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ABSTRACT

A MULTI-LEVEL CONTINUOUS MINIMAX LOCATION PROBLEM WITH
REGIONAL DEMAND

Faridyahyaei, Amin

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Mustafa Kemal Tural

September 2017, 134 pages

The minimax facility location problem seeks for the optimal locations of the facilities
in the plane so that the maximum Euclidean distance between the demanding entities
(given points in the plane) and their corresponding nearest facilities is minimized. In
the solutions, remote entities (irrespective of their weights) tend to pull the facilities
toward themselves which may result in larger distances for the other entities.

In this thesis, we consider a multi-level minimax location problem which allows some
of the entities to be covered in outer levels and thereby reducing their impact on the
facility locations. We assume that associated with each entity, there is a weight which
represents its importance, e.g., weights might represent populations if the entities are
districts or cities. Additionally, we consider entities as regions in the plane consisting
of an infinite number of points, therefore, this problem is a multi-level version of the
minimax location problem with continuous demand. Based on the nature of the prob-
lem, the farthest point of each region to its nearest facility is important and Euclidean
distance is utilized in distance calculations.

In this thesis, firstly, we model the single and multi-facility versions of the consid-
ered problem as mixed integer second order cone programming (MISOCP) problems.
Secondly, we perform computational experiments on artificially generated instances
to see the limits of the mathematical programming formulations. Then, we propose

v



several heuristics and compare them with the MISOCP formulations in terms of solu-
tion quality and computational time. Finally, all these solution approaches are tested
on the case study of Istanbul.

Keywords: Minimax Problem, Second Order Cone Programing, Regional Demand,
Facility Location, Location-allocation
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ÖZ

BÖLGESEL TALEPLİ ÇOK SEVİYELİ SÜREKLİ MİNİMAX YER SEÇİMİ
PROBLEMİ

Faridyahyaei, Amin

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Mustafa Kemal Tural

Eylül 2017 , 134 sayfa

Minimax yer seçimi problemi, talep birimleri (düzlemde verilen noktalar) ve bun-
lara karşılık gelen en yakın tesisler arasındaki maksimum Öklid mesafesini enaza
indirecek düzlemdeki tesislerin en uygun yerlerini arar. Çözümlerde, uzak birimler
(ağırlıklarından bağımsız olarak) tesisleri kendilerine doğru çekme eğilimindedir ve
bu da diğer birimler için daha büyük mesafelere sebep olabilir.

Bu tezde, bazı birimlerin dış seviyelerde kapsanmasına izin verilen ve böylece tesis
yerleri üzerindeki etkilerini azaltan çok seviyeli bir minimax yer seçimi problemi göz
önüne alıyoruz. Her birimle ilişkili olarak, önemini temsil eden bir ağırlık olduğunu
varsayıyoruz; örneğin, talep birimleri ilçeler veya şehirler ise, ağırlıklar nüfusu tem-
sil edebilir. Ek olarak, birimleri sonsuz sayıda noktadan oluşan düzlemdeki bölgeler
olarak ele alıyoruz; bu nedenle, bu problem, sürekli minimax yer seçimi problemin
çok seviyeli bir versiyonudur. Problemin doğasına bağlı olarak, her bölgenin en yakın
tesise en uzak noktası önem arz etmekte ve mesafe hesaplamalarında Öklid uzaklığı
kullanılmaktadır.

Bu tezde, ilk olarak, çalıştığımız problemin tek ve çok tesisli versiyonlarını karışık
tam sayılı ikinci dereceden konik programlama (KTİDKP) problemleri olarak mo-
delliyoruz. İkinci olarak, matematiksel programlama formülasyonlarının sınırlarını
görmek için yapay olarak üretilen örnekler üzerinde hesaplama deneyleri yapıyoruz.

vii



Daha sonra, birkaç sezgisel çözüm yöntemi öneriyoruz ve bunları KTİDKP formülas-
yonları ile çözüm kalitesi ve hesaplama süresi açısından karşılaştırıyoruz. Son olarak,
bütün bu çözüm yöntemlerini İstanbul vaka çalışması üzerinde test ediyoruz.

Anahtar Kelimeler: Minimax Problemi, İkinci Dereceden Konik Programlama, Böl-
gesel Talep, Tesis Yeri Seçimi, Konum-tahsis
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CHAPTER 1

INTRODUCTION

Every person encounters with location decisions in his daily life frequently. Where to

place something and its accessibility are the main questions in all location decisions.

The answer of these questions are influenced by different criteria which should be de-

termined by the decision maker. Typically, minimizing of the cost is the common aim

of location decisions. Private sector considers minimizing financial costs as the main

objective of the location decisions. However, governments usually consider social

costs as well. For instance, in locating hospitals or fire stations for a district, some

other social factors are involved too. In general, Facility Location Problem (FLP)

seeks to position one or more facilities in an optimal way to satisfy requirements of

some demands as well as criteria of decision maker.

For each scenario in location problems, some fixed and variable costs are associated

like setup costs or transportation costs. Transportation costs are commonly measured

by distance or required time for traveling from one facility to corresponding demand

entities. Hence, distance or time is utilized as one of the main cost criteria in mod-

eling of the facility location problems. There are 3 main models for FLP which are

Minisum Location Problems, Minimax Location Problems and Covering Location

Problems.

1. Minisum problem: The objective function of this model is minimization of the

sum of weighted distance between demand entities and facility(s).

2. Minimax problem: It focuses on minimizing the maximum distance between

demands and its closest facility. In the public sector where satisfying all de-
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mands has the same importance for the decision maker, minimax model comes

to use.

3. Covering problem: This problem can be considered in two different mod-

els. Maximal Covering Location Problem (MCLP) which aims at providing

as much coverage as possible for demand entities with a fixed covering radius

and number of facilities. However, Set Covering Problem (SCP) focuses on

total covering of the demand entities with minimum number of facilities.

In facility location problems, 3 different kinds of distance measures are often used

which are rectilinear distance, Euclidean distance, and Chebyshev distance. Utilizing

each of these distance measures could change not only formulation of the model but

also the complexity of the problem. In this thesis, we are studying a pre-positioning

problem in humanitarian logistics, which is a public and social oriented area of study.

Humanitarian logistics consider supply chain management for natural disasters or

complex emergencies. It includes some pre-disaster during disaster and post-disaster

actions in order to alleviate the suffering of affected people [21]. One of the main

pre-disaster activities is stock pre-positioning in some distribution centers to increase

efficiency of the relief operations. Consequently, location and number of these centers

could influence quality of relief services provided to vulnerable people [2].

Typically, several abstractions are done in modeling of such a problem. One of the

most common abstractions is representing all demands as some points while demands

(affected people in this case) are distributed continuously on the plane. For obtain-

ing more realistic solutions for the problem, considering demands as regions instead

of points seems reasonable. Hence, in this thesis demand regions are considered as

demand entities. Suzuki and Drezner [47] studied for the first time Minimax loca-

tion problem considering demand regions instead of points and proposed a geometric

based heuristic for the problem. Then, demand regions are applied for other location

models by others. More details on employing demand regions in facility location

problems can be found in [16].

Drezner and Wesolowski [20] presented a new approach in dealing with demand enti-

ties. They considered lots of points on the plane to represent demand entities and then
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grouped them to decrease the complexity of the problem. They suggested three dis-

tance measures to calculate the distance between group of points and facilities which

are the distance of the closest point of the group to the facility, the distance of the far-

thest point and average distance. Then such an idea is also used in demand regions to

estimate the distance from the facilities. For instance, [6] has utilized closest distance

in a Minimax problem while [31] and [45] have applied farthest and average distance

for a Minisum location problem, respectively. Based on the nature of the studied

problem in this thesis, the Euclidean distance between the facility and the farthest

point of the demand region is utilized to take the worst-case scenario into account.

The most important contribution in this thesis is considering multi-level coverage for

the Minimax problem. Such an idea has not been studied in the literature before and

we investigate its effectiveness on randomly generated instances as well as a real case

study of the Istanbul.

In the classical Minimax location problem, remote entities (irrespective of their weights)

tend to pull the facilities toward themselves which may result in larger distances for

the other entities. For confronting this problem, weighted Minimax location problem

was proposed. It reduces the effect of less important demand entities on the solution

but does not eliminate it completely. The multi-level Minimax location problem stud-

ied in this thesis considers several coverage levels with specific covering percentages

and in each level provides coverage for that particular percent of the demand enti-

ties. This model ensures covering important entities in the inner levels and others in

outer levels. The multi-level Minimax location problem results in lower maximum

distance between demand entities and facilities in the inner levels by reducing the

effect of demand regions in the outer levels on the facility location.

Consider Figure 1.1 which illustrates comparison of 3 mentioned versions of the Min-

imax location problem. Polygons and circles in the figure represent demand regions

and corresponding weight of each region has been indicated on it. The empty circle

(blue) represents the optimal solution for the unweighted Minimax location prob-

lem while empty square (purple) and fill circle (red) ones are related to weighted

and multi-level versions, respectively. It is clear that the optimal solution of the un-

weighted model is close to all demand entities irrespective of their weights. However,
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Figure 1.1: Comparison of unweighted, weighted and multi-level Minimax location

problem for the single facility case

the optimal location of the facility in the weighted version is farther away from the

demand entities on the right hand side which have lower weights. The multi-level

case in this instance considers 2 levels. 65 percent of coverage is provided in the first

level which is indicated by the inner circle and the others are covered in the second

level. Note that the location of the facility is affected by the entities in both the inner

and the outer levels. However, the impact of the outer level can be controlled by the

decision maker as will be explained later.

In summary, the problem studied in this thesis is locating several facilities on the

continuous plane in order to cover all convex demand regions where the impact of the

demand regions inside of a level on the facility location is controlled by the decision

maker.

Euclidean distance makes this problem nonlinear. Second order cone programming

(SOCP) is utilized to obtain the mathematical programming formulation of the prob-

lem over some second order cone constraints. SOCP guarantees getting the optimal
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solution for nonlinear models which can be formulated by it. Since our formulation

contains allocation of the demand entities for the various levels and facilities, it has

binary variables. Hence, Mixed Integer SOCP (MISOCP) is applied in this thesis.

SOCP is solvable in polynomial time but binary variables increase the complexity of

the problem dramatically. Small instances in both single and multi-facility version

of the problem could be solved by SOCP in reasonable time but for big instances,

several heuristics are proposed and the results of heuristic are compared with optimal

solutions of small instances to assess quality of the heuristic algorithms.

Heuristics are developed by employing the idea of location-allocation algorithm. The

proposed heuristics in both single facility and multi one allocate demands to levels

and facility(s) iteratively to get near optimal solutions. Additionally, in the single

facility case Area Abstraction heuristic (AAH) is also developed which is a geometric

based algorithm.

Finally, the mathematical programming formulations and introduced heuristic solu-

tion approaches are applied for the Istanbul case to assess performance of the model

for real data.

The outline of the thesis is as follows. Firstly, an overview of location problems

and classifications related to our model are given in Chapter 2. Then, in Chapter

3, the mathematical modeling of the problem is presented. Chapter 4 describes the

developed heuristics for both single and multi-facility case. Computational results for

randomly generated instances are reported in Chapter 5. In Chapter 6, Istanbul case

is presented and finally Chapter 7 concludes the thesis.
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CHAPTER 2

LITERATURE REVIEW

Selecting of the optimal location is one of the initial and most crucial decisions in

all businesses which could guarantee its prosperity for many years. Hence, it has

been studied in different sciences such as Geographic Information System, Industrial

Engineering, Management Science and etc. This causes a big challenge in providing

a comprehensive overview of the facility location problem.

Human beings have been involved with location decisions for accommodation, agri-

culture and other aspects since their earliest life days. Therefore, there is not any

specific time as the origin of studying location problems but the ideas of Fermat at

the 17th century had a significant impact on the formation of the modern facility

location problem.

He considered the problem of locating a new point on the plane given to the 3 preposi-

tioned ones, such that sum of the distance between them is minimized. This problem

was solved by Torricelli with applying the focal property of the ellipses and called as

Fermat – Torricelli point . Then, Alfred Weber (1909) formulated the general case

of this problem mathematically, which leads in the future massive amounts of the

researches in this area.

Weber problem seeks the optimal location of a facility in the plane (x∗, y∗) considering

the position of n fixed demand points (ai, bi) with weights of wi where the Euclidean

distance between facility and each demand is di(x, y).
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min
x,y

W(x, y) =

n∑
i=1

Widi(x, y)

s.t. di(x, y) =
√

(x − ai)2 + (y − bi)2

(2.1)

Weiszfeld [51] proposed an iterative algorithm to solve the Weber problem efficiently

which is called as Weiszfeld procedure. Then, Hakimi [26] presented a seminal paper

for modeling of the different facility location problems that would be discussed in the

following.

As it was mentioned above, due to the great amount of researches in this area, clas-

sification of Facility Location Problems (FLP) is difficult. According to the scope of

our research, we present an overview of location problems in the following manner.

Firstly, FLP is considered based on the modeling of the problem in Section 2.1. In

Section 2.2, second classification is provided given to the number of assumed facili-

ties for the problem. The third category considers the solution space of the problem

and it is explained in Section 2.3. The fourth classification of FLP is based on the

structure of the demand entities which is mentioned in Section 2.4 and finally, in

Section 2.5, the last category is described given to the form of the covering demand

entities.

2.1 Facility Location Problem Models

Modeling of the problem is one of the first steps in the evaluating of that problem.

The objective function should be stated in the quantitative form to be able of uti-

lizing the mathematic formulations and finding the optimal values for the problem.

The most common objective function for the FLP is minimizing costs. Cost can be

stated as a function of time or distance between the facility(s) and the demand en-

tities. Different approaches are proposed in the modeling of the location problems

but the main categorization for FLP models contains 3 classes of Minisum Location

Problems, Minimax Location Problems and Covering Location Problems [15].
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2.1.1 Minisum Location Problems

Minisum problem focuses on minimizing the sum of weighted distance between de-

mand entities and facility(s) which is also called as P-median problem. Both Fermat

– Torricelli and Weber problems consider the weighted distance but the first system-

atical formulation for P-median problem was done by Hakimi [26]. Two different

distance measures are usually used in the location problems which utilizing each of

these distances can make some differences in the modeling of the problem. Consider

n distinct points on the plane Pi = (ai, bi)

1. Rectilinear Distance: It calculates the distance between two points by summing

of the absolute differences for both X and Y coordinates of points.

di(X, Pi) = |X − ai| + |Y − bi|

Minisum location problem with rectilinear distance has been studied in lots of

papers such as [43] and [28].

2. Euclidean Distance: This measures the straight distance between two points.

di(X, Pi) =
√

(X − ai)2 + (Y − bi)2

Most of the studies use Euclidean distance as their measure, since it could rep-

resents the spatial location problems, perfectly. Weber problem is one of the

outstanding studies that has applied this distance.

2.1.2 Minimax Location Problems

This kind of FLP aims at minimizing the maximum distance between demands and

their closest facility [26]. The primal application of Minimax problem was in the

positioning of the public facilities where the minimum distance of farthest customer

and its corresponding facility should be achieved. It is also called as P-center problem

and has both weighted [18], [36], [19] and unweighted versions [26], [50] in the

literature.

9



2.1.3 Covering Location Problems

The third class in FLP models is covering location problems. Covering problem is

one of the interesting areas for researchers because of its extensive applications in

real world life especially for service and emergency facilities. Covering problems are

classified in two categories.

1. Set covering problem: This model tries to minimize location cost satisfying the

specific level of coverage. Hence, this problem aims at providing total coverage

with the lowest number of facilities [40].

2. Maximal coverage location problem (MCLP): It maximizes the coverage of

demands within a desired service standard S by locating a fixed number of

facilities. Accordingly, the problem optimizes provided amount of coverage

based on specific number of facilities. MCLP was first proposed by Church

and ReVelle [10] in 1974 and then applied for lots of problems in recent years.

Covering problems have been widely used to assist facility placement for provision

of various types of services. Zanjani Farahani [24] summarized main applications of

MCLP in different areas consisting Emergency medical services, Data management,

Community warning, Health care and so on. Two types of covering problems have

been widely studied, the location set covering problem (LSCP) and the MCLP. While

LSCP aims at covering a region of interest entirely, the MCLP tries to maximize

the coverage when the budget is not sufficient for a complete coverage of a region.

Continuous space siting has been of longstanding interest. Firstly, Weber studied

finding the location in the plane for siting a single industry to minimize transportation

costs. This problem, then, is called as Weber facility location problem and Church

used such an idea to introduce planar maximal covering (PMC) location problem.

Church claimed that a discrete set of locations can contain an optimal solution to

the continuous-space MCLP by using Circle intersect points set (CIPS) but in his

study, demand was represented as discrete points. Murray and Tong [39] extended

CIPS method for other kinds of demand objects (points, lines and/or polygons) by

introducing Finite Dominating Set (FDS). Furthermore, Mean-Shift algorithm has

been also used for finding candidate locations set [29].
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2.2 Number of Facilities

One of the initial decisions for the business administrators is deciding about the num-

ber of facilities which they want to open. All location models that were explained

before, have both single and multi facility versions. Based on [33] and [15] single fa-

cility problem has lower complexity in comparison with the multi-facility case. The

single facility version of P-center problem is called as 1-center. Lots of geometric

([42], [30], [23], [8], [52]) and mathematical ([22], [41]) methods for its solving have

been introduced. Multi-facility location problems are the extension of the single facil-

ity version. In the multi-facility case, the allocation of demand entities to the facilities

will appear. Allocation procedure creates the binary variables in the problem. Hence,

the common method for the multi-facility case is utilizing Location Allocation (LA)

algorithm. It was proposed by Cooper [12] and aims at finding optimal locations of

m facilities by allocating the demands in a way that the distance between demands

and facilities be minimized. In fact, LA solves a single facility model inside of its

solution procedure. hence, studying single facility location problems are as important

as multi facility ones.

2.3 Solution Space

Next categorization of the facility location problems is based on the solution space

which could be discrete or continuous. In the discrete case, there are finite number of

locations that can host facilities. Therefore, the problem tries to find the best point(s)

among these candidate locations. In the continuous case, all points on the plane are

potential locations for the facilities. In the following, discrete and continuous versions

of location models are explained briefly.

2.3.1 Discrete Facility Location Problems

Most of the location problems including P-center, P-median and Covering were shown

to be NP-hard [35] and [15]. Consequently, lots of studies are done to find more ef-

ficient solutions for both discrete and continuous versions of FLP. One of the primal
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researches on discrete version of P-median has been done by Christofides [9]. He

presents a mathematical method (Lagrangian relaxation) and abstracts solution space

to get objective function in lower time. For more researches on discrete P-median you

can see [37].

Another discrete location problem is P-center one. Complexity of this problem is

O(np) where n is the number of candidate locations and p is the number of facilities.

This complexity is gained by checking all candidate locations for P facilities one by

one to find optimal scenario. Other algorithms with lower complexity were introduced

for this problem which try to decrease search space for the problem. An other idea

in dealing with discrete P-center problem is converting it to the set covering problem

[15] and [38].

2.3.2 Continuous Facility Location Problems

Since our proposed problem is a continuous minimax, continuous version of FLP,

which considers all points on the plane as potential facility location (planar problem),

has been considered more meticulously. The main continuous P-median problem is

Weber problem. The mathematical method of Weiszfeld as a solution approach for

solving of the Weber problem was discussed before. Another approach in coping with

weber problem is utilizing Location Allocation Model [27].

Minimax continuous problem could be considered in two classes of single facility and

multi-facility. 1-center continuous problem usually has been studied by geometric

methods. Geometric interpretation of the 1-center problem is locating of a facility

such that all regions are covered with minimum covering radius. The main geometric

approach for 1-center problem is smallest enclosing circle [53]. Another well known

method for 1-center problem has been proposed by Plastria [44]. He has presented

the minimal covering circle algorithm which selects two of demands randomly and

figures an enclosing circle of these demands. Then, algorithm adds other demands one

by one to get total coverage. For P-center continuous problem, the main approach is

using Voronoi diagram heuristic. This method was firstly introduced by Suzuki and

Okabe [48] and other extensions were added by further researches such as Wei & et

al. [50]. The algorithm of this heuristic is similar to the location allocation heuristic.
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It figures the voronoi diagrams of the region based on random initial locations and

then assigns the center of each voronoi as initial location of next iteration.

Continuous covering problems have also been investigated in so many researches.

The first solution for continuous Maximal Covering Location Problem was proposed

by Church [11]. He proved that a discrete set of locations can contain an optimal

solution to the continuous-space MCLP. The idea was based on the approach which

is called Circle intersect points set (CIPS). The extension of CIPS was introduced by

Murray and Tong [39] which is called as finite dominating set (FDS). CISP just con-

siders the demands as points but FDS can aslo deal with demand regions. FDS deter-

mines the boundary of each demand region by its specific algorithm and then claims

that intersection of these boundaries would be the candidate locations for problem.

Therefore, it converts the Continuous covering problem to the discrete one.

2.4 Structure of Demand Entities

Researchers usually abstract demand entities to the several points to represent entire

demand region. Such an idea makes problem simple and manageable. However, im-

proving computational capabilities increases expectation to present more real models

of the problem. Point representation of demand entities can decrease complexity of

the problem dramatically, but it provides not accurate solutions for the problem.

Considering demand entities as region is a realistic approach in dealing with location

problems, specially when 1) demand entities are not fixed on the plane, 2) there is

uncertainty about demands, and 3) there is a huge number of demand points that

grouping them as regions reduces complexity of the problem.

Considering demand entities as regions requires new distance measures for demands.

Three distance measures have been proposed for regional demands which are as fol-

lows [17].

1. Closest distance: This measure is useful in considering product distribution

where the aim is delivering good to the closest supplier and he would distribute

product to other suppliers.
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2. Farthest distance: In the worst-case scenario, where a service should be pro-

vided to the farthest client as well, this measure is applied. As an example,

hospital and fire stations can be mentioned [17].

3. Expected distance: This measure is the common distance in the literature. when

all of the members of a region have the same importance for the decision maker,

expected distance is utilized. As an example Bennett and Mirakhor [3] have ap-

plied expected distance for minisum problem and have considered the centroid

of the region as origin of calculation of distance.

2.5 Structure of Covering Level

As it was mentioned in Section 2.3, minimax and set covering problems have very

close relation with each other. In set covering problem, the aim is providing total

coverage with smallest number of facilities and in P-center problem, the aim is pre-

senting total coverage with minimum distance. The initial assumption for set covering

problem is the fixed range of coverage for each facility. Recently, some researchers

introduced variable covering radius instead of the fixed one. Berman & et al. [4] con-

sidered a function as the covering radius that is monotonically increasing and called

it as variable covering radius. In the other paper, Berman & et al [5] proposed grad-

ual covering problem. They challenged the definite value of covering radius where

demands are covered inside of it completely but by increasing epsilon value of dis-

tance between demands and facilities, coverage would be partial. They assumed two

distances to deal with this challenge. Furthermore, Karasakal and Karasakal [32]

extended gradual covering idea in a manner that coverage would be reduced after

specific radius, in monotonic trend until completing decay. An other idea can be con-

sidering multi covering levels instead of just single coverage radius and level. This

idea has not been studied sufficiently. One of the numerated researches in this scope

has been done by Carrizosa and Plastria [7]. They have considered two covering

levels for discrete minimax problem and have presented an iterative algorithm for

solving such a problem.
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CHAPTER 3

PROBLEM FORMULATION

Minimax (P-center) problem is a specific type of location problem, which aims at

minimizing the maximum distance of the facility (facilities) to all demand entities.

The common procedure in dealing with demand entities which are regions is rep-

resenting them as some points and modelling the problem considering these points.

However, such an abstraction underestimates the objective function of the problem.

Assuming demand entities as regions provide more realistic outcomes for the prob-

lem. As mentioned in Chapter 1, several distance measures could be applied for

finding the distance of facility from demand regions. Based on the nature of the stud-

ied problem in this thesis, the Euclidean distance between the facility and the farthest

point of the demand region is utilized to take the worst-case scenario into account.

Furthermore, in this thesis several covering levels are defined for the Minimax lo-

cation problem where each of these levels provides specific covering percentage of

demand regions. It is assumed that the facility provides particular covering range for

each level, which is determined by corresponding parameters. For each demand re-

gion, there is a weight which represents its importance and the sum of these weights

are equal to one. Facility should cover pre-specified percentage of weights of de-

mand regions in each level inside its associated covering range for that level. Hence,

the model covers important demand regions in inner levels and others in outer levels

where the impact of the outer level can be controlled by the decision maker with pa-

rameters of the problem. Consequently, the objective function of the studied model in

this thesis is minimizing the covering radius of the facility such that it could provide

the specified covering percentages for each level.
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3.1 Mathematical formulation of the single facility case

3.1.1 Notations of the single facility case

Regions are considered in two different convex forms which are polygons and disks.

Suppose there are n polygons and m disks such that index i and j are used to enumer-

ate them respectively. Additionally, K covering levels are assumed for the problem

which are indicated by index h. Covering range of each level, chr + dh, is specified

by two parameters; radius coefficient (ch) and covering domain (dh) of that level. The

notations of mathematical formulation of the problem are as follows.

Parameters :

Ei : Set of corners’ locations of polygon region i, i = 1, 2, ..., n

C j : Center of disk region j, j = 1, 2, ...,m

R j : Radius of disk region j

αi : Weight of polygon region i

β j : Weight of disk region j

ch : Coefficient of level h coverage

dh : Domain of level h coverage

Ph : Covering percentage of level h

Decision variables:

f pi : Farthest distance between the facility and polygon i

f d j : Farthest distance between the facility and disk j

X : Location of a facility

yih : Binary variable which equals to 1 (0) if polygon i is covered in level h (other levels)

z jh : Binary variable which equals to 1 (0) if disk j is covered in level h (other levels)

r : Covering radius of the facility

3.1.2 SOCP formulation for the single level problem (classical Minimax)

Firstly, the mathematical formulation for classical minimax problem with demand

regions is presented and in the next sections the bi-level and K-level extensions of the
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problem would be discussed.

minimize r

subject to r ≥ f pi; i = 1, . . . , n

r ≥ f d j; j = 1, . . . ,m

f pi ≥ ‖W − X‖, W ∈ Ei; i = 1, . . . , n

f d j ≥ ‖C j − X‖ + R j, j = 1, . . . ,m

(3.1)

(3.2)

(3.3)

(3.4)

Constraints 3.1 and 3.2 provide maximum value of the farthest distance from the

demand regions to the facility between both circles and polygons. Constraints 3.3

and 3.4 ensure covering of demand regions inside corresponding covering radius of

the facility for polygons and disks, respectively.

In the constraints 3.3 and 3.4 Euclidean distance is utilized which makes the problem

nonlinear. In order to deal with nonlinearity of the problem, SOCP is applied to obtain

the mathematical programming formulation of the problem over some second order

cone constraints.

Second order cone programing (SOCP)

SOCP is a type of convex optimization problems which minimizes a linear objective

function over some second order cone constraints. This method can formulate prob-

lems with quadratic objective function and linear constraints as well [34]. Its general

formulation is as follows where A and Ci are matrices; fi are scalars and di, c, ei, b

are column vectors.

minimize cT x

subject to ‖Cix + di‖ ≤ eT
i x + fi, i = 1, . . . ,m

Ax = b

(3.5)

SOCP problems are solvable in polynomial time, hence, it is very applicable in

quadratic programs. Additionally, SOCP guarantees getting optimal objective func-

tion for nonlinear problems which could be formulated by it.
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3.1.3 MISOCP formulation for bi-level problem

As it mentioned above, binary variables are utilized in the multi-level Minimax loca-

tion problem for assigning the demand regions for each covering level of the facility.

Hence, the mathematical formulation of the problem would be Mixed Integer SOCP

(MISOCP).

Binary variables of the K-level problem are defined in the notation section which 2

indices of ih or jh enumerate them. For the bi-level Minimax location problem, bi-

nary variables can be defined in another way to have fewer number of binary variables

for the problem. This modification of the model could help in decreasing the com-

putational time of the problem. Accordingly, the definition of binary variables are

changed as bellow.

yi : Binary variable which equals to 1 (0) if polygon i is covered in level 1 (level 2)

z j : Binary variable which equals to 1 (0) if disk j is covered in level 1 (level 2)

It should be stated that in this thesis, the coefficient of the first level (c1) and its domain

(d1) are considered as 1 and 0, respectively. Therefore, for the bi-level problem, the

coefficient of the second level is named as c and the domain of the second level is

called as d. Now the bi-level Minimax location can be formulated mathematically by

utilizing MISOCP formulation as follows.

minimize r

subject to r + (1 − yi)M ≥ ‖W − X‖, W ∈ Ei; i = 1, . . . , n

cr + d ≥ ‖W − X‖, W ∈ Ei; i = 1, . . . , n

r + (1 − z j)M ≥ ‖C j − X‖ + R j, j = 1, . . . ,m

cr + d ≥ ‖C j − X‖ + R j, j = 1, . . . ,m
n∑

i=1

αiyi +

m∑
j=1

β jz j ≥ P

yi, z j ∈ {0, 1} , r ≥ 0

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

In this formulation, objective function of 3.6 refers to minimizing of the maximum

distance between facility and demand entities. Constraint 3.7 ensures the distance

of all polygons of level 1 from facility should be less than objective function. Also,
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next constraint 3.8 represents that the location of facility is in a way which all poly-

gons would be covered in second level. Constraints 3.9 and 3.10 are defining same

conditions for disks which are presented for polygons in equations 3.7 and 3.8 respec-

tively. Constraint 3.11 ensures that weight of all polygons and disks located in first

level should be greater than or equal to P and last constraint 3.12 imposes boundary

conditions of the problem.

3.1.4 MISOCP formulation for k-level problem

Here, the k-level extension of the Minimax location problem for single facility is

proposed. Suppose there are K levels in the problem, which are enumerated by index

h. The formulation of the problem is as follows,

minimize r

subject to chr + dh + (1 − yih)Mh ≥ ‖W − X‖, W ∈ Ei; i = 1, . . . , n

h = 1, . . . ,K

chr + dh + (1 − z jh)Mh ≥ ‖C j − X‖ + R j, j = 1, . . . ,m

h = 1, . . . ,K
n∑

i=1

αiyih +

m∑
j=1

β jz jh ≥ Ph, h = 1, . . . ,K

yih ≤ yih+1, h = 1, . . . ,K − 1; i = 1, . . . , n

z jh ≤ z jh+1, h = 1, . . . ,K − 1; j = 1, . . . ,m

yiK = 1, i = 1, . . . , n

z jK = 1, j = 1, . . . ,m

yih, z jh ∈ {0, 1} , r ≥ 0

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

The constraints 3.14 and 3.15 ensure total coverage of demands which are positioned

in level h for polygon regions and disks respectively. The Mh is a big value that holds

constraints 3.14 and 3.15 be satisfied in the situation that demand i and j are covered

in other levels. Constraint 3.16 represents that weight of all polygons and disks lo-

cated in level h should be greater than or equal to Ph for each level h. Constraints 3.17
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and 3.18 ensure the covered regions in previous levels, remain covered in next levels

as well. The constraints 3.19 and 3.20 represent total coverage at the last level for all

polygons and disk respectively. Finally, constraint 3.21 imposes binary and boundary

conditions on decision variables.

3.1.5 Choosing the value of Mh

MISOCP formulation of the problem contains big-M values, namely Mh, for each

level. Big-M formulations are usually weak and determining the best big-M value

is very crucial, as the bigger the big-M value the weaker the formulation. Three

approaches are proposed for obtaining the Mh, best big-M value in level h, for the

single facility version of the problem. All of these three approaches utilize the bounds

of covering radii (r) in order to find Mh. Hence, lower and upper bounds for covering

radius should be specified.

Proposition 1: The optimal objective function value of the single level minimax

problem is an upper bound for the covering range of the level one and a lower bound

for the covering range of the level K.

c1r∗ + d1 ≤ l∗ ≤ cKr∗ + dK (3.22)

Proof: The SOCP formulation for the single level minimax problem was presented in

section 3.1.2. Consider l∗ and X∗ as optimal objective function and optimal location

of the single level minimax problem. l∗ equals the farthest distance between X∗ and

the farthest demand region from it. Similarly, considering X∗ as a facility location

and allocating the closest demand regions to this location one by one until reaching

the covering percentage of the first level (P1) forms first level of the location X∗ for

the k-level problem. Forming other levels in the same manner provides a feasible

solution for the k-level problem. Since covering all of the demand regions in the first

level is not required, it is clear that the covering range of the first level c1r + d1 for the

location X∗ is less than equal to l∗. Furthermore, X∗ and r are a feasible solution for

the k-level problem and it could be claimed that optimal objective function value for
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the k-level problem (r∗) is less than equal to r. Therefore we have,

c1r∗ + d1 ≤ c1r + d1 ≤ l∗ (3.23)

On the other hand, in the last level (K), all regions should be covered completely.

Accordingly, the covering range of the last level of the k-level problem is satisfying

all constraints of the single level problem. Hence, the covering range of the last level

(cKr∗ + dK) of the k-level problem associated with its optimal location is a feasible

solution for the single level problem which could not be less than l∗. As a result, the

following equation is obtained:

l∗ ≤ cKr∗ + dK (3.24)

Approach 1

Considering the constraints 3.14 and 3.15, the problem contains Mh when demand re-

gions are not covered in the hth level. In fact, Mh guarantees satisfying the constraints

3.14 and 3.15 where yih or z jh is zero. Therefore we have,

chr∗ + dh + (1 − 0)Mh ≥ ‖W − X‖

chr∗ + dh + (1 − 0)Mh ≥ ‖C j − X‖ + R j

(3.25)

On the other hand, in the K-level Minimax location problem, the last level (K) covers

all of the demand regions. Therefore the Euclidean distance of demand regions from

the optimal facility location should be less than equal to the covering range of the last

level.

cKr∗ + dK ≥ ‖W − X‖

cKr∗ + dK ≥ ‖C j − X‖ + R j

(3.26)

Considering the equations 3.25 and 3.26, it is clear that the constraints of the K-level

problem which contains Mh are satisfied when the left hand side of the equations 3.25

be greater than equal to the left hand side of the equations 3.26.

chr∗ + dh + (1 − 0)Mh ≥ cKr∗ + dK ⇒ Mh ≥ (cK − ch)r∗ + (dK − dh) (3.27)

Above equation provides an upper bound for Mh. However, since r∗ is a decision

variable, its value is not in hand before solving of the problem. We suggest an upper
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bound for r∗ to replace it in 3.27. Considering the first Proposition, an upper bound

for r∗ is as below.

c1r∗ + d1 ≤ l∗ ⇒ r∗ ≤
l∗ − d1

c1
(3.28)

Replacing above obtained upper bound of r∗ in the equation 3.27 would give the big-

M value of the first approach (M1h).

M1h = (cK − ch)
l∗ − d1

c1
+ (dK − dh) (3.29)

Approach 2

Considering the equations 3.14 and 3.15, Mh would appear in the constraints when

yih or z jh is equal to zero, then,

Mh ≥ ‖W − X‖ − (chr∗ + dh)

Mh ≥ ‖C j − X‖ + R j − (chr∗ + dh)

(3.30)

Again, there is a decision variable r∗ in the 3.30 and it is required to replace the right

hand side of the equation by an equivalent term. Since a lower Mh is preferred, an

upper bound of ‖W − X‖ and a lower bound of r∗ will next be found.

Proposition 2: The optimal location of the facility for k-level minimax problem lies

inside of the convex hull of the regions’ corners.

Proof: It can be proven by contradiction that optimal solution for k-level minimax lo-

cation problem lies inside the convex hull of the demand regions. Assume an arbitrary

point x outside of the convex hull as an optimal location for the problem. Moving in

the direction of convex hull by ∆, gives another point which is closer to any arbitrary

demand point in the convex hull than the assumed optimal location. This is a contra-

diction (See Figure 3.1). Based on the separating Hyperplane theorem, there exists

a hyperplane such that x is in one side of the hyperplane and the convex hull of the

demand regions is on the other side. A line containing x which is orthogonal to the

separating hyperplane is called as separating axis. In Figure 3.1, it is shown that by

shifting x on the separating axis towards the convex hull by a small ∆, we obtain an-

other point x′ that is closer to every point in the convex hull. Since the separating axis
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Figure 3.1: Proposition 2

is orthogonal to the separating hyperplane, γ is 90° and thereupon α is strictly less

than 90°. Furthermore, considering the small value of ∆, the angle ε is very small.

Based on the sine role in triangles, it can be shown that a < b as follows,

a
b

=
sin(β)
sin(α)

=
sin(180 − α − ε)

sin(180 − α)
≥ 1

The convex hull of the demand regions is a minimum convex set containing all of the

regions. Also, considering Proposition 2, it can be concluded that the optimal location

for the k-level minimax problem lies inside of the enclosing circle of the all demand

regions.

Consequently, Euclidean distance between the optimal location of the facility and

regions should be less than diameter of the circle with center of the optimal location

and radius of l∗,
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Therefore we have,

‖W − X‖ ≤ 2l∗

‖C j − X‖ + R j ≤ 2l∗

(3.31)

Additionally, considering the total coverage of all regions at the last level;

‖W − X‖ ≤ cKr∗ + dK

‖C j − X‖ + R j ≤ cKr∗ + dK

(3.32)

Replacing r∗ by the obtained upper bound in equation 3.28 gives;

‖W − X‖ ≤ cK(
l∗ − d1

c1
) + dK

‖C j − X‖ + R j ≤ cK(
l∗ − d1

c1
) + dK

(3.33)

Consequently, an upper bound for the first term of the right hand side of the Equation

3.30 is min
{

2l∗, cK(
l∗ − d1

c1
) + dK)

}
.

For the second term of the right hand side of the Equation 3.30, a lower bound is

required. Considering the first Proposition, a lower bound for r∗ can be obtained as

follows.

cKr∗ + dK ≥ l∗ ⇒ r∗ ≥
l∗ − dK

cK
(3.34)

Now, by replacing the above obtained bounds in Equation 3.30, we obtain another

upper bound value for big-M (M2h) as bellow:

M2h = max
{

0,min
{

2l∗, cK(
l∗ − d1

c1
) + dK

}}
−max

{
0, ch(

l∗ − dK

cK
) + dh

}
(3.35)

Approach 3

In the third approach, a heuristic algorithm is proposed for determining an upper

bound of the objective function value of the K-level problem. This new upper bound

of r∗ provides new values for M1h and M2h.

By solving the single level single facility minimax location problem using the SOCP

formulation, this approach first finds an initial location of the facility. Then, it assigns

the nearest regions to the first level one by one until the covering percentage of the first
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level is reached. Once the covering percentage of the first level is reached, regions are

assigned to the second level. This procedure continues until all regions are assigned

to levels. The critical distance of each level (rh) is obtained as follows;

rh = (the farthest distance of the regions in level h from the initial location − dh)/ch.

Based on Equations 3.13 and 3.14, in each level the distance between the facility

location and farthest point of the regions of that level should be less than equal to

chr + dh. As a result, the above equation presents critical distance of each level for

any arbitrary facility location. Maximum of critical distances for all levels provides

the optimal covering level for that point. Since an arbitrary initial location is not

necessarily the optimal location, this heuristic claims that an upper bound of r is

equal to max{rh}; h = 1, . . . ,K .

r∗ ≤ max
h=1,...,K

{rh}. (3.36)

The pseudocode of Approach 3 for finding an upper bound for Mh is given below

where x represents the initial location.

Algorithm Heuristic for M
1: Begin

2: Solve the single level problem by the SOCP formulation to find the location x

3: Sort all regions based on the farthest distance to x

4: for h = 1 to K do

5: Set N = ∅,Wlh = 0, A = set of all demand regions.

6: repeat

7: Select nearest region (R) to the facility from A/N.

8: N = N ∪ {R}

9: Wlh = Wlh+weight of R

10: Set rh = (farthest distance of the region R from the location x − dh)/ch

11: until sum of weight of the regions in level h reaches to Ph

12: end for

13: max(rh)← Upper bound of r

14: End
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Similar to the the second Approach, utilizing the upper bound of the r∗ suggests a

new upper bound for big-M (M3h).

Based on the equations 3.34 and 3.36 we have,

l∗ − dk

ck
≤ r∗ ≤ max(rh) (3.37)

Recalling the equation 3.30, Mh is as follows.

Mh ≥ ‖W − X‖ − (chr∗ + dh)

Also, according to the equations 3.31 and 3.32, it is shown that

‖W − X‖ ≤ 2l∗

‖W − X‖ ≤ cKr∗ + dK

Now, by utilizing the obtained new upper bound of r∗ which is found in the equation

3.37 and replacing it in the above formulation, we obtain an upper bound for ‖W −X‖

as follows.

‖W − X‖ ≤ min(2l∗, cK max(rh) + dK) (3.38)

On the other hand, it was shown in the first Proposition that
l∗ − dk

ck
≤ r∗. Thus, we

can conclude that

chr∗ + dh ≥ ch(
l∗ − dk

ck
) + dh (3.39)

Consequently, the updated upper bound of the second Approach (M′2h) is as below;

M′2h = max {0,min {2l∗, cK max(rh) + dK}} −max
{

0, ch(
l∗ − dK

cK
) + dh

}
(3.40)

Furthermore, the first Approach can also be updated by the new obtained upper bound

of r∗. Given to the equation 3.27 we have;

Mh ≥ (cK − ch)r∗ + (dK − dh)

By replacing the max(rh) as an upper bound of r∗ in the above equation, we get the

updated version of the upper bound of the first Approach (M′1h).

M′1h = (cK − ch) max(rh) + (dK − dh) (3.41)

Finally, the obtained value of Mh in third Approach (M3h) is the minimum of M′1h

and M′2h.

M3h = min{M′1h,M′2h} (3.42)

26



Preliminary computational experiment: Comparison between 3 proposed ap-

proaches for big-M

The three approaches of finding the best big-M value in level h have been tested

on several randomly generated instances. This computational experiment presents

the obtained Mh values for each of these approaches and illustrates their effects on

the computational time of the problem. Five instances have been considered in this

experiment which are 100 demand regions and 5 levels, 144 demand regions and 4

levels, 196 demand regions and 3 levels, 225 demand regions and 5 levels and finally,

400 demand regions and 2 levels. More details on the other parameters of the model

for solving instances will be explained in the Chapter 5. The 4th instance with 225

demand regions could not be solved in the time limit of the 1 hour and accordingly,

the reported percent gap of the found solution during 1 hour has presented in the Table

3.1. For other instances, the big-M values of each instances as well as its associated

computational time have been indicated in the Table 3.1.

In all of these instances the third approach has the lowest values for the Mh and

Table 3.1: Comparison of the proposed approaches for Big-M

Instances
Appro-
aches

Big-M values Time (seconds) or
optimality gap (%)level 1 level 2 level 3 level

4
level

5

1 (100,5)
M1 1739.87 1567.12 1396.07 727.39 0 1368.07
M2 997.77 953.9 911.72 745.67 568.17 1150.57
M3 429.6 385.73 343.55 177.5 0 1052.29

2 (144,4)
M1 1072.24 889.36 708.18 0 - 134.29
M2 989.02 922.27 857.22 601.93 - 211.52
M3 387.09 320.34 255.29 0 - 92.18

3 (196,3)
M1 346.28 172.29 0 - - 36.57
M2 562.71 453.64 346.28 - - 15.25
M3 216.43 107.36 0 - - 14.11

4 (225,5)
M1 1856.17 1671.98 1489.49 776.2 0 45.61%
M2 1064.62 1017.92 972.92 795.86 606.3 31.26%
M3 458.31 411.62 366.62 189.55 0 22.17%

5 (400,2)
M1 189.06 0 - - - 19.65
M2 334.49 189.06 - - - 54.36
M3 145.43 0 - - - 12.79
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consequently the lowest computational time as well. This table indicates that after

the third approach, the first one is the best one with lowest Mh values. This table

also shows the relation between Mh value and computational time which is a positive

relation.

In order to get the smallest possible value of the Mh, the minimum of these three

approaches’ value is considered as Mh in our computational study.

Mh = min{M1h,M2h,M3h}

3.1.6 Time complexity of the single facility case

Time complexity of an algorithm refers to the total time required by that algorithm to

complete its running procedure. It is calculated by counting the number of operations

which a program executes during its running time. Time complexity of both discrete

and continuous versions of the P-center problem is discussed in the literature. Single

facility minimax problem could be stated as finding the location of a circle’s center

and radius which could cover all demand entities. In our problem, considering the

different covering levels, the binary variables are utilized in the model. We are ap-

plying the mixed-integer SOCP algorithm for solving of the problem. The common

algorithm in solving integer problems is using branch and bound (B&B) technique.

Time complexity in such problems depend on the complexity of its relaxation, num-

ber of integer variables and the applied algorithm for B&B technique. Accordingly,

obtaining the complexity of the integer problems is not simple. Complexity of the

SOCP formulation could be achieved by O(a2 ∑A
i=1 ai) where a is the total number

of decision variables in the problem, A is the number of constraints and ai refers to

dimension of the each constraint [34].

In this specific problem, the integer variables are used in the formulation to assign de-

mand entities to levels. If the assignment of demand regions to the levels be known,

the problem could be reformulated in normal SOCP version which has above men-

tioned complexity. The number of possible allocations of demand entities to levels

could be obtained by applying Stirling numbers of the second kind formula. This

formula determines total number of ways to partition a set of A elements into B
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nonempty subsets [1]. Stirling numbers of the second kind is indicated by S(A,B).

S (A, B) =
1
B!

B∑
i=0

(−1)i ·

(
B
i

)
· (B − i)A (3.43)

In our problem, there is a set of (n + m) demand regions which should be partitioned

into K levels. Consequently, the worst case time complexity to search all solutions

is the multiplication of SOCP complexity and total number of possible allocations

which is,

O(K3(n + m)2(m + n + L)) ×
1

K!

K∑
i=0

(−1)i ·

(
K
i

)
· (K − i)n+m (3.44)

Where K, n,m, L are number of levels, polygons, disks and corners of polygons re-

spectively.

3.2 Mathematical formulation of the multi-facility case

In this section, formulation of the Multi-Level Continuous Minimax Problem (ML-

CMP) is extended to the multi-facility case. Here, besides all earlier mentioned con-

straints for the single facility version, new constraints for assigning demand regions

to the facilities are added to the formulation.

3.2.1 MISOCP formulation of the multi-facility, k-level problem

Allocating of demand entities to the facilities is done by binary variables. Hence, the

new index t, which enumerates facilities, is added to the model. Let yith be a binary

variable which equals 1 (0) if polygon i is covered by facility t in level h (other levels)

and similarly let z jth be a binary variable which equals 1 (0) if disk j is covered by

facility t in level h (other levels). Also, rt represents the covering radii of the facility

t.

Now, the MISOCP model for the multi-facility, k-level problem can be stated as fol-

29



lows,

minimize R

subject to:

R ≥ rt, t = 1, . . . ,T

chrt + dh + (1 − yith)Mith ≥ ‖W − Xt‖, i = 1, . . . , n; W ∈ Ei; h = 1, . . . ,K

t = 1, . . . ,T

chrt + dh + (1 − z jth)M jth ≥ ‖C j − Xt‖ + R j, j = 1, . . . ,m; h = 1, . . . ,K

t = 1, . . . ,T
n∑

i=1

T∑
t=1

αiyith +

m∑
j=1

T∑
t=1

β jz jth ≥ Ph, h = 1, . . . ,K

T∑
t=1

yith ≤ 1, i = 1, . . . , n; h = 1, . . . ,K − 1

T∑
t=1

z jth ≤ 1, j = 1, . . . ,m; h = 1, . . . ,K − 1

yith ≤ yith+1, h = 1, . . . ,K − 1; i = 1, . . . , n; t = 1, . . . ,T

z jth ≤ z jth+1, h = 1, . . . ,K − 1; j = 1, . . . ,m; t = 1, . . . ,T
T∑

t=1

yitK = 1, i = 1, . . . , n

T∑
t=1

z jtK = 1, j = 1, . . . ,m

rt ≥ 0, t = 1, . . . ,T

yith, z jth ∈ {0, 1}

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

The maximum value between covering radius of all facilities is the objective function

value for this problem and constraint 3.46 represents such an equation. Constraint

3.47 ensures that all polygon regions should be covered completely inside the corre-

sponding level by the associated facility. Constraint 3.48 extends the constraint 3.47

to the disk regions as well. Equation 3.49 guarantees covering of the predetermined

percentage of all regions in each level. All regions should be covered by the facilities

and each of these regions should be covered by exactly one facility at least in the

last covering level of the associated facility. Constraints 3.54 and 3.55 make sure that

each facility is covered by exactly one facility at the last covering level of that facility.
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Constraints 3.50 and 3.51 ensure that each region can not be covered by more than

1 facility in other levels as well. Constraints 3.52 and 3.53 indicate that the covered

regions in previous levels, also remain covered in the next levels for both polygon and

disk regions. Finally, constraints 3.56 and 3.57 impose binary and boundary condi-

tions on the decision variables.

Since constraints 3.54 and 3.55 represent that regions are covered by exactly one

facility in the last level and constraints 3.52 and 3.53 guaranty that the binary variable

value of the previous levels can not be more than value of the last level, it can be

shown that the regions can not be covered by more than one facility in the last level.

Therefore, the constraints 3.50 and 3.51 are redundant and have been written in the

formulation to explain the model clearly.

Similar to the single facility case, this formulation also contains Big-M values and

determining the best big-M value is crucial. According to the constraints 3.47 and

3.48, Mith and M jth appear in the formulation when yith or z jth is zero. In such a

situation, the constraints 3.47 and 3.48 can be written as below.

Mith ≥ ‖W − Xt‖ − (chrt + dh)

M jth ≥ ‖C j − Xt‖ + R j − (chrt + dh)

(3.58)

Since a lower big-M value is preferred, an upper bound for ‖W−Xt‖ and ‖C j−Xt‖+R j

and a lower bound for chrt+dh is required. In the multi-facility version of the problem,

it is possible that a facility does not cover any demand region. Hence, the optimal

covering radius for a facility rt could be zero. As a result, the lower bound for chrt +dh

is dh.

We explained by Proposition 2 in the second approach of choosing the best big-M

value for the single facility case that the optimal location of the facility should lie

inside the convex hull of the regions’ corners. We can extend that proposition for

multi-facility case with the same proof as well. Therefore, it can be claimed that the

farthest distance between any region and any facility is less than equal to the distance

between that region and enclosing circle of all demand regions. Consequently, we

consider the farthest distance between each demand region and the enclosing circle

of all demand regions as an upper bound for ‖W −Xt‖ and ‖C j−Xt‖+ R j. Suppose the

farthest distance of a polygon region i and a disk region j from the enclosing circle of
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regions be Di and D j, respectively. Then, the best big-M value for the multi-facility

case of the problem is as follows.

Mith = Di − dh, i = 1, . . . , n; h = 1, . . . ,K; t = 1, . . . ,T

M jth = D j − dh, j = 1, . . . ,m; h = 1, . . . ,K; t = 1, . . . ,T

(3.59)
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CHAPTER 4

HEURISTIC SOLUTION APPROACHES

MISOCP formulation of the problem contains big-M values which make it weak.

Therefore this formulation is unable to solve large instances to optimality. During

its solution by branch-and-bound (B&B) technique, the B&B tree becomes too large

and out of memory error appears. Consequently, we propose several heuristics in this

chapter to be able to solve large-size instances in reasonable time. Heuristics provide

an alternative approach to overcoming the limitations of exact methods. In contrast to

an exact method, a heuristic is a general approach that solves a problem in reasonable

time with no guarantee on the optimality of the solution.

4.1 Heuristics for the single facility case

In this chapter six heuristics, five of which are SOCP based, are proposed for the

single facility case of the problem. In the first five heuristics, an SOCP problem

is solved in each iteration. Since SOCP problems are solvable in polynomial time,

computational times of the heuristics are reasonable when the number of iterations is

not too many. The last heuristic abstracts the search region in each iteration until it

approaches to an acceptable answer. These heuristics are explained in the following

sections in detail.
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4.1.1 Critical Level Heuristic (CLH)

The main idea for the next 5 heuristics are based on the Location-Allocation (LA)

algorithm. This method has been used in different multi-facility location problems

in the literature [24]. Procedure of LA is as finding some locations for facilities and

allocating all demand entities to these facilities (allocation step) and then finding new

facility locations keeping the allocations the same (location step). Allocation and

location steps alternate until convergence is achieved. In our heuristics, we begin at a

location and determine the corresponding levels (leveling step) for that location. Next,

based on these levels new facility location is found and the algorithm iterates between

location and leveling steps until convergence or some other stopping conditions are

reached.

Leveling Step:

In this step, firstly, nearest demand regions to the in hand location are determined.

Then, these demand regions are added to the first level one by one until sum of

weights of the added regions reaches the corresponding coverage percentage of the

first level. The selected regions form the first level and in this manner the outer levels

are formed as well.

Critical Level:

Critical level refers to the level that specifies the objective function of the problem.

All levels have particular coverage domain which is depended on its parameters (ch

and dh) but the important factor is covering radius of that level (rh). This radius could

be obtained by the following formula and the maximum of these radii of all levels

determines the objective function of the problem.

x : Current location of the facility

fhx : Distance of the farthest point of the demand regions in level h from x

rh = ( fhx − dh)/ch

r = max(rh)

critical level or levels = arg max
h=1,...,K

(rh)
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The main part of the SOCP based algorithms is related to updating the facility loca-

tion. In the critical level heuristic (CLH), after starting the algorithm from an initial

location, leveling step is performed. Then, critical level or levels for that location

are determined. If several critical levels exist in an iteration, one of them is selected

randomly. Next, all regions which are not located in the chosen critical level are ig-

nored and the problem is reduced to a single level single facility problem. An SOCP

problem is solved and the new facility location for the regions in the selected critical

level is found. This location is taken as the initial point for the next iteration. The

pseudocode of the CLH heuristic is given in Algorithm CLH.

Algorithm CLH
1: Begin

2: Consider a random point x0 inside the convex hull of the demand regions as the

initial facility location.

3: while a stopping condition is reached do

4: Sort all regions based on the farthest distance to x0

5: for h = 1 to K do

6: Set N = ∅,Wlh = 0, A = set of all demand regions.

7: repeat

8: Select nearest region (R) to the facility x0 from A/N.

9: N = N ∪ {R}

10: Wlh = Wlh+weight of R

11: until sum of the weights of the regions in level h ≥ Ph

12: Set rh = ( fhx − dh)/ch

13: end for

14: Set r∗ = max(rh).

15: Set critical level or levels = arg maxh=1,...,K(rh)

16: if several critical levels exist then

17: Select one of them randomly.

18: end if

19: Solve an SOCP problem for the demand regions in the critical level to get a

new facility location x0

20: end while

21: End
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Figure 4.1: The steps of the CLH heuristic

Line 2 is initialization of the algorithm which is done by randomly selecting a point

from the convex hull of the demand regions. In lines 4 to 13 leveling step is done.

Lines 14 to 18 determine the critical level. In line 19, an SOCP model is solved for

the regions inside critical level to update the facility location.

There are two stopping criteria for the CLH heuristic. The first one is maximum

number of iterations and the second one is convergence. Getting three successive

close solutions is considered as the criterion for the convergence.

Each iteration (starting at line 3 and coming back to line 3) of this algorithm is solv-

able in polynomial time. The CLH heuristic gets stuck quickly. Getting the same
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facility location in the location step provides the same levels and as a result the same

locations for the next iterations. Hence, the convergence condition is activated quickly

before searching the solution space sufficiently. Furthermore, the performance of

this algorithm depends on the initial location. Therefore, the algorithm can be run

with several initial locations (replications) with the hope of obtaining better solutions.

Starting from good initial facility locations results in better solutions. One good ini-

tial facility location for the algorithm could be the SOCP solution for the single level

single facility minimax problem. The Figure 4.1 displays steps of the CLH heuristic.

Demand regions and the random initial location for a facility is shown in Figure (a).

Leveling step for the considered facility location is presented in Figure (b). Next fig-

ure (c), illustrates the determination procedure of the critical level. Finally, Figure (d)

displays the demand regions which are located inside critical level. An SOCP prob-

lem is solved for these regions to update facility location. The new facility location is

shown in the Figure (d) as well.

4.1.2 Location Leveling Heuristic (LLH)

The next proposed heuristic is the Location Leveling Heuristic (LLH). The LLH

works similar to the CLH but considers all the demand regions in the location step.

The CLH finds the new location by solving an SOCP problem for the demand regions

located in the critical level. The LLH, similar to the CLH, begins at an initial location

and performs the leveling step for that initial location. After the leveling step, demand

regions are allocated to their corresponding levels and consequently the values of the

binary variables (yih and z jh) are determined. The binary variables are fixed with the

obtained values and the MISOCP problem becomes as an SOCP problem which is

solved to obtain the new location for the next iteration. The pseudocode of the LLH

heuristic is given in Algorithm LLH.
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Algorithm LLH
1: Begin

2: Consider a random point x0 inside the convex hull of the demand regions as the

initial facility location.

3: while a stopping condition is reached do

4: Sort all regions based on the farthest distance to x0

5: for h = 1 to K do

6: Set N = ∅,Wlh = 0, A = set of all demand regions.

7: repeat

8: Select nearest region R to the facility x0 from A/N.

9: N = N ∪ {R}

10: Wlh = Wlh+weight of R

11: until sum of weights of the regions in level h ≥ Ph

12: Set rh = ( fhx − dh)/ch

13: end for

14: Set r∗ = max(rh).

15: Get values of the binary variables based on the leveling step.

16: Solve an SOCP problem for the multi-level minimax problem and get the new

location x0

17: end while

18: End

In this heuristic after some iterations, it is possible to encounter with a situation where

allocation of the demand regions to the levels are the same as the previous iterations.

Hence, we will obtain the same location as in the previous iterations and get stuck.

However, LLH mostly gets stuck later than CLH considering the fact that the possibil-

ity of having the same allocations for all demand regions is less than having the same

allocations for just demand regions located in the critical level. Again, in the LLH the

stopping criteria are both reaching the maximum number of iterations and achieving

convergence which is getting three successive close enough solutions. Steps of the

LLH heuristic are illustrated in the Figure 4.2. Demand regions and the initial facility

location is shown in Figure (a). Covering levels of the considered facility location

is presented in Figure (b). Figure (c), displays the procedure of calculating objective

38



x

(a)

x

(b)

x

𝑓1𝑥

𝑓2𝑥

𝑓3𝑥

(c)

x

xnew

(d)

Figure 4.2: The steps of the LLH heuristic
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function value for the considered facility location. After determining of the values of

the binary variables, an SOCP problem is solved for the problem and the new location

is found for the facility which is shown in Figure (d).

4.1.3 Critical Level and Demand Exchange Heuristic (CLDEH)

This heuristic is also based on the location-allocation algorithm. Here again we it-

erate between the location-leveling steps. The Critical Level and Demand Exchange

Heuristic (CLDEH) is introduced to cope with the disadvantages of the first algorithm

(CLH). The main weakness of the CLH heuristic is getting stuck. This algorithm per-

forms the initialization and leveling steps as done in the CLH. However, the conver-

gence condition in this algorithm is eliminated to let the heuristic iterate and explore

new solutions. After finding a local solution, the CLDEH exchanges some demand

regions of the critical level by demand regions which are located in other levels to

explore new areas of the solution space.

Exchanging problem elements is a famous approach for getting out of stuck in heuris-

tics. One of the first applications of the elements exchange was in the Traveling

Salesman Problem (TSP). 2-opt exchange heuristic for TSP is proposed in 1958 by

Croes [14]. He developed a method that by considering an initial solution elimi-

nates two edges or nodes and inserts them in other place and reconnects the nodes to

get a new solution. This idea then was extended to location-allocation problems as

well. Cooper [13] in 1964 proposed a heuristic which was a general scheme for all

location-allocation problems for finding new improving solutions after getting stuck

in the local optima. This heuristic suggests alternating problem elements in order to

obtain another good solution. Additionally, Teitz and Bart [49] in 1968 introduced a

special exchange or swap heuristic for the discrete Minisum problem. We are using

such an idea in this thesis.

Demand region exchanging step is performed by utilizing Simulated Annealing (SA)

metaheuristic. We select some regions randomly to remove from critical level and add

some other random demand regions form other levels until satisfying the associated

covering percentage of the critical level. If the obtained new solution is better than

the incumbent (current) solution, this new location is accepted and will be the initial
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location for the next iteration. Otherwise, with a specific probability, non-improving

solution will be accepted. This specific probability is decreased iteration by iteration

with a temperature reduction function to reduce the probability of accepting non-

improving solutions in the next iterations. The pseudocode of the CLDEH heuristic

is given in algorithm CLDEH.
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Algorithm CLDEH
1: Begin

2: Consider an initial random point x0 inside the convex hull of the demand regions.

3: Consider an initial temperature t and a temperature reduction function α

4: Perform the leveling step for x0 and evaluate objective function value f (x0) at x0.

5: while a stopping condition is reached do

6: while maximum number of iterations for SA procedure is reached do

7: Remove one demand region randomly from the critical level and add de-

mand regions until reaching the covering percentage of the critical level.

8: solve SOCP for the critical level to get new location x

9: Sort all regions based on the farthest distance to x

10: for h = 1 to K do

11: Perform leveling step.

12: Set rh = ( fhx − dh)/ch

13: end for

14: Set f (x) = max(rh)

15: Set critical level or levels = arg maxh=1,...,K(rh)

16: if several critical levels exist then

17: Select one of them randomly.

18: end if

19: if f (x) < f (x0) then

20: Set x0 = x

21: end if

22: if f (x) ≥ f (x0) then

23: Generate a random number b in range (0, 1)

24: if b < exp(( f (x0) − f (x))/t0) then

25: Set x0 = x

26: end if

27: end if

28: end while

29: t = α(t)

30: end while

31: End
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Lines 1 to 4 initialize the algorithm with some starting parameters. In lines 6 to 28

simulated annealing algorithm is performed. Firstly, a new neighborhood solution for

the initial location is obtained by exchanging demand regions. Then, in lines 8 to

18 corresponding objective function and critical level for the new solution is found.

Condition for acceptance of this solution is listed in lines 19 to 27. This procedure

is repeated for a specific number of iterations. In line 29 the initial temperature is

decreased to reduce the possibility of accepting non-improving solutions in the next

iterations of the SA procedure. Simulated annealing lines (6 to 28) are repeated until

a stopping condition is reached.

As the initial temperature approaches zero, the probability of accepting non-improving

solutions will approach zero too. Thus, one of the stopping criteria is terminating

replications when t becomes small. The second stopping criterion is considering a

maximum number of replications for the SA algorithm. This heuristic also depends

on the initial location, therefore, the solution of single level minimax problem for all

demand entities could be one good starting point for the algorithm. Figure 4.3 illus-

trates the steps of the CLDEH heuristic as well. In the Figures (a) and (b) the initial

random location of the facility x0 and its corresponding covering levels are shown.

The Figure (c) determines the critical level for the x0. Suppose that the second level

is the critical level for the x0. Hence, the removed region should be from the second

level. Hence, the located regions in the second level are displayed in Figure (d). The

dashed region in the Figure (d) is removed and several regions are added for the criti-

cal level which is shown in Figure (e). Considering the current regions of the second

level, an SOCP problem is solved for the second level and the new location is found

for the facility which is shown in Figure (e).

Two versions for CLDEH is considered in this thesis. One of them is removing 1

demand region in the exchanging procedure and the second one is removing 2 de-

mand regions. A preliminary computational experiment is done to select one of these

versions for the rest of thesis.

Six randomly generated instances are considered for this comparison and solved with

two versions of CLDEH for 20 different initial locations (replications). Average and

minimum objective function values and computation times over 20 replications are
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Figure 4.3: The steps of the CLDEH heuristic
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Table 4.1: Comparison between the CLDEH versions

Number
of

demand
regions

Numb
er of
levels

CLDEH version 1 CLDEH version 2
Average Min Average Min

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

100
3 377.48 3.74 376.98 3.67 377.62 4.17 376.02 3.84
4 368.49 4.21 364.52 4.04 369.35 4.67 364.52 4.18

196
3 355.88 5.6 355.88 5.49 355.88 6.15 355.88 5.71
4 341.92 11.19 339.47 10.94 342.29 11.3 339.47 10.6

400
3 387.27 13.72 387.27 13.54 387.27 13.86 387.27 13.13
4 360.86 23.74 358.53 23.02 361.09 23.4 359.16 22.09

found and displayed in Table 4.1. Computational time for both versions are close

to each other. The objective function value for the first version in some instances is

better than that for the second version. Briefly, minimum values are the same but the

average values are slightly better for the first version. Hence, the first version which

is removing one demand region is considered as the final version of CLDEH.

4.1.4 Critical Level, Upper Demand Exchange Heuristic (CLUDEH)

In exchanging the demand regions in the previous heuristic (CLDEH), random se-

lection is utilized. However, choosing a proper demand region as an added entity to

the critical level could affect the quality of the heuristic solution. Therefore, a new

heuristic is proposed for the problem. The Critical Level Upper Demand Exchange

Heuristic (CLUDEH) suggests selecting an entering demand region from one upper

level. Exploitation of the good solutions and exploration of the new promising re-

gions are two main features of a perfect heuristic. The CLDEH heuristic allows the

algorithm to insert demand regions from any outer level which provides exploration

feature for the heuristic. Forcing the algorithm to insert demand regions from one up-

per level helps in exploiting of the good solutions. Hence, the CLUDEH heuristic is

introduced. The CLUDEH also uses simulated annealing in exchanging demand re-

gions for getting neighborhood solutions. The pseudocode of the CLUDEH heuristic

is given in algorithm CLUDEH.
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Algorithm CLUDEH
1: Begin
2: Consider an initial random point x0 inside the convex hull of the demand regions.
3: Consider an initial temperature t and a temperature reduction function α.
4: Perform the leveling step for x0 and evaluate objective function value f (x0).
5: while a stopping condition is reached do
6: while maximum number of iterations for SA procedure is reached do
7: Remove one demand region randomly from the critical level.
8: if Critical level not be the last level then
9: Add demands from an upper level to the critical level until reaching

its covering percentage.
10: else
11: Add demands from a random level to the critical level until reaching

its covering percentage.
12: end if
13: solve SOCP for the critical level to get new location x
14: Sort all regions based on the farthest distance to x
15: for h = 1 to K do
16: Perform leveling step.
17: Set rh = ( fhx − dh)/ch

18: end for
19: Set f (x) = max(rh)
20: Set critical level or levels = arg maxh=1,...,K(rh)
21: if several critical levels exist then
22: Select one of them randomly.
23: end if
24: if f (x) < f (x0) then
25: Set x0 = x
26: end if
27: if f (x) ≥ f (x0) then
28: Generate a random number b in range (0, 1)
29: if b < exp(( f (x0) − f (x))/t0) then
30: Set x0 = x
31: end if
32: end if
33: end while
34: t = α(t)
35: end while
36: End
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Table 4.2: Comparison between the CLUDEH versions

Number
of

demand
regions

Numb
er of
levels

CLUDEH version 1 CLUDEH version 2
Average Min Average Min

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

100
3 386.38 4.26 376.98 4.09 386.67 4.17 376.98 4.08
4 374.61 4.48 367.66 4.35 377.89 4.33 367.66 4.17

196
3 355.88 5.87 355.88 4.82 355.88 5.79 355.88 5.72
4 341.9 11.75 337.34 11.46 342.41 11.28 339.47 11.04

400
3 387.27 12.97 387.27 9.8 387.27 12.42 387.27 7.82
4 365.95 24.43 358.68 23.87 364.15 23.59 358.19 23.26

Stopping conditions for this algorithm is again maximum number of iterations as

well as convergence condition for the simulated annealing procedure. Convergence

criterion in SA is cooling the system by decreasing the temperature until near zero.

Initial location affects the performance of the heuristic therefore, CLUDEH can be

replicated with several different initial locations.

Similar to the CLDEH heuristic, the Figure 4.4 represents the steps of the CLUDEH

heuristic. The main difference between the Figures 4.3 and 4.4 is in the located level

of the inserted demand regions to the critical level. In the Figure (e) of the 4.4, it

is shown that the inserted demand regions (dashed regions) are from the third level

which is an upper level of the critical level (second level).

One idea for improving this heuristic can be removing 2 demand regions instead of

one. We have tested this extension for CLUDEH to select the most efficient version

for CLUDEH. In Table 4.2, the computational results for comparing these two ver-

sions are provided. Again instances with 100, 196, and 400 demand regions and 3 and

4 levels are generated randomly. These six randomly generated instances are solved

for 20 different initial locations with both versions of CLUDEH. The computational

results for both versions are similar to each other but for some instances the first ver-

sion performs better. As a result, the first version of CLUDEH is considered as the

final version in the rest of this thesis.
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4.1.5 Descent Critical Level, Demand Exchange Heuristic (DCLDEH)

Unlike the two previous heuristics, we introduce a new heuristic which does not ac-

cept any non-improving solutions. This heuristic is similar to the steepest descent

algorithm. The steepest decent algorithm evaluates all solutions to find the best im-

proving one. However, this heuristic accepts the first improving solution. Descent

Critical Level Demand Exchange Heuristic (DCLDEH), firstly, selects a random point

as the initial location of the heuristic and then based on this point, it performs the lev-

eling step to determine the critical level. The demand regions exchange procedure

is applied in the DCLDEH as well. However, here the algorithm just moves to the

improving neighborhood locations. The pseudocode of DCLDEH heuristic is given

in algorithm DCLDEH.

Lines 1 and 2 initialize the heuristic with starting point of x0. Line 4 enumerates the it-

erations of the algorithm. In the lines 5 to 9 the covering levels for each initial location

are formed. Additionally, the corresponding objective function and critical level for

the x0 is determined in lines 10 to 14. Lines 15 to 18 represent the demand exchange

procedure for getting out of stuck and lines 19 to 23 force the heuristic to move to the

just improving solutions. Finally line 24 finds the new initial location by solving an

SOCP formulation for the next iteration. This heuristic does not increase the index

of the iteration until getting an improving solution. Therefore, another parameter is

define to enumerate number of cycles inside the heuristic. The maximum number of

cycles is one of the stopping conditions for the problem. The second stopping crite-

rion is the convergence condition which is defined as getting three successive close

enough solutions.

For selecting the entering demand regions in the exchange procedure, two approaches

were presented in the previous heuristics. CLDEH suggests random selection while

CLUDEH chooses the input demand regions from one upper level. In both of these

two approaches, two versions were proposed. Consequently, 4 versions can be con-

sidered for exchanging demand regions in the current heuristic. These version are as

follows.
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Algorithm DCLDEH
1: Begin
2: Consider an initial random point x0 inside the convex hull of the demand regions.
3: while a stopping condition is reached do
4: for iter = 1 to Niter do
5: Sort all regions based on the farthest distance to x0

6: for h = 1 to K do
7: Perform leveling step.
8: Set rh = ( fhx − dh)/ch

9: end for
10: Set r∗iter = max(rh)
11: Set critical level or levels = arg maxh=1,...,K(rh)
12: if several critical levels exist then
13: Select one of them randomly.
14: end if
15: if r∗iter = r∗iter−1 then
16: Remove one demand region randomly from the critical level.
17: Add demand regions until reaching the covering percentage of the

critical level.
18: end if
19: if r∗iter > r∗iter−1 then
20: Set iter = iter − 1
21: Remove one demand region randomly from the critical level.
22: Add demand regions until reaching the covering percentage of the

critical level.
23: end if
24: solve SOCP for the critical level to get new location x0

25: end for
26: end while
27: End

1. Removing 1 demand region from the critical level and adding others from a

randomly selected level.

2. Removing 2 demand regions from the critical level and adding others from a

randomly selected level.

3. Removing 1 demand region from the critical level and adding others from an
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Table 4.3: Comparison between the DCLDEH versions

Number
of

demand
regions

Numb
er of
levels

version 1 version 2 version 3 version 4
Min

objective
value

Min
running
time (s)

Min
objective

value

Min
running
time (s)

Min
objective

value

Min
running
time (s)

Min
objective

value

Min
running
time (s)

100
3 378.66 4.42 379.35 4.77 386.26 4.32 385.06 4.12
4 368.91 4.22 369.35 4.19 386.18 2.74 376.05 4.13

196
3 355.88 0.57 355.88 0.84 355.88 0.72 355.88 0.6
4 343.62 5.85 342.07 6.21 347.42 4.72 342.03 5.76

400
3 387.27 1.65 387.27 1.7 387.27 1.67 387.27 1.76
4 360.68 13.34 361.23 14.32 369.25 10.84 364.91 13.28

upper level.

4. Removing 2 demand regions from the critical level and adding others from an

upper level.

A preliminary computational experiment is done to select one of these versions for the

rest of thesis. Six randomly generated instances are considered for this comparison

and solved with four versions of DCLDEH for 20 different initial locations (replica-

tions). The minimum objective function values and the computation times over 20

replications are obtained and displayed in the Table 4.3. Computational time for all

versions are close to each other but the objective function values for the first version

in some instances are better than others. Hence, the first version is selected as the

final version of DCLDEH.

4.1.6 Area Abstraction Heuristic (AAH)

The last heuristic for the single facility case is Are Abstraction Heuristic (AAH). It is

shown in the previous heuristics that the objective function value for a random initial

location can be calculated by utilizing the leveling step in the polynomial time. The

leveling step has time complexity of O(log(L+m)+K(n+m)) where K, n,m, L are num-

ber of levels, polygons, disks and corners of the polygons, respectively. Discretization

of the continuous problem to the several candidate locations (not too many) and per-

forming the leveling step on them can provide good estimation about the optimal
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solution of the problem in the reasonable time. The AAH heuristic discretize the

multi-level minimax problem to some candidate locations and performs leveling step

for each of these points to select best of them. Next, AAH considers a smaller search

region for the problem around of the obtained point and considers new candidate lo-

cations inside the new search region. Again, it finds the best location between all

candidate locations and follows these steps until converging to the acceptable heuris-

tic solution.

Finding candidate locations and updating the search region in each iteration are the

main steps of the AAH. Number of candidate locations (α) in each iteration is fixed

while the search region for selecting candidate locations get smaller iteration by it-

eration. Consequently, the heuristic solution quality increases in each iteration. The

search region for the first iteration is enclosing square of all demand regions by the

side length of γ. This square is partitioned into grids where the number of points

in the grid is equal to the number of candidate locations (α). Consequently the side

length of each grid for the first iteration is
γ

√
α − 1

. The search region for the second

iteration is a square with side length of
2γ
√
α − 1

where the best location of the first

iteration is located in the middle of this square. Again, the new search region is par-

titioned into grids with a side length of
2γ

√
α − 1 ×

√
α − 1

. This heuristic iterates in

this manner until a stopping condition is reached (See Figure 4.5).

If the solution of the AAH in an iteration is on the border of the search region, the

search region is extended by adding a parallel row or column to that border in order to

obtain a solution inside the search region and gets new candidate locations. The AAH

evaluates the objective function values of these new candidate locations. If the added

points are promising, AAH extends the feasible region in that direction by adding

another row or column.

The pseudocode of the AAH heuristic is given in algorithm AAH.
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Figure 4.5: The steps of the AAH heuristic

53



Algorithm AAH
1: Begin
2: Form the enclosing square of all demand regions as the initial search region.
3: Consider the number of candidate locations as α.
4: Consider the length of the enclosing square as γ0.
5: Partition the enclosing square into grids with the side lenght of

γ0
√
α − 1

6: Get the location of each point in the grids (xz)
7: for z = 1 to α do
8: for h = 1 to K do
9: Perform the leveling step.

10: Set rzh = ( fhxz − dh)/ch

11: end for
12: Set r∗0z = max(rh)
13: end for
14: Set r∗0 = min(r∗0z) and x∗0 = xz

15: while a stopping condition is reached do
16: for iter = 1 to Niter do
17: Form a square search region around x0 with side size of γiter =

2γiter−1
√
α − 1

18: Partition the search region into grids with the side lenght of
γiter
√
α − 1

19: Get the location of each point in the grids (xz)
20: for z = 1 to α do
21: for h = 1 to K do
22: Perform the leveling step.
23: Set rzh = ( fhxz − dh)/ch

24: end for
25: Set r∗iterz = max(rh)
26: end for
27: Set r∗iter = min(r∗iterz) and x∗0 = xz

28: while xz be on the border of the search region do
29:

30: Extend the search region by adding a parallel row or column to that
border.

31: partition the new added line to
√
α parts.

32: Find r∗iterz for all points on that line.
33: Set r∗iter = min(r∗iterz) and x∗0 = xz

34: end while
35: end for
36: end while
37: End

54



Figure 4.5 displays the steps of the AAH heuristic. Figure (a) shows the demand

regions which are 3 disks and 13 polygons. In the Figure (b), a search region is

defined for the problem which is a enclosing square of all regions. Additionally, the

search region is partitioned into grids with 121 points on it as candidate locations.

The leveling step is performed on each of these candidate locations and the best of

them with the lowest objective function value is selected as the promising location.

A new search region in the Figure (c) is formed around of the obtained location with

a specific side length. Again, the new search region is partitioned into grids with 121

points on it. The Figure (d) shows these grids and the point with lowest objective

function value. Since the new obtained location is on the border of the search region,

a column is added to the left of the search region and indicated in the Figure (e).

The new column is also partitioned into girds and the objective function value for

all points on the added column is found by leveling step. We compare the objective

function values of the added points and the current location. If the added points have

the lowest value, we continue the adding procedure of the columns and rows.

This heuristic checks several candidate locations in each iteration to find an improving

solution. Increasing number of candidate locations in each iteration not only increases

the accuracy of the heuristic but also the required running time. Consequently, there

is a trade off between running time and accuracy of the heuristic in this algorithm and

setting good parameters for AAH seems to be necessary. Two stopping conditions are

defined for AAH. One of them is maximum number of iterations and the second one

is convergence criterion similar to the previous heuristics.

4.2 Heuristics for the multi-facility case

Six heuristics for the single facility version of the problem were introduced in the

previous section. Here, these heuristics are extended to the multi-facility case and

one new heuristic is proposed. The commonly used heuristic for the multi-facility

location problems in the literature is the Location-Allocation (LA) algorithm. Thus,

we expand LA algorithm for our problem. In addition to assigning the demands to

the facilities in the classical version of the problem, our problem contains assign-

ing the demand regions to the covering levels as well. Consequently, we introduce a
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Location-Allocation-Leveling (LAL) algorithm which is used in the proposed heuris-

tics.

Location-Allocation-Leveling (LAL) algorithm

LAL algorithm considers initial locations for each facility and allocates the demand

regions to the facilities and their corresponding covering levels. Demand regions are

allocated to the first covering level of the closest facility until reaching the covering

percentage of the first level. Then, demand regions are allocated to the second level

of the closest facility and the procedure continues in this manner until allocating all

demand regions. The pseudocode of the LAL algorithm is given below.

Algorithm Location-allocation-leveling algorithm
1: Begin
2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.
3: for regions i = 1 to n and j = 1 to m do
4: for facilities t = 1 to T do
5: Find the farthest distance between i( j) and x0t and consider it as dit or d jt.
6: end for
7: Set di = min(dit) and d j = min(d jt).
8: end for
9: Sort all regions based on di and d j.

10: Set N = ∅, A = set of all demand regions.
11: for h = 1 to K do
12: Set Wlh = 0.
13: repeat
14: Select the region with lowest di or d j from A/N and consider it as (R).
15: Assign R to the closest facility.
16: N = N ∪ {R}
17: Wlh = Wlh+weight of R
18: until sum of the weights of the regions in level h ≥ Ph

19: end for
20: End

The steps of the LAL algorithm are shown in the Figure 4.6. Figure (a) illustrates

the demand regions and 3 random initial locations for the 3-facility problem. The

farthest distances between each of demand regions and facilities are obtained. The
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Figure 4.6: The steps of the LAL algorithm

Figure (b) displays this procedure for the demand region i. Since the closest facility

for the demand region i is the first one, di1 is considered as the distance of the demand

i or di. Based on the obtained distances, the demand regions are sorted and presented

in the Figure (c). Now, the demand regions are allocated to the facilities and their

corresponding covering levels. Figure (d) shows the allocation procedure for the first

covering level of the facilities.
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4.2.1 Location-Allocation-Leveling Heuristic (LALH)

According to the described LAL algorithm, for in hand locations, allocations of the

demand regions to the facilities and covering levels can be determined. Hence, the

binary variables in the MISOCP formulation can be fixed and the model can be re-

formulated as an SOCP problem. Location-Allocation-Leveling Heuristic (LALH)

utilizes such a procedure to find the good solutions for the problem. LALH begins

with some initial locations of the facilities and performs LAL algorithm for them.

Then, it finds corresponding covering radius for each facility similar to the heuris-

tics of the single facility case and reports the maximum value of them as objective

function of initial locations. Based on the determined values of the binary variables

in LAL step, LALH solves an SOCP problem to find a new locations for the next

iteration. LALH iterates this procedure until reaching a stopping condition. The

pseudocode for LALH heuristic is given in Algorithm LALH.

Algorithm LALH
1: Begin
2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.
3: while a stopping condition is reached do
4: Perform LAL step for the initial locations (x0t).
5: for t = 1 to T do
6: for h = 1 to K do
7: Set lth = farthest distance between x0t and the farthest region located

in level h of the facility t.
8: Set rth = (lth − dh)/Ch.
9: end for

10: rt = max(rth)
11: end for
12: R∗ = max(rt)
13: Based on the assignments of the LAL step, solve an SOCP problem to get

new x0t.
14: end while
15: End

The Figure 4.7 displays the procedure of the LALH heuristic. Figures (a) to (d)
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Figure 4.7: The steps of the LALH heuristic
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illustrate the LAL algorithm which was discussed in the Figure 4.6. Then, the radius

of the covering levels of each facility are determined. The Figure (e) shows this

procedure for the first facility. The farthest distance between X1 and the farthest

region located in levels 1, 2, and 3 of the first facility (l11, l12, l13) are obtained. Based

on the determined assignments, an SOCP problem is solved for each facility to find

its new location. These new locations are indicated in the Figure (f).

Time complexity of the SOCP formulation was discussed in the Section 3.1.6. LALH

solves SOCP in each iteration to update facility locations. Since the complexity of

SOCP is related to the number of constraints, LALH is expected to have more com-

putation time in comparison with similar LLH heuristic in the single facility case.

Stopping condition for all heuristics of the multi-facility case is the same. We con-

sider two criteria where one of them is the maximum number of iterations and the

second one is convergence conditions. Convergence condition is defined as getting 3

successive close enough solutions.

Covering Percentage Updating (CPU) algorithm

In the following sections, the single facility heuristics are extended to the multi-

facility case. Our aim is separating the problem into several single facility location

problems and solve them with the previously proposed heuristics. However, the multi-

facility case considers the covering percentage of level h as the aggregated weights

of the all regions which are allocated in the level h of all facilities. This causes some

difficulties in the separation of the problem into single facility location problems.

For dealing with this problem the Covering Percentage Updating (CPU) step is intro-

duced. After performing the LAL algorithm, the CPU step gets the allocated demand

regions to each level of the facilities. Then, CPU aggregates the weight of all regions

which are located in a specific level of a facility to find the new covering percentage

for the specific level of that facility. Since the regions and facilities are separated,

the covering percentage of the last level for each facility is not necessarily equal to

1. Hence, for each facility, all levels and weight of allocated regions to that facility

are multiplied by a value such that the covering percentage of the last level becomes

1. Now, the heuristics of the single facility case can be applied for the multi-facility

case.
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Algorithm Covering Percentage Updating (CPU) algorithm
1: Begin
2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.
3: Perform the LAL algorithm on x0t.
4: for facilities t = 1 to T do
5: for levels h = 1 to K do
6: Set Pth = 0.
7: for polygonal regions i = 1 to n do
8: if region i is covered by facility t in level h then
9: Pth = Pth+ weight of region i

10: end if
11: end for
12: for disk regions j = 1 to m do
13: if region j is covered by facility t in level h then
14: Pth = Pth+ weight of region j
15: end if
16: end for
17: end for
18: for levels h = 1 to K do
19: Pth = Pth × (1/PtK)
20: for all regions (R) allocated to the facility t do
21: weight of R = weight of R ×(1/PtK)
22: end for
23: end for
24: end for
25: End

4.2.2 Location-Allocation-Leveling, Critical Level Heuristic (LAL-CLH)

Location-Allocation-Leveling, Critical Level Heuristic (LAL-CLH) begins from some

initial locations and performs the LAL and CPU steps in order to separate a multi-

facility problem into several single facility problems and applies the proposed CLH

heuristic to get new initial locations for each facility. LAL-CLH iterates this proce-

dure until reaching the convergence criteria. The pseudocode of LAL-CLH is given

below.
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Algorithm LAL-CLH
1: Begin
2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.
3: while a stopping condition is reached do
4: Perform the LAL algorithm on x0t.
5: Perform the CPU algorithm based on the obtained allocations in the LAL

step.
6: for facilities t = 1 to T do
7: Perform the CLH heuristic on the allocated demand regions of the facility

t.
8: Set the location of the heuristic solution of the facility t as x0t .
9: Set the heuristic solution value of the facility t as rt.

10: end for
11: Set R∗ = max(rt).
12: Reset the weights of all demand regions to the initial values.
13: end while
14: End

The LAL-CLH algorithm is shown in Figure 4.8 as well. In Figure (a), 3 initial

locations for the facilities are indicated. The demand regions are allocated to the

facilities and their corresponding covering levels by LAL algorithm in the Figure (b).

Then, the multi-facility problem is separated to three single facility problem. The

Figures (c), (d), and (e) display the single facility problems for the first, second, and

third facilities, respectively. Covering percentage of the facilities and weights of the

demand regions are updated and the CLH heuristic is applied for each of these single

facility problems. The new obtained locations of each facility are shown in the Figure

(f).

4.2.3 Location-Allocation-Leveling, Location-Leveling Heuristic (LAL-LLH)

Similar to the previous heuristic, LAL-LLH performs the LAL and CPU steps on the

starting points firstly. However, it applies the LLH heuristic on the obtained sepa-

rated single facility problems to get new starting point for the next iteration. The

corresponding pseudocode for this heuristic is provided in Algorithm LAL-LLH.
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Figure 4.8: The steps of the LAL-CLH heuristic
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Algorithm LAL-LLH

1: Begin

2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.

3: while a stopping condition is reached do

4: Perform the LAL algorithm on x0t.

5: Perform the CPU algorithm based on the obtained allocations in the LAL

step.

6: for facilities t = 1 to T do

7: Perform the LLH heuristic on the allocated demand regions of the facility

t.

8: Set the location of the heuristic solution of the facility t as x0t .

9: Set the heuristic solution value of the facility t as rt.

10: end for

11: Set R∗ = max(rt).

12: Reset the weights of all demand regions to the initial values.

13: end while

14: End

4.2.4 Location-Allocation-Leveling, Critical Level Demand Exchange Heuris-

tic (LAL-CLDEH)

The heuristic steps of the LAL-CLDEH is mentioned in the following pseudocode. As

it was described in the single facility case, this heuristic utilizes simulated annealing

in updating associated location of the facilities in each iteration.
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Algorithm LAL-CLDEH

1: Begin

2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.

3: while a stopping condition is reached do

4: Perform the LAL algorithm on x0t.

5: Perform the CPU algorithm based on the obtained allocations in the LAL

step.

6: for facilities t = 1 to T do

7: Perform the CLDEH heuristic on the allocated demand regions of the

facility t.

8: Set the location of the heuristic solution of the facility t as x0t .

9: Set the heuristic solution value of the facility t as rt.

10: end for

11: Set R∗ = max(rt).

12: Reset the weights of all demand regions to the initial values.

13: end while

14: End

4.2.5 Location-Allocation-Leveling, Critical Level Upper Demand Exchange

Heuristic (LAL-CLUDEH)

The main difference between the last heuristic and the current one (LAL-CLUDEH),

is in the updating locations of each facility where LAL-CLUDEH just accepts de-

mands from the higher level in demand exchange procedure. The pseudocode of this

heuristic is given in Algorithm LAL-CLUDEH.
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Algorithm LAL-CLUDEH

1: Begin

2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.

3: while a stopping condition is reached do

4: Perform the LAL algorithm on x0t.

5: Perform the CPU algorithm based on the obtained allocations in the LAL

step.

6: for facilities t = 1 to T do

7: Perform the CLUDEH heuristic on the allocated demand regions of the

facility t.

8: Set the location of the heuristic solution of the facility t as x0t .

9: Set the heuristic solution value of the facility t as rt.

10: end for

11: Set R∗ = max(rt).

12: Reset the weights of all demand regions to the initial values.

13: end while

14: End

4.2.6 Location-Allocation-Leveling, Descent Critical Level Demand Exchange

Heuristic (LAL-DCLDEH)

LAL-DCLDEH benefits a descent algorithm in updating of the locations for each fa-

cility which means that does not accept a non improving solution inside the location

updating step. Hence, it works different than the two previous simulated annealing

based heuristics which move to the non improving solutions with a specific probabil-

ity. The pseudocode of LAL-DCLDEH heuristic is provided in the following.
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Algorithm LAL-DCLDEH

1: Begin

2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.

3: while a stopping condition is reached do

4: Perform the LAL algorithm on x0t.

5: Perform the CPU algorithm based on the obtained allocations in the LAL

step.

6: for facilities t = 1 to T do

7: Perform the DCLDEH heuristic on the allocated demand regions of the

facility t.

8: Set the location of the heuristic solution of the facility t as x0t .

9: Set the heuristic solution value of the facility t as rt.

10: end for

11: Set R∗ = max(rt).

12: Reset the weights of all demand regions to the initial values.

13: end while

14: End

4.2.7 Location-Allocation-Leveling, Area Abstraction Heuristic (LAL-AAH)

The structure of LAL-AAH in location updating is completely different than all of

the previous mentioned heuristics for multi-facility case. In the prior heuristics, the

SOCP formulation was solved for getting new starting points. However, this heuris-

tic converts the continuous multi-facility minimax location problem to the several

discrete single facility minimax location problems which are solvable in polynomial

time. The associated steps of this heuristic is presented in the following pseudocode.
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Algorithm LAL-AAH

1: Begin

2: Consider T initial locations x01, x02, . . . , x0T inside the convex hull of the demand

regions.

3: while a stopping condition is reached do

4: Perform the LAL algorithm on x0t.

5: Perform the CPU algorithm based on the obtained allocations in the LAL

step.

6: for facilities t = 1 to T do

7: Perform the AAH heuristic on the allocated demand regions of the facility

t.

8: Set the location of the heuristic solution of the facility t as x0t .

9: Set the heuristic solution value of the facility t as rt.

10: end for

11: Set R∗ = max(rt).

12: Reset the weights of all demand regions to the initial values.

13: end while

14: End
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CHAPTER 5

COMPUTATIONAL STUDIES

In this thesis, the multi-level minimax problem for both single and multi-facility cases

with regional demand are considered. As it was mentioned in the background section,

different versions of the continuous minimax problem have been studied in the liter-

ature. Regional demand has also been considered in some facility location problems

but there are very few researches which utilize such an idea in the minimax facility lo-

cation problem. Additionally, this research assumes multi-levels in the covering of all

demand regions in comparison with the classical single level minimax problem. As a

result, there is no benchmark study in the literature for the introduced problem in this

thesis. To evaluate the proposed solution methods, several random instances are gen-

erated and the results of the exact solution methods and heuristic ones are compared

in this section. Firstly, the generated instances, parameter settings for algorithms and

computational results of the single facility case are described in Section 5.1. Then, in

Section 5.2 the multi facility case is reported.

5.1 Computational study for the single facility case

5.1.1 Instance generation

Demand entities are considered as regions in this study and these regions are in two

different forms which are polygons and disks. Also without loss of generality, all

regions are assumed to be convex as taking the convex hull of the regions does not

change the optimal solution.
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Number of corners for each polygon is randomly distributed between 3 and 11 and

moreover these regions do not have any intersection with each other. All demand re-

gions are distributed inside a 900× 900 square. Additionally, the maximum length of

the sides of polygons and maximum length of circles’ radius are (900
√

2)/
√

Number of regions.

Computational time of the single facility case is considerably less than multi-facility

one. Thus, large instances are required for the single facility case to illustrate the

failure of the exact solution method (MISOCP formulation).

9 sets of instances are considered for the single facility case with 36, 64, 100, 144,

196, 225, 400, 625, and 900 demand regions. Furthermore, each of these sets are

tested for 2, 3, 4, and 5 levels. Consequently, 36 instances are generated for the single

facility version. Summary of the problem instances are listed in the table 5.1.

5.1.2 Parameter settings of the heuristics

The proposed heuristics in Section 4 depend on some parameters which should be

set. These algorithms have some common and some special parameters. Stopping

conditions are the common parameters for all heuristics. Each of the heuristics are

run on several instances to find the effective values for the associated parameters.

All heuristics except AAH are depended on the initial location. Therefore, they are

tested for 20 different initial locations and the minimum objective function values of

these replications are used as the comparison criteria for parameter setting. The AAH

heuristic does not use any randomness and is also independent of the initial location.

Hence, the results of AAH is provided for just one replication.

CLH and LLH heuristics are very similar to each other with the same parameters. We

consider two stopping conditions in these heuristics. One of these conditions is maxi-

mum number of iterations. Also, it was discussed that CLH and LLH could get stuck

in the first iterations. The tested instances shows that these heuristics get stuck at most

in 15 iterations and after that presents the same solution for the all next iterations. The

running time for 10 iterations is almost 1 second. Setting maximum number of iter-

ations to a number less than the required number of repetitions before convergence
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Table 5.1: Randomly Generated Instances

Problem
Instance

Number of
Regions

Number of
Levels

1

36

2

2 3

3 4

4 5

5

64

2

6 3

7 4

8 5

9

100

2

10 3

11 4

12 5

13

144

2

14 3

15 4

16 5

17

196

2

18 3

19 4

20 5

Problem
Instance

Number of
Regions

Number of
Levels

21

225

2

22 3

23 4

24 5

25

400

2

26 3

27 4

28 5

29

625

2

30 3

31 4

32 5

33

900

2

34 3

35 4

36 5

affects the solution quality. Considering the small computation time of each iteration

in these heuristics, setting the maximum number of iterations to a number less than

10 does not seem reasonable. On the other hand, increasing the maximum number of

iterations neither affects the quality of the solution nor the computation time due to

getting stuck in the first iterations. Consequently, the maximum number of iterations

is set as 10 considering the results of Table 5.2.

The second stopping condition for the CLH and LLH is convergence criterion which

is set as getting three successive solutions with objective function difference less than

0.001. These algorithms get stuck after several iterations and find same solutions

with equal objective function values for the next iterations. Hence, changing the
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Table 5.2: CLH parameter setting

Number
of

demand
regions

Number
of

levels

Max number of
iterations = 5

Max number of
iterations = 10

Max number of
iterations = 15

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

100
3 377.12 0.21 376.98 0.28 376.98 0.31
4 383.63 0.23 383.63 0.24 383.63 0.25

196
3 355.88 0.38 355.88 0.4 355.88 0.38
4 360.82 0.45 360.82 0.43 360.82 0.47

400
3 388.34 0.55 387.27 0.71 387.27 0.72
4 381.34 0.81 381.34 0.77 381.34 0.79

convergence parameter does not affect CLH and LLH. As a result, the convergence

parameter for them is taken as the value used in the other heuristics.

In the CLDEH and CLUDEH heuristics, in addition to the stopping condition pa-

rameters, there are some other parameters related to the simulated annealing which

should be set. One of them is the number of iterations inside the SA procedure and

the second one is temperature reduction function. There are two common approach

for the cooling procedure in the literature [46]. The first one suggests the large num-

ber of iterations at few temperatures and the second one offers a small number of

iterations at many temperatures. In the first approach cycling inside the SA procedure

replicates for several times but the temperature reduction function is aggressive and

decrease the temperature quickly. A common reduction function for the first approach

is α(t) = β× t where 0 < β < 1 but 0.8-0.99 is suggested for β. Furthermore, the num-

ber of replications inside the SA procedure is considered as 10. In this thesis, the first

approach is utilized for SA and its associated parameters are set. Initial temperature is

considered as 10 and 6 instances are generated randomly to test different parameters

to select the most proper one. β is tested for two values of 0.8 and 0.9 and number

of iteration inside the SA procedure is tested for 10 and 15 iterations. Eventually, 4

cooling schedule are tested for the heuristics in Tables 5.3 and 5.4 which are (0.8, 10),

(0.8, 15), (0.9, 10) and (0.9, 15).

Setting the number of replications in the SA procedure as 10 provides better solutions
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Table 5.3: Parameter setting for CLDEH

Number
of

demand
regions

Number
of

levels

β = 0.8 and iteration = 10 β = 0.8 and iteration = 15
MIN MIN

Objective
value

Running
time (s)

Objective
value

Running
time (s)

100
3 376.98 1.55 376.02 1.76
4 364.52 2 364.52 1.02

196
3 355.88 1.63 355.88 1.7
4 339.47 6.53 339.47 6.8

400
3 387.27 2.78 387.27 2.93
4 358.68 13.86 359.16 14.81

Table 5.4: Parameter setting for CLDEH

Number
of

demand
regions

Number
of

levels

β = 0.9 and iteration = 10 β = 0.9 and iteration = 15
MIN MIN

Objective
value

Running
time (s)

Objective
value

Running
time (s)

100
3 376.98 2.7 376.98 2.63
4 364.52 2.51 367.66 2.34

196
3 355.88 3.7 355.88 3.49
4 339.47 6.53 339.47 6.35

400
3 387.27 8.4 387.27 8.41
4 358.19 13.79 359.78 13.94
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Table 5.5: Parameter setting for CLDEH

Number
of

demand
regions

Number
of

levels

Max number of
iterations = 100

Max number of
iterations = 150

Max number of
iterations = 200

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

100
3 377.81 2.84 377.48 4.21 377.3 5.81
4 370.47 2.56 368.49 3.74 368.97 5.26

196
3 355.88 6.74 355.88 11.19 355.88 14.84
4 341.72 3.76 341.92 5.6 341.5 7.64

400
3 387.27 14.17 387.27 23.74 387.27 31.11
4 360.74 8.67 360.86 13.72 360.47 17.16

in both tables of 5.3 and 5.4. In the comparison between β values, they behave very

similar to each other. β = 0.9 has better solution in one of the instances (400 demand

regions and levels) but has almost 50 percent higher average running time for all

instances. Consequently, for the CLDEH and the CLUDEH the temperature reduction

coefficient (β) and number of replications inside SA procedure is considered as 0.8

and 10, respectively.

Stopping criteria for the CLDEH and the CLUDEH are again the maximum number

of iterations and convergence condition. Convergence condition in SA algorithm is

defined as terminating replications before temperature reaches zero. This is done by

temperature reduction function that is discussed above. The second stopping condi-

tion is the maximum number of iterations. This will be activated when the tempera-

ture does not approach to zero after specific number of iterations.

The CLDEH is tested for 100, 150, and 200 maximum number of iterations to obtain

the proper value for the number of iterations parameter setting. Although increasing

number of iterations improves the accuracy of the heuristic, it raises the running time

of the algorithm as well. Based on the indicated results in Table 5.5, 150 is selected

as the maximum number of iterations.

In the DCLDEH heuristic, we just have common or general parameters to set which

are the stopping conditions. For the maximum number of iterations, three values (100,

150, and 200) are tested in Table 5.6.
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Table 5.6: Parameter setting for DCLDEH

Number
of

demand
regions

Number
of

levels

Max number of
iterations = 100

Max number of
iterations = 150

Max number of
iterations = 200

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

100
3 376.98 2.61 376.98 0.47 376.02 4.67
4 367.66 2.38 364.52 2.86 364.52 4.25

225
3 377.13 0.44 377.13 0.47 377.13 0.45
4 351.11 4.85 351.11 0.65 351.11 0.9

400
3 387.27 0.96 387.27 1.52 387.27 1.51
4 362.13 7.63 360.97 13.66 360.72 12.98

Time Average - 3.145 - 3.272 - 4.127

Objective function values of the randomly generated instances for 100 iterations are

worse than those for 150 and 200 iterations. In the comparison between 150 and 200

iterations, they have almost same objective values. However, the average of the run-

ning time for 150 iterations is 26% lower than that for 200 iterations. Consequently,

150 is selected as maximum number of iterations. Additionally, convergence con-

dition stops the heuristic when 3 successive solutions with objective function value

difference less than a specific number are obtained. For this aim, three values (0.01,

0.001, and 0.0001) are evaluated for the heuristic in Table 5.7. This table indicates

that setting the convergence condition as 0.001 outperforms 0.01. It also has the same

objective function values with 0.0001 in lower average time. Therefore, 0.001 is uti-

lized as convergence condition.

Nature of the last heuristic is different from the first five ones, therefore, it has another

parameter which should be fixed. AAH heuristic partitions the search region into grid

cells. Corners of each cell represent a candidate location for the problem. As it was

described in the Section 4.1.6, there is a trade off between number of cells in grid and

running time of the heuristic. We evaluate 3 numbers 64, 100, 144 as the number of

candidate locations in each iteration to select the better one in Table 5.8. Based on

the results of this table, 100 candidate locations are evaluated in each iteration of the

AAH heuristic.

Related parameters to the stopping conditions of the AAH heuristic are set by consid-
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Table 5.7: Parameter setting for DCLDEH

Number
of

demand
regions

Number
of

levels

Convergence
condition = 0.01

Convergence
condition = 0.001

Convergence
condition = 0.0001

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

100
3 376.98 5.15 376.98 4.22 376.98 5.25
4 368.65 4.92 364.52 3.72 364.52 4.93

196
3 355.88 0.44 355.88 0.41 355.88 0.51
4 341.13 0.73 336.99 5.66 336.99 6.81

400
3 387.27 0.98 387.27 1.06 387.27 1.16
4 361.11 14.99 359.91 13.9 359.68 15.18

Time Average - 4.535 - 4.828 - 5.64

Table 5.8: Parameter setting for AAH

Number
of

regions

Numb
er of
levels

Number of candidate
locations = 64

Number of candidate
locations = 100

Number of candidate
locations = 144

Objective
value

Running
time (s)

Objective
value

Running
time (s)

Objective
value

Running
time (s)

100
3 375.53 0.08 375.53 0.09 375.53 0.1
4 364.52 0.06 364.52 0.06 364.52 0.07

196
3 355.88 0.08 355.88 0.1 355.88 0.11
4 341.87 0.08 339.89 0.09 339.89 0.11

400
3 387.27 0.16 387.27 0.21 387.27 0.23
4 359.68 0.17 358.19 0.2 358.19 0.24
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Table 5.9: Parameter setting for AAH

Number
of

regions

Numb
er of
levels

(0.01, 15) (0.01, 20) (0.01, 25)
Objective

value
Running
time (s)

Objective
value

Running
time (s)

Objective
value

Running
time (s)

100
3 375.54 0.08 375.54 0.08 375.54 0.08
4 364.52 0.06 364.52 0.06 364.52 0.06

196
3 355.88 0.08 355.88 0.08 355.88 0.08
4 344.93 0.08 344.93 0.08 344.93 0.08

400
3 387.28 0.16 387.28 0.16 387.28 0.16
4 359.57 0.17 359.57 0.19 359.57 0.16

Table 5.10: Parameter setting for AAH

Number
of

regions

Numb
er of
levels

(0.001, 15) (0.001, 20) (0.001, 25)
Objective

value
Running
time (s)

Objective
value

Running
time (s)

Objective
value

Running
time (s)

100
3 375.53 0.09 375.53 0.09 375.53 0.09
4 364.52 0.06 364.52 0.06 364.52 0.06

196
3 355.88 0.09 355.88 0.1 355.88 0.1
4 344.93 0.09 344.93 0.09 344.93 0.1

400
3 387.27 0.2 387.27 0.2 387.27 0.2
4 359.56 0.2 359.56 0.2 359.56 0.2

ering the result of Tables 5.9, 5.10 and 5.11. Three values for convergence condition

and three values for the maximum number of iterations are considered. Combination

of these cases provide 9 sets as follows. (0.01, 15), (0.01, 20), (0.01, 25), (0.001, 15),

(0.001, 20), (0.001, 25), (0.0001, 15), (0.0001, 20) and finally (0.0001, 25). The first

element of each set represents convergence value and the second element provides

maximum number of iterations.

AAH heuristic is a very fast algorithm with high accuracy. It converges to an accept-

able solution very quickly. Therefore, the objective function values for all combina-

tions in Tables 5.9, 5.10 and 5.11 are close to each other. Based on the running times

of these combinations, the fourth set is selected which is (0.001, 15).

Finally, the obtained results for parameter setting of all heuristics are summarized in

Table 5.12.
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Table 5.11: Parameter setting for AAH

Number
of

regions

Numb
er of
levels

(0.0001, 15) (0.0001, 20) (0.0001, 25)
Objective

value
Running
time (s)

Objective
value

Running
time (s)

Objective
value

Running
time (s)

100
3 375.53 0.09 375.53 0.1 375.53 0.09
4 364.52 0.07 364.52 0.06 364.52 0.07

196
3 355.88 0.1 355.88 0.1 355.88 0.1
4 344.93 0.1 344.93 0.1 344.93 0.1

400
3 387.27 0.22 387.27 0.21 387.27 0.22
4 359.56 0.22 359.56 0.22 359.56 0.22

Table 5.12: Parameter setting for all heuristics

Heuristic
Name

Number of
iterations

Convergence
condition

Other
parameters

CLH 10 0.001 -
LLH 10 0.001 -

CLDEH 150 β = 0.8
Number of repetitions
in SA procedure = 10

CLUDEH 150 β = 0.8
Number of repetitions
in SA procedure = 10

DCLDEH 150 0.001 -

AAH 15 0.001
Number of candidate

locations = 100

78



5.1.3 Computational results

In this section, the computational results for both exact and heuristic algorithms are

presented. Since there is no benchmark problem for our study, the exact solutions

of MISOCP formulation for our proposed model are found firstly and heuristics are

compared with results of the exact solutions. All algorithms have been coded in .NET

framework by C# 2013 language. Also these codes have been run on a PC with 3.22

GHz CPU and 16GB of RAM.

5.1.3.1 Exact solution

There are few solvers such as CPLEX, GUROBI, and MOSEK which can deal with an

MISOCP formulation. Considering the performed comparisons between these solvers

in the literature [25], CPLEX is selected as the solver in our study.

Time complexity of the MISOCP formulation has been discussed in section 3.1.6.

It contains big-M values which make the formulation weak. Hence, it is unable to

solve large instances, to optimality. During its solution by branch-and-bound (B&B)

technique, the B&B tree becomes too large and out of memory error appears. For

example, the instances number 24, 27, 28, 31 and 32 which represent more than 225

demand regions and more than 4 levels could not be solved optimally in the time limit

of 48 hours.

In order to check all instances and compare them with heuristics, the time limit of

3600 seconds is set for solving the MISOCP formulation and results of those in-

stances which could not be solved within the time limit have been reported with cor-

responding optimality gap. In Table 5.13, the results of the MISOCP formulation for

the problem instances and their associated computation times have been reported.

Table 5.13 provides several useful data about the problem. At first glance, it displays

the effect of instance size on the computation time. As it was mentioned in Section

3.1.6, solving large instances by MISOCP is problematic. Although CPLEX uses

lots of cuts, it could not solve the instance in a reasonable time. Also, optimality

gap for large instances is remarkable. Hence, the obtained results of the MISOCP
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Table 5.13: Optimal or the best found objective function values by the MISOCP
formulation and the associated computation times (in seconds)

problem
instance

Number of
regions

Number of
levels

Objective
function value

Running
time (s)

GAP
(%)

1

36

2 436.57 0.312 0
2 3 366.628 3.073 0
3 4 319.08 9.797 0
4 5 319.08 13.993 0
5

64

2 459.637 0.421 0
6 3 384.303 3.946 0
7 4 341.699 22.963 0
8 5 341.699 42.962 0
9

100

2 435.285 0.717 0
10 3 375.529 5.335 0
11 4 364.517 45.927 0
12 5 364.517 1084.94 0
13

144

2 461.255 1.654 0
14 3 381.3 18.439 0
15 4 360.716 95.956 0
16 5 360.716 3600 12.634
17

196

2 438.464 1.763 0
18 3 355.876 13.432 0
19 4 338.088 3600 13.66
20 5 336.992 3600 21.246
21

225

2 464.617 7.893 0
22 3 377.13 23.712 0
23 4 351.11 2259.799 0
24 5 359.639 3600 26.165
25

400

2 477.107 13.416 0
26 3 387.27 29.781 0
27 4 364.194 3600 22.111
28 5 373.522 3600 48.609
29

625

2 477.498 20.405 0
30 3 387.59 96.362 0
31 4 357.873 3600 29.913
32 5 364.706 3600 51.306
33

900

2 473.753 26.957 0
34 3 384.557 186.141 0
35 4 379.972 3600 40.004
36 5 375.624 3600 56.007
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formulation for them is expected to be worse than the heuristic solutions. Another

useful information from the Table 5.13 is downward trend of the objective function

values by increase in the number of levels. This trend stems from the nature of the

problem which reduces the effect of remote demand regions level by level.

5.1.3.2 Heuristics’ solutions

After getting the optimal or best found solutions by the MISOCP formulation, the

proposed heuristics are applied to solve the generated instances of the single facility

multi-level minimax problem. Furthermore, the obtained results of the heuristics are

compared with each other to evaluate their performance. Heuristics are compared in

two aspects: the objective function value and corresponding computation time. Since

the SCOP based heuristics are depended on the initial facility location, each instance

is solved with 20 distinct initial locations. The last starting point of the heuristics for

each instance is the location of the optimal solution in solving the classical minimax

location problem.

The Table 5.13 indicates that large instances can not be solved by MISOCP formu-

lation, to optimality. For these instances, the best solution between MISOCP formu-

lation and heuristics is considered as comparison criteria (See Table 5.14). Each of

the instances are solved with the first five heuristics by 20 different initial locations

and the percent deviation from the best solution of these instances are found. Average

and minimum of percent deviations for these replications are reported in the Tables

5.15 and 5.16, respectively. Since AAH is independent of the initial location, it is

run once and the associated result is obtained. Therefore, the results of AAH in both

average and minimum percent deviation tables are the same. The best found solution

by heuristics is important in evaluating the performance of them. Accordingly, the

minimum results for these 20 replications are listed in the Table 5.16. The instances

which are specified by a star represent the instances which are solved optimally.

The Table 5.16 illustrates some of the described properties of the heuristics which

were explained in Section 4. As it was mentioned, Heuristics CLH and LLH get

stuck quickly. Therefore, they have the biggest amount of the percent deviation from

the best solution. The CLH and LLH have the same maximum deviation between
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Table 5.14: The best found objective value between MISOCP formulation and heuris-
tics

Problem
instances

Number
of regions

Number
of levels

Objective function
value of MISOCP

The best found objective value
between heuristics and MISOCP

1*

36

2 436.57 436.57
2* 3 366.628 366.628
3* 4 319.08 319.08
4* 5 319.08 319.08
5*

64

2 459.637 459.637
6* 3 384.303 384.303
7* 4 341.699 341.699
8* 5 341.699 341.699
9*

100

2 435.285 435.285
10* 3 375.529 375.529
11* 4 364.517 364.517
12* 5 364.517 364.517
13*

144

2 461.255 461.255
14* 3 381.3 381.3
15* 4 360.716 360.716
16 5 360.716 360.716
17*

196

2 438.464 438.464
18* 3 355.876 355.876
19 4 338.088 336.99
20 5 336.992 336.992
21*

225

2 464.617 464.617
22* 3 377.13 377.13
23* 4 351.11 351.11
24 5 359.639 351.11
25*

400

2 477.107 477.107
26* 3 387.27 387.27
27 4 364.194 358.19
28 5 373.522 358.19
29*

625

2 477.498 477.498
30* 3 387.59 387.59
31 4 357.873 345.07
32 5 364.706 345.1
33*

900

2 473.753 473.753
34* 3 384.557 384.557
35 4 379.972 357.82
36 5 375.624 357.82
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Table 5.15: Average of the % deviation of heuristics from best found solution

Insta
nces

Number
of demand

regions

Number
of

levels

Heuristics

CLH LLH CLDEH CLUDEH DCLDEH AAH
1*

36

2 0 0 0 0 0 0
2* 3 0.82 8.34 0.54 0.56 0.57 0.44
3* 4 21.75 20.13 6.61 9.81 5.27 0
4* 5 21.75 20.96 7.55 10.69 4.51 0
5*

64

2 0 0 0 0 0 0.01
6* 3 0.53 1.68 0.53 0.52 0.53 0
7* 4 14.76 12.86 0.93 2.72 1.25 0
8* 5 14.76 12.61 1.11 3.19 1.62 0
9*

100

2 0 0 0 0 0 0.07
10* 3 7.89 4.69 0.71 3.16 0.38 0
11* 4 10.61 10.5 1.35 2.99 1.68 0
12* 5 10.61 10.54 1.1 2.72 2.67 0
13*

144

2 0 0 0 0 0 0.04
14* 3 0.81 2.54 0.38 0.42 0.49 0
15* 4 12.22 11.76 2.54 3.32 1.77 0.01
16 5 12.22 12.08 1.97 4.13 1.6 0.01

17*

196

2 0 0 0 0 0 0
18* 3 0 1.15 0 0 0 0
19 4 10.17 10.61 1.48 1.66 1.5 0.81
20 5 10.17 10.42 1.41 1.52 1.4 0.81

21*

225

2 0 0 0 0 0 0
22* 3 0 0.01 0 0 0 0
23* 4 11.32 11.31 2.18 2.97 2.01 0
24 5 11.32 11.39 2.41 3.06 1.71 0

25*

400

2 0 0 0 0 0 0
26* 3 0 0 0 0 0 0
27 4 11.04 11.19 0.54 1.98 1.76 0.38
28 5 11.04 11.51 0.65 2.24 0.82 0.38

29*

625

2 0 0 0 0 0 0
30* 3 0 0 0 0 0 0
31 4 11 11.29 0.96 1.6 1.22 0.01
32 5 10.99 11.53 0.86 1.6 1.47 0

33*

900

2 0 0 0 0 0 0
34* 3 0 0 0 0 0 0
35 4 10.77 10.75 0.49 1.57 0.48 0.35
36 5 10.77 10.77 0.47 1.56 0.5 0.35

Average deviation 6.592 6.684 1.021 1.778 0.978 0.102
Maximum deviation 21.75 20.96 7.55 10.69 5.27 0.81
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Table 5.16: Minimum of the % deviation of heuristics from best found solution

Insta
nces

Number
of demand

regions

Number
of

levels

Heuristics Initial
locations

CLH LLH CLDEH CLUDEH DCLDEH AAH
1*

36

2 0 0 0 0 0 0 0
2* 3 0.62 0 0.54 0.54 0.54 0.44 5.8
3* 4 0.85 0 0.85 0.85 0.85 0 20.48
4* 5 0.85 0 0.85 0.85 0.85 0 20.48
5*

64

2 0 0 0 0 0 0.01 0
6* 3 0.53 0 0.53 0.48 0.48 0 4.36
7* 4 3.32 3.32 0.12 0.12 0.12 0 7.09
8* 5 3.32 3.32 0.12 0.12 0.12 0 7.09
9*

100

2 0 0 0 0 0 0.07 0
10* 3 0.39 1.39 0.37 0.39 0.36 0 9.97
11* 4 3.91 3.91 0.86 0.86 0 0 4.52
12* 5 3.91 3.91 0 0 0 0 4.52
13*

144

2 0 0 0 0 0 0.04 0
14* 3 0.06 0 0.06 0.06 0.06 0 1.59
15* 4 3.64 3.64 1.32 0 0 0.01 5.88
16 5 3.64 3.64 0 1.52 0 0.01 5.88

17*

196

2 0 0 0 0 0 0 0
18* 3 0 0 0 0 0 0 0
19 4 1.69 1.69 0.74 0 0.74 0.81 2.73
20 5 1.69 1.69 0 1.19 0 0.81 2.73

21*

225

2 0 0 0 0 0 0 0
22* 3 0 0 0 0 0 0 0
23* 4 3.22 3.05 0 0 0 0 6.88
24 5 3.22 3.22 0 1.46 0 0 6.88

25*

400

2 0 0 0 0 0 0 0
26* 3 0 0 0 0 0 0 0
27 4 3.61 3.61 0 0 0.1 0.38 4.3
28 5 3.61 3.61 0 0.1 0 0.38 4.3

29*

625

2 0 0 0 0 0 0 0
30* 3 0 0 0 0 0 0 0
31 4 1.89 1.89 0 0.84 0.19 0.01 2.06
32 5 1.88 1.88 0.07 0.61 0.48 0 2.05

33*

900

2 0 0 0 0 0 0 0
34* 3 0 0 0 0 0 0 0
35 4 0.5 0.5 0 0 0 0.35 0.67
36 5 0.5 0.5 0 0.09 0.24 0.35 0.67

Average deviation 1.301 1.244 0.179 0.28 0.143 0.102 3.637
Maximum deviation 3.91 3.91 1.32 1.52 0.85 0.81 20.48

Number of instances which
find the best solution

14 19 24 20 23 23 14
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instances but the average deviation of LLH is a little bit better. Thus, LLH could

be more reliable than CLH. Simulated annealing helps the heuristics CLDEH and

CLUDEH to get out of stuck. They could search most points of the feasible region

to find near optimal solutions. Forcing the algorithm to select input demand regions

from one upper level restricts the heuristic to check feasible region effectively. Con-

sequently CLUDEH has worser results than CLDEH. Alos the Table 5.16 shows that

the proposed decent heuristic (DCLDEH) outperforms other SOCP based heuristics.

Considering all heuristics, the last one (AAH) performs better than all others. It can

find near optimal solution in almost all instances. AAH reduces the feasible region

iteration by iteration and simultaneously checks to not miss optimal solution in this

reduction procedure. As a result, it could check feasible region effectively to find near

optimal solutions.

A good heuristic should provide acceptable solution in a reasonable time. Thus, the

associated computation time of the Table 5.16 for all the heuristics is presented in

Table 5.17. CLH and LLH get stuck and leave algorithm in the initial iterations.

Accordingly, they have lowest running time among SOCP based heuristics. AAH

heuristic searches feasible region effectiely and converges after few iterations. Ad-

ditionally, it uses another approach to find fitness function in each iteration, which

is faster than SOCP formulation. Consequently the computation time of the AAH is

low. It can be concluded that AAH obtains better results among all heuristics in the

very low running time which confirms its quality.

Each of the SOCP based heuristics has specific parameters and stopping conditions.

Some of them leave the heuristic in the first iterations and some others could tra-

verse feasible region in more iterations to get near optimal solution. This makes the

comparison between SOCP based heuristics unrealistic. To evaluate all SOCP based

heuristics in the same condition, the time limit of 180 seconds is considered for all

heuristics. Each instance is run for 180 seconds and as soon as the heuristic leaves

the algorithm before the 180 seconds, it starts again with the new initial location until

approaching the determined time limit. Therefore, CLH and LLH can check more

initial locations in comparison with the other SOCP based heuristics which has more

computation time. The number of initial location that each of these heuristics can

check in the time limit of 180 seconds is presented in the Table 5.18. Also, average
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Table 5.17: Computation time (in seconds) of the heuristics associated to the solutions
of the Table 5.16

Insta
nces

Number
of demand

regions

Number
of

levels

Heuristics

CLH LLH CLDEH CLUDEH DCLDEH AAH
1

36

2 0.1 0.17 1.59 1.57 0.77 0.25
2 3 0.12 0.25 1.59 1.57 1.72 0.24
3 4 0.16 0.34 1.97 1.66 1.52 0.25
4 5 0.16 0.48 2.81 2.82 1.57 0.3
5

64

2 0.13 0.24 2.25 2.1 0.39 0.26
6 3 0.15 0.51 2.24 2.11 1.91 0.34
7 4 0.13 0.51 3.18 2.75 2.17 0.26
8 5 0.14 0.9 4.42 4.44 2.15 0.33
9

100

2 0.19 0.43 3.74 3.61 0.76 0.4
10 3 0.23 0.75 3.74 3.59 4.22 0.48
11 4 0.19 0.58 4.14 3.83 3.57 0.47
12 5 0.2 0.81 6.05 6.02 3.24 0.48
13

144

2 0.25 0.58 5.05 4.8 0.51 0.47
14 3 0.26 1.37 5.07 4.77 7.07 0.54
15 4 0.26 1.11 6.96 5.24 5.12 0.45
16 5 0.26 1.47 9.26 9.18 5.12 0.48
17

196

2 0.28 0.65 5.55 5.13 1.24 0.56
18 3 0.26 1.48 5.55 5.24 0.73 0.51
19 4 0.59 1.19 11.04 10.98 5.4 0.66
20 5 0.58 1.6 10.92 10.83 5.39 0.57
21

225

2 0.38 0.84 7.41 6.97 0.88 0.56
22 3 0.34 2.92 7.37 6.96 0.67 0.54
23 4 0.37 1.66 13.82 13.77 7.06 0.53
24 5 0.37 2.19 13.92 13.83 7.16 0.5
25

400

2 0.59 1.45 13.58 12.09 1.56 0.75
26 3 0.48 3.71 13.29 12 1.51 0.73
27 4 0.65 3.23 23.32 23.16 12.98 0.7
28 5 0.65 3.52 23.72 23.57 13.64 0.76
29

625

2 0.86 2.34 19.18 13.97 4.96 0.83
30 3 0.78 5.16 19.05 15.02 6.14 0.86
31 4 0.99 4.68 36.31 36.38 18.52 0.85
32 5 0.99 5.6 36.99 36.96 15.95 0.85
33

900

2 1.34 3.69 26.97 19.69 54.22 1.07
34 3 1.15 8.88 26.93 21.83 46.05 1.25
35 4 1.2 5.98 52.24 52.25 27.56 3.23
36 5 1.21 7.52 53.86 53.91 27.22 1.05
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and minimum of percent deviations for these replications are provided in the Tables

5.19 and 5.20, respectively.

Considering the computation time of the proposed heuristics and exact algorithm

(MISOCP formulation) indicates efficiency of our heuristics.

In the following, several figures are presented to provide a suitable vision about the

performance of the heuristics. Figure 5.1 displays results of the Table 5.16 in one

chart. The behavior and quality of each heuristic is specified. It is seen that all

SOCP based heuristics have similar behavior on the instances and in most of the

instances of level 3, deviation is almost zero. Table 5.16 shows the percent deviation

of the objective function value of the heuristics from the objective function value of

the best found solutions. The found location of these heuristics is also important.

Figures 5.2, 5.3 and 5.4 indicate the obtained location of the facility for each heuristic

and compare with the solution of the MISOCP formulation. These figures represent

instances number 10, 15 and 24 respectively.

Additionally, some figures are provided for the comparison between computation

time of the heuristics. Figure 5.5 displays the computation time of the heuristics

on all instances. Figures 5.6 to 5.11 illustrate computation time of the each heuristic

on all instances. It is obvious that increasing the size of instances has direct relation

on the running time of the heuristics.

Another significant aspect in the heuristics which use randomness is the number of

times that the heuristic finds good solutions in several repetitions. For this purpose,

CLDEH, CLUDEH and DCLDEH which have random parameters have been repli-

cated 100 times for the instance with 144 regions and 4 levels and histogram chart

of results is provided in the Figure 5.12. This figure indicates that DCLDEH and

CLDEH could find good results in lots of replications, therefore, they are more reli-

able than CLUDEH.
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Table 5.18: Number of initial locations checked by the heuristics in a time limit

Insta
nces

Number
of demand

regions

Number
of

levels

Heuristics

CLH LLH CLDEH CLUDEH DCLDEH
1

36

2 2245 1025 54 64 207
2 3 1929 652 93 106 117
3 4 1504 501 117 114 119
4 5 1584 343 117 115 116
5

64

2 1565 720 42 41 464
6 3 1422 321 58 65 102
7 4 1070 366 82 86 82
8 5 1102 216 82 87 82
9

100

2 1094 387 30 30 160
10 3 876 218 44 49 46
11 4 1010 272 49 51 55
12 5 1011 168 50 53 55
13

144

2 785 306 20 21 323
14 3 751 122 26 37 27
15 4 774 175 37 40 39
16 5 773 132 37 40 37
17

196

2 652 272 18 18 209
18 3 709 112 17 18 321
19 4 623 148 33 36 34
20 5 631 114 33 35 35
21

225

2 482 217 14 13 196
22 3 580 62 14 13 227
23 4 399 66 25 27 25
24 5 426 88 25 26 25
25

400

2 323 127 8 8 112
26 3 391 51 9 8 125
27 4 243 62 14 15 14
28 5 282 53 14 15 16
29

625

2 222 78 5 5 37
30 3 243 32 5 5 28
31 4 166 40 10 12 11
32 5 150 29 10 12 11
33

900

2 132 49 4 4 4
34 3 164 21 4 4 4
35 4 92 19 7 8 8
36 5 145 25 7 9 7
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Table 5.19: Average % deviation of the heuristics for running them in a time limit

Insta
nces

Number
of demand

regions

Number
of

levels

Heuristics

CLH LLH CLDEH CLUDEH DCLDEH
1*

36

2 0 0 0 0 0
2* 3 0.8 7.17 0.55 0.55 0.56
3* 4 17.98 17.12 6.84 9.66 5.69
4* 5 17.83 16.34 5.18 8.52 5.05
5*

64

2 0 0 0 0 0
6* 3 0.53 1.65 0.53 0.52 0.53
7* 4 13.17 12.99 1.62 2.39 1.81
8* 5 13.04 12.45 1.84 2.16 1.76
9*

100

2 0 0 0 0 0
10* 3 6.93 3.9 0.6 2.6 0.68
11* 4 9.48 8.92 1.18 2.52 2
12* 5 9.48 9.03 0.95 2.45 1.47
13*

144

2 0 0 0 0 0
14* 3 0.9 2.62 0.24 0.27 0.41
15* 4 10.83 9.52 2.5 3.03 2.35
16 5 10.81 10.45 2.01 3.7 1.75

17*

196

2 0 0 0 0 0
18* 3 0 0.89 0 0 0
19 4 9.3 9.11 1.45 1.49 1.55
20 5 9.63 8.82 1.39 1.45 2.02

21*

225

2 0 0 0 0 0
22* 3 0 0.01 0 0 0
23* 4 10.31 10.13 1.31 2.98 1.93
24 5 10.25 10.31 2.28 2.85 2.11

25*

400

2 0 0 0 0 0
26* 3 0 0 0 0 0
27 4 9.17 8.94 0.72 2.12 0.64
28 5 7.83 8.45 0.91 1.43 2.36

29*

625

2 0 0 0 0 0
30* 3 0 0 0 0 0
31 4 10.4 8.68 1.05 1.02 1.12
32 5 9.61 10.33 0.95 1.41 0.98

33*

900

2 0 0 0 0 0
34* 3 0 0 0 0 0
35 4 8.58 7.8 0.53 1.41 0.37
36 5 9.31 8.52 0.64 2.33 0.51

Average deviation 5.725 5.677 0.98 1.579 1.043
Maximum deviation 17.98 17.12 6.84 9.66 5.69
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Table 5.20: Minimum % Deviation of the heuristics for running them in a time limit

Insta
nces

Number
of demand

regions

Number
of

levels

Heuristics

CLH LLH CLDEH CLUDEH DCLDEH
1*

36

2 0 0 0 0 0
2* 3 0.54 0 0.54 0.54 0.54
3* 4 0.85 0 0.85 0.85 0.85
4* 5 0.85 0 0.85 0.85 0.85
5*

64

2 0 0 0 0 0
6* 3 0.53 0 0.48 0.48 0.48
7* 4 0.12 0.62 0.12 0.12 0.12
8* 5 0.12 0 0.12 0.12 0.12
9*

100

2 0 0 0 0 0
10* 3 0.39 1.39 0.36 0.37 0.37
11* 4 0 0 0 0 0
12* 5 0 0 0 0 0
13*

144

2 0 0 0 0 0
14* 3 0.06 0 0.06 0.06 0.06
15* 4 2.46 0 0 0 0
16 5 1.32 0 0 1.52 0
17*

196

2 0 0 0 0 0
18* 3 0 0 0 0 0
19 4 0.08 1.23 0.65 0.08 0.71
20 5 0.71 0.33 0.08 0 0.74
21*

225

2 0 0 0 0 0
22* 3 0 0 0 0 0
23* 4 0 1.18 0 1.46 0
24 5 1.59 2.48 1.18 1.18 0
25*

400

2 0 0 0 0 0
26* 3 0 0 0 0 0
27 4 0.7 0.78 0 0.14 0.1
28 5 1.64 0.1 0.46 0.38 0.44
29*

625

2 0 0 0 0 0
30* 3 0 0 0 0 0
31 4 1.79 1.75 0.83 0.08 0.31
32 5 1.35 3.2 0.54 0.6 0.45
33*

900

2 0 0 0 0 0
34* 3 0 0 0 0 0
35 4 1.57 0.75 0.3 0.55 0.3
36 5 0.51 4.18 0.37 1.06 0.38

Average deviation 0.477 0.5 0.216 0.29 0.189
Maximum deviation 2.46 4.18 1.18 1.52 0.85
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Figure 5.1: Deviations of heuristics for all instances
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Figure 5.3: Facility locations found with heuristics for instance number 15
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Figure 5.4: Facility locations found with heuristics for instance number 24
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Figure 5.5: Computation time of heuristics for all instances
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Figure 5.7: Computation time of LLH with respect to the number of regions and

levels
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Figure 5.8: Computation time of CLDEH with respect to the number of regions and

levels
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Figure 5.9: Computation time of CLUDEH with respect to the number of regions and

levels
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Figure 5.10: Computation time of DCLDEH with respect to the number of regions

and levels

95



0

0.5

1

1.5

2

2.5

3

3.5

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

TI
M

E 
(S

EC
O

N
D

S)

INSTANCES

K = 2 K = 3 K = 4 K = 5

Figure 5.11: Computation time of AAH with respect to the number of regions and

levels
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Figure 5.12: Performance of heuristics in 100 replications of instance number 15

Finally, in the Figure 5.13, found location in each iteration for all heuristics is shown.

This provides good view about the dispersion of obtained solutions for each heuristic.
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(a) CLH (b) CLDEH

(c) CLUDEH (d) DCLDEH

(e) LLH (f) AAH

Figure 5.13: Facility location found in each iteration of heuristics for instance number

10

98



5.2 Computational study of the multi-facility case

5.2.1 Instance generation

Similar to the single facility version, some random instances are generated for multi-

facility case to evaluate performance of the exact and heuristic solutions on the prob-

lem. These randomly generated instances have the same properties with the instances

of the single facility case which was explained in the Section 5.1.1. In the multi-

facility version, another variable is added to the problem which represents the number

of facilities. This increases the size of problem even for the few number of demand

regions. Hence, the instances with 9 and 16 regions are considered here as well.

However, the instances with large number of demand regions are removed.

7 sets of instances are proposed for the multi-facility case with 9, 16, 36, 64, 100, 225

and 400 demand regions. Furthermore, each of these sets is tested for 2, 3, 4 and 5

facilities and 3 distinct levels of 2, 3 and 4. Consequently, 84 instances are generated

and evaluated for the multi-facility case. The summary of the problem instances are

listed in Table 5.21.
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Table 5.21: Random Generated Instances

Inst-
ance

# of
regions

# of fa-
cilities

# of
levels

1

9

2
2

2 3
3 4
4

3
2

5 3
6 4
7

4
2

8 3
9 4

10
5

2
11 3
12 4
13

16

2
2

14 3
15 4
16

3
2

17 3
18 4
19

4
2

20 3
21 4
22

5
2

23 3
24 4
25

36

2
2

26 3
27 4
28

3
2

29 3
30 4
31

4
2

32 3
33 4
34

5
2

35 3
36 4
37

64

2
2

38 3
39 4
40

3
2

41 3
42 4

Inst-
ance

# of
regions

# of fa-
cilities

# of
levels

43

64

4
2

44 3
45 4
46

5
2

47 3
48 4
49

100

2
2

50 3
51 4
52

3
2

53 3
54 4
55

4
2

56 3
57 4
58

5
2

59 3
60 4
61

225

2
2

62 3
63 4
64

3
2

65 3
66 4
67

4
2

68 3
69 4
70

5
2

71 3
72 4
73

400

2
2

74 3
75 4
76

3
2

77 3
78 4
79

4
2

80 3
81 4
82

5
2

83 3
84 4
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5.2.2 Parameter settings of the heuristics

The structure of the heuristics for the multi-facility case was described in the Sec-

tion 4.2. The first heuristic gives values for the binary variables to make problem

non-integer. It solves SOCP formulation to get new starting points and iterates this

procedure until reaching the stopping conditions. Hence, it has some parameters re-

lated to the stopping conditions which should be set. The other heuristics are the

extension of the single facility case. They have two phases. In the first phase, they

convert the multi-facility problem to the several single facility problems and utilize

the heuristics of the single facility case to update starting points. In the second phase,

they find the value of the corresponding heuristic solution of that iteration. They re-

peat this algorithm while stopping conditions are not reached. First phase represents

solving single facility heuristics and the related parameters are set same as the Section

5.1.2. Consequently, only stopping conditions for them should be set here.

Two stopping conditions are defined for all heuristics of the multi-facility case. The

first one is maximum number of iterations and the second one is convergence crite-

rion. As it was mentioned in the Section 4.2, convergence criterion for all heuristics

is getting 3 successive enough close solutions. All heuristics of the multi-facility case

begin form some initial locations and with a particular procedure update locations for

the next iterations. They repeat this algorithm and after several iterations converge

to a specific solution. Accordingly, they get same solutions after several iterations.

Setting maximum number of iterations less than required replications for converging,

decrease the quality of the solution. For the first heuristic (LALH) 3 maximum num-

ber of iterations is tested on 6 randomly generated instances. These values are 10,

15 and 20. Based on the results of the Table 5.22, it is clear that around 15 itera-

tions is enough for converging to the heuristic solution. Considering the maximum

number of iterations as 10, decreases the running time for some instances but affects

the quality of the solution as well. Since the computation time difference between 10

and 15 number of iterations is negligible, 15 is accepted as the maximum number of

iterations. For convergence condition of the LALH, 3 values are tested which are

0.01, 0.001 and 0.0001. Table 5.23 indicates the results of the convergence condi-

tion evaluation for LALH. As it was mentioned above, heuristics of the multi-facility
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Table 5.22: LALH parameter setting

Number
of

demand
regions

Number
of

facilities

Number
of

levels

Max number of
iterations = 10

Max number of
iterations = 15

Max number of
iterations = 20

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

36
3 2 280.19 1.93 280.19 1.81 280.19 1.88
4 3 185.82 4.16 185.82 4.22 185.82 4.09

64
3 2 325.98 2.11 325.75 2.39 325.75 2.36
4 3 189.83 9.59 189.83 9.53 189.83 9.57

100
3 2 296.12 5.01 296.12 5.11 296.12 5.22
4 3 192.38 13.65 191.75 15.46 191.75 15.37

Table 5.23: LALH parameter setting

Number
of

demand
regions

Number
of

facilities

Number
of

levels

Convergence
condition = 0.01

Convergence
condition = 0.001

Convergence
condition = 0.0001

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

36
3 2 280.19 1.96 280.19 1.94 280.19 1.94
4 3 185.82 4.39 185.82 4.21 185.82 4.16

64
3 2 325.75 2.28 325.75 2.34 325.75 2.28
4 3 184.82 9.42 184.82 9.53 184.82 9.57

100
3 2 296.12 5.2 296.12 5.09 296.12 5.19
4 3 189.23 15.33 189.23 15.41 189.23 15.37

case converge to a specific solution after several iterations quickly and then, they re-

port same solutions for the next iterations. The difference between heuristic solution

value of an iteration just before convergence and the heuristic solution after conver-

gence is more than 1. Also, the difference between heuristic solutions of the iterations

after convergence is zero. Consequently, all values in the interval of (0, 1) show sim-

ilar behavior on the heuristic as the convergence value. Considering the convergence

value more than one affects the quality of the heuristic. As a result, similar to the

single facility case, 0.001 is set as convergence value of LLH.

Next heuristics are the extended version of heuristics of the single facility case for

the multi-facility case. Since the repetition procedure of the all extended heuristics

for new obtained starting locations are the same, they show similar behavior on the

stopping conditions. Consequently, the parameter settings for only LAL-CLDEH is
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Table 5.24: LAL-CLDEH parameter setting

Number
of

demand
regions

Number
of

facilities

Number
of

levels

Max number of
iterations = 10

Max number of
iterations = 15

Max number of
iterations = 20

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

36
3 2 280.19 20.51 280.19 20.59 280.19 22.13
4 3 189.2 18.69 187.97 22.37 187.97 22.49

64
3 2 327.26 25.83 325.75 30.78 325.75 30.7
4 3 189.36 31.72 189.36 31.61 189.36 31.99

100
3 2 296.12 51.98 296.12 51.9 296.12 51.93
4 3 184.26 45.32 184.26 45.34 184.26 45.41

provided in this section and parameters of the other heuristics are considered same as

the LAL-CLDEH.

3 values are evaluated as the maximum number of iterations for LAL-CLDEH which

are 10, 15 and 20. The obtained results of these values are listed in the Table 5.24.

Considering maiximum number of iterations as 15 provides less than or equal heuris-

tic values in comparison with 10 and 20 maximum number of iterations. The com-

putation time of all three cases are close to each other. Therefore, 15 is selected as

the maximum number of iterations for LAL-CLDEH. Similar to the convergence

value of the LALH, considering any convergence value of the LAL-CLDEH between

0 and 1 provides the same results for heuristic and getting large values affects the

quality of the heuristic. Consequently, 0.001 is selected as the convergence value of

LAL-CLDEH as well (See Table 5.25).

5.2.3 Computational results

In this section the proposed model for the multi-facility multi-level minimax loca-

tion problem is solved by both MISOCP formulation (exact method) and introduced

heuristics. Then, they are compared with each other to evaluate their performance on

the randomly generated instances.
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Table 5.25: LAL-CLDEH parameter setting

Number
of

demand
regions

Number
of

facilities

Number
of

levels

Convergence
condition = 0.01

Convergence
condition = 0.001

Convergence
condition = 0.0001

MIN MIN MIN
Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

Obj.
value

Running
time (s)

36
3 2 280.19 22.14 280.19 22.25 280.19 22.13
4 3 185.91 22.52 185.91 22.49 185.91 22.54

64
3 2 325.65 30.7 325.73 30.7 325.75 30.72
4 3 189.36 31.94 189.36 31.96 189.36 32.03

100
3 2 296.12 51.9 296.12 51.81 296.12 51.84
4 3 184.26 45.41 184.26 45.37 184.26 45.42

5.2.3.1 Exact solution

The MISOCP formulation for the multi-facility multi-level continuous minimax loca-

tion problem was presented in the Section 3.2.1. It contains binary variables and the

branch-and-bound technique is utilized by the solver to deal with integer variables.

Increasing number of binary variables will growth branch-and-bound tree and out of

memory error will appear. Multi-facility case has t times more integer variables in

comparison with the single facility version where t is the number of facilities. Ac-

cordingly, solving small instances in this case can be troublesome as well. Instances

number 45 and 57 was run for 48 hours but can not report the optimal solution in this

time limit. Again, 3600 seconds time limit is considered for the problem to be able

for solving all 84 instances by MISOCP formulation. The associated results of the

MISOCP for the randomly generated instances in the multi-facility case are listed in

the Tables 5.26 and 5.27. It can be seen in the Tables 5.26 and 5.27 that objective

function has downward trend by increasing number of facilities.
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Table 5.26: Optimal or the best found objective function values by MISOCP formu-
lation and associated running times (in seconds)

Problem
instance

Number of
regions

Number of
facilities

Number of
levels

Objective
function value

Running
time (s)

Gap
(%)

Best
solution

1*

9

2
2 321.11 0.56 0 321.11

2* 3 275.4 0.97 0 275.4
3* 4 214.25 0.84 0 214.25
4*

3
2 211.83 1.01 0 211.83

5* 3 194.4 1.34 0 194.4
6* 4 163.64 3.18 0 163.64
7*

4
2 182.94 1.62 0 182.94

8* 3 161.18 2.07 0 161.18
9* 4 120.37 3.34 0 120.37

10*
5

2 160.94 2.36 0 160.94
11* 3 135.49 3.59 0 135.49
12* 4 100.77 3.76 0 100.77
13*

16

2
2 345.62 2.23 0 345.62

14* 3 307.84 3.03 0 307.84
15* 4 228.92 5.66 0 228.92
16*

3
2 294.4 3.17 0 294.4

17* 3 238.82 9.97 0 238.82
18* 4 167.38 15.26 0 167.38
19*

4
2 188.05 10.84 0 188.05

20* 3 166.57 18.28 0 166.57
21* 4 144.51 141.34 0 144.51
22*

5
2 169.43 19.06 0 169.43

23* 3 149.22 65.54 0 149.22
24* 4 127.6 645.58 0 127.6
25*

36

2
2 340.59 5.47 0 340.59

26* 3 277.53 16 0 277.53
27* 4 233.94 114.28 0 233.94
28*

3
2 280.19 15.97 0 280.19

29* 3 227.28 52.44 0 227.28
30* 4 184.87 1378.67 0 184.87
31*

4
2 204.32 76.88 0 204.32

32* 3 172.1 267.69 0 172.1
33 4 169.81 3600 75.4 154.76

34*
5

2 192.44 655.63 0 192.44
35 3 155.98 3600 19.3 155.98
36 4 148.41 3600 82.4 140.89

37*

64

2
2 354.87 18.38 0 354.87

38* 3 287.96 85.21 0 287.96
39* 4 217.98 319.84 0 217.98
40*

3
2 325.75 51.77 0 325.75

41* 3 264.3 307.62 0 264.3
42 4 210.44 3600 80.5 205.39

105



Table 5.27: Optimal or the best found objective function values by MISOCP formu-
lation and associated running times (in seconds)

Problem
instance

Number of
regions

Number of
facilities

Number of
levels

Objective
function value

Running
time (s)

Gap
(%)

Best
solution

43*

64

4
2 211.14 406.25 0 211.14

44* 3 184.82 2617.84 0 184.82
45 4 205.88 3600 92.2 158.19
46

5
2 199.86 3600 1.8 198.49

47 3 178.9 3600 84 171.17
48 4 203.21 3600 92.8 147.72

49*

100

2
2 356.05 169.02 0 356.05

50* 3 289.13 272.66 0 289.13
51 4 248.87 3600 26.3 240.57

52*
3

2 296.12 424.73 0 296.12
53 3 241.67 3600 2.5 240.23
54 4 238.17 3600 94.9 193.58

55*
4

2 222 1718.6 0 222
56 3 209.81 3600 88.6 184.26
57 4 227.16 3600 94.5 165.15
58

5
2 206.71 3600 85.5 195.86

59 3 188.14 3600 87.2 167.54
60 4 219.32 3600 94.4 148.12

61*

225

2
2 362.35 1441.07 0 362.35

62* 3 294.04 1663.09 0 294.04
63 4 326.43 3600 87.3 236.66
64

3
2 326.54 3600 13.5 321.25

65 3 314.77 3600 74.8 259.95
66 4 303.87 3600 97.3 203.63
67

4
2 264.01 3600 92.7 227.55

68 3 337.43 3600 95.1 187.34
69 4 355.15 3600 97.7 173.11
70

5
2 292.08 3600 94.5 208.54

71 3 348.91 3600 95.3 171.81
72 4 357.22 3600 97.7 150.53
73

400

2
2 375.2 3600 0.8 373.35

74 3 311.97 3600 15.8 302.97
75 4 395.65 3600 97.3 253.87
76

3
2 344.01 3600 76.8 337.63

77 3 389.23 3600 94.7 251.99
78 4 386.52 3600 98.6 205.68
79

4
2 357.24 3600 95.7 231.85

80 3 368.23 3600 96.7 190.33
81 4 379.25 3600 98.5 178.47
82

5
2 400.79 3600 96.2 208.62

83 3 383.47 3600 96.9 176
84 4 397.15 3600 98.6 160.31
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5.2.3.2 Heuristic’s solutions

The seven proposed heuristics of the multi-facility case are tested on the randomly

generated instances in this section. The obtained results of these heuristics are com-

pared with results of the MISOCP formulation to evaluate effectiveness of our heuris-

tics. Since all of the proposed heuristics are depended on the starting points, each

instance is solved with 20 distinct initial locations and the percent deviation of the re-

sults of these heuristics from the best found solution are obtained. For those instance

which the optimal solution can not be achieved in the specified time limit, minimum

value between objective function of the MISOCP solution with some gap and the val-

ues of the heuristic solutions is considered as the best found solution of that instance.

The best solutions of these heuristics for all instances which have the minimum per-

cent deviation between 20 replications are reported in the Tables 5.28 and 5.29. Fur-

thermore, average of the percent deviations for these replications are provided in the

Tables 5.30 and 5.31. In the last column of these tables the percent deviation of the

problem’s objective function for 20 initial locations is reported. This helps to figure

out how much the initial locations are improved by utilizing the heuristics on them.

As it was expected, the LAL-AAH again outperforms the other heuristics. However,

in some of the instances non of the heuristics can find the optimal solutions. This

indicates the advantage of MISOCP formulation specially in small instances.

For providing the comprehensive comparison between heuristics of the multi-facility

case, the computation time of them is also presented. Tables 5.32 and 5.33 indicate

the computation time of the all seven heuristics in seconds associated to the solutions

of the Tables 5.28 and 5.29. As it was mentioned above, the MISOCP could not solve

instances 45 and 57 in 48 hours. However, these heuristics solve them at most in 34

and 45 seconds, respectively. Similar to the single facility case, LAL-AAH heuristic

again has the lowest computation time between all others.

In the following, the presented results of the heuristics are displayed on some figures

to provide a good view for the performance of each heuristic. Figures 5.14 and 5.14

illustrate the minimum percent deviation of heuristics and the Figure 5.16 shows the

associated computation time of the previous tables. Finally, Figures 5.17 and 5.18

provide the obtained locations of the facilities by each heuristic and compare them
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Table 5.28: Minimum % deviation of the heuristics from the best found solution

Problem Instance LALH
LAL -
CLH

LAL -
LLH

LAL -
CLDEH

LAL -
CLUDEH

LAL -
DCLDEH

LAL -
AAH

Initial
locations

1* 0 0 0 0 0 0 0 17.51
2* 0 0 0 0 0 0 0.02 19.95
3* 0 7.41 0 7.41 0 7.41 0 31.33
4* 0 0 0 0 8.63 0 0 50.88
5* 0 0 0 0 0 0 0 60.72
6* 0 14.08 0 0 0 0 0.56 58.05
7* 0 8.69 0 0 0 8.69 0 50.08
8* 0.26 0 0 0 0 0 0 41.88
9* 0.13 0 0 5.14 5.14 0 0 89.99

10* 1.3 0 0 0 0 0 0 45.99
11* 5.44 0 1.04 0 0 0 0 60.43
12* 0 0 0.92 0 0 0 0 114.02
13* 0 0 0 0 0 0 0 21.56
14* 0 1.06 0 0 0 0 0 10.77
15* 0 7.83 0 0 0 7.81 0.89 38.95
16* 0 0 0 0 0 0 0.09 16.6
17* 0 3.35 0 0 0 0 0 22.09
18* 0 13.77 7.14 7.96 1.97 7.96 5.47 37.33
19* 0.03 4.23 5.32 1.24 4.23 4.23 0 40.36
20* 0 17.67 5.05 6.99 9.98 5.05 0.67 35.17
21* 8.39 15.83 7.22 5.7 1.07 7.22 3.56 39.58
22* 3.14 2.89 8.09 8.48 0 6.82 3.14 55.07
23* 3.59 8.32 3.83 1.64 1.64 4.02 2.37 42.81
24* 4.56 26.67 13.49 4.56 13.49 4.56 0.4 52.41
25* 0 0 0 0 0 0 0 28.87
26* 0 0 0 0 0 0 0 28.37
27* 0.56 3.95 0 0 0.56 0.56 0 20.07
28* 0 0 0 0 0 0 0 28.76
29* 0 0 0 0 0 0 0.01 28.81
30* 8.88 13.61 14.09 5.98 4.32 6.64 6.31 28.63
31* 0 8.6 0 4.11 4.11 4.11 0.23 43.11
32* 7.97 11.28 14.76 9.22 11.24 9.22 0.01 37.83
33 4.26 14.55 10.16 0 6.08 5.99 4.37 37.92

34* 0 2.98 8.1 1.48 0 0.18 0 42.6
35 6.92 6.8 4.89 2.99 7.76 6.85 3.01 42.7
36 0 10.73 0 0 5.32 3.39 0.89 22.35

37* 0 0 0 0 0 0 0 30.16
38* 0.18 0.18 0.18 0 0.18 0.18 0.18 30.43
39* 8.09 14.21 21.44 1.42 3.17 1.37 0 31.47
40* 0 0 0 0 0 0 0 12.24
41* 0 0 0 0 0 0 0 12.26
42 0 0.66 0.66 1.95 4.87 3.91 0 14.8
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Table 5.29: Minimum % deviation of the heuristics from the best found solution

Problem Instance LALH
LAL -
CLH

LAL -
LLH

LAL -
CLDEH

LAL -
CLUDEH

LAL -
DCLDEH

LAL -
AAH

Initial
locations

43* 0 0 0.76 0.45 0 0 0 41.07
44* 2.84 6.35 3.09 2.59 0 0.13 0.13 30.91
45 6.2 12.08 13.22 4.2 0.61 4.62 0 26.25
46 3.75 0.67 1.79 0 3.73 3.98 3.99 39.48
47 4.87 6.89 2.93 0 2.71 4.67 4.52 31.2
48 5.77 8.54 11.72 0.51 0 5.79 0.72 30.04

49* 0 0 0 0 0 0 0.02 25.86
50* 0 0 0 0 0 0 0 25.8
51 3.65 4.17 0 0.27 2.71 2.58 0.51 25.1

52* 0 0 0 0 0 0 0.02 21.53
53 0 2.83 0 0 0 0 0.01 21.56
54 5.7 10.6 6.49 2.8 0 7.88 0.95 15

55* 0 0 1.52 0.64 0 0 0 42.66
56 4.06 0.11 3.78 0 0.11 0 1.13 39.45
57 3.02 7.14 8.13 0 3.87 1.24 1.02 18.55
58 6.34 6.38 0 6.38 5.67 6.38 6.41 45.66
59 2.39 3.62 2.55 0 4.24 3.28 1.09 38.13
60 6.97 7.74 12.89 1.15 7.74 2.03 0 21.44

61* 0 0 0 0 0 0 0 28.85
62* 0 0 0 0 0 0 0 28.88
63 6.34 13.2 10.4 1.85 5.59 4.55 0 16.52
64 3.84 0 0 0 0 0 0 16.08
65 4.12 1.4 0 1.39 1.4 1.39 0.27 16.41
66 5.81 8.3 5.64 0.76 5.59 4.01 0 16.78
67 0.38 0 0.58 0.58 0.58 0.58 0.59 33.07
68 4.04 2.75 2.78 0 2.36 1.61 1.12 31.13
69 7.84 10.07 7.58 2.47 6.52 2.21 0 15.06
70 0 1.37 2.04 2.96 2.96 2.96 2.96 41.32
71 1.22 9.62 0 2.22 1.75 3.74 3.76 39.15
72 7.41 11.86 16.17 2.29 5.1 2.19 0 25.97
73 0.5 0.44 0 0.44 0.44 0.44 0.44 24.86
74 0.5 0.5 0 0.5 0.44 0.44 0.44 24.9
75 4.04 4.04 4.04 1.4 4.04 2.01 0 4.55
76 1.02 0 0 0 0 0 1.37 13.33
77 5.86 10.04 1.07 8.31 8.31 0 0.02 23.22
78 7.25 6.22 8.27 0.92 4.63 1.03 0 16.25
79 0.16 0.16 0.49 0 0 0.49 0.49 28.96
80 1.6 2.09 2.09 0.91 1.52 0.91 0 27.45
81 7.22 7.82 9.63 0.27 5.2 0.23 0 14.83
82 1.81 5.58 0 5.81 5.81 5.58 2.68 41.33
83 0.77 2.77 0.58 1.51 2.11 0.95 0 35.9
84 7.38 8.55 9.97 2.13 4.02 0 0.89 15.16

Average 2.362 4.801 3.293 1.571 2.304 2.191 0.806 32.08
Number of best
found solutions 3 4 4 4 4 4 4 0
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Table 5.30: Average % deviation of the heuristics from the best found solution

Problem Instance LALH
LAL -
CLH

LAL -
LLH

LAL -
CLDEH

LAL -
CLUDEH

LAL -
DCLDEH

LAL -
AAH

Initial
locations

1* 3.88 8.7 3.59 7.4 6.15 7.92 4.35 45.18
2* 7.99 16.29 7.38 6.22 13.21 15.58 7.43 48.07
3* 21.52 17.28 20.42 14.43 12.1 17.2 8.84 79.65
4* 15.89 25.83 19.41 16.75 19.7 27.77 15.59 82.27
5* 19.89 36.2 20.76 31.86 32.74 31.06 19.7 79.37
6* 23.99 43.91 42.05 23.97 23.11 37.06 22.77 101.79
7* 12.34 32.32 14.75 22.75 18.83 33.06 9.4 88.12
8* 15.06 28.94 15.98 28.25 27.37 29.16 12.02 94.14
9* 31.52 54.52 31.5 22.24 29.61 55.59 30.81 145.26

10* 15.52 32.96 23.51 32.17 22.78 33.53 15.1 95.64
11* 18.16 40.36 31.59 40.05 38.11 41.04 17.8 112.46
12* 34.18 48.88 57.34 32.48 30.19 51.51 30.73 175.59
13* 6 17.41 5.14 9.05 7.95 11.55 5 47.72
14* 5.71 14.74 6.26 4.33 6.13 7.26 3.21 36.19
15* 19.04 34.35 31.87 16.24 20.78 21.94 13.07 60.39
16* 5.01 9.42 5.84 2.98 1.22 8.36 5.75 43.94
17* 10.37 19.17 11.09 4.5 6.03 13.8 7.02 45.11
18* 26.17 35.17 32.6 28.63 26.78 29.62 16.24 78.89
19* 26.1 38.17 33.76 26.21 34.77 40.02 34.88 83.41
20* 28.82 39.28 34.2 28.4 33.81 39.46 29.05 75.81
21* 25.96 38.56 26.95 29.78 32.38 32.21 16.71 84.21
22* 32.51 35.44 35.99 34.56 33.28 33.58 32.95 93.81
23* 32.53 42.17 34.45 39.91 36.81 44.26 31.7 84.27
24* 31.32 41.92 55.74 34.51 36.27 39.47 20.45 93.33
25* 0.89 8.43 4.98 3.74 4.06 4.14 3.89 53.11
26* 5.23 20.37 7.15 5.1 6.07 6.11 5.43 52.54
27* 16.96 21.64 22.28 6.27 11.3 13.08 5.92 46.61
28* 11.78 16.09 13.76 11.35 13.23 14.01 14.07 53.06
29* 13.67 21.41 15.76 11.23 10.61 15.15 14.34 53.15
30* 20.84 25.25 30.09 16.36 16.35 19.08 15.92 50.68
31* 18.66 30.11 24.55 18.9 23.49 24.42 23.69 79.44
32* 26.12 35.2 28.91 23.21 28.62 27.52 24.56 73.78
33 24.83 32.7 31.39 19.51 21.5 26.06 16.75 56.62

34* 10.62 29.53 26.33 22.41 19.82 21.81 19.89 81.44
35 24.41 35.88 30.93 29.73 24.79 30.67 23.9 81.64
36 32.73 44.74 42.53 28.96 31.52 36.65 25.59 59.48

37* 4.9 7.87 7.48 5.59 6.53 6.26 6.14 54.4
38* 5.67 20.69 7.84 6.51 5.74 7.17 7.32 54.74
39* 32 32.31 35.28 11.29 16.79 14.66 8.45 53.11
40* 2.36 2.09 3.17 2.11 1.99 2.14 2.04 40.9
41* 3.41 6.85 3 1.1 4.52 2.78 2.55 40.96
42 25.32 24.74 34.81 10.77 14.92 17.32 12.1 38.09
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Table 5.31: Average % deviation of the heuristics from the best found solution

Problem Instance LALH
LAL -
CLH

LAL -
LLH

LAL -
CLDEH

LAL -
CLUDEH

LAL -
DCLDEH

LAL -
AAH

Initial
locations

43* 25.27 29.82 26.55 20.68 18.68 26.32 27.91 85.08
44* 22.72 30.63 26.53 19.27 19.86 23.21 21.05 71.81
45 23.46 28.86 32.51 13.89 16.8 17.49 11.68 50.03
46 18.2 26.69 24.68 18.61 21 25.52 25.82 87.1
47 15.61 29.75 24.16 14.83 16.29 22.7 18.55 76.06
48 19.54 18.51 27.34 10.53 13.34 19.81 10.89 51.27

49* 0.97 9.1 4.08 2.01 1.16 2.85 2.81 51.11
50* 3.77 14.93 5.29 1.82 1.97 3.47 4.42 51.06
51 21.01 19.87 21.22 6.75 10.81 9.79 5.7 41.97

52* 7.83 10.47 9.99 8.16 8.16 11.59 10.16 52.59
53 15.17 20.84 16.15 12.48 13.9 15.65 15.1 52.66
54 16.7 20.55 21.47 8.79 12.19 13.69 7.75 39.35

55* 15.7 19.9 21.18 14.03 12.69 16.32 16.11 66.5
56 16.09 23.44 20.23 13.32 12.31 16.91 14.69 62.79
57 19.04 19.55 21.9 9.57 11.4 13.69 8.66 39.91
58 17.15 23.14 27.38 19.26 19.25 24.12 22.78 80.44
59 16.25 24.85 23.4 14.68 14.49 15.89 15.48 71.17
60 18.46 19.03 24.76 9.57 14.64 14.66 10.81 46.29

61* 1.39 7.32 5.77 5.54 5.54 5.65 5.78 52.23
62* 1.66 12.68 7.24 5.55 5.44 5.81 5.78 52.3
63 19.08 19.25 19.57 7.15 15.91 12.24 5.65 38.77
64 5.65 6.47 7.18 6.38 6.51 6.86 6.88 42.88
65 6.03 7.74 6.36 6.19 6.61 6.49 6.59 43.32
66 13.49 15.75 16.99 3.44 9.9 8.93 4.05 31.02
67 16.25 19.73 17.52 15.52 17.24 19.36 21.28 70.9
68 20.46 25.26 17.36 13.1 15.39 20.1 17.82 68.46
69 15.05 17.18 17.9 6.83 12.19 10.73 5.53 32.15
70 9.24 22.57 22.83 19.15 19.13 21.99 21.26 79.74
71 9.81 25.62 21.49 17.09 17.65 21.09 19.49 77.05
72 19.51 22.84 27.79 9.96 16.12 13.89 8.26 42.62
73 1.03 5.2 5.14 4.94 4.94 5.24 5.21 51.6
74 2.36 14.55 4.53 4.01 5.21 6.07 5.26 51.66
75 13.32 14.21 16.15 3.75 10.77 7.33 3.02 26.69
76 11.25 12.46 13.99 12.2 11.2 12.49 13.15 40.27
77 11.41 13.75 12.38 12.12 12.12 12.04 12.29 52.56
78 14.99 17.25 16.91 4.05 9.22 7.55 3.61 29.23
79 19.4 22.31 22.98 17.91 18.34 22.41 22.57 71.25
80 20.72 23.49 20.7 17.68 17.77 21.07 21.66 69.3
81 12.21 14.99 15.98 4.06 8.24 7.64 4.34 26.8
82 11.26 20.59 23.29 21.53 21.27 21.97 22.06 83.92
83 13.13 18.05 19.56 16.76 17.83 18.27 18.33 76.91
84 11.57 16 17.05 5.45 10.09 10.27 5.11 32.51

Average 15.75 23.25 20.57 14.65 16.02 18.93 13.79 63.33

111



Table 5.32: Running time (in seconds) to obtain solutions of Tables 5.28 and 5.29

Problem Instance LALH
LAL -
CLH

LAL -
LLH

LAL -
CLDEH

LAL -
CLUDEH

LAL -
DCLDEH

LAL -
AAH

1 0.14 1.42 0.75 6.25 5.71 1.35 0.04
2 0.17 2.77 0.93 5.91 6.31 2.7 0.04
3 0.27 2.87 1.11 6.11 5.96 2.04 0.04
4 0.16 2.97 0.91 6.69 7.04 2.28 0.04
5 0.23 2.51 1.11 6.43 6.51 1.73 0.04
6 0.5 2.2 1.28 7 6.73 2.46 0.04
7 0.19 2.6 1.06 7.14 8.62 2.12 0.04
8 0.31 3.17 1.23 7.96 8.33 1.9 0.04
9 0.79 2.98 1.44 8.39 7.4 2.23 0.04

10 0.23 2.86 1.15 7.35 8.77 2.46 0.04
11 0.4 1.73 1.32 7.92 7.93 2.06 0.04
12 1.29 1.92 1.55 8.73 7.61 2.81 0.05
13 0.39 3.03 1.5 12.97 10.58 6.01 0.07
14 0.6 4.19 1.92 12.32 11.32 4.94 0.07
15 1.17 3.9 2.55 11.44 11.44 6.56 0.07
16 0.72 5.16 1.69 13.5 11.74 6.64 0.07
17 1.16 4.28 2.13 14.18 14.6 4.89 0.07
18 1.66 5.21 2.74 12.58 15.35 6.1 0.07
19 1.19 5.47 1.84 14.32 12.55 6.03 0.07
20 2.02 5.95 2.31 15.14 15.2 4.88 0.08
21 2.59 5.82 2.92 12.68 13.88 5.51 0.07
22 2.25 5.92 1.99 13.73 14.49 5.73 0.07
23 2.83 6.23 2.4 15.3 15.89 4.73 0.07
24 3.74 6.37 2.95 14.8 13.14 5.24 0.08
25 0.84 1.91 2.85 19.47 12.36 7.19 0.14
26 1.51 4.29 4.22 18.16 18.63 5.27 0.14
27 1.79 6.68 5.72 16.1 18.95 8.29 0.14
28 1.93 3.49 2.92 22.13 15.34 7.31 0.15
29 3.07 5.36 4.19 20.23 21.08 9.78 0.14
30 4.52 6.39 5.92 18.66 21.78 9 0.14
31 2.76 3.15 3.08 23.4 19.09 9.41 0.13
32 4.46 8.53 4.34 22.49 21.76 10.98 0.14
33 5.54 9.84 5.91 20.07 22.43 10.5 0.14
34 4.55 5.91 3.3 25.58 22.12 9.47 0.13
35 7.02 8.04 4.47 26.45 24.75 10.42 0.14
36 10.01 10.85 7.5 21.74 26.52 12.46 0.14
37 1.32 2.01 4.1 30.18 16.42 6.23 0.24
38 3.54 3.17 6.85 28.25 27.54 6.79 0.23
39 2.55 8.43 9.05 20.04 30.34 11.09 0.23
40 2.68 4.3 4.48 30.7 20.22 10.01 0.23
41 7.78 5.06 6.7 29.31 29.65 10.53 0.23
42 6.35 9.8 8.78 25.31 30.82 13.28 0.23
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Table 5.33: Running time (in seconds) to obtain solutions of Tables 5.28 and 5.29

Problem Instance LALH
LAL -
CLH

LAL -
LLH

LAL -
CLDEH

LAL -
CLUDEH

LAL -
DCLDEH

LAL -
AAH

43 4.72 3.79 4.47 33.78 23.86 12.07 0.24
44 9.45 8.01 6.61 31.99 30.37 12.81 0.23
45 12.36 11.53 8.94 28.59 33.21 16.64 0.24
46 8.73 5.48 4.91 35.75 26.62 12.51 0.22
47 15.26 11.22 6.77 35.24 32.64 14.62 0.23
48 17.45 12.73 8.92 32.29 34.45 16.76 0.23
49 2.12 2.23 6.83 44.57 23.82 10.25 0.35
50 3.6 6.82 11.84 42.97 38.98 7.04 0.35
51 4.36 17.21 16.51 31.56 43.13 24.9 0.35
52 5.87 2.91 6.77 51.93 27.21 9.2 0.35
53 9.63 7.83 11.63 47.5 44.51 17.13 0.35
54 11.03 13.21 15.66 32.43 52.09 17.06 0.35
55 10.21 4.29 6.77 48.06 29.17 10.87 0.34
56 16.6 8.62 11.3 45.41 41.54 18.32 0.36
57 17.89 14.76 15.33 34.19 44.13 19.99 0.35
58 19.89 5.62 7.07 48.8 33.71 15.45 0.34
59 27.65 9.05 11.24 49.05 45.77 21.47 0.35
60 25.43 15.08 15.5 40.16 46.45 22.16 0.34
61 5.64 2.65 14.34 97.51 52.69 10.55 0.82
62 10.06 7.5 22.03 90.58 90.11 12.11 0.82
63 15.25 16.88 37.78 53.57 91.44 17.33 0.83
64 12.37 3.55 19.87 110.92 57.2 12.83 0.8
65 42.65 6.07 26.32 107.42 105.97 20 0.81
66 29.31 16.42 33.81 70.76 111.95 18.87 0.81
67 46.7 3.45 15.95 103.24 53.54 15.37 0.8
68 43.8 7.71 27.89 98.26 84.09 22.31 0.81
69 68.21 17.04 35.78 68.74 105.55 31.07 0.8
70 73.14 4.97 15.25 104.57 56.47 18.11 0.78
71 110.59 10.79 24.78 94.49 84.77 28.39 0.8
72 107.2 24.81 40.58 66.45 106.34 35.68 0.79
73 24.85 4.86 25.8 169.69 83.86 21.94 1.52
74 325.32 7.38 65.07 158.34 168.46 15.19 1.53
75 32.72 22.21 55.69 102.21 171.05 19.51 1.54
76 33.41 6.9 29.25 200.29 100.45 19.94 1.49
77 70.62 7.7 43.71 190.09 189.61 21.92 1.49
78 59.09 22.02 54.84 102.98 197.76 24.44 1.51
79 87.23 5.07 28.93 188.07 98.89 21.87 1.47
80 153.97 6.72 50.1 153.45 142.68 25.5 1.48
81 105.01 29.13 56.08 114.92 183.31 41.36 1.47
82 158.46 5.6 27.61 176.65 101.98 21.48 1.45
83 317.67 14.41 48.52 160.71 153.72 30.42 1.46
84 253.45 28.86 58.32 134.41 175.3 56.56 1.45
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with the solution of the MISOCP formulation.
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Figure 5.14: Minimum % deviation of LAL-CLDEH, LAL-DCLDEH and LAL-AAH

for all instances
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Figure 5.17: Facility locations found with the heuristics for the instance number 21
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Figure 5.18: Facility locations found with the heuristics for the instance number 53
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Figure 5.19: Covering levels for the instance number 41
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CHAPTER 6

CASE STUDY OF ISTANBUL

Computational results of the proposed multi level continuous minimax location prob-

lem were presented for some randomly generated instances in the previous chapter.

For evaluating the performance of our model more precisely, we apply this model

for the real case of Istanbul. Pre-positioning of relief items in humanitarian logistics

was explained in Section 1. Here, we aim at finding the optimal facility location(s)

to pre-position some relief items in Istanbul. Based on the nature of the problem, it

is required to cover all population. Hence, all districts pulls the facilities to them-

selves. The problem is finding the locations such that relief items could be provided

for all inhabitants with some constraints. Accordingly, the problem can be formulated

by minimax model. Istanbul city contains 38 districts with total population of 14.8

million people. We considered each district as a demand region and its population

as corresponding weight of that region. These regions and their associated weights

are listed in the Table 6.1. Districts have irregular shapes with uncountable number

of vertices. For reducing the complexity of the problem, all 38 districts (demand

regions) are estimated by polygons with maximum number of 70 corners and the as-

sociated coordinates for each corner is found (See Figure 6.1). ArcGIS (ArcMap)

version 10.0 software is utilized to digitize of the Istanbul map. Since taking the

convex hulls of the demand regions do not change the optimal solution, the convex

hulls of the demand regions are considered in calculations. Other parameters of the

problem are set same as in Section 5. The single facility case is studied with four

scenarios where the number of levels are 2, 3, 4, or 5. In the multi-facility case, 12

scenarios are considered which are the combinations of 2, 3, 4, 5 facilities and 2, 3,

and 4 levels. Again, the time limit for running of the MISOCP formulation for both
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single and multi-facility cases is considered as 3600 seconds.

Figure 6.1: Districts map of Istanbul

Based on above mentioned configurations, firstly, the model is applied for the single

facility case and solved with both MISOCP formulation and proposed heuristics. For

the SOCP based heuristics, each scenario is solved with 20 different initial locations

and percent deviations from the best solution is found. The minimum and average of

percent deviations from the best solution for each scenario is listed in Tables 6.2 and

6.3, respectively. Additionally, the Table 6.4 compares the computation time of the

MISOCP formulation and heuristics’ solution related to Table 6.2.

Results of the single facility multi-level minimax location problem for Istanbul case

again confirm the quality of the Area Abstraction Heuristic (AAH) which has lower

average and minimum percent deviation than the other heuristics. Also, Table 6.2

indicates that considering 3 covering levels for the problem reduces objective function

by almost 13 Km in comparison with having 2 covering levels.

In Figure 6.2, obtained locations for the classic or one-level (green circle), bi-level

(red star) and three-level (blue square) single facility minimax location problem are

shown. This figure indicates the effect of increasing the number of covering levels on

the location of the facility. It should be mentioned that the objective function for one-

level minimax problem in this case is 82846.65 meters which is significantly greater
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Table 6.1: Districts of Istanbul

District Name Population Weight
1 Catalca 68935 0.005
2 Silivri 170523 0.012
3 Buyukcekmece 237185 0.016
4 Arnavutkoy 247507 0.017
5 Basaksehir 369810 0.025
6 Esenyurt 795010 0.054
7 Beylikduzu 297420 0.02
8 Avcilar 430770 0.029
9 Kucukcekmece 766609 0.052

10 Bakirkoy 222437 0.015
11 Bahcelievler 598097 0.04
12 Bagcilar 751510 0.051
13 Gungoren 298509 0.02
14 Esenler 457231 0.031
15 Bayrampasa 273148 0.018
16 Zeytinburnu 287897 0.019
17 Fatih 417285 0.028
18 Beyoglu 238762 0.016
19 Gaziosmanpasa 499766 0.034
20 Sultangazi 525090 0.036
21 Eyup 377650 0.026
22 Kagithane 439685 0.03
23 Besiktas 189356 0.013
24 Sisli 272803 0.018
25 Sariyer 342753 0.023
26 Beykoz 250410 0.017
27 Uskudar 535537 0.036
28 Kadikoy 452302 0.031
29 Atasehir 422513 0.029
30 Umraniye 694158 0.047
31 Cekmekoy 239611 0.016
32 Maltepe 490151 0.033
33 Kartal 459298 0.031
34 Sancaktepe 377047 0.025
35 Sultanbeyli 324709 0.022
36 Pendik 691681 0.047
37 Tuzla 242232 0.016
38 Sile 34241 0.002

Sum 14789638 1
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Table 6.2: Objective function of the MISOCP formulation and minimum of the %
deviation of heuristics from best found solution for single facility case

Number
of regions

Number
of levels MISOCP

Heuristics
CLH LLH CLDEH CLUDEH DCLDEH AAH

38

2 40349.99 1.35 0 1.24 1.35 1.24 0
3 37152.59 8.15 0 2.01 7.81 2.01 0
4 34983.38 4.82 0 2.25 3.95 3.95 0.71
5 34377.86 2.55 4.46 0 0 0 0

Average 4.218 1.115 1.375 3.278 1.8 0.178

Table 6.3: Objective function of the MISOCP formulation and average of the % de-
viation of heuristics from best found solution for single facility case

Number
of regions

Number
of levels MISOCP

Heuristics
CLH LLH CLDEH CLUDEH DCLDEH AAH

38

2 40349.99 11.13 1.3 1.26 1.45 1.26 0
3 37152.59 19.33 4.29 3.54 8.04 3.09 0
4 34983.38 22.44 19.73 4.13 4.17 4.17 0.71
5 34377.86 22.55 12.16 0.13 0 0 0

Average 18.83 9.37 2.265 3.415 2.13 0.178

Table 6.4: Comparison between the computation time (in second) of the MISOCP
formulation and heuristics’ solution related to Table 6.2.

Number
of regions

Number
of levels MISOCP

Heuristics
CLH LLH CLDEH CLUDEH DCLDEH AAH

38

2 0.14 0.2 0.29 2.54 2.82 3.64 0.03
3 0.172 0.22 0.45 3.67 3.53 4.11 0.03
4 0.249 0.22 0.68 3.48 3.8 4.16 0.03
5 7.07 3.04 1.04 3.95 4.17 4.29 0.05
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than the optimal objective function values of the 2 and 3 level cases.

!(
_̂

")

Figure 6.2: Single facility locations found for single-level (green circle), bi-level (red

star) and three-level (blue square) cases of Istanbul

In the following, MISOCP formation and proposed heuristics of the multi-facility

version are applied for the Istanbul case. Similar to the single facility case, all heuris-

tics are run with 20 distinct initial locations and the solution with lowest heuristic

solution between these replications is selected as the best solution of that heuristic.

Minimum percent deviation of these replications and the average of them are listed

in Tables 6.5 and 6.6, respectively. Also, the obtained result of the MISOCP formu-

lation is presented in these tables to provide a comparison between performance of

the MISOCP and heuristics. The percent deviations are calculated based on the best

found solutions. All instances with less than or equal 4 number of facilities are solved

optimally in the time limit of 3600 seconds. Hence, the best found solution for them

is the solution obtained by the MISOCP formulation. For the instance of 5 facility

and 2 levels, again the MISOCP solution with a gap outperforms the heuristics and

has the better solution. For the last two cases, the best solution is obtained by the

LAL-CLDEH and the LAL-AAH heuristics, respectively.

Similar to the results of Section 5.2.3.2, Table 6.5 shows that the LAL-AAH heuristic

has better results than other heuristics. The LAL-CLDEH can find the best solu-
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Table 6.5: Objective function value of the MISOCP formulation and minimum of %
deviation of heuristics from best found solution for multi-facility case

Number
of

regions

Number
of

facilities

Number
of

levels

MISOCP
Gap
(%)

Heuristics

LALH
LAL-
CLH

LAL-
LLH

LAL-
CLDEH

LAL-
CLUDEH

LAL-
DCLDEH

LAL-
AAH

38

2
2 27946.76 0 2.3 8.73 1.15 0 2.47 6.79 0.02
3 25187.79 0 3.17 3.66 0 2.99 3.59 3.66 0.68
4 23589.51 0 0.92 10.76 8.09 8.76 0 4.27 0

3
2 23083.59 0 1.73 6.64 0.93 1.9 0.26 0.26 0.13
3 21605.49 0 9.23 4.35 10.49 0 6.08 3.28 0
4 20452.08 0 3.67 10.68 10.68 2.17 4.05 9.11 8.46

4
2 19835.89 0 0.39 13.6 3.72 2.51 13.5 6.69 1.72
3 19077.94 0 11.42 18.81 17.72 5.43 14.84 6.72 0.01
4 18524.47 0 5.85 15.09 12.89 0 3.99 3.99 6.64

5
2 17231.56 23.6 9.31 10 11.7 3.04 1.77 6.33 0.96
3 17906.01 40.36 6.54 8.08 5.83 0 3.84 1.24 0.38
4 17660.41 50.89 1.08 11.64 0.15 3.29 2.98 4.54 0

Average 4.63 10.17 6.95 2.51 4.78 4.74 1.58

Table 6.6: Objective function value of the MISOCP formulation and average of %
deviation of heuristics from best found solution for multi-facility case

Number
of

regions

Number
of

facilities

Number
of

levels

MISOCP
Gap
(%)

Heuristics

LALH
LAL-
CLH

LAL-
LLH

LAL-
CLDEH

LAL-
CLUDEH

LAL-
DCLDEH

LAL-
AAH

38

2
2 27946.76 0 11.4 20.17 15.94 11.45 10.03 17.87 5.75
3 25187.79 0 7.81 24.83 27.01 16.18 17.59 18.2 8.84
4 23589.51 0 23.63 33.59 38.04 23.11 17.77 22.49 9.53

3
2 23083.59 0 33.37 33.84 38.75 21.38 23.1 24.07 14.65
3 21605.49 0 22.77 32.87 39.94 21.25 26.32 19.67 17.62
4 20452.08 0 29.33 40.44 52.42 19.57 24.36 23.15 20.04

4
2 19835.89 0 42.35 36.69 41.31 29.18 30.53 38.19 28.36
3 19077.94 0 48.47 28.51 37.75 21.21 28.1 21.63 22.51
4 18524.47 0 28.61 31.95 48.81 22.78 28.64 21.85 26.58

5
2 17231.56 23.6 30.3 47.78 56.97 40.21 43.05 46.09 12.37
3 17906.01 40.36 35.73 32.67 45.1 33.01 29.03 29.33 33
4 17660.41 50.89 34.03 33.51 48.95 37.24 36.58 26.07 28.9

Average 28.98 33.07 40.92 24.71 26.26 25.72 19.01
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Table 6.7: Computation time (in second) comparison between the MISOCP formula-
tion and heuristics’ solution related to the Table 6.5.

Number
of

regions

Number
of

facilities

Number
of

levels

MISOCP
Heuristics

LALH
LAL-
CLH

LAL-
LLH

LAL-
CLDEH

LAL-
CLUDEH

LAL-
DCLDEH

LAL-
AAH

38

2
2 16.66 20.13 3.45 4.59 38.72 36.34 21.85 0.96
3 55.95 22.47 5.07 7.22 38.26 37.57 25.34 0.97
4 41.18 27.61 11.22 11.21 42.75 39.43 33.68 0.97

3
2 98.72 19.42 3.95 4.67 42.33 39.49 19.29 0.95
3 120.26 23.79 4.33 7.56 42.05 40.68 22.91 0.97
4 551.05 31.05 8.25 11.04 43.89 39.89 28.48 0.98

4
2 885.81 22.74 5.06 4.76 43.79 39.67 23.79 0.98
3 1774.26 28.11 6.18 8.29 43.79 42.93 27.22 0.97
4 2742.99 30.06 7.62 11.48 45.6 43.54 28.1 0.98

5
2 3600 24.62 5.69 5.08 44.53 38.61 23.16 1.08
3 3600 25.89 6.17 8.86 45.24 41.69 24.82 1.02
4 3600 29.36 6.97 11.45 46.06 45.32 26.22 1.03

tion one time more than the LAL-AAH but the average of percent deviation for all

instances in LAL-CLDEH is worse. Furthermore, Table 6.6 confirms the better per-

formance of the LAL-AAH in comparison with the LAL-CLDEH as well. Table

5.2.3.2 also indicates the effect of increasing covering levels in reducing the optimal

objective function value of the problem. For example, in the instance with 2 facilities

and 2 covering levels, increasing the number of covering levels by 2 has the same

influence on the objective function with increasing number of facilities by one.

Another aspect in comparison of the heuristics with each other is their computation

time. Table 6.7 displays the required computational time for solving the MISOCP

formulation and heuristics.

Considering the computation time of the heuristics, it can be claimed that the LAL-

AAH heuristic not only has the better solutions, but also has the lower computation

time. It can solve instances of the Istanbul case almost in 1 second. However, the

computation time for solving the MISOCP formulation for the instances with 5 facil-

ities is more than 3600 seconds. Furthermore, the LAL-AAH also outperforms other

heuristics in terms of the computation time.

Finally, the found facility locations in 3-facility problem have been compared for the

single level (green circles), bi-level (Red stars) and three-level (blue squares) versions

in order to see the effects of the proposed model on the locations of the facilities for
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the Istanbul case.
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Figure 6.3: Multi facility locations found for single-level(Green), bi-level(Red) and

three-level(Blue) cases of Istanbul
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CHAPTER 7

CONCLUSION AND FUTURE STUDY DIRECTIONS

Facility location problem aims at optimal placement of the facilities in order to satisfy

requirements of the corresponding demands. The common objective function in loca-

tion problems is minimizing the costs (especially transportation costs) which usually

can be measured by distance or required traveling time from the facilities to the de-

mands. Accordingly, some location models seek to minimize the maximum distance

(Minimax problem), some others consider minimizing sum of the weighted distance

(Minisum problem), several of them focus on maximizing the coverage area with a

specific covering distance (Covering problem) and etc. Furthermore, there are 3 spe-

cific distance measures which provide another classification for location problems;

Euclidean distance, Rectilinear distance and Chebyshev distance.

In this thesis, we consider the pre-positioning problem in humanitarian logistic as a

case study which is a public and social oriented problem. Thus, we are applying Min-

imax model with Euclidean distance. As we explained in the Section 2, the facility

location problem is studied as discrete and continuous problem. In the continuous

facility location problem, the facilities can be located all over the plane. Furthermore,

the demands are distributed continuously in the plane. The common approach in

modeling of such a problem is abstracting the demands into some points on the plane.

For obtaining more realistic solutions for the problem, the demands are considered

as regions instead of points. An important question for this assumption is how to

measure the distance between the facilities and the demand regions. 3 distance mea-

sures are introduced by Drezner and Wesolowski [20] which are the distance of the

closest point of the region to the facility, the distance of the farthest point and average
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distance. According to the nature of our problem, the Euclidean distance between

the facility and the farthest point of the demand region is utilized to take the worst-

case scenario into account. Additionally, the multi-level coverage is considered for

the Minimax problem in this thesis. In the classic version of the Minimax location

problem, even unimportant remote demands pull the facilities toward themselves and

increase the distance between other demands and facilities. The multi-level Minimax

location problem considers several coverage levels and the facilities cover specific

percentage of the demand regions in each level. It ensures covering of the important

demand regions in the inner levels and others in the outer levels. Therefore, the max-

imum distance between demand regions and facilities in the inner levels is lower than

the classic version. Consequently, we are applying Euclidean distance for studying

the continuous minimax location problem by regional demand with several covering

levels.

It was mentioned in Section 3.1.3 that the coefficient and domain of the first level

are considered as 1 and 0, respectively. It should be reminded that the covering per-

centage of the last level (PK) is always equal 1, since the last level provides the total

coverage for the problem. Also, the coefficients of levels (ch), domains of levels (dh)

and their percentages (Ph) are monotonically increasing by moving to the outer levels.

This ensures greater covering range for outer levels in comparison with inner levels.

The values of these parameters are considered randomly in this thesis. However, the

decision maker can obtain these parameters by testing the model with different con-

figurations or based on the previous experiences.

Firstly, we propose the single facility case of the problem and give an MISOCP for-

mulation of the problem which is an exact method. Since the formulation can not

solve the big size instances in the reasonable time, some heuristics are introduced for

the problem. Then, a multi-facility extension is considered. In this case, the MIS-

OCP formulation can not solve even medium size problems. Hence, new heuristics

are proposed for the multi-facility case. Heuristics provide acceptable solutions in the

reasonable time but the results of the MISOCP formulation in smaller size instances

are better than heuristics. Therefore, providing of the MISOCP formulation of the

problem is beneficial.
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Lack of the similar studies make us to generate several random instances to evaluate

our proposed heuristics. In the single facility case, the AAH heuristic has the best

results between all heuristics. It finds the exact or best found solution in 23 instances

of 36 total instances. Also, the average of the percent deviations from the best solu-

tion for all 36 instances is 0.102 which is lower that all others. Additionally, it has

the lowest computational time after the CLH heuristic. The second best heuristic is

DCLDEH which has almost 13 times greater average computational time in compari-

son with the AAH. In the multi-facility case, in addition to the extensions of the single

facility case heuristics, one new heuristic is introduced. Again, the extension of the

AAH for the multi-facility case (LAL-AAH) outperforms other heuristics. It has the

average percent deviation of 0.806 between all 84 instances. Furthermore, it has the

lowest running time between 7 proposed heuristics of the multi-facility case.

Finally, the model is tested for the real case of Istanbul to evaluate its performance

more precisely. There are 38 districts in the Istanbul which are considered as the

demand regions. Also, the population of each district is considered as its correspond-

ing weight. The multi-level minimax location problem for Istanbul case confirms the

results of the random generated instances. Again, in the single facility case, AAH

heuristic has lower average and minimum percent deviation between other heuris-

tics. Also, considering the results of the heuristics in the multi-facility case, it can be

claimed that the LAL-AAH heuristic not only has the better solutions, but also has

the lower computation time. It can solve instances of the Istanbul case almost in 1

second.

The future research directions for this problem can be as follows.

• The distance of the closest point of the region to the facility or the average

distance can be applied instead of the farthest distance.

• In this thesis the demand regions are allocated to exactly one facility. It can be

considered that several facilities cover a demand region simultaneously.

• Instead of random initial locations for the heuristics, some innovative methods

can be proposed.
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