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ABSTRACT 
 
 
 

PHANEROS: VISIBILITY-BASED FRAMEWORK FOR MASSIVE PEER-

TO-PEER VIRTUAL ENVIRONMENTS 

 
 
 

Çevikbaş, Şafak Burak 
Ph.D., Department of Computer Engineering 

 
Supervisor: Prof. Dr. Veysi İşler 

 
 

June 2017, 98 pages 
 
 
 
Contemporary distributed virtual environments are growing out of terabytes of 3D 

content and hundreds of thousands of users. Server-client architectures have become 

inadequate for fulfilling the scalability requirements. The peer-to-peer architectures 

provide inherently scalable, cost-effective distributed solutions for distributed virtual 

environments. We present a fully distributed peer-to-peer framework, Phaneros, which 

is capable of providing necessary means to realize more efficient and more scalable 

massive distributed virtual environments. Using the presented visibility aware interest 

management, Phaneros performs better than existing overlays, achieving single hop 

update dissemination while having lower bandwidth requirements. The provided 

visibility aware 3D streaming scheme distributes 3D content more efficiently without 

creating any significant load on the server. Our test results show significant 

improvements over existing frameworks.  

 

 

Keywords: Distributed Virtual Environments, Peer-to-Peer, 3D Content Streaming, 

Update Dissemination, Potentially Visible Sets 
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ÖZ 
 
 
 

PHANEROS: KİTLESEL SANAL ORTAMLAR İÇİN EŞLER ARASI 

GÖRÜNÜRLÜK TEMELLİ ALTYAPI 

 
 
 

Çevikbaş, Şafak Burak 
Doktora., Bilgisayar Mühendisliği Bölümü 

 
Tez Yöneticisi: Prof. Dr. Veysi İşler 

 
 

Haziran 2017, 98 sayfa 
 
 
 
Günümüzde çağdaş dağıtık sanal ortamlar terabaytlarca 3B içerik ve yüz binlerce 

kullanıcıyı barındıran büyüklüklere ulaştılar. Sunucu-istemci mimarileri gerekli 

ölçeklenebilirliği sağlamada yetersiz hale geliyorlar. Eşler arası mimariler doğaları 

gereği ölçeklenebilir ve uygun maliyetli dağıtık çözümler sunarlar. Bu çalışmada, daha 

verimli ve daha ölçeklenebilir kitlesel dağıtık sanal ortamlara imkân veren, tamamen 

dağıtık çalışan ve eşler arası bir iş çerçevesi olan Phaneros’u sunuyoruz. Phaneros, 

görünürlük temelli ilgi alanı yönetimi sayesinde hem daha düşük bant genişliği 

gerektirerek hem de tek atlamalı güncelleme yayma yeteneği sunarak var olan diğer 

örtü ağlarından daha yüksek başarım sunar. Phaneros’un sunduğu 3B akar düzeni, 3B 

içeriği; kullandığı görünürlük iyileştirmesi sayesinde sunucular üzerinde kayda değer 

bir yük oluşturmadan ve var olan yapılardan daha verimli şekilde yayar. Test 

sonuçlarımıza göre Phaneros, var olan diğer iş çerçevelerine göre dikkate değer 

seviyede iyileşme sağlar.  

 

 

Anahtar Kelimeler: Dağıtık Sanal Ortamlar, Eşler Arası, 3B İçerik Akışı, Güncelleme 

Dağıtımı, Potansiyel Görünür Kümeler 
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CHAPTER 1  

INTRODUCTION 

A Distributed Virtual Environment (DVE) is a virtual environment or a virtual world 

where multiple users are connected to a network to share a common experience by 

interacting with each other and their surrounding environment. The concept emerged 

for military purposes in the 80s and evolved into today’s interactive applications[1]. 

DVEs have become more prevalent in the last two decades starting with online games 

and later evolving into massively multiplayer online games (MMOGs). As of 2011, 

Second Life reached 16 million, and World of Warcraft reached 12 million registered 

users. [2]  

A virtual world is composed of the environment, the users, the non-player characters, 

the collectible/usable objects and interactions of these. The environment is represented 

by 3D visual content with sounds, music, and other auxiliary material. Usually, the 3D 

content of the virtual world is distributed in physical installation media (DVD) or 

downloaded at once before installation/use of the application. In the statically pre-

assembled 3D world, participants move and interact with each other and the 

environment. The interactions are encoded as update messages and disseminated to all 

interested participants through the underlying network. An update message contains 

all the information about the interaction that is necessary for the receiver to reflect the 

change caused by the interaction to its local copy of the world. The receiver might be 

a server which in turn redistribute the results of the interaction to its clients. With many 

participants, DVEs can generate large amounts of network traffic and computational 

load [2].  

Because of the reasons that are going to be detailed later, most of the popular DVEs 

rely on client-server architectures [2][3][4]. In a server-client setting, the game state is 
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maintained centrally on the server. Clients send their actions to the server where the 

actions are evaluated, and the resulting changes in the game state are disseminated 

back to the clients. When the number of users becomes massive, high-performance 

server clusters provide the required computational power. Servers carry the load by 

either instantiating limited sized instances of the virtual world or partitioning the larger 

world into smaller parts statically or dynamically [5]. The users, the objects, the 

functions or the virtual world may be subject to partitioning [1]. Centralized structure 

of the server-client architectures eases the management at the expense of lower 

scalability and higher costs. Operators have to maintain more than enough resources 

under normal circumstances to handle the loads that may occur when larger numbers 

of users become simultaneously online. Recently, cloud architectures enabled better 

resource planning by allowing on-demand allocation of resources. However, the 

scalability limitations are not avoided even with the cloud-based approaches. Required 

bandwidth and computational power continue causing significant costs to the provider 

when the number of users is high [6]. Peer-to-peer (P2P) studies explore solutions that 

lower server requirements by distributing the state management to peers instead of 

bringing it together on the central server(s). 

Contemporary DVE applications are downloaded as one big package containing all of 

their content. However, the trend of the DVE applications and the demand of the users 

are in the direction of open worlds with terabytes of content. Downloading such large 

amounts before accessing the virtual world, even in a progressive manner, is not 

convenient for the user. Therefore, the content should be streamed on demand. 

Streaming 3D content has different requirements than streaming sequential 

multimedia content. Participants of a DVE do not follow a defined sequence for 

requesting chunks of 3D data [7]. Requests are made from multiple simultaneous users 

scattered in the virtual world moving erratically and interacting with each other 

unceasingly. Consequently, streaming 3D data from a single source for the 

consumption of multiple clients becomes inapplicable because of the unpredictable 

nature of the demand. Servers have to manage each user separately and consequently 

have to carry excessive bandwidth and CPU load. 3D streaming is not feasible with 
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client-server architectures because of the sizes of the DVEs and the massive number 

of users. Peer-to-peer 3D streaming studies investigate the necessary facilities to 

transfer 3D content seamlessly between the peers on demand without the intervention 

of a server.  

Virtual worlds have grown to massive sizes, comprising terabytes of 3D content [8] 

and serving millions of people, generally tens of thousands simultaneously [9]. Client-

server architectures are inherently limited regarding scalability thus being inadequate 

for meeting the increasing demand. It has become impractical neither to distribute all 

3D content at once nor to connect all participants to central servers simultaneously. 

Peer-to-peer architectures are inherently scalable and suitable for both update 

dissemination and 3D content streaming; hence, they are studied to overcome the 

drawbacks of the client-server architectures.  

In this study, Phaneros, a fully distributed peer-to-peer framework for building 

massive DVEs is presented. Phaneros provides high-performance update 

dissemination and efficient 3D streaming by incorporating visibility based interest 

management with peer-to-peer overlay networks for DVEs. Utilization of visibility 

allows accurately identifying source peers for streaming and avoiding redundant direct 

connections for update dissemination. 

Phaneros is a Greek word that has the meanings like visible, apparent, obvious, clear. 

Phaneros is a visibility based framework and has a simple structure. Because of these 

reasons, we believe that the word Phaneros accurately reflects the characteristics of 

the proposed framework. 

The organization of this work is as follows: Chapter 2 covers related work about 

update dissemination and 3D content streaming. Chapter 3 describes the internals of 

Phaneros. Chapter 4 describes the implementation details and the tests cases. Chapter 

5 presents the results obtained and our evaluation of the results. Chapter 6 closes the 

work with concluding comments and openings for further research. 
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CHAPTER 2  

RELATED WORK 

Phaneros is the output of a multi-disciplinary approach which comprises peer-to-peer 

(P2P) overlay networks, application layer multicasting, visibility culling and 

distributed virtual environments. Therefore, this chapter purposes providing a 

foundation for Phaneros by covering all four topics. The discussion starts with 

distributed virtual environments (DVE) and their design considerations. The chapter 

continues with information about server-client DVEs and P2P DVEs. VON and FLoD 

are discussed in detail as they together from the counterpart for Phaneros. Following 

these, P2P overlay networks are explained with focus on CHORD; then application 

layer multicasting is investigated with a focus on SCRIBE. Finally, visibility culling 

methods are explained briefly to provide an understanding of the concept.  

2.1 DISTRIBUTED VIRTUAL ENVIRONMENTS 

A Distributed Virtual Environment (DVE) is a system that connects multiple users into 

a shared virtual environment where the users are represented by avatars and they 

interact with each other and the surrounding environment by the actions that their 

avatars perform in the virtual environment.  

For a successfully shared experience, there are some qualities to be considered while 

building DVEs. DVEs should be consistent, responsive, scalable, reliable, persistent 

and secure [1][9][10]. These characteristics shape how a DVE is designed and 

operated. 

DVEs become attractive to the users and the researchers when the number of users 

rises. They become even more attractive when they are massive. Scalability is the 
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capability of supporting a high number of users without compromising on the qualities 

that are available for a smaller number of users. With this definition, scalability is the 

result of all other qualities [6]. When some of the qualities explained below are not 

available at required levels for higher number of users, the system is not considered as 

scalable.  A successfully designed DVE yields a linear relation between the number of 

users and the required computational capacity. A poor design, on the contrary, may 

cause an exponential increase of required resources with increasing number of users 

[10]. Scalability requirements of DVEs are also application specific.  

Presumably, the most important characteristic of a DVE for the users is consistency. 

Consistency can be defined as the capability of representing the same world state to 

all users within an acceptable margin of latency [11]. Consistency is a defining factor 

of a shared experience. All participants should perceive the same state of the 

environment and the same events consistently [10]. Although the level of consistency 

depends on the application requirements and the technical limitations, for a DVE to be 

persuasive, all users are expected to perceive the same state with inconspicuous time 

disparities. The tolerable latency is determined by the application requirements. Strict 

consistency, eventual consistency or inconsistency may be appropriate for the 

application requirements [10]. Maintaining strict consistency at every node may 

require complex algorithms and may hinder responsiveness. Consistency is also 

crucial if the virtual environment is a competitive one. A high level of consistency is 

a precondition for fairness. When inconsistencies are not handled properly, they may 

cause visual divergence, causality violation and expectation violation [1]. Finally, it is 

hard to achieve strict consistency with network latency. When it is not possible to 

avoid inconsistencies, predictive methods like dead reckoning and bulk state 

synchronization mechanism are employed to correct at least the effects of 

inconsistencies [2]. Another type of inconsistency is the one caused by cheating. 

Cheating is discussed below the topics of security. 

Responsiveness defines the delay between a user’s actions and their observable 

consequences [9]. Shorter response time means higher responsiveness. 
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Responsiveness requirements are subject to application characteristics. Seconds may 

be tolerated for a turn-based game or a social application whereas hundred 

milliseconds may not be tolerated for a fast-paced action game. Although higher 

responsiveness is the desired quality, it acts as a trade-off for some of the other 

characteristics. An improvement on consistency, reliability or security probably 

introduces a barrier for responsiveness. Responsiveness of is also dependent on the 

number of nodes, complexity of the virtual environment and frequency of the events 

occurring.  

For an application with hopefully hundreds of thousands of simultaneous users, 

reliability is a major concern [9]. The failure of the application makes so many users 

unhappy at the same time that the service provider may face a severe financial and 

reputation loss. Therefore, DVEs should be reliable and fault tolerant. Failure of a 

single node (server or client) should not be allowed to affect more than a limited group 

of users, or if possible, it should not affect anybody at all. Another related term is fault 

tolerance. If node failures cannot be avoided, the DVE system should be designed to 

endure possible node failures. When a distributed system gets larger, the chance of 

failure also increases [10]. Reliability requires replication of data and hand-over 

procedures in case of failure. The hand-over should be fast and deterministic. 

Persistency is the continuation of the game state on the absence of some or all nodes. 

Neither a maintenance shutdown nor a joining or leaving of a user should interrupt the 

persistence of the virtual world. [6] When a user leaves the DVE and comes back after 

a while, a continuation of the virtual environment should be available. Persistency is 

also critical for maintenance and recovery from severe failures. The chosen persistency 

method is dependent on the architecture of the DVE. Central systems persist on servers 

whereas distributed systems provide more complex means of persistency by using 

dedicated servers, super peers and user computers [2].    

Security is a challenging quality of DVEs. Multiple, potentially untrustworthy and 

competing users come together in a DVE. Each one has a potential to abuse the 

distributed nature of the environments and escape the fairness rules. Some means of 
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authorization and necessary monitoring tools should be incorporated in DVEs [1]. 

Cheating occurs when a user creates updates that go against rules. Users may exploit 

bugs and errors that are prone to exist in complex systems. Cryptography, two-phase 

commits, verification computations and referees are available methods for cheating 

prevention in DVEs. Encrypted messages prevent sniffing and illegal message 

modifications. Two-phase commits ensure that all users are notified of the new game 

state at the same time. Verification computations ensure that the same state has been 

reached by independent parties. Authenticated referee nodes continuously audit the 

game state and the messages to ensure that there is no cheating going on. A 

classification of cheating and counter measure methods are available in [2].  

The operation of a DVE is realized by two core functions; the audio-visual 

representation of the virtual environment and dissemination of the changes on the 

environment (updates) that are generated by the user actions. Both functions become 

design challenges when there are many simultaneous users. 

3D content must be delivered to user computers for rendering. The delivery may be 

offline or online. Offline methods are not in the scope of this study. Downloading the 

3D content is also considered as offline. In terms of streaming there is no difference 

between delivering a DVD or downloading a package of several gigabytes at once. 

Online delivery of 3D content is called 3D content streaming and has its specific 

challenges. The 3D content cannot be treated like sequential video content. Users 

move virtually random in the virtual world and continuously make requests for 

dispersed content. Prefetching and caching techniques are commonly used ways of 

efficiently streaming 3D content [7][12].  

The other main function of a DVE is disseminating the user actions and events to 

interested parties as updates. Any coordinating node or a user whose area of interest 

covers the location of the change should receive information about a change in the 

environment. The update can be a position update, a user action, a local happening or 

a global state change.  
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Neither 3D content streaming and nor update dissemination is not feasible without area 

of interest (AOI) management. By definition, streaming is about delivering only the 

necessary content on demand. Determination of the part whose 3D content is required 

by a user is realized by AOI management methods. Delivering all updates to all clients 

gets exponentially more expensive with increasing number of users. Filtering out 

unnecessary update messages is also realized by AOI methods. AOI management 

methods are central to all scalable DVE systems [4]. The fundamental assumption of 

AOI management is that although the users are participating in the same virtual 

environment, they do not need full awareness of it. Each user only needs to be aware 

of a much smaller part, usually its spatial proximity [4]. 

A concept closely related to AOI management is partitioning. When the computational 

load is high, the load is separated into smaller more manageable parts by the use of a 

partitioning strategy. Like AOI methods, partitioning may use spatial proximity in the 

virtual world. The environment is partitioned dynamically or statically into regular or 

irregular regions, and responsibility of these regions are assigned to different 

computers. Another partitioning may be on functions. A computer may carry out the 

scoring function while another performs the physical computations and another 

handles the inventory management. Another level can be added by classifying objects 

and assigning ownership of each class to another computer. [1][5] 

Following sections covers server-client and peer-to-peer architectures for DVEs with 

their contained management methods.  

2.1.1 SERVER-CLIENT ARCHITECTURES 

Server-client architectures are defined by their central management of the virtual 

environment, not by the number of computers assigned for the central computation. 

With this approach, clients send messages to the server as input for computation of the 

next state. The server receives messages from clients, computes new state and sends 
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back the resulting state change as updates to clients. All of the state maintenance is 

centrally handled on the server. Basic server-client flow is illustrated in Figure 1. 

	 	

Figure 1 Basic server-client architecture: Clients send messages to the server as 

input for application logic. The server gets inputs through security, application 

logic and persistence then sends updates messages back to clients. 

The explained flow introduces a theoretical limit on the propagation time. For a client 

to see consequences of its actions, a message should travel to the server and back to 

the client. For fast paced applications, this limitation is partially overcome by 

predicting the events and correcting any inconsistencies after receiving the update 

from the server.  

It is simpler to provide consistency, security, and persistence with explained basic 

server-client architecture. There is a single computer that is responsible for everything 

about the virtual world. Application rules are securely applied by the server without 

any intervention from clients. There is a single source of state updates; therefore, all 

clients perceive the same state of the world consistently. Persistence is straightforward 

since everything is centrally maintained in a single place. However, reliability is a 
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concern because the server is a single point of failure. When the server is not available, 

the application is not available at all. Scalability is limited by the resources on the 

server computer and responsiveness is relatively limited with the two-way 

communication between clients and the server. 

Scalability and reliability issues of server-client architectures are solved with multi-

server architectures by adding enough computational power for increasing number of 

users and replication [5][1]. A number of load balancing methods were developed for 

distributing the load among servers. These can be classified as zoning, mirroring, 

instancing and functional partitioning [1][13]. Zoning is based on dividing the world 

into smaller regions and assigning a different server for each region. The regions may 

be statically defined or dynamically formed according to the load on the regions and 

usage statistics. Inter-region interactions require communication between servers. 

Mirroring is assigning more than one server to the same region when one is not 

sufficient for the required traffic and computational load. The assigned servers have to 

communicate with each other to be in synchronization. Instancing is running multiple 

smaller instances of the world independently on different servers. Although instancing 

is limiting the users with a smaller virtual world regarding participants rather than 

providing true scalability, it is the most widely-used way of supporting a massive 

number of users. This trend is the result of the fact that in a virtual environment, users 

interact only a small portion of the other users at the same time, so it is possible to 

create the illusion of a larger world with instancing. As distinct from the others, 

instancing does not require inter-sever communication. Functional partitioning is 

assigning different servers for different aspects of the virtual world. However, it is not 

sufficient for scalability on itself because apart from the other aspects, the interaction 

between a massive number of users is the core aspect of a distributed virtual 

environment that needs scaling. Load balancing of multi-server architectures is 

illustrated in Figure 2. 

Even with a multi-server approach, it is neither feasible nor necessary to inform all 

users about all changes in the virtual world. AOI methods are used for filtering 
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unnecessary network traffic between the servers and the clients. Clients are only 

informed about their spatial proximity. No messages are sent to distant clients who are 

irrelevant for the update. 

	

Figure 2 Multi-server load balancing: Zoning is shown top-left. Instancing is 

shown on top-right. Mirroring is shown on bottom-left. Functional partitioning 

is shown on bottom-right. 

Server-client architectures do not provide any facility for 3D content streaming. By 

definition of the architecture, like update dissemination, content delivery is realized 

centrally by streaming all of the content from servers. Interest management methods 

used for update dissemination are also applicable for 3D content streaming. Clients 

fetch required portions of the virtual world from the servers that are responsible for 
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3D streaming and the related region. Multi-resolution modeling, compression, delta 

encoding, prefetching and caching are methods of streaming optimizations. They are 

not unique to server-client architectures. The mentioned methods define how the 

content is delivered effectively. Streaming the 3D content from other sources other 

than the servers is not in the scope of these methods. 

2.1.2 PEER-TO-PEER ARCHITECTURES 

A peer-to-peer (P2P) network is a distributed overlay network where participating 

peers operate independently and asynchronously from other peers without the 

existence of a central coordination unit. P2P architectures are inherently scalable and 

reliable. Peers make available their resources like bandwidth, CPU time and storage 

to the use of other peers on the network to share the computational load instead of 

central servers [1].  

Peer-to-peer approaches are classified according to the incorporated interest 

management schemes, layout structures, communication protocols and load balancing 

methods [14]. Spatial partitioning is used for organizing the layout network and 

managing the area of interest in load balanced structures. Voronoi diagrams are a 

common spatial partitioning method used for both purposes [15]. When used for 

managing the layout, Voronoi diagrams have the disadvantage of bounding the layout 

management is to the positions of the nodes on the virtual world. Optimizations that 

reduce the number of connections by avoiding some connections cannot be applied 

because all connections are also required for the operation of the layout. 

Communications protocols defines how the update messages are transmitted between 

the peers. Direct connections (Mutual Notification), application layer multicasting, 

super peers and hybrids of these are communication protocols used by P2P DVEs. 

Static and dynamic load balancing strategies are both utilized by P2P DVEs [16]. 

Layouts networks used by P2P DVEs are generally structured layouts.  The 



 14 

determinism and reliability provided by structured layout networks is necessary for 

P2P DVEs [14][15]. 

2.1.2.1 ADVANTAGES OF PEER-TO-PEER DVES 

One of the advantages of P2P DVEs is the reliability that is inherently provided by 

peer-to-peer architectures. Although reliability comes with some additional concerns 

like replicating the data that is relevant for the nodes other than the failing nodes; the 

expected behavior of a P2P system is being available even when there are failing 

nodes. P2P networks are capable of reorganizing itself and recovering network 

connectivity when there are failed nodes.  

The other advantage of P2P DVEs is their extreme scalability [4][13][14] [17]. The 

computational capacity of a peer-to-peer DVE is proportional to the number of peers 

that participate in it. Each new peer brings more capacity with the extra computational 

cost is generates. The additional capacity is generally assumed to be larger than the 

extra burden. P2P DVEs also provides flexibility alongside scalability. The alterable 

communication schemes allow implementation of dynamic strategies for managing the 

virtual world.  

The third advantage of P2P DVEs is the lower running costs for the provider. With a 

typical server-client architecture, most of the computational power is provided by the 

servers which are operated by the provider. On the other hand, with a P2P architecture  

peers carry the processing load and share the network traffic instead of a single data 

center [13][18][19]. 

The final advantage of P2P DVEs over centrally managed architectures is that the 

update dissemination with server-client takes at least two hops whereas it is possible 

to achieve single hop update dissemination with P2P architecture. P2P architectures 

allow peers to communicate with each other directly. With servers, update messages 

should first reach to the servers before being disseminated to other peers. [9]  



 15 

2.1.2.2 CHALLENGES OF PEER-TO-PEER DVES 

Besides providing scalability and reliability, P2P architectures have their drawbacks. 

Distributed state management is more complex than the central management on 

servers. When object state management is handled by peers, limited resources on a 

single peer may become a bottleneck on the overlay network. Consistency and security 

considerations also introduce new challenges. Validation between the states 

maintained by independent peers may be necessary. Maintaining the persistence of the 

environment requires specialized replication strategies [1]. Failure of a node should 

not make unavailable the object states managed by the failing node. P2P approaches 

that do not allow peers to establish direct connections, latency and network saturation 

may become a performance bottleneck. Gilmore [6] even argues that it may not be 

feasible at all to realize P2P DVEs. 

Consistency is harder to achieve with P2P DVE than server-client DVEs. Since the 

game state is managed distributedly; concurrent and conflicting updates can be 

processed at independent nodes and may cause inconsistencies between states 

maintained at different nodes [2]. In case of conflicting states during peer interactions, 

some of the peers or dedicated servers can be assigned as arbiters [20]. For the 

inconsistencies that are not caused by interactions, the prevention methods mentioned 

in section 2.1 are also applicable for peer-to-peer DVEs. 

Persistency defines where and how the primary copies (root objects) of objects are 

stored. Traditionally root objects are stored on servers of server-client architectures. 

Same approach is applicable for peer-to-peer architectures by using dedicated 

persistency servers. If scalability is not a concern, each peer can maintain a copy of 

the global state in a fully distributed manner. A scalable alternative is delegating the 

persistency related jobs to super peers by assigning a sub-region of the world to a super 

peer. Super peers approach introduces additional challenges when inter-region events 

happen. Overlay storage is another option for persistency. Persistency is provided by 

distributing ownership of the objects according to their IDs and making use of existing 

DHT technology and its replication strategies. Hybrid solutions that use super peers 
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and overlay storage together as backups for each other are also available. Another 

strategy for distributing object ownerships to peers is relying on the distance between 

objects and the peers on the virtual world. [6]  

Security is the strongest drawback of peer-to-peer architectures. Solving security 

issues without centralized control in a peer-to-peer environment is very hard [17]. 

Distributed maintenance of the world state makes it really hard to have full control 

over the virtual world [2]. Aside from security issues related to users of the DVEs, 

peer-to-peer systems are also vulnerable to external attacks like DDOS [21]. A hybrid 

solution is proposed for overcoming security issues of P2P structures [14].  

2.1.2.3 VON AND FLoD 

The known approach for efficient and scalable update dissemination on peer-to-peer 

DVEs is employing Voronoi diagrams for managing the overlay network. Hu’s 

frequently referenced work, Voronoi Overlay Network (VON) [9], forms the basis for 

the later Voronoi-based work. VON utilizes direct connections between peers who are 

in each other’s area of interest (AOI). The Connections are established according to 

Voronoi diagrams locally maintained by peers. VON represents the peers as sites of 

Voronoi diagrams. Each peer maintains a Voronoi diagram that contains itself and the 

other peers in its spatial proximity in the virtual world. Peers then classify their 

neighbor peers according to their positions on these Voronoi diagrams and establish 

direct connections according to the resulting classification. The AOI of a peer is 

defined as the circle around the peer with a radius that is dynamically adjusted 

according to the number of peers contained in it. As the number of peers in proximity 

increases, the range decreases to limit the number of connections.  

All peers inside a peer’s AOI are called its AOI neighbors. AOI neighbors whose 

Voronoi regions immediately surround a given peer’s Voronoi region are called the 

enclosing neighbors of the peer. AOI neighbors with some of their enclosing neighbors 



 17 

lying outside the given peer’s AOI are called the boundary neighbors of the peer. Peers 

can be both enclosing and boundary neighbors for a given peer at the same time. Note 

that the enclosing neighbors may lie outside the AOI. Figure 3 illustrates boundary, 

enclosing, and AOI neighbors.  

 

Figure 3 VON classification of peers on Voronoi diagram: For the red circle with 

the AOI of the large red ring, squares denote enclosing neighbors, triangles 

indicate boundary neighbors, stars denote neighbors that are both enclosing and 

boundary. Filled circles denote ordinary AOI neighbors, and empty circles 

denote non-AOI neighbors. 

Peers maintain direct connections with their AOI neighbors and enclosing neighbors. 

When a peer moves in the virtual world, it notifies all connected peers about the change 

by sending updates. Since peers have direct connections to all other peers that are 

interested in the updates, updates are delivered with a single hop, whereas a client-

server network can achieve two hops at best.  

Boundary neighbors of a peer function as gateways to the outer world beyond the 

peer’s AOI. When a peer changes its position, and notifies its boundary neighbors 

about its new position, the boundary neighbors check their enclosing neighbors to see 
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whether they are now in the AOI of the moving peer. If a boundary neighbor discovers 

a new AOI neighbor for the moving peer, it sends a notification about the new neighbor 

and the moving peer establishes a new connection with its new AOI neighbor. The 

operation of VON is summarized in Figure 4. 

	

Figure 4 Summary of VON's Operation 
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The edge-to-edge spatial continuity of the non-intersecting Voronoi regions is required 

for the utilization of Voronoi diagrams for overlay management. Therefore, VON does 

not take into account the visibility while determining the AOIs. VON peers maintain 

connections with their enclosing neighbors and AOI neighbors even when they are not 

visible. When enclosing neighbors are outside the AOI, the connections to them 

become redundant. Moreover, since the AOI itself is visibility unaware, some of the 

connections created by AOI neighbors may be redundant. An overlay that is visibility 

aware may overcome these drawbacks. Figure 5 illustrates the redundant connections 

with invisible enclosing neighbors and invisible AOI neighbors. 

 

Figure 5 Redundant connections created by VON: When the green obstacle is 

present, peers marked with red triangles are invisible, but they have active 

connections since they are in the AOI. Peer marked with the red star is out of the 

AOI, but it has an active connection since it is an enclosing neighbor. 

FLoD [8][22] is a VON based peer-to-peer 3D streaming framework. Peers on a DVE 

with enough density have intersecting AOIs. Exploiting this property, FLoD sends 

requests for content to other peers nearby before falling back on the server. The world 

is divided into fixed-size cells to index the content for efficient retrieval. Scene 

descriptions for the cells are computed offline and distributed to peers. When a peer 
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moves, the set of missing scene parts is determined according to the inclusion tests 

performed on the cells against the AOI. Then, the moving peer queries its VON 

neighbors for the missing data. The data is requested from a randomly selected peer 

who responds positively to the query if there are any. In the absence of a positively 

responding peer, the data is requested from the server. The operation of FLoD is 

summarized in Figure 6. 

	

Figure 6 Summary of FLoD's Operation 

Since FLoD relies on VON and employs trivial circular AOI visibility, it lacks an 

effective source selection policy and accurate visibility determination. Missing data is 

requested only from the neighbor sites on the Voronoi diagram. It is quite likely that a 

peer out of the requester’s AOI has the requested data in its cache, especially when the 

missing data is located near the boundary of the requester’s AOI. Querying only the 

peers in the requester’s AOI cannot benefit from intersecting AOIs adequately. Peers 

in the vicinity of 2 times the maximum radius of AOI share an intersection region with 

the requester, and these peers are ignored by the query policy of FLoD. Inadequate use 

of intersecting AOIs is depicted in Figure 7. Nonetheless, the principles used by FLoD 

are concrete and shared by Phaneros. Phaneros makes use of intersecting AOIs and 

two-phase requests in a more robust way by employing PVS.  



 21 

 

Figure 7 Intersecting AOI region that is not considered by FLoD: The green 

shaded region is the intersection of red and blue AOIs. When querying for 

content, although the blue peer is likely to have the content in the green region, 

the red peer does not query the blue peer because the blue peer stands out of the 

red AOI. 

2.1.2.4 OTHER WORK 

Genovali [23] proposes a hierarchical layout management scheme on top of Voronoi 

tessellation with the focus on load balance among peers according to their available 

bandwidths. Peers enlarge their Voronoi regions by absorbing other peers with low 

bandwidths, hiding them from the rest of the network and acting as proxies for them. 

Absorbed (hidden) peers communicate with other peers through the super peer that 

absorbed them. The hierarchical overlay provides load-balanced passive object 

management. However, the hierarchical multi-hop routing fails to provide efficient 

update dissemination when compared with the single hop alternative provided by 

VON. Also, the load on the super peers tends to be exponential because they have to 

cover the AOIs of the hidden peers they have absorbed. 
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Almashor et al. [16] follow a similar path by introducing a third dimension to Voronoi 

diagrams taking into account the available resources on peers for load balancing. The 

third non-spatial dimension represents the load of the peers. To form the layout 

network, peers stay connected to all their primary and secondary neighbors regardless 

of their positions in the world. According to the position on the z-axis of the Voronoi 

diagram, peers take the role of super peers. The proposed method successfully 

manages to shift the burden from servers to peers and load balance it according to 

available resources on peers. The autonomous load balancing scheme throws in servers 

when resources of peers are not sufficient. This way, the method remains effective 

when the flocking behavior of the users create hotspots. The method provides means 

of dissemination via the overlay network of peers, super peer, and servers. However, 

the method lacks a defined optimization for the communication between peers.  

Ghaffari et al. [24] propose a greedy geometric routing method which maintains two 

Voronoi diagrams simultaneously, updating each in turn according to the positions of 

the peers in the virtual world while at the same using the other diagram for 

communication. Instead of handling joins/leave operations, the overlay network relies 

on updating itself continuously. The greedy routing achieves 13 hops for end-to-end 

on the average, but the provided optimizations lessen the number of hops to 3 hops at 

the expense of increased complexity caused by the potential time synchronization, the 

introduction of the extra Voronoi diagram and the optimizations. The proposed method 

form an overlay network which is capable of delivering messages according to 

positions and keeping itself operative on peer joins/leaves. However, the method is 

away from achieving single-hop update dissemination of VON.  

Steed and Angus takes a different stance by utilizing visibility in their work.  They use 

the Potentially Visible Sets (PVS) in their study to construct Frontier Sets [25].  PVS 

is a from-region visibility culling method where the world is divided into view cells, 

and the set of visible objects is computed for each view cell. The set of visible objects 

cover all objects that are visible from any point in the view cell. Therefore, the 

visibility defined by PVS is valid for a viewer as long as it is in the corresponding view 
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cell [26]. Steed and Angus define a Frontier as a pair of view cells that are mutually 

invisible to each other and a Frontier Set as a pair of view cell sets such that no cell in 

one set is visible to any in the other and vice-versa. The method culls unnecessary 

communication between peers according to the Frontiers. No messages are exchanged 

between peers as long as they stay in Frontiers of each other. The defined invisibility 

culling requires recomputation of the Frontiers. When a peer leaves the Frontier where 

it resides in, the computation should be repeated for both the leaving peer and the other 

peer of the pair. The study relies on the rarity of the Frontier leaves to compensate for 

the complexity of the computations. However, with a higher number of simultaneous 

peers and a larger environment, computation complexity becomes polynomially more 

significant. The method is not suitable for massive worlds with a massive number of 

participants in the way the authors describe it, but the study reveals the applicability 

of PVS on the peer-to-peer DVEs. Phaneros employs PVS notion for deciding on the 

visibility between view cells instead of the invisibility between them. 

Knutsson [27] presents a comprehensive study for peer-to-peer DVEs covering object 

management and update dissemination, known as SimMud, which relies on the 

distributed hash table (DHT) provided by Pastry [28] and the application layer 

multicasting provided by Scribe [29] on top of Pastry. SimMud statically divides the 

world into regions and assigns unique Pastry keys to the defined regions to make use 

of Pastry’s key management for identifying responsible peers for regions. Peers in a 

region form a multicast group and update each other about their states in a single-

writer multi-reader manner (publish/subscribe) using Scribe. Peers are allowed to 

communicate with peers in other regions if the application requires. SimMud allows 

direct UDP messages between peers when mutual interaction happens between pairs. 

It solves non-player objects management and assignment of arbiters for conflicts by 

handing the management of the regions to the peers who are the owners of the keys 

assigned to the regions on Pastry. The overall architecture shows similarity with VON 

and Phaneros, proposed in this paper. However, it lacks a defined protocol of direct 

messaging, a consistent scheme for region definition and defined usage of visibility 

even though it mentions some form of visibility while establishing multicast groups. 
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SimMud successfully demonstrates the convenience of application layer multicasting 

for peer-to-peer DVEs and becomes one of the founding studies for Phaneros with 

VON and Frontier Sets.    

Han [30] proposes a multicast interest management method with dynamic partitioning. 

The study defines two levels of communication as low frequency and high frequency. 

Low-level communication is carried out by super-peers assigned to peer groups. They 

are responsible for aggregating updates from group members and casting aggregated 

updates with low frequency for the use of other peers that are relatively distant, in 

neighboring regions. Groups are formed according to AOIs and shared interests. A 

second multicast channel is used for high-frequency update messages for relatively 

near peers. Multicast addresses are assigned to statically defined regions. The method 

optimizes the number of update messages by making use of sub-regions, view 

direction and visibility range to limit the communication with neighboring regions. 

Usage of multicast makes the method unsuitable for internet applications.  

In their comparative study, Rueda et al. propose COVER as their chosen method for 

providing awareness for P2P DVEs [31]. COVER defines two types of peers: covered 

and uncovered. Covered peers are those whose AOI is entirely covered by AOIs of its 

first level neighbors. Similar to VON, a covered peer cannot be approached by another 

without the notification of its neighbors. Communication with the covering peers is 

sufficient for providing continuous awareness. Super peers are hierarchically utilized 

to provide awareness to uncovered peers. Super peers are assigned to statically defined 

regions on a quad-tree, and they act as servers for the corresponding regions. Super 

peers also provide inter-region communication for peers whose AOI intersects 

multiple regions. 

Teler [7] eliminates the need of prior download of the entire scene by introducing 

visibility based streaming for remote walkthrough applications. The proposed 

centralized approach makes use of the online visibility calculations taking place on the 

server side according to the periodically transmitted client viewing and movement 

parameters. The server selects and transmits only the parts of the scene that are visible 
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to the clients. Compression of the transmitted data, a level of detail (LOD), and a 

request prediction scheme on the server are employed to improve the performance of 

the approach.  

Chang [32] defines on-demand updates as the root of the latency problems caused by 

distributed object platforms like CORBA, DCOM and RMI. The study suggests object 

replication as the solution and redefines update dissemination problem as the multicast 

synchronization between object replicas. The update messages are delivered to object 

replicas by the multicast channels allocated to each object. However, the number of 

multicast channels are limited compared to the number of objects. Consequently, an 

intelligent object grouping scheme is necessary to make efficient large-scale 

distributed network applications. Chang proposes an adaptive and incremental object 

grouping method with multiple levels of consistency for update dissemination from a 

server to its clients and compares it the spatial object grouping. 

Jia et al. [33] proposes a prioritization framework for 3D content streaming on P2P 

DVEs. The proposed method utilizes multi-layer AOI management that is based on 

spatial proximity. The study proposes a pull-push hybrid source discovery protocol. 

At the first stage, nodes push their data availability information to newly discovered 

neighbors. Then, the node in need, requests pieces from the nodes who has declared 

availability of the pieces. If a node cannot gather sufficient data at the push stage, it 

initiates pull procedure as the second stage. Piece queries are made only to the nodes 

that are in proximity to increase the chance of intersecting areas of interest. The regions 

being queried are prioritized according to their distances to the querying node. 

Querying starts with the closer regions and continues towards the outer regions. A 

scoring function is also suggested for prioritizing the source nodes. Source nodes are 

ordered according to their CPU utilization, network latency and bandwidth allocation. 

According to this ordering, primary and secondary sources are identified and queried. 

Diaconu and Keller [34] proposes a distributed server system (Kiwano) which 

separates dynamic content (avatars and mutable objects) and static content from each 

other and manages the interactions between avatars by utilizing Voronoi diagrams. 
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Kiwano implements the interactions between avatars as the communication between 

super nodes. Each super node is responsible for a neighbourhood of nodes which can 

be dynamically adapted to the spatial distribution of the avatars. Avatars are assumed 

to be neighbors only when they are in a defined range of distance in terms of hops on 

the Voronoi diagram maintained continuously according to the positions of the avatars. 

The bounded number of nearest avatars are considered as area of interest. Therefore, 

interactions between avatars are allowed only when they are in each other 

neighbourhood. The size of the neighbourhood is bounded according to statistical data 

to achieve scalability.  

Liu and Rungta [35] propose a caching approach for server-client virtual environments 

which reduces the bandwidth consumption by avoiding retransmission of the content. 

The proposed approach employs level-of-detail, delta transmission with multi-aura 

visibility. Objects are tested against co-centric axis-aligned bounding boxes with 

increasing sizes. Outer boxes represent the lower resolution visibility and inner boxes 

represent the higher resolution visibility.  

Abdulazeez et al. [36] propose a hybrid architecture that aims scalability without 

compromising responsiveness. The proposed architecture is composed of multiple 

servers that manage the game state with super-peers and super-peer clones that manage 

sub-networks which are formed based on spatial proximity on the virtual world. The 

study demonstrates possible advantages of distributed architectures compared to 

traditional server-client architectures. 

Hu and Chen [37] proposes spatial publish/subscribe messaging (VSO) on top of 

Voronoi-based overlay networks. VSO uses greedy spatial forwarding as its routing 

scheme. Peers are assigned as matchers for subscription areas whose centers lie inside 

their Voronoi regions. Matchers are responsible for greedy-forwarding publications to 

related subscribers. Voronoi regions of matchers are dynamically resized for load 

balancing.  The study is interesting since it is built on top of VON, the reference study 

of Phaneros. A plausible question would be whether it is possible to implement 

Phaneros on top of VON and take advantage of both methods. Hu’s work shows that 
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even it is theoretically possible to do so, implementation of the scheme would be 

challenging. Phaneros relies on statically defined (or at least distributedly and 

deterministically identifiable) visibility regions as subscription channels. The dynamic 

nature of VSO makes is very hard to use it as the spatial publish/subscribe required by 

Phaneros.  

2.2 PEER-TO-PEER NETWORKS 

Peer-to-peer networks were made popular by file sharing applications in the late 90s 

[38]. The idea of a self-organizing, decentralized network without the need for servers, 

fascinated millions of users who want to share files freely without control. A P2P 

network is defined as a distributed overlay network of peers that are both consumers 

and suppliers of services and resource [39]. A peer is any networked entity that 

provides and/or consumes one or more services. Peers operate independently and 

asynchronously from other peers.  

Peer-to-peer overlay networks may be structured or unstructured. Structured overlays 

strictly control the topology of the network for faster retrieval whereas unstructured 

overlays work on loose protocols and flooding. The efficiency of structured overlays 

comes at the expense of higher overhead and less flexibility. On the other hand, 

unstructured layouts may cause peer overloads that affect the performance of the 

whole network. [38]  

Structured P2P overlays are structured on Distributed Hash Tables (DHT). DHTs 

deterministically distribute key-value pairs to peers according to their unique keys. A 

routing policy and lookup service are defined with join/leave procedures to provide 

required services. DHT-based systems provide O(logN) query complexity in terms of 

network hops where N is the number of peers in the network. CAN, Tapestry, Chord 

[40], Pastry and Kademlia are examples of such systems. [38] 
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Like many other application domains, DVEs benefit from multicasting. Multicasting 

is the facility of delivering a message from a single sender to multiple recipients at 

once. This single producer multi-consumer messaging scheme is also called 

publish/subscribe messaging. When multicasting implemented at IP level, it is called 

IP multicasting. IP multicasting is performant and easy to use, however it is not 

suitable for the internet. Flooding nature and limited IP range make it inapplicable for 

internet applications. Application Layer Multicasting (ALM) is providing the same 

functionality as an application service. Instead of physical network nodes, ALM is 

implemented on application nodes (peers) and their connections. Since they use the 

connections between application nodes, multiple copies of messages are inevitably 

generated, and they perform worse than IP multicasting. However, ALMs are 

applicable for internet domain and with the utilization of multicast trees, they provide 

improved efficiency. [41] 

Many examples of P2P overlays and ALMs are available [38][41]. Chord and Scribe 

are used by Phaneros as the underlying P2P overlay network and ALM scheme. 

Phaneros implements a spatial publish/subscribe messaging protocol on top of these 

two. It is not mandatory for Phaneros to use Chord and Scribe as long as the same 

spatial publish/subscribe messaging protocol can be implemented with the 

alternatives. The precondition for the Phaneros protocol is that the peers should be able 

to publish and subscribe to predefined static regions on the virtual world.  

Following sections describes Chord and Scribe in detail provide insight into P2P 

overlays and ALMs. 

2.2.1 CHORD 

Chord is a straightforward and efficient distributed look-up protocol [40]. As an 

example of DHT systems, Chord’s fundamental capability is fast key to node mapping 

for retrieving data stored as key-value pairs at nodes. Chord uses Chord IDs for 
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uniquely identifying both its nodes and the keys of the look-up service. Chord IDs are 

generated by a consistent hash function, namely SHA-1. 

Chord defines the function successor(k) as the node with the smallest ID that is larger 

than the key k. This function provides an ordering for the nodes. The nodes on the 

Chord network from a circle where each node is aware of its successor. Also, Chord 

assigns ownership of the keys to nodes using the successor function. The key-value 

pair (k, v) is kept on node n where successor(k) = n. Informally stating, a key is located 

on the node whose ID is the successor of the key. With this setting, a query for a key 

can simply be forwarded on the circular list of nodes until it reaches the successor node 

of the key. Basic Chord operation is illustrated in Figure 8. 

	

Figure 8 Basic operation of Chord: Each node is aware of only its successor. Node 

340 queries for key 205. Each node forwards the query to its successor. The query 

makes O(logN) hops.  

It is seen that the basic look-up guarantees locating the right node but it has O(N) 

complexity where N is the number of nodes on the network. Chord nodes maintain 

additional connections as shortcuts to lower this complexity. These connections are 

called fingers. On a network of N = 2m nodes, each node maintains (m – 1) fingers 
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where the ith finger is its (1+2i)th successor. Instead of simply forwarding the query to 

its successor, a node chooses the finger which has the largest ID that is smaller than 

the queried key. In other words, nodes forward a query to the finger that is closest to 

the key on the circle. With this improved scheme, Chord lookups take ½O(logN) time 

on average. Our tests show that on a network of 1.000 peers, a key is routed to its 

destination in less than five hops on average. Chord lookup with fingers is illustrated 

in Figure 9. 

	 	

Figure 9 Operation of Chord with fingers: Nodes have finger tables. Node 300 

queries for key 205. Instead of its successor, it forwards the query to its second 

finger, Node 090. Node 090 forwards the query to its first finger, Node 200. Node 

200 forwards the query to its successor. Query reaches its destination in O(logN) 

hops. 

In the case of node failure, Chord is capable of continuing its operation. Nodes that 

have the failing node among their fingers have other fingers or at least their successors 

as alternative paths for forwarding queries. The other reliability concern is not losing 

data when a node fails. This issue is overcome by replicating key-value pairs at 
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successors of the owner node according to desired replication level. When a node fails, 

its successor becomes the owner of its keys by definition without loss of data. 

Another key feature of Chord is that it can handle frequent leaves/joins efficiently. A 

join is realized by finding the successor of the joining node, connecting the node to the 

successor and notifying nodes whose fingers might need updating. Those nodes to be 

notified can be found by using the existing look-up service. The update procedure has 

O(log2N) complexity.  Once a node is connected to the Chord circle, the keys of its 

predecessor are transferred to the new node if it is necessary. Leaves are implemented 

by using the connection with the predecessor of a node. The keys of the leaving node 

are transferred to its successor, and the join procedure is started for the predecessor of 

the leaving node.  

2.2.2 SCRIBE 

Scribe is an application layer event notification infrastructure which provides topic-

based publish/subscribe multicasting. Scribe nodes create topics and publish messages 

on topics at runtime in a fully distributed manner. Multicasting is performed efficiently 

since Scribe uses multicast trees that are maintained on the fly. Subscribe messages 

are forwarded on Chord’s internal routing, leaving marks on the nodes they pass 

through to form the reverse multicast trees. Since the topics are keys of the underlying 

DHT provided by Chord, reliability provided by Chord is inherently available to Scribe 

[29]. The original implementation of Scribe uses Pastry as the underlying overlay 

network.  

Scribe is implemented as four main functions: subscribe, unsubscribe, publish and 

create. These functions are implemented in a fully distributed manner by utilizing the 

functions provided by the underlying DHT.  

Each Scribe topic is a key on the DHT. The owner node of the key is responsible for 

maintaining its value and acting as the root node of the multicast tree corresponding 
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to the topic. Since we use Chord as the underlying overlay, topics are owned by their 

successors. In other words, the node with the smallest id that is larger than the topics 

key is the owner. 

When a node sends a subscribe request on a topic, the request is delivered to the owner 

node. Each node on the way to the owner keeps the previous node as one of its leaves 

on the multicast tree. This way each subscription request leaves a path marked behind 

for efficient delivery. Create function can be realized trivially when a subscribe request 

is reached to the owner for the first time. The operation of Scribe publish operation 

and formation of the multicast tree is illustrated in Figure 10. 

 	

Figure 10 Scribe Subscription Operation: Node 7 is the owner node of the topic. 

Subscriptions and the paths followed by them are shown on the left. Solid nodes 

are subscribers. Dashed nodes are not subscribers, but they are in the paths of 

subscriptions. The resulting multicast tree is shown on the right.  

The multicast trees are used as the second step of a publish operation. The first step is 

setting the value of a key on the DHT. A publisher sends a publish request on a topic 

as a value change for the corresponding key. The request is delivered the owner node 

of the topic by the overlay. Upon receiving the publish request the owner, who is also 

the root node of the multicast tree, casts the publish message to its leaf nodes. Each 
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node on the tree re-casts the publish message to its leaves until all subscribers receive 

the message. The publish operation is illustrated in Figure 11. 

	 	

Figure 11 Scribe Publish Propagation: Node A publishes on the topic owned by 

node 7. The publish message reaches node 7 and is propagated through the 

multicast tree. The multicast tree rooted at node 7 is shown with solid lines. The 

propagation is shown with dotted arrows. 

2.3 VISIBILITY CULLING 

Visibility culling is a fundamental optimization in the field of computer graphics. From 

the beginning of the field, visibility culling has been used for filtering out invisible 

geometry before entering the rendering pipeline [26]. Visibility is a fundamental 

aspect of human perception; therefore, it is also employed by AOI management 
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methods frequently. Some studies including this one, make use of visibility for 

filtering out unnecessary network traffic in virtual environments field.  

Arguably the most frequently used visibility culling method is limiting the range of 

visibility. A viewer is assumed to be able to comprehend only a limited spatial 

proximity around it. Depending on the application requirements and available 

resources, a visibility range is dynamically or statically defined. Subjects farther than 

the range are filtered out. 

Two other basic forms of visibility are view frustum culling and back face culling. 

View frustum culling filters out the objects that are out of the view frustum. The view 

frustum is the portion of the space that is visible at a moment according to the viewer’s 

position and the looking direction. Back face culling filters out the face that are facing 

away from the viewer. When there is no transparency, rendering of back faces can be 

omitted. Besides these two, occlusion culling is available as the more advanced 

visibility culling method. Objects in a 3D environment occlude each other. If an object 

is occluded by other objects that are closer to the viewer, it can be omitted from 

rendering. Since the back face and view frustum culling methods are straightforwardly 

implemented, occlusion culling is subject to visibility studies. View-frustum culling, 

back-face culling, and occlusion culling methods are illustrated in Figure 12. 
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Figure 12 Visibility culling methods: Dashed lines are filtered out by the visibility 

culling methods denoted next to them. 

Visibility culling methods are classified as online/offline and point-based/from-region. 

These two classifications overlap. Point-based methods are used as online culling 

methods, and from-region methods are used as offline culling methods. Point-based 

methods compute visibility for a single point of view. For each position of the viewer, 

visibility is re-computed.  Re-computation may be avoided by iterative updates [42].  

From-region visibility culling methods partition the world into regions that are called 

view cells. Then at the preprocessing stage, for each view cell, a potentially visible set 

of objects or primitives is computed. A potentially visible set conservatively contains, 

at least, all objects that are visible to a viewer from any point in the associated view 

cell. Rendering only the objects in the potentially visible set is sufficient for generating 

an accurate view of the world for the viewer in the expense of rendering some more 

than the exact set of visible objects [26]. Moreover, it is possible to compute 

conservative from-region visibility from a view cell by using point-based visibility. 

Wonka [43] shows that shrinking occluders by e provides visibility that is valid as long 

as the viewer stays within the e neighborhood of the point from where the visibility is 
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computed. Using this property, a finite number of samples with e distance between the 

samples is sufficient for computing conservative visibility. The accuracy of the method 

changes with the value of e. 

Phaneros is tested in an urban-like environment with a significant ratio of static 

occluders that are placed on the ground. Such environments are called 2.5D 

environments. The geometry of 2.5D environments allows efficient online 

computation of point-based visibility. Downs et al. propose an occlusion horizon 

method for efficient computation of visibility in such environments. The proposed 

method represents the scene as a set of convex vertical prisms. The line strip passing 

through the tops of the occluders is called the occlusion horizon. By using the binary 

tree representation of the horizon, efficient visibility computation can be performed 

online. Phaneros test simulator uses from-region visibility data produced by an 

implementation of the mentioned occlusion horizon method. The implementation is 

simplified by restricting viewer movement to be discrete. This way, the possible 

positions in a view cell is limited and the from-region visibility is computed with a 

brute-force implementation instead of using the occluder shrinking. 
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CHAPTER 3  

THE PROPOSED FRAMEWORK: PHANEROS 

In this study, we present a fully distributed peer-to-peer framework for DVEs. 

Phaneros is a fully distributed peer-to-peer DVE framework which provides two 

essential functions for DVEs: update dissemination and 3D streaming Figure 13. In a 

DVE actions of the participants and the changes in the world are transmitted as update 

messages. The process of delivering the updates to relevant peers is called update 

dissemination. Delivering 3D content to participants for rendering is called 3D 

streaming. By being peer-to-peer, Phaneros is able to distribute the computational load 

and bandwidth demand to multiple nodes. Even when it is distributed, the load is too 

much for peers to handle without further optimization.  

	

Figure 13 Phaneros Functional Overview 

Update dissemination on P2P networks is optimized by filtering out unnecessary 

communication among peers. The challenge of designing a performant update 
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dissemination scheme is keeping the overlay network operational while improving its 

performance. The connectivity cannot be ceased for the sake of performance 

improvements. The eliminated messages should not be part of the maintenance of the 

overlay network. 

On a P2P environment, 3D streaming is optimized by selecting right sources for the 

content. A peer is a suitable source when it has the required content and available 

resources to deliver it. A successful DVE framework should be capable of choosing 

right peers as the sources for delivery. Phaneros is built on top of application layer 

multicasting (ALM) and from-region visibility.  

From-region visibility allows accurate and efficient AOI management with the help of 

ALM. Visibility-based update dissemination filters out unnecessary traffic efficiently 

and visibility-based 3D streaming is capable of choosing right peers as sources.  

The message types used Phaneros can be classified into three groups. The first group 

of contains the high-frequency update messages and the costly content messages. The 

required performance for the first group is hard to supply with multi-hop P2P 

communication. Because of this limitation, update messages and content messages are 

transmitted through the direct connections between peers. The second group of 

messages contains messages that are used for maintaining the mentioned direct 

connections. The direct connections are managed in the scope of AOI management. 

These AOI management messages are transmitted with significantly lower frequency, 

and they have significantly smaller sizes compared to messages in the first group. The 

small low-frequency interest management messages are delivered by the visibility 

aware application layer multicasting, which runs on top of a common peer-to-peer 

overlay network. The third group of messages is used for maintaining the overlay 

network. In Phaneros’ case, these messages are the internal Chord messages. Phaneros 

uses existing technology for overlay network management and ALM. Scribe [29] is 

the employed application layer multicast scheme working on top of Chord [40], which 

is the underlying peer-to-peer overlay network. Figure 14 illustrates the overview of 

Phaneros communication architecture. 
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Figure 14 Phaneros Communication Architecture: Update dissemination and 

content streaming use direct connections, which are established according to 

interest management working on top of application-layer multicasting. 

3.1 AOI MANAGEMENT AND UPDATE DISSEMINATION 

In a DVE, the AOI of a peer can be defined as the portion of the world it sees and the 

other peers standing in the same visible portion. Interest management of Phaneros 

relies on the concept of Potentially Visible Sets (PVS). In its original definition, PVS 

is defined as the set containing all visible primitives from the point of view. When 

used for from-region visibility, PVS is defined as the set of all primitives visible from 

any point in a given region. Phaneros uses an extended definition of PVS. If we extend 

PVS definition to include the information of visible view cells. If a primitive in a view-

cell is visible, the containing view-cell is also considered visible. With the extended 

PVS, the AOI of a peer is defined as its PVS. The PVS is the set of view-cells which 

are visible from the view-cell where the peer stands. It is trivial to compute extended 

PVS by adding a list of view-cells alongside the list of visible primitives. A sample 

AOI defined in terms of view-cells is illustrated in Figure 15. 
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Figure 15 AOI and Corresponding View-Cells: For a viewer standing in the 

center, two occluders and the visibility range defines the visible area shaded with 

gray inside the large circle. View-cells corresponding to the actual visible area is 

highlighted with orange. The inclusion of partially covered view-cells depends on 

the application requirements. The illustration shows a conservative approach 

where partially covered view-cells are considered visible. 

For interest management, Phaneros uses a straightforward publish/scribe messaging 

scheme. For each view-cell, a topic is made available for subscription. By definition, 

all the subscribers of a view-cell topic receive messages published in that view-cell’s 

topic. Peers subscribe to topics of view-cells that are in their AOI. In other words, 

peers subscribe to messages published in their AOI.  

Phaneros uses two message types for establishing its interest management function: 

cell-enter notification and cell-exit notification. When a peer leaves a view cell and 

enters another, it publishes a cell-exit notification to the cell it leaves and a cell-enter 

notification to the cell it enters. When a peer receives a cell-enter notification, it 

establishes a connection with the peer sending the notification. When a peer receives 

a cell-exit notification, it closes the connection with the peer leaving the cell. 



 41 

Therefore, peers stay directly connected only with the peers in their AOIs. Notification 

scheme used by Phaneros is explained on Figure 16. 

 

Figure 16 Phaneros Notification Scheme: Red shaded cells are the PVS of the red 

peer. Blue shaded cells are the PVS of the blue peer. The intersection of the PVS 

is the purple region. Green peer moves from cell A to cell B. Red peer is 

subscribed to cell A and cell B. Blue cell is subscribed to cell B. Green peer 

publishes cell-exit to cell A, and cell-enter to cell B. Red peer receives cell-exit 

notification through cell A, and cell-enter notification through cell B. Blue peer 

receives cell-enter through cell B. 

When a peer moves, it sends update messages to all its active direct connections. All 

peers that have the moving peer in their AOIs receive the update messages. The direct 

connections are used bidirectionally. Both ends of the connection send update 

messages. With the described scheme, Phaneros update dissemination is capable of 

delivering update messages to the interested peers with a single hop. Compared to two 

hops provided by the server-client approach, single hop is the only possible 

improvement. Update dissemination is illustrated in Figure 17. 
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Figure 17 Phaneros Update Dissemination: Red shaded cells are the PVS of the 

red peer. Blue peers are visible to the red peer since they reside in the PVS. The 

red ring indicates the range of visibility. Green obstacles limit visibility and define 

the layout topology. The direct connections between the red peer and the visible 

peers are shown as red lines. In this example, the red peer has connections with 

four peers in its PVS although there are two more in the visibility range. 

3.2 3D CONTENT STREAMING 

Phaneros implements 3D content streaming using the same messaging scheme used 

for update dissemination and makes use of an important attribute of visibility. 

Visibility relation is symmetric in the sense we are using it. If we denote the set of 

view cells in the PVS of view cell x as PVS(x) then: 

x ∈	PVS(y) ⇔ y ∈	PVS(x), and 

PVS(x) = {y | x ∈	PVS(y)}  
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Based on this definition, a policy for identifying sources to fetch content from can be 

constructed. The peers that are likely to have some content of view cell A in their 

caches are those peers residing in one of the view cells in PVS(A).  

 

Figure 18 Query Steps of Phaneros 3D Streaming: Red, Blue and Green peers 

have PVS of the matching colors. Cell A is the intersection of three PVS. Red peer 

needs the content in cell A and publishes a query to the topic of cell A. Blue peer 

and Green peer receives the query because they are subscribed to cell A’s topic. 

Phaneros 3D streaming works in two phases by first querying for the content then 

requesting the content from the fastest responder of the query. This approach chooses 

the peer with the lowest delay and the lowest load implicitly. The querying is 

implemented as a published query message. When a peer needs to query for content in 

view cell A, it publishes the query to the topics of the cells in PVS(A). Receiving 

subscribers respond through direct connections if they have the queried content in their 

caches. The querying peer selects the sender of the first received response as the source 

and requests the actual data by a request message that it sends through the direct 

connection with the responder. When no response is received for a query or a peer fails 

to deliver the content within a predefined period, the content is requested from the 

server. Since the publisher and the receivers already have connections no new 
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connections are established for transferring the content package. Query steps are 

shown in Figure 18, and fetching steps are shown in Figure 19.  

 

Figure 19 Fetching Steps of Phaneros 3D Streaming: Blue and Green peers send 

responses to Red peer via direct connections. Red peer first receives the response 

from Blue then the response from Green. Following the defined policy, Red peer 

requests the content from Blue peer and receive the content back via the direct 

connection. 

In summary, Phaneros peers maintain subscriptions to the cells that are in their 

visibility based AOIs. When a cell transition occurs, the transiting peer publishes 

notifications to the cell it leaves and to the cell it enters. Update messages are 

disseminated through the direct connections that are maintained according to these 

notifications.  When a peer does not have the 3D content of a cell in its AOI, it 

publishes a query for the content to the cells that are in the PVS of that cell. By the 

symmetry of visibility, the peers that receive the query are the peers that reside in the 

cells which the required content is visible from. Querying peer fetches the content from 
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the fastest responding peer to select the most suitable peer as the source. The operation 

of a Phaneros peer is summarized in Figure 20.  

	

Figure 20 Summary of Phaneros' Operation 

3.3 RELIABILITY AND SECURITY 

Phaneros relies on the reliability capabilities provided by Chord and Scribe. Chord 

internally replicates key-value pairs on successive nodes and maintains alternative 

successor connections as backup. In case of failure, the nature of the look-up process 
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allows seamless recovery. Remember that Chord is a circular linked list of nodes that 

are ordered according to their associated Chord IDs. Each node is aware of its 

successor node and forwards look-ups when the look-up key is larger than its own 

identifier. Forwarding continues until the look-up reaches a node whose identifier is 

larger than the look-up’s key. When a node fails, keys kept by the failing node are 

transferred to the next node on the circle. Since a node cannot forward to its failed 

successor, connections to the following successors are maintained as alternative 

forwarding paths. The number of backup connections are application specific. The 

mechanism explained here is responsible for keeping Chord network connected and 

operational but does not recover failed fingers. Failed fingers are eventually replaced 

by Chord’s periodical update checks and updates fingers. [40] 

Scribe provides another layer of reliability. Non-leaf nodes on the multicast tree send 

periodical heartbeat messages to their child nodes. When a child node does not receive 

heartbeat messages for a while, it suspects that its parent node has failed and send a 

subscription message to initiate repairing of the multicast tree. Scribe can also tolerate 

failing root nodes of the multicast trees. Access control lists kept by root nodes are 

replicated on its successors as Chord does with key-value pairs. When a root node 

fails, its immediate children detect the failure and initiate repairing by re-subscribing 

as explained above. [29] 

The reliability provided by Chord and Scribe provides fast recovery for node failures 

but it does not compensate for the lost Phaneros messages that are published during 

recovery. Lost cell enter/exit messages do not cause failure for the whole system but, 

affects the consistency of the virtual world. Avatars may be invisible or suddenly 

appearing and disappearing with such messages loss. Fortunately, topics are 

distributedly managed. It is trivial to create duplicate topics and have multiple replica 

topics managed by dispersed peers. Implementation of such replication is trivial but 

the reliability is provided at the expense of extra bandwidth. 

Security is a challenge for Phaneros application as it is for any other distributed system. 

Security is not in the scope of Phaneros. Phaneros aims at providing an efficient and 
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scalable communication framework. Existing methods of security are available for the 

use of applications. Complex prevention methods of event ordering and state exposing 

might be employed as well as simpler reactive methods that use authoritative nodes 

for detecting and rolling back inconsistent updates. 

3.4 AUXILIARY OPTIMIZATIONS 

Phaneros is designed to be unobstructive by keeping it minimal. This study presents 

the capabilities of Phaneros in the purest sense in an abstracted way. Auxiliary 

optimizations of prefetching, level of detail, caching and dynamic AOI range 

management are kept outside of the scope and the implementation. For a fair 

comparison, VON/FLoD was also implemented without any auxiliary optimization. 

The test results available in this study reflects the power of the visibility-based area of 

interest management, spatial publish/subscribe messaging, single hop updates and 3D 

content streaming provided by Phaneros without any other application specific 

auxiliary optimizations. The mentioned optimizations are generally trivial to design as 

long as the underlying framework do not put barriers in front of them. In this sense 

Phaneros is more than ready for optimizations. Cell-based representation of the world 

and the AOI management schemes provides a strong foundation for further 

optimizations.  

Level of detail methods require to know the location of the content relative to the 

viewer for prioritizing the pieces of the content and deciding the necessary level of 

detail. When there is from-region visibility information available, it is straightforward 

to incorporate a level-of-detail scheme because the peers are aware of the distance of 

the 3D content pieces before retrieving them. It is obvious that the order of retrieval 

can also be determined by using the location of the content. If necessary, a hierarchical 

LOD scheme can be constructed by merging view-cells into larger ones.  
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Caching strategies can easily be implemented on top of 3D content that is already 

packed in chunks with spatial metadata. Cache strategies are application specific. If 

user movement trends can be tracked, a proper caching strategy can be quite effective 

when paired with a successful prefetching scheme. Prefetching is about deciding 

which parts of the content will soon be needed and caching is about which parts of 

content should not be discarded because of the same concern.  

Dynamic range of interest is a method of dynamic load management that is utilized 

by almost all studies that aim providing an infrastructure for DVEs. Like those 

mentioned above, Dynamic range of interest can also be applied to Phaneros 

applications easily. A dynamic distance filter which is adjusted according to the 

density of the environment can be implemented to cut down excess connections, 

update messages and content retrieval. The filter should check when cell entrance 

messages and update messages are received and when a cell transition occurs, just 

before the missing content is queried.  
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CHAPTER 4  

IMPLEMENTATION AND TEST CASES 

After experimenting with publicly available simulators, the need for a customizable, 

simple and efficient network simulator was arisen. The magnitude of tens or a couple 

of hundreds were not sufficient for comparing the performance of Phaneros. Test 

scenarios required 1000 peers to be simultaneously simulated. Chord and Scribe were 

needed to be implemented on the simulator. Existing simulators were not flexible 

enough for rapid implementation of these protocols. Either the implementations were 

too complex to be reliably modified, or the constraints could not be incorporated into 

the simulation. Besides these motivations, Phaneros was also planned to be open 

source and easily accessible. As a result of this evaluation, ActionSim was designed 

and implemented.  

On top ActionSim, Phaneros and VON/FLoD are implemented. Phaneros 

implementation is built on top of Scribe implementation that is implemented on top of 

Chord implementation. VON and FLoD are directly implemented on ActionSim. 

Following sections explain how these implementations are made in the order of 

ActionSim, Chord, Scribe, Phaneros, VON and FLoD. The chapter continues with the 

design details of the virtual environment. The last section explains the test cases 

designed for the performance evaluation and comparison.  

4.1 ACTIONSIM 

ActionSim is a step-based continuous distributed application simulator. The 

fundamental entity of ActionSim is the simulation node. A simulation node can 

connect/disconnect with others nodes, do actions, send messages and receive 

messages. Computational budget, bandwidth allocation, and connection restrictions 
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can be defined on the simulation nodes. Each simulation node has an inbox queue, an 

outbox queue, and an actions queue. In each cycle of the simulation, first all nodes 

process the messages in their inboxes, then they process the actions in their queues, 

and finally they deliver the messages in their outboxes to the corresponding recipients. 

At the completion of a simulation cycle, remaining computational budget and unused 

bandwidth is accumulated for the next cycle. An ActionSim message has three fields. 

These are the source node, the destination node, and the payload. The payload is the 

data to be carried, and it is set by the application node. 

	

Figure 21 Flow of ActionSim 
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Application nodes implement application specific features by wrapping simulation 

node instances. Simulation node provides a simple interface for accessing the 

functionality defined in the previous paragraph. If registered for notification, an 

application instance is notified by the underlying simulation node about completed 

actions, received messages, established connections and dropped connections. 

Application logic is realized in the callbacks of these notifications. When an 

application node needs to perform an action that is defined by the application domain, 

it registers the action to the simulation node and waits for its completion notification. 

Application instances are responsible for providing computational costs of actions and 

bandwidth consumption of application specific messages. An additional feature 

provided by ActionSim is the timer that works in the timeline of the simulation. With 

the help of the timers, an application node may register for a callback that will be called 

later in the simulation according to the simulation time. Figure 21 presents an 

overview of the ActionSim. 

Besides its simulation capabilities, ActionSim also provides a map generator module, 

two visibility calculation implementations, a rendering module, a logger, a statistics 

collection module. Rendering module provides top-down 2D rendering of the test 

environment. Peers, obstacles and view-cells are represented on the rendering. One of 

the peers is rendered in detail. Figure 22 describes the rendering provided by 

ActionSim renderer. 
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Figure 22 Rendering Sample: Blue shaded cells are the AOI of the peer in the 

center. The peer is connected to peers represented as green crosses. The red circle 

shows the visibility range. The cells without blue shade and the peers that are 

represented as red crosses are culled out by visibility. Dark shade represents the 

content available in the peer’s cache. 

Maps used by phaneros are grayscale PNG files. Value of a pixel represents the height 

at the corresponding coordinates. Map generation is done randomly according to the 

chosen occluder density. To be able to simulate with thousands of peers, actual map 

content is never replicated. Only a single instance of each map tile is created during 

the simulation and used by all peers. 

 Two visibility computation methods were implemented. First one is the trivial range 

based visibility. The other one an occlusion horizon method implementation. World 

metadata, map tiles and visibility information are packed as a single configuration 

package which represents a virtual world. 

Leveled logging and sample-based statistics collection modules are also implemented 

in ActionSim. Logging facility allows tracing of the simulated method’s internals. 

Statistics module provides a simple API for sampling at desired points of the 
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simulation. Sample count, sum of all values, minimum value, maximum value and 

average value metrics are available for all monitored parameters. 

ActionSim is suitable for developing and testing application level protocols like 

Phaneros, VON, Scribe and Chord. It is designed to be lightweight and customizable. 

The communication is abstracted as hops between nodes. With its current state, 

ActionSim provides bandwidth and CPU time constraints. Instead of simulating 

constraints, ActionSim focuses on simulating the effects of the constraints. If desired 

it is possible to incorporate additional constraints at the same abstraction level. For 

developing low level communication protocols with focus on simulated constraints, 

simulators like OMNET and NS-2 are suitable. 

ActionSim do not provide ready-to-use latency and network failure simulation at its 

current state. An improvement on ActionSim would be implementing these two in an 

abstracted way to be available parametrically. Another point of improvement is the 

support for more complex scenarios. Phaneros tests were performed with random 

walking and hot spots and these two are sufficient for demonstrating capabilities of 

Phaneros. For developing and testing DVE applications and frameworks with interest 

on topics other than efficiency of layout, support for more complex scenarios will be 

necessary. Peer joins, peer leaves, repeating actions, goal based avatar movement and 

existence of competition are valuable features to be implemented. 

4.2 CHORD 

Chord nodes are implemented as wrappers around ActionSim nodes. Each Chord node 

is assigned a unique Chord ID. With its own ID, a Chord node keeps IDs of its 

successor, predecessor, and fingers. Chord IDs are implemented as the first four bytes 

of the SHA-1 keys created from the name of the nodes. Four bytes allows 232 distinct 

values which are sufficient for the tests.  
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Besides the IDs, a Chord node internally maintains a list of queries that were forwarded 

to next node. An entry of the list contains the ID that is queried and the ID of the node 

that made the query. When a Successor Query message is received, the receiving node 

uses this list to identify the source of the query and forwards the response to it. Our 

implementation makes an optimization when there are multiple nodes waiting for the 

same response. The first response is forwarded to all nodes that made the query without 

waiting for distinct responses for each of them. 

Chord protocol is implemented with five internal messages for maintaining the overlay 

and one message for carrying the payload over the overlay. The internal messages are 

Predecessor Notification, Predecessor Query, Predecessor Response, Successor Query 

and Successor Response. All internal messages have a common field that carries the 

Chord ID of the previous node. In fact, instead of a single previous node, the internal 

messages carry a list of all previous nodes with themselves for statistical data 

collection. The history is not used in protocol implementation except the last entry. 

Consequently, the size of the list is ignored in cost calculations. Besides the common 

field, Predecessor Response carries the Chord ID of the predecessor, and Successor 

Response carries the Chord ID whose successor is being queried and the Chord ID that 

is the queried successor. The carrier message is called Chord Message for easy 

identification by the external users. 
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Figure 23 Summary of Chord Implementation 

Two periodic maintenance function of Chord are stabilization and fingers fixing. The 

two functions distributedly check the validity of the network and fix it when it is 
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necessary. The ActionSim timers are used for triggering these functions. Chord 

implementation is summarized in Figure 23. Stabilization and fingers fixing functions 

are shown in Figure 24.  

	

Figure 24 Chord Stabilization and Finger Fixing 

A Chord node provides a small interface for the use of upper layers. An upper layer 

entity can send messages with Chord IDs as their destinations, and it gets notified 

when a message arrives. A Chord node also provides an interruption point for upper 

layers. Before forwarding a message to its next destination, the Chord node notifies 

the upper layer and asks for approval to continue. This way, the upper layer may stop 

propagation of the message and can take actions according to the forwarded message. 

4.3 SCRIBE 

Scribe nodes are implemented as wrappers around Chord nodes. Scribe protocol uses 

three messages which are carried by the underlying Chord overlay. These messages 

are Publish, Subscribe and Unsubscribe. Scribe messages are derived from Chord 

Message. Publish message contains the key of the topic and the payload to be 

published. Subscribe and Unsubscribe contains the key of the topic. 
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Scribe constructs reverse multicast trees by recording the previous node of Subscribe 

messages. When a Subscribe message passes through a Scribe node, the sender of the 

message is recorded with the key of the subscription. When a Scribe node receives a 

Publish messages, it directly sends the message to all nodes that are recorded with the 

key of the publication.  

	

Figure 25 Summary of Scribe Implementation 

A Scribe node takes place in the publication of topics that are not in the interest of its 

upper layers. Therefore, it should not notify upper layers about the messages that they 

are not interested in. To do so, A Scribe node keeps the list of topics that are in the 

interest of upper layers. Therefore, a Scribe node is composed of a Chord node, a map 

for keeping children nodes on reverse multicast trees of topics and a list of topics that 

the upper layers are interested in. Scribe implementation is summarized in Figure 25. 
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The functionality provided by Scribe is accessed via an interface of three methods. A 

user may subscribe to a topic, unsubscribe from a topic and publish to a topic by using 

this interface. 

4.4 PHANEROS 

Phaneros implementation is built on top of the stack explained in the previous three 

sections as the topmost layer. Phaneros protocol consists of seven messages: 

Cell Enter: Cell Enter message contains entering peer’s ID, its position and the cell it 

enters. This message is published as Scribe message on topics assigned to cells. 

Cell Exit: Cell Exit message contains exiting peer’s ID and the cell it leaves. This 

message is published as Scribe message on topics assigned to cells. 

Update: Update message contains moving peer’s ID and its new position. This 

message is transmitted directly between nodes. 

Tile Query: Tile query message contains querying peer’s address for direct connection 

and the identification of the cell corresponding to the required tile. This message is 

published as Scribe message on topics assigned to cells. 

Tile Available: Tile Available message contains identification of the cell 

corresponding to the required tile. This message is transmitted directly between nodes. 

Tile Request: Tile Request message contains identification of the cell corresponding 

to the required tile. This message is transmitted directly between nodes. 

Tile Envelope: Tile Envelope message carries the actual tile content. This message is 

transmitted directly between nodes. 
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Figure 26 Summary of Phaneros Implementation 
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As explained in the third chapter, Phaneros uses publish/subscribe and direct 

messaging together. AOI management is maintained with Scribe messages and actual 

position data and 3D content are transmitted with direct messages. Phaneros node 

accesses interfaces provided by ActionSim node for sending and receiving direct 

messages and Scribe node for publishing and receiving ALM messages. 

Implementation of Phaneros is summarized in Figure 26. 
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4.5 VON 

	

Figure 27 Summary of VON Implementation	

A VON node contains a Voronoi diagram, a list of enclosing neighbors and a list of 

AIO neighbors. Each VON node is built around an ActionSim node. For update 

dissemination, VON uses two messages: Update message and Connection Suggestion 

message. Update message contains the moving peer’s ID and its position. Connection 

Suggestion message is used for suggesting new connections and contains a list of VON 

nodes with their addresses. Implementation of VON is summarized in Figure 27. 
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4.6 FLoD 

	

Figure 28 Summary of FLoD Implementation 

FLoD works in conjunction with VON implementation. It uses the lists of neighbor 

peers maintained by VON for querying and fetching 3D content. In addition to the 

VON messages, the FLoD implementation uses same four messages with Phaneros 

implementation for content streaming: Tile Query, Tile Available, Tile Request, Tile 

Envelope. Each message does exactly the same job that they do in the Phaneros 

implementation. Peers first send queries to all AOI neighbors and all enclosing 

neighbors. Peer that receive the queries respond with Tile Available messages. 

Querying peer sends a Tile Request and gets the content in the following Tile Envelope 

message. Implementation of FLoD is summarized in Figure 28.  
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4.7 TEST ENVIRONMENT 

Phaneros tests were performed on a 2.5D pseudo-urban virtual world which is 

designed for fast execution and easy perception. The world consists of walkable areas 

and axis-aligned rectangular obstacles on the ground. The design of virtual world does 

not cause loss of generality. Obstacles in a 2.5D environment can be approximated 

with rectangular prisms. Convex vertical prisms (CVP) in [44] is an example of such 

usage. Obstacles are allowed to intersect with each other for allowing generation of 

complex shaped obstacles.  

A 2.5D world can be represented as a 2D height map. The world map is generated as 

a PNG image by a randomized generator application. Intensities of the pixels on the 

image represent the height values of the map. The PNG representation simplifies 

efficient management of tiles. For efficiency, all nodes in the simulation access the 

very same tile instances. Tile are read-only and simulation runs on a single computer. 

Therefore, there is no need for replicating tile instances. During initialization, the PNG 

map file is read once and tiles are initialized as single instances of sub-images with 

necessary metadata. All simulation nodes use the same tile instances. This way the 

memory requirement of the simulation is greatly reduced. The best view for testing 

Phaneros is the top-down view. It provides all necessary visualization without 

significant performance load. The complete sample map from the renderer is shown in 

Figure 29 with peers on it. 

Two different offline visibility implementations were made. First one is the basic range 

visibility used by VON/FLoD and the other one is the PVS implementation used by 

Phaneros. PVS calculations were performed with a brute-force occlusion horizon 

method implementation. Results of visibility calculations are stored with map data on 

the disk. During initialization, the visibility data is read into a 2D array of PVSs 

corresponding to view-cells. This data is also read-only and a single instance is used 

by all nodes. Phaneros assumes the availability of the visibility data to all peers. 

Therefore, all peers are given the visibility data of the whole map. The size of visibility 

data is insignificant when compared to 3D content. Nevertheless, if it becomes be 
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necessary to incorporate iterative distribution of offline visibility data for some 

specific applications, it is straightforward to represent from-region visibility in a 

hierarchical data structure and distribute it on demand.  

All of the design decisions explained so far were made with performance consideration 

at the first place. The main motivation behind the design was to perform tests with 

crowded environments in easily accessible hardware. The effort yielded less than 10 

minutes running time for 300 seconds of simulation with 1000 peers on a 16GB 2.3 

GHz i7 laptop. 

	

Figure 29 Sample Map Rendering with Peers: Complete map with 1000 peers, 

view-cells and view of a sample peer.  



	 65 

4.8 TEST CASES 

Phaneros tests were performed on a randomized 1024 meters by 1024 meters wide 

world with 30% of its available area is filled with obstacles in various shapes and sizes. 

The world is divided into 4096 equal sized square cells that are 16 meters by 16 meters 

wide. Visibility was computed with 50 meters of range.  

Connection delays and network failures are inescapable for any method and they are 

equally effective on the compared methods. Network latency and failures cannot be 

avoided. Phaneros is expected to tolerate failures to a certain degree and then fail on 

providing consistency if there are more failures. Therefore, no tests were performed to 

demonstrate the obvious. Effects of network latency and node failures and the recovery 

approaches are discussed in CHAPTER 4.  

The size of the 3D content in each view cell is assumed to be 512 kilobytes. The Scribe 

messages used by Phaneros are assumed to be 1 kilobyte, much larger than the actual 

content. Internal Chord messages at the lower level are assumed to be 0,04 kilobytes, 

the size of TCP/IP overhead. With 1000 peers and 2048 kBps bandwidth, a peer 

receives 127 Scribe messages per second, which occupies 127 kilobytes per second 

bandwidth on the average. Our tests show that 6.5% of these messages received by a 

peer are not relevant for it and forwarded to other peers without further processing. 

Bandwidth consumed by internal Chord messages are insignificant since the message 

sizes are very small and the messages are actively used only when peers join or leave 

the overlay network.  

Simulations were started at a stabilized state where all required content for their initial 

positions has been already fetched. The simulation was run for 300 seconds in each 

test case in terms of simulation time. For the cases involving Chord, the layout network 

is also stabilized before starting the simulation. 

3D streaming was done with packages of 512 kilobytes, which are assumed to contain 

whole content in a single view cell, with no further fragmentation. Further 
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fragmentation strategies, the level of detail management, model compression and 

prefetching strategies are not in the scope this study. 

Table 1 List of Assumptions 

Parameter Assumption 
World size 1024 m x 1024 m 
Cell size 16 m x 16 m 
Occluders density 30% of the total available area 
3D content size 512 kB per cell 
Visibility Precomputed and available on all nodes 
Network latency Only affected by bandwidth 
Network failures None 
Size of Chord messages 0,04 kB 
Size of Scribe messages 1 kB 

  

Offline visibility information is assumed to be precomputed and available on all nodes. 

Compared to the actual content, size of the visibility information is insignificant. For 

our test cases the size of the complete visibility information has the size of 1.5 

megabytes. Nevertheless, the visibility information is quite manageable as chunks. For 

extreme situations, visibility data itself can be fetched in chunks like the 3D content. 

Assumptions of the test environment are summarized in Table 1. 

Eleven test cases were constructed for different purposes. Each test case and their 

varying parameters are explained below. A list of test cases is presented in Table 2.  

Primary purpose of the tests is comparing the performance of Phaneros to the 

performance of VON/FLoD. Therefore, first group of test cases aims comparing two 

methods under different conditions that are created by varying upload bandwidth 

allocation and the number of peers. Number of peers were chosen as 250 and 1000. 

On the defined area, casting 250 peers creates a level of density which is low enough 

to differentiate between Phaneros and VON/FLoD on sparse case and high enough to 

demonstrate performance of both. If the number if lower, there is no significant load 

for both of the methods. If the number is higher, some of weaknesses of VON/FLoD 
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disappears. On the same area, casting 1000 peers creates a density which is high 

enough to differentiate between Phaneros and VON/FLoD and low enough to allow 

monitoring of the area. If the number is higher the simulation speed goes lower than 

convenient. If the number is lower operational characteristics of the methods are not 

demonstrated clearly. In a similar manner, bandwidths are chosen as 1024 kBps and 

2048 kBps. These values are chosen to be both realistic and demonstrative. 1024 kBps 

is low enough to be restrictive and high enough to allow operation of the methods. 

2048 is high enough to differentiate between levels of bandwidth restrictions and low 

enough to be realistic. First four test cases are in this group. 

Table 2 List of Test Cases 

ID Upload 
 (kBps) 

Download 
(kBps) 

Peers Tile 
Size 
kB 

Speed 
(m/s) 

Hotspots Visibility Framework 

1 2048 - 1000 512 2 0 Yes Phaneros 
VON/FLoD 

2 1024 - 1000 512 2 0 Yes Phaneros 
VON/FLoD 

3 2048 - 250 512 2 0 Yes Phaneros 
VON/FLoD 

4 1024 - 250 512 2 0 Yes Phaneros 
VON/FLoD 

5 2048 - 1000 512 2 4 Yes Phaneros 
6 1024 - 1000 512 2 4 Yes Phaneros 
7 2048 - 1000 512 1/2/4  0 Yes Phaneros 
8 1024 - 1000 512 1/2/4  0 Yes Phaneros 
9 2048 8.192 to 

20.480 
1000 512 2 0 Yes Phaneros 

10 2048 - 1000 512 2 0 No Phaneros 
11 2048 - 1000 256 to 

2.560 
2 0 Yes Phaneros 

 

Next group of test cases were constructed to analyze the behavior of Phaneros with 

existence of hotspots. Hotspot test setting introduces 4 hotspots which change their 

locations every 60 seconds. When hotspots change their locations, peers randomly 

choose their target hotspots and try to reach them. The pathfinding algorithm was 

implemented in a way that creates hot regions along the common paths followed by 
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peers. The pattern generated by the path finding algorithm is illustrated on Figure 30. 

Fifth and sixth cases test effects of hotspots in the crowded environment with low and 

high bandwidths.  

	

Figure 30 Hotspot Movement Pattern: The red cross in the middle is the hotspot. 

The pink star highlights the hot region formed by the movement pattern of the 

peers. Blue circles are two peers and the dotted arrows shows their movement 

according to the pathfinding algorithm. 

Next group of test cases were constructed to analyze the behavior of Phaneros with the 

existence of peers with different movement speeds. Varying speed test setting 

introduces slower and faster peers. At the beginning of the simulations, peers randomly 

choose among 1 meter per second, 2 meters per second or 4 meters per second as their 

speeds. For all test cases, peers are spawned randomly on the walkable areas. Seventh 

and eighth cases test the effects of varying walking speeds in crowded environment 

with low and high bandwidths. 

For the cases except the hotspots case, peers walk in randomly selected directions until 

they reach an obstacle. Upon reaching an obstacle, peers choose a new direction and 

continue walking. 
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Please note that the bandwidths mentioned so far are upload limits. Generally, user 

connections are asymmetric subscriptions with download speeds much higher than the 

upload speeds. Because of the asymmetry, the bottleneck for the methods is upload 

bandwidth. We designed the test cases so far with limited bandwidths and unlimited 

download bandwidths. However, the tests would not be complete without an analyzing 

the effects of download bandwidth limitation. Therefore, the ninth test case was 

constructed to analyze the effect of download bandwidth. 

Another aspect of Phaneros that needs inspection is the performance of the sole 

communication scheme. Test cases so far covered the performance of the 

communication scheme together with the optimization gained by the visibility culling. 

Tenth test case was constructed to test the performance of Phaneros without the 

advantages of visibility.  

Final test case is constructed to analyze the effect of 3D content size per tile. All other 

test cases so far assume the tile size to be 512 kilobytes. Eleventh test case tests 

Phaneros performance with increasing tile content sizes. 
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CHAPTER 5  

TEST RESULTS AND DISCUSSION 

Test results show that visibility culls out about 40% of the AOI compared to visibility 

unaware AOI. On the crowded case, the reduction in the AOI reflects as 17% reduction 

in AOI neighbors and 20% reduction in the number of simultaneous connections used 

for update messages. On the sparse case, the reduction in the number of simultaneous 

connections exceeds 50%. The number of boundary enclosing neighbors is much 

higher compared to AOI neighbors for VON in the sparse case. Therefore, the number 

of redundant connections avoided by Phaneros is higher. In accordance with the 

reduction in simultaneous connections, Phaneros reduces the number of update 

messages by 26% at least. Reduction exceeds 52% on the sparse case. The 

improvements on AOI management and number of update messages are illustrated in 

Figure 31. 

	

Figure 31 Improvements on AOI Management and Number of Update Messages 
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Visibility based 3D content streaming performs dominantly better than the visibility 

unaware alternative. Phaneros streams 100% of the content from the peers in the 

crowded case and 98.5% in the sparse case regardless of the bandwidth. FLoD 

achieves 84% in the crowded case and 97.5% in the sparse case but drops to 53% and 

75% respectively when the bandwidth is halved. Therefore, Phaneros achieves more 

than 99% reduction when the number of peers is high. Moreover, utilizing visibility 

also reduces the number of fetches made. A Phaneros peer requests content for 5.6 

view cells whereas a FLoD peer requests 8.7 on the average. The reduction achieved 

by Phaneros is 35%. Besides the source of the fetches, the delays are also important. 

Phaneros causes 1.2 to 1.3 second delay consistently whereas FLoD causes 0.5 to 5.1 

second delay. The only case where FLoD has lower delay is the sparse case with high 

bandwidth allocation. Within the first 2 seconds following a view cell transition, 

Phaneros achieves to fetch all of the required content, whereas FLoD still has 4.6 to 

12.5 cells missing depending on the bandwidth allocation. The improvements on 3D 

content fetching are illustrated in Figure 32. 

	

Figure 32 Improvements on 3D Content Streaming 

Without instrumenting a prefetching method, a delay between cell transitions and 

retrieval of the content is inevitable since transmission of the content does not happen 
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instantly. This result shows that if a prefetching method is utilized and it is capable of 

compensating for the two seconds of delay, Phaneros is capable of delivering flawless 

use experience. Please note that the result is valid for the test case and depends on the 

availability of extra bandwidth for prefetching. The actual performance requirements 

of the prefetching method are application specific. 

The improvements obtained by Phaneros are dependent on how much of the world is 

culled out by visibility. The longer range of visibility and the higher rate of occlusion 

ensure higher improvements. Figure 33 shows a sample scene from Phaneros 

simulation to illustrate the effects of visibility culling.  

	

Figure 33 Phaneros Sample Scene: Darker shaded cells are the AOI of the peer 

on the center. The peer is connected to peers shown with green crosses. The red 

circle shows the visibility range. The light shaded cells and the dark red peers in 

the circle are culled 

Two exceptional cases in the results might be interesting for the reader. It can be seen 

that FLoD unexpectedly generates lower average fetch delay than Phaneros when there 

are 250 peers and 2048 kBps bandwidth available. The average delay for Phaneros is 
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1.22 seconds whereas it is 0.48 seconds for FLoD. For fetching, the advantage of 

Phaneros over FLoD is that Phaneros chooses source peers according to the visibility 

while FLoD chooses source peers randomly among many connections. If any of the 

neighbor peers has the requested content, the lower number of peers increases the 

chance of finding the right peer quicker for FLoD. Moreover, since the bandwidth is 

high and the number of peers is low, the other advantage of Phaneros, which is fetching 

from the fastest responding (least loaded) peer, vanishes as there is plenty of 

bandwidth for the FLoD peer which is much more loaded on crowded case. The 

comparison results collected from tests are given in Table 3. 

Table 3 Comparison Results: Results are collected from multiple runs of 

Phaneros (Phan.) and VON/FLoD for crowded and sparse cases with higher and 

lower bandwidth allocations. Improvement (Imp.) obtained by Phaneros is shown 

in percentage. 
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The other interesting point is also related to the first exceptional case. In the results, it 

is seen that the ratio of the content streamed from the servers decreases with decreasing 

number of peers for FLoD while it is the opposite for Phaneros. The explanation given 

for the first case is also applicable to this case. The lower number of peers allows FLoD 

to find a source peer quicker and availability of bandwidth allows it to deliver the 

content in time. As it is seen from the results, the tested bandwidths are sufficient for 

Phaneros in all cases. Therefore, Phaneros acts as expected and performs better when 

there are more peers to provide required content.  

The introduction of hotspots affects the simulation as if the number of peers doubled. 

The increased density of peers doubled the average number of AOI peers, 

simultaneous connections and update messages. The average fetch delay stayed at the 

same level. Although the total number fetches made from server increased, the ratio 

of such fetches stayed below 0.1%. When the maximum numbers considered, the 

effects of hotspots become more visible. The maximum number of AOI peers 

increased from 30 to 85. Maximum fetch delay increased from 3.2 seconds to 5.5 

seconds. When bandwidth lowered from 2048 kBps to 1024 kBps, average fetch delay 

increased slightly to from 1.3 seconds to 1.7 seconds but maximum fetch delay 

increased significantly from 5.5 seconds to 104 seconds.  

When peers allowed to move at varying speeds, the average time spent by a peer in a 

cell decreased from 7.2 seconds to 5.8 seconds. Consequently, the ratio of fetches 

made from server doubled however, the ratio is still below 0.1%. When the bandwidth 

is lowered from 2048 kBps to 1024 kBps, the ratio of fetches from server double once 

more but again stayed under 0.1%. 

The introduction of faster peers decreases the available time slot for fetching and the 

introduction of hotspots increases the required bandwidth. Phaneros does not create 

extra sensitivity for both cases. However, these factors should be considered when 

deciding application requirements and range of visibility. 
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Figure 34 Effects of Download Bandwidth Limitation 

Results obtained from download bandwidth tests are presented in Figure 34. It is seen 

that with increasing bandwidth, number of missing tiles after two seconds following a 

cell transition and the ratio of fetches made from servers decrease gradually. It can 

also be seen that the download bandwidth limitation increases the magnitude of its 

effect as the it gets lower. 

The effects of increasing tile content size is depicted in Figure 35. The results show 

that up to a certain size (1280 kilobytes) Phaneros is not affected in the test 

configuration. However, larger sizes cause missing tiles of two seconds and the ratio 

of server fetches increase linearly. It can be concluded that as long as there is enough 

download bandwidth increasing tile content size does not affect the performance. As 

discussed earlier, tile content size is only a relative measure against available 

bandwidth regardless of the utilized method.  
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Figure 35 Effects of Tile Content Size 

In the last test case where Phaneros is run without visibility optimization, the results 

show that Phaneros performs slightly better (5%) than VON in terms of the number of 

simultaneous connections and the number of update messages. The difference is 

caused by the enclosing nodes of VON which are out of the visibility range. This 

situation was discussed earlier on Figure 5. 	

The performance comparison and evaluation presented so far based on the selection of 

eight indicative measurement items among a larger set. The complete set of 

measurements is presented below. Table 4 lists the measurements and their definition. 

When applicable, for each definition one or more of the five values are collected: 

number of samples taken, the sum of all samples, minimum sample, maximum sample 

and the average of the samples.  
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Table 4 Definition of Measurements 

 Measurement Definition 

AOI Neighbors  The number of peers that are simultaneously in the AOI 
of the peer. For Phaneros the number indicates the 
number of peers in the visible cells and for VON/FLoD 
the number indicates the number of peers in the visible 
range. The measure is an indicator for the accuracy of the 
utilized AOI determination method. The coarser is the 
method the higher is the number. 

Cell Transitions The number of cell transitions made. When a peer leaves 
a from one cell to another, this value is increased by one. 
The frameworks compared in this study introduces 
overhead when cell transitions occur. The measure is an 
indicator which shows that the cases impose equal loads 
to the compared methods. In other words, the movement 
patterns of the peers do not change between test. 

Delta PVS  When a cell transition occurs, the set of cells visible from 
the old cell and the set of cells visible from the new cell 
are not the same. Usually, most of the sets intersect 
except some cells. Some cells become invisible and some 
cells become visible with the transition. Delta PVS is the 
number of cells that were not visible from the old cell and 
visible from the new cell. The measure is an indicator for 
the load caused by cell transitions. In general, it is 
expected that the smaller AOI results in Delta PVS.  

Fetch Delay The amount of time passed between querying for the 
content in a cell and the actual delivery of the content in 
seconds. The measure is a major indicator for the 
performance of the 3D content streaming function. 
Lower values indicate better performance. 

Missing Tiles After 
Two Seconds 

The number of cells whose content is not actually 
delivered to the requiring peer two seconds later the 
querying. The measure is a major indicator for the 
performance of the 3D content streaming function. 
Lower values indicate better performance. 
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Table 4 Continued 

 Measurement Definition 

PVS Size The number of cells that are simultaneously in the AOI 
of the peer. For Phaneros the number indicates the 
number of visible cells in the PVS. For VON/FLoD the 
number indicates the number of cells in the visible range. 
The measure is an indicator for the accuracy of the 
utilized AOI determination method. The coarser is the 
method the higher is the number. 

Query Hops The number of peers that a tile query visited before 
reaching its destination. The measurement is an indicator 
for the overhead generated by the querying phase of 
Phaneros 3D content streaming function. The 
measurement is not applicable for VON/FLoD. 

Server Fetch Because 
Of NULL Envelope 

The number of fetches made from the server because of 
Time Envelope messages delivered with null content. 
This case occurs when a peer responds positively to a 
query and the requested content is discarded before its 
delivery. The measurement indicates that either the cache 
size is too small of the speed of the fetching process is 
too slow to cope with the demanded 3D content 
streaming performance. 

Server Fetch Because 
Of Timeout  

The number of fetches made from server because of 
missing tiles after two seconds. The measure in an 
indicator for underachieving 3D content streaming 
performance. 

Server Fetch Because 
Of Urgent  

The number of fetches made from the server because of 
tiles that a peer wants to go in before the tile is fetched. 
The measure in an indicator for underachieving 3D 
content streaming performance. 

Simultaneous 
Connections  

The number of peers that are simultaneously connected 
by the peer. The measure is an indicator of the efficiency 
of update dissemination function. The lower values mean 
better optimization in the number of simultaneous 
connections. 
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Table 4 Continued 

 Measurement Definition 

Subscriptions  The number of subscription calls made by peers. Only 
applicable for Phaneros. The measurement is an indicator 
for overlay maintenance overhead. 

Suggestions The number of suggestion messages sent by peers.  Only 
applicable for VON/FLoD. The measurement is an 
indicator for overlay maintenance overhead. 

Tiles from Peers The number of tiles whose content is fetched from peers. 
The measurement, together with Tiles from Server 
measurement, is an indicator of 3D content streaming 
performance. The higher ratio of tiles from peers 
indicates better performance. 

Tiles from Server The number of tiles whose content is fetched from server. 
The measurement, together with Tiles from Peers 
measurement, is an indicator of 3D content streaming 
performance. Lower ratio of tiles from servers indicates 
better performance. 

Updates Sent The number of update messages sent by the peer. The 
measurement is an indicator for update dissemination 
efficiency. Lower values indicate better performance 
optimization.  
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Measurements collected with Phaneros are represented in Table 5 and Table 6 

presents the measurements collected with VON/FLoD.  

It can be seen that maximum number of AOI neighbors are similar for both while 

Phaneros has less neighbors on the average. This is expected since the worst case of 

visibility culling should produce same results with range-based visibility. The 

comparison of the values is presented in Figure 36. 

	 	

Figure 36 Comparison of AOI Neighbors 

Both methods are tested with same maximum range of visibility. Number of cell 

transition and measurements of time spent in a cell is equal for both methods. It can 

be concluded that the tests were performed under fair conditions.  

PVS size and Delta PVS measurements show parallelism as one might expect. Set of 

differences between larger PVS is larger than the set of differences between smaller 

PVS. Maximum Delta PVS and Average Delta PVS measurements reflects the 

difference between accuracy of visibility methods. The comparison of the results is 

presented in Figure 37. 
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Figure 37 Comparison of Delta PVS 

Fetch delay values reflect the better performance of Phaneros over VON/FLoD. The 

anomaly on the case with less peers and high bandwidth is discussed in CHAPTER 5. 

Another interesting result is that maximum fetch delay is significantly higher with than 

the average fetch delay for VON/FLoD whereas Phaneros deviation stays in much 

smaller margin. The comparison of the results is presented in Figure 38. 

As discussed earlier in CHAPTER 5, Phaneros is much better at identifying candidate 

source peers and choosing the best among them. The number of missing tiles after two 

seconds of cell stay time is almost zero with Phaneros. Again, the maximum value 

shows that Phaneros is much more stable on the worst case than the reference study. 

The comparison of the results is presented in Figure 39. 

Query hops measures the number of hops made by a query message before it reaches 

to its destination. Results show that the implementations of Chord and Scribe are 

accurate. Scribe messages reaches their destinations in O(logN) hops on the average 

and 2O(logN) hop on the worst case. 
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Figure 38 Comparison of Fetch Delay 

	 	

Figure 39 Comparison of Missing Tiles After Two Seconds 

The number of suggestions shows the number of neighbor suggestions made by VON. 

This reflects the overhead of maintaining VON. Although a numeric comparison may 
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not be meaningful, it is comparable to the overhead generated by multi-hop query 

messages sent by Phaneros. 

The number of fetches made form peers and servers and the ratio between these 

measurements are discussed in detail before in CHAPTER 5. The comparison of the 

results is presented in Figure 40. 

	 	

Figure 40 Comparison of Fetches from Server 

The number of simultaneous connections and the number of update messages 

represents the optimization provided by Phaneros over VON/FLoD. Reasons of the 

difference is presented in CHAPTER 2 and the results are discussed in detail in 

CHAPTER 5.  

Table 5 Phaneros Measurements 

 Measurement 1000 peers 
2048 kB 

1000 peers 
1024 kB 

250 peers 
2048 kB 

250 peers 
1024 kB 

AOI Neighbors AVG 10.85 10.98 3.50 3.47 
AOI Neighbors MIN 0.00 0.00 0.00 0.00 
AOI Neighbors MAX 30.67 31.33 12.67 13.33 
Cell Transitions 42,026.33 41,845.67 10,569.33 10,498.67 



	 85 

Table 5 Continued 

 Measurement 1000 peers 
2048 kB 

1000 peers 
1024 kB 

250 peers 
2048 kB 

250 peers 
1024 kB 

Cell Stay AVG  7,208.22 7,235.89 7,162.07 7,208.34 
Cell Stay MIN  500.00 500.00 500.00 500.00 
Cell Stay MAX  70,666.67 62,166.67 60,333.33 62,833.33 
Delta PVS AVG  5.61 5.69 5.46 5.39 
Delta PVS MIN  0.00 0.00 0.00 0.00 
Delta PVS MAX  27.67 28.00 26.67 27.33 
Fetch Delay AVG  1,317.61 1,320.29 1,222.63 1,218.25 
Fetch Delay MIN  100.00 100.00 100.00 100.00 
Fetch Delay MAX  3,200.00 2,900.00 2,200.00 2,200.00 
Missing Tiles After 
Second AVG  

0.02 0.02 0.23 0.23 

Missing Tiles After 
Second MIN  

0.00 0.00 0.00 0.00 

Missing Tiles After 
Second MAX  

8.67 7.00 10.00 11.00 

PVS Size AVG  42.08 42.28 42.38 42.08 
PVS Size MIN  6.33 7.33 10.00 10.33 
PVS Size MAX  58.00 58.00 57.67 57.67 
Query Hops AVG  11.67 11.68 9.69 9.66 
Query Hops MIN  0.00 0.00 0.00 0.00 
Query Hops MAX  22.00 22.00 20.00 19.33 
Server Fetches Because 
Of NULL Envelope  

N/A N/A N/A N/A 

Server Fetches Because 
Of Timeout 

848.00 915.33 2,156.67 2,150.67 

Server Fetches Because 
Of Urgent 

1.33 0.00 N/A N/A 

Simultaneous 
Connections AVG  

10.85 10.98 3.50 3.47 

Simultaneous 
Connections MIN  

0.00 0.00 0.00 0.00 

Simultaneous 
Connections MAX  

30.67 31.33 12.67 13.33 

Subscriptions 380,091.33 379,436.00 95,671.33 95,227.00 
Suggestions  0.00 N/A N/A N/A 
Tiles from Agents 1,276,071.00 1,297,889.00 143,601.67 138,999.67 
Tiles from Server 849.33 915.33 2,156.33 2,150.67 
Updates Sent 6,334,843.67 6,417,057.67 509,830.67 505,602.33 
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Table 6 VON/FLoD Measurements 

 Measurement 1000 peers 
2048 kB 

1000 peers 
1024 kB 

250 peers 
2048 kB 

250 peers 
1024 kB 

AOI Neighbors AVG  13.07 12.79 3.84 3.89 
AOI Neighbors MIN  1.00 1.67 1.00 1.00 
AOI Neighbors MAX  30.00 29.67 12.00 13.00 
Cell Transitions 41,682.33 38,922.33 10,419.33 10,465.67 
Cell Stay AVG  7,244.63 7,702.74 7,250.89 7,215.25 
Cell Stay MIN  500.00 500.00 500.00 500.00 
Cell Stay MAX  67,166.67 93,500.00 49,833.33 43,666.67 
Delta PVS AVG  8.68 14.01 7.39 8.15 
Delta PVS MIN  0.00 0.00 0.00 0.00 
Delta PVS MAX  40.33 60.00 17.00 32.00 
Fetch Delay AVG  2,642.61 5,116.65 478.35 2,281.48 
Fetch Delay MIN  100.00 100.00 100.00 100.00 
Fetch Delay MAX  36,433.33 110,533.33 10,133.33 23,800.00 
Missing Tiles After 
Two Seconds AVG  

4.63 12.45 0.49 3.96 

Missing Tiles After 
Two Seconds MIN  

0.00 0.00 0.00 0.00 

Missing Tiles After 
Two Seconds MAX  

40.00 57.00 15.00 29.00 

PVS Size AVG  71.79 71.31 71.47 72.33 
PVS Size MIN  24.00 24.00 24.00 24.00 
PVS Size MAX 77.00 77.00 77.00 77.00 
Query Hops  N/A N/A N/A N/A 
Server Fetch Because 
Of NULL Envelope 

21,685.67 77,655.67 13.67 940.33 

Server Fetch Because 
Of Timeout 

174,789.33 439,267.00 4,577.00 37,480.67 

Server Fetch Because 
Of Urgent 

4,289.33 41,282.67 16.33 321.00 

Simultaneous 
Connections AVG  

13.63 13.42 7.06 6.98 

Simultaneous 
Connections MIN  

2.33 3.00 1.00 1.00 

Simultaneous 
Connections MAX  

30.33 30.33 14.67 14.67 

Subscriptions  N/A N/A N/A N/A 
Suggestions AVG  3.53 3.28 3.09 3.04 
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Table 6 Continued 

 Measurement 1000 peers 
2048 kB 

1000 peers 
1024 kB 

250 peers 
2048 kB 

250 peers 
1024 kB 

Suggestions MIN  1.00 1.00 1.00 1.00 
Suggestions MAX  11.67 11.33 8.33 8.33 
Tiles from Agents  1,053,585.33 563,467.00 160,779.67 120,946.33 
Tiles from Server 199,562.00 501,713.33 4,604.00 38,612.00 
Updates Sent 8,573,219.33 9,572,702.33 1,035,523.00 1,071,343.00 
 

Test results without hotspots and varying speeds, results with hotspots and results with 

varying speeds are compared proportionally to each other in Figure 41. All 

measurements from hotspot tests and varying speed tests are presented in Table 7 and 

Table 8 respectively. 

	

Figure 41 Effects of Hotspots and Varying Speeds 
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Table 7 Phaneros Measurements with Hotspots 

 Measurement 1000 peers 
2048 kB 

1000 peers 
1024 kB 

AOI Neighbors AVG 19.30 19.55 
AOI Neighbors MIN 0.00 0.00 
AOI Neighbors MAX 85.00 116.67 
Cell Transitions 51,332.00 51,245.33 
Cell Stay AVG  5,703.49 5,662.28 
Cell Stay MIN  0.00 0.00 
Cell Stay MAX  269,166.67 283,666.67 
Delta PVS AVG  6.86 7.21 
Delta PVS MIN  0.00 0.00 
Delta PVS MAX  30.33 37.00 
Fetch Delay AVG  1,337.88 1,748.32 
Fetch Delay MIN  100.00 100.00 
Fetch Delay MAX  5,533.33 103,833.33 
Missing Tiles After Two Seconds AVG  0.48 2.15 
Missing Tiles After Two Seconds MIN  0.00 0.00 
Missing Tiles After Two Seconds MAX  14.00 36.33 
PVS Size AVG  43.77 43.72 
PVS Size MIN  13.00 10.33 
PVS Size MAX  58.00 58.00 
Query Hops AVG  11.69 11.62 
Query Hops MIN  0.00 0.00 
Query Hops MAX  22.00 22.00 
Server Fetch Because Of NULL 
Envelope  

16.33 9,454.67 

Server Fetch Because Of Timeout 19,095.67 85,882.33 
Server Fetch Because Of Urgent 66.00 5,404.00 
Simultaneous Connections AVG  19.30 19.55 
Simultaneous Connections MIN  0.00 0.00 
Simultaneous Connections MAX  85.00 116.67 
Subscriptions 515,831.67 512,108.67 
Suggestions  N/A N/A 
Tiles from Agents 2,382,301.67 1,791,903.00 
Tiles from Server 19,129.33 89,826.00 
Updates Sent 11,788,521.33 11,830,753.00 
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Table 8 Phaneros Measurements with Varying Walking Speeds 

 Measurements 1000 peers 
2048 kB 

1000 peers 
1024 kB 

AOI Neighbors AVG 10.91 10.86 
AOI Neighbors MIN 0.00 0.00 
AOI Neighbors MAX 32.00 32.67 
Cell Transitions 52,097.33 52,861.00 
Cell Stay AVG  5,773.96 5,688.04 
Cell Stay MIN  0.00 0.00 
Cell Stay MAX  76,666.67 88,166.67 
Delta PVS AVG  5.37 5.39 
Delta PVS MIN  0.00 0.00 
Delta PVS MAX  28.67 30.00 
Fetch Delay AVG  1,379.60 1,390.42 
Fetch Delay MIN  100.00 100.00 
Fetch Delay MAX  2,800.00 8,966.67 
Missing Tiles After Two Seconds AVG  0.06 0.12 
Missing Tiles After Two Seconds MIN  0.00 0.00 
Missing Tiles After Two Seconds MAX  10.00 18.00 
PVS Size AVG  41.93 41.97 
PVS Size MIN  6.00 5.00 
PVS Size MAX  58.00 58.00 
Query Hops AVG  11.68 11.67 
Query Hops MIN  0.00 0.00 
Query Hops MAX  22.00 22.00 
Server Fetch Because Of NULL 
Envelope  

N/A 10.33 

Server Fetch Because Of Timeout 2,420.67 5,042.00 
Server Fetch Because Of Urgent 4.33 6.67 
Simultaneous Connections AVG  10.91 10.86 
Simultaneous Connections MIN  0.00 0.00 
Simultaneous Connections MAX  32.00 32.67 
Subscriptions 462,582.00 471,004.67 
Suggestions  N/A N/A 
Tiles from Agents 1,481,044.33 1,510,651.00 
Tiles from Server 2,425.00 5,025.00 
Updates Sent 6,651,330.33 6,621,513.67 
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Another set of measurements were made to evaluate the overhead of using Scribe 

messaging for a node. Table 9 presents the average number of messages per second 

per peer and differentiates between the messages intended for the peer and the 

messages that are intended for other peers and forwarded. 

Table 9 Overhead of Scribe Usage in Phaneros: Scribe Messages per Second per 

Peer. Delivered column shows the number of messages that are intended for the 

receiving peer. Total column shows the number all of messages including those 

are not intended for the receiving peer. These messages are forwarded to next 

peer without notifying the application. 

Scribe Message Delivered Total Overhead 
Percentage 

All Messages 118.83 126.97 6.41% 
Cell Enter/Exit Messages 29.39 30.74 4.38% 
Subscription/Unsubscription Messages 0.36 3.24 88.86% 
Tile Query/Available/Request 
Messages 

89.08 92.99 4.20% 
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CHAPTER 6  

CONCLUSION 

This study presents a visibility-based, fully distributed, peer-to-peer (P2P) update 

dissemination and 3d content streaming framework for massive virtual environments. 

We name our framework as Phaneros. Phaneros utilizes from-region visibility for Area 

of Interest (AOI) management and layout management. The regions are defined as 

fixed-sized, regular grid of cells. Potentially Visible Set (PVS) definition is extended 

to contain visible cells instead of visible primitives. Each cell is associated with a PVS 

which contains all cells that are visible from it. PVSs are computed offline and related 

metadata is distributed to peers when they join the virtual environment. 

Phaneros update dissemination layout is composed of two separate messaging schemes 

that work together. Direct connections between peers are used for transmitting update 

messages. Application layer multicasting (ALM) is used for transmitting AOI 

management messages. Direct connections are established according to the messages 

exchanged through ALM. The fundamental assumption of Phaneros about AOI 

management is that peers are interested in the portions of the world that are visible to 

them. In Phaneros terms, peers are interested in cells that are visible from the cell 

which they reside in. In other words, peers are interested in the cells that are in the 

PVS of the cell they reside in. An AOI management scheme is built on top of ALM 

based on this assumption. A topic is created for each cell on the ALM and with these 

topics, Phaneros AOI management works as a simple publish/subscribe scheme which 

has two rules: Peers subscribe to the topics that are assigned to the cells in their AOIs. 

Peers publish to the topics of the old cell and the new cell when they move from one 

cell to another. This scheme allows peers to know about the other peers in their AOIs 

and to establish direct connections with them.  
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Phaneros 3D content streaming uses the same PVS structure. Visibility from cells is a 

symmetric relation. When a cell is visible from another, the relation also holds in the 

opposite direction. Using this property of the visibility relation, the PVS of a cell can 

also be defined as the set of all cells that the cell is visible from. Consequently, the 

cells in the PVS are sources with high probability to have the content of the cell 

available in their caches. Phaneros makes use of this heuristic for 3D content 

streaming. When a peer requires the content of a cell, it publishes a query to the topic 

of the cell. Since all peers that can see the cell are already subscribed to its topic, peers 

with the best probability of having the missing content receive the query. Peers that 

receive the query responds if they have the required content in their caches. Querying 

peers then fetches the content from the fastest responding peer as the second phase of 

the 3D content streaming. Choosing the fastest responding peer implicitly chooses the 

best source because the fastest responding peer is the closer peer with the lower load.  

We developed our in-house simulator ActionSim to meet our requirements for testing 

and comparing Phaneros. We implemented Chord, Scribe, Phaneros, VON and FLoD 

on top of ActionSim. We compared Phaneros with its well-known and successful 

counterpart. Our results verified our visibility-based heuristics.  

Another aspect of Phaneros is its simplicity. It presents a straightforward approach for 

facilitating efficient update dissemination and 3D content streaming. This makes 

Phaneros an applicable framework for real world applications rather than a theoretical 

study. However, it is obvious that further optimizations will be required.  

6.1 FUTURE WORK 

Phaneros assumes the occluders to be static because of the offline from-region 

visibility culling method that it uses. With this approach, the subtraction of existing 

occluders at run time may affect the consistency. In this sense, Phaneros does not 

support dynamic environments with its presented state. For such dynamic 
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environments, one of the following approaches may be utilized. If the dynamic part of 

the world is significantly smaller than the static part, the dynamic part can be excluded 

from the visibility calculations, surrendering some minor optimization. Another 

approach may be utilizing an aggressive visibility culling method and assuming the 

occluders to be smaller than they are. If the modifiable part of the content is limited 

by the shrinkage (like a layer to be peeled), consistency will be guaranteed. To fully 

support consistency in highly dynamic content, the utilized offline visibility method 

should be replaced with an online alternative or existing offline method should be 

improved with an iterative visibility update method. Independent of Phaneros, the 

visibility computation costs will vary according to the method utilized and the 

characteristics of the virtual world.  

With its presented state, Phaneros does not include a prefetching scheme. Prefetching 

schemes require determination of the content that will be needed in the near future. A 

strategy for choosing cells to be prefetched can be developed with the use of PVS. It 

is safe to assume that a peer will move into one of the cells it sees. From this 

assumption, it is derived that PVSs of visible cells are good candidates to be 

prefetched. When there are sufficient resources, union of the PVSs of the cells in the 

PVS of the current cell of a peer composes the complete set of cells for the prefetching. 

When resources are limited, a prioritization strategy can be incorporated according to 

the movement direction or the statistical movement tendency of the peers [12][45].  

First, phase of 3D content streaming provided by Phaneros has an opening for further 

development. When there are hotspots, it is quite expected that many connections to 

be established as the response to a content query. Query responses are sent through 

direct connections because of performance considerations. It may not be necessary to 

use direct connection when an effective prefetching scheme is utilized. When the 

prefetching is in action, there will be enough time for sending responses through P2P 

connections. However, when no prefetching is used, the responses have to be sent 

through direct connections. Around a hotspot, many peers simultaneously may receive 

a query and try to connect to the querying peer. This situation can be overcome by 
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limiting the number of receivers for a topic. Another approach might be not responding 

to all queries. The queries to be responded may be selected randomly or according to 

another criterion based on load or time.  

Another point for improvement might be the AOI management. As described, the AOI 

messages are delivered by P2P ALM. By the time a cell enter message delivered to an 

interested peer, the moving peer might have traveled a considerable distance and 

become visible to the viewer by popping in front of him suddenly. Although the 

aspects are different, this problem is similar to the popping of the 3D content without 

the existence of a prefetching method. Same prefetching principles can be applied to 

AOI management. A peer can publish cell enter messages before they actually enter 

the cell. The strategy for a pre-publishing scheme will depend on the movement 

direction and statistical movement tendency of the peers as in the prefetching 

strategies. With pre-publishing, the connection will be established but update 

messages will not be sent until the peer actually enters the cell. The only overhead 

introduced by pre-publishing will be limited to the connections that are made before 

actual need and are abandoned without any actual use.   
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