) which seems to be too conservative. This is supposed to be due to the
scarce number of near fault ground motions utilized in development of the
conversion model. Besides, there is an inconsistency between the return
periods of pulselike and non-pulselike spectral amplitudes which can be
another reason of overestimation for AFgirectivity ratios. The return periods are
determined from the hazard curves of PSHA results. However, this type of
relationship (Sarotb1oodirectivity/ S@rotd100nadirectivity) 1S presented for the first time
in the literature and it emphasizes on the importance of compound effects of

directionality (along maximum direction) and directivity.

6.2 Recommendations for further research

Directivity models are consistently updated. The new models try to propose a
better description of the relationship between directivity amplification in one
hand and the seismological and geometrical parameters in the other hand.
These new directivity models which are capable of taking more complicated
geometrical characteristics of the faults can be utilized in PSHA to catch the
amplifying characteristics of forward directivity effects for near fault ground

motions.

150



Real case studies with application of these new directivity models can be
carried out for multi-segment faults with more complicated geometries.

The national seismic hazard maps should be updated considering the
directivity and near-fault effects in a long-term plan.

Further studies are required to determine the best horizontal component
definition that should be utilized in seismic design codes.

The adequacy of existing limit-state acceptance criteria for both global and
local structural demands under pulselike ground motions should be further
investigated. The structural performance should be evaluated in terms of
energy dissipation capacity for different hazard levels and drift demand limit-

state for forward-directivity ground motions.
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APPENDIX A

GEOMETRICAL CALCULATIONS FOR SEISMIC HAZARD
ANALYSIS WITH THE DIRECTIVITY MODELS

A.1 Geometrical Calculations for Chiou and Spudich (2013) model

The normal vector to the fault plane is calculated from Equation Al:

vect; X vect,

NOrMyect = Al

|vect; X vect,|

In which vectl and vect2 are the vectors in the direction of fault sides (Figure Al).
Three components of normal vector is shown by:

NOTMyect = (nlf ny, n3)

NOMM, et C,

G

fault plane

Cs

Figure A.1 Fault normal vector

The equation of the fault plane is given by:
ax+by+cz—d=0 A2
Coordinates of the point normal to the fault plane from the site is calculated from the

Equation A3:
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Xp = n4. t+ Xsite
Yp = Na2. T+ Ysite A3
Zp = N3.t + Zgjre

In which
_ Dy.Xgc1 + Np.Yscr + N3.Zg5c1

\/nlz + n,% + n5?

Ad

SC; is the line that connects the site to the first corner of the fault (Figure A2). SCyis
calculated from Equation A5:

SC; = (Xsites Ysites Zsite) — (Xc1, Ye1r Ze1) AS
The point normal to the fault plane is the closest point of the fault plane to the site

and is shown by Vp:
Vp = (Xp, ¥p» Zp)

sC,

Site

Gy

Vertical Point

fault plane

&4

Figure A.2 Closest point of the site to the fault plane

- Calculation of Pp (Direct Point):
In order to find the direct point it is needed to know that the vertical point from the
site to the fault plane is either inside the rupture area or not.

area,, = area; + area, + areas; + area, A6

vp
If areayp is equal to rupture area Pp (Direct Point) is the same is Vp (Vertical Point)
(Figure A3). If the areayp is greater than rupture area it means that Ve is out of the

rupture segment. If the Vp-hyp line intersects the rupture area on the 2-4 side of the

160



rupture segment (Figure A4) then the Pp will be calculated from the equations shown

below:

Py = (Xp,¥p,Zp)

Cs

Figure A.3 Calculation of direct point for the case that closest point is located
inside the rupture area

Xp = XMyy,.ty, + X _Pseg
Yp = yMy4.tyy +y_Pyseg AT
Zp = ZMyy.t,, + 7z _P,seg
In which Paseg is the coordinates of rupture corner in point 2, ma4 is the unit vector
of the line between points 2 and 4 on the rupture segment and t4 is calculated with

Equations A8 to Al11:

t _ YMpy. XMpypp — XMyy. My A8
24 -
i XMy YMpy — YMyys. XMpy

ZMpy. XMppp — XMpy. ZMppo

t24, = Ag
X XMyy.ZMyy — ZMyy. XMy,

ZMpy. YMppp — YMpy. ZMypp
t24yz = Al0
YMy 4. ZMpy — ZMy,. YMpy

here mny is the unit vector between the hypocenter and vertical point,
and mnr2 is the unit vector between the hypocenter and point 2 on the corner of the
rupture area.

t24 = max (t24xy' t24XZI t24yz) All
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For some cases the projection of mn, and mnr2 vectors on the xy, xz and yz planes
may lie on each other. In this case one of the taaxy, toax; OF toay; Will be equal to zero
which is not the correct answer. In order to avoid the error from these cases the

maximum value of taxy, toax, and toay; for ta4 is used.

Fault Area
P1 P2
Rupture Area Mhr2 PD VP
My
Hyp 1,,,
24
P 3 P4

Figure A.4 Calculation of direct point for the case that closest point is located
outside the rupture area

- Calculation of the average scalar radiation pattern FS:
In order to find (FS) value first Ix, In and le parameters should be calculated. For
the calculation of Ix, In and I¢ the following information is needed (Figure A5):
u ~ is the unit vector of slip direction,
n is the unit vector of fault normal direction,
x ~ is the unit vector projected direct ray (P Pp).

u~is calculated from the direction of fault top edge which is the same as the direction

of fault slip.
Vector n has already been calculated from Equation 1 and X is calculated from
Equation 12:
R= ﬁ Al2
u XX Al3
(p = arc tan T
Al4

Zs = J(va - Xsite)2+(YVp - }’site)2 + (va - Zsite)2

Zs is the signed distance between Ps (site) and Py (vertical point).
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l, = |Vp — hyp| Al5
[ is the fixed distance between Py and Pp.
Rhyp = |(Xsite; Vsiter Zsite) — (thp: Yhyp, Zhyp)l Al6

Rnyp IS the distance between hypocenter and the site.

n

Figure A.5 Geometrical information for the calculation of average scalar radiation
pattern ( FS) parameter (Spudich et al. 2013)

Rp = [(Xsites Ysites Zsite) — (XD ¥YDs ZD) | Al7
Rp is the distance between site and the direct point.
RE = |(XD: Yp, ZD) - (thp: Yhyp, Zhyp)l Al8

Re is the distance between hypocenter and direct point.

L, l, — RE) I, + Rhyp }
I =cosg0.{22.< - -z ln——— Al9
X $ Rpyp Rp S L, —Rg+Rp
) 1 1 A20
[, =cos@.{—2z,°. R TR (Rhyp - RD)
hyp D

. l2 + Rnyp A21
I(p = Sin @. {ZS. In m}

After the Ix, I, and |, are calculated the average scalar radiation pattern FS is

calculated from Equation 22:

2 2 2
- \/IX +1,2+1, AD?
N E
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A.2 Geometrical Calculations for Shahi and Baker (2011) Model (r and s)

In order to calculate the closest distance of the site to the fault first the direction of

the rupture should be calculated. Rupture corners are shown by P, P2, Pz and Pa.

Figure A.6 Geometrical calculations for Shahi and Baker (2011) model
Calculation of direction of line P1P>:
Ap1pz = X_Pyseg —x_Pjseg A23
bp1p2 = y_P,seg —y_P;seg A24
After the direction of P1P> line is determined the location of closest distance of the
site to the fault (\VVP) can be calculated from Equations 25, 26 and 27:

_ (aplpz-xsite - aplpZ-XPlseg) + (bplpz-ysite - bplpZ-YPlseg)

t. = A25
P (aplpzz + bplpzz)

Xyp = Ap1p2-typ + X_Pseg A26

yvp = bplpZ'th + y_Plseg A27

If the vertical point (closest distance of the fault to the site) is located outside the
rupture length (Figure A6a) the s will be equal to the half of the rupture length and
it will be calculated from the Equation 28. For this case r value is also calculated
from equation 29:

s = [Pacgy) ~ Pseg(s) o

r = |P,seg(x,y) — site(x,y)| A29

If the vertical point (closest distance of the fault to the site) is located within the

rupture length (Figure A6Db) the s will be equal to the distance between epicenter
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and vertical point and it will be calculated from Equation 30. For this case r value is
also calculated from Equation 31:
s = |epic(x,y) — VP(x,y)| A30
r = |VP(x,y) — site(x,y)| A3l
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APPENDIX B

A. THE MATHEMATICAL MODEL AND THE ALGORITHM USED IN

THE PSHA CALCULATIONS FOR THE SHB11 MODEL

B.1 Algorithm used in SHB11 PSHA

The algorithm used in PSHA are discussed in Chapter3. Here the utilized algorithm

in SHB11 model is presented with more detail. The following paragraphs summarize

the algorithm. In this algorithm i, j and k parameters denote to the discretized

magnitude, rupture length and the pulse period counters.

From the seismological input data, the magnitude range, fault length, fault
width, style of faulting, recurrence model, minimum rate of occurrence (Vmin),
fault and site coordinates and shear wave velocity are prepared.

The magnitude range is discretized into smaller intervals. For each magnitude
interval (M), the probability of occurrence P(M;) is calculated from the
selected recurrence model (characteristic recurrence model has been used in
this study, Youngs and Coppersmith 1985).

For each magnitude (M) the rupture area is calculated from the corresponding
equations (Wells and Coppersmith 1994).

Position of rupture and hypocenter of rupture is determined on the fault
surface. Uniform distribution model is used for assigning the position of this
rupture area on the fault.

Geometric parameters are calculated for each rupture area and location (Rjj,
Zij). Here Zjjis representative of source-to-site geometric parameters (r and s).
Probability of pulse occurrence is calculated for given geometric parameters

(with M, Rij and Z;j values) from the Equations B1.
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1

(pulse Ir,s) = 1 + ¢(0.642+0.167.r-0.075.5) Bl

In SB-11 method, the probability of pulse occurrence can be calculated for
any orientation. After the probability of pulse occurrence in a specific site is
calculated from Equation B1 the probability of pulse occurrence is calculated
in a desired direction (o) given that a pulse is observed at that site (Equation
B2). The probability of pulse occurrence in a site in the direction of o can be
calculated from Equation B3.
P(pulse at a|pulse) = min[0.67,0.67 — 0.0041.(77.5 — a) B2
P(pulse at a) = P(pulse at a Ipulse). P(pulse) B3
For each magnitude (M), mean value of logarithm of pulse period (wn p) IS
calculated from Equation B4. The log standard deviation for pulse period is

constant for all magnitude ranges (oin 1p = 0.56).

Hin Tpi = —5.73+0.99 M; B4

For each magnitude (M), lognormal distribution of pulse period is calculated
with wn i and oin 1p. Pulse period range is discretized into small intervals
(Tpik) and the probability of pulse period P(Tp,ik) is calculated for each
interval.
For each pulse period (Tp,ik) the mean vale of logarithm of the amplification
is determined. The amplification is a function of spectral period to pulse
period ratio (T/Tp) (Equation 17 in Shahi and Baker 2011).
Mean value of natural logarithm of spectral acceleration (pinsa, puise) for pulse-
type cases will be calculated from Equation B5.

Uinsa,puise = Haf + Hinsa,gmm B5
For non-pulse-type cases, deamplification factor is calculated.
Deamplification factor is a function of magnitude (M;) and source-to-site
distance (Rjj) parameters (Equation 22 in Shahi and Baker 2011).
Mean value of natural logarithm of spectral acceleration (Lnsa, no puise) for non-

pulse-type cases is calculated from Equation B6.

Hinsa,No Puise = Upf + Hinsa,gmm B6
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Preparation of basic seismological data

fori=1:I

Given an earthquake scenario (M) and its
probability P(M,) calculate rupture area

Location of rupture position is determined
by assuming uniform distribution

for j=1:1

Geometric parameters [Ry. Zj (1, 5. d. )] are

calculated

Given v and geometric parameters P (pulse

at ) is determined

for k=1:K

Given magnitude (Mi), Tp distribution and

P(Tpi) is determined

Pulse type

for all scenarios (M, Ryj. Zj. Tpi)

End the loops 1,j and k

Non pulse type

MSa,pulse = HAf + HSa,gmm

Hsa no pulse = HDf + Hsa,gmm

P(Sa > x|M;, Ry, Z;;, pulsey)

(Sa > x|M;, R;;, Z;;,no pulse)

v(Sa > x) for pulse type

v(Sa > x) for non-pulse type

v(.S‘a = x)tclm{ = v(Sa = x)pufsg + v(.S‘a = x)‘ncl pulse

Figure B.1 Algorithm for SHB11 PSHA narrow-band model
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The algorithm is repeated from step 2 and mean logarithm of Sa (pnsa,) IS
calculated for all magnitude ranges (M), rupture locations (Rj; and Zj;) and
pulse period range (Tpik) and both pulse-type and non-pulse-type cases.

For pulse-type cases, the probability of exceedance is calculated from

Equation B7 for each intensity level (x).

ln(x) - .ulnSa, pulse

P (S, >xIm,r,z,pulse) =1 —&(
GlnSa,pulse

) B7

For non-pulse-type cases the probability of exceedance is calculated from

Equation B8 for each intensity level (x).

ln(x) — WUinsa, nopulse

P (S, > x Im,r,no pulse) =1 — @ ) B8

Oin Sa,no pulse

The total hazard curve is calculated Equations 3.1 and 3.2. As can be seen from

Equation 3.1 the total hazard curve is calculated from the summation of pulse-type

and non-pulse-type cases. The flowchart of the algorithm for SHB11 model is shown

in Figure B1.

B.2 The Numerical eEvaluation of Integral in PSHA

The discretized values of random variables are used in PSHA. Proper distribution is

considered for each random variable with sufficient discretization values. The

discretized values and considered distributions are given below.

Magnitude is discretized in 0.1 ranges.

For each discretized magnitude range, mean rupture area is calculated from
the Wells and Coppersmith (1994).

The rupture area is uniformly distributed within the fault area. The epicenter
of rupture area is shifted every 5km in the fault strike direction and every 3km
in the fault dip direction.

Lognormal distribution is considered for Tp and Tp is discretized in 0.2sec

ranges.

The probability of magnitude and rupture location is the same as conventional PSHA

procedure. The distribution considered for the pulse period and the process for

calculation of its probability are explained with more detail in the next paragraphs.
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For each discretized magnitude the mean pulse period is calculated from Equation
B4. A lognormal distribution is considered for each discretized magnitude-pulse

period as shown in Figure B2.

0.35
03
0.25-
P(Tp) 02
0.15
0.1
0.05-

0. S
7.5

0.15-

75

Figure B.2 Illustration of lognormal distribution for magnitude-pulse period and
related probability of pulse period
The red line in this figure are the points that maximums of P(T,) occur for different
discretized magnitudes. The red line is plotted again in Mw-Tp plane (illustrated with
scatter red points in Figure B3). An exponential line is also fitted to the red line (The
blue line). The black line is the equation proposed for the maximum amplification
points (Tme-Mw relationship) in this study (Equation 5.8). As can be seen from this
figure, the Tme-Myw relationship (Equation 5.8) and the maximum probability of pulse
occurrence curve have a very similar trend. This is because the probability of pulse
occurrence is the determining parameter in determination of directivity amplification
range in PSHA. Figure B3 is again plotted in Mw-Ln(Tp) coordinate. As can be seen
the relationship between My and Ln(T)) is linear as stated in Shahi and Baker (2011).
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Exp-Fitted line for Maximum P(Tp) points

®*  maximum P(Tp)

5 e Eguation 5.8 °o®
P Fitted line . . (] 'y
[ ]
23 °o® ,A’
® @
) . ° ) .’.’
() a4
1 _:'_.o"'
eoco®v)
0
5 5.5 6 6.5 7 7.5 8
Mw

Figure B.3 Relation between magnitude and pulse period with maximum

probability

Fitted line for the maximum P(Tp) points

Ln(Tp)
&

Figure B.4 Relation between magnitude and pulse period with maximum
probability
The PSHA results were compared with EZ-FRISK software for the simple line source
model used in this study. The comparisons were made to test the sufficiency of

magnitude, rupture length and epicenter location discretization. Figure B5 shows the
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site definition and discretized values applied in EZ-FRISK for PSHA for FL=20km

and S=1.0com/year and site located 15km away from the fault.
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Figure B.5 a) Site definition b) Discretized values applied in EZ-FRISK
The results of PSHA code are consistent with the results of EZF-RISK. The

comparisons are done for “no directivity” case with Boore and Atkinson (2008)
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GMPM. Figure B6 shows the response spectrum calculated from EZ-FRISK and the
code. The comparisons indicate the sufficiency of magnitude, distance and epicenter

discretization.

B File Edit View Action Charts Tables Options Windows Help
O A R

= [ v U & Bl o

= s
- gpen P,mjeds View Input Validate Analyze View Charts View Reports View Map
@8] Project 1 Probabilistic Spectra results for EZ-FRISK 7.52 Build 003
£ Open Attenuation Chi ’(((l

=52 Databases ANNUAL FREQUENCY OF EXCEEDANCE: 4.041e-004
£ Echo RETURN PERIOD: 2474.9
52 Attenuation Equat PROBABILITY OF EXCEEDENCE: 2.0% IN 50.0 YEARS
Bw User's Attenuat Column 1: Spectral Period
Su Standard Atten Column 2: Acceleration (g) for: Mean
Column 3: Acceleration (g) for: Boore-Atkinson (2008) NGA
Bw Open Attenuati
-2 Seismic Sources 1 2 3
4 < - PGA 5.296e-001 5.296e-001
#i User's Seismic ¢ 2.e-002 5.444e-001 5.444e-001
#in Open Seismic ¢ 3.e-002 5.812e-001 5.812e-001
=3 Fault Seismic Sour 5.e-002 6.884e-001 6.884e-001
$o User's Fault Sei W > 7.5e-002 9.004e-001 9.004e-001
Probabilistic Spectra 0.1 1.036e+000 1.036e+000
#i1 Open Fault Sei¢ o 0.15 1.204e+000 1.204e+000
=12 Area Seismic Soun *D_ 0.2 1.202e+000 1.202e+000
. . 0.25 1.139e+000 1.139e+000
#l User's Area Sei: Source Contribution 0.3 1.064e+000 1.064e+000
#l Open Area Seic —n 0.4 9.335e-001 9.335e-001
& S 0.5 7.588e-001 7.588e-001
R Gridded Sewsmics 0.75 5.575e-001 5.575e-001
“ Open Gridded ! 2 4.307e-001 4.307e-001
-3 Soil Databases o2 1.5 3.228e-001 3.228e-001
B User's Soil Datz 2. 2.419e-001 2.419e-001
. Activity Rate o 1.657e-001 1.657e-001
&n Default.ezf-soil 4. 1.181e-001 1.181e-001
Bu shake91.ezf-so " 5. 1.017e-001 1.017e-001
N 7.5 6.809e-002 6.809e-002
Bu Open Soil Datz 10. 3.203e-002 3.203e-002
ANNUAL FREQUENCY OF EXCEEDANCE: 1.026e-003
RETURN PERIOD: 974.8
PROBABILITY OF EXCEEDENCE: 5.0% IN 50.0 YEARS
Column 1: Spectral Period
Column 2: Acceleration (g) for: Mean
Column 3: ion (g) for: inson (2008) NGA
1 2 3
PGA 3.505e-001 3.505e-001
2.e-002 3.619e-001 3.619e-001
3.e-002 3.876e-001 3.876e-001
5.e-002 4.552e-001 4.552e-001
7.5e-002 5.954e-001 5.954e-001
0.1 6.881e-001 6.881e-001
0.15 8.039e-001 8.039e-001
0.2 7.838e-001 7.838e-001
0.25 7.297e-001 7.297e-001
0.3 6.684e-001 6.684e-001
0.4 5.757e-001 5.757e-001
0.5 4.702e-001 4.702e-001
< > < = Tt iR
Idle
16
14 4 = Code
w— EZ-FRISK

Sa(g)

Period(sec)

Figure B.6 Response spectrum calculated for FL=20km, $=1.0com/year for site
15 with EZ-FRISK and the Matlab code (2475-year return period)
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B.3 The Matlab Code developed for PSHA

- Input File Format

BEHOS &=
HOME ~ INSERT ~ PAGELAYOUT ~ FORMULAS ~DATA  REVIEW VIEW  DEVELOPER
B 6 cut

PSHA44 - Excel

& [catibri LY - EPwrap Text {General EE_I Bad
poste o f::“:“ vt | 8 T U~ || B A Eveseaconsr = § - % 5 o 3 Cononst ot s [0 Neutral -
Ciipboard 5 font 5 Alignment o Number 5 styles

012 - x fe

B C D E F G H | J K E M
11 |Fault1 Num_of Sites 2
2 Faul Coordinates 1st corner|1st corner|2nd corne;3rd cornef4th corner Site 1 Site 2 Site 3 Site 4 Site !
3 coordinate-x(km) 0 0 100 -2.1E-28 100 50 75 100 110 120
a4 0 0 -4.6E-14 | -4.6246E-14 o 0 0 0 o
3 0 0 -10 -10 0 0 0 0 0
6 100
7 10
8
9
10
11
12
13
14
15
16 2_max{or b value o n 9
17 0 For Normal
18 Vs3 I | 1 For Reverse
19 2 Strike Slip
20 3 3
21 Fas:: 0 for mainshock; 1 for aftershock, used in AS08
22
23
24
25
26
27
28

| Input Data | GMPEs | @)

BEHS -8+

HOME = INSERT  PAGELAYOUT  FORMULAS DATA  REVIEW

o
%C‘" Calibri n AR
&3 Copy ~

Paste S 5 5 &

o Fomatpainer B 1 U L-a
Clipboard & Font &

| Input Data | GMPEs ®

VIEW

=2')

=Y

Figure B.7 Input file format for PSHA
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- PSHA File:

function PSHA (inputname)
ex_input_data:strcat('outputs\',inputname,'.xlsx');
Input Data=xlsread(ex input data, 'Input Data');
GMPE Data=xlsread(ex input data, 'GMPEs');
if GMPE Data(24,4)~=1

disp('Weights should sum up to 1"')

return
end
[gmpe id]=find(GMPE Data(:,3)>0);
GMPE ID(:,1) =GMPE Data(gmpe id,1);
weigth(:,1)=GMPE Data (gmpe id, 3);
GMPE=[GMPE ID weigth];

Period p=[0 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1
1.52 345 7.510];

F AS=0;
F_RV=0;
F_NM=0;
F_HW=0;
rake=-999;
Ry0=0;

format long

$%% General declarations
pi=3.14159265358979;

M stepsize=0.1;
epsilon step size=0.1;
max dis btw_ segcen=2;

$%% fault source assignments

nof h max segments=20;

nof v max segments=5;

nof max bg segments=10;

%% Modified Rupture Distribution
ver incrmnt=3;

hor incrmnt=5;

o

% Start reading input data

nof stations=Input Data(l,9);

for scon=1:nof stations
coords (1, scon)=Input Data (3, 7+scon) ;
coords (2, scon)=Input Data (4, 7+scon) ;
coords (3, scon)=Input Data (5, 7+scon) ;

end

nof fault sources=Input Data(l,1);

con=2;

for sco=1l:nof fault sources

C

fault data(l,sco)=Input Data(l+con,3);
fault data(2,sco)=Input Data(2+con, 3);
fault data(3,sco)=Input Data(3+con, 3);
fault data(4,sco)=Input Data (4+con, 3);
fault data(5,sco)=Input Data (5+con, 3);
fault data(6,sco)=Input Data(6+con, 3);
fault data(7,sco)=Input Data(7+con, 3);
fault data(8,sco)=Input Data (8+con, 3);
fault data(9,sco)=Input Data (9+con, 3);

’

fault data(10,sco)=Input Data(10+con, 3

’

)
fault data(1l1l,sco)=Input Data(ll+con,3
fault data(1l2,sco)=Input Data(1l2+con, 3
fault data(13,sco)=Input Data (13+con,3
) (
) (

’

’

’

fault data(l4,sco)=Input Data(l4+con,3
fault data(15,sco)=Input Data(1l5+con,3
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fault data(16,sco)=Input Data(l6+con, 3);
fault data(1l7,sco)=Input Data(l7+con, 3);
fault data(18,sco)=Input Data(1l8+con, 3);
con=con+20;

end

% End input data reading
if nof fault sources>0

% input ('Do you want to include the line source/s in hazard curve
calculations ? Y/N ', 's");

anss='Y"'";

if anss=='N' | anss=='n';

nof fault sources=0;
disp('Skip fault sources');
single fault flag=0;
else
single fault flag=1;
end
end

for kl=1l:nof stations
j=stations (k1)
cas_count=1;
station(j,1)=coords(1l,3);
station(j,2)=coords(2,3);
station(j,3)=coords(3,3);
if single fault flag==1, run fault sources; end
if exist('outputs', 'dir')==
else

mkdir 'outputs';

end
run eps calc

%% Pulse Type Hazard Calculation
for sp=1l:length (Period p)
Per=Period p (sp);
for sal=1:2
if sal==
alfa=0;
elseif sal==
alfa=90;
end
for k=1l:cas count-1
1=1;
HT dummyl=['epsilon ',num2str(TS(k,13))];
HT dummy2=eval (HT dummyl) ;
nof epsilon=length (HT dummy2);
HT dummy3=['pepsilon ',num2str(TS(k,13))];
HT dummyd4=eval (HT dummy3) ;
HT P=zeros (length (HT dummy2)* (nof Tp steps),17);
P alpha dir=TS P alpha(k,sal);

% GMPE calculation
cd('.\GMPEs 02.03.2014")

InpMag=[TS (k,1),TS(k,2),Ts(k,3),Vs_30,Fault Mech,abs(TS(k,20)),TS(k,17),TS(
k,19),rake,TS(k,6),abs (TS (k,18)),TS(k,16),TS(k,21),Per];

[IM median,sig total,logIM,IM median NP,sig total NP] =
GMPE Trellis Plots Mag (InpMag, GMPE) ;

cd('..\")

IM median M(k,1)=IM median;
sig total M(k,1)=sig total;
IM median NP M(k,1)=IM median NP;

177



sig total NP M(k,1)=sig total NP;

for sk=l:nof Tp steps
cass=1;
Tp=TS Tp (sk);
P Tp=TS P Tp(k,sk);
if Tp<0.6
Mean 1n Af=0;
Rf=1;
else
if Per<=0.88*Tp
Mean 1n Af=1.131*exp (-
3.11* (log (Per/Tp)+0.127) *2)+0.058;
elseif Per>0.88*Tp
Mean 1n Af=0.924*exp (-
2.11* (log (Per/Tp)+0.127)"2)+0.255;
end
if Per<=0.21*Tp
Rf=1-0.2*exp (-0.96* (log (Per/Tp) +1.56) "2) ;
elseif Per>0.21*Tp
Rf=1-0.21*exp (-0.24* (log (Per/Tp)+1.56) "2);
end
end
$Amplification Due to Presence of Pulse
logIM P=logIM+Mean 1n Af;
IM median P=exp (logIM P);

$Reduction of Standard Deviation for Pulse Type Because
of Modified Ground-Motion Model

sig total P=Rf*sig total;

IM sigma P=sig total P;

for
dummy counter=min (HT dummy?2) :epsilon step size:max (HT dummy2) ;% (nof epsilon
) * (k-1)+1: (nof epsilon)*k

HT P(1,1)=TS(k,1);
HT_P(1,2)=TS (k, 2) ;
HT P(l 3)=TS(k 9);
HT_P(1,4)=TS (k,12);
HT P(l 5)=TS(k 11);
HT P(1,6)=TS(k,5);
HT P(l 7)=TS (k,7);
HT_P (1, 8)=TS (k, 10) ;

HT_P(1,9) =HT dummy?2 (cass) ;
HT P(1,10)=HT_ dummy4 (cass)
HT P(1,11)=IM median P;
HT P(1,12)=IM sigma P;
HT P(1,13)=exp(log(HT P(1,11)) +
HT P(1,9)*IM sigma P);
HT P(1,14)= HT P(1,4)*HT P(1,5) *HT P(1,6)
*HT P(1,7) * HT P(1,8) *
HT P(1,10)*P Tp*P_alpha dir;
HT P(1,15)=Tp;
HT P(1,16)=P Tp;
HT P(1,17)=P alpha dir;
cass=cass+l;
1=1+1;
end
clear nof epsilon

end

[sm,sn]=size (HT P);

Hazard Table P(((k-1)*(sm)+1):k*(sm),1l:sn)=HT P;

end

Sorted Hazard Table P=sortrows (Hazard Table P,-13);
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Sorted Hazard Table P(1,18)=Sorted Hazard Table P(1,14);
for m=2:length (Sorted Hazard Table P(:,13));
Sorted Hazard Table P(m,18)=Sorted Hazard Table P(m,14)+
Sorted Hazard Table P(m-1,18);
end

Hazard PT=[Sorted Hazard Table P(:,13),Sorted Hazard Table P(:,18)];
% Non Pulse Hazard Calculation

or k=l:cas count-1
cass=1;
P no alpha dir=1-(TS P alpha(k,sal));
HT dummyl=['epsilon ',num2str(TS(k,13))];
HT dummy2=eval (HT dummyl) ;
nof epsilon=length (HT dummy2);
HT dummy3=['pepsilon ',num2str(TS(k,13))];
HT dummyd4=eval (HT dummy3) ;

for
dummy counter=min (HT dummy?2) :epsilon_ step size:max (HT dummy2) ;% (nof epsilon
) *(k-1)+1: (nof epsilon) *k

Hazard Table NP(1,1)=TS(k,1);
Hazard Table NP(1,2)=TS(k,2);
Hazard Table NP(l 3)=TS(k 9);
Hazard Table NP(1,4)=TS(k,12);
Hazard Table NP(l 5)=TS(k 11);
Hazard Table NP(1,6)=TS(k,5);
Hazard Table NP(l 7)=TS (k,7);
Hazard Table NP( 8)=TS(k,10);
)

Hazard Table NP(l 9
Hazard_Table_NP(l 10)=HT dummy4 (cass) ;
Hazard Table NP(1,11)=IM | median NP M(k,1);

=HT dummy2 (cass) ;
)=
)=
Hazard_Table_NP(l,12)=srg_total NP M(k,1);
)
)i

Hazard_Table_NP(l,l3 p(log(Hazard Table NP(1,11)) +
Hazard Table NP(1,9)*sig total NP M(k,1)); %%% 999 This line can be
changed according to the PE
Hazard Table NP(1,14)
Hazard Table NP(1l,4)*Hazard Table NP(1l,5) *Hazard Table NP (1, 6)
*Hazard Table NP(1,7) * Hazard Table NP(1,8) *
Hazard Table NP(1,10)*P no alpha dir;
cass=cass+l;
1=1+1;
end
clear nof epsilon
end

Sorted Hazard Table NP=sortrows (Hazard Table NP,-13);
Sorted Hazard Table NP(1l,15)=Sorted Hazard Table NP (1,14);
for m=2:1length(Sorted Hazard Table NP(:,13));
Sorted Hazard Table NP(m,15)=Sorted Hazard Table NP (m,14)+
Sorted Hazard Table NP(m-1,15);
end

Hazard NPT=[Sorted Hazard Table NP(:,13),Sorted Hazard Table NP(:,15)];
%% Conventional Method
1=1;
for k=l:cas_ count-1
cass=1;
HT dummyl=['epsilon ',num2str(TS(k,13))];
HT dummy2=eval (HT dummyl) ;
nof epsilon=length (HT dummyZ2) ;
HT dummy3=['pepsilon ',num2str(TS(k,13))];
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HT dummy4=eval (HT dummy3) ;

for

)
Hazard Table(1l,2)=TsS(k,2);
Hazard Table(l,3)=TsS (k,9);
Hazard Table(1l,4)=TS(k,12);
Hazard Table(1l,5)=TS(k,11);
Hazard Table(l,6)=TS(k,5);
Hazard Table(l,7)=TS(k,7);
Hazard Table(1,8)=TS(k,10);
Hazard Table(l,9)=HT dummy2 (cass);
Hazard Table(1l,10)=HT dummy4 (cass);
Hazard Table(l,11)=IM median M(k,1);
( )
(
(
(

*Hazard_Table(l,6) *Hazard Table(l,7) *
Hazard Table(l,8) * Hazard Table(l,10);
cass=cass+1l;
1=1+1;
end
end
Sorted_Hazard_Table=sortrows(Hazard_Table,—l3);
Sorted Hazard Table(l,15)=Sorted Hazard Table(1l,14);
for m=2:1length (Sorted Hazard Table(:,13));
Sorted Hazard Table(m,15)=Sorted Hazard Table(m,14)+
Sorted Hazard Table(m-1,15);
end
Hazard_T:[Sorted_Hazard_Table(:,13),Sorted_Hazard_Table(:,15)];

%% Calculation of Total Hazard of Non-Pulse and Pulse Like
Results (Hazard Total=Hazard P+Hazard NP

% Elimination of Repeated Data
differ=diff (Hazard PT,1);
Hazard P(:,1l)=Hazard PT(find(differ(:,1)),1);
Hazard P(:,2)=Hazard PT(find(differ(:,1)),2);
slk=length (Hazard P)+1;
ii=length (Hazard PT);
Hazard P(slk,:)=Hazard PT(ii,:);
clear differ

differ=diff (Hazard NPT, 1);

Hazard NP (:,1)=Hazard NPT (find(differ(:,1)),1);
Hazard NP (:,2)=Hazard NPT (find(differ(:,1)),2);
slk=length (Hazard NP)+1;

ii=length (Hazard NPT);

Hazard NP (slk, :)=Hazard NPT (ii,:);

clear differ

differ=diff (Hazard T,1);
Hazard(:,1)=Hazard T(find(differ(:,1)),1);
Hazard(:,2)=Hazard T (find(differ(:,1)),2);
slk=length (Hazard) +1;

ii=length(Hazard T);

Hazard(slk, :)=Hazard T(ii,:);

$Intrapolation to Make the Hazard Results Consistent for Non-
Pulse Like, Pulse Like and Conventional Methods

Hazard P M(:,1)=Hazard NP(:,1);

Hazard P M(:,2) =
interpl (Hazard P(:,1),Hazard P(:,2),Hazard NP(:,1));

Hazard tot(:,1)=Hazard P M(:,1);
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Hazard tot(:,2)= Hazard P M(:,2)+Hazard NP(:,2);

Hazard M(:,1)=Hazard NP(:,1);
Hazard M(:,2) =
interpl (Hazard(:,1),Hazard(:,2),Hazard NP(:,1));

%% Probability of Exceedance for Return Period of 50 Years
Hazard P 50(:,2)=1-exp(-Hazard tot(:,2)*50);

Hazard P 50(:,1)=Hazard tot(:,1);

Hazard 50(:,2)=1-exp(-Hazard M(:,2)*50);

Hazard 50(:,1)=Hazard M(:,1);

%% Calculation of 2% and 10% in 50 Years Spectra(just for Alpha
= 0 or 90 Degree)
if sal==
for sf=1:length (Hazard P 50)
if Hazard P 50 (sf,2 0.1
spec 0 10P(sp,1)=Per;
spec 0 10P(sp,2)=Hazard P 50(sf,1);
end
if Hazard P 50(sf,2)==0.02
spec_0 2P (sp,1l)=Per;
spec 0 2P (sp,2)=Hazard P 50(sf,1);
end
end
for sf=1l:length (Hazard P 50)-1
if Hazard P 50(sf,2)<0.1 && Hazard P 50(sf+1,2)>0.1
spec_0 10P(sp,1l)=Per;

)
)
)

spec_0 10P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)—Hazard_P_50(sf,2)))*(O.l—
Hazard P 50 (sf,2));
end
if Hazard P 50(sf,2)<0.02 && Hazard P 50(sf+1,2)>0.02
spec 0 2P (sp,1)=Per;

spec 0 2P (sp,2)=Hazard P 50(sf,1)+((Hazard P 50(sf+1,1)-
Hazard P 50(sf,1))/(Hazard P_50(sf+1,2)-Hazard P 50(sf,2)))*(0.02-
Hazard P 50(sf,2));
end
end
end
if sal==
for sf=1l:length (Hazard P 50)
if Hazard P 50(sf,2)==0.1
spec 15 10P(sp,1)=Per;
spec_15 10P(sp,2)=Hazard P 50(sf,1);
end
if Hazard P 50(sf,2)==0.02
spec 15 2P(sp,1l)=Per;
spec_15 2P(sp,2)=Hazard P 50(sf,1);
end
end
for sf=1l:length (Hazard P 50)-1
if Hazard P 50(sf,2)<0.1 && Hazard P 50(sf+1,2)>0.1
spec 15 10P(sp,1)=Per;

spec_15 10P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard P 50(sf,1))/(Hazard P 50 (sf+1l,2)-Hazard P 50(sf,2)))*(0.1-
Hazard P 50 (sf,2));
end
if Hazard P 50(sf,2)<0.02 && Hazard P 50(sf+1,2)>0.02

spec_15 2P (sp,1l)=Per;
spec_ 15 2P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
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Hazard_P_SO(sf,l))/(Hazard_P_SO(sf+l,2)—Hazard_P_50(sf,2)))*(0.02—
Hazard P 50 (sf,2));
end
end
end
if sal==
for sf=1:1length (Hazard P 50)
if Hazard P 50(sf,2)==0.1
spec 30 10P(sp,1)=Per;
spec_30 10P(sp,2)=Hazard P 50(sf,1);
end
if Hazard P 50(sf,2)==0.02
spec 30 2P(sp,1l)=Per;
spec_30 2P (sp,2)=Hazard P 50(sf,1);
end
end
for sf=1:length (Hazard P 50)-1
if Hazard P 50(sf,2)<0.1 && Hazard P 50(sf+1,2)>0.1
spec_30 10P(sp,1l)=Per;

spec 30 10P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard_P_50(sf,l))/(Hazard_P_50(sf+l,2)—Hazard_P_50(sf,2)))*(O.l—
Hazard P 50(sf,2));
end
if Hazard P 50(sf,2)<0.02 && Hazard P 50(sf+1,2)>0.02

spec 30 2P (sp,1l)=Per;

spec 30 2P(sp,2)=Hazard P 50 (sf,1)+((Hazard P 50(sf+1,1)-
Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)—Hazard_P_50(sf,2)))*(0.02—
Hazard P 50(sf,2));
end
end
end
if sal==
for sf=1:length (Hazard P 50)
if Hazard P 50(sf,2)==0.1
spec 45 10P(sp,1)=Per;
spec_ 45 10P(sp,2)=Hazard P _50(sf,1);
end
if Hazard P 50(sf,2)==0.02
spec 45 2P (sp,1l)=Per;
spec 45 2P (sp,2)=Hazard P 50(sf,1);
end
end
for sf=1:length (Hazard P 50)-1
if Hazard P 50(sf,2)<0.1 && Hazard P 50(sf+1,2)>0.1
spec 45 10P(sp,1)=Per;

spec_ 45 10P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard_P_50(sf,1))/(Hazard_P_50(sf+1,2)—Hazard_P_50(sf,2)))*(0.1—
Hazard P 50(sf,2));
end
if Hazard P _50(sf,2)<0.02 && Hazard P _50(sf+1,2)>0.02

spec 45 2P (sp,1l)=Per;

spec 45 2P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50(sf+1,1)-
Hazard P 50(sf,1))/ (Hazard P 50(sf+l,2)-Hazard P _50(sf,2)))*(0.02-
Hazard P 50(sf,2));
end
end
end
if sal==
for sf=1l:length (Hazard P 50)
if Hazard P 50(sf,2)==0.1
spec 60 10P(sp,1)=Per;
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spec_60 10P(sp,2)=Hazard P 50(sf,1);
end
if Hazard P 50(sf,2)==0.02
spec_60 2P(sp,l)=Per;
spec_60 2P(sp,2)=Hazard P 50(sf,1);
end
end
for sf=1l:length (Hazard P 50)-1
if Hazard P 50(sf,2)<0.1 && Hazard P 50(sf+1,2)>0.1
spec_60 10P(sp,1)=Per;

spec_60 10P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard_P_50(sf,l))/(Hazard_P_50(sf+l,2)—Hazard_P_SO(sf,2)))*(O.l—
Hazard P 50(sf,2));
end
if Hazard P 50(sf,2)<0.02 && Hazard P 50(sf+1,2)>0.02

spec_60 2P (sp,1l)=Per;

spec_60 2P (sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard_P_SO(sf,l))/(Hazard_P_SO(sf+l,2)—Hazard_P_SO(sf,2)))*(0.02—
Hazard P 50 (sf,2));
end
end
end
if sal==
for sf=1l:length (Hazard P 50)
if Hazard P 50(sf,2)==0.1
spec_ 75 10P(sp,1)=Per;
spec 75 10P(sp,2)=Hazard P 50(sf,1);
end
if Hazard P 50(sf,2)==0.02
spec_ 75 2P(sp,1l)=Per;
spec 75 2P(sp,2)=Hazard P 50(sf,1);
end
end
for sf=1l:length (Hazard P 50)-1
if Hazard P 50(sf,2)<0.1 && Hazard P 50(sf+1,2)>0.1
spec_ 75 10P(sp,1)=Per;

spec_ 75 10P(sp,2)=Hazard P _50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard_P_SO(sf,l))/(Hazard_P_SO(sf+1,2)—Hazard_P_SO(sf,Z)))*(O.l—
Hazard P 50 (sf,2));
end
if Hazard P 50(sf,2)<0.02 && Hazard P 50(sf+1,2)>0.02

spec_ 75 2P(sp,1l)=Per;

spec_ 75 2P(sp,2)=Hazard P 50(sf,1)+((Hazard P 50 (sf+1,1)-
Hazard_P_SO(sf,l))/(Hazard_P_SO(sf+1,2)—Hazard_P_SO(sf,Z)))*(0.02—
Hazard P 50 (sf,2));
end
end
end

if sal==
for sf=1l:length (Hazard P 50)
if Hazard P 50(sf,2)==0.1
spec_90 10P(sp,1)=Per;
spec_90 10P(sp,2)=Hazard P 50(sf,1);
end
if Hazard P 50(sf,2)==0.02
spec_90 2P (sp,1l)=Per;
spec_90 2P(sp,2)=Hazard P 50(sf,1);
end
end
for sf=1l:length (Hazard P _50)-1
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if Hazard P 50(sf,2)<0.1 && Hazard P 50(sf+1,2)>0.1
spec_90 10P(sp,1l)=Per;

spec_90 10P(sp,2)=Hazard P 50 (sf,1)+((Hazard P 50(sf+1,1)-
Hazard_P_BO(sf,l))/(Hazard_P_BO(sf+1,2)—Hazard_P_50(sf,2)))*(0.1—
Hazard P 50(sf,2));
end
if Hazard P 50(sf,2)<0.02 && Hazard P 50(sf+1,2)>0.02

spec 90 2P (sp,1l)=Per;

spec 90 2P (sp,2)=Hazard P 50 (sf,1)+((Hazard P 50(sf+1,1)-
Hazard P 50(sf,1))/ (Hazard P 50(sf+l,2)-Hazard P 50(sf,2)))*(0.02-
Hazard P 50(sf,2));
end
end
end
% Spectra for Conventional Method
for sf=1:length (Hazard 50)
if Hazard 50(sf,2)==0.1
spec_con_ 10P(sp,1l)=Per;
spec con 10P(sp,2)=Hazard 50(sf,1);
end
if Hazard 50(sf,2)==0.02
spec_con_ 2P (sp,1)=Per;
spec con 2P (sp,2)=Hazard 50(sf,1);
end
end

for sf=1:length (Hazard 50)-1
if Hazard 50(sf,2)<0.1 && Hazard 50(sf+1,2)>0.1
spec con 10P(sp,1)=Per;
spec_con_10P(sp,2)=Hazard 50 (sf, 1)+ ((Hazard 50 (sf+1,1)-
Hazard_50(sf,1))/(Hazard_50(sf+1,2)—Hazard_50(sf,2)))*(0.1—
Hazard 50(sf,2));
end
if Hazard 50(sf,2)<0.02 && Hazard 50(sf+1,2)>0.02
spec con 2P (sp,1)=Per;
spec_con_ 2P (sp,2)=Hazard 50(sf,1)+((Hazard 50 (sf+1,1)-
Hazard_EO(sf,l))/(Hazard_EO(sf+1,2)—Hazard_50(sf,2)))*(0.02—
Hazard 50(sf,2));
end
end

if j==
mkdir ('outputs',inputname) ;
end
clear Hazard Table P HT P Hazard PT Hazard Table NP
Hazard Table Sorted Hazard Table P Sorted Hazard Table NP
Sorted Hazard Table Hazard tot Hazard P M Hazard NP Hazard P Hazard PT
Hazard NPT Hazard T Hazard Hazard M Hazard P 50 Hazard 50 IM median M
sig total M IM median NP M sig total NP M differ A B C
end
end
A=zeros (length(spec 0 10P),1);

B={['Period'], ['P _sa(Alpha=0'], [],['Period'], ['P_sa(Alpha=15'"], [], ['Period’
], ['P_sa(Alpha=30'],[],['Period'], ['P_sa(Alpha=45"'],[],['Period'], ['P_sa (Al
pha=60"']1, [], ['Period'], ['P_sa(Alpha=75"], [], ['Period'], ['P sa(Alpha=90"'], []
, ['"Period'], ['P _sa(Conv'], [],};

C2p=[spec_0 2P,A,spec 15 2P,A,spec_30 2P,A,spec 45 2P,A,spec_60 2P,A,spec 7
5 2p,A,spec 90 2P,A,spec _con 2P];

ClO0p=[spec 0 10P,A,spec_15 10P,A,spec 30 10P,A,spec 45 10P,A,spec 60 10P,A,
spec_ 75 10P,A,spec_90 10P,A,spec _con 10P];
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xlswrite (ex name,B, 'Spectra 2P', ('Al'"));

xlswrite (ex name,B, 'Spectra 10P', ('Al"));

xlswrite (ex name,C2P, 'Spectra 2P', ('A2'"));

xlswrite (ex name,Cl0P, 'Spectra 10P', ('A2'"));

clear Dummy P alpha TS TS P alpha TS P Tp sp O sp 90 sp con A B ClO0P
C2P
end
end

- fault_sources File:

for i=1:nof fault sources
disp('Analyzing the single line fault sources.')

x fault (i)=fault data(l,i);
y_fault(i)=fault data(2,i);
z fault (i)=fault data(3,1i);

fault length(i)=fault data(4,1);
fault width(i)=fault data(5,1);
slip rate(i)=fault data(6,1);
mu (i)=fault data(7,1);
fault cdf type(i)=intlé6(fault data(8,1));
strike deg(i)=fault data(9,1);
dip deg(i)=fault data(10,1);
Fn=fault data(1l1l,1i);
Fr=fault data(12,1);
Fault Mech=fault data(15,1);
Vs 30=fault data(l6,1);
F as=fault data(17,1);
F mes=fault data(18,1i);
if Fault Mech==

U=0;

55=0;

NS=1;

RS=0;

a=2.87;

b=0.82;

am=3.93;

bm=1.02;

F NM=1;
elseif Fault Mech==

U=0;

535=0;

NS=0;

RS=1;

a=3.99;

b=0.98;

am=4.33;

bm=0.9;

F RV=1;
elseif Fault Mech==

U=0;

SS=1;

NS=0;

RS=0;

a=3.42;

b=0.9;

am=3.98;

bm=1.02;

fault M stepsize(i)=M stepsize;
fault area(i)=(fault length(i)*fault width(i));
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strike rad(i) = (strike deg(i)+ 90) / 180 * pi;

dip rad(i)= (dip deg(i) + 180) / 180 * pi;

fault corners(1l,1)=x fault(i);

fault corners(1l,2)=y fault(i);

fault corners(1l,3)=z fault(i);

fault corners(2,1)= fault corners(l,1) + fault length(i
cos(strike rad(i));

fault corners(2,2)= fault corners(l,2) + fault length(i
sin(strike rad(i));

fault corners(2,3)= fault corners(l,3);

if dip deg(i) < 90
fault corners(3,1) =
cos ((strike rad(i)+pi/2)) * abs(cos(dlp rad
fault corners(3,2) = fault corners/(
sin((strike rad(i)+pi/2)) * abs(cos(dlp rad

fault corners (1,

(i

1,

(i

fault corners(4,1) = fault corners (2,
(1

2,

(1

) .

cos((strike_rad(i)+pi/2)) * abs (cos(dip rad ) ;

fault corners(4,2) = fault corners(

sin((strike_rad(i)+pi/2)) * abs (cos(dip rad ) ;
else

fault_corners(3,l) = fault corners(1l,1)

cos ((strike rad(i)+3*pi/2)) * abs(cos(dip rad(i)));
fault corners(3,2) = fault corners(l,2)

sin((strike rad(i)+3*pi/2)) * abs(cos(dip rad(i)));
fault corners(4,1) = fault_corners(Z,l)

cos ((strike rad(i)+3*pi/2)) * abs(cos(dip rad(i)));
fault corners(4,2) = fault corners(2,2)

sin((strike rad(i)+3*pi/2)) * abs(cos(dip rad(i)));

end

fault corners (3, 3)
sin(dip_rad(i));

fault corners(4,3) =
sin(dip_rad(i));

= fault corners (1, 3)

fault corners(2,3)

% Write Fault Corner Coordinates to Excel Input File
if i==

Scc=3;
end
rcc=num2str (Scc) ;
s _ex=strcat('E',rcc);
xlswrite (ex input data, fault corners',
Scc=Scc+20;
% Calculatin of Fault Normal Vector
Vectr 1=fault corners(3 :)-fault corners(1l,
Vectr T 2=fault _corners (2, :)-fault corners(1l,
norm_vectr cross (Vectr 1,Vectr 2);
norm_vectr=norm_vectr/max(abs(norm_vectr));

'Input Data'

1)
1)

fault cline(1,1)=(fault corners(l,1)+fault corners (3
fault cline(1l,2)=(fault corners(l,2)+fault corners(3
fault cline(1,3)=(fault corners(l,3)+fault corners (3
fault cline(2,1)=(fault corners(2,1)+fault corners(4
fault cline(2,2)=(fault corners(2,2)+fault corners(4
fault cline(2,3)=(fault corners(2,3)+fault corners (4

fault u(l,1)=(fault cline(2,1)-fault cline(1l,1))
fault u(l,2)=(fault cline(2,2)-fault cline(1,2))
fault u(l,3)=(fault cline(2,3)-fault cline(1,3))
fault u(2,1)=(fault corners(3,1)-fault corners(l,1))
fault u(2,2)=(fault corners(3,2)-fault corners(1l,2))
fault u(2,3)=(fault corners(3,3)-fault corners(l,3))
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fault u(3,1)=fault u(l,2)*fault u(2,3)-fault u(l,3)*fault u(2,2);
fault u(3,2)=-fault u(l,1)*fault u(2,3)+fault u(l,3)*fault u(2,1);
fault u(3,3)=fault u(l,1)*fault u(2,2)-fault u(l,2)*fault u(2,1);

switch fault cdf type (i)
case 1 % Truncated Normal Distribution

fault sigma(i)=fault data(1l3,1);
fault nsigmax(i)=fault data(l4,1i);
fault finsigmax (i)=normcdf (fault nsigmax (i
fault Mchar (i) =roundn (bm*1logl0 (fault area(
fault M min(i)=fault Mchar (i)-

roundn (fault sigma (i) *fault nsigmax(i),-1);

),0,1);
i))+am,-1);

fault M max(i)=fault Mchar (i)+roundn (fault sigma(i)*fault nsigmax(i),-1);
dumm=fault M min(i);
mag=roundn (dumm, -3) ;
dummy (1) =(1/ (fault sigma (i)*
fault Mchar(i))"2)/(2*fault sigma (i) "2))
fault M min(i) +16.05)*0.0005;
for k=2:((fault M max(i)-fault M min(i))/0.001+1)
dumm=mag+0.001;
mag=roundn (dumm, =3) ;
dummy(k)=(l/(fault_sigma(i)*(2*pi)AO.5)*exp(—((mag -
fault Mchar(i))"~2)/(2*fault sigma(i)"~2))/(2*fault finsigmax(i)-1))*10"(1.5*
mag +16.05)*0.001;
end
dummy(k+l)=(l/(fault_sigma(i)*(2*pi)AO.5)*exp(—((fault_M_max(i)
- fault Mchar(i))"2)/(2*fault sigma(i)~2))/(2*fault finsigmax(i)-
1))*107(1.5* fault M max (i) +16.05)*0.0005;
dummy2=sum (dummy) ;

(2*pi)~0.5) *exp (- ((fault M min(i) -
/(2*fault finsigmax(i)-1))*10"(1.5%*

activity rate(i)=mu(i)*fault area(i)*1lelO*slip rate(i)/dummy2;

if i==

Scs=7;
end
rcc=num2str (Scc) ;
rcs=num2str (Scs) ;
s_ex=strcat ('F',rcc);
s fx=strcat ('F',rcs);

xlswrite (ex input data,activity rate (i), 'Input Data',s_ex);
xlswrite (ex input data,fault M max (i), 'Input Data',s fx);
Scc=Scc+20;

Scs=Scs+20;

M mi=fault M min(i);
M ma=fault M max(i);
M steps=fault M stepsize(i);
[M strt,M fin]=Magnitude threshold TN(M mi,M ma,M steps);
fault M start(i)=M strt;
fault M finish(i)=M fin;
syms mag real
dumm= (1/ (fault sigma (i) * (2*pi)"0.5) *exp (- ((mag -
fault Mchar(i))"2)/(2*fault sigma(i)~2))/(2*fault finsigmax(i)-1));
cdf=int (dumm) ;
fault nof magnitudes(i)=intl6((fault M finish(i)-
fault M start(i))/fault M stepsize(i))+1;
for k=1:fault nof magnitudes (i)
if k==
M of Ts=fault M start(i);

PM of TS=double (subs (cdf, fault M start(i)+0.5*fault M stepsize(i))-
subs (cdf, fault M start(i)));
elseif k<fault nof magnitudes (i)
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M of Ts=fault M start (i)+ (double (k) -
1) *fault M stepsize(i);

PM of TS=double (subs(cdf,M of TS+0.5*fault M stepsize(i))-subs(cdf,M of TS-
0.5*fault M stepsize(i)));
elseif k==fault nof magnitudes (i)
M of Ts=fault M finish(i);
PM of TS=double (subs(cdf,fault M finish(i))-
subs (cdf, fault M finish(i)-0.5*fault M stepsize(i)));
end

M of TS=roundn(M of TS,-6);
Area of TS=10" (b*M of TS-a);
PA of TS=1.0;

PW_of TS=1.0;

oo
5o

if sqgrt(Area of TS)>fault width (i)
W of TS=fault width(i);
nof V segments=1;
else
W of TS=sqrt (Area of TS);
nof_v_segments=ceil(fault_width(i)/W_of_TS);
end
if nof V segments>nof v max segments
nof V segments=nof v max segments;
end
L of TS=Area of TS/W of TS;
if L of TS>fault length(i)
L of TS=fault length(i);
nof H segments=1;
else
nof_H_segments=ceil(fault_length(i)/L_of_TS);
end
if nof H segments>nof h max segments
nof H segments=nof h max segments;
end
nof segments=nof H segments*nof V segments;

oe

oo

if nof V segments>1
dist v btw_segments=(fault width(i) - W _of TS) /
(nof V_segments - 1);
else
dist v btw segments=0;
end

if nof H segments > 1
dist H btw_segments = (fault length(i) - L of TS) /
(nof H segments - 1);
else
dist H btw_segments = 0;
end

oe

fault cline 1(1,1)=fault corners(l,1)+W of TS/2*fault u(2,1);
fault cline 1(1,2)=fault corners(l,2)+W of TS/2*fault u(2,2);

fault cline 1(1,3)=fault corners(l,3)+W of TS/2*fault u(2,3);
if nof V segments>1
for vse=2:nof V segments
fault cline 1(vse,1l)=fault cline 1 (vse-
1,1)+dist v _btw segments*fault u(2,1);
fault cline 1 (vse,2)=fault cline 1 (vse-
1,2)+dist v _btw segments*fault u(2,2);
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fault cline 1(vse,3)=fault cline 1 (vse-
1,3)+dist v btw segments*fault u(2,3);
end
end

fault_cline_Z(l,l):fault_corners(2,1)+W_of_TS/2*fault_u(2,l);
fault_cline_Z(1,2):fault_corners(2,2)+W_of_TS/2*fault_u(2,2);

fault_cline_Z(1,3):fault_corners(2,3)+W_of_TS/2*fault_u(2,3);
if nof V segments>1l
for vse=2:nof V segments
fault cline 2(vse,l)=fault cline 2 (vse-
1,1)+dist v btw segments*fault u(2,1);
fault cline 2(vse,2)=fault cline 2 (vse-
1,2)+dist v btw segments*fault u(2,2);
fault cline 2(vse,3)=fault cline 2 (vse-
1,3)+dist v btw segments*fault u(2,3);
end
end

o

o°

for iv=1l:nof V segments
Cen of segs(iv,1l)=fault cline 1(iv,1) + (L of TS / 2) *
fault u(1,1);
Cen of segs(iv,2)=fault cline 1(iv,2) + (L of TS / 2) *
fault u(1,2);
Cen of segs(iv,3)=fault cline 1(iv,3) + (L of TS / 2) *
fault u(1,3);
end
for ih=nof V segments+l:nof segments
Cen of segs(ih,1)=Cen of segs(ih-nof V segments,1) +
(dist H btw segments) * fault u(l,1);
Cen of segs(ih,2)=Cen of segs(ih-nof V segments,2) +
(dist H btw segments) * fault u(l,2);
Cen of segs(ih,3)=Cen of segs(ih-nof V segments,3) +
(dist H btw segments) * fault u(l,3);
end
% Calculation of Probability Distribution of Pulse Period
Tp min=0.2;
Tp max=20.2;
tp=Tp_min;
Tp_step size=0.2;
Tp medi=exp (-5.73+0.99.*M of TS);
Tp_sigma=0.56;
syms Tp
dumm_Tp=(1/ (Tp*Tp_sigma* (2*pi) ~0.5))* (exp ( (- ((log(Tp) - log
(Tp_medi)))"2)/(2*Tp_sigma’2))) ;
cdf Tp=int (dumm Tp) ;
nof Tp steps=intl6 ((Tp max-Tp min)/Tp step size)+1;
for ks=1l:nof Tp steps
if ks==

Pr of Tp(ks)=double (subs(cdf Tp,Tp min+0.5*Tp step size)-
subs (cdf Tp,Tp min-0.45*Tp step size)):;
elseif ks<nof Tp steps

Pr of Tp(ks)=double (subs(cdf Tp,tp+0.5*Tp step size)-subs(cdf Tp, tp-
0.5*Tp step size));
elseif ks==nof Tp steps

Pr of Tp(ks)=double (subs(cdf Tp,Tp max+0.5*Tp step size)-
subs (cdf Tp,Tp max-0.5*Tp step size));
end
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tp=tp+Tp step size;
end
sum_tp=sum(Pr of Tp);
Pr of Tp=Pr of Tp/sum tp;
TS Tp=[Tp min:Tp step size:Tp max];
for m=1:nof segments
run single line fault segments
run Rjb calc
run P pulse calc
S(cas count,1)=M of TS;

S(cas_count, 2)=Rjb;
S(cas_count, 3)=R_rup;
S(cas_count,4)=Area of TS;
S(cas_count,5)=PA of TS;
S(cas_count, 6)=W of TS;
S(cas_count,7)=PW of TS;
S(cas_count,8)=L of TS;

(

(

(

(

(

(

(

(
S(cas_count, 9)=m;
S(cas_count,10)=1/nof segments;
S(cas count,11

(

(

(

(

(

(

(

(

(

(

)=PM _of TS;
S(cas_count,12) act1v1ty rate (1) ;
S(cas_count,13)=100+1i;

S(cas _count,14)=sd dir (m) ;
S(cas_count,15)=r dir(m);
S(cas_count,16)=R x;

TS cas_count,17)=F HW;
S(cas_count,18)=z tor;
S(cas_count,19)=dip deg(i);

)

S(cas_count,20)=Cen of segs(m,3);
S(cas count,21)=Ry0;
TS P alpha(cas count,l:num alp steps)=P pu alpha(m,:);
TS P Tp(cas count,l:nof Tp steps)=Pr of Tp;
cas_count=cas_count+1;
end
clear P1 of segs P2 of segs P3 of segs P4 of segs
Cen of segs H dist from station epi of seg fault cline 1 fault cline 2
sd dir r dir P pu rs P pu alpha Pr of Tp fault cline 1 fault cline 2 x h
y h x hc y hc fi
end
case 2 % YC Model
fault M min(i)=roundn (fault data(13,1i),-1);
fault bvalue(i)=fault data(14,1);
fault Mchar (i)=roundn (bm*1ogl0 (fault area(i))+am,-1);
fault M max(i)=fault Mchar (i)+0.25;
beta=fault bvalue (i) *log(10);
dumm=fault M min(i);
mag=roundn (dumm, =3) ;

c_coeff=0.5*beta*exp (-beta* (fault Mchar (i)-fault M min(i)-
1.25))/(l—exp(—beta*(fault_Mchar(') -fault M min(i)-0.25)));
dummy(l)=((l/(l+c_coeff))*beta exp (-beta* (mag-
fault M min(i)))/ (1-exp (-beta* (fault Mchar (i)-fault M min(i)-
0.25))))*10"(1.5* mag +16.05)*0.0005;

Mw (1) =mag;
for k=2:intl6((fault Mchar(i)-0.25-fault M min(i))/0.001+1)
dumm=mag+0.001;
mag=roundn (dumm, -3) ;
Mw (k) =mag;
if k==intl6 ((fault Mchar(i)-0.25-fault M min(i))/0.001+1);

dummy(k):((l/(1+c_coeff))*beta*exp(—beta*(mag—
fault M min(i)))/ (1-exp (-beta* (fault Mchar (i)-fault M min(i)-
0.25))))*10"(1.5* mag +16.05)*0.0005;
else
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dummy(k):((l/(l+c_coeff))*beta*exp(—beta*(mag—
fault M min(i)))/(l-exp(-beta* (fault Mchar(i)-fault M min(i)-
0.25))))*10"(1.5* mag +16.05)*0.001;
end
end
for k=intlé6 ((fault Mchar(i)-0.25-
fault M min(i))/0.001+2) :intl6((fault M max(i)-fault M min(i))/0.001+1)
if k==intlé6((fault Mchar(i)-0.25-fault M min(i))/0.001+2);

dummy(k):((1/(l+c_coeff))*beta*exp(—
beta* (fault Mchar(i)-fault M min(i)-1.25))/(l-exp(-beta* (fault Mchar (i) -
fault M min(i)-0.25))))*10"(1.5* mag +16.05)*0.0005;
else

dumm=mag+0.001;
mag=roundn (dumm, -3) ;

Mw (k) =mag;
dummy (k) =((1/ (1+c_coeff)) *beta*exp (-
beta*(fault_Mchar(i)—fault_M_min(i)—1.25))/(l—exp(—beta*(fault_Mchar(i)—
fault M min(i)-0.25))))*10"(1.5* mag +16.05)*0.001;
end
end
dummy(k+1)=((1/(1+c_coeff))*beta*exp(—beta*(fault_Mchar(i)—
fault_M_min(i)—l.25))/(l—exp(—beta*(fault_Mchar(i)—fault_M_min(i)—
0.25))))*107(1.5* fault M max(i)+16.05)*0.0005;

dummy2=sum(duﬁmy);

dumm=mag+0.001;

mag=roundn (dumm, -3) ;

Mw (k+1)=mag;
activity_rate(i)=mu(i)*fault_area(i)*lelO*slip_rate(i)/dummy2;

if i==

Scs=7;
end
rcc=num2str (Scc) ;
rcs=num2str (Scs) ;
s _ex=strcat ('F',rcc);
s fx=strcat('F',rcs);

xlswrite (ex input data,activity rate (i), 'Input Data',s ex);
xlswrite(ex input data,fault M max (i), 'Input Data',s fx);
Scc=Scc+20;
Scs=Scs+20;
M steps=fault M stepsize(i);
if mod(fault Mchar(i)-0.25-
fault M min(i), fault M stepsize(i))==0;
M strt=fault M min(1i);
else
M strt=mod(fault Mchar(i)-0.25-
fault M min (i), fault M stepsize(i))+fault M min(i);
end
M fin=fault Mchar(i)+0.25;
fault M start(i)=M strt;
fault M finish(i)=M fin;
syms mag real
dumml=(1/(1l+c_coeff)) *beta*exp (-beta* (mag-fault M min(i)))/(1-
exp (-beta* (fault Mchar (i)-fault M min(i)-0.25)));
cdfl=int (dumml) ;
dumm2=(1/ (l+c_coeff)) *beta*exp (-beta* (fault Mchar (i) -
fault_M_min(i)—l.25))/(l—exp(—beta*(fault_Mchar(i)—fault_M_min(i)—O.ZS)));
cdf2=dumm?2*mag;
fault nof magnitudes(i)=intl6 ((fault M finish(i)-
fault M start(i))/fault M stepsize(i))+1;
for k=1:fault nof magnitudes (i)
if k==
M of Ts=fault M start(i);

PM of TS=double (subs(cdfl,fault M start(i)+0.5*fault M stepsize(i))-
subs (cdfl, fault M start(i)));

191



elseif k<fault nof magnitudes (i)
M of TS=fault M start (i)+ (double(k)-
1) *fault M stepsize(i);
if M of TS<fault Mchar(i)-0.25

PM of TS=double (subs(cdfl,M of TS+0.5*fault M stepsize(i))-
subs (cdfl,M of TS-0.5*fault M stepsize(i))):
elseif M of TS==fault Mchar(i)-0.25

PM of TS=double (subs(cdf2,M of TS+0.5*fault M stepsize(i))-
subs (cdf2,M of TS)+subs(cdfl,M of TS)-subs(cdfl,M of TS-
0.5*fault M stepsize(i)));

elseif M of TS>fault Mchar(i)-0.25

PM of TS=double (subs(cdf2,M of TS+0.5*fault M stepsize(i))-
subs (cdf2,M of TS-0.5*fault M stepsize(i)));
end
elseif k==fault nof magnitudes(i);
M of TS=fault M start (i)+ (double(k)-
1) *fault M stepsize(i);
M of TS=fault M finish(i);
PM of TS=double (subs(cdf2,fault M finish(i))-
subs (cdf2, fault M finish(i)-0.5*fault M stepsize(i)));
end
M of TS=roundn (M of TS,-6);
dummy=roundn (M _of TS,-2);
Area of TS=10" (b*M of TS-a);
PA of TS=1.0;
PW of TS=1.0;
if sqrt(Area of TS)>fault width (i)
W of Ts=fault width(i);
nof V segments=1;
else
W of TS=sqrt (Area of TS);
nof_v_segments=ceil(fault_width(i)/W_of_TS);
end
if nof V segments>nof v _max segments
nof V segments=nof v max segments;
end
L of TS=Area of TS/W of TS;
if L of TS>fault length(i)
L of TS=fault length(i);
nof H segments=1;
else
nof H segments=ceil (fault length(i)/L of TS);
end
if nof H segments>nof h max segments
nof H segments=nof h max segments;
end
nof segments=nof H segments*nof V segments;
if nof V segments>1
dist v btw_segments=(fault width(i) - W _of TS) /
(nof V segments - 1);
else
dist v _btw segments=0;
end

if nof H segments > 1

dist H btw segments = (fault length(i) - L of TS)
(nof H segments - 1);
else
dist H btw segments = 0;
end
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fault_cline_l(l,l):fault_corners(l,l)+W_of_TS/2*fault_u(2,l);
fault_cline_l(1,2):fault_corners(1,2)+W_of_TS/2*fault_u(2,2);

fault_cline_l(1,3):fault_corners(1,3)+W_of_TS/2*fault_u(2,3);
if nof V segments>1l
for vse=2:nof V segments
fault cline 1(vse,l)=fault cline 1 (vse-
1,1)+dist v btw segments*fault u(2,1);
fault cline 1(vse,2)=fault cline 1 (vse-
1,2)+dist v btw segments*fault u(2,2);
fault cline 1(vse,3)=fault cline 1 (vse-
1,3)+dist v btw segments*fault u(2,3);
end
end

fault cline 2(1,1)=fault corners(2,1)+W of TS/2*fault u(2,1);
fault_cline_Z(1,2)=fault_corners(2,2)+W_of_TS/2*fault_u(2,2);

fault cline 2(1,3)=fault corners(2,3)+W of TS/2*fault u(2,3);
if nof V segments>1
for vse=2:nof V segments
fault cline 2(vse,l)=fault cline 2 (vse-
1,1)+dist v btw segments*fault u(2,1);
fault cline 2(vse,2)=fault cline 2(vse-
1,2)+dist v _btw segments*fault u(2,2);
fault cline 2(vse,3)=fault cline 2 (vse-
1,3)+dist v btw segments*fault u(2,3);
end
end
for iv=l:nof V segments
Cen of segs(iv,1)=fault cline 1(iv,1) + (L of TS / 2) *
fault u(1,1);
Cen of segs(iv,2)=fault cline 1(iv,2) + (L of TS / 2) *
fault u(1,2);
Cen of segs(iv,3)=fault cline 1(iv,3) + (L of TS / 2) *
fault u(1,3);
end
for ih=nof V segments+l:nof segments
Cen of segs(ih,1)=Cen of segs(ih-nof V segments,1) +

(dist H btw segments) * fault u(l,1);
Cen of segs(ih,2)=Cen of segs(ih-nof V segments,2) +

1,2);

)

Cen of segs(ih,3)=Cen of segs(ih-nof V segments,3) +
(dist H btw segments) * fault u(l,3);
end
%% Calculation of Probability Distribution of Pulse Period
Tp min=0.2;
Tp max=20.2;
tp=Tp_min;
Tp step size=0.2;
Tp medi=exp (-5.73+0.99.*M of TS);
Tp _sigma=0.56;
syms Tp
dumm_Tp=(1/ (Tp*Tp_sigma* (2*pi) ~0.5)) * (exp ( (- ((log(Tp) - log
(Tp_medi)))"2)/ (2*Tp_sigma’2))) ;
cdf Tp=int (dumm_ Tp) ;
nof Tp steps=intl6 ((Tp max-Tp min)/Tp step size)+1;
for ks=1l:nof Tp steps
if ks==1

(
(
(dist H btw segments) * fault u(
(
(
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Pr of Tp(ks)=double (subs(cdf Tp,Tp min+0.5*Tp step size)-
subs (cdf Tp,Tp min-0.45*Tp step size));
elseif ks<nof Tp steps

Pr of Tp(ks)=double (subs(cdf Tp,tp+0.5*Tp step size)-subs(cdf Tp, tp-
0.5*Tp step size));
elseif ks==nof Tp steps

Pr of Tp(ks)=double (subs (cdf Tp,Tp max+0.5*Tp step size)-
subs (cdf Tp,Tp max-0.5*Tp step size));
end
tp=tp+Tp step size;
end
sum_tp=sum(Pr of Tp);
suml (k) =sum_ tp;
Pr of Tp=Pr of Tp/sum_tp;
TS Tp=[Tp min:Tp step size:Tp max];
for m=1:nof segments
run single line fault segments
run Rjb calc
run P pulse calc
S(cas count,1)=M of TS;

S (cas_count, 2)=Rjb;
S(cas_count, 3)=R_rup;

TS (cas_count,4)=Area of TS;
S(cas_count,5)=PA of TS;

S(cas count, 6)=W of TS;
S(cas_count,7)=PW of TS;
cas_count, 8)—L of TS;

)

cas_count, 9
cas_count 10

(
(
(
(
(
(
(
S (
S(
S ( l/nof __segments;
S(cas_count,11

(

(

(

(

(

(

(

(

(

(

)=
)=PM of TS;
S(cas count,12) acthlty rate (1) ;
S(cas_count,13)=100+i;
S(cas_count,14)=sd dir (m);
S(cas_count,15)=r dir (m);
S cas_count,16)=R X;
S(cas _count,17)=F HW;
S(cas _count,18)=z tor;
S(cas_count,19)=dip deg (i)
)

S(cas count,20)=Cen of segs(m,3);
S(cas _count,21)=Ry0;
TS P alpha(cas_count,l:num alp steps)=P pu alpha(m,:);
TS P Tp(cas count,l:nof Tp steps)=Pr of Tp;
cas_count=cas_count+1;
end
clear P1 of segs P2 of segs P3 of segs P4 of segs
Cen of segs H dist from station epi of seg fault cline 1 fault cline 2
sd dir r dir P pu rs P pu alpha Pr of Tp fault cline 1 fault cline 2 x h
y h x hc y hc fi
end
case 3 % Pure characteristic
fault M min(i)=roundn (fault data(13,1i),-1);
fault M max(i)=roundn (fault data(14,1i),-1);
fault Mchar (i)=roundn (bm*loglO (fault area(i))+am,-1);
dumm=fault M min(i)+0.0005;
mag= roundn(dumm,—4)

dummy (1) =(( (mag+0.0005) - (mag-0.0005))) *10"(1.5* mag +16.05);
Mw (1) mag,
for k=2:intl6 ((fault M max(i)-fault M min( y/0.001)

dumm=mag+0.001;
mag=roundn (dumm, —-4) ;
Mw (k) =mag;
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dummy (k) =( ( (mag+0.0005) - (mag-0.0005)))*10"(1.5* mag

+16.05);

end

dummy2=sum (dummy) ;

dumm=mag+0.001;

mag=roundn (dumm, -4) ;

Mw (k+1)=mag;

activity rate(i)=mu(i)*fault area(i)*lelO*slip rate(i)/dummy2;

if i==
Scs=7;
end
rcc=num2str (Scc) ;
rcs=num2str (Scs) ;
s_ex=strcat ('F',rcc);
s fx=strcat('F',rcs);
xlswrite (ex input data,activity rate(i), 'Input Data',s ex);
xlswrite (ex input data,fault M max (i), 'Input Data',s fx);
Scc=Scc+20;
Scs=Scs+20;

M steps=fault M stepsize(i);
M strt=fault M min(i);
M fin=fault M max(i);
fault M start(i)=M strt;
fault M finish(i)=M fin;
fault nof magnitudes (i)=double (intl6 ((fault M finish(i)-
fault M start(i))/fault M stepsize(i))+1);
for k=1:fault nof magnitudes (i)
if k==
M of TS=fault M start(i);
PM of TS=1/(2*fault nof magnitudes(i));
elseif k<fault nof magnitudes (i)
M_of_TS=fault_M_start(i)+(double(k)—
1) *fault M stepsize(i);
PM of TS=(1/fault nof magnitudes(i));
elseif k==fault nof magnitudes(i);
M of Ts=fault M finish(i);
PM of TS=1/(2*fault nof magnitudes(i));
end
M of TS=roundn (M of TS,-6);
dummy=roundn (M_of TS,-2);
Area of TS=10" (b*M of TS-a);
PA of TS=1.0;
PW of TS=1.0;
if sqgrt(Area of TS)>fault width(i)
W of TS=fault width(i);
nof V segments=1;
else
W of TS=sqgrt (Area of TS);
nof V segments=ceil (fault width (i) /W _of TS);
end
if nof V segments>nof v max segments
nof V segments=nof v max segments;
end
L of TS=Area of TS/W of TS;
if L of TS>fault length (i)
L of TS=fault length(i);
nof H segments=1;
else
nof H segments=ceil (fault length(i)/L of TS);
end
if nof H segments>nof h max segments
nof H segments=nof h max segments;
end
nof segments=nof H segments*nof V segments;
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if nof V segments>1

dist v btw segments=(fault width(i) - W of TS) /
(nof V _segments - 1);
else
dist v btw segments=0;

end

if nof H segments > 1

dist H btw_segments = (fault length(i) - L of TS) /
(nof H segments - 1);
else
dist H btw segments = 0;

end

oo
3}

fault cline 1(1,1)=fault corners(l,1)+W of TS/2*fault u(2,1);
fault_cline_l(l,2)=fault_corners(l,2)+W_of_TS/2*fault_u(2,2);

fault_cline_l(l,3)=fault_corners(l,3)+W_of_TS/2*fault_u(2,3);
if nof V segments>1
for vse=2:nof V segments
fault cline 1(vse,l)=fault cline 1 (vse-
1,1)+dist v btw segments*fault u(2,1);
fault cline 1(vse,2)=fault cline 1 (vse-
1,2)+dist v btw segments*fault u(2,2);
fault cline 1 (vse,3)=fault cline 1 (vse-
1,3)+dist v btw segments*fault u(2,3);
end
end

fault_cline_2(l,l)=fault_corners(2,l)+W_of_TS/2*fault_u(2,1);
fault_cline_2(l,2)=fault_corners(2,2)+W_of_TS/2*fault_u(2,2);

fault cline 2(1,3)=fault corners(2,3)+W _of TS/2*fault u(2,3);
if nof V segments>1
for vse=2:nof V segments
fault cline 2(vse,l)=fault cline 2 (vse-
1,1)+dist v btw segments*fault u(2,1);
fault cline 2(vse,2)=fault cline 2 (vse-
1,2)+dist v _btw segments*fault u(2,2);
fault cline 2(vse,3)=fault cline 2 (vse-
1,3)+dist v _btw segments*fault u(2,3);
end
end

for iv=l:nof V segments
Cen _of segs(iv,1l)=fault cline 1(iv,1) + (L of TS / 2)
fault u(1,1);
Cen_of segs(iv,2)=fault cline 1(iv,2) + (L of TS / 2)
fault u(1,2);
Cen_of segs(iv,3)=fault cline 1(iv,3) + (L of TS / 2)
fault u(1,3);
end
for ih=nof V segments+l:nof segments
Cen of segs(ih,1l)=Cen of segs(ih-nof V segments,l) +
(dist H btw segments) * fault u( )
Cen of segs(
(dist H btw segments) * fault u(
(
(

1,1
ih,2)=Cen_of segs(ih-nof V segments,2) +
1,2);
Cen of segs(ih,3)=Cen of segs(ih-nof V segments,3) +
(dist H btw segments) * fault u(l,3);
end
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%% Calculation of Probability Distribution of Pulse Period
Tp min=0.2;
Tp max=20.2;
tp=Tp min;
Tp step size=0.2;
Tp medi=exp (-5.73+0.99.*M of TS);
Tp sigma=0.56;
syms Tp
dumm_Tp=(1/ (Tp*Tp_sigma* (2*pi)*0.5))* (exp ( (- ((log(Tp) - log
(Tp_medi)))"2)/(2*Tp_sigma’2))) ;
cdf Tp=int (dumm Tp) ;
nof Tp steps=intl6 ((Tp max-Tp min)/Tp step size)+l;
for ks=1l:nof Tp steps
if ks==1

Pr of Tp(ks)=double (subs(cdf Tp,Tp min+0.5*Tp step size)-
subs (cdf Tp,Tp min-0.45*Tp step size));
elseif ks<nof Tp steps

Pr of Tp(ks)=double (subs(cdf Tp,tp+0.5*Tp step size)-subs(cdf Tp, tp-
0.5*Tp step size));
elseif ks==nof Tp steps

Pr_of Tp(ks)=double (subs(cdf Tp,Tp max+0.5*Tp_ step_size)-
subs (cdf Tp,Tp max-0.5*Tp step size));
end
tp=tp+Tp step size;
end
sum_ tp=sum(Pr of Tp);
Pr of Tp=Pr of Tp/sum_tp;
TS Tp=[Tp min:Tp step size:Tp max];
for m=1:nof segments
run single line fault segments
run Rjb calc
run P pulse calc
TS (cas _count,1)=M of TS;
TS (cas_count, 2)=Rjb;
TS (cas_count, 3)=R rup;
TS (cas_count, 4)=Area of TS;
TS (cas_count,5)=PA of TS;
TS (cas_count, 6)=W of TS;
TS (cas_count,7)=PW of TS;
TS (cas_count,8)=L of TS;
TS (cas_count, 9)=m;
TS (cas_count,10)=1/nof segments;
TS (cas _count,11)=PM of TS;
TS (cas_count,12)=activity rate(i);
TS (cas_count,13)=100+1;
TS (
TS (
TS (
TS (
TS (
TS (
TS (
TS (

cas_count, 14

)

)

)

)

)=sd _dir (m);
cas_count,15)

)

)

)

)

)

r dir(m);
R_x;
F_
z

cas_count, 16
cas_count,17 HW;
cas_count, 18 _tor;
cas_count,19)=dip deg(i);
cas_count,20)=Cen of segs(m,3);
cas_count,21)=Ry0;
TS P alpha(cas_count,l:num alp steps)=P pu alpha(m,:);
TS P Tp(cas_count,l:nof Tp steps)=Pr of Tp;
cas_count=cas_count+1;
end
clear P1 of segs P2 of segs P3 of segs P4 of segs
Cen of segs H dist from station epi of seg fault cline 1 fault cline 2
sd dir r dir P pu rs P pu alpha Pr of Tp fault cline 1 fault cline 2 x h
vy h x hc y hc fi
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end

end
Distance metric='Rjb';
eps f min(i)=-5;
if mod(eps f min(i)*10,2)==0;

eps f min(i)=eps f min(i)-.1;
else

eps f min(i)=eps f min(i);
end

eps f max(i)=5;
if mod(eps f max(i)*10,2)==0;
eps f max(i)=eps f max(i)+.1;
else
eps f max(i)=eps f max(i);
end
end
clear mag cdf
disp('Task Finished'");

- single_line_fault_segments File

Pl of segs(m,1)=Cen of segs(m,1)-(L of TS/2)*fault u(l,1)-
(W of TS/2)*fault u(2,1);
Pl of segs(m,2)=Cen of segs(m,2)-(L of TS/2)*fault u(l,2)-
(W of TS/2)*fault u(2,2);
Pl of segs(m,3)=Cen of segs(m,3)-(L of TS/2)*fault u(l,3)-
(W of TS/2)*fault u(2,3);

P2_of_segs(m,l)=Cen_of_segs(m,l)+(L_of_TS/2)*fault_u(l,l)—
(W of TS/2)*fault u(2,1);
P2_of_segs(m,2)=Cen_of_segs(m,2)+(L_of_TS/2)*fault_u(l,Z)—
(W of TS/2)*fault u(2,2);
P2_of_segs(m,3)=Cen_of_segs(m,3)+(L_of_TS/2)*fault_u(l,3)—
(W of TS/2)*fault u(2,3);

P3 of segs(m,1)=Cen of segs(m,1)-
(L of TS/2)*fault u(l,1)+ (W _of TS/2)*fault u(2,1);
P3 of segs(m,2)=Cen of segs(m,2)-
(L of TS/2)*fault u(l,2)+ (W _of TS/2)*fault u(2,2);
P3 of segs(m,3)=Cen of segs(m,3)-
(L of TS/2)*fault u(l,3)+ (W _of TS/2)*fault u(2,3);

P4 of segs(m,1l)=Cen of segs(m,1)+ (L _of TS/2)*fault u(l,1)+ (W of TS/2)*fault
_u(z2,1);
P4 of segs(m,2)=Cen of segs(m,2)+(L of TS/2)*fault u(l,2)+ (W _of TS/2)*fault
u(2,2);
P4 of segs(m,3)=Cen_of segs(m,3)+(L_of TS/2)*fault u(l,3)+ (W of TS/2)*fault

—u(2,3);

H dist from station(m,1l)=((station(j,1)-P1l of segs(m,1)) "2+ (station(j,2)-
P1 of segs(m,2))"2)"0.5;
H dist from station(m,2)=((station(j,1)-P2 of segs(m,1)) "2+ (station(j,2)-
P2 of segs(m,2))"2)"0.5;
H dist from station(m,3)=((station(j,1)-P3_of segs(m,1)) "2+ (station(j,2)-
P3 of segs(m,2))"2)"0.5;
H dist from station(m,4)=((station(j,1)-P4 of segs(m,1)) "2+ (station(j,2)-

P4 of segs(m,2))"2)"0.5;

Dist from station(m,1)=((station(j,1)-P1 of segs(m,1))"2+(station(j,2)-
Pl of segs(m,2))"2+(station(j,3)-P1 of segs(m,3))"2)"0.5;
Dist from station(m,2)=((station(j,1)-P2 of segs(m,1))"2+(station(j,2)-

P2 of segs(m,2))"2+(station(j,3)-P2 of segs(m,3))"2)"0.5;
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Dist from station(m,3)=
P3 of segs(m,2))"2+(station(j,3)
Dist from station(m,4)=((station(j,1)

((station(j,1)-P3 of segs(m,1))"2+(station(j,2)-
-P3 of segs(m,3))"2)"0.5;
-P4 of segs(m,1))"2+(station(j,2)-

P4 of segs(m,2))"2+(station(j,3)-P4 of segs(m,3))"2)"0.5;

- Rjb_calc File
min distance (m)=min ([H dist from station(m,1l);H dist from station(m,2);H di
st from station(m,3);H dist from station(m,4)]);
u_btw_stat(l,l):(station(j,l)—Pl_of_segs(m,l))/H_dist_from_station(m,l);
u btw stat(l,2)=(station(j,2)-Pl of segs(m,2))/H dist from station(m,1);
u _btw stat(2,1)=(station(j,1)-P2 of segs(m,1))/H dist from station(m,2);

u btw stat(2,2)

(station(j,Z)—P2_of_segs(m,2))/H_dist_from_station(m,2);

u btw stat (3,
u btw stat (3,

1)
2)

(station(j, 1)
(station (3, 2)

-P3 of segs(m,1)
-P3 of segs(m,2))/H dist from station (m,

)/H_dist from station (m,3);
3)

u btw stat (4,
u btw stat (4,

1)
2)=

1)
2)

(station (3,
(station (3,

-P4 of segs(m,
-P4 of segs(m,2))

1))/H dist from station (m,4);
/H _dist from station(m,4);

H width=((P1_of segs(m,1)
P3 of segs(m,2))"*2)"0.5;

-P3 of segs(m,1))"2+ (Pl of segs(m,2)-

u btw 1 2(1)
u btw 1 2(2)

=fault u(l,
=fault u(l,

1)
2);

if H width==
H cos angle 1=u btw stat(l,1)*u btw 1 2(1)+

u btw stat(l,2)*u btw 1 2(2);
H distance at 1 2=H cos angle 1*H dist from station(m,1);
if H dlstance at 1 2 >= 0 &s& H distance at 12 <=1 _of TS;

perpl_x = Pl_of_segs(m 1) + H dlstance at 12 *u btw 1 2(1);
perpl y = P1 of segs(m,2) + H dlstance at 1 2 *u btw 1 2(2);
perp2 x = P3 of segs(m,1) + H_ dlstance at 1 2 * U btw 1 2(1);
perp2 y = P3 of segs(m,2) + H dlstance at 1 2 *ou btw 1 2(2);
shortestl = ((perpl x - statlon(j,l)) ~ 2+ (perpl_y -
station(j,2)) ~ 2) ~ 0.5;
shortest2 = ((perp2 x - station(j,1)) ~ 2 + (perp2 y -
station(j,2)) ~ 2) ~ 0.5;
if shortestl >= shortest2
Rjb = shortest2;
else
Rjb = shortestl;
end
else
Rjb = min distance (m);
end
else
u btw 1 3(1)=(P3 of segs(m,1)-Pl of segs(m,1))/H width;
u btw 1 3(2)=(P3_of segs(m 2)—P1_of_segs(m,2))/H_width;

H cos angle 1=

H cos_angle 2=

(ubtw _stat(1l,1)*u btw 1 3(1

(u_btw_stat(1l,1)*u btw 1 2(1

)+tu _btw stat(l,2)*u btw 1 2(2));

)+tu btw stat(l,2)*u btw 1 3(2));

H distance at 1 2=H cos angle_ l*H dist from station(m,1);
H distance at 1 3=H cos _angle 2*H dist from . station(m,1);
if Hidlstanceiat7172 >= 0 & Hidlstanceiatili2 <= L of TS &
H distance at 1 3>=0 & H distance at 1 3<=H width;
Rjb=0.0;
elseif H distance at 1 2
perplgx Pliofisegs(
perpl y=P1 of segs(m
perp2 x=P3 of segs(m

>= 0 & H distance at 1 2 <= L of TS;
;1) +H dlstance at 1 Z*u _btw 1 2(
,2)+H distance at 1 2*u btw 1 2(2
;1) +H dlstance at 1 Z*u btw 1 2(1
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perp2 y=P3 of segs(m,2)+H distance at 1 2*u btw 1 2(2);

shortestl = ((perpl x - station(j,1)) ~ 2 + (perpl y
station(j,2)) ~ 2) ~ 0.5;
shortest2 = ((perp2 x - station(j,1)) ~ 2 + (perp2 y -

station(j,2)) ~ 2) ~ 0.5;
Rjb=min ([shortestl;shortest2]);
elseif H distance at 1 3 >= 0 & H distance at 1 3 <= H width;

erp37x Pliofisegs(m,1)+H distance _at 1 3*u btw 1 3(1)
perp3 y=Pl of segs(m,2)+H distance at 1 3*u btw 1 3(2);
perpd x=P2 of segs(m,1)+H distance at 1 3*u btw 1 3(1);
perp4 y=P2 of segs(m,2)+H distance at 1 3*u btw 1 3(2);
shortest3 = ((perp3 x - statlon(],l)) AT g (perp3 y -
station(j,2)) ~ 2) ~ 0.5;
shortest4 = ((perp4 x - station(j,1)) ~ 2 + (perpd y -

station(j,2)) ~ 2) ~ 0.5;

Rjb=min ([shortest3;shortestd]);

else
Rjb=min distance (m);
if Rjb<0.001
Rjb=0.0;
end
end

end
%% R_rup Calculation
tt=(norm vectr(l,1)* (fault corners(l,1)-
station(j,1))+norm vectr(l,2)* (fault corners(l,2)-
station(j,2))+norm vectr(l,3)* (fault corners(l,3)-
station(j,3)))/(norm_vectr(l,l)A2+norm_vectr(l,2)A2+norm_vectr(l,3)A2);
x_h=norm vectr(l,1)*tt+station(j,1);
y_h=norm vectr(1l,2)*tt+station(j,2);
z _h=norm vectr(l,3)*tt+station(j,3);
ver p=[x h y h z h},
vec1=P1_of_segs(m, ) -ver p;
vec2=P2 of segs(m,:)-ver p;
vec3=P3 of segs(m,:)-ver p;
vecd4=P4 of segs(m,:)-ver p;
crosl=cross (vecl,vec?2);
cros2=cross (vecl,vec3);
cros3=cross (vec2,vecd);
crosd=cross (vec3,vecid);

areal=(crosl (l)"2+crosl (2)"2+crosl (3)"2)"70.5;
area2=(cros2 (1) "2+cros2(2) "2+cros2(3)"2)"70.5;
area3=(cros3(l)"2+cros3(2)"2+cros3(3)"2)"0.5;
aread=(cros4d (1) "2+crosd (2) "2+cros4 (3)"2)"0.5;
area vp=(arealtarea2+area3+aread)/2;

vec edgel2=P2 of segs(m,:)-P1 of segs(m,:);
vec_edgel3= P3 of _segs(m, :)-P1l of segs(m,:);
vec edged2= P2_of_segs(m,:)—P4_of_segs(m,:);
vec_edge43=P3 of segs(m,:)-P4 of segs(m,:);

cros_segl=cross(vec_edgel2,vec_edgel3);
cros_seg2=cross (vec_edged2,vec edged3l);

area_ segl=(cros_segl (1) “2+cros_segl (2) "“2+cros_segl(3)"2)"0.5;
area_seg2=(cros_seg2(l)"2+cros_seg2(2)"2+cros_seg2(3)"*2)"0.5;

area_ egz(a eaisegl+areaiseg2)/2,

cofirup712:P2iofisegs(m,')—Pl of segs ( m,:);

tt=(cof rup 12(1)*ver p(l,1)-cof rup 12(1)~*

Pl of segs(m,1l)+cof rup 12(2)*ver p(l,2)-cof rup 12(2)*

Pl of segs( 2)+cof_rup_12(3)*ver_p(1,3)—cof_rup_12(3)*

Pl of _segs(m,3))/(cof rup 12(1)"2+cof rup 12(2)"2+cof rup 12(3)"2);
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x h 12=cof rup 12(1)*tt+Pl of segs(m,1);

y h 12=cof rup 12(2)*tt+Pl of segs(m,2);

z h 12=cof rup 12(3)*tt+Pl of segs(m,3);

cord pver 12=[x h 12 y h 12 z h 12];

1 segl2=sqrt(dot(cof rup 12,cof rup 12));

11 segl2=sqgrt(dot ((cord pver 12-P1 of segs(m,:)), (cord pver 12-
Pl_of_segs(m,:))));

12 segl2=sqgrt (dot ((cord pver 12-P2 of segs(m,:)), (cord pver 12-
P2 of segs( :)))

cof rup 13=P3 of segs(m,: )—Pl of egs(m, :);
tt=(cof rup 13(1)*ver p(1l,1)- -cof _rup 13(1)*
(

Pl of segs(m,1l)+cof rup 13(2)*ver p(l,2)-cof rup 13(2)*
Pliofisegs(m 2)+cof rup 13(3)*ver p(l,3)-cof rup 13(3)*
Pl_of_segs(m,3))/(cof_rup_lB(l)A2+cof_rup_l3(2)A2+cof_rup_l3(3)A2);
x h 13=cof rup 13(1)*tt+Pl of segs(m,1);

y_h 13=cof rup 13(2)*tt+Pl of segs(m,2);

7z h 13=cof _rup 13(3)*tt+Pl of segs(m,3);

cordipver713—[x7h713 y h 13 z h 13];

1 segl3=sqrt(dot (cof rup 13,cof rup 13));

11 segl3=sqgrt(dot((cord pver 13-P1 of segs(m,:)), (cord pver 13-

Pl _of segs(m,:))));

12 segl3=sqgrt(dot ((cord pver 13-P3 of segs(m,:)), (cord pver 13-

P3 of segs(m,:))));

cof_rup 34= 4_of_segs(m,:)—P3 of segs (m, )

tt=(cof rup 34(1)*ver p(l,1)- -cof _rup 34(1)~*

P3 of segs(m l)+cof_rup_34(2)*ver_p(l 2)-cof rup 34(2)*

P3 of _segs (m,2)+cof rup 34 (3)*ver p(l,3)-cof rup 34(3)~*

P3 of _segs (m 3))/(cof_rup_34(l)A2+cof_rup_34(2)A2+cof_rup_34(3)A2);

x_h_34 cof rup 34(1
y_h 34=cof rup 34(
z h 34=cof rup 34(

) *tt+P3 of segs(m,1);
) *£tt+P3_of segs(m 2)

)
cord pver 34=[x h 34 y h 34 z_h_34] ;
cof rup 24=P4 of segs(m,:)-P2 of ( ,:);
tt=(cof rup 24(1)*ver p(1l,1)- -cof rup 24 (1)*
P2 of segs(m,1)+cof rup 24(2)*ver_p(l 2)-cof rup 24(2)*
P2 of _segs (m,2)+cof rup 24 (3)*ver p(l,3)-cof rup 24(3)*
P2 of _segs (m 3))/(cof_rup_24(l)A2+cof_rup_24(2)A2+cof_rup_24(3)A2);

x h 24=cof rup 24 (1) *tt+P2 of segs(m,1);

(1
y_ h 24=cof rup 24(2)*tt+P2_of segs(m,2);
z_h_24 cof_rup_24(3)*tt+P2_of segs (m, 3) ;
cord_pver_24=[x h 24 y h 24 z_h 24],
if abs(area vp-area seg)<=0.001
R rup=((station(j,1)-x_h)"2+(station(j,2)-y h)”"2+(station(j,3)-
z h)~2)70.5 ;

elseif 11 segl2<=1l segl2 && 12 segl2<=1l segl2

R _rupl2=sqrt (dot ((station(j, :)-cord pver 12), (station(j,:)-
cord pver 12)));

R _rup34=sqrt (dot ((station(j, :)-cord pver 34), (station(j,:)-
cord pver 34)));

R rup=min (R _rupl2,R rup34);
elseif 11 segl3<=l segl3 && 12 segl3<=l seqgl3

R rupl3=sqgrt (dot ((station(j,:)-cord pver 13), (station(j,:)-
cord pver 13)));

R rup24=sqrt (dot ((station(j, :)-cord pver 24), (station(j,:)-
cord pver 24)));

R rup=min(R rupl3,R rup24);
else

R rupl=sqrt (dot ((station(j,:)-P1 of segs(m,:)), (station(j,:)-
Pl _of segs(m,:))));

R rup2=sqrt (dot ((station(j,:)-P2 of segs(m,:)), (station(j,:)-
P2 of segs(m,:))));
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R rup3=sqrt (dot ((station(j,:)-P3 of segs(m,:)), (station(j,:)-
P3_of segs(m,:))));

R rupé4=sqrt (dot ((station(j,:)-P4 of segs(m,:)), (station(j,:)-
P4 of segs(m,:))));

R rup corners=[R rupl,R rup2,R rup3,R rup4];

R rup=min (R rup corners);
end

%% Calculation of RyO

aa=Pl of segs(m,1)-P2 of segs(m,1);
bb=P1 of segs(m,2)-P2 of segs(m,2);
cc=Pl of segs(m,3)-P2 of segs(m,3);

tt=(aa*station(j,1)-aa* Pl of segs(m,1l)+bb*station(j,2)-bb*
Pl of segs(m,2))/(aa”2+bb"2);

xc_h=aa*tt+Pl of segs(m,1);

yc_h=bb*tt+Pl of segs(m,2);

cen of segment=(Pl of segs(m,:)+P2 of segs(m,:))/2;
Ry dummy=((xc_h-cen of segment(l,1))"2+(yc _h-cen of segment(1l,2))"2)"0.5;
RyO=Ry dummy-L of TS/2;

if Ry0<O0
Ry0=0;
end
%% Calculation of Rx
cof rup u=P2 of segs(m,:)-P1 of segs(m,:);

tt=(cof rup u(l)*station(j,1l)-cof rup u(l)~*

Pl of segs(m,1)+cof rup u(2)*station(j,2)-cof rup u(2)*

Pl of segs(m,2)+cof rup u(3)*station(j,3)-cof rup u(3)*
Pl_of_segs(m,3))/(cof_rup_u(l)A2+cof_rup_u(2)A2+cof_rup_u(3)A2);
x h rup u=cof rup u(l)*tt+Pl of segs(m,1);

y h rup u=cof rup u(2)*tt+Pl of segs(m,2);

z h rup u=cof rup u(3)*tt+Pl of segs(m,3);

tt=(cof rup d(l)*station(j,1l)-cof rup d(l)~*

P3 of segs(m,1)+cof rup d(2)*station(j,2)-cof rup d(2)*

P3 of segs(m,2)+cof rup d(3)*station(j,3)-cof rup d(3)*
P3_of_segs(m,3))/(cof_rup_d(l)A2+cof_rup_d(2)A2+cof_rup_d(3)A2);
x_h rup d=cof rup d(1l)*tt+P3 of segs(m,1);

y h rup d=cof rup d(2)*tt+P3 of segs(m,2);

z h rup d=cof rup d(3)*tt+P3 of segs(m,3);

cord pver d=[x h rup d y h rup d z h rup d];

R x d=sqgrt((station(j,1)-cord pver d(l,1)) "2+ (station(j,2)-

cord pver d(1,2))"2);

R x u=sqgrt((station(j,1l)-cord pver u(l,1)) "2+ (station(j,2)-

cord pver u(l,2))"2);

R ud=sqrt((cord pver d(l,1)-cord pver u(l,1))"2+(cord pver d(1l,2)-
cord pver u(l,2))"2);

R_X=R_x_u;

if dip deg(i)~=90 && abs(R x d-R x u-R ud)<0.001
R x=-1*R Xx;

end

z_tor=Pl of segs(m,3);

if R x>=0
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- P_pulse_calc File

%% Calculation for Directivity Parameters for Strike Slip Faults
if SS==
kks=m-nof V segments* (ceil (m/(nof V segments))-1);
aa=fault cline 2 (kks,1)-fault cline 1 (kks,1);
bb=fault cline 2(kks,2)-fault cline 1(kks,2);
cc=fault cline 2 (kks,3)-fault cline 1 (kks,3);
tt=(aa*station(j,1)-aa* fault cline 1 (kks,1)
fault_cline_l(kks,Z))/(aaA2+bbA2);
x_h(m)=aa*tt+fault cline 1(kks,1);
y_h(m)=bb*tt+fault cline 1 (kks,2);
epi of seg(m,:)=Cen of segs(m,:);
epi of seg(m,3)=0;
sd dir(m)=((epi of seg(m,1)-x h(m))"2+(epi of seg(m,2)-y h(m))"*2)"0.5;
if sd dir(m)>L of TS/2
sd dir(m)=L of TS/2;

’

+bb*station (j,2) -bb*

end
r dir(m)=R_rup;
P pu rs(m)=1/(l+exp(0.642+0.167*r dir(m)-0.075*sd dir(m)));
else
% Calculation for Directivity Parameters for Non-Strike Slip Faults
(norm_vectr(l,l)*(fault_corners(l,l)—
statlon( 1)) +norm vectr(1l,2)* (fault corners(1l,2)-
station(j,2))+norm vectr(l,3)* (fault corners(1l,3)-
statlon( »3)))/ (norm vectr(l,1)"2+norm vectr(1l,2)"2+norm vectr(l,3)"2);
h(m)=norm vectr(l,1)*tt+station(j,1);
h(m) =norm vectr(l,2)*tt+station(j,2);
z h(m)=norm . vectr (1l,3)*tt+station(j,3);

kks=m—nof_v_segments*(ceil(m/(nof_v_segments))—1);

aa=fault cline 2 (kks,1)-fault cline 1 (kks,1);

bb= fault cline 2 (kks,2)-fault cline 1 (kks,2);

cc=fault cline _2(kks,3)-fault cline 1(kks,3);

tt=(aa* x_h( m) —aa* fault cline 1 (kks,1)+bb*y h(m)-bb*

fault cline 1(kks,2)+cc*z _h(m)-cc* fault cline 1 (kks,3))/(aa”2+bb”"2+cc"2);

x_hc(m)=aa*tt+fault cline 1 (kks,1);

y_hc (m)=bb*tt+fault cline 1 (kks,2);

z _hc(m)=cc*tt+fault cline 1 (kks,3);

r fi(m )=(( h(m)-station(j,1)) "2+ (y_h(m)-station(j,2))"2+(z_h(m)-
station(j,3)) ) 0.5;

d fl( )=((x_h(m)-Cen of segs(m,1))"2+(y h(m)-
Cen of segs (m ))A2+(z _h(m)-Cen of segs(m,3))"2)"0.5;

sd dir(m)=((x_hc(m)-x h(m))"*2+(y_hc(m)-y h(m))"*2+(z_hc(m)-

z h(m))~2)"0.5;
r dir(m)=R_rup;
fi(m)=(atan(r_ fi(m)/d_fi(m)))*180/pi;
P pu rs(m)=1/(l+exp(0.128+0.055*r dir(m)-0.061*sd dir (m)+0.036*fi(m)));
end
alpha=[0 901];
num alp steps=length (alpha) ;

if Ss==1

P alpha=min(0.67,0.67-0.0041*(77.5-alpha));
else

P alpha=min(0.53,0.53-0.0041*(70.2-alpha));
end
P pu alpha(m,:)= P _pu rs(m)*P_alpha;
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APPENDIX C

LIST OF PULSE-TYPE AND NON-PULSE-TYPE NEAR-FAULT

GROUND MOTIONS

Table C. 1 List of near-fault pulse type ground motions (Last access 20/09/2016)

Seq_Num Earthquake Name Station Name Mw R_rup I_Direct
143 Tabas, Iran Tabas 7.35 2.05 1
159 Imperial Valley-06 Agrarias 6.53 0.65 1
161 Imperial Valley-06 Brawley Airport 6.53 10.42 1
170 Imperial Valley-06 EC County Center FF 6.53 7.31 1
171 Imperial Valley-06 El Centro - Meloland Geot. Array 6.53 0.07 1
173 Imperial Valley-06 El Centro Array #10 6.53 8.6 1
178 Imperial Valley-06 El Centro Array #3 6.53 12.85 1
179 Imperial Valley-06 El Centro Array #4 6.53 7.05 1
180 Imperial Valley-06 El Centro Array #5 6.53 3.95 1
181 Imperial Valley-06 El Centro Array #6 6.53 1.35 1
182 Imperial Valley-06 El Centro Array #7 6.53 0.56 1
184 Imperial Valley-06 El Centro Differential Array 6.53 5.09 1
185 Imperial Valley-06 Holtville Post Office 6.53 75 1
285 Irpinia, Italy-01 Bagnoli Irpinio 6.9 8.18 1
451 Morgan Hill Coyote La'/’;‘i)a‘;‘n”;r;tsc’“thwe“ 6.19 0.53 1
459 Morgan Hill Gilroy Array #6 6.19 9.87 1
723 Superstition Hills-02 Parachute Test Site 6.54 0.95 1
764 Loma Prieta Gilroy - Historic Bldg. 6.93 10.97 1
766 Loma Prieta Gilroy Array #2 6.93 11.07 1
767 Loma Prieta Gilroy Array #3 6.93 12.82 1
802 Loma Prieta Saratoga - Aloha Ave 6.93 85 1
803 Loma Prieta Saratoga - W Valley Coll. 6.93 9.31 1
900 Landers Yermo Fire Station 7.28 23.62 1
982 Northridge-01 Jensen Flltergllj?rdtir,]&\gdm|n|strat|ve 6.69 543 1
983 Northridge-01 Jensen F"E[Jii’('fi‘gg@e”erator 6.69 5.43 1
1004 Northridge-01 LA - Sepulveda VA Hospital 6.69 8.44 1
1013 Northridge-01 LA Dam 6.69 5.92 1
1044 Northridge-01 Newhall - Fire Sta 6.69 5.92 1
1045 Northridge-01 Newhall - W Pico Canyon Rd. 6.69 5.48 1
1052 Northridge-01 Pacoima Kagel Canyon 6.69 7.26 1
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Table C.1 (Continued)

1054 Northridge-01 Pardee - SCE 6.69 7.46 1
1063 Northridge-01 Rinaldi Receiving Sta 6.69 6.5 1
1084 Northridge-01 Sylmar - Converter Sta 6.69 5.35 1
1085 Northridge-01 Sylmar - Converter Sta East 6.69 5.19 1
1086 Northridge-01 Sylmar - Olive View Med FF 6.69 53 1
1106 Kobe, Japan KIMA 6.9 0.96 1
1114 Kobe, Japan Port Island (0 m) 6.9 3.31 1
1119 Kobe, Japan Takarazuka 6.9 0.27 1
1120 Kobe, Japan Takatori 6.9 1.47 1
1148 Kocaeli, Turkey Arcelik 751 13.49 1
1161 Kocaeli, Turkey Gebze 751 10.92 1
1176 Kocaeli, Turkey Yarimca 751 4.83 1
1182 Chi-Chi, Taiwan CHY006 7.62 9.76 1
1193 Chi-Chi, Taiwan CHY024 7.62 9.62 1
1244 Chi-Chi, Taiwan CHY101 7.62 9.94 1
1476 Chi-Chi, Taiwan TCU029 7.62 28.04 1
1480 Chi-Chi, Taiwan TCUO036 7.62 19.83 1
1481 Chi-Chi, Taiwan TCU038 7.62 25.42 1
1482 Chi-Chi, Taiwan TCU039 7.62 19.89 1
1483 Chi-Chi, Taiwan TCUO040 7.62 22.06 1
1485 Chi-Chi, Taiwan TCUO045 7.62 26 1
1486 Chi-Chi, Taiwan TCUO046 7.62 16.74 1
1489 Chi-Chi, Taiwan TCUO049 7.62 3.76 1
1491 Chi-Chi, Taiwan TCUO051 7.62 7.64 1
1492 Chi-Chi, Taiwan TCU052 7.62 0.66 1
1493 Chi-Chi, Taiwan TCUO053 7.62 5.95 1
1496 Chi-Chi, Taiwan TCUO056 7.62 10.48 1
1498 Chi-Chi, Taiwan TCUO059 7.62 17.11 1
1501 Chi-Chi, Taiwan TCUO063 7.62 9.78 1
1502 Chi-Chi, Taiwan TCU064 7.62 16.59 1
1503 Chi-Chi, Taiwan TCUO065 7.62 0.57 1
1505 Chi-Chi, Taiwan TCUO068 7.62 0.32 1
1510 Chi-Chi, Taiwan TCUO075 7.62 0.89 1
1511 Chi-Chi, Taiwan TCUO76 7.62 2.74 1
1515 Chi-Chi, Taiwan TCU082 7.62 5.16 1
1519 Chi-Chi, Taiwan TCU087 7.62 6.98 1
1528 Chi-Chi, Taiwan TCU101 7.62 211 1
1529 Chi-Chi, Taiwan TCU102 7.62 149 1
1530 Chi-Chi, Taiwan TCU103 7.62 6.08 1
1531 Chi-Chi, Taiwan TCU104 7.62 12.87 1
1548 Chi-Chi, Taiwan TCU128 7.62 13.13 1
1550 Chi-Chi, Taiwan TCU136 7.62 8.27 1
1602 Duzce, Turkey Bolu 7.14 12.04 1
2114 Denali, Alaska TAPS Pump Station #10 7.9 2.74 1

206




Table C.1 (Continued)

2734 Chi-Chi, Taiwan-04 CHYO074 6.2 6.2 1
3473 Chi-Chi, Taiwan-06 TCUO78 6.3 11.52 1
3475 Chi-Chi, Taiwan-06 TCU080 6.3 10.2 1
3965 Tottori, Japan TTRO08 6.61 6.88 1
4040 Bam, Iran Bam 6.6 1.7 1
4065 Parkfield-02, CA PARKFIELD - EADES 6 2.85 1
4097 Parkfield-02, CA Slack Canyon 6 2.99 1
4098 Parkfield-02, CA Parkfield - Cholame 1E 6 3 1
4100 Parkfield-02, CA Parkfield - Cholame 2WA 6 3.01 1
4101 Parkfield-02, CA Parkfield - Cholame 3E 6 5.55 1
4102 Parkfield-02, CA Parkfield - Cholame 3W 6 3.63 1
4103 Parkfield-02, CA Parkfield - Cholame 4W 6 423 1
4107 Parkfield-02, CA Parkfield - Fault Zone 1 6 251 1
4113 Parkfield-02, CA Parkfield - Fault Zone 9 6 2.85 1
4115 Parkfield-02, CA Parkfield - Fault Zone 12 6 2.65 1
4126 Parkfield-02, CA Parkfield - Stone Corral 1E 6 3.79 1
4211 Niigata, Japan NI1G021 6.63 11.26 1
4228 Niigata, Japan NIGH11 6.63 8.93 1
4458 Montenegro, Yugo. Ulcinj - Hotel Olimpic 7.1 5.76 1
4480 L'Aquila, Italy L'Aquila - V. prermo - Centro 6.3 6.27 1
4482 L'Aquila, Italy L'Aquila - V. Aterno -F. Aterno 6.3 6.55 1
4483 L'Aquila, Italy L'Aquila - Parking 6.3 5.38 1
6887 Darfield, New Zealand | Christchurch Botanical Gardens 7 18.05 1
6897 Darfield, New Zealand DSLC 7 8.46 1
6906 Darfield, New Zealand GDLC 7 1.22 1
6927 Darfield, New Zealand LINC 7 7.11 1
6928 Darfield, New Zealand LPCC 7 25.67 1
6942 | Darfield, New Zealand | NNBS North New Brighton 7 26.76 1
School
6959 Darfield, New Zealand Christchurch Resthaven 7 19.48 1
6960 Darfield, New Zealand Riccarton High School 7 13.64 1
6962 Darfield, New Zealand ROLC 7 1.54 1
6966 Darfield, New Zealand Shirley Library 7 22.33 1
6969 Darfield, New Zealand Styx Mill Transfer Station 7 20.86 1
6975 Darfield, New Zealand TPLC 7 6.11 1
8119 Christchurch, New Pages Road Pumping Station 6.2 1.98 1
Zealand
8123 Christchurch, New Christchurch Resthaven 6.2 513 1
Zealand
8161 El Mayor-Cucapah El Centro Array #12 7.2 11.26 1
8164 Duzce, Turkey IRIGM 487 7.14 2.65 1
8606 El Mayor-Cucapah Westside Elementary School 72 11.44 1
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Table C. 2 List of near-fault nonpulse ground motions (Last access 20/09/2016)

Seg_Num Earthquake Name Station Name Mw R_rup |_Direct
230 Mammoth Lakes-01 Convict Creek 6.06 6.63 0
297 Irpinia, Italy-02 Bisaccia 6.2 14.74 0
495 Nahanni, Canada Site 1 6.76 9.6 0
527 N. Palm Springs Morongo Valley Fire Station 6.06 12.03 0
558 Chalfant Valley-02 Zack Brothers Ranch 6.19 7.58 0
725 Superstition Hills-02 Poe Road (temp) 6.54 11.16 0
727 Superstition Hills-02 Superstition Mtn Camera 6.54 5.61 0
827 Cape Mendocino Fortuna - Fortuna Blvd 7.01 19.95 0
830 Cape Mendocino Shelter Cove Airport 7.01 28.78 0
864 Landers Joshua Tree 7.28 11.03 0
901 Big Bear-01 Big Bear Lake - Civic Center 6.46 8.3 0
959 Northridge-01 Canoga Park - Topanga Can 6.69 14.7 0
1111 Kobe, Japan Nishi-Akashi 6.9 7.08 0
1234 Chi-Chi, Taiwan CHY086 7.62 28.42 0
1512 Chi-Chi, Taiwan TCUO078 7.62 8.2 0
1520 Chi-Chi, Taiwan TCU088 7.62 18.16 0
1521 Chi-Chi, Taiwan TCU089 7.62 9 0
1651 Northridge-02 Arleta - Nordhoff Fire Sta 6.05 8.04 0
2628 Chi-Chi, Taiwan-03 TCU078 6.2 7.62 0
2629 Chi-Chi, Taiwan-03 TCU079 6.2 8.48 0
2632 Chi-Chi, Taiwan-03 TCU084 6.2 9.32 0
2635 Chi-Chi, Taiwan-03 TCU089 6.2 9.81 0
3746 Cape Mendocino Centerville Beach, Naval Fac 7.01 18.31 1
3748 Cape Mendocino Ferndale Fire Station 7.01 19.32 0
3750 Cape Mendocino Loleta Fire Station 7.01 2591 0
3947 Tottori, Japan SMNHO01 6.61 5.86 0
3966 Tottori, Japan TTR009 6.61 8.83 0
4067 Parkfield-02, CA PARKFIELD - GOLD HILL 6 3.43 0
4068 Parkfield-02, CA AR o ¢ 6 265 0
4116 Parkfield-02, CA Parkfield - Fault Zone 14 6 8.81 0
4118 Parkfield-02, CA Parkfield - Gold Hill 1W 6 2.67 0
4119 Parkfield-02, CA Parkfield - Gold Hill 2E 6 3.84 0
4120 Parkfield-02, CA Parkfield - Gold Hill 2w 6 3.38 0
4121 Parkfield-02, CA Parkfield - Gold Hill 3E 6 6.3 0
4122 Parkfield-02, CA Parkfield - Gold Hill 3W 6 541 0
4123 Parkfield-02, CA Parkfield - Gold Hill 4W 6 8.27 0
4127 Parkfield-02, CA Parkfield - Stone Corral 2E 6 5.8 0
4128 Parkfield-02, CA Parkfield - Stone Corral 3E 6 8.08 0
4139 Parkfield-02, CA PARKFIELD - UPSAR 02 6 9.95 0
4140 Parkfield-02, CA PARKFIELD - UPSAR 03 6 9.95 0
4141 Parkfield-02, CA PARKFIELD - UPSAR 05 6 9.61 0
4142 Parkfield-02, CA PARKFIELD - UPSAR 06 6 9.61 0
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Table C.2 (Continued)

4143 Parkfield-02, CA | PARKFIELD - UPSAR 07 6 9.61 0
4144 Parkfield-02, CA | PARKFIELD - UPSAR 08 6 9.41 0
4145 Parkfield-02, CA | PARKFIELD - UPSAR 09 6 9.34 0
4146 Parkfield-02, CA | PARKFIELD - UPSAR 10 6 9.14 0
4147 Parkfield-02, CA | PARKFIELD - UPSAR 11 6 9.41 0
4148 Parkfield-02, CA | PARKFIELD - UPSAR 12 6 9.47 0
4149 Parkfield-02, CA | PARKFIELD - UPSAR 13 6 9.47 0
4209 Niigata, Japan NIGO19 6.63 9.88 0
4218 Niigata, Japan NIG028 6.63 9.79 0
4219 Niigata, Japan NIGHO1 6.63 9.46 0
4349 Umb”ft‘a'l\;amhe' Colfiorito 6 6.92

4456 Montenegro, Yugo. Petrovac - Hotel Olivia 7.1 8.01

4481 L'Aquila, Italy L'Aquila - e -Colle 6.3 6.81 0
5657 Iwate IWTH25 6.9 48 0
5832 EI Mayor-Cucapah TAMAULIPAS 72 26,55 0
6961 Darfield, few RKAC 7 16.47 0
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