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ABSTRACT

MAPPING AND ANALYSIS OF HUMAN DISEASE NETWORK MAP
(DISEASOME) ON MOUSE GENOTYPE & PHENOTYPE NETWORK

Sultan Nilay CAN
MSc, Bioinformatics
Supervisor: Prof. Dr. Rengiil CETIN-ATALAY
Co-Supervisor: Dr. Tunca DOGAN

June 2017, 146 Pages

Mouse is the primary model organism to study mammalian genetics. The genome of
mouse is incisively and specifically modified and controlled to study the mutations in
the human genome, to discover the molecular mechanisms of various complex human
diseases such as cancers, diabetes, hereditary and neurological disorders. Various
ontology systems have been constructed to express metabolic functions and diseases
as controlled vocabulary terms. This way, abstract definitions such as gene functions,
diseases or phenotypes become machine readable and quantifiable data. Mammalian
Phenotype Ontology (MPO) is one of these databases that generates standardized
terms to define phenotyping textures in mammals by carrying out gene knock out

experiments in mice, which was followed by the observation of abnormal phenotypes.
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In a previous study, biological networks were designed to analyse the relationships
between complex human diseases and the genes responsible for the occurrence of those
diseases. Human disease network focused on 22 different disease classes and brought
insight to the complex relations between different disease classes. This study aims to
map the human disease network onto the mouse genotype/phenotype data by
generating multi-partite networks of human diseases — human/mouse genes —
phenotypic abnormalities observed in targeted knock-out-mouse models. The resulting
networks are presented to the research community in an online interactive platform.
The output of this work is expected to aid experimental researchers to select the
appropriate targeted knock-out mouse models to study a specific human disease.
Furthermore, the mappings between disease and phenotype terms is expected to enrich
the ongoing efforts to curate specific symptoms and effects of diseases to improve

medical diagnosis.

Keywords: Human diseases, abnormal phenotypes, mouse knock out genes, biological

networks
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FARE FENOTIPi VE GENOTIiPi UZERINDE, iNSAN HASTALIK AGININ
(DISEASOME) HARITALAMA VE ANALIZININ YAPILMASI

Sultan Nilay CAN
Yiiksek Lisans, Biyoenformatik
Tez Yoneticisi: Prof. Dr. Rengiil CETIN-ATALAY
Ortak Tez Yéneticisi: Dr. Tunca DOGAN

Haziran 2017, 146 sayfa

Fare, memeli genetigini calismak igin kullanilan temel model organizmadir. Insan
genomundaki mutasyonlar1 ¢alismak ve kanser, diyabet, kalitsal ve sinirsel bir¢ok
kompleks insan hastaliginin mekanizmasini anlamak i¢in, memeli genetiginde temel
bir organizma olan fare genomu isabetli ve spesifik olarak degistirilebilir ve kontrol
edilebilir olarak kullanilmaktadir. Metabolik fonksiyonlar1 ve hastaliklari,
organizmalar lizerindeki fenotipik yansimalarim1 da hesaba katarak anlamak igin
birgok ontoloji sistemi yapilandirilmistir. Memeli sistemleri i¢in fenotipleme 6zelligini
tanimlamak amacl standartlastirilmis birgok terimi barindiran Memeli Fenotipi
Ontolojisi (MPO) bu 0Ozellesmis veri bankalarindan biridir ve farede anormal

fenotiplerle sonuglanan nakavt ¢caligsmalarini yiiriitmek, fenotipik terimleri tanimlamak
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icin standartlastirilmis tanimlar iiretir. Onceki bir ¢alismada biyolojik haritalamalar,
kompleks hastaliklar arasindaki iligkileri ve bu hastaliklardan sorumlu olan genleri ve
kendi aralarindaki iliskileri ¢alismak amacgl dizayn edilmislerdir. Bu tez, insan
hastaliklarinin ve nakavt fare calismalarindan elde edilmis fenotipik anormalliklerin
cok pargal1 aglarini iireterek, insan hastalik agini, fare fenotipi ve genotipi veri setinin
lizerine haritalamay1 amaclamaktadir. Sonug olarak elde edilecek olan haritalamalar,
arastirma diinyasina ¢evrimici bir platform olarak sunulmustur. Bu ¢alismanin, insan
hastaliklar1 tizerine gerceklestirilmekte olan deneysel arastirmalarda uygun nakavt fare
modellerinin secilmesine yardimci olmasi beklenmektedir. Ayrica, hastaliklar ve
fenotipik terimler arasi yapilan bu haritalamanin, tibbi teshis ve tedavilerin
gelistirilmesi  amactyla yapilan ontolojik ¢alismalara katkida bulunmasi

beklenmektedir.

Anahtar Sozciikler: Insan hastaliklari, hastalik fenotipleri, fare nakavt genleri,

biyolojik aglar.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Model organisms have long been experimented on to understand complex molecular
mechanisms in the human body. When the Human Genome Project (HGP) was started
in 1990, mouse was included as one of the five central model organisms with the
purposes of understanding the gene functions, disease mechanisms and for discovering

new drugs (Waterston et al., 2002).

There are biological data resources to store and freely publish the finding obtained
from the experimental studies on mouse. One example is Mouse Genome Informatics
- MGI (Blake et al., 2011), which is documenting the relations between mouse
genotype and phenotype. MGI is discussed in section 2.2, in detail. There are also
open-access resources that document the relations between the human genome and the
genetic diseases, such as OMIM (Hamosh et al., 2005) and Diseasome (Goh et al.,
2007), which is discussed under section 2.5. Both the human and mouse resources are
extremely valuable for the research community and the underlying knowledge have
significant overlaps due to the genetic similarities between human and mouse.
However, the resources on mouse has a lot more to offer compared to resources on
human, due to extensive systematic experimental research carried out on mouse. As a
result, integrating the information found in mouse data resources to human datasets
have the potential to extensively enlarge our understanding about the relation between

human genome and phenome, especially in terms of genetic human diseases. This



understanding may in turn help researchers to develop novel treatments to stop these

diseases.

As far as we are aware, the studies aiming to integrate the biomedical data on model
organisms with the human data exists, though scarce. We believe that more focus is
required for biological data integration and inferring biological insight from the results.
Automated computational approaches should be used for this purpose, as the data
volume is now beyond the capabilities of manual curation now. Open access tools and
services that will be generated to house and to present the integrated data to the life
science research community is the key to be able to analyze this huge amount of data

and to obtain biological knowledge from it.

1.2 SCOPE AND GOAL

The main objective of this thesis is to generate a biological network composed of
disease records, disease causing genes and observed abnormalities in the form of
phenotypic terms. This is done by analyzing the Diseasome (the Human Disease
Network) and mapping it onto the mouse genotypic vs. phenotypic relation data. This
way, associations between abnormal mouse phenotypes and human diseases are
provided by using mouse knock-out genes and their human orthologues as the key
attribute between two data sources. The main output of this thesis is an open access

online network that visualizes these relations interactively, in a map format.

As the first step, Diseasome database source published by Goh et. al. in 2007 was used
as a data resource and the list of human disorders, disease genes, and associations
between them were obtained from their datasets. Mouse Genome Informatics (MGI)
and Mammalian Phenotype Ontology (MPO) databases were used to collect mouse
affected systems (abnormal phenotypes) and the associated mouse knock-out genes.
The data derived from MGI/MPO and Diseasome were integrated to generate the data
tables.



In second part of the study, python scripts were written to produce gexf formatted files,
to run on Gephi graph visualization tool, for constructing biological networks in two
different approaches, which are Genes-Node and Genes-Edge versions. Genes-Node
version treat mouse genes, affected systems (phenotypes) and human diseases as nodes
and the edges represent the direct relations in-between. Genes-Edge version patterns
genes as edges that connect human disease nodes with mouse affected system (i.e.
abnormal phenotypes) nodes. Gephi tool was used to process these gexf files, to
analyze them in terms of simple graph theory concepts and finally to visualize the

undirected graphs on web-browsers via an exporter tool.

The main objective of this thesis is to provide a practical online tool for the use of
experimental and computational researchers working on genetic diseases, and
providing case studies on how the proposed tool can be utilized to infer biological
insight. We seek to aid laboratory scientists to prepare their knockout mouse models
by using our online tool. This study is also expected to aid the computational studies
on the development and the annotation of ontological systems for medical diagnosis

and treatment.

1.3 CONTRIBUTION

The main contribution of this study is to provide an open access tool that displays the
associations between diseases, genes -that cause these diseases when they possess
specific mutations- and the observed abnormalities when those genes do not function
properly. The produced output is expected to help laboratory scientists to observe
targeted knock-out mouse gene models to select relevant models for studying specific
human diseases. Another contribution is encouraging researchers to investigate the
novel human disease - phenotype associations, which may aid the development of
ontological medical diagnosis systems. Newly discovered relations between
phenotypes, diseases and genes can be utilized in the forthcoming studies in the field

of biomedicine.



1.4 OUTLINE

This thesis comprises 5 chapters. These chapters are entitled as “Introduction”,
“Background and Related Works”, “Materials and Methods”, “Results” and

“Discussion”, respectively.

The first chapter gives a short introduction followed by the scope and objective of the
study. The second chapter provides a short description of the basic concepts used in
the proposed research together with the related work in the literature (i.e. information
about the targeted knock-out mice studies, Diseasome with its analysis details, MPO
and MGI databases and a brief information about the general phenotypic studies in the
mouse and human genomes). In the third part (Material and methods), the details about
data preparation and integration are provided and illustrated exclusively. Moreover,
network visualization tool Gephi is exhibited under this section, together with the
technical details on the proposed web-service Mouise2HumanNet. The fourth chapter
(Results) includes the information related to statistical and network analysis of the
generated networks, together with case studies. Finally, the fifth chapter (discussion)
sums up the work done, discusses the results and offers possible modifications,

alterations and developments as potential future studies.



CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 MOUSE AS A MODEL ORGANISM

Mouse is one of the most preferred model organisms for the research on human
physiology and pathophysiology (Rosenthal and Brown, 2007). Mouse models have
been used comprehensively to understand the mechanisms of human diseases, to

explore the effects of drugs and to predict patient provisions.

Genetic resemblance between mouse and human organisms is the reason behind using
mouse as a model organism to study human diseases. More than 90% of the mouse
and human genomes can be divided into related conserved synteny regions, which
show the gene order in the genomes. These regions are highly conserved in both human
and mouse genomes (Waterston et al., 2002). It is also stated that, both species have

similar number of protein coding genes (Guénet, 2005).

Another reason why mouse is a suitable model organism to model human diseases and
deficiencies is that mice is easy to maintain and breed in the laboratory conditions. The
typical "life span” of the mouse approximately ranges from 1.3 to 3 years for various
strains. As a result, their lifetime can be studied in a reasonable period (Comfort,
1959). Furthermore, mice have been used in numerous experimental genetic studies
up to this day; as a result, the generated collective practical experience is shared by

researchers all over the world.

However, there also exist genetic differences between the mouse and human, which is

reflected onto their distinct physiological and anatomical characteristics. These



differences are resulted from the accumulation of various types of mutations on the
genomes of human and mice after their divergence from their common ancestor.
Naturally, there also is a divergence between the human and mouse at the systemic
level such as the regulatory factors, immune system gene activities, stress response

and metabolic periods (Comparing the mouse and human Genomes, 2015).

Various studies in the literature have investigated the genetic differences between
mouse and human with the purpose of modifying the mouse genome to study human
physiology on mouse models. The way to achieve this lies in the field of genetic
engineering, which is dealing with the direct manipulation of DNA to change an
organism’s genotype in a desired way. Gene targeting —one of the various genetic
manipulation methods— allows researchers to introduce mutations at specific loci in
the target organism. For example, targeted deletion of a specific gene in mouse is

frequently used to determine the biological role of the in-activated/deleted gene.

2.1.1 THE KNOCK-OUT MOUSE

A targeted knock-out mouse is a laboratory animal where a specific gene was
inactivated, in other words "knocked out" by researchers. The practical application is
usually carried out by replacing the existing gene or damaging it with an artificial piece
of DNA. During the 1980’s, a Dr. Mario Capecchi invented a procedure to remove or
change any single gene in the mouse genome (Capecchi, 2008). Mouse strains were

constructed in such a way that the altered genes pass from parent to its offspring.

The discovery of mouse embryonic stem (ES) generating cell lines allowed for the
generation of the efficiently targeted knock-out mouse (Limaye, Hal, &
Kulkarni,2009). ES cells were reproduced from embryos at a developmental stage
before implantation. Fertilization normally occurs in the oviduct, and throughout few
days a series of cleavage divisions occur. The embryo rides down the oviduct and into
the uterus. Embryo cells are undifferentiated in each cleavage-stage. Indeed, each of
these cells has a potential to give rise to any cell for the body. The first fractionation

in human organism occurs at about five days of development. Outer layer of cells self-



dedicate themselves to become a part of the placenta and separates from the inner cell
mass (ICM). The ICM cells can generate any cell type of the body. If the ICM is
removed from its environment and cultured, these cells can continue to proliferate and
replicate themselves indefinitely. These cells can maintain the developmental potential
to form any cell type of the body. These ICM-derived cells are ES cells. It is important
to notice that ES cells do not exist in vivo; they should be considered as a tissue culture

artifact (Winslow, 2017).

Gene targeting and homologous recombination are the preferred ways of building a
targeted knock-out mutation in a mouse. Homologous recombination is a DNA repair
mechanism and it has been made up by inserting a specific mutation into the
homologous genetic locus (Majzoub and Muglia, 1996). During gene targeting or
homologous recombination, manipulation of the gene is occurred in the nucleus of an
ES cell. This is done by introducing an artificial piece of DNA that shares identical or
homologous sequence to the gene. This homologous sequence flanks the existing
gene's DNA sequence both upstream and downstream of the gene's location. The cell
recognizes the identical stretches of sequence and wipes out the existing gene or
portion of this gene with the artificial piece of DNA. Because the artificial DNA is
inactive, the wipe eliminates, or "knocks out," the function of this gene. In the second
strategy, called gene trapping, again a gene in an ES cell is manipulated. However,
instead of directly targeting a gene of concern, a random process is preferred. A piece
of artificial DNA containing a reporter gene is constructed to be inserted randomly
into any gene. The inserted piece of artificial DNA prevents the cell's RNA "splicing"

mechanism to work properly, thus gene’s function is knocked out.

When the gene loses its activity, various alterations can be observed in the mouse
phenotype. These phenotypical alterations can be anatomical, behavioral, biochemical
or physical (Austin et al., 2004). The knockout mice specifically constructed to study
human mutations are eminent sources to study pathophysiology and may serve to find
novel therapies for genetic diseases (Majzoub and Muglia, 1996). These works have

led to various discoveries about human diseases, from cancer to obesity.



2.1.2 PURPOSES BEHIND USING KNOCK-OUT MICE

Human organism shares various similar genes with the mice. Therefore, observing the
main characteristics of knocked-out mice can give valuable information regarding the
human genetic disorders. A study stated that mice have been used widely to enlighten
the mechanism behind human diseases and increase the efficacy of drugs (Vandamme,
2014; Justice and Dhillon, 2016). There have been progress for understanding critical
human diseases such as cancer, obesity, heart disease, diabetes, anxiety, aging and
Parkinson disease thanks to the mouse studies, as the knockout mice serve critical

information about how the knocked-out gene normally functions in the body.

IMPC (International Mouse Phenotyping Consortium) is a freely available and useful
platform for human disease investigations (White et al., 2013) and this consortium is
creating targeted knock-out mutations for various protein coding orthologue genes in
the mouse genome. Orthologous genes are defined as homologs in different species,
which diverged from each other following a speciation event (Jensen, 2001). It is
reported that usually the function is conserved between orthologous genes. The main
aim of IMPC is to explore the machinery and functions of 20,000 common genes
between mouse and human. It provides a platform to examine the mechanisms of

human disorders.

It has been stated that the identification of the essential genes in mouse will help to
analyze genetic human diseases. Essential genes can be defined as the genes required
for the life of any human cell. In the perspective of the collaboration with The Exome
Aggregation Consortium (ExAC) it was demonstrated that, these genes are valuable
nominees for various undiagnosed human genetic conditions (Lek et al., 2016). ExXAC
is created for harmonizing and clustering the exome sequencing data of large scale

sequencing projects.



2.2 MOUSE GENOME INFORMATICS (MGI)

Mouse Genome Informatics (MGI) is an international database of scientific
information obtained by experimenting with the genome of laboratory mouse. It is
considered and acknowledged as the most comprehensive resource covering the

genomic features of the mice. It also facilitates human health and disease studies.
There exist various projects contributed to MGI can be listed as:

e Mouse Genome Database (MGD) Project

¢ Gene Expression Database (GXD) Project

e Mouse Tumor Biology (MTB) Database Project
e Gene Ontology (GO) Project at MGI

e MouseMine Project

First project that contributed to MGI is MGD project (Blake et al., 2011), which was
carried out in Jackson’s laboratory. MGD includes various types information such as
GO, MPO and human diseases in OMIM. It provides a genetic map, a genome browser
(Mouse Jbrowse), Single Nucleotide Polymorphisms (SNPs) information and

mammalian orthology data.

Second project is the Gene Expression Database (GXD) and constructed to extract
gene expression profiles for the laboratory mouse. There exists emphasis on

endogenous gene expression during the development of mouse.

Another project is the Mouse Tumor Biology Database (MTB), established to mine
experimental models, review specific cancers and detecting genes that are mutated in

cancers.

Other one is Gene ontology project at MGI, which is a part of the Gene Ontology
Consortium that provides vocabularies for describing the MF, BP, and CC of gene
products. GO team members at MGI contribute to develop specific ontological terms

for mouse and functional curation of mouse gene products.



Lastly, MouseMine is a very powerful online platform which serves a system using
mouse data from MGI. It includes nomenclature, synonyms, database cross references,
genome coordinates, the mouse allele catalog, spontaneous and engineered mutants,
mutant cell lines, mouse strains and genotypes. Also, it consists mouse functional (GO)
annotations, phenotype (MP) annotations, disease (OMIM) annotations, human genes
and their genome coordinates (via EntrezGene); mouse/human orthologues and
mouse/mouse paralogues, mouse/mouse and mouse/human protein-protein interaction
data from Database of Protein, Chemical, and Genetic Interactions (BioGrid) and
European Bioinformatics Institute (IntAct); plus, publications, notes, and external
database references. MGI also provides an investigation tool called as “batch

summary”’.

2.3 BASIC CONCEPTS IN GRAPH THEORY AND NETWORK ANALYSIS

The computational methodology to generate the proposed tool in this study is based
on the graph theory and on network analysis. As a result, an introduction on the basic

concepts in graph theory and network analysis is required.

A graph is a pair of sets (V, E) where V is defined as a finite set called the set of
vertices and E is a set of 2-element subsets of V, called the set of edges. A network
can be defined as a graph where nodes and/or edges have labels in other words
attributes. In graph theory, various concepts are employed to analyze a network. One
of the basic terms, a walk is defined as any route from vertex to vertex along edges
and it can end on the same vertex where it began or on a different vertex. A path is a
walk that does not include any vertex twice, except that its first vertex can be the same
as its last. A trail is defined as a walk with no repeated edge. A cycle is defined as a
closed path. Edges do not have an orientation in undirected graph and undirected graph
is connected if there is a path between each pair of vertices and if it has no cycle, it is
called as acyclic, it is defined as a tree if any two vertices are connected by exactly one

path and it is named as acyclic - bipartite if V is partitioned into two independent sets.
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Networks used in this thesis are constructed as undirected and modified from the

bipartite Diseasome design mapping.

Furthermore, degree, average weighted degree, graph diameter, graph density,
modularity and eigenvector centrality terms are frequently used to reveal various

characteristics of networks.

For undirected networks, the node degree term is the number of edges linked to node
n. A self-loop of edges is counted as two edges for the node degree (Seymour,
Schrijver, and Diestel, 2005). In degree and out degree terms are used for directed
graphs, not applicable for the undirected ones. In degree means incoming edges to a
node n and out degree means outgoing edges from the node n. Weighted degree is the

weight of each edge related to node n.

Graph diameter can be defined as the maximum of the shortest paths between any two
of the vertices in graph, in other words, it is the maximum eccentricity of any vertex
in the graph. The maximum eccentricity is the graph diameter. The eccentricity of any
vertex denoted as v in a connected graph is the maximum graph distance between this

vertex v and any other vertex u.

Graph density is a measure that shows how strongly network elements have connected
each other. It is calculated as dividing the number of edges in network to the all

possible connections. It takes a value between 0 and 1.

Modularity can be one of the most frequently used quality function for community
detection in networks (Jin, Girvan, and Newman, 2001). It is a representation of sum
of the number of edges in the communities minus the expected fraction of such edges
if they are placed at random with the same distribution of vertex degree (Newman and
Girvan, 2004). In other words, modularity compares the number of edges in a cluster
with the expected number of edges that can be found in a cluster. It indicates the
importance of a node while considering its connections in a network and it gives
relative scores to each node. Modularity also measures the robustness of a network
(Labs, 2012). It has been stated that the modularity issue suffers from resolution limit

and therefore sometimes it is unable to detect small communities or cliques. If a
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network is considered as large enough, the expected number of edges between two
groups of nodes in a model with null modularity can be smaller than one. In that case,
a single edge between two clusters would be interpreted by modularity. Therefore,
even weakly interconnected complete graphs would be merged by modularity

optimization if the network were sufficiently large (Fortunato and Barthélemy, 2007).

Another important term is directed acyclic graph (DAG) for understanding the logic
of this study. In DAG structure, one node is named as a root node, and all the other
nodes are constructed as leaf nodes. It is declared that DAG having established
hierarchical parent-child relations between all neighbor nodes proceeding from the
root node down to any leaf nodes. The difference between a tree and a DAG is the
possibility of more paths between two nodes in the DAG structure. In other words, an
undirected graph is named as a tree if there exist exactly one simple path between each

pair of vertices.

A Connected component defines a subgraph where any two of its vertices are
connected to each other by common paths (i.e. there is no non-connected vertices in a
connected component), whereas a maximal clique defines a component whose all

vertices are fully connected to each other.

2.4 MAMMALIAN PHENOTYPE ONTOLOGY (MPO)

Phenotype is a term that describes observable morphological, physiological and
behavioral characteristics of an individual. Phenotypic characters can appear,
disappear, increase or decrease in lifetime. Environmental facts can change the
phenotypic characters. Phenotypic variation can be explained with the individual’s
genetic and environmental history. Various human diseases are associated with both
environmental and genetic characters. Also, it is possible that some variantions in
germline cells may lead to inherited syndromes that are passed to the offspring (Smith

and Eppig, 2009).
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A comprehensive database called the Mammalian Phenotype Ontology (MPO) has
been constructed under the MGI resource to catalogue tens of thousands of mutations
in the mouse genome and their related phenotypes. Phenotypic terms are stored in a
specialized format to describe abnormal mammalian phenotypes in a hierarchical
format. Root node is named as the “Mammalian Phenotype” in that hierarchy and it
divaricated into 30 different terms called high-level phenotypes, which are related to
the physiological systems, survival and behavioral conditions. Each term describes a
unique phenotype and displayed with its unique MP ID. Besides this ID, it consists
term name, a synonym (if any) and a detailed definition of the content. Every
phenotypic term that is inherited from a term in a higher level in the hierarchy is called
as “child” of the parent term. Their direct parent phenotypes called as “parent” of the
child term. Any term should have at least one parent except the root term “Mammalian

Phenotype”.

All phenotypic information in MPO is kept in OBO (Open Biological and Biomedical
Ontologies) format. The OBO is one of the machine-readable formats implemented
for easy data query, mining, and manipulation. One of the properties of OBO is that it

is constructed as easily human readable compared to the XML.

Mammalian phenotype browser serves the users with the stored phenotypic terms and
their relations. Under phenotype search bar, the recorded phenotypic information can
be viewed in a DAG format. Additional information is given under “Phenotype Term
Detail” part with terms, synonyms, definitions, parent terms and IDs. According to the
MGI statistics, as of 2017, 11,464 mammalian phenotype (MP) terms are generated
and stored. MP terms can be searched by typing its name directly on the query column.
For example, the term “abnormal brown fat cell morphology” (id: MP:0009116) was
searched and the relationships are illustrated in Figure 1. In this example, “abnormal
brown fat cell morphology” term has two parent phenotype terms namely: “abnormal

brown adipose tissue morphology” and “abnormal fat cell morphology”.

To sum up, MPO is a collection of controlled vocabulary terms to define abnormal

phenotypes observed in mouse experiments. These phenotypes have been annotated to
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mouse genes, which lead to the corresponding phenotypic traits due to certain

mutations.

Abnormal b;mlnn fat cell C h i Id P h e n Otype
\f[ >
A /L\ N
MP:0002971 MP:0009115
Abnormal brown adipose tissue Abnormal fat cell morpholo;
morahology N - Parent Phenotypes
MP:0005375 7
bnormal adipose tissue .
A henotupe - ngh-LeVQI Phenotype
MP:0000001 .
Mammalian Phenotype Highest Level Phenotype

Figure 1: Phenotypic relationships of “abnormal brown fat cell morphology” in MPO

2.5 DISEASOME

Diseasome is a collection of networks that relates human diseases with the disease
causing human genes (Goh et al., 2007). It is proposed as a network based approach
to study the relations between human genetic disorders and the genes. The Online
Mendelian Inheritance in Man (OMIM) is used as the data source for disease-gene
relations in Diseasome. The Diseasome mapping consists of multiple networks
namely: the human disease network (HDN), the disease genes network (DGN) and the
bi-partite human disease and gene network. More details about these two networks are
given under section 2.5.1. In Figure 2, Diseasome design is illustrated. In their study,

Goh et al. stated that disorders can be associated with each other using the shared
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disease-causing genes. The main list of Diseasome contained 1,284 disorders and
1,777 disease genes and all diseases are categorized based on 22 distinct disease

classes.

Diseasome particularly focuses on the molecular relationships between genetic
variation and phenotypic information, and it is a seminal work in terms of discovering
the mechanisms of complex diseases. It is important here to note that, revealing
complex disease mechanisms is one of the most crucial problems in biomedical
research, currently (Botstein and Risch, 2003, Kann, 2009). It had already been stated
in the literature that many human diseases occur due to the factors related to genetic
variations (Hirschhorn and Daly, 2005). Up to date, various databases are constructed
for annotating the relations between genes and diseases of human such as OMIM
(Hamosh et al., 2005), CTDTM (Davis et al., 2010) and NHGRI-EBI GWAS catalog
(Welter et al., 2013). Due to the nature of database curation process the associations
are not complete, so the integration of multiple existing resources usually leads to more
comprehensive view of the current biomedical knowledge. DisGeNET is one of these
platforms and constructed for the integration of gene and disease information and
associations from various resources (Pifiero et al., 2015). The source of disease-gene
relation information is obtained from the OMIM database. The Online Mendelian
Inheritance in Man (OMIM) was constructed by Dr. Victor A. McKusick in early
1960’s to catalogue genetic diseases/traits and the corresponding disease causing

genes (Hamosh et al., 2005).
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Construction of the diseasome bipartite network.

DISEASOME
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Figure 2: Ilustration of Diseasome networks, Re-printed from: Physical Sciences -
Applied Physical Sciences: Kwang-Il Goh, Michael E. Cusick, David Valle, Barton
Childs, Marc Vidal, and Albert Laszlo Barabasi, the human disease network PNAS
2007 104(21) 8685-8690; published ahead 14,2007,
doi:19.1073/pnas.0701361104).

of print May

2.5.1 HUMAN DISEASE NETWORK AND DISEASE GENE NETWORK

Human Disease Network (HDN) shows the relations between human disorders. A
representative sub-network of HDN is shown on the left side of Figure 2. Every node
in HDN shows a distinct disorder and two disorders have a link if they share at least
one gene in common. Disorder classes inform the user regarding which physiological
system is affected by that disease. Classifications were made for twenty primary
disorder classes but additionally two categories were preferred to be added as
“multiple” and “unclassified”. If the primary classification does not seem clear and

this disorder belongs to more than one classes, then it was put into the multiple class.
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If there is no sufficient and obvious information for classification, then the disorder
put into the unclassified class. At the visualization level, 22 different disorder classes
are differentially colored to investigate if the diseases belong to the same system share
their genes as well. The edge between the diseases from the same disorder classes is
colored according to the color of this class; otherwise they are shown in gray. The size
of every disease node depends on the number of genes associated with that disorder.
Also, the edge thickness between two disorders is proportional to the number of shared
genes. Name of disorder is shown on the network if it has ten or more genes associated
with it for practical reasons. 867 of 1,284 disorders have at least one link to other and
516 disorders constitute a giant component. This result suggests that the origins of

most of the hereditary/genetic diseases are shared.

Disease Gene Network (DGN) displays the associations between genes according to
their shared diseases. In DGN, each node represents a distinct gene. Two distinct genes
are connected to each other if they are both associated with the same disorder.
Therefore, the link thickness is proportional to the number of disorders commonly
shared by two distinct genes. The size of each node is proportional to the number of
diseases it is related to. Nodes are coloured as gray if they play a role in more than one
disorder, otherwise they are colored according to the disorder class of related disease.
The name of gene is indicated only if it is associated with more than five disorders, for
practical reasons. It can be said that the link between two genes may indicate the
phenotypic associations, protein-protein interactions (PPIs) (Rodriguez-Caso, Medina,
and Sole, 2005) and the discovery of novel genetic interactions. 1,377 out of 1,777 of
disease genes are connected to at least one other gene and 90 of them compose a giant

component.

2.5.2 INVESTIGATION OF THE DISEASOME NETWORK

Morbid Map (MM) of the OMIM is one of the most comprehensive and highly curated
disorder gene association database. The OMIM MM shows the cytogenetic map
location of disease genes in OMIM. The data in Diseasome were downloaded from the

2005 version of MM and contains 2,929 entries of 4,043 with the “(3)” tag, which
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shows at least one mutation exists in that gene causing the disorder. After this pre-
processing, the authors have parsed 2,929 entries into 1,284 distinct disorders by
gathering all same subtypes of the same diseases under one entry. For example, 11
distinct groups of Fanconi Anemia were merged. Each distinct disease was assigned
with unique disease ID. Similarly, each gene was indicated with its distinct ENTREZ
ID, which is a specific indicator of it for the organism of interest. Entrez Gene is a
gene bank and maintained in the National Center for Biotechnology Information

(NCBI) (Maglott et al., 2010).

In the Diseasome mapping, circle shaped nodes represent diseases and rectangle
shaped nodes show disease genes. There exists a link between two disorders if a
mutation in the commonly shared gene lead to these disorders. Colors are attained
according to these disease classes. Size of giant component of a randomized network
was computed both for the HDN and the DGN. It had been shown that the giant
component sizes of the randomized networks are larger than the actual ones. This result
gave the indication that there is a pathophysiological clustering between the disorders
and the disease genes. The researchers stated that actual disorders and diseases genes

show tendency to link with the same classes (Goh et al., 2007).

A specifically described term in the Diseasome study is the “locus heterogeneity”,
which was employed to reveal the hub diseases clusters in Diseasome. Locus
heterogeneity term is specified according to the mutations in more than one genes
which cause similar disorders. It has been found that cancer and neurological disorders
show high locus heterogeneity and they are the most connected nodes. On the other
hand, metabolic, skeletal, and multiple disorder classes are the less connected ones and

shows low genetic heterogeneity (Goh et al., 2007).

It was seen from the results of Disesome that several disorders arise from mutations in
few genes. Therefore, it was thought that corresponding protein product of these genes
tend to participate in the same cellular pathways, molecular complexes or functional
modules. Disease genes associated with the same disorders share common cellular and
functional characteristics in terms of their annotated “Gene Ontology (GO) Terms”.

GO is a controlled vocabulary ontology system to describe gene/protein functions and
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it is highly used in functional genomics studies. GO is composed of 3 main categories:
Molecular Function (MF), which shows the molecular activities of gene products,
Cellular Component (CC), which shows location of activity for the gene products, and
the Biological Process (BP), indicating the involvement of gene products in the

systemic processes such as the metabolic pathways.

Finally, an investigation in Diseasome study worth mentioning is the prediction of the
essential gene information for the human. If a targeted knock-out mouse gene ends
with lethality at the end of the experiment, then the researchers called human
orthologue of that mouse gene as an essential gene. They obtained human related data
from MGI in 2006 (MGI-Mouse genome informatics-the international database
resource for the laboratory mouse, 2014). Embryonic/prenatal lethality and postnatal
lethality classes are considered as lethal and the rest as marked as non-lethal. 398 of
1,267 mouse lethal human orthologue genes were found to have known human disease
associations (Goh et al., 2007), which shows 22% of them are already known human
disease genes. This result leads to a separation in two classes of human disease related

genes: 1,267 essential disease genes and 1,379 nonessential disease genes.

2.6 THE HUMAN PHENOTYPE ONTOLOGY PROJECT (HPO)

HPO provides a controlled vocabulary set to define phenotypic traits in human
diseases. These phenotype terms mostly cover symptoms and they are associated with
human disease records by manual curation. Kohler et al., reported in 2014 that the
system contains 10,088 classes (terms) describing human phenotypic abnormalities.
HPO also provides phenotype-gene relations using OMIM disease-gene associations.
Combination of phenotype and genomic data serves the identification of complications
of disease subtypes (Kdhler et al., 2014). The HPO project (Robinson et al., 2008) has
started in 2007 and it has enhanced the coverage, usage, complexity and cross
connection with other projects, particularly from the OBO Foundry (Smith et al.,
2007). HPO covers a wide range of phenotypic abnormalities seen in human diseases.

Each class is named starting with “HP” letters with a unique and a stable number. On
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average, each disease entry has 15 HPO annotations and the mapping is enriched at

every database release. There are various biomedical projects that link to HPO.

DECIPHER project interconnects with HPO and its aim is to find clusters of rare
diseases that have phenotypes and structural rearrangement with strong correlation
(Firth et al., 2009). The Biomedical Research Centers/Units Inherited Diseases
Genetic Evaluation consortium uses the HPO database for saving the phenotypes of

patients with rare inherited disorders.

Another crosslinking project is European Cytogeneticists Association Register of
Unbalanced Chromosome Aberrations (ECARUCA), which is established in 2003 and
collecting and providing clinical and molecular information related to rare unbalanced
chromosome abnormalities (Feenstra et al., 2006). Currently this database includes
information for more than 4800 cases that are crosslinked to HPO (Vulto-van Silfhout

etal.,2013).

Yet another one is Nijmegen Genetics Phenotype Database (NGPD), aiming to use
and collect phenotypic information of patients with unexplained intellectual disability
and/or congenital anomalies using the HPO. The NGPD currently includes more than

8000 patients with 73,496 HPO associations (Moss ef al., 2014).

2.7 NOVEL DISEASE - GENE IDENTIFICATION USING PHENOTYPE

DATA

There are studies in the literature aiming to discover novel disease-gene associations
using phenotype data. A study was conducted in 2012 by Chen ef al. to find the
candidate disease genes by using mouse phenotypes. The authors developed a web
application to compare the mouse organism with human. Data collection comprises
the most comprehensive part of this study. Human Phenotype ontology (HPO)
annotations of OMIM diseases, and the HPO itself, and MPO annotations of mouse
models, MGI asserted disease models and OMIM human gene to MGI gene mappings

were downloaded. At the end, a database was created that consists of HPO annotations
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for almost all clinical OMIM entries for a large part of HPO and MPO terms.
Investigation was extended that covers nearly all known Mendelian diseases and a new
software called OWLSim was constructed. The database was started to be constructed
in 2011 and contains mappings from HPO, MPO and OMIM databases. 5,035 OMIM
diseases (1858 with known gene associations and 3,177 with no known gene) and
1,791 OMIM genes with HPO annotations, along with the MPO annotations of 24,904
mouse models and 8,124 mouse genes are stored in the database. Additionally, 2,624

associations between OMIM diseases and models from MGI of the literature are also

published (Chen et al., 2012).

The main reason of using OWLSim software is to compare each HPO related OMIM
genes or diseases with all MPO related mouse genes or mutant lines. It uses merged
OWL file of PATO, UBERON, MPO plus logical definitions, HPO plus logical
definitions and a mapping of HPO and MPO lexical matches for pairwise comparisons.
OWL is the acronym for Web Ontology Language and a standard produced by the
W3C. GO terms in OWL are based on a translation from OBO to OWL. Uberon is an
integrated cross-species ontology that covers anatomical structures in animals. PATO

can be used along with other ontologies such as GO or anatomical ontologies.

Another resource called PhenomeNET was conducted in 2011 by Hoehndorf et al.,
with the same annotations, ontologies and definitions used for comparing human and
mouse phenotypes; however, this algorithm differs from OWLSim (Hoehndorf,
Schofield and Gkoutos, 2011) in methodological manners. While calculating the least
common ancestor, PhenomeNET uses the idea of subsuming between classes, while
OWLSim prefers to use other ontology relations. PhenomeNET calculates the average

of all pairs of phenotypes, however, OWLSim uses the average of best matches.

MouseFinder is a web tool, which provides users with the opportunity to investigate
mouse phenotypes and their comparison to disease records (Chen et al., 2012). Users
can search for various types of features by entering OMIM disease, gene names or
HPO terms. Also, MGI asserted mouse models can become visible if it is provided.

Another aim of this web tool is to discover the novel genes for OMIM diseases with
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unknown gene. 468 OMIM diseases were taken with a mapped locus with no known

genes.

In 2007, a study authored by Chen et al. improved the novel gene prioritization by
using mouse phenotype information. It was shown that genes that because diseases
have functional relationships. ToppGene database was created for gene prioritization
and claimed to have higher performance compared to resources such as SUSPECTS
and ENDEVAOUR (Chen et al., 2007). Since most of the diseases are genetically
polygenic, intricate, multifactorial and present different clinical phenotypes, it is hard
to identify the disease-causing genes. Therefore, a different approach was applied with
the use of integrative genomics-transcriptomics-phenomics-bibliomics sources. These
sources were compounded with human gene annotations, mouse phenotype data and

literature co-citations of genes.

In the same study, ToppGene was compared to the other gene prioritization methods:
SUSPECTS and ENDEVAOQOUR. SUSPECTS is a tool that matches within GO terms,
InterPro domains and gene expression data built on top of the PROSPECTR.
PROSPECTR uses sequence features to rank genes (Adie et al., 2005). The user
interface was written in JAV A script, JSP and servlets, and integrated with the Tomcat
web server. GO, pathways, phenotype, protein domains, PubMed and protein
interaction terms are displayed (Chen et al, 2007). While comparing it with
SUSPECTS and ENDEVAOQOUR it was observed that percentage of top 10% and 5%

ranked target genes results were higher in ToppGene.

ToppGene Suite is a portal for gene enrichment and novel gene prioritization based on
functional annotations and protein interactions. Moreover, literature identifiers were
used such as PubMed, PMIDs. As an example, for simple interpretation, if two genes
have the same cross-reference in PMID result, it means that they have either direct or

indirect biological association.
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CHAPTER 3

MATERIALS AND METHODS

3.1 MATERIALS

This section includes the processing steps of website and the required inputs for design

and analysis. The inputs’ preparation and related soft wares are illustrated in detail.

3.1.1 GEPHI FOR NETWORK ANALYSIS & VISUALIZATION

Network visualization of large graphs has been a challenging subject for various years
but it also is crucial to examine and understand the biological mechanisms (Bastian,
Heymann and Jacomy, 2009). Gephi is an open free source software written in Java
on the NetBeans platform for analyzing and visualizing networks and graphs. It is
claimed that Gephi can handle large and complex data and both dynamic and static
networks can be displayed and manipulated with Gephi tool (Bastian, Heymann, and
Jacomy, 2009). It is freely available for academic purposes under the public license
agreements (gephi.org). Gephi provides a visual platform, which bridges the complex
biological data and mechanisms onto a tangible virtual environment. Gephi has various
modules for importing, visualizing, filtering all types of networks. Multiple networks

can run at the same time in separate workspaces.

Any algorithm, tool or filter can easily be added to Gephi with moderate programming
skills. Nodes and edges output files can be exported manually or using filtering system.

It provides various network analysis tools and their results also can be exported in
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various formats. Also, with the help of various plugins in it, both static and dynamic
results can be gathered. It provides user to manipulate and anticipate the data during

handling with the network (Bastian, Heymann and Jacomy, 2009).

There are various visualization tools as alternatives to Gephi, which can be listed as
yEd Graph Editor, Graphviz, Cytoscape, and Neo4j. The reason behind using Gephi
arised from the fact that it was used in the Diseasome project. yEd is more suitable in
diagramming rather than network analysis. The Graphviz takes descriptions of graphs
in a text language and can create diagrams in several formats. Cytoscape is an open
source platform for visualizing complex networks. Neo4j is an online platform for

graph visualization and for the generation of graph based databases.

It is possible to perform various types of analysis with Gephi and results can be
exported in different formats. Here are the important graph properties that Gephi
calculates: Connected components, modularity, node degree, graph diameter,
centrality, graph density, average path length and clustering coefficient. These network
statistics can be computed under statistics part belongs to the “Overview” menu. Users
can found filter options and node/edge overviews under this menu. Possible formats

to export a network can be given as:

e A CSV is a comma separated values file and it allows data to be saved in a
table structured format.

e A GML, Geography Markup Language (GML) is the XML grammar defined
for expressing geographical features. Image exporters makes user to export
view of a graph to .png, w.svg of .pdf formats

e Portable Network Graphics is a raster graphics file format that supports lossless
data compression.

e Scalable Vector Graphics (. svg) is an XML-based format that can be edited
using either text editors or image editing software. SVG can also be used for

the Web, as it looks well when zooming or panning a visualization.
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e The Portable Document Format (PDF) is the output can be written in terms of
the wide-spread cross-platform document format. Even though this is the most
trivial way among other exporting variations, any possibility for interactive
alterations is not fully accessible.

e Seadragon exporter is suitable for the dynamic networks.

e Sigma.Js creates web based network graphs using a template driven approach.

e Loxa web site export also uses a sigma. Js and it provides user an interactive
filtering and zooming.

e Terminally, an HTML/JS project which is gexf. Js master makes user to drag

and drop a GEXF file to create a web export.

3.2 METHODS

This section explains the data preparation, aggregation and integration work. Also,
processing steps of Gephi tool, details of python scripts in pseudo format are presented.
A short website tutorial is described under this part (for more details see Appendix A).
Data processing steps are summarized in Figure 3 and detailed information is provided

in the following sub-sections.
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* Human disease — human gene relations were downloaded from Diseasome.

WS« Mouse affected system (phenotype) — mouse gene relations were downloaded from MGI.

J

* Dataset 1 was generated using targeted knock-out mouse orthologues of human genes,
Entrez ID of these genes, human diseases with their ID's and disorder class information.
ML+ Dataset 2 was generated using affected system (phenotype) terms with their unique MP
ID's, targeted knock-out mouse orthologues of human genes. )

* Dataset 1 and Dataset 2 were integrated by using knock-out mouse orthologues human
genes as a foreign key.
DATA

WU« Python scripts were created to obtain .gexf extension files while using these datasets. )

* Visuzalition of network was done with Gephi tool.

VISUALIZATION
SU, [o] )

NETWORK

* Final mapping was exported to generate the online web-service using a Gephi network
visualization tool.

Figure 3: Working diagram of the study.

3.2.1 DATA DOWNLOAD AND PROCESSING

Under this part, datasets are illustrated according to their purpose of usage, content
and modifications that were made on them. Two different datasets about human and
mouse organisms were extracted. Dataset 1 contains the Human disease — human gene
relation information and downloaded from Diseasome resource and the Dataset 2
contains Mouse affected system (phenotype) — mouse gene information derived from
MGI. Mouse genes attribute was chosen as a foreign key, to relate these two sets. A
more detailed information about the datasets is provided under sections 3.2.1.1 and

3.2.1.2 respectively.
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3.2.1.1 DATASET DOWNLOAD FROM DISEASOME & DATA
PROCESSING

Diseasome dataset shown in Table 1 was used as the source to constitute Dataset 1. It
includes disease ID, disease name, disorder class, size (s) that show the number of
associated genes, degree (k) shows number of disorder classes it connects to, class
degree (K) is the number of distinct disorder classes it connects to and genes written

as comma delimited at the last column.

Table 1: The Diseasome dataset

Supporting Inf ion Table 2. hi istics of

:gsease Name Disorder class Sl(z:) Degr:e:) Class-degrf:) Genes implicated (Entrez ID) [comma-deliminated)]
117,20-lyase_deficiency Endocrine 1 0 0 CYP17A1 (1586)
3 2-methyl-3-hydroxybutyryl-CoA_dehydrogenase_deficiency |Metabolic 1 0 0 HADH2 (3028)
4/2-methylbutyrylglycinuria Metabolic 1 0 0/ACADSB (36)
5 3-beta-hydroxysteroid_dehydrogenase,_type_ll,_deficiency Metabolic 1 0 0/ HSD3B2 (3284)
6 3-hydroxyacyl-CoA_dehydrogenase_deficiency Metabolic 1 0 0 HADHSC (3033)
7/3-Methylcrotonyl-CoA_carboxylase_deficiency Metabolic 2 0 0/MCCC1 (56922), MCCC2 (64087)
8 3-methylglutaconic_aciduria Metabolic 1 0 0 AUH (549)
9 3-methylglutaconicaciduria Metabolic 1 1 1 OPA3 (80207)

10 3-M_syndrome multiple 1 0 0 CUL7 (9820)

Information about datasets are available under the supported information (SI) part.
Curated Morbid Map file with disease ID, class assignment (SI Tablel), network
characteristic of diseases (SI Dataset 2) from and disease genes (SI Table 3) were
examined and combined in Dataset 1. Mouse orthologues of human genes were
converted and extracted with the online converter tool called as HCOP: Orthologue
Predictions Search (European Bioinformatics Institute, HCOP: Orthologue Predictions

Search. Retrieved [04.07.2016] from [http://www.genenames.org/cgi-bin/hcop]).

SI Tablel contains the Disease ID, Disorder name, Human Gene Symbols, OMIM ID,
Chromosome Position of the related gene and Disorder Class information. Disorder
names were aligned in an alphabetical order and distinct consecutive numbers are
given in ascending order starting from 1. These numbers are called as Disease ID and

assigned for analysis in Gephi. Disorder names are distinctly ordered with their related
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human genes and in accordance OMIM Ids are retrieved. If a disorder has more than

one genes related to it, these genes are separated with comma.

SI Table 2 covers the information based on disease network statistics. Columns are
separated as Disease ID, Disorder name, class Size(s), Degree(k), Class-degree(k),
Genes implicated (Entrez ID) as comma delimited. Size(s) is the number of genes
associated with that disorder, degree(k) is the total number of connectivity to disorder

classes and class-degree(k) is the number of distinct disorder classes.

SI Table 3 was constructed according to the disease gene information. This table
contains Entrez ID, Symbol, Disorder class, Size (s), Degree (k), Number of classes
associated, Implicated diseases (Disease ID) as comma delimited. Size(s) is the
number of diseases associated with that gene, degree(k) is the total number of genes

belonging to disorder(s) interact with this gene expect itself.

SI Table2 was used as a reference source to compose Dataset 1. As the final step,
Dataset 1 was linked together with the dataset obtained from MGI, which is explained

in the following section.

Dataset 1 shown in

Table 2 consists of targeted knock-out mouse orthologues of human genes, Entrez ID
of these targeted knock-out mouse genes, human disease ID, human disease and
disorder class information. The remaining information except mouse orthologues of
human genes and their IDs are the same with the Diseasome dataset information.
Human gene column was added to ease the understanding for orthologue idea between

human/mouse organisms. This dataset is based on human data.
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Table 2: Dataset 1

ENTREZ ID JMOUSE GENE |HUMAN GENE JDISEASE ID |HUMAN DISEASE DISORDER CLASS
13074;Cyp17at CYP17A1 1417 20 lyase deficiency Endocrine
66515¢Cul7 cuL7 643 M syndrome multiple

403187 {Opa3 OPA3 1043 methylglutaconicaciduria Metabolic
22017 (Tpmt TPMT 126 mercaptopurine sensitivity Metabolic
13618 Ednrb EDNRB 15JABCD syndrome multiple
2380554Apob APOB 17 }Abetalipoproteinemia Metabolic
206825 Sox9 SOX9 183Acampomelic campolelic dysplasia Skeletal
10714614 Cat CAT 211{Acatalasemia Hematological
17246 {Mdm2 MDM2 22 4Accelerated tumor formation Cancer
223921 fAaas AAAS 24 (Achalasia addisonianism alacrimia syndrome (multiple
56873 Lmbr1 LMBR1 25)Acheiropody Skeletal
12824}Col2a1 COL2A1 26}Achondrogenesis hypochondrogenesis type Il }Bone
135214Sic26a2 SLC26A2 27Achondrogenesis Ib Bone
14184 1Fgfr3 FGFR3 28¢Achondroplasia Skeletal
30952 {Cngb3 CNGB3 29 {Achromatopsia Ophthamological
12790§Cnga3 CNGA3 29 §Achromatopsia Ophthamological
14686 | Gnat2 GNAT2 29)Achromatopsia Ophthamological
16005} Igfals IGFALS 30} Acid labile subunit deficiency of Endocrine
192775,Kcnh2 KCNH2 313Acquired long QT syndrome Cardiovascular

3.2.1.2 DATASET DOWNLOAD FROM MGI & DATA PROCESSING

Mouse affected systems information (i.e. phenotypes) was collected from the MGI
database. Collected mouse orthologue genes with HCOP were imported to the MGI
batch summary tool for creating Dataset 2. Only the targeted null/knock-out mouse
genes were taken into consideration during the generation of Dataset 2. MGI data
shown in Table 3 were used as the source to constitute Dataset 2. It includes affected
system information with unique “Mammalian phenotype ID” of all recorded mouse
genes with marker symbols in that database. It also provides unique MGI IDs for these

genes, allele type and allele attribute information.

Table 3: The MGI Dataset
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MGl Allele Accession ID Allele Type Allele Attribute Marker Symbol ~ Mammalian Phenotype ID (comma-delimited)

MGI:2180117 Targeted Null/knockout A2m MP:0005379,MP:0005370,MP:0005370,MP:0005370,MP:0005370
MGI:5445373 Targeted Null/knockout Adgalt MP:0005387

MGI:3624807 Targeted Null/knockout Adgalt MP:0010768,MP:0005376

MGI:3621812 Targeted Null/knockout Aaas MP:0005389,MP:0003631,MP:0005379

MGI:3577725 Targeted Null/knockout Abcal MP:0005376

MGI:3525100 Targeted Null/knockout Abcal MP:0005397,MP:0005376

MGI:1935192 Targeted Null/knockout Abcal MP:0005388,MP:0003631

MPO website was used as a main source for the phenotypic information in both OBO
and OWL format. In this resource, gene list either can be pasted directly or imported
as a file into “ID/Symbols List” part in batch summary tool. “Mammalian Phenotype
(MP)” option under additional information part was selected and search was initiated.
From the resulting list, related data was imported with human readable file formats,

such as .xlsx, .csv or .txt.

A Microsoft Office Excel tool function Vlookup was used for gathering the related
affected systems of mouse genes in Dataset 1. Vlookup function finds common parts

in a table or in each range, with respect to rows.

Except from the affected systems that are directly taken from MPO, four different
versions of Dataset 2 were created by taking the different levels of phenotypes.
Purpose of this idea is to observe the change in the network size. Detailed information

about this method can be found under “3.1.2.3 Phenotype Levels” section.

Furthermore, it was noticed that some of these mouse orthologs of human genes were
not annotated with any phenotype in the MGI database. According to MGI batch
summary results, it was found that 1,375 of these genes have mammalian phenotype
id and 170 of them do not have any recorded information. Detailed list is provided

under Table 5.

Dataset 2 is shown in Table 4, and it consists of phenotype terms with their MP ID’s
and targeted knock-out mouse orthologues of human genes. Human gene column again

was added for the ease of understanding. This dataset is based on mouse data.
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Table 4: List of mouse gene symbols, which do not have any MPO annotation

Aass Baat Eno3 Golgas Kir3dI2 Ndufs8 Phkb Serpina3b Tpm2
Abat Bckdha Etfa Gypc Krt13 Ndufvl Pkpl Serpina3f Trappc2
Acadsb Bckdhb Etfb Hbb-bs Let Oaslc Pla2g2a Serpina3i Tspan7
Acsl6 Bpgm Etfdh Hbb-bt Lrrc8a Oasle Plekhg4 Serpina3j Tspyll
Adamts10 Btnl2 Fance Hlcs Maml2 Oaslf Plod2 Serpina3k Umps
Aggfl Cls1 Fancf Hmenl Mcccl Oaslh Pgbp1 Serpina3m Upb1
Alad Cls2 Fgb Hmgces2 Mccc2 Opcml Prcc Serpina7 Usp26
Aldh6al Cog7 Fgdl Hnmt Mcfd2 Pabpn1 Pusl Slc22a18 Vps13b
Aldoa Col9a3 Fmo3 Hs1bp3 Miit10 Pdgfrl Pygl Slc25a15 Whsc1l1
Algl Creldl Fted Hsd17b3 Miit11 Pdhb Raplgdsl Slc25a22 Xpnpep2
Alg12 Crybbl Fti1 Hsd3b1 Mmaa Pdhx Rfxank Slc5as

Alg3 Ctdpl Fucal Hsd3b2 Mmab Pdlim4 Rfxap Sncaip

Alg6 Cyb5r3 Gale Hsd3b3 Mmp1lb Pex12 Rnf139 Spg21

Alg8 Cyp2rl Gchl Hsd3b4 Mpdul Pex19 Rnf6 Stox1

Alg9 Cyp4v3 Gcesh Hsd3b5 Mvk Pex6 Rp9 Suox

Arhgef10 Dguok Gm10681 Hsd3b6 Myh2 Pgam2 Scgb3a2 Tas2r138

Arl11 Dpys Gm4450 Igch1 Myl3 Pgkl Serpinalc Ten2

Aspscrl Dsgla Gm6904 Jrk Ncf2 Phfllb Serpinald Timm8al

Atic Eif2b1 Gmps Kif21a Ndufs2 Phfllc Serpinale Tnni2

B4galt7 Eif2b4 Gns Kir3di1 Ndufs7 Phka2 Serpina3a Top2a

Table 5: Dataset 2.

IMP ID JAFFECTED SYSTEM (PHENOTYPE) IMOUSE GENE |HUMAN GENE
MP:0005370'Iiver/biliary system phenotype A2m A2M
MP:0002006%neoplasm A2m A2M
MP:00021 wino abnormal phenotype detected (A2m A2M
IMP:0001869¢pancreas inflammation |A2m A2M
IMP:0005388|respiratory system phenotype A2m IA2M
MP:0008874)d d physiols | sensitivity to Adgalt A4GALT
MP:0009767;decreased sensitivity to biotic induced morbidity lity yA4galt A4GALT
'MP:0009747timpaired behavioral resp to biotic Adgalt A4GALT
MP:0001516 motor inati (Aaas AAAS
IMP:0005384cellular phenotype (Aaas AAAS
IMP:0001262)decreased body weight Aaas IAAAS
MP:0001417}d d exp ion in new envi Aaas AAAS
MP:0005381jdigestil i Y P Aaas AAAS
MP:000537 docri ine gland phenotyp Aaas AAAS
(MP:0001926female infertility (Aaas AAAS
[MP:0005376h: i bolism phenotyp (Aaas AAAS
IMP:0001402)hypoactivity Aaas IAAAS
MP:0003631}nervous system phenotype Aaas AAAS
MP:0011729, pineal gland melatonin secretion Aanat AANAT
'MP:0011728¢abnormal pineal gland physiolo%v iAanat AANAT

3.2.2 HIERARCHICAL APPROACH TO PHENOTYPES

This section explains the different approaches used to generate the dataset 2. Batch
summary result for affected systems of related genes in MGI contains concurrently the
direct results of experiments. In other words, phenotypes provided by MGI tool are the

directly recorded phenotypes (i.e. only the most specific phenotype terms in the MPO
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DAG). We propagated the phenotypic term annotations through the root of MPO (i.e.
mammalian phenotype term) and applied at cut-off only to provide the annotations at
that certain level. Since the specific terms merge under the same parent terms at each
level, the number of terms decrease going from specific to generic. This way, the total
number of phenotype nodes decreases when we use higher levels of MPO instead of

the most specific ones.

Figure 4 illustrates the MPO relations and how it can be possible to reach the
Mammalian Phenotype (i.e. the root term) in varying number of steps, according to

the actual level of the most specific annotated phenotype term.

2STEPS
PREVIOUS ;'f;:é‘xst MAMMALIAN
penorvee [l PHENOTY? PHENOTYPE

FOR MP1

FIRST PARENT HIGH LEVEL
PHENOTYPE @] PHENOTYPE
OF MP2 FOR MP2

HIGH LEVEL MAMMALIAN
"% PHENOTYPE PHENOTYPE
FORMP3 !

Figure 4: Three types of paths for affected systems to reach the root MP term.

FIRST PARENT
v OF MP1

MAMMALIAN

PHENOTYPE

In the toy example displayed in Figure 4, the annotated terms can connect the root of
the MP tree in varying steps, according to their specificity. In this sense, we divded
MP terms in 3 groups. First group is represented by MP1 phenotype, which can reach
the root in multiple steps. The number of steps change from term to term, as some
terms are more specific compared to the others. In the second group, MP2 connects to
the root in 3 steps. Lastly for the third group, MP3 reaches the root node at 2 steps. To
reduce the number of phenotype nodes in the generated networks, we generated 4
levels of phenotype annotations: using i) most specific phenotypes (i.e. direct

annotations to genes), ii) first/direct parent phenotypes, iii) 2-steps before the root
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affected systems, and iv) high-level affected systems. By using the main source from

the bio portal, desired levels of affected systems were gathered.

In Figure 5, statistics for the networks generated using different phenotype levels are
displayed. First level covers child affected systems directly taken from the batch
summary result in MGI. Number of nodes on this version is 8,355 where 1,116 of them
are diseases and the number of distinct affected systems is 5,696 and the number of
edges is 111,207. This network is called as "child affected systems version". Second
version represents the one step higher level (i.e. direct parent) of the asserted affected
systems. Number of nodes is 3,675 and for distinct affected systems it is 2,558, where
1,116 of them are diseases and number of edges is 89,603. This second network is
called as "parent affected systems version". The third one is generated with the affected
systems that stands for two steps before mammalian phenotype. This one is called "two
step before root version". In this version, number of nodes is 1,248, number of edges
15 26,009 and there exist 131 distinct affected systems in this network. The last network
is formed according to high-level affected systems. Here the total number of nodes is
1,146. Number of edges is 13,661 and the number of phenotypes was just 30. This
version is called as “high-level affected systems”. It was observed that generalizing

the affected systems decreases both edge and node numbers.
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Only Child . 2 Steps Before High-Level
. Parent version . .
Version Version Version
.
| | #of Nodes: # of Nodes: # of Nodes: | | #of Nodes:
8,355 3,675 1,248 1,146
— ~—_———— — —
. . . .
# of Edges: # of Edges: # of Edges: # of Edges:
111,207 89,603 26,009 13,661
— ~—_———— — —
. . . .
# of Distinct # of Distinct # of Distinct # of Distinct
L Affected Affected Affected L Affected
Systems: 5,696 Systems: 2,558 Systems: 131 Systems: 30
—

Figure 5: Node and Edge Statistics for Dataset 2 Versions.

Large datasets such as the network generated using the asserted phenotypes (i.e. child
affected system version) can reveal diverse and extensive information; however, it has
a drawback of very populated and dense visualization render, which is computationally
intense. To avoid it, one can use the other versions with less nodal degrees of freedoms.
In this sense, parent affected systems version did not provide a significant
improvement as the number of edges is nearly the same as the child version. Moreover,
both two steps previous version and the high-level version has very low number of
distinct phenotypes, 131 and 30 respectively, to cause a loss in specificity. At the end,
we decided to continue with the child affected version of the network as in the

beginning.

3.2.3 INTEGRATION OF DATA & GENERATING THE NETWORKS

The data integration was based on connecting human diseases and mouse affected
systems (i.e. phenotypes) by using mouse/human orthologous genes. Two strategies
were followed to generate the networks: treating the genes 1) as nodes, and ii) as edges.

The idea behind this design is to generate a comprehensive network that display all
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relations in-between genes-diseases-phenotypes. Human diseases are indirectly
connected to the mouse phenotypes (i.e. affected systems) while using mouse/human

orthologous genes as the mediator.

ORTHOLOGUE
Human Human Genes

Mouse

Affected
Disease

System

Mouse Genes

Figure 6: Genes-Node version of the Mouse2Human network.

In Figure 6, Genes-Node version design is illustrated and all terms are classified as

nodes in that network.

Second version was constructed by treating mouse genes as edges. The idea behind
this design is to decrease the number of nodes, to provide a less crowded network and
visually perceivable network by only displaying relations between human diseases and
mouse affected systems. Figure 7 displays the representation of Genes-edge network
version, where the knock-out mouse genes / orthologues human genes were treated as

edges.

Human

Disease ORTHOLOGUE
Human Genes

Mouse Genes

Figure 7: Genes-Edge version design of the Mouse2Human network
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At this part of the study, Dataset 1 and Dataset 2 were merged by integrating the human
and mouse data tables. A link was established between human and mouse data using
the targeted knock-out mouse orthologues of human genes. If any gene is related to
more than one disorder, the gene name is repeated multiple times in the merged dataset

for each related disease.

Each human disease has a unique ID. Normally, OMIM IDs are used for diseases;
however, it was indicated in the Diseasome study, the derivatives of the same diseases
are gathered into a single category for the sake of simplicity. For example, all the
derivatives of Alzheimer diseases were grouped into a one category and named as
“Alzheimer disease”. Therefore, another unique numbering system was developed by
Diseasome and called as “Disease ID”. In our study, Diseasome Disease IDs are used,
as well. Disorder classes were attached to the diseases collaterally from the Diseasome
dataset. Targeted knock-out mouse genes were indicated with their ENTREZ IDs.
Knock-out mouse gene and human disease columns consist string values and rest of

the table is composed of integers. Table 6 illustrates a portion of the combined dataset.

Table 6: The combined dataset

IMP ID JAFFECTED SYSTEM (PHENOTYPE) IMOUSE GENE JHUMAN GENE  IDISEASE ID  |HUMAN DISEASE IDISORDER CLASS
MP:000537 iliary system A2m A2M 98jAlzheimer Disease Neurological
'MP:0002006%neoplasm IA2m A2M 98*Alzheimer Disease Neurological
MP:0002169¢no detected (A2m A2M 981Alzheimer Disease Neurological
IMP:000 i JA2m A2M 98fAlzheimer Disease Neurological
IMP:; ry system IA2m A2M 98JAlzheimer Disease Neurological
MP: i ivity to Adgalt JA4GALT 212)Blood group Hematological
\MP:0009767 to induced Adgalt A4GALT 212!BIood group Hematological
MP:0009747¢impair i P to iotic Adgalt A4GALT 2121Blood group Hematological
MP:00015 motor ination/ balance (Aaas (AAAS 24 i isoniani imi multiple
IMP.0005384cellular phenotype Aaas JAAAS 24 3 imi multiple
IMP:000 body weight | Aaas IAAAS 4 i isoniani imi multiple
MP:0001417 ion in new envir Aaas JAAAS 24 i isoniani lacrimit multiple
MP:0005381jdigestis i Yy Aaas AAAS 24 i isoniani: imi multiple
'MP:000537 i ine gland Aaas AAAS 24 i isoniani imi multiple
MP:000 infertility iAaas AAAS 4 i isoniani imi multiple
IMP.000537 i i |Aaas AAAS 4 ii isoniani: imi multiple
IMP.0001402}hypoactivity Aaas IAAAS 24 i isonianis imi multiple
MP:0003631)nervous system phenotype Aaas AAAS 24 i isoniani imi multiple
MP:00117293abnormal pineal gland melatonin secretion /Aanat AANAT 411;Delayed sleep phase syndrome Psychiatric
MP:0011728¢abnormal pineal gland physiology Aanat JAANAT 4117Delayed sleep phase syndrome Psychiatric

Python dictionary and list objects, sorting and string functions, parsing methods were

used for the generation of the networks. The pseudo code of Genes-Node network and
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the objects of the program can be found in Figure 8: Pseudo code for the network

generation for the genes-node version (for more details see Appendix B.2).

"This part parses and allocates the Diseasome data” » Affected System Node Size”

function Open Workbook (Datasetl) import necessary modules
humandis2gene < empty dictionary import counter
disclass « empty dictionary import chain
geneZentrez « empty dictionary row to pairs < attains the row that related to the affected system
currentrow=1 sheet to pairs « ranges the affected systems
currententrezid < first row of Datasetl, keeps EntrezID information count affected in sheet  counts how many genes are related to them
currentgene + second row of Datasetl, keeps gene information currentcol « give same colour to all affected systems
currenthumandis « third row of Datasetl,keeps disease information for
currentdisclass « fourth row of Dataset!, keeps disease class information affected in geneSaffectedfgens] + count the number of genes in
currenttuple <« currentgene,currentdisclass,currentrow, keeps whole information of Dataset! concerned affected system :

do
"This part parses and allocates the MPO data” currentsize=str(counter.get(currentaffected)) < attain its final size

function Open Workbook (Dataset2)

“This part is related to node colours”
geneZaffected « empty dictionary

currentcol=bgr{(len(disclasskeys()), disclass[currentdisclass]) « give

2 .
mp2id + empty dictionary
d Pl 4 colours to diseases according to their 22 distinct disease classes

currentrow=1
currentmp < first row of Dataset2, keeps MP ID information

currentgene + second row of Dataset2, keeps mouse gene information
currentaffected + third row of Dataset2,keeps affected system information
affectedtuple + currentmp,currentaffected

labell < humandisease
attributel « disease class

attribute2 « number of knock out mouse genes

» This part is related to edge weights”
labell + mouse knock out gene

attributel « ENTREZ ID

edgedic «— empty dictionary

edgecounter=1

for

human disease is in humandis2gene

"This part attains source and target node information for
Gephi”
gene2geneid + empty dictionary

currentrow=1
previousrow[maz(mpZ2id.values()+1)  taking mazimum value prevents the duplicate Id numbers.
"Mp2id.values” here shows the current phenotype id

"This part specifies the node size information” affected in gene2affectedfgene]
"Disease Node Size Specification” do
currentsize=() current gene target node id= gene2geneid[gene] < it assigns
for edge weight between gene and disease o
human diseases in humandis2gene(keys)() « if this disease exists in the for
Datasetl, take it and attain a size to it affected is in gene2affected
try do

currentmp,current affected=str(current mp),str(current affected) <

currentsize=currentsize+len(gene2affected[currentgene]) « disease node
it assigns edge weight between gene and affected system

size is proportional to the number of genes it is related to

Figure 8: Pseudo code for the network generation for the genes-node version

The written scripts take these two datasets as input, process them and attain node and
edge features. After executing the written scripts, output file was attained in. gexf
format which is readable by the open viz platform, Gephi. Both versions of the

networks were imported to Gephi as undirected.

Gephi provides a coloring option according to the node category. To differentiate
different types of nodes in the network, mouse genes and affected systems are
colorized as black and red, respectively in the Genes-Node version. Similarly, mouse
affected systems were colored as red in the Genes-Edge version. Human diseases (i.e.
disorders) were colored differently according to the disease classes. Node coloring in

Gephi is set using the options under the overview menu, through node attributes and

37



type choices. The number of selected colors can be increased, as well as decreased
using the palette widget option. Twenty-four and twenty-three distinct node coloring

were generated respectively for Genes-Node and Genes-Edge versions.

Color code tables were constructed for both versions of network. Color code table for
Genes-Node and Genes-Edge versions can be observed to gether with the number of

nodes for each node type in Figure 9 and in Figure 10, respectively.

TYPES OF NODES # OF NODES
B Affected system 5696
I Mouse knock-out Gene 1479
Disorder Class: Metabolic 172
B Disorder Class: Multiple 140
Disorder Class: Cancer 120
B Disorder Class: Neurological 119
Disorder Class: Hematological 87
Disorder Class: Immunological 65
Disorder Class: Skeletal 57
Disorder Class: Ophthamological 57
B Disorder Class: Endocrine 54
B Disorder Class: Dermatological 4
Disorder Class: Cardiovascular a“
Disorder Class: Developmental 3
Disorder Class: Renal u
Disorder Class: Bone
I Disorder Class: Muscular 30
B Disorder Class: Unclassified 26
I Disorder Class: Connective Tissue Disorder 28
I Disorder Class: Gastrointestinal A
I Disorder Class: Psychiatric 18
I Disorder Class: Respiratory 16
Disorder Class: Ear,Nose,Throat 6
Disorder Class: Nutritional 5

Figure 9: Color code table with the number of nodes for Genes-Node version
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TYPES OF NODES # OF NODES

B Affected system 5696

I Disorder Class: Metabolic 172
Disorder Class: Multiple 140
Disorder Class: Cancer 120

B Disorder Class: Neurological 119
Disorder Class: Hematological 87
Disorder Class: Immunological 65
Disorder Class: Skeletal 57

Disorder Class: Ophthamological
Disorder Class: Endocrine
Disorder Class: Dermatological
Disorder Class: Cardiovascular

57
54
47
44

[ |

I Disorder Class: Developmental

Disorder Class: Renal 34

Disorder Class: Bone 34
B Disorder Class: Muscular 30
B Disorder Class: Unclassified 28
B Disorder Class: Connective Tissue Disorder 26
B Disorder Class: Gastrointestinal 21
B Disorder Class: Psychiatric 18
B Disorder Class: Respiratory 16

Disorder Class: Ear,Nose, Throat 6
[l Disorder Class: Nutritional 5

Figure 10: Color code table with the number of nodes for Genes-Edge version

Different layouts can be applied to the networks in Gephi. In Diseasome network,
“Force Atlas’’ layout was employed. In this layout, repulsive forces between the
distant nodes in the same cluster are approximated by a Barnes-Hut calculation and it
stops after the range of convergence is achieved iteratively. Barnes-Hut calculation is

an approximation algorithm to perform an n-body simulation.

It was also investigated to use the OpenOrd layout to emphasis divisions. This layout
provides undirected weighted graphs and can divide clusters virtually in a tangible
manner. It also stops automatically and this algorithm is also based on Fruchterman
and Reingold and works with an upper limit for the number of iterations till

convergence is achieved.

The name of the nodes and edges were automatically imported to the network by
selecting show labels and show edges options in Gephi. The resulting can be exported
in graph file format and it provides either a text or an xml of the trimmed gexf file.
Also, it is possible to save the image of the network by selecting one from various

other formats like pdf, jpeg or png.
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Finally, a web exporter was used to provide the networks to the research community
in a web-server, which was gexf Js master tool (Velt, 2011). This plug-in is used for
undirected and static graphs and it provides a user firiendly interface (downloaded
from: https://github.com/raphv/gexf-Js). Under the config.Js folder, output was be
replaced by changing gexf extension name with the desired one. Output of network
was kept under index.html part. The HTML file can be opened with any web browser
and after a few seconds of loading time, the desired network becomes visible. It is
possible to type node names in the search column, which provides a list of possible
terms related to the searched word. One of the nodes can be selected from the list to
display the related sub network (isolating the sub-network requires clicking on three
dots sign at the lower left side of the screen). Connected nodes will become highlighted

while approaching any node with the mouse cursor without clicking it.
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CHAPTER 4

RESULTS

4.1 NETWORKS ANALYSES WITH GEPHI

Under statistics menu in Gephi, network analysis options are available for static and
dynamic graphs for average degree, average weighted degree, network diameter, graph
density, modularity and eigenvector centrality. We carried out the network analyses

using Gephi’s options and the results are given below.

Degree gives the number of edges linked to a node. Average degree is the information
for all nodes in the network and it can be found by taking mean of all degrees. In
Genes-Node and Genes-Edge versions respectively the average degrees are 12,725 and
26,620. In other words, it is the average number of links per node and naturally the
value is larger in Genes-Edge version because making genes as nodes reduce the
number of edges per node by the increasing the number of nodes. Degree distribution
graphs are illustrated under Figure 11 and Figure 12 respectively for Genes-Node and

Genes-Edge versions.
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Degree Distribution

Figure 11: Degree distribution for Genes-Node version network
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Figure 12: Degree distribution for Genes-Edge version network.

Average weighted degree results for Genes-Node and Genes-Edge versions are 26,203
and 30,095 respectively. It is expected to see a decrease in total node number from
Genes-Node version towards to the Genes-Edge version. However, edge number has

been increased up to 1.77 times in Genes-Edge version.

Network diameter can be defined as the maximum eccentricity of any vertex in the
graph, in other words, it is the longest one of all shortest paths between any pair of
vertices. Under the "Network diameter" section, betweennes centrality, closeness
centrality and eccentricity analysis has also been performed. In Genes-Node version,

diameter has been found as 8. In Genes-Node version, the shortest path was found
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between any pair of vertices shows the diameter of a graph. Radius was calculated as
1 and average path length is 3,84. Number of shortest paths were calculated as
97,130,898 totally. In Genes-Edge version, diameter has been found as 7 and it is
expected to be seen smaller in this version while comparing with the Genes-Node
version. Radius again calculated as 1 and average path length is 3,45. Because genes
were no more treated as nodes, it is expected to see the decline in this number also.

Number of shortest paths had been found as 70,216,028 in total.

Another measure that we calculated was the Graph density analysis. Dense graph is
where the number of edges is close to the maximum number of edges. The opposite
term is a sparse graph that is a graph with only a few edges. Graph density had been
found as 0,001 in Genes-Node version and 0,003 in Genes-Edge version. This value
increase with the number of edges in the same direction. In this way, Genes-Node
version network can be considered as a relatively sparse graph while comparing with

the Genes-Edge version.

Modularity shows how well a network decomposes into its modular communities. It
is directly proportional to the departmentalize issue in the network. Gephi looks for
the nodes that are more densely connected in the network (Blondel et al., 2008). A
high modularity score indicates complicated internal construction. In other words,
community structure shows how network is disaggregated into various sub-networks.
Randomization provides a better disaggregation resulting in a higher modularity score,
however randomizing procedure drastically increases the calculation time. In our
analysis, “randomize” and “use weights” options were chosen to produce better
disaggregation, and the edge weights were considered while computing the
modularity. This these options, modularity was calculated for both Genes-Node and

Genes-Edge versions.
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Modularity Report

Parameters:
Randomize: On

Use edge weights: On
Resolution: 1.0

Results:

Modularity: 0.414
Modularity with resolution: 0.414
Number of Communities: 15

Size Distribution

1,750
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1,250

Size (number of nodes)

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Modularity Class

Figure 13: Modularity class sizes for the Genes-Node version network.

Modularity report in Figure 13 shows that modularity was calculated as 0,414 and 15
communities were found for Genes-Node version network. This positive modularity
score indicates the presence of modularity structure and it is an average value for this
network. This score is acceptable because 24 kind of nodes exist in network structure
which are genes, affected systems and 22 disorder classes and they all show different
patterns and edge properties. In Figure 14 OpenOrd layout was applied to reveal
communities more clearly. Also, distinct colors and respective percentages for each

community are visualized to distinguish clusters.
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Figure 14: Modularity class colorization and percentage information in total for Gene

Node version.

Some small sub-networks exist in the network and their connections are isolated and
displayed for the selected examples of Aanat and Hal genes together with their

connections.

/ﬁﬁ’ﬁg’-‘““"“c: phase syndrome
t

abnormal pineal glandl melatonin secretipn

abnormal pinealdgland physiology

Figure 15: Aanat targeted knock-out mouse gene and its connections as a subnetwork.
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In Figure 15, Aanat gene and its connections “Disorder: Delayed sleep phase
syndrome”, and affected systems “abnormal pineal gland melatonin secretion” and
“abnormal pineal gland physiology” show that this sub-network constituted a distinct
community. These nodes are only connected to each other and is separate from rest of

the network and its class number was “0”.

Figure 16: Hal targeted knock-out mouse gene and its connections as a subnetwork.

Also, in Figure 16, Hal gene and its connections “Disorder: Histidinemia”, and
affected system “increased urine histidine level” show that this sub-network

constituted a distinct community and its class number was “5”.

Modularity clusters kept in group number 4 and 15 were analyzed to observe the
network characteristics. These are distinct hub clusters and show different features.
Degree frequencies for disorders in modularity class 15 in Figure 17shows that mostly
cancer, hematological and metabolic diseases belong to that class. Disorder class

frequencies are illustrated at the right-side pane in Figure 17.

Also, the average disorder degree frequency for modularity class 15 is calculated as
2,4787 and they are separately illustrated at the left side pane in Figure 17. This table
shows that 104 diseases in that modularity class have degree 1 and 22 diseases have
degree of 2, etc. The diseases “Leukemia” and “Colon Cancer” that have 31

connections, stand together at the last line of this table.
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m Disorder Degree Frequencies of Modularity Class 15 MM
Disorder Class: Cancer 51

1 104 @ | Disorder Class: Hematological 31
2 22 Disorder Class: Metabolic 19
3 15 S 4 [/ Disorder Class: Multiple 17,
4 4 - Disorder Class: Cardiovascular 7|
5| 3 S - Disorder Class: Dermatological 5|
6 1| 2 Disorder Class: Endocrine 5
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w Disorder Class: Ophthamological 4
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10 1 Disorder Class: Bone 2]
11 1 < 4 Disorder Class: Gastrointestinal 2
18 1 D |:| Disorder Class: Immunological 2|
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Disorder Class: Renal 2

! 2 3 4 5 6 7 8 9 10 11 18 31 Disorder Class: Skeletal 2|

Disorder Degree Disorder Class: Connective Tissue Disorder 1]

Disorder Class: Respiratory 1

Figure 17: Degree analysis result for disorders in Modularity class 15

Degree indicates number of total connected mouse knock-out genes for an affected
system. The average affected system degree frequency for modularity class 15 is
calculated as 10,3482 and distinct degree frequencies are illustrated in Figure 17. Bar
plot in Figure 18 also shows that this class keeps affected systems with degree 1 mostly
but also some affected systems with high degrees exist, as well. Affected system with

the degree value of 440 is the ‘‘premature death’’.
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Figure 18: Degree analysis result for affected systems in Modularity class 15.

Degree shows the number of total connected diseases and affected systems to the
corresponding mouse knock-out gene. The average targeted knock-out mouse gene
degree frequency for modularity class 15 is calculated as 42,058 and distinct degree
frequencies are illustrated in Figure 19. The mouse knock-out gene that has degree 308

is Trp53.
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Mouse Knock-out Gene Degree Frequencies of Modularity Class 15
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Figure 19: Degree analysis result for mouse knock-out genes in modularity class 15

The biggest modularity class in Genes-Node version was the 4th class. Figure 20
shows the degree frequencies for disorders in modularity class 4. As observed, mostly
skeletal, multiple and dermatological disorder classes located in this group. Also, the
average disorder degree frequency for modularity class 4 was calculated as 1.54123
and they are separately illustrated at the table stands on the left side in Figure 20. The
disease which have 10 connections is Epidermolysis bullosa. Bar plot shows degree

distribution for disorders in modularity class 4.
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Degree |Degree Freq Disorder Degree Frequencies of Modularity Class 4  |Modularity Class 4 Disorder Classes JFrequency

1 147 ° Disorder Class: Skeletal 45
S Disorder Class: Multiple 29

2 3 Disorder Class: Dermatological 20|
3 9 Disorder Class: Bone 14
4 7 3 4 Disorder Class: Developmental 13]
5 3 - Disorder Class: Cancer 11
6 | 3 Disorder Class: Connective Tissue Disorder 11
7 2 S o Disorder Class: Endocrine 11
7 27 Disorder Class: Metabolic 11

10 1 E Disorder Class: Neurological 11
Disorder Class: Hematological 6]

2 - Disorder Class: Ophthamological 4

Disorder Class: Cardiovascular 2

Disorder Class: Gastrointestinal 2

| Disorder Class: Immunological 2

e - Disorder Class: Nutritional 1

1 2 3 4 5 6 7 10

Disorder Degrees

Figure 20: Degree analysis result for disorders in Modularity class 4.

The average affected system degree frequency for modularity class 4 is calculated as
6.9760 and distinct degree frequencies are illustrated in Figure 21. Bar plot in Figure
21 also displays that this class mostly contains affected systems with degree 1 but also
some affected systems with higher degrees exist, as well. The affected system with the

degree value of 423 is the decreased body weight.
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Figure 21: Degree analysis result for affected systems in Modularity class 4

The average targeted knock-out mouse gene degree frequency for modularity class 4
was calculated as 51,136 and distinct degree frequencies are illustrated in Figure 22.
This modularity class have higher average degree frequency compared to the class 15,
since most of the loosely interconnected disorders classes (such as bone, skeletal,
multiple etc.) and nearly all connected mouse knock-out genes are kept in class 4.
Therefore, it is usual to see higher average degree for mouse knock-out genes in
modularity class 4. The mouse knock-out gene that has the degree value of 343 is

Fgfr2.
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Figure 22: Degree analysis result for mouse knock-out genes in modularity class 4

Figure 23 displays the modularity class sizes for Genes-Edge version network. The
report in Figure 23 shows that the modularity was calculated as 0.368 and 12
communities were formed in total. This positive modularity score indicates the
presence of modularity structure and it is an average value for this network. The
modularity score is reduced in Genes-Edge version because genes are not treated as
nodes anymore and the diseases are directly connected to the affected systems.
Therefore, it is possible that some nodes belong to different classes in the previous

network may remained in same class in this network version.

52



Modularity Report

Parameters:

Randomize: On
Use edge weights: On
Resolution: 1.0

Results:

Modularity: 0.368
Modularity with resolution: 0.368
Number of Communities: 12

Size Distribution
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Figure 23: Modularity class sizes for the Genes-Edge version network
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Figure 24: Modularity class colorization and percentage information in total

In Figure 24, OpenOrd layout was again applied to reveal communities (i.e. classes).
Small sub-networks similar to the ones shown in Figure 15 and Figure 16 are isolated
from the whole network and illustrated in Figure 25 and Figure 26. These are
“Disorder: Delayed sleep phase syndrome”, Disorder: Histidinemia”, and their

connections.
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Figure 25: Delayed sleep phase syndrome disorder & its connections as a subnetwork.

In Figure 25, “Disorder: Delayed sleep phase syndrome” and its connection “abnormal
pineal gland melatonin secretion” and “abnormal pineal gland physiology” affected
systems are shown and that this sub-network constituted a distinct community number

“8”. It stays separated from rest of the network.

Disorder:iHistidinemia

Figure 26: Hal targeted knock-out mouse gene and its connections as a subnetwork

In Figure 26, “Disorder: Histidinemia”, and affected system “increased urine histidine

level” show that this sub-network constituted a distinct community with number “5”.

Modularity clusters 0 and 7 were analyzed to see network characteristics. These are
distinct hub clusters and show varying features. Modularity class "0”” mostly has cancer
class diseases and some connected hub genes. Degree frequencies for disorders in

modularity class 0 (Figure 27) reveals that mostly renal, multiple and cancer diseases
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belong to this module. Also, the average disorder degree frequency for modularity
class 0 is calculated as 155.5073 and they are separately illustrated at the table stands
at left in Figure 27. This score is increased when it is compared with Genes-Node
version because diseases directly connect to the affected systems in Genes-Edge
version. The diseases “Colon Cancer” and “Breast Cancer” have 1469 and 976

connections, respectively.
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Figure 27: Degree analysis result for disorders in Modularity class 0.

The average affected system degree frequency for modularity class 0 is calculated as
19.3448 and distinct degree frequencies are illustrated in Figure 28. Bar plot in Figure
28 also shows that this class contains affected systems with degree 1 mostly, together
with some affected systems with high degrees. Affected system with the degree value

of 440 is mortality/aging.
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Figure 28: Degree analysis result for affected systems in Modularity class 0

Another modularity class in 7th group is analyzed as being one of the hub classes in
Genes-Edge version. Degree frequencies for disorders in modularity class 7 (Figure
29) indicates that mostly renal, multiple and cancer disorder classes located in this
group. Also, the average disorder degree frequency for modularity class 15 is
calculated as 82.5357 and they are separately illustrated at the table stands at the left
side in Figure 29. Bar plot shows degree distribution for disorders in modularity class
4 and disorders with degree 85 are the most frequent ones as the tallest bar. These are
Yemenite deaf blind hypopigmentation syndrome, Frasier syndrome, WAGR

syndrome, PCWH, Denys Drash syndrome and Mesangial sclerosis diseases.
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Figure 29: Degree analysis result for disorders in Modularity class 7

The average affected system degree frequency for modularity class 4 is calculated as
19.6465 and distinct degree frequencies are illustrated in Figure 30. Bar plot in Figure
30 also shows that this class contains the affected systems with degree 1. Affected

system with the degree value of 350 is postnatal lethality, incomplete penetrance.
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Figure 30: Degree analysis result for affected systems in Modularity class 7

There is another measure, which shows the importance of a node in a network based
on a node's connections. Sum change was found as 0.061 and 0.076 in Genes-Node
and Genes-Edge versions respectively. It can be said that the nodes connected to
central nodes are considered central themselves. Eigenvector centrality distributions
for Genes-Node and Genes-Edge networks are visualized under Figure 31 and Figure

32, respectively.

58



Eigenvector Centrality Distribution
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Figure 31: Eigenvector Centrality distribution for Genes-Node version network
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Figure 32: Eigenvector Centrality distribution for Genes-Edge version network

All the graphical statistical analyses are summarized for both versions of networks

under the Table 7.
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Table 7 : Gephi statistical analysis results for Genes-Node and Genes-Edge version

networks.

GEPHI STATISTICAL ANALYSIS RESULTS 1GENE-NODE VERSION GENE-EDGE VERSION
AVERAGE CLUSTERING COEFFICIENT o 0

AVERAGE DEGREE 12.725 R6.62
AVERAGE PATH LENGTH 3.84 3.45
AVERAGE WEIGHTED DEGREE R6.203 30.095
DIAMETER 8 7
EIGENVECTOR CENTRALITY SUM CHANGE (0.0616058649 0.0760103896
GRAPH DENSITY 0.001 0.003
MODULARITY 0.427 0.384
MODULARITY with RESOLUTION 0.427 0.384
NUMBER OF THE SHORTEST PATHS 97130898 70816028
NUMBER OF TOTAL COMMUNITIES 15 13

4.2 STATISTICAL ANALYSIS OF THE NETWORKS

The following sections describes the statistical analyses done in R platform. R is a free
software environment for making statistical computing and analyze graphics. It can
compile and run on an extensive variety of UNIX platforms, Windows and MacOS
(The R Project for Statistical Computing. 1993. R Core Team. [ONLINE] Available
at: https://www.r-project.org/). In the following analyses, the diseases were ranked
according to number of targeted knock-out genes they have and the genes are ranked
regarding both the number of diseases and the number of affected systems they are

related to.

4.2.1 DISEASE STATISTICS

In this analysis, the diseases are arranged from the most to least populated in terms of
the connected genes. Histogram plot of diseases vs. genes are illustrated under Figure
33 and the top5 diseases were shown in Figure 34. These diseases are Deafness,
Leukemia, Colon cancer, Retinitis Pigmentosa and Diabetes Mellitus, having

connections with 38, 31, 31, 26 and 22 genes, respectively.
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Figure 33:Frequency plot of all diseases in terms of their connected targeted knock-

out mouse genes

e DEAFNESS(relates to 38 genes)

e LEUKEMIA(relates to 31 genes)

e RETINITIS PIGMENTOSA(relates to 26 genes)

e COLON CANCER(relates to 31 genes) l
e DIABETES MELLITUS(relates to 22 genes) J

€€

Figure 34:Top five diseases are listed according to their related total number of genes.

In Table 8, frequencies for all the diseases are shown. Total gene number column
shows the number of targeted knock-out mouse genes and column total diseases
number shows how various diseases have the corresponding number of mouse knock-
out genes. For example, it was calculated that 881 diseases are correlated with just 1

mouse knock-out gene.
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Table 8: Gene frequencies for diseases in total

Total Gene Number Total disease Number
1 881
2| 165)
3] 65
4 39
5| 15
6) 19
7| 11
8| 9
9| 5|

10 4
11 2|
12 1
13 1
14 1
15 2|
16 1
17 1
18 1
19 1
20| 1
26 1
28 1
30| 1
38| 1

4.2.2 GENE STATISTICS AND A CASE STUDY

Statistical computing was done to see distributions of genes in terms of diseases by
using R programming. In Figure 35, the histogram of genes vs. connected diseases was
illustrated. The gene mostly distinguished in the histogram is Trp53 and has 11 disease

connections in total. Also, in Figure 36, the top 5 genes are listed.
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Disease Frequencies of Mouse Knock-out Genes

o / Trp53

Number of Diseases

Mouse Knock-out Genes

Figure 35: Frequency plot of all mouse knock-out genes in terms of their connected

diseases.

e Trp53(relates to 11 diseases)

¢ Pax6(relates to 10 diseases)

e Fgfr2(relates to 9 diseases)

* Pten(relates to 9 diseases)

* Msh2(relates to 8 diseases)
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Figure 36: Top 5 genes specified according to the number of diseases they are related

to.

In Table 9: Disease frequencies for genes in total, all the genes are grouped according
to their total disease frequencies. Total disease number column shows the number of

diseases and total gene number shows how various genes have the corresponding
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number of diseases. For example, it was calculated that 1031 genes are connected to

just 1 disease. 257 genes are connected to 2 diseases.

Table 9: Disease frequencies for genes in total

Total Disease Number Total Gene Number

1 1031
2 257
3 109
4 35
5 29
6 7
7 3
8 3
9 2
10 1
11 1

A literature and a database review was done for the top5 genes. In this review, the hub
genes in terms of diseases are investigated to make inferences about Mouse2Human
Network node statistics. Human orthologues of topS mouse knock-out genes were
searched from NCBI databases and from the relevant literature, various types of
statistics about these genes are listed in Figure 37. The literature review indicated that
these genes have been studied and investigated extensively. Chemical results signify
the number of molecular pathways linked to these genes. For example, one of the top5
genes in Figure 36, the p53 tumor suppressor gene (TP53 in humans or Trp53 in mice)
is crucial for inhibiting tumor growth (Blackburn & Jerry, 2002). Another gene, the
PAX6 belongs to a PAX gene family and plays a critical role in the formation of tissues
and organs during embryonic development (Thakurela et al., 2016). PTEN is also
highly studied and it belongs to a tumor suppressor gene family (LESLIE &
DOWNES, 2004). Tumor suppressor genes are related to the cell growth control, and
acting to block cell proliferation and tumor development, which is the reason why
these genes are highly studied (Lee & Muller, 2010). It was stated that the FGFR2

abnormalities underlie a wide range of bone, skin and cancer pathologies because FGF
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group of genes are involved in fetal morphogenesis, adult tissue homeostasis, and
tumorigenesis (Dailey et al., 2005; Eswarakumar et al., 2005; Grose and Dickson,
2005; Wilkie, 2005; Chaffer et al., 2007). The MSH2 gene codes a protein that plays
an important role in DNA repair, as it aids fixing errors in DNA replication. As a result,
it plays roles in various fatal human diseases (Pereira ef al., 2013). These findings
correlate with these genes being hub nodes in the network, as their roles in various

diseases are revealed in the literature and recorded in disease databases.
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Figure 37: NCBI statistics for Top 5 gene in terms of diseases

A similar analysis has been done for top genes in terms of the number of associations
with the affected systems (as opposed to the previous analysis, which was done for top
genes in terms of the number of associations with diseases). The top 5 genes in terms
of associated phenotypes are displayed under Figure 38. Also, in Figure 4-30, the
hitogram of genes vs. phenotypes is illustrated. The gene with the highest rank in the
histogram is Pten, which has 520 associated phenotypes. In Table 10, the genes are

grouped according to their phenotype association frequencies. The total related
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phenotype column shows the number of phenotypes and the second column titles total
gene number show how many genes are associated to those phenotypes. For example,

41 genes have just 1 phenotype association.

* Pten (relates to 520 affected systems)

* Fgfr2 (relates to 334 affected systems)

e Ctnnb1 (relates to 329 affected systems)

* Trp53 (relates to 297 affected systems)

— e

* Ar (relates to 290 affected systems)

€€

Figure 38: Top5 genes in terms of the total number of their associated affected systems

(i.e. phenotypes).
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Phenotype Frequencies of Mouse Knock-out Genes
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Mouse Knock-out Genes

Figure 39: Histogram plot of all mouse knock-out genes in terms of their associated

affected systems (i.e. phenotypes).

Table 10: Phenotype frequencies for genes in total

fotal Related Gene Number | Related Gene Number Related fotal Gene Number | Total Related Gene Number | Related [Total Gene Number

1 41 20 23 39 8 58 1 n 8

2 36 21 21 40 1 59 7 8 4

3 45 2 17 41 10 60 7 el 8

4 36 23 2 42 16 61 8 80 5

5 41 2 18 43 17 62 5 81 4

6 26 25 16 44 8 63 8 8 5

7 35 26 2 45 13 64 6 8 4

8 27 27 21 46 12 65 13 84 5

9 35 28 23 47 9 66 13 85 3

10 30 29 18 48 9 67 3 86 2

1n 32 30 8 49 8 68 5 87 3

12 36 31 16 50 6 69 3 88 4

13 33 2 15 51 10 70 9 89 2

14 31 33 1 52 6 7 5 90 3

15 25 34 16 53 9 2 10 91 5

16 34 35 2 54 8 B3 8 92 5

17 21 36 14 55 6 74 5 93 2

18 23 37 19 56 4 s 7 94 4

19 26 38 12 57 10 76 3 95 2

Toal elted Phentypes Toal Gene Number[Toa Relted Phnotypes [ToalGene Nurmber[Toa Refated Phnotypes [Toal Gene Number[Foa Reated Phenotypes [Toal Gene Number [t Reated Phenotypes[Tol Gene Nuber

98 1 121 2 148 1 184 2 277 1

9 2 123 1 149 3 193 1 290 1

100 1 125 1 150 3 194 1 297 1

102 1 126 2 152 1 19% 2 300 1

103 2 129 1 153 1 202 1 329 bt

105 4 131 1 154 1 204 1 334 !

106 1 132 2 155 2 206 1 520 !
107 1 133 3 157 1 208 1
108 3 134 4 158 2 209 1
109 3 135 2 159 1 a1 2
m 3 137 1 161 1 219 1
12 1 138 3 162 1 23 1
113 2 139 2 163 2 25 1
114 3 140 2 166 2 228 1
115 1 143 1 168 1 239 1
117 1 144 4 1mn 3 241 1
118 1 145 2 174 2 242 1
119 3 146 1 176 1 252 2
120 4 147 1 180 1 254 1

A database search was done from the NCBI resources for the human orthologues of

top5 mouse knock-out genes in terms of phenotypes. The finding in terms of literature,
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health and chemicals statistics are shown in Figure 40. Ctnnb1 and Shh genes exist in
the top5 list, different from the previous list shown in Figure 37. Epithelial-
mesenchymal transition (EMT) and the related gene CTNNBI plays an important role
for the regulation of cancer signaling and stem cell pluripotency (Tanabe et al., 2016).
SHH gene in other words “Sonic Hedgehog” gene encodes a protein that is crucial in
the early embryo stage, adult organ homeostasis and organ repair. It has been stated
that it provides a key inductive signal ventral neural tube, the anterior-posterior limb

axis, and the ventral somite (Petrova & Joyner, 2014).
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Figure 40: NCBI statistics for Top 5 gene in terms of phenotypes

4.2.3 AFFECTED SYSTEM STATISTICS

The phenotype (a.k.a. affected system) statistics for the network generated using
different versions of Dataset 2 (i.e. “‘child’’, ‘‘parent’’, ‘2 steps before the root’” and
“‘higher level affected systems’’ versions) were analyzed. The reason of using 4
different versions for Dataset 2 was explained in section 3.2.1.2 under Phenotype

Levels title explicitly. Here are the results for child and high-level affected systems
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version are given, since the calculations for mid-levels are not straightforward (e.g. the
same term can both be a parent and a child phenotype annotation in different cases),

leading to biased results.

4.2.3.1 CHILD AFFECTED SYSTEM STATISTICS

The phenotype annotations directly collected from the MGI database are named here
as child affected systems (i.e. asserted annotations) and their frequencies are calculated
and the top 5 child affected systems are shown in Figure 44. Premature death
phenotype is the mostly connected term and mapped to 440 genes in total. Child
phenotype systems histogram plot in Figure 45 gives the distribution of phenotypes in

terms of the connected genes.

e premature death (relatesto 440 genes)

* decreased body weight (relates to 423 genes)

* no abnormal phenotype detected (relatesto 397
genes)

» decreased body size (relatesto 298 genes)

| U U N D

* neonatal lethality (relates to 260 genes)

€€

Figure 41: Top 5 child affected systems in terms of the number of gene associations
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Figure 42: Child affected system histogram plot.

4.2.3.2 HIGH-LEVEL AFFECTED SYSTEM STATISTICS

There are 30 high-level phenotypes under the root term ‘“Mammalian Phenotype’’ in
MPO. The list of all high-level terms is given in Table 11and the top 5 high-level
affected systems are shown in Figure 44. Mortality/aging is the most connected

phenotype and it is mapped to 2,538 genes in total.

Table 11: The list of high-level phenotypes
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HIGH LEVEL AFFECTED SYSTEM
lendocrine/exocrine gland phenotype
liver/biliary system phenotype
respiratory system phenotype

i system pl yp!
reproductive system phenotype
Inormal phenotype

immune system phenotype

i y region pl yp
integument phenotype
lembryo phenotype
behavior/neurological phenotype
lhematopoietic system phenotype
mortality/aging

digestive/alimentary phenotype
nervous system phenotype
cellular phenotype

skeleton phenotype

imuscle phenotype
renal/urinary system phenotype
craniofacial phenotype
pigmentation phenotype
vision/eye phenotype

no phenotypic analysis
hearing/vestibular/ear phenotype
obsolete other phenotype
adipose tissue phenotype
limbs/digits/tail phenotype
taste/olfaction phenotype

* mortality/aging (relates to 2538 genes)

» growth/size/body region phenotype (relates to 1855 genes)

* homeostasis/metabolism phenotype (relates to 1769 genes)

* nervous system phenotype (relates to 1534 genes)

* hematopoietic system phenotype (relates to 1327 genes)

€€CE€CKL

Figure 43: Top 5 high-level affected systems in terms of the number of gene

associations
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Figure 43 referred to the statistics for high-level phenotypes when all phenotype
annotations are propagated through the root of MPO. Figure 44 shows the statistics for
the same 30 high-level systems when only direct annotations to these terms are
considered (i.e. no propagation from more specific terms). In Figure 44, the most
frequent term is “no abnormal phenotype detected” and the most frequent systemic

phenotype is the “nervous system phenotype”.

High-Level Systems FF uen:

no abnormal phenotype detected 397

High-Level Affected Systems nervous system phenotype 214

8 homeostasis/metabolism phenotype 210

3 behavior/neurological phenotype 185
mortality/aging 152

=] - immune system phenotype 151

é cardiovascular system phenotype 143|
vision/eye phenotype 101

o |growth/size/body region phenotype 93|

% hearing/vestibular/ear phenotype 72,

. M _ neoplasm 69
§ . skeleton phenotype 67
2 ?, M endocrine/exocrine gland phenotype 65
g - renal/urinary system phenotype 62
- digestive/alimentary phenotype 58
3 cellular phenotype 56

- muscle phenotype 48
integument phenotype 47

e | respiratory system phenotype 45

& liver/biliary system phenotype 41
embryo phenotype 38)

I_I H limbs/digits/tail phenotype 21

e adipose tissue phenotype 20
craniofacial phenotype 20

pigmentation phenotype 16

Affected Systems taste/olfaction phenotype 16
TOTAL 2407|

Figure 44: High-level affected system histogram plot (only considering direct

annotations).

4.3 MOUSE2HUMANNET WEB-SERVICE

Mouse2HumanNet open access web-service was constructed for both Genes-Node and
Genes-Edge versions using Gephi web exporter tool gexf Js master (Velt, R. 2011).

Detailed informationabout the web-service usage is given under Appendix A.

72



4.4 TERM SIMILARITY CALCULATIONS WITH CASE STUDIES

Users can utilize the Genes-Edge network especially when they are interested in
disease vs. affected system relations. For example, the diseases and genes connected
to two target affected systems can be compared, to observe their similarity. The user
can collect both the gene and disease information by searching the name of the target
affected systems via the search box. In our example, “Increased mean systemic arterial
blood pressure” and “decreased systemic arterial diastolic blood pressure” phenotype
comparison was made. Related disorders, together with the gene symbols are shown
in Table 12. In this example, phenotypes with opposite effects were chosen, and as
expected, the overlap between the connected disorders are quite low. The same

analysis can be made for comparing two diseases, as well.

In any comparison, connections (disorders, phenotypes or genes) can also provide a
quantitative measure for the similarity of the compared terms. This can be achieved by
calculating the number of shared nodes between terms. This calculation can yield a
similarity measure between 0 and 1, zero meaning no similarity and one meaning
100% similarity. In an example shown in Table 12, the similarity between the target
phenotypes are calculated as (2 * 3) / (25 + 16) = 0.146. This similarity calculation can
also be formulated by taking the disorder classes and the phenotype hierarchy which

would yield a better estimate about the actual similarities.

To test the idea of “similar diseases can have similar phenotypic traits” we carried out
various quantitative analyses. First, two diseases ‘“Macrothrombocytopenia” and
“Factor X deficiency”, which belong to the same disorder class “hematological” were
analyzed. The associated phenotypes for these diseases were extracted and compared.
It was observed that there were 86 phenotype annotations for the first disease and 95
for the second one, and 13 of these phenotype annotations were shared between the
two target diseases, which led to a similarity score of 0.14. Some of the non-shared
phenotype annotations between these diseases could be from the same hierarchy in the

MPO DAG, which means that they are similar. As a result, compared phenotype
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annotations should not be counted as totally dissimilar if there is a parent-child
relationship in-between. To take this into account, we propagated the asserted
phenotype annotations for these diseases to high-level phenotypes. This resulted in 13
different high-level phenotype annotations for the “Macrothrombocytopenia” disease
and 18 for the “Factor X deficiency” disease. It was observed that 9 of these terms
were shared between the target diseases. These high-level phenotype term annotations
are shown in Table 13, with star symbols next to the shared ones. The same similarity
calculation using the high-level phenotypes yielded 0.58. As observed, the similarity
is increased from 0.14 to 0.58 with the inclusion of the phenotype relations into

account.

In order to find a more sophisticated way to express similarities, we generated a
measure called relative ratios (i.e. relative frequencies) for each high-level phenotype
term annotation by calculating what portion of the asserted phenotype annotations for
that disease lead to the corresponding high-level phenotype term. For example, it is
observed in Table 13 that, nearly 9% of the “Macrothrombocytopenia” disease’s
asserted phenotype annotations belong to mortality/aging high-level phenotype class.
This calculation is made for all high-level phenotypes for both target diseases. To
calculate the total ratio of shared high-level phenotype annotations between these
diseases (i.e. those 9 phenotypes marked with a star in Table 13), their relative ratios
(i.e. frequencies) are summed. As a result, it can be inferred that 87% (total frequency:
0.87) of the phenotype annotations of “Macrothrombocytopenia” is similar to “Factor
X deficiency”, and 68% of the phenotype annotations of “Factor X deficiency” is

similar to “Macrothrombocytopenia”.
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Table 12: High- level phenotype levels and relative frequencies for the target diseases

in the first analysis.

Macrothrombocytopenia Relative Ratio Factor X deficiency Relative Ratio
hematopoietic system phenotype* 0,427272727 hematopoietic system phenotype* 0,214285714
immune system phenotype* 0,172727273 immune system phenotype* 0,150793651
mortality/aging* 0,090909091 homeostasis/metabolism phenotype* 0,119047619;
skeleton phenotype* 0,081818182 renal/urinary system phenotype 0,079365079
lembryo phenotype 0,036363636 mortality/aging* 0,079365079
liver/biliary system phenotype 0,036363636 cardiovascular system phenotype* 0,079365079
cellular phenotype* 0,027272727 vision/eye phenotype 0,079365079
homeostasis/metabolism phenotype* 0,027272727 nervous system phenotype 0,055555556)
respiratory system phenotype 0,027272727 reproductive system phenotype 0,047619048’
cardiovascular system phenotype* 0,018181818 digestive/alimentary phenotype 0,023809524!
igrowth/size/body region phenotype* 0,018181818 growth/size/body region phenotype* 0,015873016!
integument phenotype 0,018181818 endocrine/exocrine gland phenotype 0,015873016!
normal phenotype* 0,009090909 craniofacial phenotype 0,007936508!
pigmentation phenotype 0,007936508;¢
cellular phenotype* 0,007936508¢
normal phenotype* 0,007936508i
skeleton phenotype* 0,007936508¢

In the second analysis, the same similarity calculations were repeated for diseases
belong to different disorder classes which are ‘“Macrothrombocytopenia” in
hematological class and “Hearth Block” in “Cardiovascular” class (note that the target
diseases chosen in the previous analysis were from the same disorder class), to observe
whether the diseases from the same classes would have higher similarities. The direct
(i.e. asserted) phenotype annotation comparison gave 0.08 similarity and the high-level
class comparison raised this similarity to 0.45. In Table 14, high level phenotype
annotations (stars on the shared ones) are displayed with the relative ratios. It was
found that 16% (total frequency: 0.16) of the phenotype annotations of
“Macrothrombocytopenia” is similar to “Hearth Block”, and 85% of the phenotype

annotations of “Hearth Block” is similar to “Macrothrombocytopenia”.

As a result, comparisons of “Macrothrombocytopenia” disease with another disease
from the same disorder class and a disease from a different disorder classes yielded
high-level similarity values of 0.58 and 0.45, respectively; and relative ratio
similarities with 87% and 16%, respectively. This indicates that the diseases from the
same disorder class have more similar phenotypic traits, compared to diseases from
different disorder classes. Thus, different forms of phenotypic trait similarity

calculations can be used as an indicator to compare diseases with each other. In a
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disease similarity network such as the one generated in the Diseasome study, the edges
can be weighted according to phenotypic similarities, to capture the relations more

accurately.

Table 13: High- level phenotype levels and ratios for chosen diseases

iMacrothrombocytopenia Relative Ratio Hearth Block Relative Ratio
ihematopoietic system phenotype 0,427272727 cardiovascular system phenotype* 0,645833333
limmune system phenotype 0,172727273 mortality/aging* 0,125
mortality/aging* 0,090909091 muscle phenotype 0,083333333
skeleton phenotype 0,081818182 embryo phenotype* 0,041666667!
embryo phenotype* 0,036363636 behavior/neurological phenotype 0,020833333
fliver/biliary system phenotype 0,036363636 growth/size/body region phenotype* 0,020833333
cellular phenotype 0,027272727 nervous system phenotype 0,020833333
homeostasis/metabolism phenotype  0,027272727 normal phenotype* 0,020833333
respiratory system phenotype 0,027272727 vision/eye phenotype 0,020833333

cardiovascular system phenotype* 0,018181818
{growth/size/body region phenotype* 0,018181818
integument phenotype 0,018181818
normal phenotype* 0,009090909

The same similarity calculations can be done to compare the phenotype terms, by using
disease annotation similarities in-between. For this analysis, fistly two phenotypes that
belong to same high-level class (i.e. “oligozoospermia” and ‘“azoospermia”) were
compared to each other. After that, two phenotypes that belong to different high-level
class phenotypes (i.e. “azoospermia” and “decreased skeletal muscle mass”) were

compared to each other.

First, the similarities were calculated using the direct disease term annotation matches
between the target phenotypes. The similarity ratio was found as 0.28 and 0.15 for
“oligozoospermia” vs. “azoospermia” and for “azoospermia” vs. “decreased skeletal

muscle mass”, respectively.

Secondly, the high-level term similarity concept was applied for the phenotype
comparisons (similar to the disease comparison analysis done using high-level

phenotypic term annotations, mentioned above), in terms of comparing the disorder
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classes of the annotated diseases. In Table 15, disorder classes for “oligozoospermia”
and “azoospermia” phenotype terms are shown and the common disorder classes
between these two phenotype terms are marked with star, and the relative ratios are
given. Table 14shows the same results for “azoospermia” vs. “decreased skeletal
muscle mass” comparison. similarities were calculated using the high-level term
annotations (i.e. disorder classes) and the similarity values were found as 0.88 and 0.67
for the same high-level class phenotypes and for different high-level class phenotypes,
respectively. Also, the ratios for the matched disorder classes have been summed up
for each phenotype. According to this calculation, “azoospermia” term’s annotated
disease similarity to “oligozoospermia” term (the same high-level class phenotype)
was found as 100%; whereas, “azoospermia” term’s annotated disease similarity to
“decreased skeletal muscle mass” term (a different high-level class phenotype) was
found as 77%. These results indicated that, phenotypes from the same high-level class
have more similar disease annotations compared to the phenotypes from different

high-level classes.

Table 14: Disorder classes of the annotated diseases for “oligozoospermia” and

“azoospermia” phenotype terms. Common disorder classes are marked with stars

oligozoospermia Relative ratio azoospermia Relative ratio
Cancer* 0,21686747 Cancer* 0,333333333
Endocrine* 0,13253012 Endocrine* 0,106060606;
Metabolic* 0,108433735 Hematological* 0,090909091;
Neurological* 0,084337349 Multiple* 0,090909091;
Developmental* 0,072289157 Neurological* 0,090909091;
Hematological* 0,072289157 Cardiovascular* 0,060606061
Multiple* 0,060240964 Dermatological* 0,045454545
Ophthamological* 0,048192771 Metabolic* 0,045454545
Renal* 0,048192771 Muscular* 0,03030303
Ear,Nose,Throat 0,036144578 Ophthamological* 0,03030303
Bone 0,024096386 Connective Tissue Disorder*  0,015151515!
Cardiovascular* 0,012048193 Developmental* 0,015151515;
Connective Tissue Disorder*  0,012048193 Gastrointestinal* 0,015151515
Dermatological* 0,012048193 Renal* 0,015151515;
Gastrointestinal* 0,012048193 Unclassified* 0,015151515i
Muscular* 0,012048193

Respiratory 0,012048193

Skeletal 0,012048193

Unclassified* 0,012048193
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Table 15: Disorder classes of the annotated diseases for “azoospermia” and “decreased

skeletal muscle mass” phenotype terms. Common disorder classes are marked with

stars.
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CHAPTER 5

DISCUSSION

5.1 SUMMARY

This section presents a discussion over the obtained results and a conclusion of this

study including its output Mouse2HumanNet web-service, and suggests further

improvements and applications for studying human biology using graph theory

concepts and network analysis.

This study aims to create a mapping between human diseases and the abnormal
phenotypes observed in mouse experiments. Mouse is the most widely used
model organism to study the mammalian physiology and diseases. Therefore,
relating the observations from the mouse gene knock-out experiments to
human diseases may provide novel information about both the symptoms of
diseases and the potential affected systems. This information can be utilized

for research in medical diagnostics and for novel treatment options.

The proposed mapping has been structured as biological networks in two
different forms. Genes-Node version network is composed of nodes of
diseases, phenotype terms and genes and connections (i.e. edges) indicating
direct relations; and ii) Genes Edge version is composed of nodes of diseases
and phenotype terms and connections (i.e. edges) in between indicating
relations through shared genes. The generated networks are published in an

open-access web-service with an easy to use interface, where the users can
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display either the whole or the relevant parts of the networks and can download

the corresponding information.

One of the objectives of this project is to aid laboratory scientists to design by
selecting the most relevant mouse knock-out models for studying a specific
human disease. This can be trivial while studying single gene diseases, as the
researcher can directly obtain thee information from relevant biological
databases. However, when multiple genes are associated with a specific

disease, network approach may provide multiple alternative models.

Another objective of this study is to enrich the associations between abnormal
phenotypes observed in animal studies and human diseases by connecting these
two via mouse/human orthologous genes. Novel relations may both aid the
studies on medical diagnostics (since the phenotypes contain symptoms) and
discovering the systems affected due to a certain disease. In this sense, this
project will also aid computational researchers working on ontological systems
(e.g. the Human Phenotype Ontology project — HPO) to find and record new
disease-phenotype-gene relations. To illustrate this with a very simple
example, the difference between the phenotype annotations of human TP53
gene (from the HPO project) can be compared to the annotations of its
orthologue in mouse Trp53 (from the MGI project). Both annotation tables are
given in Appendix C.1. and its observed from these tables that mouse
phenotype annotations are richer compared to human due to extensive animal
studies on the mouse. This information may be used to annotate human TP53
with additional phenotypic abnormalities, which in turn can be utilized to aid

the development of novel treatments to hereditary/genetic diseases.

Multiple usage scenarios can be derived for Mouse2HumanNet. For example,
a user who is interested in two different genes can do a simple search on our
service with the symbol of the corresponding genes. This will return the
connected phenotypes and diseases for the target genes. In a hypothetical case
that these target genes share high number of phenotype connections, and the
first one have a certain disease association but the second one does not. This

may lead the user to do more investigation to see if it would be possible for the
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second gene be also related to the same disease (relation here is defined as a
certain mutation in the corresponding gene would lead to the formation of the
corresponding disease), due to high phenotype similarity with the first gene. A

similar methodology can be followed to compare two diseases, as well.

Different types of term similarity approaches have been tested and explained
in the Results section. According to these analyses it was observed that,
intersections of phenotypic traits can be a good indicator for disease
similarities, and similarly, intersections of disease annotations can be a good
indicator for phenotypic term similarities. Another finding was that, it would
be possible to improve the similarity measures by including the relations
between phenotype terms and between the diseases, to the similarity

calculation.

In the light of this information, it can be said that integrating multiple types of
information to the similarity calculation would yield more accurate results. In
other words, using just one type of information (e.g. only considering the
asserted phenotype annotations for comparing 2 diseases) can be misleading
due to both the incomplete information in the biological databases and the
inconsistencies between the data sources. For example, “Azoospermia” is a
disease record under “Endocrine” disorder class in the OMIM database.
However, “azoospermia” is also a phenotype term under the “reproductive
system phenotype” and “cellular phenotype” high-level phenotypes in the
MPO and mostly mapped to the cancer, endocrine and metabolic disorder

classes.

As a case study, we have investigated selected connections of “azoospermia”
phenotype from Mouse2HumanNet. There is a connection between
“azoospermia” phenotype and “Diabetes Mellitus” disorder, which is
interesting to discuss. In order to investigate this connection, we carried out a
literature search. According to the literature, Diabetes mellitus (DM) is a
chronic disorder that can change carbohydrate, protein, and fat metabolism and
caused by the absence of insulin secretion in the body. Obesity is highly

correlated with the insulin resistance and pancreatic B-cell dysfunction;
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therefore, there is a strong link between obesity and DM (Al-Goblan, Al-Alfi,
& Khan, 2014). Especially in obese people, the amount of non-esterified fatty
acids, glycerol, hormones, cytokines, and other substances that play a role in
the development of insulin resistance, is increased. In women, early stages of
obesity take favors the development of menses irregularities, chronic oligo-
anovulation and infertility during the adult life. The main factors may be insulin
excess and insulin resistance that implicates the association between fertility
and the obesity. Furthermore, in men, obesity is correlated with low
testosterone levels. Obese individuals usually have reduced spermatogenesis
associated with hypotestosteronemia, which can cause infertility (Pasquali,
Patton, & Gambineri, 2007). These findings indicate a possible link between
infertility in males and DM. However, a more detailed literature search and a
structured research study should be conducted to discover whether there is

biological mechanism behind it or not.

Another interesting case study would be considering the connection between
the “azoospermia” phenotype and cancer class disorders. There are various
surveys in the literature indicating the relations between cancer risks and
infertility. Although some studies have found eminent risks for some cancer
types connected to infertility, the underlying biological reasons stands unclear.
In the study handled by Brinton et al., in 2005, authors found that women
diagnosed with infertility have 23% higher risks of uterine and ovarian cancers
compared to the control group (Brinton et al, 2005). Furthermore, a
retrospective cohort study was carried out to investigate the incidence of
chronic medical conditions of men who have infertility (Eisenberg et al., 2016).
Men diagnosed with male factor infertility had an important risk of developing
chronic conditions such as hypertension, diabetes, hyperlipidemia, renal
diseases, pulmonary disease, testis and prostate cancers etc. in the following
years (Jacobsen et al., 2000; Walsh et al., 2009 & Walsh et al., 2010; Eisenberg
et al., 2015). The findings again suggest a connection between different types

of cancer and infertility, which requires immediate mechanistic studies.
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As discussed in the case studies above, it is possible to find previously non-
reported links between various genes, phenotypes and diseases in
Mouse2HumanNet, which may lead researchers to do a detailed literature
search or even to design new experiments to test the biologically interesting
links they’ve observed in our networks. This way, laboratory scientists can
benefit from Mouse2HumanNet to select targeted knock-out models to study a
specific human disease by observing the genes of interest together with the

related phenotypic traits and the affected systems.

5.2 FUTURE DIRECTIONS

We can divide the future directions of this study into two groups: i) potential
projects to infer biological insight using Mouse2HumanNet, and ii) technical
modifications to add new functions to the tool that would benefit the users. In
terms of the first group of directions, we plan to investigate the generated
networks to observe novel for selected genes and diseases. In the wet-lab
laboratory of our group (i.e. Cancer Systems Biology Laboratory — CanSyl,
METU) the focus is on liver cancers, especially hepatocellular carcinoma, and
its related pathways such as the PI3K/AKT/mTOR pathway (Ersahin et al.,
2015). One of the aims of CanSyl is investigating novel genes/proteins to
target hepatocellular carcinoma and repurposing drugs for this purpose. We
plan to employ Mouse2HumanNet to search the associated phenotypic traits to
liver cancers and their connected mouse genes. In the case of discovering
interesting novel connections, first a literature search will be performed and
this may be followed by the construction of an experimental setup to test the
candidates. The same methodology can be followed for other cancer group

diseases, their phenotypic traits and potential target genes.

First of the planned technical modifications is the generation of mono-partite
disease-disease, gene-gene and phenotype-phenotype similarity networks.

Disease-disease and gene-gene networks have previously been proposed in the
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Diseasome study (Goh et al., 2007); however, here we plan to weight the edges
between genes and between diseases using their hierarchical phenotypic
similarities discussed in the results section. This way, more accurate networks
can be obtained. Apart from that, phenotype-phenotype similarity networks are
proposed for the first time as far as we are aware. These networks will give an
idea regarding the similarities between abnormal traits such as symptoms and

can be used in research on medical diagnosis.

A secondary modification for adding new functionalities can be the addition of
different types of nodes to the network along with the current disease,
phenotype and gene nodes. For this purpose, we plan to add nodes correspond
to pathways/systems, terms of the other ontological systems such as the Gene
Ontology (GO) and HPO, and drug molecules. The connections between
pathways and genes will correspond to membership of those genes in the
corresponding pathways. The edges between pathway and disease nodes will
mean that those pathways are affected during those diseases. This will add a
redundancy to the networks as the MPO phenotype terms also include the
system information, however, addition of multiple systems will increase the
information coverage. The connections between diseases and drugs will
display which drug compounds are currently used to treat which diseases, and
the connections between drugs and genes will tell us what are the targeted
genes/proteins of those drugs. Finally, addition of other ontological annotations
will enrich the information stored in our network. As a result, researchers using
our system will find comprehensive information regarding diseases, traits,

genes and drugs that are used for treatment.

The third possible direction is the construction of other networks similar to
Mouse2HumanNet, this time using other model organisms and human. These
networks can provide further insight regarding the human diseases and their
phenotypic reflections, especially where the mouse models remain insufficient.
These model organisms will most probably be more distant to the human
compared to mouse from an evolutionary point of view; however, the

construction of the networks can be done over evolutionarily highly conserved
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functions. The comparison of these networks against Mouse2HumanNet would
produce interesting results. Candidate model organisms can be animals such as

drosophila or even bacteria such as E. coli.

Another possible technical modification for Mouse2HumanNet web-service
may be adding a functionality to display the phenotypes at the desired
phenotypic level (i.e. parent or high-level phenotypes instead of asserted/child
phenotypes, which is the only options now). This can either be achieved by
generating an independent network for each level or just displaying the
ancestor terms of a phenotype in the network, when the user clicks or just drags
the cursor over the corresponding node. This modification will serve two
purposes: 1) the number of nodes on the networks will be reduced, which will
provide a better perceptibility, and ii) the information about phenotypes will be
condensed into more generic classes of phenotypic traits, to be able to analyze

the relations on higher systemic levels.

As the final potential direction, functional associations can be made for
diseases, in the form of when function X is lost from the relevant genes due to
mutations, disease Y occurs. These kinds of associations could be extremely
useful to aid disease mechanism studies. This can be done by selecting all the
genes connected to a disease, and carrying out a functional enrichment analysis
to observe the properties share between all or at least most of the genes in this
list. If the resulting highly enriched property is a pathway, then we can
conclude that the corresponding disease is caused by disruptions in this
pathway. If the enriched property is a subcellular location, then we can infer
that the corresponding disease is particularly effective in that location inside
the body. If the enriched property is a biological process GO term, then we can
say that the disease could be affecting this high-level system in the organism.
In order to test this idea in a small-scale analysis, all of the genes annotated
with Leukemia disease were downloaded from Mouse2HumanNet and
analyzed with DAVID Functional Annotation Tool (Huang et al., 2009). The
enrichment results were investigated and it was observed that many of these

genes shared the same or similar annotations. For example, among the most
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highly enriched ones were “Acute myeloid leukemia”, “Pathways in cancer”
and “hemopoiesis” as expected. Along with those, the terms “protein binding”,
“negative regulation of cell proliferation”, and “Acetylation” and many others
were also enriched. This may indicate that the corruptions in these functions,
due to mutations, may contribute to the appearance of Leukemia. Both the gene
list and the significantly enriched annotations can be observed in the tables
under Appendix C.2. One option as a future direction would be automatizing
this process, to associate highly enriched functional properties with the
diseases in the network. This type of analyses can also be used to discover
novel candidate disease genes, by finding the other genes (i.e. the genes that
were not connected to the corresponding disease in the first place), which were

annotated with the corresponding disease associated functional properties.
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APPENDICES

APPENDIX A

USER MANUAL FOR THE MOUSE2HUMANNET WEB-SERVICE

Mouse2HumanNet is an open source of bioinformatics platform / web-service for the
visualization and manipulation of the networks indicating the relationships between
diseases, disease causing genes, and abnormal phenotypic traits in mouse and human
organisms. In this network, diseases, phenotype terms and genes correspond to nodes
(genes are modeled as edges in the alternative version of the network) and the pairwise
relationships between these entities correspond to edges between the nodes. The first
one of the networks is called “Genes-Node version network™ and it can be accessed
from the link: “https://nilaycan.github.io/mousepheno”. The second version, which is
called “Genes-Edge version network” can be accessed from the link:

“https://nilaycan.github.io/mousepheno/edges/”.
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Mouse2HumanNet Manual

1-) Introduction

Mouse2HumanNet is a JavaScript based web-service to visualize the relations between
human diseases, human/mouse orthologues genes and abnormal phenotypes (i.e.
affected systems). The web based viewer is a modified version of Gexf js master tool
((Velt, R. (2011), Gexf-js Gephi visualisation plugin, Github. Retrieved [04.06.2017]
from [https://github.com/raphv/gexf-js]). Users may find various options on the
interface such as zooming in and out, magnifying and displaying only selected nodes
and its connections using the sub-network selector, a search bar to type the names of
nodes, a small network (shown at the bottom right of the screen) functioning as a
navigator to help user to find the current location while zoomed in, a color code table
displaying different types of nodes in the network together with the number of nodes
for the corresponding node types, ability to temporarily highlight the connections of
nodes by dragging cursor onto them (without clicking), exporting the connections of
any chosen node in .xIsx format and exporting the selected sub-networks in .png

format. The interface of Mouse2HumanNet is shown in Figure 45 with explanations.
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Figure 45: Interface of Mouse2HumanNet (Genes-Node version network).

2-) Interpretation of Mouse2HumanNet Interface

The first property that will be explained in this section is the search bar. When any
letters are typed into the search field, all possible results (in terms of the node names)
are listed in a window. Search column is not case sensitive. In Figure A.2 and Figure

A.3, nodes names are displayed for example searches.
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disorder| Q
Nodes Disorder: Leukemia

Disorder: Colon cancer
Disorder: Breast cancer
Disorder: Deafness
Disorder: Obesity

Disorder: Diabetes mellitus
Disorder: Thyroid carcinoma
Disorder: Pancreatic cancer
Disorder: Prostate cancer
Disorder: Hepatic adenoma
Disorder: Cardiomyopathy
Disorder: Gastric cancer
Disorder: Alzheimer disease
Disorder: Ovarian cancer
Disorder: Lipodystrophy
Disorder: Migraine
Disorder: Meningioma
Disorder: Bladder cancer
Disorder: Mental retardation

Disorder: Endometrial carcinoma

Figure A.2: Diseases are displayed with “disorder” term at the beginning.

Nodes m Nodes no abnormal phenotype detected

Brea2 abnormal gait

Lama2 abnormal liver morphology
Atp2a2 abnormal heart morphology
Nrda2 abnormal brain morphology
Sic11a2 abnormal kidney morphology

Sic5a2 abnormal retina morphology

Hmga2 abnormal cell physiology

SicBa2 abnormal enzyme/coenzyme activity
A2m abnormal trabecular bone morphology

Sic19a2 abnormal bone mineralization

Sic2a2 abnormal motor capabilities/coordination/movement
Atpla2 abnormal skeleton morphology

Itga2b abnormal spleen morphology

Toxa2r abnormal lar system phy gy
Col5a2 abnormal renal glomerulus morphology

Sic16a2 abnormal behavior

Col11a2 abnormal embryonic tissue morphology

Apoa2 abnormal hepatocyte morphology

Gabra2 abnormal skeleton development

Figure A.3: Affected system (left) and gene (right) names as they appear in search

window.
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In Genes-Node version network (http://nilaycan.github.io/mousepheno), all biological
entities (i.e. diseases, phenotypes and genes) are represented as nodes. When any
mouse/human orthologue gene symbol is searched and the corresponding node is
selected by clicking the gene symbol, the user can see its connected diseases and
affected systems as listed on the left pane. If a disease term is typed into the search
column and the corresponding node is selected, its related genes are revealed on the
left pane. Also, if an affected system was searched and selected, its related genes are
listed on the left pane. For any selected disease node, Total number of connected nodes
can be seen under degree information on the left pane. The connections of a selected
node can be exported with the “export nodes” button in .xlsx format. Furthermore, the

displayed network can be exported in .png format with “export png” button.

The size (area) of the nodes is proportional to the number of connections it possesses.
The colors of the nodes are given according to the color table at the right side of the
screen (Figure 9). There are 24 distinct node types in the Genes-Node network, which
are mouse/human orthologues genes, mouse phenotypes (i.e. affected systems) and 22
different human disorder classes. Mouse genes and affected systems are coded as red

and black, respectively.

The edge weights are given to only some of the node types. The weights between
disorders and genes are constant; however, the weights between genes and affected
systems change according to the number of diseases that gene is connected to, and
visualized as edge thicknesses. Constant edge weights between the diseases and genes
in Genes-Node network is illustrated under Figure A.4 and variable edge weights

between affected systems and genes are shown in Figure A.5.
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Figure A.4: Edge weights between genes and diseases in Genes-Node network.

Figure A.5: Edge weight between affected systems and genes

In Genes-Edge version (https://nilaycan.github.io/mousepheno/edges/), affected
systems and diseases are represented as nodes and genes correspond to edges that
connect affected system and disease nodes. Users can only search diseases and affected

systems in this version. When any disease term is typed into the search column and
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the corresponding node is selected, its connected affected systems are displayed on the
left pane and the connected gene names appear in a list. Also, if any affected system

is searched and the node is selected, its related diseases are displayed.

There are 23 distinct node types in the Genes-Edge network, which are mouse
phenotypes / affected systems and 22 different human disorder classes. Affected
systems and genes are coded with black and red colors, respectively. Disorder and
affected system node sizes are selected with respect to their corresponding number of

connections.

Different edge weights are applied according to the number of genes shared between
a disease and an affected system. The edge weight property is visualized for

“premature death” phenotype in Figure A.6.

Disorder: Coloboma ocular Disorder: Crouzon syndrome

DRSRIER BERAEDEFHRNGI

Disorder: VATER association with hydrocgphalus Disorder: Beeast cancer
Disorder: Thyroid carcinoma

Disorder: Prostate cancer

Figure A.6: Edge weights between premature death phenotype and its connected

diseases.
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3-) A use-case example

Suppose a user is interested in breast cancer and starts typing the disease name in the
search box in the Genes-Node version network. This will reveal the related disorder
names in a window, from where the user selects “Disorder: Breast cancer” by clicking
on it. This will open the page for the corresponding disease, where the Disease 1d,
disorder class, the degree (total number of connected nodes) and the symbols of the
connected genes are listed on the left pane (Figure A.7, left). The user isolates only
breast cancer and its connections on the network by clicking the subnetwork button
(otherwise, the whole network will be displaed in the background). The user can also
temporarily visualize the connections of genes (in terms of phenotypes and other
diseases) that is connected to breast cancer node, by dragging cursor onto the
connected gene nodes without clicking. For example, while not clicking any node,
dragging the cursor over the “Trp53” gene node will temporarily visualize its
connections (Figure A.8). So, it can be said that the temporarily displayed connections
(i.e. phenotypes and other diseases connected to Trp53) are in-directly connected to
the breast cancer node, which can provide additional insight while investigating breast

cancer.
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Figure A.7: “Disorder: Breast Cancer” page (left), “Trp53” gene page (right) in the

Genes-Node version network.

Mouse2HumanNet  pisorder: Breast cancer

\  ExportNodes ExportPng

Disorder: Breast cancer I
Attributes
id: 168
0: Disorder Class: Cancer
1 : Number of knock-out Mouse Genes: 18
degree : 18
Undirected links with:
© Trps3
@ Ar
@ Kras
@ Breat

@ Xree3

- 40

httpsy/niaycan.github.jo/mousepheno/#

Figure A.8: Temporarily visualizing the connections of Trp53 gene node while on the

““‘Disorder: Breast Cancer’’ node.
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When any node on the screen is clicked, the dedicated connections of the clicked node
will appear on the screen. If the selected node is a gene in Genes-Node network, its
connected affected systems and diseases will appear on the left pane. This is not the
case for selected diseases and affected systems since these node types are not directly
connected to each other on the Genes-Node network (they are directly connected in
the Genes-Edge version). In Figure A.7 (right side), “Trp53” (orthologue of TP53
human gene) node was clicked from the list of breast cancer’s connections. Users can

see the node type, Entrez Id and the degree information of the chosen gene node.

Edge thickness between genes and affected systems change according to the number
of diseases connected to that gene. This is illustrated in Figure A.9 (top screenshot),
as the edges are thicker between “Trp53” and its connections since “Trp53” is densely
connected to diseases. In figure A.9 (bottom screenshot), edge thicknesses between
“premature death” phenotype and gene nodes change with respect to the number of
diseases that gene is connected to. This property indicates how critical a gene is, in

terms of disease relations.

In our example so far, the user has found out that Trp53 gene (human orthologue:
TP53) is critical for breast cancer disorder and Trp53/TP53 is a hub gene that has been
associated with many diseases along with breast cancer. Now the user can move on to
investigate phenotypic traits for this gene. ‘“Premature death” is an abnormal
phenotype that is associated with Trp53, as shown in the left pane (the first black
colored node on the list in Figure A.9, top screenshot). To have better idea, the user
clicks “Premature death” link on the left pane which directs to the dedicated sub-
network for this phenotype (Figure A.9, bottom screenshot). The user now can observe
the other gene nodes connected to “Premature death” phenotype, both on the left pane
as a list, and as a network on the main window. The inference here is that, “Premature
death” can be caused by many other genes along with Trp53. The user can further
move on with selecting another interesting gene. Up to this point, one simple
conclusion is that, the formation of breast cancer can be related to mutations in

Trp53/TP53 gene, which can lead to premature death.

106



Trp53 gene was Edge thickness is
selected from ~_, propotional to
the previous..., A number of
screen by~ connected
clicking on this == diseases.

node |\
Connected diseases and affected

systems (phenotypes) are listed
in the left pane.

premature death ExportNodes ExpotPrg  CcANSYLLAB

“Premature death”
phenotype was selected
from the previous
screen by.clicking on

i

this node.””

romas Y

\ Connected genes for premature
— death phenotype are listed.

Figure A.9: “Trp53” gene (top) and “Premature death” affected system (bottom) pages

in Genes-Node version network.

Figure A.10 displays the interface for Genes-Edge version network. In this version,
users can only search human disorders and mouse affected systems, because the genes

are coded as edges and not as clickable as nodes, in this version.

As an example, case, “Disorder: Papillary serous carcinoma of the peritoneum” disease
was typed into search box and its connections are shown (Figure A.11, left). Disease
Id, disorder class, total number of connected nodes to “Papillary serous carcinoma of
the peritoneum” as degree and the connecting genes’ symbols (serving as edges in this
network) are listed on the left pane. The user isolates only this disease’s connections
by clicking subnetwork button. The only connected gene is Brcal. Among the many

listed connected phenotypes, “Uterus hyperplasia” was selected by clicking the
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corresponding link (i.e. the name of the phenotype) as shown on the right side of Figure
A.11. Now, the related diseases of “Uterus hyperplasia” phenotype (including
Papillary serous carcinoma of the peritoneum) appears on the left pane. Here, the edge
thicknesses between disease and affected system nodes change according to the total
number of genes shared between them. At this point, the user can directly observe
which diseases are related to Papillary serous carcinoma of the peritoneum over the
connections with Uterus hyperplasia phenotype. At a very basic level, the user has
learnt that the disease “Papillary serous carcinoma of the peritoneum” may cause
“Uterus hyperplasia”, which is the increased uterus size, and the biological mechanism

behind this process may lie within certain mutations in the BRCA1 gene.

CANSYL LAB
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*» Mouse Affected system
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After selecting a node, it’s ’ ;
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while zooming.

clicking this button.

-/ O

Figure: A.10: Interface of the Genes-Edge version network in Mouse2HumanNet with

explanations for features and options.
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Figure A.11: “Papillary serous carcinoma of the peritoneum” disease’s interface (left),

and “Uterus hyperplasia” phenotype’s interface (right) on the Genes-Edge version

network.
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APPENDIX B

SOURCE CODES

B.1 GENES-EDGE VERSION

import os

import sys

import time

import math

import xlrd

from xlrd import open workbook
import random

from sys import stdout
from time import sleep
#width2height=2.0

area density=0.05

def bgr (minimum, maximum, value):

minimum, maximum = float (minimum), float (maximum)

ratio = 2 * (float(value)-minimum) / (maximum -
minimum)

b = int (max (0, 255*(1 - ratio)))

r = int (max (0, 255* (ratio - 1)))

g =255 -Db -r

bgr=1[]

bgr.append (b)
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bgr.append (g)
bgr.append (r)
return bgr

def write xml header (file):

file.write ('<?xml version="1.0" encoding="UTF-
8"?>\1’1' )

#file.write ('<gexf xmlns="http://www.gephi.org/gexf"
xmlns:viz="http://www.gephi.org/gexf/viz">\n")

file.write('<gexf
xmlns="http://www.gexf.net/1.2draft" version="1.2"
xmlns:viz="http://www.gexf.net/1l.2draft/viz"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.gexf.net/1l.2draft
http://www.gexf.net/1.2draft/gexf.xsd">\n")

#file.write ('<graph type="static">\n')

file.write (' <meta lastmodifieddate="2014-01-
30">\n")

file.write (' <creator>Gephi 0.8.1</creator>\n")

file.write (' <description></description>\n"')

file.write (' </meta>\n")

file.write (' <graph defaultedgetype="directed"

mode="static">\n")

file.write (' <attributes class="node"
mode="static">\n")

file.write (' <attribute 1id="0" title="Type"
type="string"/>\n")

#file.write (' <attribute id="1" title="disease
class" type="string"/>\n"')

file.write (' <attribute id="1" title="Remarks"
type="string"/></attributes>\n")

#file.write ('<attributes class="node"
type="static">\n"')

#file.write ('<attribute id="0o" title="type"
type="string"/>\n")
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#file.write('<attribute id="1" title="disclass"
type="string"/>\n")

#file.write('<attribute id="2" title="Polygon"
type="integer"/>\n")

#file.write ('</attributes>\n"')
file.write (' <nodes>\n")

def
write a node(file, node id, label, attl, att2, pos, col,
size):

file.write (' <node id=""'+ node id+'"
label=""'+ label+'"\n>")

file.write (' <attvalues>\n")

#1if attl=="gene":

# attl="Mouse Gene"

#if attl=="humandisease":

# attl="Disease of Class: "+

#  _att3="3"

file.write (' <attvalue id="0"

value=""'+ attl+'"></attvalue>\n')

file.write (' <attvalue 1id="1"
value=""'+ att2+'"></attvalue>\n"')

#file.write (' <attvalue 1id="2"
value=""+ att3+'"></attvalue>\n")

file.write (' </attvalues>\n")

file.write (' <viz:position x="'+ pos[0]+""
y=""'+ pos[1l]+'" z="0.0"></viz:position>\n")

file.write (' <viz:color b="'+ col[0]+'"
g=""'+ col[1l]+'" r=""+ col[2]+'"></viz:color>\n")

file.write (' <viz:size
value=""+ size+'"></viz:size>\n")

#file.write('<viz:shape value="triangle"/>\n")

file.write (' </node>\n")
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#file.write('\n")

print "undirected graph generation human diseases to child
affected names via genes"

#can: the name of the workbook, be caution about the format
of the book

first book name="first table corrected new.xls"
first book = xlrd.open workbook(first book name)
#can: the name of the active worksheet

ws=first book.sheet by name ("Sheetl")

#can:

#can: a python dictionary conneting the genes (as keys=)
to the humandiseases (=as values)

#gene2humandis={}
humandis2gene={}
dis class={}

#can: flag for the while loop to recognize end of the excel
sheet

first line=True
#can: the start row
current row=1
geneZ2entrez={}
while first line:
try:
current entrezid=ws.cell (current row,0) .value
except:
first line=False
else:

try:

current gene=ws.cell (current row,1l) .value.strip()
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except:
pass
else:

genezentrez[current gene]=current entrezid

current humandis=ws.cell (current row, 3) .value.strip ()
current disclass=ws.cell (current row,4) .value

dis class[str(current disclass)]=1.0

#current tuple=(current humandis,current disclass,current
Trow)

current tuple=(current gene,current disclass,current row)
#1if current gene not in geneZhumandis.keys():

# genezhumandis [current gene]=[]

#gene2humandis[current gene].append(current tuple)

if current humandis not in
humandis2gene.keys () :

humandis2gene [current humandis]=[]

humandis2gene [current humandis].append(current tuple)
current row=current row+l
for 1 in range(len(dis class.keys())):
dis class[dis_class.keys () [1]]=float (1)
second book name="second with parenting.xlsx"
second book = xlrd.open workbook (second book name)
ws=second book.sheet by name ("DENE")
genezaffected={}
mp2id={}

second line=True
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prev_row=current row
current row=1
while second line:
try:
current mp=ws.cell (current row,0) .value
except:
second line=False

print "here you have some
problem"+str (current row)

else:

try:

current gene=ws.cell (current row,2) .value.strip()
except:
pass
else:

current affected=ws.cell (current row, 1) .value

#current parentl mp=str(ws.cell (current row,3).value)

#current parentl affected=str(ws.cell (current row,4).valu
e)

#current_parent2_affected="noparent"

#try:

#

current parent2 mp=str(ws.cell (current row,5) .value)
#except:

# current parent2 mp="noparent"

#else:
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#current parent2 affected=str(ws.cell (current row,6).valu
e)

#affected tuple=(current affected,prev rowt+current row,cu
rrent parentl mp,current parentl affected,current parent?2
_mp,current parent2 affected)

affected tuple=(current mp,current affected)#,current par
entl mp,current parentl affected,current parentZ mp,curre
nt parent2 affected)

if current gene not in geneZaffected.keys():

geneZaffected[current gene]=[]

geneZaffected[current gene].append(affected tuple)
if current gene=="F1t3":
print "here:"+str (affected tuple)
mp2id[current mp]=prev row+current row
current row=current row+l

print "numberofrows:"+str (current row)

gene?2geneld={}

prev_row=max (mp2id.values())+1

current row=1

for gene in genelaffected.keys():
geneZgeneld[gene]=prev_rowtcurrent row

current row=current row+l

no notaffected genes=0
max radius=0

max disease="some"
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total area=0.0
for gene tuple array in humandis2gene.values () :

for gene tuple in gene tuple array:

current gene,current disclass,current row=gene tuple

current gene,current disclass,current row=str (current gen
e),str (current disclass),str(current row)

#print current gene,gene tuple
try:
x=len (geneZaffected[current gene])
except:
no notaffected genes=no notaffected genes+l
else:

#if max radius<x:

# max radius=x
# for humandis in geneZ2humandis|[gene]:
# max disease, dummyl, dummy2=humandis

total area=total areat+float(x)*float(x)*3.14

#print "the maximum radius and the corresponding disease
(number of affected connected to disease) is:
"+str (max radius)+" of "+max disease

print "total area has been found to be: "+ str(total area)
#print no notaffected genes

#compute heigth

r=math.sqgrt (total area/area density/3.14)

print "the maximum radius of the window has been found to
be "+str(r)

outfile=open ("diszaffected.gexf","w")

write xml header (outfile)
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debugfile=open ("debugfile.log","w")

nodedic={}

missing=/[]

for humandisease in humandis2gene.keys() :
prev_missing length=len (missing)
current size=0.0
current gene list = []

for gene tuple in humandisZ2gene[humandisease]:

current gene,current disclass,current row=gene tuple
current gene list.append(current gene)

try:

current size=current size+len(geneZaffected[current gene]

)
except:
missing.append (current gene)
current size=str(current size)

first gene tuple=humandis2gene[humandisease] [0]

current gene,current disclass,current row=first gene tupl
e

current gene, current attz,
current node id=str(current gene),str(current disclass),s
tr (current row)

current label="Disorder: "+humandisease

current attl="Disorder Class: "+current disclass

current att2="Number of Mouse Genes:
"+str (len (humandis2gene [humandisease]))+" AND, "+"Genes
are " + ', '.join(current gene list)

#angle=random.uniform(-3.14*2,3.14%*2)

#radius=random.uniform(0, r)
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#current pos=str(radius*math.cos(angle)),str(radius*math.
sin (angle))

#current col=bgr(0,len(dis class.keys()),dis class[curren
t att2])

#current col[0],current col[l],current col[2]=str(current
_col[0]),str(current col[1l]),str(current col[2])

seperator="**##"

writenodestring=current node id+seperator+current label+s
eperator+current attl+seperatortcurrent attZ+seperator+cu
rrent size

nodedic[current node id+seperator+current label]=writenod
estring

print "Total # of nodes appended:
"+str(len (nodedic.keys()))

print "4 of nodes without MP Id appended:
"+str(len(missing))

for k in missing:

debugfile.write (k+"\n")

from collections import Counter

from itertools import chain

def rowToPairs (sheet, row):

nmn nmn

covert a sheet row to (affected_system, disease) pairs

affected system = sheet.cell(row, 1).value.strip/()

diseases = [d.strip() for d in sheet.cell (row,
3).value.split (', ") ]

120



aff sys disease pairs = [ (affected system, disease)
for disease in diseases]

return aff sys disease pairs

def sheet to pairs (sheet):

nmn nmn

convert the sheet to (affected system, disease) pairs iterable

return (rowToPairs (sheet, row) for row in range (0,
sheet.nrows))

def count affected in sheet (sheet):

unique pairs =
set (chain.from iterable(sheet to pairs(sheet)))

return Counter (aff sys for (aff sys, disease) 1in
unique pairs)

id doc =
open workbook ('second disease added.xlsx').sheet by index
(0)

counter = count affected in sheet (ws)

for humandisease in humandis2gene.keys () :
for gene tuple in humandis2Z2gene[humandisease]:
gene, current disclass,current row=gene tuple
try:
dummy=1len (geneZaffected[gene])
except:
pass
else:
for affected in genel2affected[gene]:

#current label,
current node id,mpl,affectedl,mp2,affected2=affected
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current mp,current affected=affected
# current size=str(50.0)

current size =
str (counter.get (current affected))

#current_att1="Child affected system"

current attl="Affected system"
current attZ=current affected
angle=random.uniform(-3.14*2,3.14%*2)

radius=random.uniform (0, r)

current pos=str (radius*math.cos(angle)),str(radius*math.s
in (angle))

current col=str (68),str(68),str(238)

seperator="**##"

current target node id=str (mpZ2id[current mp])

current affected=current attZ2

writenodestring=current target node id+seperator+current
affected+seperator+current attl+seperatort+current attZ+se
perator+current size

nodedic[current target node id+seperator+current mp]=writ
enodestring

try:

current parentl target node id=str (mp2id[mpl])
except:
pass
else:

angle=random.uniform(-3.14*2,3.14%*2)
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radius=random.uniform (0, r)

current pos=str (radius*math.cos(angle)),str(radius*math.s
in (angle))

current col=str (68),str(68),str(238)
seperator="**##"

current attl="Parent affected system"
current attZ=affectedl

mpl="Parent Affected Systeml:
"+mpl.strip('\"")

writenodestring=current parentl target node id+seperator+
mpl+seperator+current attl+seperator+current attZ+seperat
or+current size

nodedic[current parentl target node id+seperator+mpl]=wri
tenodestring

#write a node (outfile,current parentl target node id,mpl,
current attl,current att2Z,current pos,current col,current
size)

if mp2!="noparent":

try:

current parent2 target node id=str (mp2id[mp2])
except:
pass
else:

angle=random.uniform (-
3.14%2,3.14%*2)

radius=random.uniform (0, r)

current pos=str (radius*math.cos(angle)),str(radius*math.s
in (angle))
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current col=str(68),str(68),str(238)
seperator="**##"

current attl="Parent affected
system"

current attZ2=affected2

mpZ2="Parent Affected System2:
"+mp2.strip ("\"")

writenodestring=current parent2 target node id+seperator+
mp2+seperator+current attl+seperator+current attZ+seperat
or+current size

nodedic[current parent2 target node id+seperator+mp2]=wri
tenodestring

#write a node (outfile,current parent2 target node id,mp2,
current attl,current att2Z,current pos,current col,current
size)

#beneath is outcommented on purpose, since the genes will
not be considered as nodes for this version

L
for gene in genelaffected.keys():

current label="Mouse knock-out Gene: "+gene

current node id=str (geneZgeneld[gene])
current attl="Mouse knock-out Gene"
try:

current att2="Entrez Id:
"+str (int (genelentrez[gene]))

except:
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current att2="Entrez Id missing"
#angle=random.uniform(-3.14*2,3.14%*2)

#radius=random.uniform (0, r)

#current pos=str(radius*math.cos(angle)),str(radius*math.
sin (angle))

#current col=str(168),str(68),str(238)
seperator="**##"

current size=str(len(gene2affected[gene]))

writenodestring=current node id+seperator+current label+s
eperator+current attl+seperatortcurrent attZ+seperator+cu
rrent size

nodedic[gene+seperator+current label]=writenodestring

for n in sorted(nodedic.keys()):
seperator="**##"

current node string=nodedic[n]

current node id=current node string.split (seperator) [0]
current label=current node string.split (seperator) [1]
current attl=current node string.split (seperator) [2]
current att2=current node string.split (seperator) [3]
current size=current node string.split (seperator) [4]
angle=random.uniform(-3.14*2,3.14%*2)

radius=random.uniform (0, r)
current pos=str (radius*math.cos(angle)),str(radius*math.s
in (angle))

if current attl.startswith("Disease Class:")==True:
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current disclass=current attl.split ("Disease
Class: ") [1]

current col=bgr (0, len(dis class.keys()),dis class[current
_disclass])

current col[0],current col[l],current col[2]=str (current
col[0]),str(current col[l]),str(current col[2])

else:
if current attl=="Mouse knock-out Gene":
current col=str(9),str(9),str(9)
else:

current col=str(68),str(68),str(238)

write a node(outfile,current node id,current label, curren
t attl,current att2,current pos,current col,current size)

outfile.write (" </nodes>\n")

edgedic={}

edge counter=1

humdis counter=1

for humandisease in humandis2gene.keys() :

first gene tuple=humandis2gene[humandisease] [0]

first gene,current disclass,current row=first gene tuple

first gene, current attz,
current dis source node id=str (first gene),str(current di

sclass),str (current row)

#above is only required for determining the
current dis source node id

#item="finished percentage:
"+str (float (humdis counter/len (humandis2gene.keys()))*100
.0)
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#print item, "\r",

#sys.stdout.flush ()

#sleep (1)

humdis counter=humdis counter+l

print humdis counter

for gene tuple in humandisZgene[humandisease]:

gene, current disclass,current row=gene tuple

#if humandisease=="Leukemia":
# print gene
try:

dummy=len (geneZaffected[gene])
except:

pass
else:

for affected in genel2affected[gene]:

current mp,current affected=affected

current mp,current affected=str (current mp),str(current a
ffected)

#if humandisease=="Leukemia":

# print "affected:"+current affected

current target node id=str (mpZ2id[current mp])

#current edge string=' <edge
id=""'+str (edge counter)+'"
source=""+current dis source node id+'"

target="'+current_target_nod€_id+T" label=""+gene+"'">\n"

#current edge string=' <edge
id=""'+str (edge counter)+'"
source=""+current dis source node id+'"

target=""'+current target node id+'" label=allgenes">\n'

127



current edge string='"
source=""+current dis source node id+'"
target=""'+current target node id+'" label="allgenes">\n'

#current edge string=current edge string+'
<attvalues></attvalues>\n </edge>\n"

#edge counter=edge counter+1

if current edge string not in
edgedic.keys () :

edgedic[current edge string]=[]

edgedic[current edge string].append(gene)

outfile.write (" <edges>\n")
length of gene keys={}

for e in sorted(edgedic.keys()):

outfile.write (' <edge 1id="'"+str (edge counter))
genestring=""
for st in range(len(edgedicle])-1):

genestring=genestring+edgedic[e] [st]+","
genestring=genestring+edgedic[e] [len (edgedic[e])-1]

outfile.write(e.replace("allgenes",str (genestring)))

length of gene keys[len(edgedic[e]) ]=True
outfile.write (' <attvalues></attvalues>\n
</edge>\n")

edge counter=edge counter+l
foutfile.write (e)
print max(length of gene keys)
outfile.write (' </edges>\n")

outfile.write (' </graph>\n"')
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outfile.write('</gexf>\n"')

print "finished"
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B.2 GENES-NODE VERSION

import os

import sys

import time

import math

import xlrd

from xlrd import open workbook
import random

area density=0.05

def bgr (minimum, maximum, value):

minimum, maximum = float (minimum), float (maximum)
ratio = 2 * (float(value)-minimum) / (maximum -
minimum)

b = int (max (0, 255*(1 - ratio)))
r = int(max (0, 255* (ratio - 1)))
g =255 -Db -r
bgr=[]
bgr.append (b)
bgr.append (g)
bgr.append (r)
return bgr
def write xml header (file):

file.write ('<?xml version="1.0" encoding="UTF-
8"?>\1’1' )

file.write('<gexf
xmlns="http://www.gexf.net/1.2draft" version="1.2"
xmlns:viz="http://www.gexf.net/1l.2draft/viz"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

130



xsi:schemaLocation="http://www.gexf.net/1l.2draft
http://www.gexf.net/1l.2draft/gexf.xsd">\n")

file.write (' <meta lastmodifieddate="2014-01-
30">\n")

file.write (' <creator>Gephi 0.8.1</creator>\n")

file.write (' <description></description>\n"')

file.write (' </meta>\n")

file.write (' <graph defaultedgetype="directed"

mode="static">\n")

file.write (' <attributes class="node"
mode="static">\n")

file.write (' <attribute 1id="0" title="Type"
type="string"/>\n")

file.write (' <attribute id="1" title="Remarks"
type="string"/></attributes>\n")

file.write (' <nodes>\n")

def
write a node(file, node id, label, attl, att2, pos, col,
size):

file.write (' <node id=""'+ node id+'"
label=""'+ label+'"\n>")

file.write (' <attvalues>\n'")

file.write (' <attvalue 1d="0"
value=""'+ attl+'"></attvalue>\n')

file.write (' <attvalue 1id="1"
value=""'+ att2+'"></attvalue>\n')

file.write (' </attvalues>\n")

file.write (' <viz:position x="'+ pos[0]+""
y=""'+ pos[1l]+'" z="0.0"></viz:position>\n")

file.write (' <viz:color b="'+ col[O0]+""
g=""'+ col[1l]+'" r=""+ col[2]+'"></viz:color>\n")

file.write (' <viz:size
value=""+ size+'"></viz:size>\n")
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file.write (' </node>\n")

print "undirected graph generation human diseases to
child affected names via genes"

first book name="first table corrected new.xls"
first book = xlrd.open workbook (first book name)
ws=first book.sheet by name ("Sheetl")
humandis2gene={}
dis class={}
first line=True
current row=1
geneZ2entrez={}
while first line:
try:
current entrezid=ws.cell (current row,0) .value
except:
first line=False
else:

try:

current gene=ws.cell (current row,1l) .value.strip()
except:
pass
else:

genezentrez[current gene]=current entrezid

current humandis=ws.cell (current row, 3) .value.strip()
current disclass=ws.cell (current row, 4) .value

dis class[str(current disclass)]=1.0
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current tuple=(current gene,current disclass,current row)

if current humandis not
humandis2gene.keys () :

humandis2gene [current humandis]=[]

humandis2gene [current humandis].append(current tuple)
current row=current row+l
for 1 in range(len(dis class.keys())):
dis class[dis_class.keys () [1]]=float (1)
second book name="second with parenting.xlsx"
second book = xlrd.open workbook (second book name)
ws=second book.sheet by name ("DENE")
genezaffected={}
mp2id={}
second line=True
prev_row=current row
current row=1
while second line:
try:
current mp=ws.cell (current row,0) .value
except:
second line=False
else:

try:

current gene=ws.cell (current row,2) .value.strip()
except:

pass
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else:
current affected=ws.cell (current row,1) .value

affected tuple=(current mp,current affected)

if current gene not in geneZaffected.keys():

geneZaffected[current gene]=[]

geneZaffected[current gene].append(affected tuple)
mp2id[current mp]=prev row+current row
current row=current row+l
gene?2geneld={}
prev_row=max (mp2id.values())+1
current row=1
for gene in genelaffected.keys():
geneZgeneld[gene]=prev rowtcurrent row
current row=current row+l
no notaffected genes=0
max radius=0
max disease="some"
total area=0.0
for gene tuple array in humandis2gene.values () :

for gene tuple in gene tuple array:

current gene,current disclass,current row=gene tuple

current gene,current disclass,current row=str (current gen
e),str (current disclass),str(current row)

#print current gene,gene tuple
try:

x=len (geneZaffected[current gene])
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except:
no notaffected genes=no notaffected genes+l
else:
total area=total areat+float(x)*float(x)*3.14
print "total area has been found to be: "+ str(total area)
r=math.sqgrt (total area/area density/3.14)

print "the maximum radius of the window has been found to
be "+str(r)

outfile=open ("diszaffected.gexf","w")

write xml header (outfile)

debugfile=open ("debugfile.log","w")

nodedic={}

missing=/[]

for humandisease in humandis2gene.keys() :
prev_missing length=len (missing)
current size=0.0
current gene list = []

for gene tuple in humandisZgene[humandisease]:

current gene,current disclass,current row=gene tuple
current gene list.append(current gene)

try:

current size=current size+len(geneZaffected[current gene]

)
except:
missing.append (current gene)
current size=str(current size)

first gene tuple=humandis2gene[humandisease] [0]
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current gene,current disclass,current row=first gene tupl
e

current gene, current attz,
current node id=str(current gene),str(current disclass),s
tr (current row)

current label="Disorder: "+humandisease

current attl="Disorder Class: "+current disclass

#current att2="# of Mouse Genes:
"+str (len (humandis2gene [humandisease]))+" AND
"+str (len(missing)-prev missing length)+" of them do/does
not have any MP Id on Jax Database"+". "+" Genes are " +
', '.Jjoin(current gene list)

current att2="This network aims to reveal the OMIM
disorders and mouse affected system connections by using
ortholog mouse knock out Diseasome genes as edges. The
size of disease and affected system nodes are respectively
proportional to the number of genes in it and number of
disease it connects. Black nodes represent affected
systems. Red nodes represents mouse genes and other colours
show distinct 22 disorder classes."

seperator="**##"

writenodestring=current node id+seperator+current label+s
eperator+current attl+seperatortcurrent attZ+seperator+cu
rrent size

nodedic[current node id+seperator+current label]=writenod
estring

print "Total # of nodes appended:
"+str(len (nodedic.keys()))

print "4 of nodes without MP Id appended:
"+str(len(missing))

for k in missing:
debugfile.write (k+"\n")

from collections import Counter

from itertools import chain

def rowToPairs (sheet, row):
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affected system = sheet.cell(row, 1).value.strip/()

diseases = [d.strip() for d in sheet.cell (row,
3) .value.split (', ") ]

aff sys disease pairs = [ (affected system, disease)
for disease in diseases]

return aff sys disease pairs
def sheet to pairs (sheet):

return (rowToPairs (sheet, row) for row in range (0,
sheet.nrows))

def count affected in sheet (sheet):

unique pairs =
set (chain.from iterable (sheet to pairs(sheet)))

return Counter (aff sys for (aff sys, disease) 1in
unique pairs)

counter = count affected in sheet (ws)
for humandisease in humandis2gene.keys() :
for gene tuple in humandisZgene[humandisease]:
gene, current disclass,current row=gene tuple
try:
dummy=1len (geneZaffected[gene])
except:
pass
else:
for affected in genel2affected[gene]:
current mp,current affected=affected

current size =
str (counter.get (current affected))
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current attl="Affected system"
current attZ2=current affected
angle=random.uniform(-3.14*2,3.14%*2)

radius=random.uniform (0, r)

current pos=str (radius*math.cos(angle)),str(radius*math.s
in (angle))

current col=str(68),str(68),str(238)

seperator="**##"

current target node id=str (mpZ2id[current mp])

current affected=current attZ2
writenodestring=current target node id+seperator+current
affected+seperator+current attl+seperatort+current attZ+se
perator+current size

nodedic[current target node id+seperator+current mp]=writ
enodestring

for gene in genelaffected.keys():

current label="Mouse knock-out Gene: "+gene

current node id=str (geneZgeneld[gene])
current attl="Mouse knock-out Gene"
try:

current attZ2="Entrez Id:
"+str (int (genelentrez[gene]))

except:

current att2="Entrez Id missing"
seperator="**##"
current size=str(len(gene2affected[gene]))

writenodestring=current node id+seperator+current label+s
eperator+current attl+seperatortcurrent attZ+seperator+cu
rrent size
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nodedic[gene+seperator+current label]=writenodestring
for n in sorted(nodedic.keys()):
seperator="**##"

current node string=nodedic[n]

current node id=current node string.split (seperator) [0]
current label=current node string.split (seperator) [1]
current attl=current node string.split (seperator) [2]
current att2=current node string.split (seperator) [3]
current size=current node string.split (seperator) [4]
angle=random.uniform(-3.14*2,3.14%*2)

radius=random.uniform (0, r)

current pos=str (radius*math.cos(angle)),str(radius*math.s
in (angle))

if current attl.startswith("Disease Class:")==True:

current disclass=current attl.split ("Disease
Class: ") [1]

current col=bgr (0, len(dis class.keys()),dis class[current
_disclass])

current col[0],current col[l],current col[2]=str (current
col[0]),str(current col[l]),str(current col[2])

else:
if current attl=="Mouse knock-out Gene":
current col=str(9),str(9),str(9)
else:

current col=str(68),str(68),str(238)

write a node(outfile,current node id,current label, curren
t attl,current att2,current pos,current col,current size)
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outfile.write (" </nodes>\n")

edgedic={}
edge counter=1
for humandisease in humandis2gene.keys() :

first gene tuple=humandis2gene[humandisease] [0]

first gene,current disclass,current row=first gene tuple

first gene, current attz,
current dis source node id=str (current gene),str (current
disclass),str(current row)

for gene tuple in humandisZ2gene[humandisease]:
gene, current disclass,current row=gene tuple
try:
dummy=1len (geneZaffected[gene])
except:
pass

else:

current gene target node id=str(geneZgeneld[gene])

current edge string=' <edge
id=""'+str (edge counter)+'"
source=""+current dis source node id+'"
target=""'+current gene target node id+'"

label=""+gene+'">\n"'

current edge string=current edge string+'
<attvalues></attvalues>\n </edge>\n"

edge counter=edge counter+l

edgedic[current edge string]=1.0

current source node id=current gene target node id

for affected in genel2affected[gene]:
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current mp,current affected=affected

current mp,current affected=affected=str (current mp),str(
current affected)

current target node id=str (mpZ2id[current mp])

current edge string=' <edge
id=""'+str (edge counter)+'"
source=""+current source node id+'"

target="'+current_target:node:id+'" label=""+gene+"'">\n"

current edge string=current edge string+'
<attvalues></attvalues>\n </edge>\n"

edge counter=edge counter+l
edgedic[current edge string]=1.0
outfile.write (" <edges>\n")
for e in sorted(edgedic.keys()):
outfile.write (e)
outfile.write (' </edges>\n")
outfile.write (' </graph>\n"')

outfile.write('</gexf>\n"')

print "finished"
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B.3 REMOVING NUMBERS

Function RemoveNumbers (t As String)

Dim i As Long, newString As String

For 1 = 1 To Len(t)

If Not IsNumeric(Mid(t, 1, 1)) Then

newString = newString & Mid(t,

End If

Next 1

RemoveNumbers = newString

End Function
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APPENDIX C

C.1 HUMAN AND MOUSE PHENOTYPES FOR TP53 AND
ORTHOLOGUE GENES

HUMAN PHENOTYPES FOR TP53 GENE

HPO id HPO label

HP:0011974 i
= HP:0011875 [Abnormal p morphology

HP:0001658 |Myocardial infarction

HP:0010982 |Polygenic inheritance

HP:0001413 | Mic dular cirrhosis

HP:0012125 |Prostate cancer

HP:0002669 |Osteosarcoma

HP:0009919 | Retinoblastoma

HP:0100576 | Amaurosis fugax

HP:0000007 | Autosomal recessive inheritance HP:0030078 |Lung adenocarcinoma
HP:0000006 | domi inheritance HP:0100273 | Neopl: of the colon
HP:0002667 |Nephroblastoma HP:0000505 | Visual impairment

HP:0002665 |Lymph HP:0002448 |Progressive encephalopathy
|HP:0002863 | Myelodysplasia HP:0100630 lasia of the nasopharynx
HP:0006744 |Adrenocortical carcinoma HP:0002326 | Transient ischemic attack
HP:0002861 | HP:0002488 | Acute leuk

HP:0001250 |Seizures HP:0001276 | Hypertonia

HP:0006740 | Transitional cell carcinoma of the bladder

HP:0030448 |Soft tissue sarcoma HP:0005513 |Increased megakaryocyte count
HP:0001939 |Abnormality of metabolism/h tasis HP:0004420 | Arterial thrombosl

HP:0001428 | Somatic mutati HP:0003010 |Prolonged bleeding time
HP:0004936 |Venous HP:0008069 plasm of the skin
HP:0006716 | Hereditary nonpolyposis colorectal carci HP:0006572 [Subacute progressive viral hepatitis
HP:0100543 | Cognitive impairment HP:0200022 |Choroid plexus papilloma
HP:0001425 |Heterogeneous HP:0100641 | of the ad | cortex
HP:0002315 |Headache HP:0001402 [Hepatocellular carcinoma
HP:0001744 [Spl ! HP:0000238 [Hydroc

HP:0003401 |Paresthesia HP:0002018 |Nausea

HP:0003003 |Colon cancer

HP:0002013 [Vomiting

HP:0100787 | Prostate neoplasm
HP:0002894 |Neopl of the pancreas

HP 753 {Neoplasm of the stomach HP:0002891 | Uterine leiomyosarcoma

HP:0003002 | Breast carcinoma HP:0001085 | Papilledema

HP:0100749 |Chest pain

HP:0004375 | Neoplasm of the nervous system
HP:0005584 |Renal cell carcinoma
HP:0004374 | Hemiplegia/hemiparesis
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MOUSE PHENOTYPES FOR Trp53 GENE

U PR womon
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‘abnormal atrioventricular cushion morphology ‘abnormal posterior eye segment - :mm::: por

‘abnormal cardiac outflow tract

abrorma retinal vasculature morphology
‘abnormal cardiovascular system physiology morphology
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decreased circulating insuiin-fike growth factor | level  MP0000599  enlarged iver
« o

oo abnormal spermatogenesis 1P-0000691
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o
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‘abnormal craniofacial morphology
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abnormal ONA replication MPO0OI333  absent optic nerve o
‘abnormal endometrium morphology MP:0020386  adipose tissue inflammation
abnormal enterocyte apoptosis MPOOOOILA  slopedis decreased sensitiy to skin radiation MPOO0SZ38 increased bran size
facia morshology MPOOD3A3  hered response to myocarda infarction decreased skeletal muscle mass e e
MP:0010639  altered tumor pathology decreased spleen red pulp smount e Pt
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abnormal mammary gland development MP0008S66  chromosom nstabiy e MP0004868  incessed endometil carcinomaicidence
‘sbnormal mammary gland growth during lactation MP00OD111  ciet palate o e MPOCCBSSS  increased enerocyte spoptoss

delayed cellular replicative senescence

: 3 Iapopies MP0000575  increased foot pad pigmentation
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abrormalocular fundus morphology . MPOD10306  increased hamartoma incidence
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abnormal optic nerve morphology weigh e e erescence MPODO2E33 increased heart weight

MP0000333  decreased bone marrow cell number

increased testicular teratoma incidence
increased thymocyte apoptosis

increased

ncreased hamangicsarcoma lncidence MP:0011091  prenatal lethality, complete penetrance

prenatal lethality, incomplete penetrance

increased hematopoietic stem cell number MP:000: increased tumor incidence
increased carcinoma incidence MP:0002020  increased tumor incidence preweaning lethality, complete penetrance
increased hibernoma incidence MP:0009828  increased tumor latency MP:0011110 lethality,
increased i i MP:0010289  increased urinary system tumor incidence MP:0009908  protruding tongue
increased incidence of tumors by chemical induction MP:0010771 |mqumelmlphem!vpe MP:0006050  pulmonary fibrosis
increased inci  ionizing radiati £ intestinal ulcer
increased esponse MP:0008011  intestine polyps renal hypoplasia
£ increased intestinal i MP:0000585  kinked tail g y system
MP:0002035  increased leiomyosarcoma incidence MP:0000160 ~ kyphosis g Y
MP:0002026  increased leukemia incidence MP:0010249  lactation failure MP:0010715  retina coloboma
MP:0010343  increased lipoma incidence MP:0011099  lethality throughout fetal growth and development, complete penetrance ruffled hair
MP:0008019  increased liver tumor incidence MP:0011109  lethality throughout fetal growth and development, incomplete penetrance sefzures
::gﬁ ;nmg :un.:;nmr:lin;m incidence MP:0005202 :h rl“m short humerus
g increased lung adenoma incidence er cirthosis .
MP:0008014  increased lung tumor incidence fiver hyperplasia short mandible
MP:0012431  increased lymphoma incidence liver hypoplasia skin lesions
e increased y inoma incidence liver inflammation small gonad
MP:0010299  increased mammary gland tumor incidence lordosis small kidney
MP:0006283  increased medulloblastoma incidence lung inflammation small spleen
MP:0001272  increased metastatic potential MP:0010768 mortality/aging small testis
MP:0001658  increased mortality induced by irradi muscular atrophy small thymus
MP:0003992  increased mortality induced by ionizing radiation MP:0012400  nail dystrophy
£ increased it inci MP:0002006  neoplasm sparse hair
MP:0003789  increased osteosarcoma incidence MP:0003631  nervous system phenotype spleen hyperplasia
MP:0008000  increased ovary tumor incidence g bnormal phenotype spleen hypoplasia
MP:0009153  increased pancreas tumor incidence MP:0002700 ~ opacity of vitreous body breakage
MP:0002013  increased pilomatricoma incidence MP:0006219  optic nerve degeneration testis hypoplasia
MP:0008186  increased pro-8 cell number MP:0006221  optic nerve hypoplasia thin cerebellar granule layer
MP:0010287  increased reproductive system tumor incidence MP:0003751  oral leukoplakia .
£ increased MP:0000067  osteopetrosis thin dermal layer
MP:0002032  increased sarcoma incidence MP:0000066 ~ osteoporosis thrombocytopenia
MP:0008943  increased sensitivity to induced cell death MP:0002016  ovary cysts tremors
£ increased induced morbi : y tumor regression
increased skin papilloma incid MP:0003674 ~ oxidative stress vasculitis
Increased MP:0003717 - pallor MP:0010402  ventricular septal defect
MP:0010300  increased skin tumor incidence MP:0005152 ~ pancytopenia N MP:0001263  weight loss
£ increased spindls il MP:0002633 persistent truncus arteriosis
increased i i lymphoma incidence MP:0004025  polyploidy
increased liferati MP:0001732  postnatal growth retardation
g increased MP:0011085 postnatal lethality, complete penetrance
MP:0011276  increased tail pigmentation MP:0011086 postnatal lethality, incomplete penetrance
increased T cell deri incide MP:0003786 premature aging
MP:0002627  increased teratoma incidence MP:0002083  premature death
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C.2 LIST OF GENES ASSOCIATED WITH LEUKEMIA DISEASE & DAVID
FUNCTIONAL ENRICHMENT RESULTS

Gene symbols
Abl1
Arhgap26
Arhgef12
Arnt
Bcl2
Ber
Cendl
Cebpa
Chic2
Fit3
Gatal
Hoxd4
Kit

Kras
Lpp
Nbn

Nfl
Npml
Nqol
Numal
Nup214
P2rx7
Picalm
Pml
Ptpnll
Runxl1
Stat5b
Tall
Tal2
Whsclll
Zbtb16
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KEGG_PATHWAY

KEGG_PATHWAY

GOTERM_BP_DIRECT homeostasis of number of cells within a tissue

Acute myeloid leukemia

Pathways in cancer

GOTERM_BP_DIRECT hemopoiesis

KEGG_PATHWAY

Chronic myeloid leukemia

GOTERM_MF_DIRECT protein binding

GOTERM_BP_DIRECT negative requlation of cell proliferation

UP_KEYWORDS

UP_KEYWORDS

UP_KEYWORDS

Ubl conjugation

Proto-oncogene

Acetylation

GOTERM_BP_DIRECT liver development

GOTERM_BP_DIRECT requlation of cell cycle

UP_KEYWORDS

Phosphoprotein

GOTERM_CC_DIRECT nucleus

GOTERM_BP_DIRECT embryonic hemopoiesis

UP_KEYWORDS

Nucleus
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