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ABSTRACT

COMPUTER-AIDED DIAGNOSIS OF ALZHEIMER’S DISEASE AND MILD
COGNITIVE IMPAIRMENT WITH MARS/CMARS CLASSIFICATION USING

STRUCTURAL MR IMAGES

Çevik, Alper

Ph.D., Department of Biomedical Engineering

Supervisor : Prof. Dr. B. Murat Eyüboğlu

Co-Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

September 2017, 92 pages

Early detection of Alzheimer’s disease (AD) and its prodromal stage, amnestic mild
cognitive impairment (MCI), has drawn remarkable attention in recent years. Despite
the impressive developments in fields of image analysis, pattern classification, and
machine learning, no computer-aided diagnosis system has yet been a part of the
clinical routine to diagnose the AD.

This thesis study aims to propose a thorough procedure which involves detecting the
early signs of disease-originated deformations by fully-automated analysis of struc-
tural brain magnetic resonance images (MRI). A comprehensive review including the
taxonomy of related biomarkers and state-of-the-art techniques is introduced.

Proposed methodology involves extraction of voxel intensity-based features (such as
tissue probability maps) through segmenation and registration of brain MRI volumes.
Voxel-based morphometry framework is employed to provide one-to-one correspon-
dance between the images. Quality of the feature set is evaluated by an analysis
including other approaches such as feature-based morphometry. A novel hybrid pro-
cedure involving both statistical analysis and utilization of domain knowledge is pro-
posed for feature selection. Performance of the method is compared with these of
well-known dimensionality reduction techniques. Multivariate adaptive regression
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splines (MARS) and Conic MARS (CMARS) were utilized for construction of the
class-separating hyperplanes through a parameter optimization procedure involving
cross-validation. This study is the first-time engagement of both MARS and CMARS
algorithms in field of medical image analysis. Qualitative and quantitative evaluations
of classifier performances were presented including a comparison with benchmark
studies in the field. Promising results are acquired through the tests performed on
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data.

Keywords: Computer-Aided Diagnosis, Medical Image Analysis, Alzheimer’s Dise-
ase, Pattern Classification, Machine Learning
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ÖZ

ALZHEIMER HASTALIĞI VE HAFİF BİLİŞSEL BOZUKLUĞUN
MARS/CMARS SINIFLANDIRMA İLE YAPISAL MR GÖRÜNTÜLERİ

ÜZERİNDEN BİLGİSAYAR DESTEKLİ TANILANMASI

Çevik, Alper

Doktora, Biyomedikal Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. B. Murat Eyüboğlu

Ortak Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Eylül 2017 , 92 sayfa

Alzheimer hastalığının (AH) ve prodromal evresi olan amnestik hafif bilişsel bozuk-
luğun (HBB) erken tespiti, son yıllarda dikkat çeken bir konu haline gelmiştir. Gö-
rüntü analizi, örüntü sınıflandırma ve makine öğrenimi alanlarındaki etkileyici ge-
lişmelere rağmen, henüz hiçbir bilgisayar destekli tanı sistemi, AH teşhisinin rutin
klinik sürecinin bir parçası haline gelmemiştir.

Bu tez çalışması, yapısal beyin manyetik rezonans (MR) görüntülerinin analiziyle,
hastalığa bağlı deformasyonların erken dönem belirtilerini saptamayı içeren kapsamlı
bir prosedür önermeyi amaçlamaktadır. İlgili biyobelirteçlerin taksonomisi ve yaygın
kabul görmüş tekniklerin incelemesini de barındıran, kapsamlı bir literatür taraması
ortaya konmuştur.

Önerilen metodoloji, voksel yoğunluğuna dayanan (örneğin doku olasılık haritaları
gibi) özniteliklerin, hacimsel beyin MR görüntülerinin bölütlenmesi ve hizalanması
yoluyla çıkarılmasını içermektedir. Voksel tabanlı morfometri çerçevesi, imgeler ara-
sında bire bir eşlemenin sağlanması için kullanılmaktadır. Öznitelik kümesinin ka-
litesi, öznitelik tabanlı morfometri gibi diğer yaklaşımları da içeren bir analizle de-
ğerlendirilmiştir. Öznitelik seçimi için hem istatistiksel analiz hem de alan bilgisi
kullanımını içeren yeni bir hibrid prosedür önerilmiştir. Yöntemin performansı, bili-
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nen boyut azaltma teknikleriyle karşılaştırılmıştır. Çapraz doğrulama içeren bir pa-
rametre optimizasyon prosedürü ile sınıf ayrımlı hiperdüzlemlerin oluşturulması için
çok değişkenli adaptif regresyon eğrileri (MARS) ve konik MARS (CMARS) metot-
ları kullanılmıştır. Bu çalışma kapsamında, tıbbi görüntü analizi alanında hem MARS
hem de CMARS algoritmaları ilk kez kullanılmıştır. Sınıflandırıcı performanslarının
nitel ve nicel değerlendirmeleri, alandaki önemli çalışmalarla karşılaştırmayı da içerir
şekilde sunulmuştur. Alzheimer Hastalığı Nörogörüntüleme Girişimi (ADNI) verileri
üzerinde yapılan testler yoluyla umut verici sonuçlar elde edilmiştir.

Anahtar Kelimeler: Bilgisayar Destekli Tanılama, Tıbbi Görüntü Analizi, Alzheimer
Hastalığı, Örüntü Sınıflandırma, Makine Öğrenimi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Alzheimer’s disease (AD) is the most common form of age-associated dementias

which cause major problems with thinking, memory, and behavior. Symptoms usu-

ally develop slowly and get worse over time, and reach to a level which severely

affects everyday life. It gradually interferes with all cognitive functions and may

eventually lead to death. This neurodegenerative disease is known to be associated

with “structural atrophy, pathological amyloid depositions, and metabolic alterations

in the brain” [47]. The underlying mechanism responsible for these deformations has

not yet been fully elucidated and remains a remarkable research subject in the areas

of neurology and mathematical modeling [2].

According to the most recent annual report [10] of Alzheimer’s Association1 based

on the U.S. data:

• Ten percent of the people which are 65 years old or older has Alzheimer’s

disease. This proportion increases with increasing age. (Only 3% of people are

aged 65-74, whereas 32% of people are aged 85 and older have Alzheimer’s

disease.)

• In the USA, Alzheimer’s disease is the 6th leading cause of death. Every 66

seconds, someone in the United States develops Alzheimer’s dementia. By the

year 2016, more than 5 million Americans suffer from Alzheimer’s disease.
1 2017 Alzheimer’s Disease Facts and Figures is a statistical resource for United States data related to Alz-

heimer’s disease. http://www.alz.org/documents_custom/2017-facts-and-figures.pdf.
[Accessed: 24- July- 2017] [98].

1

http://www.alz.org/documents_custom/2017-facts-and-figures.pdf


This figure is foreseen as 16 million by 2050.

• Since the year 2000, number of deaths from heart disease have decreased by

14% whereas the number of deaths related to Alzheimer’s disease have increa-

sed by 89%. Death prevalence of AD is greater than those of breast cancer and

prostate cancer combined.

• In 2017, Alzheimer’s and other dementias will cost the nation $259 billion. By

2050, these costs are estimated to rise as high as $1.1 trillion.

• Thirty five percent of caregivers for AD (or another dementia) patients report

that their health has deteriorated due to patient care responsibilities, compared

to 19% of caregivers for older people without dementia.

Alzheimer’s disease has no current cure. However, identification of AD in its preclini-

cal stage has become extraordinarily important together with the attempts to postpone

the onset or slow down progression of the disease and introduce an efficient sympto-

matic treatment. Thus, diagnosis of AD in its earliest stages - before irreversible brain

damage or mental decline has occurred - is of vital importance. Quality of the treat-

ment is strongly related to how early the disease is detected. Thus, early diagnosis

improves quality of life for Alzheimer’s patients and their caregivers.

Recently, no particular test that verifies a person suffers (or will suffer) from AD or

mild cognitive impairment (MCI)2 exists. Since the amyloid plaques and neurofibril-

lary tangles must be histopathologically confirmed for the exact diagnosis, it is only

possible by an autopsy [94].

In the routine clinical practice, the disease is diagnosed through a full assessment in-

volving physical examination, medical history, diagnostic tests (laboratory, clinical,

and genetic - e.g., APOE-e4 gene), neurological evaluation (of coordination, reflexes,

eye movement, muscle strength and tone, sensation, and speech), and surveys on the

mental status (e.g., the mental state examination (MSE), mini-cog, and mood asses-

sment). A medical workup for AD usually incorporates utilization of structural and
2 MCI is a syndrome of brain functions which leads to a minor deterioration in cognitive capability and an

elavated possibility of converting into AD. MCI can demonstrate various symptoms. In general, it is seen as a
prodromal stage of Alzheimer’s disease when impairments in the episodic memory is predominant over these
symptoms.
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functional imaging modalities like magnetic resonance imaging (MRI) and positron

emission tomography (PET), relatively. Nevertheless, the aforementioned brain ima-

ging methods are mostly elaborated to disqualify other reasonable situations such as

stroke, tumor, fluid collection in intracranial compartments, and traumatic brain in-

jury which may generate symptoms identical with AD but require different types of

treatment.

Computer-aided diagnosis (CAD) of Alzheimer’s disease has attracted considerable

attention recently. Up to now, various biomarkers have been proved to be sensitive to

the presence of AD and MCI. These biomarkers can be subsumed under three main

groups: (i) MRI (for brain atrophy measurement), (ii) functional imaging (for hypo-

metabolism quantification), and (iii) cerebrospinal fluid (CSF) (for quantification of

specific proteins) [106]. A comprehensive review of the literature on these biomarkers

is presented in Subsection 2.1.1.

Despite the growing interest in utilization of image analysis, statistical pattern clas-

sification and machine learning methods in field of medicine, no computer-aided di-

agnosis procedure has yet been a part of the clinical routine to help diagnosing the

Alzheimer’s disease (AD). Since the early diagnosis - or at least raised awareness of

the early symptoms - would lead to a significant boost in quality of disease manage-

ment, a computer-aided diagnosis tool which has the ability to discriminate between

the effects of normal aging and AD or MCI on brain structure is of great value.

1.2 Objectives and Scope

Aim of this thesis study is to build up a procedure which improves the early detection

of AD and MCI using structural brain MRI volumes, and builds a foundation for a

fully-automated diagnostic software. The proposed approach is based on prepara-

tion of the MR images with appropriate image processing techniques, extraction and

specification of the features with relatively higher strength to represent the distinguis-

hing image properties, determination of the optimal model parameters, classification

of image patterns utilizing the elements of statistical learning, and evaluation of the

overall performance by qualitative and quantitative analysis involving an objective
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comparison with other techniques examined in the field. The scope of this thesis

study can be summarized in general terms of a machine learning framework as fol-

lows.

Data: Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a long-time study

which involves observation of cognitively normal elders, and subjects with Alz-

heimer’s disease and mild cognitive impairment in multiple centers. In scope

of the thesis, magnetic resonance imaging (MRI), (18F)-Fludeoxyglucose po-

sitron emission tomography (FDG PET), urine serum, and cerebrospinal fluid

(CSF) biomarkers are acquired together with the clinical and neuropsychologi-

cal follow-up data at certain intervals from each participant [46]. In this thesis,

datasets used for model training by cross-validation and performance evalua-

tion were obtained from the ADNI database.

Feature Extraction: Image processing operations which are part of the voxel-based

morphometry (VBM) [8] framework were employed in feature extraction pro-

cedure. Within this scope, 3D brain MR images acquired from the ADNI ar-

chive were segmented into the tissue probability maps belonging to the three

main brain tissues; namely, gray matter (GM), white matter (WM), and cere-

brospinal fluid (CSF). This process is called Unified Segmentation [9] and it

also involves removal of the non-uniform bias field due to the imperfections

in the acquisition process, and rigid-body registration of the images together

with the tissue segmentation. Subsequent to the segmentation, images are non-

linearly registered using the DARTEL algorithm [6]. Finally, all of the images

were transformed into the MNI space by employing the DARTEL flow-fields,

which were acquired in the preceding step. Performance outcome of this voxel-

based approach is compared with those of widely-used feature description ex-

traction algorithms such as scale-invariant feature transform (SIFT) [57] and

histograms of oriented gradients (HOG) [24].

Dimensionality Reduction: Since the “whole-brain analysis” approach is embraced

and the tissue probabilities derived from voxel intensities are treated as featu-

res in the beginning, total dimensionality is high enough to guarantee for the

problem to suffer from the well-known “curse of dimensionality” phenomenon
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[48]. This means introduction of a step for reducing the dimensionality towards

a reasonable range is crucial. For this purpose, a novel 3-step procedure invol-

ving both statistical analysis and domain-specific knowledge is proposed. The

reader may refer to our paper, “Voxel-MARS” [17], for mathematical definition

of the methodology and justification of the preferences.

Classification: Multivariate Adaptive Regression Splines (MARS) [38] models were

built and validated through a grid-search method combined with N-times re-

plicated k-fold cross-validation procedure applied on the training data. Conic

MARS (CMARS) [103] method is employed which replaces backward (model

pruning) step of MARS. In this way, the coefficients for the basis-functions are

updated rather than removing a number of them from the model, to avoid over-

fitting. Classification performance were compared to those of 28 other methods

in terms of sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV). Results (for MARS) were also reported in [17]. Addi-

tional results involving CMARS can be found in this thesis (see Chapter 6).

Main contributions of this study can be listed as follows: (i) A non-parametric, adap-

tive extension of regression trees, namely Multivariate Adaptive Regression Splines

(MARS), was utilized for classification of high-resolution, volumetric MR images,

for early detection of AD. MARS, unlike Generalized Linear Models and Genera-

lized Additive Models, has the ability to model the interactions between variables

through nonlinearities, and to automatically select the variables to be included in the

model function. In this study, it was proved that these advantages maintained by the

method, lead to a remarkable success in classification of high-dimensional data, even

under the existence of the small sample size problem. (ii) This study also covers the

application of a recently developed method, Conic MARS (CMARS) - a mathema-

tically more integrated variant of MARS which involves concepts of regularization

and modern optimization. CMARS replaces the pruning phase of MARS with a pe-

nalized cost function, which implies a trade-off between accuracy and complexity. In

this study, it was shown that minimization of the cost function by constructing and

solving a Conic Quadratic Problem enhances resulting models in terms of robustness,

as well as increasing the amount of information preserved in the models, with respect

to MARS. Utilization of both MARS and CMARS methods as pattern classifier is a
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first-time study in the field of medical image analysis. (iii) A partially novel, 3-step,

hybrid dimensionality reduction procedure involving statistical analysis and enabling

inclusion of the domain knowledge was proposed for determination of significant

tissue probabilities as features. Proposed approach was discussed qualitatively and

quantitatively, in comparison with well-established techniques, and successful results

were obtained. (iv) Features were represented by voxel-based morphometry through

whole-brain analysis and this technique was compared with another widely-used ap-

proach, namely, feature-based morphometry. It was observed that the first approach,

which is based on one-to-one correspondence between voxels, is more adequate than

the second one, which involves representation of the images by descriptive features,

for AD detection in the early stages of the disease.

As a result, a software routine which is capable of separating AD and MCI brain MRI

from the cognitively healthy ones, and converting MCIs from non-converting ones,

with high accuracy, sensitivity and specificity rates, was developed. It is important to

mention that the proposed approach relies only on the assessment of structural MRI,

which is already a part of standard clinical process for diagnosing AD.

1.3 Thesis Outline

The thesis begins with a brief introduction given in Chapter 1 (Introduction), where

the motivation behind the work, main objectives and scope of the study are briefly

introduced to the reader. The purpose and original contributions of the thesis are

clearly stated in this chapter.

Chapter 2 (Background) is mainly composed of three parts. Firstly, a literature review

is presented. This part (Section 2.1) includes summaries of research on both biomar-

kers of various formats and classification techniques utilized for AD diagnosis. In

the following two sections (Section 2.2 and Section 2.3), the mathematical basis of

the methods MARS and CMARS are explained, respectively. The discussions justi-

fying our preferences in terms of biomarker and classification methodology can also

be found in this chapter.

In the next chapter (Chapter 3), information on the data used in model training and
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performance tests are given. Following section (Section 3.2) provides details of the

feature extraction procedure which involves concepts of voxel-based morphometry.

In the final section of the chapter, alternative methods in the field of feature-based

morphometry are examined.

A novel, three-step, hybrid procedure for selection of significant features is put for-

ward in Chapter 4. In addition to the description of method, this chapter contains a

comparison of the proposed technique with other commonly-used ones in terms of

overall performance.

Details regarding the implementation and performance evaluation are included in two

consecutive chapters, namely, Chapter 5 and Chapter 6, relatively. The first chap-

ter involves the details of model building, optimization and visualization of MARS

and CMARS classifiers. Comparative results can be found in Chapter 6 (Performance

Evaluation). This chapter also involves qualitative discussions that addresses the over-

all performance of the proposed methodology in several different aspects.

Finally, a brief conclusion, which is also including an outlook to the future scientific

research plans, diagnostic tools, and possible applications is presented in the last

chapter.
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CHAPTER 2

BACKGROUND

2.1 Early Detection of AD and MCI

2.1.1 A Taxonomy of Neuroimaging-Based Biomarkers Employed in AD Diag-

nosis

It has been proven that, multiple neuroimaging-based biomarkers are sensitive to pre-

sence of AD and MCI; i.e., structural MRI for measuring brain atrophy, functio-

nal imaging with functional MRI (fMRI) and Positron Emission tomography (PET)

for hypometabolism quantification, Single-Photon Emission Computed Tomography

(SPECT) for perfusion, and Diffusion Tensor Imaging (DTI) for connectivity analysis

(cf. Figure 2.1). Additionally, several studies demonstrated that multimodal feature

sets obtained by combining biomarkers of different imaging techniques can also be

efficiently used to diagnose AD. Throughout the next subsection, AD and MCI de-

tection strategies based on the biomarkers derived from structural MR images are

investigated in detail (see Subsection 2.1.2). A review regarding several of the most

remarkable methods included in other groups is presented in this section.

Hinrichs et al. (2009) [44] presented a novel classification framework, which is based

on FDG-PET imaging data. The proposed algorithm incorporates spatial priors by

utilization of boosting of the weak classifiers corresponding to voxel intensity values.

Similarly in [13], FDG-PET images were analyzed for prediction of conversion from

MCI to AD at different stages of disease through a supervised learning algorithm ba-

sed on Support Vector Machines (SVM). The study was completed with a prediction

accuracy of 85%. Volume of interest-based segmentation of FDG-PET images was
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Figure 2.1: Block diagram: Neuroimaging-based biomarkers.

embraced for detection of converter MCIs by Pagani et al. (2015) and successful re-

sults - including the ability to predict conversion 2 years earlier than its occurrence -

were presented in [75]. In [100], an algorithm which employs amyloid-PET images

for quantification of plaques at different stages of disease was introduced by Vanden-

berghe et al. (2013).

Studies presented in [41], [79], and [78] can be listed as examples that involve uti-

lization of perfusion data acquired through SPECT. In [78], it was shown that the

overall accuracy is inversely related to the number of input variables and the reported

sensitivity was above 90%.

Chen et al. (2011) [19] conducted an analysis of large scale connectivity networks

to classify AD, MCI, and healthy subjects by employing fMRI data and segmenting

the brain into 116 separate regions of interest. The relations between network con-

nectivity and behavior were analyzed through linear regression analysis. The research

studies presented in [50] and [52] also involve successful approaches based on fMRI

data.
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The most important works involving AD diagnosis based on DTI data include tracto-

graphy based method presented in [66], connectivity network analyses performed in

[104] and [77], and the voxel intensity-based approach introduced in [31]. Highest

accuracy (of 83%) in AD/CN classification among these was achieved by the latest

one.

There also exist several studies that involve successful combinations of different bio-

markers provided by different imaging modalities to form a classification framework.

In [101], Vemuri et al. (2008) combined tissue density maps with demographics inclu-

ding age and gender along with the genetic profile information of the participants. A

remarkable approach for dimensionality reduction, called STAND-score, was propo-

sed by the authors. Davatzikos et al. (2011) [26] analyzed CSF proteins together with

neuroimaging data to predict conversion from MCI to AD. Other attention-grabbing

examples of multimodal studies that should be mentioned are [111] and [85]. A very

up-to-date review on the neuroimaging biomarkers can be comprehended in [80].

2.1.2 AD and MCI Detection Based on Structural MRI

The most commonly used medical imaging modality for visualizing the anatomi-

cal structure of the brain is known as T1-W MRI (T1-weighted magnetic resonance

imaging). T1-W MRI technology has the ability to provide volumetric images with

respectively high resolution and contrast when compared with the alternatives. The

underlying mechanism is based on a measure related with the recovery time of longi-

tudinal magnetization established by an intense magnetic field, following the excita-

tion pulse. This variable is called T1 relaxation time and it varies between different

biological components forming the brain tissue. T1-W MRI technology simply uti-

lizes this measure as the physical entity to convert into numerical distributions that

form images. Generated digital data are presented in terms of voxels (volumetric

pixels). Each voxel corresponds to an index by which the position is addressed, and

an intensity value by which the gray level in this particular position is defined. Voxel

intensities mostly take a decimal value between 0 and 1, where 0 represents black,

1 represents white, and any value lying between 0 and 1 is mapped into a different

gray level. Bit-depth and resolution of the resulting images vary depending on the
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hardware and the software qualifications of the MRI device.

Anatomical structures of the brain differ in their organic matter coverage. For exam-

ple, the white matter (WM) which is composed of neuronal axons in large proportions

has a high fat content, while the gray matter (GM) which is mostly formed from cell

bodies is protein-rich, respectively. By this means, T1-W MRI modality, which is

highly sensitive to the T1 relaxation times in different tissues, provide good contrast

between WM and GM.

Voxel intensity-based biomarkers obtained through the analysis of brain as a whole

were proved to be effective in early detection of AD, in many studies. This group

of techniques is generally referred as “whole-brain analysis”. In [1], the authors

investigated MRI images of correctly and incorrectly diagnosed subjects with known

current conditions in order to question how early can the conversion be detected.

Davatzikos et al. (2008) [27] reported their findings on formation of subtle structural

patterns of abnormality in structural brain MRI, in very early phases of MCI. In [53],

linear suport vector machines used for discriminating effects of AD on brain from

normal effects occurring in elderly subjects. The authors claimed that analyzing the

brain as a whole was the essential approach at least in the beginning. The papers

[107], [14], and [82] can also be noted as important studies falling into this group.

It has already been shown that biomarkers based on individual anatomical structu-

res such as hippocampus, cortex, and amygdale may serve as biomarkers to detect

AD. This group of feature extraction approaches is also called “ROI-based methods”.

ROI-based methods rely on a priori knowledge of particular shape deformations in

specific brain structures. Enlargement of ventricles [4, 105], shrinkage of the hippo-

campus [54, 11, 102, 55], and local declines in the cortical thickness [76, 33, 32, 28]

can be mentioned as widely-known anatomical deformations consequent to the exis-

tence of AD. Boutet et al. (2014) [11] demonstrated that even minor alterations in

the hippocampal volume caused by AD can be detected using a 7T MRI. In papers

[22] and [21], Chupin et al. proposed novel methods to perform early Alzheimer’s

detection through segmentation of amygdala and hippocampus.

In the work presented in [110], Zhang et al. (2015) utilized displacement field (DF),

estimated by level-set method to track the morphometry from normal brains to the
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brains of AD patients. For this purpose, the authors preferred performing “whole-

brain analysis” - in which, all voxels in the brain are considered as a whole - rather

than employing one of the ROI-based techniques. In the paper, rationale behind this

preference is introduced through a list of drawbacks that the ROI-based methods are

suffering from. These are: (i) requirement of the expert knowledge; (ii) dependency

of the prediction accuracy to the experience level of the interpreters; (iii) difficulty in

implementation of the mutual information among the pixels; (iv) potential existence

of other regions connected with AD; and (v) examiners’ tendency to segment the ROI

manually rather than automatically.

In this study, whole-brain analysis is preferred rather than ROI-based approaches

which suffer from several shortcomings listed above. In this context, commonly-used

direct “voxel-as-feature” (VAF) methodology [41] was embraced for extraction of the

baseline features. In addition to the aforementioned justification, our future intention

to expand our work to handle computer-aided diagnosis of other neurodegenerative

diseases can be mentioned as another motive to choose whole-brain approach and

VAF methodology to obtain the largest set of initial baseline features for classifica-

tion.

2.1.3 Classification Techniques Utilized for AD Detection

One of the most important components among the ones that form a framework al-

lowing individual prediction of classes is the feature-based classification algorithm.

Nowadays, there are numerous successful algorithms which are used for class pre-

diction in many different areas. In particular, Support Vector Machine (SVM) classi-

fiers are involved in a large portion of the research studies which have been carried

out to distinguish AD patients from healthy subjects for more than a decade [80].

An SVM creates hypersurfaces that can function as both classifier and regression sur-

face in high-dimensional spaces. In [53], Klöppel et al. (2008) employed a linear

SVM classifier directly on the initial subset of extracted features, while in many other

studies (such as [41, 18, 63, 58, 74, 101]), the researchers firstly apply an interme-

diate step on raw vectors of data matrix to reduce the number of dimensions in the

feature space. This dimensionality is likely to be very high depending on the source
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of information (e.g. MRI/fMRI/CAT/PET/SPECT images, numerical or categorical

laboratory data, genetic data). Especially in case of the whole-brain MRI analysis,

occurrence of the well-known phenomenon “curse of dimensionality” [48] is usually

inevitable. Therefore, in many of the studies, including this one, investing an effort

for dimensionality reduction has been of high importance.

There are many classification frameworks in which techniques other than SVM were

embraced for model training and validation, in the field. For example, Random Fo-

rest (RF) classifiers were utilized in [42], a multi-class classification was performed

based on an RF-based similarity measure. RF classifiers were also employed in [79]

for grouping SPECT images. Liu et al. (2014) [56] analyzed multimodal data using

Multiple Kernel Learning (MKL) approach. Multiple Kernels were also utilized in

[106] for diagnosing AD and MCI. In [83], the authors used Probabilistic Neural

Networks (PNN) to diagnose AD over conventional and wavelet coherence. Additi-

onally, four types of Artificial Neural Networks (ANNs), namely, Backpropagation

(BP), Radial Basis Networks (RBF), Learning Vector Quantization Networks (LVQ)

and PNN were employed in [84] together with VBM-based density features. Finally,

there are several recent works which incorporated Deep Learning methods for class

prediction. Promising applications can be listed as [92], [45], [93], and [88].

This thesis study involves the first time utilization of Multivariate Adaptive Regres-

sion Splines (MARS) and one of its recent variants Conic MARS (CMARS), in field

of medical image analysis for computer-assisted diagnosis. Following sections in-

clude mathematical backgrounds of these methods, and the chapter ends with a brief

discussion regarding justification of our preferences.

2.2 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) [38] is a regression algorithm

through which linear and nonlinear models can be built. MARS is nonparametric

(which does not necessarily mean it is none-parametric), since the procedure invol-

ves no specific assumptions on the form of the distribution or the interdependence

between the predictor variables. The algorithm is also adaptive since the model buil-
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ding process which involves creation and pruning of the basis-functions (BFs) de-

pends fully on the input data itself. MARS models are highly flexible since they are

specified by superposition of hinge functions. The hinge functions can be stated as:

(x− τ)+ =

x− τ, if x > τ,

0, otherwise,
(2.1)

and,

(τ − x)+ =

τ − x, if x < τ,

0, otherwise.
(2.2)

The pair composed of the two similar looking functions introduced as Eqns. (2.1)

and (2.2) is named a reflected pair. According to [43]: “The idea is to form reflected

pairs for each input variable xj with knots at each observed value xij of that variable.”

Consequently, the set of truncated linear functions from which the basis-functions are

formed is:

Γ =
{

(xj − τ)+, (τ − xj)+ | τ ∈
{
x1j , x2j , . . . , xNj

}
, j = 1, 2, . . . , p

}
. (2.3)

Regression and classification problems can be handled by linear models. A linear

model can be expressed in the form:

y = f(x) + ε, (2.4)

where y is the response (which provides the class label information for the classifica-

tion case), x is the vector of predictor variables, ε is a random error vector, and f(·)
is the model function. MARS builds models of the form:

f̂(x) = β0 +
M∑
m=1

βmBm(x), (2.5)
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where M is the number of BFs forming the model function and each Bm(x) is a BF

formed by single element or by multiplication of two or more such elements that are

available in Γ, multiplied by a coefficient βm. The ith basis-function can be expressed

in terms of hinge functions as follows:

Bi(x) =
Km∏
j=1

[
sκmj

(
xκmj
− τκmj

)]
+
. (2.6)

Here, sκmj is the sign (+ or −) of the jth truncated linear function forming the mth

basis-function. Similarly, τκmj gives the coordinate of the knot point on the jth pre-

dictor variable xκmj corresponding to the jth truncated linear function in the mth BF.

A MARS model is built in two stages, namely, the forward pass and the backward

pass. At the beginning, an initial model function with only one term (called the inter-

cept) is generated through averaging the response values. After that, basis-functions

are inserted in pairs, in an iterative scheme. At each individual iteration, basis-

function pair providing the maximum decrease in a particular cost function - such

as residual sum-of-squares (RSS) error - is found. Generally, the forward pass ends

up with an overfit model. The model needs to be pruned in order to increase gene-

ralization ability. This is performed through the second step, the backward pass, by

which least effective terms are removed from the model one by one until the remai-

ning submodel is optimized. The contribution rates of basis-functions are computed

by employing the Generalized cross-validation (GCV) criterion. Degree of any va-

riable’s significance is measured by the reduction in the recalculated GCV after it is

eliminated from the model.

Equation (2.7) defines the GCV criterion as:

GCV =

∑N
i=1(yi − f̂α(xi))

2

(1− C̃(α)/N)2
. (2.7)

In Eqn. (2.7), N is the number of observations (data); f̂α is the estimation for the

optimal submodel; C̃(α) = uα + dk, where uα is the number of linearly independent

BFs that are kept in the pruned model, α; k is the number of knots at the end of the

forward step; and d is a cost coefficient for optimization - also acting as a smoothing
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parameter for the process.

2.2.1 MARS as a Classifier

The MARS method can be “extended to handle classification problems” [43]. When

there are only two classes, the labels can be assigned as 0 and 1. The common practice

is giving 0 to cognitively normal subjects and 1 to the AD patients. Consequently, the

problem can be handled as a standard regression case. Primary drawback of a MARS

classifier is that it is constructed by employing a least-squares loss function which

does not enable direct interpretation of the class label as random variable with two

realizations (0 and 1), at every point. Accordingly, the predictions are not assured to

fall into the [0, 1] interval. Therefore, it is not possible to anticipate these predictions

as probabilities. Instead of this, they are evaluated as generalized probability scores.

To be able to decide for a label looking at the output function, determination of a

threshold value is necessary. Since the boundaries of the output response are not

definite and no parametric form for the output response is previously assumed, this

threshold cannot be straightforwardly decided.

The widely-used method of [70] named “Automatic optimal threshold selection for

image segmentation” was used for specification of that threshold for class separation.

2.3 Conic Multivariate Adaptive Regression Splines (CMARS)

As mentioned in the previous section (Section 2.2), MARS model building process

consists of two consecutive steps: the forward step and the backward step. CMARS

(Conic MARS) [103] replaces the backward step with a Tikhonov regularization pro-

blem by defining a new penalized residual sum of squares (PRSS) for the MARS

model obtained at the end of the forward step. For solving this problem, a modern

continuous optimization technique, conic quadratic programming (CQP) is applied.

Weber et al. [103] defined the PRSS function as:
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PRSS :=
N∑
i=1

(yi − f(x̃i))
2 +

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)
T

∑
r<s

r,s∈Vm

∫
βm

2
[
Dαr,sBm(tm)

]
dtm.

(2.8)

In Eqn. (2.8), Vm represents the variable set associated with the mth BF, tm is the

vector of variables contributing to themth BF, andD is simply the derivative operator.

The first term of the PRSS in Eqn. (2.8) gives the residual sum of squares for each

observation, whereas the second term constitutes a measure of complexity. Thus, a

trade-off between accuracy and model complexity is established by minimization of

the PRSS function with penalty parameters λm.

In [103], the PRSS problem is approached as a Tikhonov regularization problem.

After some rearrangements involving this approach and further simplifications (such

as assuming that all multipliers λm are equal (to λ) and the model is differentiable

everywhere), PRSS is approximated as stated in Eqn. (2.9):

PRSS ≈
∥∥∥y −B(d̃)β

∥∥∥2
2

+ λ ‖Lβ‖22 , (2.9)

where L is an Mmax ×Mmax diagonal matrix, which has values calculated by sum-

mation of Lim (see Equation ((2.10))) over each observation on its diagonal entries.

Readers may refer to the paper [103] for further details involved in this simplification

process. In the paper, Lim is expressed as:

Lim :=




2∑
|α|=1

α=(α1,α2)
T

∑
r<s

r,s∈Vm

[
Dαr,sBm(x̂mi )

]
∆x̂mi


1
2

. (2.10)

The Tikhonov regularization problem given in Eqn. (2.9) is expressed through a conic

quadratic programming (CQP) problem as introduced in Eqn. (2.11):
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min
t,β

t

subject to
∥∥∥y −B(d̃)β

∥∥∥
2
< t,

‖Lβ‖2 ≤
√
M̃.

(2.11)

Here, the objective function is composed of a single artificial variable t which ran-

ges between 0 and ∞. Two conic constraints associated with the two terms of the

Tikhonov problem are defined. Furthermore, B(d̃) is the (N × (Mmax + 1)) matrix

representing the input data operated with the basis-functions, and B(d̃)β stands for

the input data operated with the model (i.e., the output obtained by the model)1.

To summarize, MARS is an adaptive and non-parametric extension of decision trees

(especially, of the method CART), which is - in our case - elaborated for constructing

nonlinear models functioning as class-separating hyperplanes. A MARS model is ba-

sically a superposition of truncated linear functions (or combinations of them) which

are allowed to contribute the model only in certain intervals (defined by the knot

points), with specific directions (+ or −), slopes (βm), and the intercept term (β0)

determined by the forward algorithm.

CMARS replaces the backward step of classical MARS (in which the model is pruned

by elimination of least effective basis-functions to decrease the overall complexity)

with a process involving minimization of a PRSS function. It is accomplished by up-

dating all of the unknown coefficients (βm) instead of removing basis functions from

the model, selectively. This is done by first expressing the PRSS as a Tikhonov regu-

larization problem, and then transforming the domain into an optimization problem

which is known to be solvable by the help of CQP. In this way, all of the relevant

information learned from the observations is preserved, while overlearning from the

data is avoided.

2.4 Why MARS?

In [43], a comparison study including 5 of the “off-the-shelf” data mining procedures

(namely, Neural Networks, SVM, CART, k-Nearest Neighbor, and MARS) was pre-
1 Here, M̃ should not be confused with number of basis functions, M .
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sented. As a result of this study, MARS appeared to provide preferable support for

(i) handling mixed-type data and missing data points, (ii) computational scalability,

(iii) dealing with irrelevant inputs, and (iv) interpretability compared to support vec-

tor machines, which takes place as the most widely-used method for AD detection in

the literature.

In [91], it was expressed that MARS has the ability to make quicker predictions than

SVM, in which “every variable has to be multiplied by the corresponding element of

every support vector”. Moreover, a particular dominance of MARS lies in its capabi-

lity to predict the contributions of some BFs that are allowed to influence the output

value utilizing the additive and interactive effects of input variables [103]. Since con-

clusive anatomical information of very early effects of AD on brain structures is not

present and, at the beginning, all voxel intensities in the brain MRI are assumed to be

potential predictor variables, this facility of MARS - which is lacked by SVM - is of

great importance for this thesis study.

MARS was noted to be computationally more efficient than the Artificial Neural Net-

works (ANN), which is another broadly employed technique in the field [108]. One

disadvantage of ANN is that it generates models in structure of a “black box”. This

was explained in [37] as follows: “The functions fit by neural networks are difficult

for the analyst to understand and difficult to explain to management. One of the very

useful features of MARS is that it produces a regression like function which can be

used to understand and explain the model.” Both MARS and ANN are effective in

modeling the nonlinearities introduced by interacting variables. Additionally, in [64],

usage of MARS was addressed to be “tremendously advantageous over using Linear

Models (LM), Generalized Additive Models (GAM), and CART for prediction”.

Taking these aspects in consideration, we have decided on MARS - and CMARS,

a mathematically more unified modification of the algorithmic section of MARS,

including fewer heuristic components, and in accordance with modern optimization

theory - as the method to be embraced for classification.
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CHAPTER 3

DATA SPECIFICATION, PREPROCESSING AND FEATURE
EXTRACTION FROM BRAIN MRI IMAGES

3.1 Study Data

3.1.1 ADNI Image Archive

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a long-running study which

involves observation of healthy elders, Alzheimer’s disease and mild cognitive im-

pairment (MCI) in multiple centers. In scope of the study, magnetic resonance ima-

ging (MRI), (18F)-Fludeoxyglucose positron emission tomography (FDG PET), urine

serum, and cerebrospinal fluid (CSF) biomarkers are acquired together with the clini-

cal and neuropsychological follow-up data at certain intervals, from each participant

[46].

ADNI was founded in 2003 by the National Institute on Aging (NIA), the National

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Ad-

ministration (FDA), private pharmaceutical companies and non-profit organizations,

as a 5-year public/private partnership with a budget of $60 million. The primary goal

of ADNI has been to test whether serial MRI, PET, other biological markers, and

clinical/psychometric assessments can be put together to quantify the progression of

MCI and early onset of AD. Specification of sensitive and specific biomarkers of AD

existence in very early phases is intended to help researchers and physicians to im-

prove treatments and follow-up their efficiency, as well as save time and money spent

for clinical trials.

In this thesis, brain MRI datasets used for training, validation, and blind testing were
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gathered from the ADNI image archive1.

3.1.2 Image Subsets: Brain MRI of Normal, AD, and MCI Subjects for Trai-

ning and Testing

In [23], Cuingnet et al. assessed the performances of 10 distinct procedures proposed

by various researchers (5 methods based on voxel intensities, 3 techniques based on

dilution in the cortex tissue, and 2 procedures grounded on the features derived from

the hippocampus). The authors utilized MRI data belonging to 509 participants from

the ADNI archive. Three 2-class classification cases were realized: (i) CN vs. AD, (ii)

CN vs. MCIc (patients who converted from MCI to AD in 18 months; i.e., converting

MCIs), and (iii) MCIc vs. MCInc (MCI patients who did not convert to AD in 18

months; i.e., non-converting MCIs). The researchers used T1-W (T1-weighted) MRI

volumes as the data source for the experiments. MRI acquisition was performed

in accordance with the ADNI protocol introduced in [46]. For each subject, when

available, the baseline MR image was chosen. Otherwise, MRI scan was selected

from the screening visit.

General criteria for inclusion and exclusion of the subjects were reported as follows:

“cognitively normal” participants of the control group (CN) had mental state exami-

nation (MSE) scores in the interval of 24-30, and clinical dementia rate (CDR) of

zero. They also did not have MCI, dementia, or depression. MCI patients again had

MSE scores between 24 and 30, memory complaint along with a coexisting objective

memory loss (specified by Wechsler Memory Scale), CDR of 0.5 and preserved acti-

vities of daily living without dementia. AD patients had MSE scores varying between

20 and 26, CDR of 0.5 or 1.0, and had probable AD according to NINCDS-ADRDA

criteria (see [61]).

Cuingnet et al. [23] explained the preprocessing procedure of ADNI, more or less, as

summarized in the following paragraph:

To support standardization among the centers and imaging platforms used in the

ADNI study, image preprocessing operations for correction of several common ima-

1 http://adni.loni.usc.edu. [Accessed: 19- Nov- 2016] [3].
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Table 3.1: (Adapted from [23]) Demographic information regarding the subjects (CN:
Cognitively normal, AD: Alzheimer’s disease, MCIc: MCI converters, MCInc: MCI
non-converters). Age and MSE score statistics are given in the format of “average ±
st. dev. [min-max]”. Number of participants in each group and the number of centers
where the images were acquired are presented in columns indicated by “No.” and
“Cen.”, respectively.

Diagnosis No. Age Gender MSE Cen.
CN (Train) 81 76.1±5.6 [60-89] 38 M/43 F 29.2±1.0 [25-30] 35
AD (Train) 69 75.8±7.5 [55-89] 34 M/35 F 23.3±1.9 [18-26] 32
MCIc (Train) 39 74.7±7.8 [55-88] 22M/17F 26.0±1.8 [23-30] 21
MCInc (Train) 67 74.3±7.3 [58-87] 42M/25F 27.1±1.8 [24-30] 30
CN (Test) 81 76.5±5.2 [63-90] 38 M/43 F 29.2±0.9 [26-30] 35
AD (Test)* 67 76.0±7.1 [57-91] 32 M/35 F 23.2±2.1 [20-27] 33
MCIc (Test) 37 74.9±7.0 [57-87] 21 M/16 F 26.9±1.8 [24-30] 24
MCInc (Test) 67 74.7±7.3 [58-88] 42 M/25 F 27.3±1.7 [24-30] 31

ging artifacts were carried out. These preprocessing steps include geometrical cor-

rections for nonlinearity in the image gradient and elimination of magnetic field in-

tensity non-uniformities due to non-uniform receiver coil sensitivity. Both of these

procedures for refinement can directly be managed from the MRI console. All par-

ticipants were scanned two times at each visit. MR scans were scored qualitatively

by the ADNI researchers for artifacts and overall acquisition quality. Each image

was graded considering multiple criteria, including ghosting, homogeneity, blurring,

intensity, flow artifact, etc. For every subject, the MRI volume which was recog-

nized as the “best” quality scan by the ADNI researchers was used in the database.

Here, “best” is described as the one which was chosen for the whole preprocessing

procedure in ADNI methods web page2.

In this thesis, it was decided to study on the exactly equivalent sets of images as

used in [23] for model training and validation. This decision is made keeping the

objectivity of the comparative analysis in mind. General information regarding the

demographics of selected participants is introduced in Table 3.1. All of the experi-

ment groups were formed by employing equivalent MRI volumes except for a single

scan corresponding to an AD patient in the test group (which is pointed by “*” in Ta-

ble 3.1). Since it was recognized that the current version (v12) of the SPM (Statistical

2 http://adni.loni.usc.edu/methods. [Accessed: 19- Nov- 2016] [3].
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Parametric Mapping) Toolbox lacks to provide valid results for this particular image

at the end of the tissue segmentation phase (please refer to Subsection 3.2.1 for details

of the segmentation procedure), the image is eliminated and the population statistics

are recalculated.

Identifiers of the images which are used in this study are provided by the authors as

supplementary to the original article (see Tables S1-S8 provided with the online copy

of [23]).

3.2 Feature Extraction from Brain MRI Volumes by Voxel-Based Morphome-
try

In [8], Ashburner and Friston defined voxel-based morphometry (VBM) as a metho-

dology for analyzing voxel-wise correspondence of the local concentrations of brain

tissues between different groups of subjects. These groups can be composed of a

sequence of images acquired from different subjects, or a time-series belonging to a

particular subject. VBM involves brain tissue segmentation, spatial normalization and

smoothing procedures applied on volumetric medical images with high-resolution.

The term statistical parametric mapping (SPM) was first used by Friston (1991) in

[40] referring “construction of spatially extended statistical processes to test hypot-

heses about regionally specific effects”. SPM software package3 was designed for

both standardizing the VBM procedures and handling the analysis of statistical para-

metric maps that are formed through VBM under the assumption of certain statistical

properties.

Fig. 3.1 shows a block diagram representation of sub-procedures involved in VBM.

In this section, a summary of the VBM methods that are employed in scope of this

thesis study is introduced.

3 http://www.fil.ion.ucl.ac.uk/spm/. [Accessed: 13- Aug- 2017] [35].
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Figure 3.1: Flow diagram: Application of VBM procedures through SPM software

pack.
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3.2.1 Segmentation of Brain MRI into GM, WM, and CSF through the Method

“Unified Segmentation”

The techniques used to segment brain images into integral parts (in our case, tis-

sue classes/TCs) are based on two main approaches. The first is the classification

of voxels by considering their probability of belonging to specific tissues, and the

second is the direct alignment of images to predetermined templates. Unified Seg-

mentation ([9]) is described as a probabilistic framework through which the tissue

classification and image registration processes are put together within the same gene-

rative model. The algorithm is designed in an iterative scheme. Each iteration also

covers bias removal phase, which is a crucial concern in analysis of MRI images.

In [9], it is indicated that segmentation of brain tissues by estimating the input para-

meters of Unified Segmentation model results in more precise performance outcomes

than applying each operation seperately and consecutively.

The objective function is derived from a Mixture of Gaussians (MoG) model and it is

minimized through parameter optimization. Eqn. (3.1) represents the standard MoG

model. Total probability distribution function can be modeled employing a superpo-

sition of K weighted Gaussians. The Gaussian with index k is modeled by its mean

(µk), variance (σ2k), and mixing proportion (γk), where γk ≥ 0 (k = 1, 2, . . . , K) and∑K
k=1 γk = 1:

P (y | µ,σ,γ) =
I∏
i=1

(
K∑
k=1

γk
(2πσ2k)

1/2
exp

(
−(yi − µk)2

2σ2k

))
. (3.1)

Following the inclusion of bias field (involving components corresponding to additive

noise and scaling) and the information originating from the priors (TC templates), and

taking the two-sided logarithm, the cost function (for minimization) becomes:

− logP (y | µ,σ,γ,β,α) = −
I∑
i=1

log

(
ρi(β)∑K

k=1 γkbi,k(α)

K∑
k=1

γkbi,k(α)(2πσ2k)
−1
2

× exp

(
−(ρi(β)yi − µk)2

2σ2k

))
,

(3.2)
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Figure 3.2: ICBM Tissue Probabilistic Atlases for GM (left), WM (middle), and CSF

(right) [60].

where ρi(β) states the bias field with parameter vector β, and bi,k(α) stands for

the prior spatial information with parameter vector α coming from TC templates

(i = 1, 2, ..., I; k = 1, 2, ..., K). Since there is a monotonical relation between the

two functions, maximization of the probabilities included in the MoG (Eqn. (3.1))

is realized at the minimum value of right-hand side of Eqn. (3.2) (with respect to

µ, σ, γ, β, and α). The reader is referred to the original work of [9] for further

reading on details of the procedure and derivation of the objective function in Eqn.

(3.2). An Expectation-Maximization (EM) based algorithm is utilized for solution

of the optimization problem. The algorithm operates in a way that in the E-step the

tisue probabilities are calculated, and in theM -step the cluster and the non-uniformity

parameters are computed, iteratively [36].

Implementation of Unified Segmentation in SPM12 Toolbox [7] was utilized for obtai-

ning native space aligned tissue probability maps (TPMs). Spatial prior information

related to the three main TCs was provided by ICBM (The International Consortium

for Brain Mapping) Tissue Probabilistic Atlas4. 2D axial cross-sections of the ICBM

prior templates are introduced in Figure 3.2.

The numbers of Gaussians for each TC were specified as 3 for GM, 2 for WM and

4 All 452 ICBM subject T1-W scans were aligned with the atlas, corrected, and classified into GM, WM,
and CSF. Each was averaged to create the TPs for each tissue type. These fields represent the likelihood of
finding GM, WM, or CSF at a specified position for a subject that has been aligned to the space. (http:
//www.loni.usc.edu/atlases/Atlas_Methods.php?atlas_id=7. [Accessed: 19- Nov- 2016]
[69].)
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2 for CSF regarding the values reported in [9] as “typical”. The procedure for op-

timizing the number of Gaussian terms per class was remarked to be an “issue of

model-order selection” and was not descended to particulars in the original study. It

is verified that typical K values that are used in this study are identical to the ones

which are implemented as default model parameters presented by multiple versions

of the SPM Toolbox, by cross checking.

An example volumetric brain MRI of a normal patient and the three tissue probability

maps acquired at the end of Unified Segmentation procedure are presented in Figure

3.3. In Figure 3.3a a cross-sectional representation of the original volume is introdu-

ced; whereas, Figures 3.3b, 3.3c, and 3.3d show the probability distribution regarding

GM, WM and CSF tissues, respectively.

3.2.2 Nonlinear Image Registration by DARTEL

Images acquired from distinct participants at different times windows should be re-

gistered and warped in order to make the data available for high quality analysis with

sharpened localization, and, consequently, with greater sensitivity. For this reason,

the DARTEL (Diffeomorphic Anatomical Registration through Exponentiated Lie Al-

gebra) utility of SPM, which was built based on the proposal by [6], was employed.

Diffeomorphism is defined as a global, differentiable mapping between voxels, which

is one-to-one, continuous, and invertible by means of having a nonzero Jacobian de-

terminant. Therefore, modeling image transformations by considering diffeomor-

phism establishes preservation of desirable topological characteristics. DARTEL

aims to incorporate diffeomorphism to keep the voxel-level, significant information,

while removing larger-scale, anatomical differences between brain MR images of

subjects.

First step of the process involves generating the DARTEL templates. This is accom-

plished through a procedure consisting of 6 main iterations with 3 inner loops per

each. The main iteration cycle involves warping the images that form the training set

to match the existing template, and taking the average of the warped images to update

the template. The initial template is the mean of the starting data. Each inner loop
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(a) Original MRI volume. (b) Gray matter (GM).

(c) White matter (WM). (d) Cerebrospinal fluid (CSF).

Figure 3.3: Original MRI volume and the three tissue probability maps acquired at

the end of Unified Segmentation procedure.
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Figure 3.4: The axial cross-sections of volumetric DARTEL Templates at the begin-

ning (lower row), and at the end of the 6th iteration (upper row). Columns represent

different tissue classes, namely, GM, WM and, CSF from left to right.

Figure 3.5: Cross-section of a gray matter DARTEL flow field.
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corresponds to a Gauss-Newton iteration through which the deformations are upda-

ted within the main loop. The entire procedure begins with a coarse registration and

expands towards a comparably more conclusive and stable state with finer structure

and decreased regularization (see Figure 3.4), in iterations. The deformations were

parametrized by and saved in the form of flow-fields.

Secondly, the images assigned for blind tests were nonlinearly registered, matching

to the templates created in previous step, individually. In this step, it is of great

significance to avoid the images of the test set from sharing information with each

other for the sake of objectivity and the extensibility of the whole procedure. To be

more specific, the flow-fields required for registering the test images were calculated

employing the templates obtained by using the training set. If new templates derived

from the blind test images were created, the warping operation would have resulted in

errors within overall performance assessment. In addition, it would not be possible to

achieve the same result for a given image when tackled with other test image groups

or alone. Moreover, in order to add more images into the test set, one would have to

repeat the process from start to end, causing changes to occur in other images.

Finally, the training and test images were normalized to the MNI-space5, taking into

account the issues raised in the previous paragraph (see Figure 3.6). Here, dimensions

of all of the MRI volumes are standardized to 121 × 145 × 121 with an isotropic

resolution of 1.5mm × 1.5mm × 1.5mm, as MNI suggests. Until the nonlinear

warping is applied, the spatially normalized images are still group-wise unregistered.

The final template in Figure 3.4, and the flow-fields (cf. Figure 3.5), created in the

former step, were used for this purpose.

3.2.3 Final Steps: Intensity Modulation and Smoothing

Match Filter Theorem [96] states that the signal-to-noise ratio (SNR) is improved

by convolving a smoothing filter of adequate size with the signal. The filter width

is determined with the expected signal width, which is 5 to 10 times the smallest

dimension of a voxel in case of volumetric images. The images were smoothed with

a Gaussian smoothing kernel of size (full width at half maximum) 8 mm. Smoothing
5 Standard brain space defined by Montreal Neurological Institute (MNI).
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(a) Gray matter tissue probability map at the end of Unified Segmentation step.

(b) Gray matter tissue probability map after MNI-space normalization applied.

Figure 3.6: Spatial normalization to the MNI-space.
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was also performed in order to enhance the validity of statistical implications and to

decrease the variation occurring both internally and between individual images. The

reader is referred to [51] for a remarkably well workup on the effects of the filter size

on VBM analyses.

Registering a set of images to match a fixed image results in alterations regarding the

proportions of different tissue volumes. This adverse impact due to spatial normali-

zation can be overcome by the application of intensity modulation through which the

voxel intensity values are updated to compensate the aforementioned volume change.

Therefore, as the final step, an intensity modulation operation regarding all three tis-

sue probability maps was performed.

Entire image processing procedure was performed using a personal computer with 4-

core, 2,40 GHz, Intel processing unit, 16 GB DDR3 RAM, SSD hard disk, and 64-bit

Windows operating system. The highest portion of the total time-cost was consumed

by the nonlinear registration of the training images. For example, for the AD/CN trai-

ning dataset of 150 images, it took approximately 9.5 (of total processing time of 12)

hours to create DARTEL templates and flow fields, using SPM12 package in MAT-

LAB (r2013b). Additionally, the cross-validation procedure described in Section 6.1

took 3 hours 20 minutes of time for optimization of the MARS model parameters.

However, only the training phase is subject to this kind of excessive time-costs. On

the other hand, the time necessary for a single test image to be prepared for class

prediction is never more than 20 minutes. This makes the proposed system highly

practicable in the clinics for testing new images, in case of availability of an already

trained model function and DARTEL templates derived from the training dataset. No-

netheless, it will require hours - again - to expand the training dataset with additional

images, since it involves repetition of the warping process with inclusion of the whole

training set.

3.2.4 Resulting Baseline Feature Space: Normalized Tissue Probability Maps

As a result of applying VBM procedures using the SPM software, a data matrix with

a noteworthy large set of features, representing the images in the form of tissue pro-

bability maps, was obtained.
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Figure 3.7: Final (segmented, spatially normalized, warped, modulated, and smoot-

hed) version of tissue probability maps (axial view), GM (left), WM (middle), and

CSF (right), available for classification.

With spatially normalizing to the MNI atlas, dimensions of all of the MRI volumes

were standardized to 121×145×121 = 2, 122, 945. Since the images were segmented

into three brain tissues, this number is tripled in the data matrix. In other words,

we end up with a data matrix with a size of 6,368,835 in columns. Considering

the AD/CN classification case, the training dataset includes 150 images, each one

of which is described by a vector of size 6,368,835, storing 8-byte double precision

floating-point numbers in the entries. This means that the total size of the training

data matrix is greater than 7 GB (not smaller than 5 GB even after the elimination of

zero-voxels). These figures are emphasizing the necessity of utilization of an effective

dimensionality reduction procedure.

3.2.5 Data Quality

At this point, the data quality is checked (i) by observing sample homogeneity with

visual representation of sorted covariance matrices, (ii) through visual inspection. It

is observed that no serious image artifacts occur (no outliers) in the training datasets,

and only one problematic image in the test set containing subjects with AD exists. In

order to eliminate the problem, this image -which failed to be segmented properly by

SPM Unified Segmentation- is removed from the “AD (Test)” dataset (see Table 3.1).
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3.3 Alternative Techniques for Extracting Feature Descriptors

In addition to the tissue probability maps acquired through VBM, several other feature

extraction procedures were applied and the corresponding results were investigated.

The first one of these methods is based on the image moments, and involves a scale-

space analysis handled in different voxel sizes. The others analyzed in this context

are two widely known techniques, used for image recognition and object detection,

falling into the group of modern computer vision algorithms, namely, scale-invariant

feature transform (SIFT) and histograms of oriented gradients (HOG).

In this section, the background information regarding those methods and their prior

applications in the related literature are presented. Results acquired by different fea-

ture description approaches are introduced - with a qualitative discussion - in Chapter

6.

3.3.1 Image Moments by Block Processing

The feature space was enriched by deriving a new set of features, and the quality

of the newly derived features was evaluated. For this purpose, the concept of cen-

tral moments was employed. Normalized central moments up to the 4th degree were

computed for blocks of varying dimensions (with different scales).

Normalized central moment (of degree k) of random variable x is expressed mathe-

matically as:

µk =
E[(x− µ)k]

σk
, (3.3)

where, E[·] is the expected value operator, µ is the sample mean and σ is the standard

deviation defined as:

σ =
√
E[(x− µ)2]. (3.4)

The first and second normalized moments are equal to the sample mean and vari-
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ance, respectively. The third moment is called skewness and it can be considered as

a measure of the asymmetry characteristics of a distribution. The fourth moment is

called kurtosis, which is a shape descriptor of a probability distribution similar to the

skewness.

Updated dimensions were specified by downsampling the images in all 3 coordinates

with increasing powers of 2, in an analogous fashion with scale-space analysis. More

clearly, when the scale (downsampling factor) is equal to 0, each image dimension is

divided by 20(= 1), which means that the new blocks are identical with the original

voxels. For scale 2, new dimensions are one-fourth of the originals (original image

dimensions are 121-145-121, the MNI standard size), which means that each block

is approximately composed of 43(= 64) voxels. For scale 3, dimensions are divided

by 23(= 8), i.e., the new blocks are composed of 83(= 512) voxels. Each central

moment value (mean, variance, skewness, and kurtosis) corresponding to newly cre-

ated blocks were computed regarding the original voxels composing the block for

scale s ∈ {2, 3, 4}. Each computation was performed on probabilities belonging to

all three tissue classes, namely, GM, WM, and CSF.

3.3.2 Scale-Invariant Feature Transform (SIFT)

In [57], Lowe (2004) proposed a method for extracting salient local features which

are invariant to rotation and scale from images. These features can be employed for

performing an association between image parts corresponding to alternate views of an

object or scene. The method is called scale-invariant feature transform (SIFT), and

it provides a set of highly distinctive features which are also invariant under different

illumination levels and resistant to noise.

The algorithm consists of 4 steps (the reader may refer to [57] for further details):

Scale-space extrema detection: A Difference-of-Gaussians (DoG) function is utili-

zed in order to identify potential points of interest in the image. These points

are invariant under varying scales and orientations. They represent candidates

for salient feature locations called keypoints.

In order to specify the scale-space minima and maxima points, the image is
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convolved with Gaussians of different variances and grouped by octaves (an

octave is formed by multiplying the standard deviation of a Gaussian function

by two). Once the scale-space is obtained, the extremal points are specified

as local minima/maxima of the images across varying scales. This is accom-

plished by comparing the value of every pixel to its neighbors within the same

scale and neighboring pixels in each of the consecutive scales. If the intensity

value is an extremum across these pixels, a candidate keypoint is identified.

Keypoint localization: The first step provides a high number of candidate keypoints,

many of which are not stable enough to be specified as a keypoint. For this

reason, a detailed fit to the nearby data is performed for location, scale, and ratio

of principal curvatures. The algorithm calculates the interpolated location of the

extrema by employing the quadratic Taylor expansion of the DoG function, and

this approach improves matching and stability substantially.

Using the second order Taylor expansion and assigning a threshold to its va-

lue, some of the candidate keypoints are discarded. In this way, low-contrast

keypoints were eliminated.

This procedure contains one more step to eliminate edge responses which are

originated from non-robust candidates. For this purpose, principal curvature

amounts are found through solving eigenvalues of the second-order Hessian

matrix and defining a threshold for the ratio of two eigenvalues.

Orientation assignment: Based on the directions of local image gradients, single

or multiple orientations are assigned to each keypoint location. A histogram

of orientations is formed from the gradient orientations of points included in

a region around the keypoint. A 360 degree range of orientations is covered

by 36 bins of the histogram. Samples included in the histogram are multiplied

by the magnitude of their gradient and by a circular Gaussian with a standard

deviation which is 1.5 times the keypoint scale. Peaks that are within 80% of

the highest peaks of the histogram are specified as dominant orientations.

Keypoint descriptor: For every keypoint, a descriptor vector is created. These des-

criptors are remarkably distinctive and invariant to dissimilarities in illumina-

tion, 3D viewpoint, scale, and noise level. For this purpose, first, a set of orien-
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tation histograms is composed. Then, the magnitudes are further convolved by

a Gaussian with σ equal to 50% of the descriptor window width. Finally, unit

normalization is applied on the vector in order to lower its variance to affine

illumination changes.

SIFT has been employed as a state-of-the art feature extraction technique in the areas

of object recognition [90], robot localization and mapping [87], panorama stitching

[12], and human action recognition [34, 86].

SIFT algorithm has also been utilized for the analysis of brain MRI with Alzhei-

mer’s disease in several studies. In [95], Toews et al. (2010) proposed Feature-

based morphometry (FBM), specifically “to avoid the assumption of one-to-one inter-

subject correspondence.” The method consists of two major parts: extraction of scale-

invariant features by SIFT and probabilistic modeling. SVM method is used for clas-

sification. Through the evaluation of proposed procedure on OASIS6 database, the

authors reached an equal error rate (EER) of 0.80 for patients of age between 60 and

80 with CDR7=1 (Group-A), and EER=0.71 for patients of age between 60 and 80

having CDR scores of 1 and 0.5 (Group-C).

In [25], Daliri (2012) presented an automated approach to be used for diagnosing Alz-

heimer disease from the whole brain MR images. Proposed method involves detecting

scale and rotation invariant SIFT features and transforming them into 100-bin histo-

gram vectors using Bag of (Visual) Words (BoW) approach. By reducing the number

of features through Fisher’s discriminant ratio (FDR), the algorithm improves the re-

sults obtained by Toews et al. (2010): EER = 0.86 for Group-A, and EER=0.75 for

Group-C.

Another example to this group can be given as the work of Chen et al. (2014) [20],

in which SVM models were successfully trained by SIFT features derived from 2D

scans to detect AD in early phases.
6 The Open Access Series of Imaging Studies (OASIS) is a project aimed at making MRI data sets of the

brain freely available to the scientific community. (http://www.oasis-brains.org/. [Accessed: 16-
July- 2017] [16].)

7 The CDR is a 5-point scale used to characterize six domains of cognitive and functional performance appli-
cable to Alzheimer’s disease and dementias: Memory, Orientation, Judgment and Problem Solving, Community
Affairs, Home and Hobbies, and Personal Care. According to this scale, a score of 0.5 represents “very mild de-
mentia” and a score of 1 represents “mild dementia”. (http://alzheimer.wustl.edu/cdr/cdr.htm.
[Accessed: 16- July- 2017] [68].)
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3.3.3 Histogram of Oriented Gradients (HOG)

Histogram of oriented gradients (HOG) is a feature description algorithm -like SIFT-

which is applicable for object detection and image matching in the field of computer

vision. Although the basic principals date back to a patent application in 1986, the

algorithm became widespread when Dalal and Triggs presented their comprehensive

work on pedestrian detection in 2005 [24] at the Conference on Computer Vision and

Pattern Recognition (CVPR).

The algorithm is implemented in four steps as follows:

Computation of gradients: Gradients are computed by applying 1-D centered, point

discrete derivative mask (or Sobel mask) in vertical and horizontal directions.

Orientation binning: Images are divided into smaller connected regions called cells.

All cells are discretized into angular histogram channels according to the weig-

hted vote that each voxel contributes.

Descriptor blocks: Regarding their sensitivity to illumination and contrast variati-

ons, the gradient magnitudes should be normalized. For this purpose, adjacent

cells are combined to form spatial groups called blocks.

Block normalization: Gradient strengths are locally normalized to 1, with respect

to L2- or L1-norm.

Besides the numerous applications of the method in detection of many kinds of ob-

jects, there exist several research works involving detection of Alzheimer’s disease

biomarkers in medical images. In [97], a method that uses HOG to search and re-

trieve MRI images with diagnosis of certain dementias is proposed. The method

provides 70.7% sensitivity and 77.9% specificity in AD diagnosis for patients of age

between 60 and 80 with CDR=1. Also, it is reported that the algorithm performance

does not effectively depend on the database size.

In [15], status of β-amyloid burden in patients with probable AD is classified by

extracting HOG descriptors from PET images instead of quantitative assessment, and

classification accuracy beyond 90% is stated.
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Unay and Ekin (2011) [97] used HOG descriptors to diagnose dementia in early pha-

ses of occurrence. Their algorithm provided an accuracy of 0.74.

The paper [67] presents a study on detecting morphological abnormalities caused by

Alzheimer’s disease using speeded up robust features (SURF) and HOG descriptors.

Although good results are obtained in terms of specificity, the study suffers from very

poor sensitivity outcome (best level reached among experiments is found to be 68%).
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CHAPTER 4

A 3-STEP, HYBRID PROCEDURE TO INCREASE CLASSIFICATION
ACCURACY BY REDUCING DIMENSIONALITY OF THE FEATURE SET

4.1 Dimensionality Reduction in Medical Image Analysis

In the previous chapter, data acquisition and image processing steps starting from the

raw MR images and ending with the data matrix are explained in detail. The fact that

the number of predictor variables is huge when compared to the number of samples

directly suggests a well-recognized phenomenon called curse of dimensionality. In

[48], Jain defined this phenomenon as follows: “a classifier’s predictive accuracy does

not have to increase with increasing number of predictor variables (or features) unless

the class-conditional densities are completely known (i.e., all possible observations

are made).”

In most of the neuroimaging studies, the number of samples is under 1,000, whereas

the number of non-zero voxels (the ones that indicate brain tissue, therefore, having

an intensity value other than zero after the skull stripping process) is in the order of

hundred-thousands [65]. Either the situation in our study is not contradicting with

this fact reported by Mwangi et al. (2014), where we ended up the feature extraction

procedure with 100-150 training samples that are described by feature vectors con-

taining more than 1,000,000 non-zero voxel intensities. As a result, the features with

low relevance require to be removed before the model building process in order to

have a model with higher generalization ability, and safe from the problem of over-

fitting (i.e., over-learning or memorization). In addition to this, considering the high

computational cost (time, memory) induced due to the aforementioned dimensiona-

lity, it is decided that utilization of a procedure for feature selection previous to the
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model building phase is of great importance to us in this study.

One way to reduce the number of dimensionality of the feature space is to employ

linear or nonlinear space-transforming reduction methods. However, these techniques

do not provide a subset of the initial features, eventually. Instead of this, they create

new -and completely original- feature spaces which are derived from the former ones.

Thus, they should be applied only when there is no firm necessity to keep the reduced

features as a subset of the initial set. Some of the commonly used methods falling

into this group can be listed as Principal Component Analysis (PCA), Kernel PCA,

Multidimensional Scaling (MDS), Laplacian Eigenmaps, Generalized Discriminant

Analysis (GDA), and Diffusion Maps. A helpful review on the numerous methods

involved in this concept can be inquired in [99].

Another way of reducing the dimensionality of the feature space is choosing the most

significant predictor variables among the ones that form the initial feature set wit-

hout exposing them to any kind of transformation. In this thesis, we embraced this

approach regarding the following facts:

1. Marking some of the features as significant, rather than transforming all of them

into another space, enables a deeper grasp of the main question of interest, e.g.,

by revealing the most relevant voxel locations in the brain volumes.

2. Space-transforming methods usually induce a higher computational cost invol-

ving operations in the frequency domain (e.g., solution of high-dimensional

eigen-space problems). Additionally, these procedures are mostly limited with

some inherent constraints. As an example, widely-used PCA does not apply to

our domain, since it provides a maximum number of features which is smaller

than number of samples by one, which is certainly not efficient for our problem

domain. In [89], Shih et al. expressed this fact as follows: “Conventional vari-

able selection techniques are based on assumed linear model forms and cannot

be applied in this ‘large p and small N’ problem.”

3. It is noticed that inclusion of domain knowledge into the feature selection phase

through a relatively heuristic approach affects the performance positively (see

Section 4.3).
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Table 4.1: Number (and rate to the initial dimensions) of remaining features after
zero-voxel elimination and feature selection procedures (AD/CN case).

Initial Non-zero voxels Feature selection
No. of remaining features 6,368,835 2,112,054 3,320
Rate of remaining features - 33.16% 0.05%

This approach is explained in the following section.

4.2 A 3-Step, Hybrid Procedure

In this investigation, a partially novel procedure to specify the optimal subsets (con-

strained to presumed parameters) of the initial set of predictor variables is developed,

rather than directly applying space-transforming dimensionality reduction methods.

Our methodology involves three steps, namely, Statistical Analysis, Tissue Probabi-

lity Criteria, and Within-class Norm Thresholding [17].

Our proposed procedure is characterized as hybrid, since it involves both an unsu-

pervised part (in which the algorithm makes decisions by statistically analyzing the

data without any prior assumptions) and components which includes logical rules re-

lying on domain-specific knowledge. Step I, namely, Statistical Analysis is involved

in the first group, whereas, the following two steps (Tissue Probability Criteria and

Within-class Norm Thresholding) are involved in the second.

The proposed method is mentioned to be partially novel, because we do not claim

novelty for each individual step. For example, Step I (Statistical Analysis), is based

on the well-known GLM-based mathematical approach. Novelty is claimed for the

modification of the STAND-score in Step II, the heuristic approach in Step III, and

use of all three steps in conjunction.

It is also important to emphasize that each step is applied on the initial feature set

separately, without imposing a specific order. After application of all three steps, the

voxels to be eliminated are determined by the union set of marked voxels at each

particular step.

Table 4.1 demonstrates the decrease in the number of features by elimination of
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Figure 4.1: Obtained binary mask involving “significant” voxels to distinguish AD

and CN subjects.
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the zero-voxels and application of the proposed dimensionality reduction method.

It is seen that by utilization of the proposed technique, only 0.05% (3,320 out of

6,368,835) of the voxels composing the raw data were left as significant features.

In Figure 4.1, the obtained mask involving the voxels which were marked as “signifi-

cant” by the application of our procedure is highlighted. One interesting observation

can be mentioned here, as the resulting region of interest showed up to be asym-

metric between the two lobes of the brain. However, this fact does not involve any

contradictions with the expected anatomical effects due to AD.

A positive impact of dimensionality reduction on the overall prediction performance

was observed. For this, a demonstration can be found in Section 4.3. Steps of the

methodology are presented in the following subsections in detail.

4.2.1 Step I: Statistical Analysis

In order to investigate the voxel-wise gray matter tissue probability statistics, a mul-

tivariate General Linear Model (GLM) (cf. Eqn. (4.1)) is utilized. A GLM is stated -

in mathematical terms - as:

y = Xb+ u. (4.1)

In Eqn. (4.1), y represents an N-dimensional output vector (where N is the number

of observations), X is an N × (p/3) matrix by which the GM tissue probabilities of

each image are encapsulated, and b is a vector of (p/3) unknown parameters to be

estimated. The total number of the initial predictor variables by which the three tissue

probability maps are expressed is p. Thus, considering only the GM tissue probabili-

ties, final dimensionality becomes equal to the number of voxels in an image, which

is (p/3). Elements of the error vector u are independent and identically distributed

(i.i.d.) variables with a mean value of zero. A GLM expresses the output response as

described by a linear combination of the explanatory variables. In frame of this study,

the output response is the label which indicates whether the subject is an AD patient

or he/she is cognitively healthy, whereas, the explanatory variables are the indices of
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Figure 4.2: Significant voxels acquired through the Statistical Analysis step of

the algorithm, alone. The input parameters are specified as; Height threshold:

p − value = 0.05 (FWE), T = 4.53; extent threshold: k = 4 × 4 × 4 = 64 voxels,

p− value = 0.015.

the GM tissue probability map, or simply, voxels.

Means of the two populations, i.e., brain MRI groups formed by AD patients and

cognitively healthy participants are voxel-wisely compared by using two-sample t-

test. In this way, the voxels which have relatively higher statistical significance are

determined and the design matrix (the matrixX in Eqn. (4.1) is built. Various masks

can be obtained depending on two input parameters. The first one is called height

threshold and it limits similarities at voxel-level, whereas, the second one is referred

as the extent threshold and it limits the similarities at cluster-level. More clearly, by

changing the values given to these two thresholds, different combinations formed by

columns of the design matrix can be designated as significant feature subsets. An

example of this process involving analysis of fMRI (functional MRI) data can be

found in [39].

In Figure 4.2, the outcome acquired through this single step of the algorithm, in case

of extent and height threshold settings specified in the figure caption, is shown.

4.2.2 Step II: Tissue Probability Criteria

Authors of the paper [101] proposed a novel procedure to assign weights to the voxel

indices of a segmented structural MRI volume, indicating their distinctiveness. The

measure is referred as STAND-score, or Structural Abnormality Index Score.

46



The STAND-scores are computed through several steps. First of all, the TPMs are

downsampled to have a voxel size of 8 mm in each direction. Secondly, the voxels

having the sum of GM and WM tissue densities as less than 10% in all images are

removed. Next, the volumes having CSF in half or more of the voxels are canceled

out. Finally, weighting factors for each remaining voxel are computed by applying a

linear SVM. These factors are employed for further removal of the insignificant fea-

tures from the model. The logic behind the procedure is based on the assumption that

relatively high and low tissue probabilities in particular locations of the brain imply

anatomical relevance for early onset of Alzheimer’s. Thus, the approach involves a

direct use of field knowledge.

Step II of our procedure was proposed under the inspiration of the 2nd step of the

STAND-score methodology with a slight modification and an addition. Firstly, the

lower boundary for the sum of GM and WM contents to decide for erasing an index

was not straightforwardly assigned as 10%. This threshold was tested for various va-

lues and it was observed that better performance outcomes were attained with higher

percentages. Secondly, a new constraint for the sample mean of the tissue content was

introduced. The motivation behind this approach was to prevent removal of numerous

feature candidates from the model in an instant, on the account of a very low thres-

hold value. Meanwhile, the effect of this choice was compensated for by employing

a second operator which removes additional features by evaluating sample means.

In the first pass, the voxel indices satisfying the condition that sum of GM and WM

tissue probabilities being above a certain threshold τ1 are marked to be kept, and the

remaining variables are indicated as insignificant. Next, the voxel indices with sum of

sample means of GM and WM tissue probabilities below the second threshold τ2 are

marked to be removed. Both operations were applied on the initial data. Therefore,

the order is interchangeable. The union set of features, which has been indicated as

insignificant through consecutive steps, are deleted from the data. To be more precise:

PGM (i, j) + PWM (i, j) < τ1, ∀i ∈ {1, 2, ..., n} , (4.2)

or,
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PGM (j) + PWM (j) < τ2. (4.3)

By the expressions given in Eqns. (4.2) and (4.3), the elimination criteria for the jth

variable is pointed out, mathematically. Here, i and j are sample index and variable

index, the distributions PGM and PWM stand for GM and WM probabilities, and,

PGM and PWM are sample means of the tissue probabilities, respectively.

In this thesis, the best values for the thresholds τ1 and τ2 were determined through

manual observations among successive trials. The input parameters of MARS were

kept constant (see Section 6.1) during this experiments. Meanwhile, τ1 and τ2 values

were varied to form different combinations. The MARS model was trained using the

remaining data at each trial, and the best combination of τ1 and τ2 were determined

as the ones providing the highest AUC (Area Under the ROC Curve). In the AD/CN

classification case, the best values that the two thresholds take became: τ1 = 0.5 and

τ2 = 0.7.

4.2.3 Step III: Within-Class Norm Thresholding

Proposed method is finalized with Step III, which can be simply described as a com-

parison between (i) Euclidean norm of a vector defined for a variable through obser-

vations, and (ii) average of these norms computed for variables of the same tissue

class (TC). The fundamental logic behind this approach can be explained as: for a

“significant” variable, intensity variation among observations having different class

labels must induce a relatively greater norm. Firstly, the L2-norm of samples of each

predictor variable is calculated by:

‖P (j)‖2 =

√√√√ n∑
i=1

(P (i, j))2. (4.4)

Subsequently, means of the previously calculated norms are computed for the 3 TCs,

separately. These are named as within-class norm means. Namely, µ̂GM , µ̂WM , and

µ̂CSF are computed by:
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Table 4.2: Comparison of the proposed approach with other commonly known met-
hods in terms of sensitivity (SEN), specificity (SPE), positive predictive value (PPV),
and negative predictive value (NPV) [17].

SEN (%) SPE (%) PPV (%) NPV (%)
None 67.16 81.48 75.00 75.00
Voxel-MARS 83.58 86.42 83.58 86.42
PCA 82.09 71.60 70.51 82.86
MDS 82.09 71.60 70.51 82.86
Laplacian Eigenmaps 79.10 74.07 71.62 81.08
Kernel PCA 2.99 95.06 33.33 54.23
Diffusion Maps 91.04 1.24 43.26 14.29
GDA 0 100 - 54.73

µ̂c =

∑
j∈c ‖P (j)‖2

jc
, (4.5)

where c states the TC (c ∈ {GM,WM,CSF}), and jc is the number of predictor

variables from the corresponding TC. The elimination rule for a variable is described

as its norm ‖P (j)‖2 being smaller than a ratio of the within-class norm mean (µ̂c) of

the corresponding class. That ratio can be referred as ε, where the value of ε must lie

between 0 and 1. For determination of the ε value, the same methodology as clarified

in Subsection 4.2.2 was used. In the AD/CN case, the highest classifier accuracy

among several trials was obtained by setting ε = 0.9.

Considering the tissue probabilities are always greater than zero, a basic summation

opeator or the L1-norm could also have been used instead of L2-norm. This would

have affected the value of ε, however, final set of significant variables would not

have changed since the relation between vector magnitude and the Euclidean norm

is monotonic. Nevertheless, L2-is preferred since it is a more common and general

notation of representing vectorial distances.

4.3 A Comparison of Our Approach with Commonly Used Dimensionality Re-
duction Techniques

Performance of the proposed 3-step, hybrid methodology for feature selection was

quantitatively assessed by comparing with six commonly known techniques which are
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mentioned above, in terms of sensitivity (SEN), specificity (SPE), positive predictive

value (PPV), and negative predictive value (NPV) outcomes (see Table 4.2).

Previous to the application of each method, the first step (Statistical Analysis via Ge-

neral Linear Model) of our procedure was applied on the baseline gray matter tissue

probability maps prepared for training and testing. Hence, dimensionality of the fea-

ture space was decreased to the value of 26,448, which is suitable for the restrictions

enforced by any of the methods. Following to that, the training data was assessed

for intrinsic dimensionality through Maximum Likelihood Estimation (MSE), which

became 11 for the AD/CN group. The techniques included in Table 4.2 (from PCA to

GDA) were executed on training and test samples to scale down the dimensionality

of both to the recently computed intrinsic dimension 1. Input parameters were assig-

ned as Mmax = 11 and Kmax = 1, where Mmax refers to “the maximum allowed

number of basis-functions (BFs) to have in the model at the end of the forward step”,

and Kmax, stands for “the maximum degree of interaction between variables to form

a BF”. Keeping them constant, MARS models were composed and classification was

performed. The models were applied on the blind test data. In the case labeled as

“None”, model was built immediately after the Statistical Analysis step, without furt-

her reduction in the dimensionality. In the case demonstrated as “Voxel-MARS”, our

proposed method was executed and the number of resulting dimensions for the model

building process was observed to be 3,320.

Conforming to the results shown in Table 4.2, just 3 in 6 techniques (i.e., PCA, MDS,

and Laplacian Eigenmaps) became able to produce variable vectors with admissible

discriminative strength for classification. It is observed that they provided higher

sensitivity than the “None” case did, in which the dimensionality was not reduced

at all. However, the proposed feature selection methodology outperformed all of

the other methods presented on Table 4.2 in terms of sensitivity, specificity, positive

predictive value, and negative predictive value.

1 The MATLAB Toolbox for Dimensionality Reduction [99] was used for computations.
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CHAPTER 5

UTILIZATION OF MARS AND CMARS FOR EARLY DETECTION OF
ALZHEIMER’S DISEASE

Up to this point, the brain MRI volumes have already been processed in view of

the voxel-based morphometry framework to extract features for cognitively normal,

Alzheimer’s disease and MCI (mild cognitive impairment) classification. A 3-step

feature selection routine has been applied to determine an optimum subset of the

significant predictor variables. Also, the mathematical basis on which MARS and

CMARS methods were founded has been detailed in previous chapters.

This chapter focuses on information regarding details in the application of our classifi-

cation procedure. Model building phase of MARS and optimization phase of CMARS

(by which the classical backward process of MARS is replaced) are introduced in

detail. The aim of this chapter is to make available, the information essential to re-

produce the results presented in this thesis, for the reader.

5.1 Model Building

Multivariate Adaptive Regression Splines is the name of a brand trademarked as

MARS R© by the company Salford Systems, as well as it is the name of the regression

method. Therefore, researchers are not allowed to implement and use the algorithm

by its original name for commercial purposes. For this reason, the method is alter-

natively named as “Earth” by majority of the academic community. Although a free

version of the software has been made available for academic research studies by the

firm, in this thesis, using an open source implementation of the method is preferred.
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Two of those implementations, namely, the ARESLab1 and the Earth2 packages were

investigated. Since it was implemented in C programming language, the second one

(Earth) outperforms AresLAB (which was programmed entirely as a native MATLAB

script) in terms of processing time. Additionally, the package Earth includes a MAT-

LAB mex interface, which means the included functions can be called over MATLAB

easily. Based upon these, the Earth package is chosen.

Although both of the software products allow their users to control several input para-

meters, generally, only two of these inputs are utilized. First one of these parameters

is Mmax, which refers to the maximum allowed number of basis-functions (BFs)

to have in the model at the end of the forward step, and the second one is Kmax,

standing for the maximum degree of interaction between variables to form a BF. If

another parameter named prune is set to “true”, immediately after the forward pass,

the backward process starts, and approximately half of the BFs (with least relevance)

are removed from the model. Otherwise, the model does not be pruned at all.

At the end of the model building (training) phase, Earth produces three matrices,

namely, “Dirs” (carrying the +/− sign information of the hinge functions contribu-

ting to each one of the basis-functions), “Cuts” (carrying the information regarding

the knot points at each predictor variable contributing to each one of the BFs), and

“Betas” (carrying the coefficients associated with each particular BF). Information

encapsulated by these 3 matrices is sufficient to express the resulting MARS hyper-

plane in the feature space.

5.2 Optimization

CMARS replaces the backward step with an algorithm involving Tikhonov regulari-

zation and conic quadratic optimization; thus, the widest MARS model is required

for this part of the algorithm. In order to produce the widest model (the model with

Mmax basis-functions), the “prune” property of the Earth object is set to “false”, in

other words, the backward step of the MARS algorithm is canceled out. CMARS

1 Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for MATLAB/Octave, 2011, available at
http://www.cs.rtu.lv/jekabsons/ [49].

2 S. Milborrow. Derived from MDA:MARS by T. Hastie and R. Tibshirani., “Earth: Multivariate Adaptive
Regression Splines,” 2011 [62].
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optimizes coefficients of the linearly independent terms in this widest model obtained

without pruning.

The first step of the procedure is the computation of the Lim values which form the L

matrix appearing in Equations (2.9) and (2.10), respectively. In order to accomplish

that calculation, the data matrix is required to be updated to guarantee differentiability

everywhere. For this purpose, at each predictor variable (column), the data vector is

sorted, and two additional rows before the minimum and after the maximum row are

introduced. Values for these rows are specified as 0.5 smaller than the minimum,

and 0.5 greater than the maximum value in the original vector, respectively. The

value 0.5 is selected by evaluating the results of a number of trials, however, it has

been observed that the results are not considerably sensitive to this value. In order

to find Lim values at the diagonals of L , the D and the ∆x̂mi values are computed

for each sample, in an iterative loop. Details regarding the discretization scheme and

calculation of D values are presented in [103], including a numerical example.

Having the data matrix, the L matrix, Dirs, Cuts, and Betas, now, the problem can be

expressed as a CQP problem as shown in Eqn. (2.11). For this purpose, a commonly

used, modern optimization toolbox, MOSEK [5], is employed. In order to be able

to construct the MOSEK optimization model matrix, the constraints given in Eqn.

(2.11) must be restated as linear constraints. Thus,N new variables (also constraints),

named βi, and associated with theN samples (indexed by i ∈ {M+1,M+2, ...,M+

N}), are defined as:

y1 −B(x1)β = βM+1,

y1 −B(x2)β = βM+2,

...

yN −B(xN )β = βM+N .

(5.1)

Correspondingly, the first conic constraint of Eqn. (2.11) can be rewritten in terms of

these new variables as:
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(
M+N∑
i=M+1

β2i

)1
2

< t. (5.2)

Similarly, the second conic constraint is expressed in terms ofM new variables (linear

constraints):

L1β1 = βM+N+1,

L2β2 = βM+N+2,

...

LMβM = βM+N+M ,

(5.3)

and the corresponding single conic constraint with
√
M̃ ,

(
M+N+M∑
i=M+N+1

β2i

)1
2

≤
√
M̃. (5.4)

By these conversions, we end up with a set of constraints which are available now for

being modeled and solved in MOSEK toolbox.

5.3 Visualizing the Model Function

In Figure 5.1a, a MARS model function built with input parameters Mmax = 14,

Kmax = 2, and prune property set to “false” is shown. Thus, it is an example to the

widest model acquired at the end of the forward pass. Each line represents a linearly

independent term which is associated to a BF multiplied by a weighting factor. Each

BF is expressed as a product of hinge functions, described by predictor variables and

corresponding knot points.

As it is described before, the backward step of the MARS algorithm prunes the model,

in other words, removes the least significant terms in the model function in order to

enhance generalization ability of the classifier (the number of BFs decreases to 12

from 14, and the accuracy rises to 0.6757). Fig. 5.1b illustrates how this procedure is
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(a)

(b)

(c)

Figure 5.1: (a) MARS model without pruning, (b) Evolution of the model through

backward step of MARS, (c) Evolution of the model through CMARS.
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(a) (b)

(c) (d)

Figure 5.2: Projections of the two hypersurfaces obtained in AD/CN and MCI/CN

classification cases onto the axes defined by the most contributory variables [17].

resulted. Finally, in Fig. 5.1c, it is observable that CMARS increases accuracy of the

classifier by optimizing the coefficients without canceling out any of the BFs from

the model (the number of BFs remains 14, and the accuracy rises to 0.7027, which is

greater than the accuracy obtained through the backward step of MARS).

Visualizing the problem spaces in these degrees of dimensionality has always been

a problematic issue. To provide a visual sense of the separating surface which di-

vides the problem space into two subspaces, projections were employed. Fig. 5.2

shows two examples to these kind of projections, obtained by projecting the model

functions onto two axes described by predictor variables. Figures 5.2a and 5.2b show

the output responses acquired from the training and test samples, and the surface

obtained in AC/CN classification case projected onto the axes of predictor variables
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indicated by indices 2553 and 2195 (which correspond to BF1 and BF4), respectively.

Similarly, Figures 5.2c and 5.2d show projections of a sample model constructed in

MCI/CN case onto the axes of predictor variables defined by indices 2369 and 2617,

respectively. Both of the MARS model functions were built with input parameters

Mmax = 11, Kmax = 2, and “prune” property set to “true”. Aforesaid voxel in-

dices were selected in order to visualize nonlinearity through corresponding hinge

functions occurring in a nonlinear term in multiplication form. In both cases, a good

separation of the healthy and the diseased samples was seen.

In both of the cases shown in Fig. 5.2, we decided on the variable axes on which the

surfaces were projected, considering the contribution of the basis-functions (coinci-

ding with these variables) to the overall discriminative strength of the trained model

function. Residual Sum of Squares (RSS) was used as the measure to choose the bi-

nary combination of these basis-functions among all of them. Thus, the two variables

which produce the minimum RSS on the blind test data through corresponding hinge

functions were selected for projection.
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CHAPTER 6

PERFORMANCE EVALUATION

6.1 Parameter Optimization with Grid Search and Cross-Validation

Definitive characteristics of MARS models are determined by assigning values to the

two primary input parameters. The first one of these parameters is Mmax, which re-

presents maximum number of basis-functions (BFs) that is possible to have in the

model at the end of the forward step. The second parameter is Kmax, which refers

maximum degree of interactions between variables that form a basis-function. An

increment in Mmax increases the flexibility of the final model. Unfortunately, high

flexibility means high complexity at the same time. Nonlinearities and variable inter-

dependencies can be modeled by choosing a Kmax value greater than 1.

A coarse-to-fine grid search procedure was conducted for optimization of these two

major MARS parameters. Classifiers were administered on AD/CN, MCI/CN, and

MCIc/MCInc subject groups in two iterations. Firstly, Mmax was varied with step

size of 10, taking the values from the set {11, 21, ..., 101}. For each Mmax, Kmax

was varied taking each value from the set {1, 2, 3}. Classification was performed and

the Area Under the ROC Curve (AUC) is calculated for each input combination. Next,

Mmax was varied with a smaller step size (of 2), near the parameter value providing

the maximum AUC in the former step, and, Kmax was again varied between the

elements of {1, 2, 3}.

Ñ-times replicated k̃-fold cross-validation ([59]) method was adapted to validate the

model parameters1. In this design, the initial training dataset was randomly parti-

1 The letters N and k are included with a tilde (∼) sign on top of them to avoid with the N used for stating
the sample size and the k appearing in Eqn. (2.7) to express number of knots, respectively.
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tioned into k̃ subsets (folds). While each fold was employed as the test data, the

remaining k̃− 1 subsets were assembled to train the classifiers. This process was rei-

terated Ñ − 1 more times with randomly updated partitions and the k̃× Ñ results - in

this case, AUC (area under the ROC curve), sensitivity, and specificity - were avera-

ged. The parameter pair maintaining the best AUC value was assigned as the eventual

input parameter set. Ultimate model functions were built using all of the training data

with these parameters, and classification was performed on the - previously reserved

- blind test data, utilizing resulting models to attain the final results.

On the other hand, the inequality between the numbers of scans included by the 3 dif-

ferent classification groups caused a problem in specification of the cross-validation

parameters Ñ and k̃. (The AD/CN cohort includes 150 scans, the MCI/CN cohort in-

cludes 120 scans, and the MCIc/MCInc cohort includes 104 scans in the training sets,

see Table 3.1.) Besides, it was seen that when the training sample size was reduced

below 100, the classification performance remarkably decreased. Taking this situa-

tion into consideration, the value of k̃ was chosen as 3 for the AD/CN group, 6 for the

MCI/CN group, and 18 for the MCIc/MCIcn group. This decision was made to keep

the number of training samples close (N×(k̃−1)/k̃ ≈ 100, whereN is the total num-

ber of samples) in each classification case, throughout the cross-validation process.

The Ñ values are assigned considering compensation of the differences in number

of total repetitions introduced by using different k̃ values, accordingly (Ñ = 18 for

AD/CN case, Ñ = 9 for MCI/CN case, and Ñ = 3 for MCIc/MCInc case).

Classifiers were formed by training MARS models fed by the parameters obtained

through the parameter optimization approach based on grid search and cross-validation

as clarified in this subsection. The results presented in the form of confusion matrix

in Table 6.2 were attained by application of the acquired models on the blind test data

(see Section 6.2). The individual demonstrations of parameter optimization procedure

for AD/CN, MCI/CN, and MCIc/MCInc classification groups are shown in Figures

6.1, 6.2, and 6.3, respectively. Table 6.1 introduces the maximum average AUC value

observed during the search process, matching parameter pair, and the averages of the

performance metrics for each case. In the figures, the coarse search progress is dis-

played by the graphs in the left-hand side column, and the fine tuning of the model

training inputs is shown by the ones in the right-hand side column. Each row corre-
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Table 6.1: Optimal parameters with corresponding averaged performance outcomes
obtained through the grid search procedure (see Section 6.1 for the definitions of
Mmax and Kmax).

AD/CN MCI/CN MCIc/MCInc
Mmax 11 11 71
Kmax 1 1 1
AUC 0.8656 0.7025 0.5477
SEN 0.7826 0.6328 0.5404
SPE 0.8025 0.6607 0.4973

Table 6.2: Confusion matrix regarding all 3 experiment results. “H” stands for ”He-
althy” and “D” stands for “Diseased”. Vertical division shows the ground truth data,
where the horizontal division shows the prediction results.

Confusion Matrix
True Classes
AD/CN MCI/CN MCIc/MCInc
H D H D H D

Predictions
Healthy 70 11 72 8 40 14
Diseased 11 56 9 29 27 23
TOTALS 81 67 81 37 67 37

sponds to a different value (1, 2, or 3) of Kmax. The dashed black line represents the

maximum AUC observed in each run. The ultimate maximum AUC is pointed out by

the yellow rectangles in each figure.

6.2 Classification of Normal, AD, and MCI Brain MRI by MARS

Classification experimentations were executed by training MARS models with the in-

put parameters attained through the parameter optimization process as clarified in the

former subsection. Constructed models were employed for making class predictions

on the blind test data. Class predictions at the end of the classification routine are

presented in the format of confusion matrix provided in Table 6.2.

6.2.1 Description of the Performance Metrics

ACC (accuracy), SEN (sensitivity), SPE (specificity), PPV (positive predictive

value), NPV (negative predictive value), and AUC (area under the ROC curve) me-
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Figure 6.1: (Adapted from [17]) Optimization of the MARS model parameters with

grid search and cross validation for the AD/CN group. AUC = 0.8656 with Mmax =

11 and Kmax = 1.
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Figure 6.2: (Adapted from [17]) Optimization of the MARS model parameters with

grid search and cross validation for the MCI/CN group. AUC = 0.7025 with Mmax

= 11 and Kmax = 1.
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Figure 6.3: (Adapted from [17]) Optimization of the MARS model parameters with

grid search and cross validation for the MCIc/MCInc group. AUC = 0.5477 with

Mmax = 71 and Kmax = 1.
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Table 6.3: Performance of Voxel-MARS is compared with the average outcomes of ot-
hers. Average performance rates of other methods are indicated as “mean ± standard
deviation [range]”.

Case Metric Others (%) VM (%) Diff. (%) Rank

AD/CN

SEN 71.46±5.65 [59-82] 83.58 +12.12 1
SPE 89.39±5.03 [77-98] 86.42 -2.97 22
PPV 85.18±6.23 [72-96] 83.58 -1.60 21
NPV 78.93±3.88 [70-86] 86.42 +7.49 1

MCIc/CN

SEN 54.39±12.39 [22-73] 78.38 +23.99 1
SPE 88.82±7.27 [73-99] 88.89 +0.07 17
PPV 71.50±11.97 [50-89] 76.32 +4.82 12
NPV 81.21±3.60 [73-87] 90.00 +8.79 1

MCIc/MCInc

SEN 44.20±15.22 [22-70] 62.16 +17.96 2
SPE 76.47±8.77 [61-91] 59.70 -16.77 16
PPV 51.33±7.25 [39-67] 46.00 -5.33 12
NPV 68.18±5.02 [66-79] 74.07 +5.89 7

trics were calculated assigning positive to the diseased label and negative to the he-

althy label. Therefore, true positives (TP ) were described as the diseased samples

which are predicted to be diseased, true negatives (TN ) were described as healthy

ones which are predicted to be healthy, false positives (FP ) were described as healthy

ones which are predicted to be diseased, and false negatives (FN ) were defined as

diseased ones which are predicted to be healthy. In AD/CN classification group, ADs

were assumed as diseased and CNs were assumed as healthy. Similarly, in MCI/CN

case, the diseased set included subjects with MCI. In the third case, diseased sam-

ples were presumed to be the converter MCIs (MCIc), and the (non-converting MCI)

MCInc samples were assigned as healthy.

6.2.2 AD vs. Normal

Table 6.4 shows the results acquired through classification by performing different

methods on the same dataset formed for AD/CN classification. The proposed met-

hodology was designated as Voxel-MARS (ID: 0) being inspired by the naming con-

vention embraced by Cuingnet et al. (2011) in [23]. All 28 versions of the 10 main

methods evaluated in [23] were sorted by resulting sensitivity, in descending order.

The most successful 5 of them were chosen for comparison. The columns in the ta-
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Table 6.4: Performance of MARS compared with five methods (top five in sensitivity)
in AD/CN case.

ID Method Name SEN SPE PPV NPV
0 Voxel-MARS 83.58% 86.42% 83.58% 86.42%
1.5.1 a Voxel-COMPARE-D-gm 82% 89% 86% 86%
1.1.1 a Voxel-Direct-D-gm 81% 95% 93% 86%
1.4.1 b Voxel-Atlas-D-all 81% 90% 87% 85%
2.2 Thickness-Atlas 79% 90% 87% 84%
1.4.1 a Voxel-Atlas-D-gm 78% 93% 90% 83%

Table 6.5: Performance of MARS compared with five methods (top five in sensitivity)
in MCI/CN case.

ID Method Name SEN SPE PPV NPV
0 Voxel-MARS 78.38% 88.89% 76.32% 90.00%
1.3.1 a Voxel-STAND-D-gm 73% 85% 69% 87%
3.1.1 Hippo-Volume-F 73% 74% 56% 86%
3.1.2 Hippo-Volume-S 70% 73% 54% 84%
1.4.2 a Voxel-Atlas-S-gm 68% 95% 86% 87%
2.3 Thickness-ROI 65% 94% 83% 85%

ble involve unique hierarchical IDs given in the original paper, abbreviations given to

the methods, sensitivity, specificity, positive predictive value, and negative predictive

value outcomes, from left to right.

Results on Table 6.4 suggest that the proposed technique (Voxel-MARS) provided

the best sensitivity (SEN ) and NPV among all of the other 28 procedures, with

an adequate specificity of 86.42%. Besides, Voxel-MARS ranks 12th at specificity

(SPE) and 21th at PPV among the procedures. However, difference of sensitivity

in the positive direction (+12.12) is much greater than the loss in specificity (-2.97)

when compared with the average performance levels of all of the other methods (see

Table 6.3).

6.2.3 MCI vs. Normal

MCI/CN classification steps were executed on previously assigned training and test

datasets. Results were demonstrated in Table 6.5. Similar to the AD/CN case, other

methods assessed in [23] were rearranged in the order of attained sensitivity and the
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Table 6.6: Performance of MARS compared with five methods (top five in sensitivity)
in MCIc/MCInc case.

ID Method Name SEN SPE PPV NPV
3.1.1 Hippo-Volume-F 70% 61% 50% 79%
0 Voxel-MARS 62.16% 59.70% 46.00% 74.07%
3.1.2 Hippo-Volume-S 62% 69% 52% 77%
1.5.1 a Voxel-COMPARE-D-gm 62% 67% 51% 76%
1.3.1 a Voxel-STAND-D-gm 57% 78% 58% 76%
1.5.1 b Voxel-COMPARE-D-all 54% 78% 57% 75%

uppermost 5 were included in Table 6.5. Again, it was observed that the proposed

method provides better sensitivity and NPV than all of the other techniques included

in the research. In specificity, Voxel-MARS ranked 17th, and in PPV it ranked 12th,

whereas, both of the observed results were above the average rates attained through

the other techniques (see Table 6.3).

In both of the AD/CN and MCI/CN cases, optimal values for Mmax and Kmax be-

came 11 and 1, respectively. Similarly, eventual number of BFs at the end of pruning

appeared as 7 in both cases.

6.2.4 Converting MCI vs. Non-converting MCI

The authors in [23] stated that, only 15 out of 28 methods managed to produce mea-

ningful results (with SEN and SPE values different from 100% or 0) in MCIc/M-

CInc classification. As with the former cases, these 15 techniques were ordered by

SEN and the highest 5 were included in Table 6.6. Voxel-MARS ranked 2nd in terms

of sensitivity. Proposed procedure ranked 16th in specificity (SPE), 12th in PPV ,

and 7th in NPV among other approaches. Like in the AD/CN group, the advance in

SEN is greater than the downturn in terms of SPE (see Table 6.3).

A comprehensive quantitative assessment involving the performances of all methods

including our approach is presented in Table 6.3. Success statistics of the other 28

techniques are introduced in the format of “average (%) ± standard deviation (%)

[range (%)]”. In both of the AD/CN and AD/MCI cases, all 28 methods managed

to provide meaningful outcomes, whereas in prediction of conversion, only 15 of
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Table 6.7: Confusion matrix regarding results acquired by CMARS in all three clas-
sification groups. These are the scores observed through cross-validation where the
best AUC condition is met.

Confusion Matrix
True Classes
AD/CN MCI/CN MCIc/MCInc
H D H D H D

Predictions
Healthy 71 20 67 13 42 16
Diseased 10 47 14 24 25 21
TOTALS 81 67 81 37 67 37

Table 6.8: SEN and SPE outcomes acquired by MARS and CMARS with best
AUC values are compared.

AD/CN MCI/CN MCIc/MCInc

MARS
SEN (%) 83.58 78.38 62.16
SPE (%) 86.42 88.89 59.70

CMARS
SEN (%) 70.15 64.86 56.76
SPE (%) 87.65 82.72 62.69

them did. Thus, in the third group, 13 methods producing null sensitivity were not

included in calculation of performance statistics. The column Diff. shows the diffe-

rence between the results acquired by our method and the averages achieved by other

techniques.

6.3 Classification of Normal, AD, and MCI Brain MRI by CMARS

CMARS validation procedure was handled in a similar way to the MARS experi-

ments, demonstrated in Section 6.2. Firstly, MARS models were built with the input

parameters obtained through the parameter optimization procedure. Prune property

of Earth package was set to “false” in order to acquire the model in its widest form

in the beginning. The regulatory parameter (M̃ ) of CMARS was varied between 10-3

and 103 in logarithmic steps, and M̃ = 1 was observed to be the value giving the

maximum AUC among the trials.

In Table 6.7, prediction results, which were gathered through CMARS classifier ap-

plied on AD/CN, MCI/CN, and MCIc/MCInc groups, were shown. Additionally, a

comparison between MARS and CMARS techniques in terms of the two major per-
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Table 6.9: SEN and SPE scores acquired by utilization of central moments com-
puted at different scales. Experiments were performed on AD/CN group and MARS
method were employed for classification. (*) Scale 0 means the original image. (**)
Earth package cannot construct MARS models at these dimensions.

Scale 0* (original) 2 3 4
Dimensions 121-145-121 30-36-30 15-18-15 8-9-8
Block sizes 1 64 512 4096
(%) SEN SPE SEN SPE SEN SPE SEN SPE
Mean (0th) 83.58 78.38 79.01 73.13 87.65 52.24 80.25 71.64
Variance (1st) - - 80.25 65.67 79.01 76.12 83.95 70.15
Skewness (2nd) - - 79.01 56.72 79.01 73.13 67.90 68.66
Kurtosis (3rd) - - 67.90 73.13 69.14 70.15 59.26 64.18
0th +1st - - -** -** 88.89 71.64 88.89 68.66
All 4 combined - - -** -** 74.07 71.64 80.25 47.76

formance statistics, SEN and SPE, can be found in Table 6.8. It was observed that

the maximum performance scores acquired by MARS cannot be reached, in terms of

sensitivity. However, in the AD/CN classification case, a higher specificity (87.65%)

compared to that of MARS (86.42%) was obtained.

In Figure 6.4, overall ACC scores provided by MARS and CMARS under varying

Mmax input (for Kmax ∈ 1, 2) are introduced. As seen on the first graph, MARS

outperformed CMARS at point where the maximum accuracy was obtained, however,

CMARS reached up to a better accuracy score when the number of basis functions

was increased. Similarly, in the nonlinearity case demonstrated by the second graph,

higher accuracy was observed by utilization of CMARS. These observations verify

the theoretical proposition in [103] that CMARS performs better when the complexity

of the model increases, thus, enhances robustness.

6.4 Classification Based on Feature-Based Morphometry

6.4.1 Image Moments

The feature sets were prepared by downsampling and computation of image moments

at different scales, as it is described in Subsection 3.3.1. MARS classifier was applied

on the AD/CN dataset. Optimal parameters acquired by the cross-validation proce-
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Figure 6.4: Overall accuracy (ACC) of classical MARS and CMARS under varying

number of basis-functions (Mmax) with (above) Kmax = 1 (below) Kmax = 2

(AD/CN group).
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Table 6.10: Classification accuracy acquired by SIFT and HOG feature descriptors.
Results are compared with our methodology. (*) The study does not involve diagnosis
in early phase, it implicates quantification of amyloid status.

SIFT HOG Voxel-MARS
Our implementation 0.71 0.74 0.85
(Toews et al., 2010) [95] 0.71 - -
(Daliri, 2012) [25] 0.75 - -
(Chen et al., 2014) [20] 0.74 - -
(Cattell et al., 2016) [15] - 0.90 * -
(Ameer et al., 2017) [67] - 0.68 -
(Unay and Ekin, 2011) [97] - 0.74 -

dure explained in Section 6.1 were used in model training. Previously reserved blind

data were employed for testing the models.

As it is presented in Table 6.9, a successful outcome was obtained by combining mean

and variance (0th and 1st moments, respectively) features calculated in the 3rd scale.

In this case, number of features became 24,300, with AUC = 0.8778. Both AUC

and SPE values were remarkably high with this feature setting, however, a low SPE

value was obtained.

6.4.2 Feature Descriptors

SIFT and HOG descriptors were derived from the original MRI volumes belonging

to AD/CN group. For the extraction of SIFT and HOG features from 3D image data,

recently implemented bbrister/SIFT3D2 and 3D Voxel HOG3 [30] software packages

were used in MATLAB environment, respectively.

The number of descriptor vectors which are provided by SIFT, varies between the

keypoints. Hence, these descriptor vectors cannot be directly employed to form a

feature space for classification model training. In order to solve this problem, a Bag

of (Visual) Words (BoW) [109] model was constructed to compose a feature space

by using the SIFT descriptors for classification. The co-dimensional vectors - of size

768 - were clustered into 100 groups using k-means clustering approach. Represen-

2 MATLAB bbrister/SIFT3D package. [81].
3 MATLAB package for Histogram of Orientated Gradients 3D (3D Voxel HOG) [29].
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ting each keypoint, a 100-bin histogram of descriptors was formed by considering

vectorial distances of the descriptors to the computed cluster centroids. In the second

case, HOG descriptors were directly used for training the classifier. In both cases,

class predictions were made by MARS method.

Table 6.10 shows the performance outcomes reported in the papers included in Sub-

sections 3.3.2 and 3.3.3. Among the multiple results presented by the authors, the

ones that were gathered by the datasets having the most analogous characteristics

with ours were selected. In the table, if it is available, the overall accuracy values

were used. Otherwise, the equal error rates (EER) were included as the performance

measure. The first row shows the results that we acquired by the AD/CN dataset

through our implementation. It is observed that, our proposed methodology outper-

formed FBM-based approach in early detection of AD. A wider discussion on this

issue can be found in the following section.

6.5 Discussion

6.5.1 Challenges

ADNI image archive contains thousands of high resolution, volumetric brain MR

images belonging to the subjects who consulted to the health centers with symptoms

of dementia. Usually, a participant’s brain was scanned multiple times, including

the baseline examination and the regular visits lasting at least for 18 months. In

the beginning, it seemed very difficult to compose a data subset with appropriate

heterogeneous characteristics to work on. This problem was tackled with adopting the

dataset that was formed by Cuignet et al. (2011) [23], as a part of their comprehensive

study involving comparison of major structural MRI-based methods in the field. By

embracing the equivalent image set, having heterogeneous and balanced data classes

was ensured. Undoubtedly, this preference affected the objectivity of the validation

part of our study, in the positive direction.

The derivation of tissue probability maps from the 509 high resolution images of our

dataset involved a process which induces a respectively high memory and time cost,

along with the programming efforts given. It was an error-prone process and the repe-
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titions were coming along with a high return. Learning the script-based programming

interface of the SPM Toolbox helped in dealing with such problems.

In consequence, working with the intensity-based features yielded a small sample size

problem, which is very familiar to the researchers in field of medical image analysis.

Nonetheless, throughout the literature investigation, it was observed that larger data-

sets does not necessarily imply more successful results. The issue was solved with

the help of a properly designed dimensionality reduction procedure, which became

one of the core components of this thesis.

MARS has the ability to produce fairly high-dimensional, possibly nonlinear and

complex models. This, together with the high dimensional data vectors, caused a

problem in data visualization. Although it was defeated by the approach explained in

Chapter 5, it is an open issue to find better ways of demonstrating high-dimensional

problem spaces.

Finally, confronting with the complexities behind the optimization part included in

CMARS algorithm enriched this thesis, substantially. Applying the discretization

procedure as it was introduced in [103], and transforming the highly-coupled con-

straints into a form that they can be modeled by the MOSEK Optimization Toolbox

were the most challenging programming tasks involved in our study.

6.5.2 Voxel-Based Morphometry vs. Feature Descriptors

At the first glance, performing the class prediction over the feature descriptors like

SIFT and HOG may seem advantageous in several aspects. The most important su-

periority of these methods are their independence from certain image properties such

as scale, illumination and orientation. As a consequence, they remove the obligation

to ensure voxel-wise one-to-one correspondence between the images. Therefore, the

information loss due to image manipulations are minimized.

However, it was observed that, neither in the previously published studies, nor by

our implementation, the desired performance level cannot be reached by employing

the Feature-based Morphometry approach (see Subsections 3.3.2, 3.3.3, and 6.4.2).

Indeed, this is understandable by virtue of a clear reasoning.
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Obviously, the addressed problem is to identify signs of the effect of AD in “very

early” phases - sometimes, even before the existence - of the disease. This time

period coincides with the interval that the disease related microscopic changes are

just beginning to sum up to the voxel-level, macroscopic structural alterations. In

this phase, these changes are barely visible - in most of the cases, invisible - to the

naked eye of an expert. The aforementioned feature descriptors, on the other hand,

are known to work well with certain structures, such as edges, corners and blobs.

However, it is noteworthy that, utilization of HOG in [15] resulted in a remarkably

well accuracy in prediction of the amyloid status (see Table 6.10). This inference

suggests that, even they are not sufficiently successful in detecting the existence of

AD prior to the onset, these feature descriptors are promising in quantification of the

amyloid plaques, which is directly associated with the stage of disease progression in

the oncoming periods.

6.5.3 Feature Selection Methodology

As explained in Chapter 4, a hybrid, 3-step feature selection procedure incorporating

both statistical analysis and the domain knowledge was developed to reduce the di-

mensions. For inclusion of the domain knowledge, a novel, heuristic approach was

established, validated and formulated in mathematical terms.

Employing a procedure that is not transforming the feature space into another coor-

dinate system, made it possible to locate the actual points of interest. This makes our

system a potential tool for detailed anatomical assessment, beyond being a black-box,

producing plain class predictions. As with being more applicable in related problem

domains, the generated algorithm was proved to be more effective in determination of

significant features, when compared with several of the widely-employed techniques

(see Table 4.2).

6.5.4 MARS as a Classifier

Many benefits are provided with choosing MARS as the method for classification.

First of all, the model functions, which are gathered at the end of the training phase,
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has the ability to reveal points of interest, as well as interconnections between these

points, by its nature. The model functions are easy to interpret, since they exist in

form of linear combination of linearly independent basis-functions, which carry the

information corresponding to one or more voxels. As with the feature selection met-

hodology, this property of MARS classifiers provided an insight into the anatomical

alterations in the early phases of AD. Also, the global, adaptive behavior of MARS -

and CMARS - is in an analogous manner with our brain-as-a-whole approach.

In addition to these, MARS facilitates highly flexible models which are able to fit

remarkably complex data points. High flexibility implies higher ability to learn, ho-

wever, overuse of this capability may cause overfitting problem. Examples of this

condition were presented throughout this chapter.

6.5.5 MARS vs. CMARS

MARS resolves the overfitting problem with a process termed as the backward-step,

which has been gone over multiple times throughout this thesis. The process invol-

ves simplification of the model with the help of a technique, named as generalized

cross-validation. Model simplification is performed by elimination of the least rele-

vant basis-functions from the model function. This can be reasonably interpreted as

throwing off a certain amount of - possibly valuable - information.

CMARS replaces this part of the algorithm in order to avoid the information loss. It

incorporates the famous Tikhonov regularization and Conic Quadratic Optimization

techniques to enhance generalization ability of the model, instead. The amount of

regularization can be controlled over an additional parameter, as explained in detail

in Chapter 2.

Along the experiments, CMARS was observed to succeed performing well. In AD/CN

and MCIc/MCInc classification cases, CMARS outperformed MARS in terms of spe-

cificity with scores of 87.65% and 62.69%, respectively (see Table 6.8). In general,

it managed to produce accuracy and sensitivity values in acceptable ranges. It is seen

that in higher dimensional models, the accuracy of CMARS outperformed that of

MARS (cf. Figure 6.4). However, it did not achieve to exceed the maximum scores
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that were acquired by MARS in terms of these two measures.

As a result, MARS and CMARS were utilized for the first time in field of medical

image analysis. It was seen that, MARS performed remarkably well when compared

with well-known techniques which are previously tested and validated. Even though

the peak performance of MARS cannot be reached by CMARS, the algorithm was

observed to be promising in terms of robustness and stability.
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CHAPTER 7

CONCLUSIONS AND OUTLOOK

7.1 Conclusions

In this study, a complete procedure which improves the early detection of AD and

MCI by analyzing structural brain MRI volumes, and builds a foundation for a fully-

automated computer-aided diagnosis system was introduced. An elaborate image

processing scheme involving derivation of voxel intensity-based GM, WM, and CSF

tissue probabilities as feature vectors was applied to 3D T1-W MRI volumes gathe-

red from the ADNI database. Results obtained through this approach is quantitatively

examined and compared with several previously developed methods (based on sear-

ching for more “descriptive” features) falling into the discipline of computer vision,

such as SIFT and HOG. It was observed that, when considered within the limitations

of our work, the intensity-based approach has demonstrated higher success rates in

performance than the other. In the Discussion section (Section 6.5), a comprehensive

discussion on these consequences is presented.

The decision of treating tissue probability map entries assembling to “whole brain” as

potential features (i.e., voxel-as-feature approach) effectively yielded a small sample

size problem, which necessitates a procedure capable to deal with the problems cau-

sed by the existence of high dimensionality. A partially new, 3-step, hybrid feature

selection methodology has been developed to identify features with a fairly high dis-

criminatory strength. The procedure begins with the creation of an initial mask using

a general linear model, continues with the insertion of domain rules based on expert

knowledge into the model to remove some features by looking at the tissue probability

distributions, and ends with the within-class norm thresholding stage. This final step
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involves a method which removes the dimensions from the data matrix, when cor-

responding Euclidean sample norms are not large enough compared to the average

norms of feature vectors within their tissue class. In addition, an evaluation of this

procedure involving a comparison with commonly used space-transforming dimen-

sionality reduction techniques was performed. It was seen that the proposed method

outperformed all of those techniques and, what is more, it performed better than the

“no reduction” case.

A non-parametric, adaptive extension of decision trees (particularly, of CART), na-

mely MARS, was used to generate linear and nonlinear models which function as

separating surfaces. CMARS is a recent technique which replaces the backward step

of classical MARS with a process involving minimization of a PRSS function. It

is accomplished by updating all of the coefficients instead of removing basis functi-

ons from the model. In the frame of this study, CMARS was also implemented and

performance of the method as a classifier was evaluated. It was observed that, in

this way, all of the relevant information coming from the observations are preserved,

while overfitting problem is avoided. Our CMARS implementation produced accep-

table results which are also comparable with the ones obtained by MARS in previous

phases of the study.

Since it resulted in the first time utilization of MARS in classification of data with

such a high degree of dimensionality, use of MARS in the field of medical image

analysis provided one of the most important contributions of this study. It ended up

with a notable success among the techniques that employ voxel intensity-based featu-

res derived from different parts (or whole) of the brain MRI as the predictor variables.

It was proved that MARS can perform outstandingly as a nonlinear classifier with the

ability to generate complex and stable models with very high-dimensional training

data and no fixed parametric form presumption. Use of the methods made it possible

to detect the pixel-level macroscopic effects induced by accumulation of microscopic

changes occurring in the early stages of AD and converting MCI.

The latest technological advances that apply to any kind of measuring device (an MRI

scanner in our case) create a massive and ever-increasing source of information (i.e.,

big data) to analyze. This phenomenon encourages us, engineers, medical scientists,
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and mathematicians to incorporate data analysis into our focus of interest. When con-

sidered in this context, concepts of statistical learning and applied mathematics find a

widespread use. Computer-aided diagnosis of AD (and MCI) at early onset through

the analysis of medical images involves utilization of techniques from engineering

sciences such as statistical learning, mathematical modeling, and optimization. For

this reason, the development of computer-assisted AD and MCI diagnostic tools can

still be seen as an important research topic in the fields of Biomedical Engineering

and Neuroscience.

This comparative study showed that our approach is one of the most promising ad-

vances in the domain.

7.2 A Future Outlook

The research on MARS and CMARS will be extended to include very new mathematics-

supported methods of Statistical Learning, Machine Learning and Data Mining, such

as RMARS [72], RCMARS [73], RCGPLM [71], and upcoming methods, which can

be used comfortably, elegantly and successfully, for further advances in detection of

AD. Our global approach of analyzing the brain as a whole, and treating all voxels as

candidate features will also be enlarged to question if the proposed approach may be

effectively used for early diagnosis of neurodegenerative diseases other than AD and

MCI.

With this thesis, a solid basis for an efficient and stable software system is founded. In

the near future, essential parts of our implementation will be refactored and packed

in order to form a fully-automated software product with the support of graphical

user interfaces (GUI) and powerful visualization tools. A complete system that can

effectively be employed in clinics for both screening and patient follow-up will be

purposed.

Another possible future direction could be to extend the procedure in the way that

it is able to incorporate outputs in terms of probabilities of having AD, MCI, and

converting MCI, rather than producing plain class labels as predictions. This could

be accomplished through reassessment of the model output response function as a
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generalized probability distribution. Also, a study on “to which extent the proposed

approach could be modified to handle early detection of other neurodegenerative di-

seases” will be conducted, in the near future. Finally, it would be interesting to enrich

the datasets using images from multiple sources to investigate how multi-modality in

the feature sets effects the overall prediction performance.
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