

DESIGN AND IMPLEMENTATION OF AN OPEN-SOURCE OPTICALLY

STIMULATED LUMINESCENCE MEASUREMENT SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

DİREN MARABA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

PHYSICS

JULY 2017

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF AN OPEN-SOURCE OPTICALLY

STIMULATED LUMINESCENCE MEASUREMENT SYSTEM

submitted by DİREN MARABA in partial fulfillment of the requirements for the

degree of Master of Science in Physics Department, Middle East Technical

University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences ________________

Prof. Dr. Altuğ Özpineci

Head of Department, Physics ________________

Prof. Dr. Enver Bulur

Supervisor, Physics Dept., METU ________________

Examining Committee Members:

Prof. Dr. Ahmet Oral

Physics Dept., METU ________________

Prof. Dr. Enver Bulur

Physics Dept., METU ________________

Prof. Dr. Nizami Hasanli

Physics Dept., METU ________________

Assoc. Prof. Dr. Mustafa Hicabi Bölükdemir

Physics Dept., Gazi University ________________

Assist. Prof. Dr. Emre Yüce

Physics Dept., METU ________________

Date: 07/07/2017

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name: DİREN MARABA

Signature:

v

ABSTRACT

DESIGN AND IMPLEMENTATION OF AN OPEN-SOURCE OPTICALLY

STIMULATED LUMINESCENCE MEASUREMENT SYSTEM

Maraba, Diren

M.Sc., Department of Physics

Supervisor: Prof. Dr. Enver Bulur

July 2017, 145 Pages

Optically Stimulated Luminescence (OSL) is the light emission from an irradiated

solid (insulator or a wide band gap semiconductor) upon illumination with light of

suitable wavelength. Although the phenomenon has been known for a long time,

OSL has emerged as a practically applicable dosimetry technique in the past two

decades. Recently introduced materials like alumina and beryllia have found use in

the field of radiation dosimetry. The purpose of this study is to design and construct

a simple multi-sample OSL measurement system. The device is realized using open-

source hardware and software platforms which reduced the development costs to

very low levels. The system is able to measure OSL from materials relevant for

dosimetry and dating. The measurement system is based on the Arduino DUE

microcontroller board. The control of the sample positioning mechanism,

stimulation system, precise timing and photon counting is achieved using this board.

The control software on the client computer is written in Python language which can

be run on any platform. The stimulation system is based on high power light emitting

diode (LED) in visible region of the electromagnetic spectrum and three commonly

used stimulation modes, continuous wave (CW-), linearly modulated (LM-) and

vi

time-resolved (TR-) OSL modes are achievable. Luminescence emission is

measured using a bialkali photomutiplier tube (PMT) module which works in

photon counting mode and produces pulses as output. The pulses from the PMT

module is counted using a fast timer counter of the microcontroller. The optical

characteristics of system is measured and presented. In addition, the OSL

measurement system is tested using materials such as Al2O3:C, BeO, Quartz,

ZrSiO4, which are used for dosimetry and dating studies.

Keywords: Optically Stimulated Luminescence (OSL), Luminescence Dosimetry,

Scientific Instrumentation.

vii

ÖZ

OPTİK UYARMALI LUMİNESANS ÖLÇÜM SİSTEMİNİN AÇIK

KAYNAKLI TASARIMI VE GERÇEKLEŞTİRİLMESİ

Maraba, Diren

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Enver Bulur

Temmuz 2017, 145 Sayfa

Optik Uyarmalı Lüminesans (OSL) ışınlanmış katı maddenin (yalıtkan ya da geniş

bant aralıklı yarı iletken) uygun dalga boyu ile uyarılması sonucu ışık yayılımıdır.

Bu olgu uzun süreden beri bilinmesine rağmen, OSL son yirmi yıl içerisinde pratik

olarak uygulanabilen bir dozimetri tekniği haline gelmiştir. Alumina ve beryllia gibi

yakın zamanda önerilen malzemeler radyasyon dozimetrisi alanında kullanım alanı

bulmuştur. Bu çalışmanın amacı basit bir çok örnekli OSL ölçüm cihazı tasarlamak

ve imal etmektir. Açık kaynak kodlu yazılım ve donanım kullanarak geliştirme

maliyetlerini düşürmesi cihazın en belirgin özelliğidir. Sistem dozimetri ve yaş

tayini çalışmalarında uygun materyalleri ölçebilme yeteneğine sahiptir. Ölçüm

sisteminin merkezinde yer alan Arduino DUE mikro denetleyici kartı; numune

değiştirme mekanizması ve uyarım sistemi kontrolü ile hassas zamanlama ve foton

sayma işlemlerini yapmaktadır. İstemci bilgisayardaki kullanıcı ara yüzü her

platformda kullanılması amaçlanarak Python dilinde yazılmıştır. Elektromanyetik

tayfın görünür bölgesinde çalışan yüksek güçlü ışık yayan diyotları temel alan

uyarım sistemi, sürekli dalga (CW-), doğrusal kiplenimli (LM-) ve zaman

çözünürlüklü (TR-) OSL kiplerini desteklemektedir. Lüminesans yayımı, foton

viii

sayma kipinde çalışan bir bialkali katotlu fotoçoğaltıcı (PMT) modül ile

ölçülmüştür. Modülden gelen pulslar, Arduino kartında gerçekleştirilen hızlı sayıcı

ile kaydedilmiştir. Sistemin optik ve elektronik karakteristik ölçümleri

gerçekleştirilerek; OSL ölçüm sistemi dozimetri ve yaş tayini çalışmalarında

kullanılan Al2O3:C, BeO, Quartz, ZrSiO4 gibi malzemelerle de test edilmiştir.

Anahtar Kelimeler: Optik Uyarmalı Lüminesans (OSL), Lüminesans Dozimetri,

Bilimsel Enstürmantasyon.

ix

To scientists throughout history having paid the price for their studies

x

ACKNOWLEDGEMENTS

First, I would like to express my deep gratitude to my supervisor Prof. Dr.

Enver Bulur for his guidance, encouragement and especially his continuous patience

not only through this study, but also through all my graduate education period at

METU.

I would like to thank my mother Hülya Alkan and my father Fikret Maraba

for their love, patience, and support. I would also like to thank Gül Deniz Hoş for

being in my life with her limitless support and understanding during my graduate

study. I could always overcome the most troublesome and tiring time to the help of

them. Thus, without them, none of what I have achieved would have been possible.

I wish to thank technician Hakan Sağ from Department of Physics for his

help during mechanical construction of the measurement system and my friend Uğur

Şahin for his help and comments on software programming.

Last but not the least, I would like to thank all my friends for their endless

support.

xi

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ..vii

ACKNOWLEDGEMENTS .. x

TABLE OF CONTENTS .. xi

LIST OF FIGURES .. xiii

LIST OF TABLES ... xvii

CHAPTERS

1. INTRODUCTION... 1

2. LUMINESCENCE .. 7

2.1 Luminescence Production .. 7

2.2 Optically Stimulated Luminescence (OSL)... 10

2.2.1 Model and Equations... 11

2.2.2 Stimulation Modes of OSL ... 17

2.2.2.1 Continuous-Wave Optically Stimulated Luminescence 19

2.2.2.2 Linearly-Modulated Optically Stimulated Luminescence .. 21

2.5.1.1 Pulsed Optically Stimulated Luminescence 22

2.3 OSL Dosimetry ... 25

3. SCIENTIFIC INSTRUMENTATION... 29

3.1 Instrumentation Basics .. 29

3.1.1 Characteristics of an Instrumentation System 32

3.2 Optically Stimulated Luminescence Measurement Technology 33

3.2.1 Light Detection Unit ... 35

3.2.1.1 Photomultiplier Tubes .. 35

3.2.1.2 Other Detectors .. 37

3.2.2 Stimulation Sources... 37

3.3 Open-Source Hardware and Software .. 39

3.3.1 Microcontrollers ... 39

3.3.2 Arduino Development Platform .. 40

xii

3.3.2.1 Software and Communication of Arduino 41

3.2.3 Python Programming Language ... 42

4. DESIGN AND CONSTRUCTION OF THE AUTOMATED OSL READER

... 45

4.1 Structure and Properties of the OSL Reader.. 45

4.2 Components and Parts of the OSL Reader ..47

4.2.1 Measurement Chamber ... 47

4.2.2 Motorized Sample Changer Unit... 49

4.2.3 Electronic Control Unit ... 50

4.2.3.1 Hardware and Connections ... 51

4.2.3.2 Software .. 52

4.2.4 User Interface (PC Software) .. 58

4.3 Principles Measurement Modes .. 62

4.3.1 Continuous-Wave Optically Stimulate Luminescence.................. 62

4.3.2 Linearly-Modulated Optically Stimulate Luminescence............... 62

4.3.3 Time-Resolved Optically Stimulate Luminescence...................... 62

5. RESULTS AND DISCUSSION.. 63

5.1 Determination of the Stimulation LED Characteristics 63

5.2 Determination of Measurement Chamber Characteristics....................... 68

5.3 Test Experiments... 72

5.3.1 CW-OSL Mode... 75

5.3.2 LM-OSL Mode ... 80

5.3.3 TR-OSL Mode .. 85

6. SUMMARY AND CONCLUSIONS... 87

REFERENCES .. 91

APPENDICES

A. WIRING DIAGRAMS ... 101

B. GENERAL VIEW OF THE OSL MEASUREMENT SYSTEM 109

C. MICROCONTOLLER SOFTWARE CODE ... 115

D. USER INTERFACE SOFTWARE CODE.. 127

xiii

LIST OF FIGURES

FIGURES

Figure 2.1: A simplified sketch of luminescence mechanism 7

Figure 2.2: Energy band model description of OSL phenomenon 11

Figure 2.3 Schematics of an OSL measurement system with the fundamental

elements ... 18

Figure 2.4: A summary of three main OSL stimulation modes, namely CW-OSL,

LM-OSL and POSL ... 19

Figure 2.5: An example of a CW-OSL decay (irradiated BeO) 20

Figure 2.6: An example of a LM-OSL (Al2O3:C) ... 22

Figure 2.7: A example of TR-OSL (BeO) .. 25

Figure 2.8: An example of dose response trend line of BeO................................... 26

Figure 3.1: Measurement and Control System ... 30

Figure 3.2: A diagram of measurement system elements 31

Figure 3.3: A simplified diagram of setup for measuring OSL............................... 34

Figure 3.4: The schematic diagram of a PMT. Uc is cathode voltage, Ud denotes the

potential difference between two dynodes, R is resistor.. 35

Figure 4.1: Simplified block diagram of the automated OSL reader 46

Figure 4.2: Simplified sketch of measurement chamber .. 48

Figure 4.3: Simplified sketch motorized sample changer unit 50

Figure 4.4: Block diagram of hardware of electronic control unit 51

Figure 4.5: Flow chart of motorized sample changer unit part of the software 53

xiv

Figure 4.6: Flow chart of OSL measurement part of the software.......................... 56

Figure 4.7: Screenshot of user interface software ... 59

Figure 4.8: Flow chart of User Interface Software ... 61

Figure 5.1: Emission spectra of the stimulation LED at different current values ... 64

Figure 5.2: Output power of LED with respect to current passing through 65

Figure 5.3: The PCB temperature of the LED after 10 minutes of operation time with

respect to current passing through. Inset: The relationship between voltage applied

to the junction and current passing through .. 66

Figure 5.4: Output Signal of Photodiode in Time for a LED Pulse 67

Figure 5.5: Output power of the LED on sample with respect to duty cycle 68

Figure 5.6: A simplified sketch of the experimental setup used for reflection and

transmission measurements ... 69

Figure 5.7: Transmission spectrum of dichroic mirror (solid-line) and emission

spectrum of LED (dashed-line). [Transmission spectrum of the dichroic mirror is

measured at 45° incident angle] .. 70

Figure 5.8: Reflection spectrum of dichroic mirror (black/square). Transmission

spectrum of the UV filter pack (purple/triangle). Transmission spectrum of dichroic

mirror and UV filter pack combination (red/circle). [Reflection and transmission

spectra of the dichroic mirror are measured at 45° incident angle] 71

Figure 5.9: Background measurement of OSL measurement system when

stimulation light is on and off ... 72

Figure 5.10: A picture of samples used for OSL measurements 73

Figure 5.11: Decay curves of Al2O3:C (100 mGy irradiated) taken from consecutive

measurements [(line) is first measurement, (dashed) is second measurement]. Inset:

Dose response of Al2O3:C in the range from 0.1 Gy to 1 Gy. 75

xv

Figure 5.12: Decay curves of BeO chips with different doses: 0.50 Gy

(black/square), 0.25 Gy (red/circle), 0.10 Gy (blue/triangle), 0.05 Gy

(magenta/reverse triangle) and background (green/diamond). Inset: Dose response

of BeO chips in the interval 5 mGy to 500 mGy .. 76

Figure 5.13: Decay curves of quartz (100 Gy irradiated) taken from consecutive

measurements [(line) is first measurement, (dash) is second measurement]. Inset:

Dose response of quartz from 50 Gy to 250 Gy ... 78

Figure 5.14: CW-OSL signal from zircon samples fitted with combination of three

exponential decay curves. Inset: Decay components of the luminescence signal: Fast

Decay (dashed/blue line), Medium Decay (solid/black line) and Slow Decay

(dotted/red line) .. 79

Figure 5.15: Decay curves of zircon samples with different doses: 5 Gy

(black/square), 10 Gy (blue/triangle), 25 Gy (red/circle) and background

(green/dashed). Inset: Dose response of zircon samples chips in the interval 1 Gy to

50 Gy .. 80

Figure 5.16: LM-OSL data of 0.5 Gy irradiated Al2O3:C chip with fitted curve and

its components (dotted, dashed and dot-dashed lines). Inset: LM-OSL curves of

Al2O3:C chips with various doses together with background 81

Figure 5.17: LM-OSL data of 0.5 Gy irradiated BeO chip with fitted curve and its

components (dotted, dashed, dot-dashed and green-solid). Inset: LM-OSL curves of

BeO chips irradiated at 250 mGy and 500 mGy together with measurement

background .. 82

Figure 5.18: LM-OSL data of 100 Gy irradiated quartz grains with fitted curve and

its components (dotted/blue, dashed/green, solid/magenta and dot-dashed/cyan

lines). Inset: LM-OSL curves of quartz grains irradiated with 50 Gy, 75 Gy and 100

Gy .. 83

xvi

Figure 5.19: LM-OSL data of 10 Gy irradiated zircon sample with fitted curve and

its components (solid/blue, dotted/green and dashed/magenta lines). Inset: LM-OSL

curves of zircon samples irradiated with 5 Gy, 10 Gy, 25 Gy and background

measurement .. 85

Figure 5.20: TR-OSL data of 500 mGy irradiated Al2O3:C chip with fitted curve.

Inset: Dose response of TR-OSL measurements of Al2O3:C 86

Figure A.1: Pinout Diagram of Arduino DUE microcontroller board 102

Figure A.2: Wiring and connection diagram of power supplies 104

Figure A.3: Wiring and connection diagram of front panel indicators and switches

.. 105

Figure A.4: Wiring and connection diagram of sample tray and sensor 106

Figure A.5: Wiring and connection diagram of stimulation LED and PMT module

.. 107

Figure B.1: General view of the OSL measurement system 110

Figure B.2: View of measurement chamber ... 111

Figure B.3: Top view of the OSL measurement system 112

Figure B.4: Front view of OSL measurement system ... 113

Figure B.5: Back view of OSL measurement system ... 114

xvii

LIST OF TABLES

TABLES

Table 2.1: Luminescence types and excitation sources ... 9

Table 4.1: List of the commands implemented in the software for the sample changer

unit.. 54

Table 4.2: List of the commands implemented in the software for the sample changer

unit ... 57

Table 5.1: Annealing temperature and durations of samples before measurements

.. 73

Table 5.2: Functions used for curve-fitting in different OSL modalities 74

Table A.1: Input and Outputs Pins of the Microcontroller 103

1

CHAPTER 1

 INTRODUCTION

Luminescence is a term, which is first introduced by Eilhard Wiedemann

(1888), refers to spontenous emission of the photons from a material, where this

emission is not a resultant of heating. When a charged particle or combination of

particles (such as atoms, molecules) are excited to a higher energy state, they are

inclined to return initial lower energy state by releasing energy in order to reach the

stability of equilibrium condition. There are two possible ways of these transition

called as radiative and non-radiative transitions. If the transition is radiative,

emission of photons is observed. This process fundamentally describes the

luminescence phenomena. Luminescence may also be observed as a result of

stimulating an insulator or semiconductor material which was previously excited by

an ionizing radiation. There are different types of luminescence processes. Most

well knowns can be listed as follows: Chemiluminescence (emission due to

chemical reaction process), Electroluminescence (emission due to electric current),

Radioluminescence (emission due to irradiation of material) Thermally Stimulated

Luminescence or Thermoluminescence (emission due to recombination of electron

traps as a result of heating) and Optically Stimulated Luminescence (emission due

to recombination of trapped electrons as a result of stimulation with light).

Optically Stimulated Luminescence (OSL) is a prevalently used technique

in personal, environmental and clinical dosimetry since the technique enables fast

readout with high efficiency and it is reproducible. The term is used for the

luminescence emission from an irradiated material (insulator or semiconductor) due

to light exposure. Even though, Antonov-Romanovskii et al. (1956) first offered

2

radiation dose measurement using OSL, usage of the technique reported almost 12

years later by Bräunlich et al. (1967) and, Sanborn and Beard (1967). It had been

realized that phosphors they used (MgS, CaS, SrSe doped with Ce, Sm, Eu and

various other rare earth elements) are not suitable for luminescence dosimetry.

Later, OSL measurements on naturally occurring materials such as quartz and

feldspar samples (Huntley et al., 1985 using an argon-ion laser for stimulation) have

initiated the studies on age determination of archeological and geological findings.

The development of technology (and production facilities) for stimulation sources

(i.e. filtered lamps, light emitting diodes and solid state lasers) have enabled OSL to

become a significant technique for radiation dosimetry, dating and material research.

Introduction of Al2O3:C -a material with very good luminescence characteristics

(see Markey et al., 1995)- has boosted the applications in the field of radiation

dosimetry. Besides, research on red laser stimulable materials such as BaFBr:Eu

have enabled the usage of the technique (known also as photo stimulated

luminescence, PSL) for X-ray detection (Lakshmanan, 1996). Two dimensional

detectors (image plates) based on BaFBr:Eu has enabled the direct measurements of

X-ray images known as “computed radiography” (von Seggern, 1999). Extensive

reviews for OSL technique including fundamental concepts and many applications

have been presented by Bøtter-Jensen et al. (2003) and Yukihara and McKeever

(2011).

Al2O3:C (see e.g. McKeever et al., 1996; Yukihara, 2014) and BeO (see e.g.

Bulur and Göksu, 1998; Sommer and Henniger, 2006, Jahn et al., 2013) are only

two commercialized OSL dosimeters as of today. Nowadays, the usage and

applications of these materials have been greatly extended. Radiation exposure of

millions, who are called radiation workers, are monitored by these passive detectors

utilizing OSL technique. The use of dosimeters is investigated in hospitals as a part

of quality control programs (Lovelock et al., 2012). There are some clinical trials

that radiotherapy is monitored using OSL (Aguirre et al., 2009). The radiation

exposure of astronauts was also monitored using OSL by both U. S. National

Aeronautics and Space Administration (NASA) (Zhou et al., 2009) and European

Space Agency (ESA) (Berger et al., 2016). More information regarding the usage of

3

Al2O3:C and BeO as dosimeters can be found in Yukihara et. al (2014) and Yukihara

et. al (2016) respectively. There is a great increase in the usage of these materials,

there is still a need for research on the existing and new materials.

Measurement of many samples in a minimum possible time is a demand for

routine dosimetry and dating studies. For this reason, automated OSL readers have

been introduced and they are extensively in use around the globe (see e.g. Yukihara

and McKeever, 2011). It is essential for automated OSL readers to have a compact

and stable measurements system. Moreover, they generally include a sample

changer and luminescence measurement units which are controlled and monitored

by a personal computer. First automated OSL reader, Elsec 9010 OSL system, is

developed by Littlemore Scientific Engineering, UK at the beginning of 1990s. The

development of automated OSL reader are depicted by Bøtter-Jensen (1997), Bøtter-

Jensen et al. (2000) and Bortolot (2000). The Risø TL/OSL reader (Risø National

Laboratory, Denmark, http://www.usu.edu/geo/luminlab/Reader.pdf, Accessed on

May19th, 2017), Daybreak TL/OSL readers (Daybreak Nuclear and Medical

Systems, Inc., CT, USA, http://www.daybreaknuclear.us/daybreak_frameset.html,

Accessed on May19th, 2017), and the Freiberg Instruments lexsyg TL/OSL reader

(Freiberg Instruments, Germany, http://www.lexsyg.com/tlosl-reader.html,

Accessed on May 19th, 2017) are other examples of commercial instruments which

are still in use today. These commercial readers are widely preferred for scientific

research due to their precision of measurements and compact instrumentation.

Lately revealed models enable users to perform a sequence of irradiation and

measurement process on different samples with different modes successively. Even

though there are a lot of advantages of commercial readers which cannot go

unnoticed, their abilities (which are open for users) are limited to the ones that are

defined by manufacturer and cannot be easily modified by users. Especially for

scientific research, it might be crucial to modify an existing equipment to perform

novel experiments. Thus, commercial instruments may sometimes be

disadvantageous for researchers. In addition, the cost of these compact instruments

makes a purchase prohibitive for some research laboratories. For these reasons, there

has been efforts on producing cost-efficient home-made luminescence measurement

4

devices (or readers). One of them is lately developed in South Korea by Choi et al.

(2014). They designed a compact and economical OSL reader which may be load

up to 12 samples and includes an X-ray generator for irradiating samples and two

blues light emitting diodes (LED) for optical stimulation. Another one is presented

by Guérin and Lefèvre (2014). They designed an automated instrument which is

capable of performing thermoluminescence and optically stimulated luminescence

measurements. Kearfott and West (2015) also represented a flexible low-cost

optically stimulated luminescence reader utilizing multiple excitation wavelengths.

Previously, a low-cost OSL measurement system using a green LED for stimulation

was also reported (Maraba and Bulur, 2017). In this manuscript, an enhanced

version of that measurement system is presented.

Another significant point for the research laboratories focused on the basics

of the luminescence mechanisms is being able to control the instrumentation in both

hardware and software aspects. The development of new measurement protocols

and measurement techniques are possible by having this ability. Commercial

luminescence measurement instruments are generally not offering such flexibility.

It is because not these instruments are unadaptable but they are basically

commercialized. On the other hand, use of non-commercial, homemade developed

automated OSL reader may sometimes be more beneficial for research laboratories

for multi-sample measurements. Since, access to hardware and software enables the

device be open for modifications (i.e. attaching different measurement accessories

such as monochromators, filter wheels, etc.) when necessary.

There are various types of developer packages available for writing the

control software for an instrument, including LabVIEW, Daisy Lab, etc. For

instance, National Instruments LabVIEW is very popular and beneficial software for

scientific instrumentation. Users can create unique measurement control software

over several instruments and combinations of them. However, users still have to pay

a considerably high software license. On the other hand, the open-source movement

is increasingly providing unlimited access to software and even hardware in almost

every area for the last two decades. Advantage of the open-source software and

hardware is that the license that covers product or code allow users to study, modify

5

and even redistribute the new version of it. Most of the software are available at zero

cost and the hardware are cheaper than commercialized ones since anyone can

manufacture as long as they have ability to do so (Harland and Forster, 2012).

Hence, the movement aroused interest of people including researchers. It is non-

negligible that the possibility of building scientific instruments using open-source

software and hardware reduces the cost of research (see Pearce, 2014). Among the

various alternatives, Python (Rossum, 1995) is an open source language that is used

frequently in high-level software programming. It has become popular among those

who is dealing with instrumentation. Hughes (2011) described essentials of

instrumentation using Python in his book. There are also some examples of usage of

Python in different areas of physics (see Borcherds, 2007, Greenfield, 2011, Imreh,

2014, Koenka et al., 2014).

Moreover, most of the equipment in use today are based on microcontrollers

since they are good at recording simple parameters and controlling events. There are

also publicly available hardware designs (known as free and open-source hardware)

in significant amount (Pearce, 2014). Arduino, which is a microcontroller with an

open-hardware and software platform (supported by a large community), has

become a very significant replacement for expensive scientific instrumentation and

research equipment (Fisher and Gould, 2012).

The main purpose of this study is to design and construct a low-cost, open

hardware and software based automated OSL reader. The reader presented in this

thesis is neither comparable with the ones commercially available nor constructed

for this purpose. This thesis aims to be an example of open source hardware and

software utilization for an automated OSL reader construction (which has not been

done before). In this manuscript, design and implementation considerations are

given together with the test experiments carried out using materials relevant for

dosimetry and dating.

In Chapter 2, the theoretical aspects of OSL mechanism are discussed. There

are three different stimulation modes available for users in the instrument:

Continuous Wave OSL (CW-OSL), Linearly Modulated OSL (LM-OSL) and Time-

6

Resolved OSL (TR-OSL). These modes are portrayed briefly in addition to

description of simple model to explain the luminescence production mechanisms.

In Chapter 3, some background information about scientific instrumentation

is given. OSL measurement technology in terms of usage of detectors and

stimulation sources discussed in detail. Finally, open software and hardware

movement is discussed specific to Arduino and Python environment.

In Chapter 4, the design and development of an automated OSL reader,

which consist of computer software, electronic hardware and firmware parts, is

explained. Detailed software flowcharts are given in order to visualize the working

logic of measurement system.

In Chapter 5, optical properties and structure of the measurement setup is

mentioned in detail. The results of characteristics measurements for stimulation light

and measurement chamber are given. In addition, OSL measurement results of test

experiments performed on Al2O3:C, BeO, quartz (SiO2) and natural zircon (ZrSiO₄)

samples are given together with a brief discussion of OSL signals.

In Chapter 6, an overall conclusion of the research is presented.

7

CHAPTER 2

LUMINESCENCE

2.1 Luminescence Production

Radiative emission processes in solids resulting from transitions of electrons

from a high energy level to a lower energy level is called luminescence. It is called

as cold light or glow phenomena and must not be confused with the black body

emission of a hot object. As it can be seen from Figure 2.1, a generalized picture of

a luminescence mechanism can be drawn using a two level system. Electrons in the

ground state can be excited to the higher energy state as a result of energy absorption

followed by spontaneous relaxation to the ground state with a photon emission.

Figure 2.1: A simplified sketch of luminescence mechanism. On the left side,

electron movement to excited state as a result of energy absorption is drawn. On the

right side, the emission of luminescence as a result of electron relaxation is shown.

8

In theory, energy of absorbed and emitted photon from an atom or an ion is

equal to the energy difference between states that transition of electrons occurs.

Nevertheless, it is almost impossible to find a single isolated particle in nature. For

the case of crystalline solids, interaction of molecules and atoms are inevitable.

Electronic band structure is as a result of these interactions. According to the band

theory of solids, there is region called as an energy gap between conduction band

and valence band. This region is known as forbidden region because there are no

energy states exists in a perfect crystalline structure. However, various types of

defects in the crystal is observed very frequently. These defects can be listed as

point, line and volume defects in three major types. Point defects are observed in the

atomic level as a result of absence of an atom or substitution in a lattice. On the other

hand, line and volume defect are called to be alterations in the molecular level.

Various types of point defect are observed in solid. Some of the point defects

observed in the solids can be listed as Schottky defects (absence of cation and anion,

vacancy in non-ionic crystal), anion and cation vacancies, Frenkel defects (cation

vacancy plus same cation as interstitial) and impurity atoms (see Chapter 30 of

Ashcroft and Mermin, 1976 for more detailed information). Occurrence of different

energy states in the forbidden gap become possible due to these defects. Therefore,

an electron or a hole (the lack of an electron) may be captured in one of these states.

Depending to the position of energy state located in band gap, the ones near the

conduction band called as “trap” (or “electron trap”) and the ones near the valence

band called as “luminescence center” (or “recombination center”) (Krbetschek et

al., 1997).

The transition of electron should be radiative in order for the recombination

to result with luminescence. Three possible ways of radiative recombination

transitions are band to band, band to center and center to center transitions

(McKeever, 1985). When an electron directly goes from the excited state

(conduction band) to the ground state (valence band) and as a result of this process

emission of photon is observed, it is called band to band transition. On the other

hand, if there is an indirect recombination process which involves photon interaction

9

and phonon transfer, these transition are called band to center or center to center

transitions and can be both radiative and non-radiative (McKeever, 1985).

Luminescence production due to recombination of electrons and holes may

originate from various sources. In Table 2.1, different luminescence types are given

with excitation sources.

Table 2.1: Luminescence types and excitation sources.

Luminescence Type Excitation Source

Photoluminescence Photons

Radioluminescence Ionizing Radiation

Chemiluminescence Particles produced in chemical

reactions

Electroluminescence Electric Current

Cathodoluminescence Electron Beams

Mechanoluminescence Any mechanical action on a solid

Thermoluminescence Heating (after irradiation)

Optically Stimulated Luminescence Photons (after irradiation)

As seen from the table, different types of luminescence got their names

mostly from their excitation source. When emission is generated as a result of

absorption of light, it is called to be photoluminescence. If luminescence occurs due

to the ionizing radiation (α, β particles or γ rays), it is called radioluminescence.

Luminescence is observed in various other ways like as a result of chemical reaction,

mechanical action or electrical current. Bioluminescence (which is luminescence

emission from a living organism) can be sub-categorized under chemiluminescence

due to the fact that emission occurs after chemical reaction in an organism.

Thermoluminescence is observed due to heating of a crystalline material and it is

not related with the black-body radiation. However, in order for

10

thermoluminescence to occur, material should be exposed to energy (generally

ionizing radiation) before heating. As a result of this energy, electrons go to upper

energy levels typically created by crystalline defects and stay at these levels until

thermal stimulation occurs. Another type, optically stimulated luminescence, is a

similar phenomenon. Even though it can be sub-categorized under

photoluminescence (due to excitation source being photons), irradiation of the solid

is necessary for optically stimulated luminescence to be observed. In the next

section, this type is discussed in detail.

2.2 Optically Stimulated Luminesce (OSL)

When an insulator or semiconductor material absorbs energy due to ionizing

radiation, free electrons and holes are excited to electronic trapping states mentioned

above. The material (generally in crystal form) is put in a metastable state as a result

of this excitation unless there is a stimulation. A stimulation (either by light or heat)

which liberates charge carries of one sign (i.e. electron), may result recombination

of them with the opposite signs of carriers (i.e. holes). As a result of radiative

relaxation, luminescence is emitted (Bøtter-Jensen et al., 2003). If the metastable

condition of the system is disturbed by heating, the whole process is called

Thermoluminescence (TL). If disturbance is caused by light, it is called Optically

Stimulated Luminescence (OSL) or Photo-Stimulated Luminescence (PSL).

11

Figure 2.2: Energy band model description of OSL phenomenon.

In figure 2.2, energy band model description of OSL is given. Stimulation of

trapped electrons by light (UV, visible or infra-red) causes them to move to

recombination (hole) center. Radiative relaxation after recombination results in OSL

emission.

2.2.1 Model and Rate Equations

 A series of nonlinear, coupled rate equations are needed to describe the

complex processes behind the OSL. During the last century, several models were

introduced so as to explain the underlying physical process of stimulated

luminescence. The simplest one is called one trap/one center model describing a

system that consists of one type of electron trap and one type of hole center. When

this model taken into account, charge neutrality for the system can be written as:

𝑛𝑐 + 𝑛 = 𝑚𝑣 +𝑚 (2.1)

12

where concentration of electrons in the conduction band denoted as 𝑛𝑐,

concentration of electrons in the electron traps denoted as 𝑛, concentration of holes

in the valence band denoted as 𝑚𝑣 and concentration of holes in the hole traps

denoted as 𝑚. During the optical stimulation process, there is no transition to

valence band. Therefore, eqn. (2.1) can be written as:

𝑛𝑐 + 𝑛 = 𝑚 (2.2)

By neutrality condition, one may write the rate of change of electron and hole

concentrations as:

𝑑𝑛𝑐
𝑑𝑡

+
𝑑𝑛

𝑑𝑡
=
𝑑𝑚

𝑑𝑡

(2.3)

For an arbitrary density of states function 𝑁(𝐸) with the energy of 𝐸,

McKeever and Chen (1997) wrote a series of rate equations describing the moving

electrons into or out of the delocalized bands during stimulation as follows:

𝑑𝑛𝑐
𝑑𝑡

= ∫ 𝑝(𝐸)

𝐸𝑐

𝐸𝐷𝑛

𝑁(𝐸)𝑓(𝐸)𝑑𝐸 − 𝑛𝑐𝑣 ∫ 𝜎𝑟(𝐸)

𝐸𝑐

𝐸𝐷𝑛

𝑁(𝐸)(1 − 𝑓(𝐸))𝑑𝐸

− 𝑛𝑐 ∫ 𝜎𝑚(𝐸)

𝐸𝐹

𝐸𝐷𝑝

𝑁(𝐸)(1 − 𝑓(𝐸))𝑑𝐸

(2.4)

where 𝑓(𝐸) is Fermi-Dirac distribution function, 𝑝(𝐸) is the probability for

stimulation from the trap, 𝑣 is the free electron thermal velocity, 𝜎𝑟(𝐸) is the capture

cross-section for the re-trapping of free electrons and 𝜎𝑚(𝐸) is the recombination

13

cross-section for free electrons in the conduction band. Here, 𝐸𝑐 represents the

lowest energy level in the conduction band, 𝐸𝐷𝑛 and 𝐸𝐷𝑝 represent energy level

where the probability of recombination is equal to that of excitation for electrons

and holes respectively. They have been dubbed as “demarcation levels” (McKeever

and Chen, 1997). The probability for optical stimulation from the trap can be defined

as a product of the incident photon flux 𝜙 and the photo-ionisation cross-section 𝜎.

𝑝(𝐸) = 𝜙(𝐸)𝜎(𝐸) (2.5)

Here, it should be noted that 𝜎 is proportional to absorption coefficient 𝛼 for optical

transitions from a trap. 𝛼 is a function of stimulation energy ℎ𝑐 𝜆⁄ , where ℎ is the

Planck constant, 𝑐 is the speed of light in vacuum and 𝜆 is the wavelength of the

stimulating photon. Therefore, it is clear that photo-ionization cross-section 𝜎 has a

wavelength dependence. For thermal stimulations the escape probability can be

written as follows:

𝑝(𝐸) = 𝑠𝑒
−𝐸

𝑘𝑏𝑇
⁄

(2.6)

Where 𝑠 is the attempt-to-escape frequency of trapped electrons, 𝑘𝑏is Boltzmann

constant and 𝑇 is the temperature.

Considering only two types of single valued localized states (one electron

trap and one recombination center), some simplifications can be made. Setting 𝑁(𝐸)

as 𝑛𝛿(𝐸 − 𝐸′) for the trap state in this system, concentration of trapped electron and

empty traps becomes

∫ 𝑁(𝐸′)

𝐸𝑐

𝐸𝐷𝑛

𝑓(𝐸′)𝑑𝐸′ → 𝒏 and ∫ 𝑁(𝐸′)

𝐸𝑐

𝐸𝐷𝑛

(1 − 𝑓(𝐸′))𝑑𝐸′ → 𝑵− 𝒏

(2.7)

14

and concentration of available hole states for recombination are

∫ 𝑁(𝐸′)

𝐸𝐹

𝐸𝐷𝑝

(1 − 𝑓(𝐸′))𝑑𝐸′ → 𝒎

(2.8)

Using these simplifications and acknowledging that both electron trap energy and

recombination center energy are assumed to be single valued, then 𝜎𝑟 and 𝜎𝑚 are

single valued; rate equation (2.4) can be written as follows:

𝑑𝑛𝑐
𝑑𝑡

= 𝑛𝑝 − 𝑛𝑐𝑣𝜎𝑟(𝑁 − 𝑛) − 𝑛𝑐𝑣𝜎𝑚𝑚

(2.9)

Using equation (2.3), The rate of change of electron and hole concentration in the

traps may be expressed as:

𝑑𝑛

𝑑𝑡
= 𝑛𝑐𝐴𝑛(𝑁 − 𝑛) − 𝑛𝑝

(2.10)

and

𝑑𝑚

𝑑𝑡
= 𝑛𝑐𝐴𝑚𝑚 =

𝑛𝑐
𝜏

(2.11)

𝐴𝑛 = 𝑣𝜎𝑟 is the re-trapping probability (in units of m3s-1), 𝐴𝑚 = 𝑣𝜎𝑚 is the

recombination probability (in units of m3s-1), 𝑁 is the total available concentration

of electron traps (in units of m-3), 𝜏 = 1 𝐴𝑚𝑚⁄ is the free electron recombination

time (in units of s). Introducing quasi-stationary population of free electron in the

conduction band in a way that rate of change of electrons in conduction band is

15

much smaller than the rate of change of electron and holes in the traps as in equation

(2.12).

𝑑𝑛𝑐
𝑑𝑡

≪
𝑑𝑛

𝑑𝑡
,
𝑑𝑚

𝑑𝑡
 and 𝑛𝑐 ≪ 𝑛,𝑚

(2.12)

Assuming the rate of change of electron concentration in the conduction band is

negligible, the following can be written:

𝑑𝑛

𝑑𝑡
≅
𝑑𝑚

𝑑𝑡

(2.13)

From equation (2.9), 𝑛𝑐 can be written as;

𝑛𝑐 =
𝑛𝑝

(𝑁 − 𝑛)𝐴𝑛 +𝑚𝐴𝑚
 (2.14)

By plugging 𝑛𝑐 in equation (2.14) to equation (2.11), negative of the rate of change

of hole concentration equivalently OSL intensity can be given as follows:

𝐼𝑂𝑆𝐿 = −
𝑑𝑛

𝑑𝑡
= −

𝑑𝑚

𝑑𝑡
=

𝑛𝑝

(𝑁 − 𝑛)𝐴𝑛 +𝑚𝐴𝑚
𝑚𝐴𝑚

(2.15)

However, equation (2.15) cannot be solved analytically. For this reason, some

assumptions are to be made. Supposing that that re-trapping probability is very low

16

and can be neglected{(𝑁 − 𝑛)𝐴𝑛 ≪ 𝑚𝐴𝑚}, first-order kinetics equation for the

OSL intensity may be written as:

𝐼𝑂𝑆𝐿 = −
𝑑𝑛

𝑑𝑡
= −

𝑑𝑚

𝑑𝑡
= 𝑛𝑝

(2.16)

And solving this equation by setting 𝑛(𝑡 = 0) = 𝑛0, equation (2.16) becomes:

𝐼𝑂𝑆𝐿 = 𝑛0𝑝𝑒
−𝑝𝑡 = 𝐼0𝑒

−𝑝𝑡 (2.17)

where 𝑛0 and 𝐼0 are the initial electron concentration in the traps and OSL intensity

at 𝑡 = 0, respectively. Hence, this first-order model leads to an exponential decaying

OSL intensity as the constant stimulation is applied to the sample. When all the traps

are depleted, the OSL signal becomes zero (McKeever et al., 1997).

Even though it is possible to observe such experimental decay curves in

application, there are various curve shapes which do not agree with equation (2.17).

If re-trapping during stimulation is considered and 𝑚𝐴𝑚 ≪ (𝑁 − 𝑛)𝐴𝑛 assumption

is made, OSL intensity given in equation (2.15) becomes as follow:

𝐼𝑂𝑆𝐿 = −
𝑑𝑚

𝑑𝑡
= −

𝑛𝑝𝑚𝐴𝑚
(𝑁 − 𝑛)𝐴𝑛

(2.18)

It can be assumed that saturation of the trap is very unlikely {𝑁 ≫ 𝑛 , 𝑅 =
𝐴𝑛

𝐴𝑚
≫

𝑛

(𝑁−𝑛)
}. Recalling the assumption of electron concentration in the conduction band

being quasi-stationary and using the equation (2.2), the condition 𝑚 = 𝑛 can be

written. Then, OSL intensity for second order kinetics model becomes,

17

𝐼𝑂𝑆𝐿 = −
𝑑𝑛

𝑑𝑡
= −

𝑛2𝑝𝐴𝑚
𝑁𝐴𝑛

(2.19)

The solution of this equation for 𝑛 is (assuming 𝑛(𝑡 = 0) = 𝑛0)

𝑛 =
𝑛0𝑁𝑅

𝑛0𝑝𝑡 − 𝑁𝑅

(2.20)

And substituting equation (2.20) back to equation (2.19), OSL intensity can be

written as

𝐼𝑂𝑆𝐿 =
𝑛0
2𝑁2𝑅2

(𝑛0𝑝𝑡 − 𝑁𝑅)2
𝑝𝐴𝑚
𝑛𝐴𝑛

= 𝐼0(1 −
𝑛0𝑝𝑡

𝑁𝑅
)−2

(2.21)

where 𝐼0 =
𝑛0
2𝑝𝐴𝑚

𝑁𝐴𝑛
. More complex analysis of OSL kinetics were also conducted by

taking additional traps (radiative and non-radiative) and/or recombination centers

into account. (Bøtter-Jensen et al., 2003; McKeever et al., 1997; McKeever and

Chen, 1997; Whitley and McKeever, 2000; Chen and Pagonis, 2011)

2.2.2 Stimulation Modes of OSL

As mentioned before, OSL measurement can be defined as the stimulation

of a previously irradiated material (sample) using light source with a determined

wavelength (or a range of wavelengths), and observing the emission from the

material at a different wavelength using a detector. A stimulation light source and a

light transducer are two fundamental elements for OSL measurements (see figure

2.3). In order to prevent scattered stimulation light reaching the detector, strict

filtering is very essential for the measurements; since there is a huge difference

between stimulation intensity (around 102 mW) and luminescence intensity (in nW

18

or pW regime) in terms of optical power. More discussion about filtering and OSL

measurement setup will be done in Chapter 3.

Figure 2.3: Schematics of an OSL measurement system with the fundamental

elements.

One can apply various of stimulation modes in order to conduct an

investigation on a material (i.e. by changing illumination intensity or wavelength of

stimulation light). However, there are three commonly applied OSL stimulation

modes (see Figure 2.4). If OSL stimulation is done with a steady illumination

intensity during the measurement process, the luminescence emission is called

Continuous Wave OSL (CW-OSL). When the stimulation source has a linearly

increasing illumination intensity with respect to time, the luminescence emission is

called Linearly Modulated OSL (LM-OSL). If the stimulation of the material is

19

applied with pulses, the luminescence emission is called Pulsed OSL (POSL). (see

e.g. Bøtter-Jensen et al., 2003)

Figure 2.4: A summary of three main OSL stimulation modes, namely CW-OSL,

LM-OSL and POSL (Bøtter-Jensen et al., 2003).

2.2.2.1 Continuous Wave Optically Stimulated Luminescence (CW-OSL)

CW-OSL mode is the most common way to record the luminescence

emission. During the measurement procedure, the stimulation light wavelength and

intensity is kept constant since OSL intensity is dependent to these parameters.

20

While stimulation is done, the luminescence emission is being monitored

continuously. Fig. 2.5 illustrates a monotonic decay pattern from the CW-OSL

measurement of a BeO (ceramic) sample.

Figure 2.5: An example of a CW-OSL decay (irradiated BeO).

In most of the cases for CW-OSL measurement, visible or infrared light is used for

stimulation where emission is to be observed at near-UV region. Thus, it is a must

to separate the stimulation and emission wavelength.

The CW-OSL decay pattern can be observed either in simple or in multiple

decay form assuming there exists more than one type of electron traps. In both cases

CW-OSL intensity can be stated as

𝐼𝐶𝑊−𝑂𝑆𝐿(𝑡) =∑𝐼0𝑖𝑒
−𝑏𝑖𝑡 +

𝑘

𝑖=1

𝐵

(2.22)

21

where for the 𝑖 th component, 𝐼0𝑖 is the OSL intensity , 𝑏𝑖 = 𝜎𝑖𝜙 is detrapping

probability of electrons. For single exponential form, taking 𝑘 = 1 gives equation

(2.13). A stretched-exponential function for the analysis of non-exponential CW-

OSL decay is also proposed by Chen and Leung (2002).

2.2.2.2 Linearly Modulated Optically Stimulated Luminescence (LM-OSL)

 LM-OSL is called to be produced when the stimulation light intensity is

linearly increased with respect to time during measurement process. The technique

is introduced by Bulur (1996) as an alternative approach for measuring OSL. When

using this stimulation mode, decay components of CW-OSL signal turn into a series

of peaks. Each peak is considered as originating from a different type of trap with

distinctive photoionization cross-sections. Due to the fact that the traps with large

photoionization cross-section empty more quickly than the traps with small

photoionization cross-section, it is possible to separate overlapping OSL signals

with this technique. For the 1st order kinetics, the luminescence intensity in this

mode is obtained as

𝐼𝐿𝑀−𝑂𝑆𝐿(𝑡) = 𝐴𝑏
𝑡

𝑃
exp(−

𝑏𝑡2

2𝑃
)

(2.23)

where 𝐴 is amplitude proportional to both trap population 𝑛0, b is proportional to

the photoionization cross-section 𝜎 and maximum stimulation intensity 𝜙0(𝑏 =

𝜎𝜙0) and 𝑃 is the total observation time.

22

Figure 2.6: An example of a LM-OSL (Al2O3:C).

An example of LM-OSL curve obtained from irradiated Al2O3:C is given in

the figure 2.6. Detailed mathematical description of the LM-OSL curve shape can

be found in the paper by Bulur (1996). The application of this mode has been

presented in various studies with dosimetric materials such as quartz, Al2O3:C, BeO,

NaCl, ZrO2, ZnS and SrS based phosphors, feldspars. (see Yukihara and McKeveer,

2011 for a review of published studies).

2.2.2.3 Pulsed Optically Stimulated Luminescence (POSL)

POSL is another main stimulation mode which was first used by Sanderson

and Clark (1994) with the use of pulsed dye laser in the measurement on alkali

feldspars. The technique was also used on crystalline Al2O3:C shortly after its

23

introduction (Markey et al., 1995; McKeever et al., 1996; Akselrod and McKeever,

1999). Unlike the other two main modes, stimulation is made by brief pulses of light.

As a result, it is possible to separate luminescence signal during stimulation and

after stimulation in time. Since it is possible to change both pulse width and intensity

of stimulation light, absorbed energy per pulse can be controlled.

One of the advantages of using POSL mode is that it is possible to observe

luminescence with a lost a negligible amount of dose information. For instance, it is

usually possible to redo measurement on a dosimeter and get absorbed dose

information. Another one is that signal to background ratio is high when observing

luminescence decay. Because signal monitored after the pulse does not contain

scattered light coming from the stimulation source.

A type of usage of pulsed stimulation is known as Time Resolved Optically

Stimulated Luminescence (TR-OSL). This method only differs from POSL in

recording the luminescence. The luminescence signal is resolved in time during

measurement of TR-OSL. Hence, this method enables a probable application of

analyzing luminescence life times for the recombination center characterization.

Chithambo and Galloway (2000) suggested a simple model for TR-OSL.

The rate of change of the number of stimulated electrons 𝑛 with respect to time is

given as follows.

𝑑𝑛

𝑑𝑡
= 𝑝𝑛0 −

𝑛

𝜏

(2.24)

where 𝑛0 is initial trapped electron population, 𝑝 is the stimulation probability per

unit time and recombination life time 𝜏. The solution for 𝑛 at a time 𝑡 gives

𝑛(𝑡) = 𝑝𝑛0𝜏 (1 − 𝑒
−
𝑡
𝜏)

(2.25)

24

and radiative decay of stimulated electrons can be expresses as follows:

𝑑𝐼(𝑡) =
𝑛(𝑡)

𝜏
𝑑𝑡

(2.25)

and luminescence intensity at a given time during stimulation becomes

𝐼(𝑡) = 𝐼𝑜 (1 − 𝑒
−
𝑡
𝜏) + 𝐵

(2.26)

where 𝐼𝑜 is the maximum luminescence intensity in the time period during the

stimulation and 𝐵 is the background signal. Luminescence intensity at a given time

after stimulation can be written as follows.

𝐼(𝑡) = 𝐼𝑜𝑒
−
𝑡
𝜏 + 𝐵

(2.27)

where 𝐼0 is the maximum luminescence intensity after stimulation time period.

An example of TR-OSL curve obtained from irradiated BeO is given in the

figure 2.7. More information about theoretical considerations of TR-OSL and a

comparison between TR-OSL and CW-OSL can be found in the paper by

Chithambo (2007).

25

Figure 2.7: An example of TR-OSL curve (BeO).

2.3 OSL Dosimetry

OSL technique has been widely used for dosimetry applications more than

two decades. These applications include personal, medical, environmental, space

and, dating or retrospective accident dosimetry. Evaluation of dose absorbed by the

matter can be estimated using its relation to OSL signal. As the absorbed dose

increases, there is an enhancement in the OSL signal coming from the material.

26

Figure 2.8: An example of dose response (BeO).

In order to obtain absorbed dose information using OSL dosimetry, one

should first calibrate the dosimeter using a known radiation source. The OSL signal

with respect to known absorbed dose should be gathered for that specific dosimeter.

Then, OSL decay curves of various doses should be recorded. Using these curves,

one should calculate OSL dose response of that material. In order to do that, different

approaches such as deconvolution by curve-fitting, integration of curve or summing

first several data of the curve may be used. As a result, OSL dose response

information for varying doses will be obtained. One can find a dose response trend

of a dosimetry by fitting these data points to a line or a curve. In figure 2.8, dose

response data of BeO is given together with its linear fit in the range from 50 mGy

to 500 mGy as an example.

Only after having a dose response trend curve/line of the material, OSL

signal can refer the dose absorption. Similar approach is used for archeological

27

dating (see Huntley et al., 1985 and Hütt et al., 1988, Wintle and Adamiec, 2017).

The studies reported by Afouxenidis et al. (2007), Zacharias et al. (2007), Yukihara

et al. (2010), Yukihara et al. (2014), Nascimento and Hornos (2010) can be referred

for more detailed information about dosimetry applications.

There are some advantages of OSL dosimetry technique over TL for

personal dosimetry monitoring. One of them is that one can adjust the performance

of the dosimetry just by changing the power of the stimulation light. By doing that,

sensitivity of both low-dose and high-dose end of the dose response can be

increased. Another one is that the ability to re-read the OSL signal, accordingly

measure exposed dose, by adjusting the stimulation power. Even though, some

information stored in dosimeter is lost (some charges were depleted), dose

estimation still can be done.

28

29

CHAPTER 3

SCIENTIFIC INSTRUMENTATION

3.1 Instrumentation Basics

In order to understand diverse phenomena of nature, space, or man-made

objects; the comprehension of the state, amount, or value of different elements is

necessary in the scientific and technological world. Obtaining the knowledge of the

state, amount, or values of different elements is called as measurement (Bhuyan,

2011). It is certain that measuring instruments have a significant role in the physical

sciences and engineering. A group of systems which enables measurement and

maintaining retroactive control of the measurement process is termed as

instrumentation (Placko, 2007).

In this sense, an instrumentation system can be divided into two sub-systems:

measurement and control system. A measurement system consists of instruments

which enable acquiring information and data concerning tested material or object.

Generally, a control system consists of elements and instruments that enables

implementation of control using a feedback process. There are also open loop

systems as well. A diagram of measurement and control system is given in figure

3.1. A measurable quantity, which is measured as X(t), is transmitted by a signal

M(t) at the input of the measurement chain. After that this signal is characterized by

a transfer function T(t) and measurement chain crates an exit signal S(t) which has

a relationship to the input quantity by T(t). In other words, an instrumentation system

makes measurements and gives the user a numerical output value corresponding to

the variable being measured (Bolton, 2015). The whole system can be finalized by

30

a feedback loop with a transfer function B(t). This transfer function carries out the

control parameters of the object. Physically, measurement chains consist of devices

that converts one form of energy to another. They are called as transducers. If the

exit signal of the transducer is electrical, that means the measurement chain is a

sensor (Placko, 2007).

Figure 3.1: Measurement and Control System.

Accuracy, precision and reliability of a system have importance for scientific

data and results. (McMahon, 2008). Therefore, choosing suitable tools and devices

for the systems enhances the quality of instrumentation. There are three functional

elements that forms an instrumentation system for making measurements: sensor,

signal processor and data presentation.

Sensor (or detector) is the element which is constantly in contact with the

measurement process. A variable is being measured and an output is given to the

rest of the measurement system by this element. A thermocouple (which has a

temperature input and electromotive force output) is an example for a sensor, when

it is combined with measurement electronics.

31

Signal Processor is the element which gathers the output information from

the sensor and make a suitable conversion for display or for oncoming transmission

in some control systems. Active and passive analog filters, digital filters and

amplifiers can be given as an example for signal processor.

Data presentation element enables the user of the measurement device to

observe the measured value in a recognizable format. In other words, it converts the

signal coming from the system into observable output form. A liquid crystal display

screen, a computer user interface software or a galvanometer can be given as

examples of this element.

Figure 3.2 illustrates how three basic elements (sensor, signal processor, data

presentation) comprises a measurement system.

Figure 3.2: A diagram of measurement system elements.

 Modern implementation of measurement (or control) systems are based on

microcontrollers. It is advantageous for instrumentations to have multiple inputs for

sensors, ability to give output through different channels, signal and data processing

32

capability (analog and digital processing, application of mathematical methods and

calculations) together with on board memory, ability to control other instruments in

one device.

3.1.1 Characteristics of an Instrumentation System

Performance of instrumentation systems and functional elements is another

point to take into consideration. There are several terms that determine the

performance characteristics of a system. These terms can be listed as Resolution,

Accuracy, Error, Range, Precision, Repeatability, Reproduction, Sensitivity and

Stability.

 The smallest amount of an input signal (measurand) which can be reliably

detected with certainty by a measurement device or instrument is called to be

Resolution of the system. Accuracy, is another characteristic of an instrumentation

system, defines the proximity between measured value and the actual value of the

process variable being measured. In other words, if the measured value is close the

actual value, the system is called to be more accurate. Percentage of full-scale

deflection (FSD) representation is a common approach in order to express the

maximum difference between the actual value and the measured values (Sheel,

2014). Error is a term which defines the difference between the true value measured

quantity and the result of the measurement. It can be stated as follow

Error = Measured Value – True Value

Errors may be originated in number of ways. Bolton (2015) can be referred for

detailed information about some of the errors that are come across in specifications

of instrumentation systems. The range of a variable is determined by its minimum

and maximum obtainable values.

 In order to characterize the degree of freedom of an instrumentation system,

precision term is used. If a measurement instrument gives a small spread of readings,

it is called a high precision instrument. If it gives a large spread of reading, it is

called a low precision instrument. Repeatability and reproducibility are the terms

33

related to the instrument’s precision. When a system has an ability to give the same

output for repeated measurements (random fluctuations in the environment is low),

the measurement is called as repeatable. When a system has an ability to give the

same output after disconnecting it from a constant input and reinstalling, it is called

as reproducible.

 The sensitivity, which is another characteristics of a measurement system, is

determined by the ratio of output to input. In other words, it designates how much

the output of a measurement system changes when the measured quantity changes

by a given amount (Bolton, 2015).

Stability is another important characteristics of instrumentation. It is

expected that a measurement device to give the same output when it is used to

measure a constant input over a period of a time.

Besides the characteristics mentioned above, there are also dynamic

characteristics which refers to behavior of an instrument related to time. One of the

commonly used dynamic characteristics is called response time. It is difference

between the time when input is recognized by the system and the time when the

system gives an output corresponding to a specified percentage of input value (in

general 90%). Another dynamic characteristic is rise time. It is the time elapses

when the output signal rises from a specified percentage (i.e. 10%) to another

specified percentage (i.e. 90%) of a steady-state output. Fall time, which is defined

as time elapses during the fall of the output signal to specified percentage, may also

be significant for some systems.

3.2 Optically Stimulated Luminescence Measurement Technology

 Some significant characteristics of instrumentation and measurement

systems and the developments and significance of automated readers was mentioned

previously. In addition to these, there are other points to take into consideration

when designing an OSL measurement system.

34

 In figure 3.4, a simplified diagram for OSL measurement instrumentation is

given. In general, system consists of a measurement detector, a stimulation source

and measurement control electronics. As it can be seen from the figure, stimulation

light and luminescence emission is separated using filters. During stimulation,

which is controlled by an electronic control unit (such as microcontroller), detected

luminescence emission is recorded. In this section, various light detection sensors,

different types of stimulation sources are discussed for utilization in luminescence

measurement.

Figure 3.3: A simplified diagram of setup for measuring OSL.

35

3.2.1 Light Detection Unit

A light detection unit in a luminescence measurement system is an important

transducer which converts the emitted luminescence light to electrical current signal.

Light detection unit is going to be discussed under three categories: Photomultiplier

tube (PMT), avalanche photodiode (APD) and multichannel detectors.

3.2.1.1 Photomultiplier Tube

A photomultiplier tube (PMT) mainly converts incoming light into amplified

electrical signal. This process is based on external photoelectric effect (Gilmore,

2014). A PMT consists of following parts in vacuum case with a window: a

photocathode, an array of dynodes, and an anode. A schematic diagram of a PMT is

shown in figure 3.4.

Figure 3.4: The schematic diagram of a PMT. Uc is cathode voltage, Ud denotes the

potential difference between two dynodes, R is resistor. (Re-drawn after Tkachenko,

2006)

36

Incident photons passing through the light input window hits photocathode

and eject electrons as a result of photoelectric effect (with quantum efficiency less

than one). Then, photoelectrons, which are accelerated due to electric field between

anode and cathode, hits the first dynode and ejects 𝛿 number of secondary electrons

by transferring some of its kinetic energy to them. Here 𝛿 is the coefficient that

determines number of electrons released from a dynode. These secondary electrons

hit the next dynode and emission of more electrons occurs. This process continues

until electrons reach the anode. Hence, a great increase in the number of electrons

is observed (around 105-107). This increase is called as photomultiplier gain. The

acceleration of primary and secondary electron is done by applying a high voltage

between electrodes. This is around 1000 V in general (Pelant and Valenta, 2016).

 Light detection using PMT can be done in two modes. One of them, which

is called DC mode, can be operated by taking the signal coming to anode as direct

current and record it with respect to time. Only DC portion of PMT output signal is

detected with the help of an amplifier and a low pass filter. However, in some

experiments, the light intensity is too low to be measured in DC mode. In this case,

photon counting mode is used. Using a fast pulse amplifier and a pulse height

discriminator, it is possible to directly count the single pulses originating from the

photons. It is more likely to have better sensitivity using this mode (Bøtter-Jensen

et al., 2003).

 Technical parameters of PMT is also significant for an instrumentation

system. Spectral range of sensitivity, which is the spectral region PMT gives

response to electromagnetic radiation, is a significant parameter of PMT. It is

determined by the work function of the photocathode material. Another parameter,

electron transit time, determines the time elapses after the ejection of photoelectron

until it reaches the anode. Noise or Dark Current of a PMT is also another parameter.

It is the current due to thermionic emission of electrons from the photocathode and

the dynodes.

37

3.2.1.2 Other Detectors

One of the detectors which can be used for luminescence detection is

avalanche photodiode (APD). This detector is based on a reverse-biased p-n

junction. As a result of absorption of incident photons, electron-hole pairs is created.

The generated charges are separated under the influence of electric field due to p-n

junction. Therefore, a voltage difference is observed as output. During the separation

of charges, energetic electrons can create new electron-hole pairs by impact

ionization. Hence, there occurs multiplication of photo-carriers; in other words,

there is an internal gain inside the photodiode. Having small active area limits the

usage of these detectors. The sensitivity of APD is less than PMTs, even with a very

good focusing of luminescence emission. Moreover, these detectors show

wavelength dependency which requires addition normalization after measurement

(Gilmore, 2014).

In addition to single channel detectors like PMT and APD, there are

detectors used in luminescence detection and designed as one or two dimensional

arrays of photosensitive solid-state devices. Photodiode arrays and charge-coupled-

device(CCD) cameras are two of the most known types of multichannel detectors.

More detailed information regarding working principle of multichannel detectors

and usage in luminescence detection can be found in Bøtter-Jensen et al. (2003) and

Pelant and Valenta (2016).

3.2.2 Stimulation Sources

There has been a great increase in the number of types of light sources since

the first application of OSL. As a result of advances in the semiconductor

technology, there are Light Emitting Diodes (LED), semiconductor laser diodes in

addition to flash lamps. In this section, some of the light sources, which can be

suitable for luminescence measurement system, is discussed.

38

 Even though flash lamps, halogen lamps and deuterium arch lamps are now

largely replaced by semiconductor light sources, they are still in use for

luminescence measurements and spectroscopy. The advantage of using such a

source is the wavelength range. Especially, it is hard and expensive to achieve

stimulation source in the middle and far ultraviolet (UV) region, flash lamps and

deuterium lamps are still in use with strict filtering and preferred by researchers who

desire UV excitation of samples.

 However, these lamps have some limitation such as repetition rate and pulse

width. For this reason, the usage of cavity-pumped dye laser was increased in the

1980s (Gilmore, 2014). They are mainly used for shorter luminescence lifetime

measurements since it is possible for a dye laser to provide pulse widths of

picoseconds (ps) and repetition rate up to megahertz (MHz). The most common

pump lasers are, argon ion laser (emission at 514 nm) and yttrium aluminum garnet

(YAG) lasers (doubled frequency emission at 532nm, tripled frequency emission at

355 nm).

After the developments in semiconductor technology, LEDs and Laser

Diodes are favored as a stimulation sources for luminescence measurements.

Despite the fact that they suffer advantages such as tuning and having emission as a

combination of different wavelengths instantaneously, various of emitting sources

are available on the market in the range between 250 nm and 1300 nm. Moreover,

their repetition rates go up to tens of MHz, as they present pulse widths around 1 ns.

Furthermore, LEDs are very cost efficient comparing to the other stimulation

sources used in luminescence measurements (Gilmore 2014).

The specific usage of these stimulation sources for OSL measurements are

explained and illustrated in book by Bøtter-Jensen et al. (2003).

39

3.3 Open-Source Hardware and Software in Instrumentation

The term open-source has been started to be used in the late 80’s by several

hackers (free and open-source software developers) during a strategy session. Its

popularity increased especially after the foundation of Open Source Initiative (OSI)

in 1988 (Bretthauer, 2002). Free/open-source software (FOSS) defined as a software

that is available in source code form. It is possible to use, study, copy modify and

redistribute the source code without restriction (Pearce, 2014).

Open-source term does not only indicate that its source code or blueprint is

accessible. There are other criteria that open-source software or hardware should

meet such as free redistribution, integrity of the author’s source code. The Open

Source Definition (OSD), which was originally written by Bruce Perens, describes

these ten criteria (see https://opensource.org/docs/osd, Accessed on April 5th, 2017).

Kavanagh (2004), DiBona (1999) can be referred for more detailed information

about open source software.

Scientific hardware designs were also affected by open and collaborative

principles of FOSS. As a result, there are publicly available hardware designs to

study, modify, distribute, make and sell. They are called as free and open-source

hardware (FOSH) (Pearce, 2014).

3.3.1 Microcontrollers

 Microcontrollers have a significant role in FOSH designs. Most of the open-

source projects involves electronic sensing and control are in need of a

microcontroller. Farmbot (https://farmbot.io/, Accessed on April 5th, 2017), Project

Ara (https://atap.google.com/ara/, Accessed on April 5th, 2017), RepRap

(http://reprap.org/, Accessed on April 5th, 2017) , OpenKnit (http://openknit.org/,

Accessed on April 5th, 2017), OpenROV (https://www.openrov.com/, Accessed on

40

April 5th, 2017), APM:Copter (http://ardupilot.org/, Accessed on April 5th, 2017) are

some of the projects that utilizes a microcontroller. One of the most successful open-

source microcontroller environment is Arduino electronic prototyping platform

(http://www.arduino.cc, Accessed on April 5th, 2017).

3.3.2 Arduino Development Platform

 Arduino, which is a microcontroller-based development platform, is a result

of one of aforementioned FOSH projects. With the help of a microcontroller which

is mounted on a circuit board, it is possible to program the input and output pins of

the microcontroller hardware and make interaction with these pins using a personal

computer. In order to upload a program to an Arduino board, the Arduino Integrated

Development Environment (IDE) is generally used. Since Arduino is an open-

source hardware project; specifications of electronic components, all circuit board

designs and the IDE software is freely accessible for anyone to use or make

modifications. Hence, it is possible to find inexpensive Arduino-like or Arduino-

compatible microcontrollers from private manufacturers all around the world.

 Since the first introduction in 2005, usage of Arduino microcontroller boards

is greatly increasing. Some examples of Arduino based projects can be found in

Karvinen and Karvinen (2011). Due to the ease of use, low cost and standardized

components, Arduino platform also is utilized by researchers in development and

implementation of devices for variety of applications (see Bri et al., 2008; Buechley

and Eisenberg, 2008; Zhang et. al, 2009; Bergmann et al., 2010; Gordon et al., 2010;

Sarik and Kymissis, 2010).

 There are seventeen different official Arduino boards available as of today.

In addition to these, there are also unofficially designed models. In this study, as a

microcontroller of the measurement system, Arduino DUE board is used. This board

is based on microcontroller Atmel’s AT91SAM3X8E 32-bit programmable

microcontroller (Atmel Corporation, San Jose, CA USA). It has 512 kilobytes (kB)

41

flash memory for all user applications. There exist 54 digital input/output pins in

addition to 12 analog input and 2 analog output pins. This board operates with 3.3

V with an oscillation speed 84 MHz. A pinout diagram of Arduino DUE is given in

Appendix A (see figure A.1). For more detailed information and specifications of

chips, datasheets can be downloaded from Arduino project (http://www.arduino.cc)

and Atmel http://www.atmel.com) websites.

3.3.2.1 Software and Communication of Arduino

Arduino IDE (software environment for programming and interacting with

board) installation for Windows, Mac OS and GNU/Linux is available online on

project website. Advantage of the Arduino IDE is that users can upload codes

written in Arduino language (simplified version of C++ for ease of usage of the

boards). This simplified version is fundamentally a library written for Arduino

development boards. Moreover; since Arduino project is an open-source

environment, there are a great number of libraries written by the community for

various of purposes. LiquidCrystal, SoftwareSerial, Stepper, SD, GSM, WiFi, Tone,

I2S, Servo and Firmata are some examples of these libraries (see

https://www.arduino.cc/en/reference/libraries, Accessed on April 22th, 2017).

 There are several methods of communication possible for Arduino with

external electronics, sensors and computers in addition to its digital and analog

input/output pins. The most known and widely used communication protocol for

Arduino is RS-232 (the standard serial communication). Two communication lines

are used for this protocol and there exist two pins on Arduino as Rx (to receive), Tx

(to transmit). In more developed models such as Arduino Mega or DUE, there are

four different pairs RS-232 communication pins designated for enabling more

connections. Moreover, many Arduino models has its own USB-to-serial converter

chip embedded on boards. As a result, the boards can create connection with a

personal computer (PC) by creating a virtual serial port (Fisher and Gould, 2012).

42

Another one of the protocols that can be used for communication is The Inter-

Integrated Circuit (I2C) (Philips Semiconductors). There are two input/output pins

designated for I2C communication. It is possible to connect more than one device

to I2C connection as long as each device has its own unique identification number.

The other protocol which is available on Arduino boards is the Dallas 1-Wire

protocol (Dallas Semiconductor). This protocol uses a single input/output pin. The

Serial Peripheral Communication (Motorola), which is known as SPI, also exists on

the most of the boards.

3.3.3 Python Programming Language

 Python is one of the popular high-level programming language to write

software in different application domains and purposes (Rossum, 1995). Python is

defined that it is an interpreted, portable, interactive, interfaced, object-oriented,

open-sourced, easy to understand and use language (Nelli, 2015).

The language is interpreted, in other words pseudo-compiled. This means

that in order to run a code written in Python, an interpreter program (interprets the

source code and run it) is necessary. Therefore, there is no compile time needed for

Python code unlike the programming languages like Java and C.

Python is called to be portable due to the fact that installing an interpreter to

most of the operating systems (such as GNU/Linux, Windows, Mac OS) is doable

while the interpreted code remains the same. Hence, it is utilized as a programming

language for small devices like Raspberry Pi (https://www.raspberrypi.org/,

Accessed on April 23th, 2017). Python is also known to be interactive language

(Hughes. 2011). Interpreter enables users to execute commands instantly and decide

what to write to next line depending on the output. It is possible for Python to

interface code written in other programming languages as well. Especially for these

reasons, Python has become popular among scientific community (Nelli, 2015).

43

In Python programming language, specifying classes of object does not

require construction unlike Java or C. Python is also an open-source programming

language, which means that its reference implementation (known as CPython) is

free to modify, distribute.

Ease of use of Python language cannot be ignored. Division or categorization

of written functions is determined by indented and new lines instead of various types

of parenthesis and punctuations line in other popular languages. In addition to that,

there is a huge community of this language, resulting various of libraries available

for users.

44

45

CHAPTER 4

 DESIGN AND CONSTRUCTION OF THE AUTOMATED OSL READER

Within the framework of this study, an optically stimulated luminescence

reader was designed and constructed with an automated sample changer unit for

multi-sample measurements. The reader was designed using open-source hardware

and software. In this chapter, properties and components of the automated OSL

reader will be explained. Measurement chamber, motorized sample changer unit,

hardware and software of microcontroller and user interface software discussed in

detail in order to make an understanding of design.

4.1 Structure and Properties of the Optically Stimulated Luminescence Reader

 In order to observe luminescence emission from materials which are

previously exposed ionizing radiation, optical stimulation is one of the methods

which is commonly used (see Bøtter-Jensen, 2003). It is clear that a stimulation

source and a detection unit is necessary in the design of any OSL measurement

system. Furthermore, they should be cooperated by a controller and the signal

coming from the measurement unit should be recorded with respect to time so that

further analysis can be performed. Optionally, a motorized sample changer unit and

control of this unit is necessary for automated measurements.

 In this study, a measurement chamber carrying both stimulation and

detection unit, a sample changer unit which can be loaded up to eight samples is

designed. Both measurement process and sample position control are provided and

46

monitored by an open-hardware design Arduino DUE microcontroller. In addition,

a novel measurement control software was written in Python programming

language. Figure 4.1 demonstrates the simplified block diagram of the automated

OSL Reader.

Figure 4.1: Simplified block diagram of the automated OSL reader.

As it can be seen from the block diagram, sample changer unit driven by motor

drivers is controlled by an Arduino DUE board. In addition, measurement process

is also conducted by the microcontroller. There is also constant communication

between the measurement control software and the microcontroller which enables

the user interaction. All of the aforementioned components and parts will be

described in the following section.

 The automated reader is able to perform three modes of OSL measurement.

These measurements are CW-OSL, LM-OSL and TR-OSL. A user can enter proper

measurement parameters for selected measurement mode using a PC. It is possible

47

to create measurement sequences for consecutive automated measurements using

measurement control software.

4.2 Components and Parts of the Optically Stimulated Luminescence Reader

 The OSL measurement system described in this study comprises of four

main parts. These parts are measurement chamber, a motorized sample changer

mechanism, electronic control unit and user interface software. Measurement

chamber, sample changer tray mechanism, microcontroller, motor drivers and all

electronics of the systems are put in a light-tight box with dimensions: 60 cm length,

45 cm width and 35 cm height.

4.2.1 Measurement Chamber

 The measurement chamber is the main instrument inside the OSL reader that

enables luminescence measurements. It consists of a stimulation source, a detection

unit, and associated optics for focusing and collecting stimulation light and emitted

luminescence. A simplified sketch of the measurement chamber is given in figure

4.2.

As a stimulation source, a high power LED (Cree, Product Code: XQEBLU-

SB- 0000-000000Y01) is used. The LED is place inside an aluminum holder which

also serves as a heat sink. The emission of the LED used in the reader has a peak at

475 nm with the full width half maximum around 32 nm (Cree XLamp XQ-E LEDs,

2013). In order to avoid the short wavelength emission from the LED, a glass long

pass filter with 25 mm diameter and 3 mm thickness is used (Schott GG-420). The

stimulation light is collimated using acrylic non-imaging optics.

48

Figure 4.2: Simplified sketch of measurement chamber.

A photomultiplier tube (PMT) module (Hamamatsu, Product Code: H7173),

which has a built-in high voltage (HV) supply and constant level discriminator, is

used as a detection unit. The PMT inside the module has a spectral response

between 300 nm and 650 nm (Hamamatsu, R3550). The discriminator inside the

module gives transistor–transistor logic (TTL, 0-5V) pulses for photon counting. In

order to avoid the PMT to be exposed to visible light emitted from the stimulation

source, two ultra-violet (UV) band pass filter with total thickness 5 mm and diameter

25 mm (Hoya U340+Schott DUG 11) is placed in front of the window of the PMT.

Separation of stimulation (visible) and luminescence (UV) lights was

achieved using a dichroic mirror (beam splitter) placed at an angle of 45°. This

dichroic mirror enables the visible light to transmit whereas reflects UV light. In

addition, a UV grade biconvex lens and elliptical mirror is placed under the

measurement chamber so that the LED illuminates the sample holder (a diameter of

10mm) uniformly. The effective focal length of the system is approximately 40 mm.

49

An H-bridge circuit based on L298N driver was used for switching (turning) ON

and OFF the stimulation LED.

The measurement chamber is designed and constructed in a way that visible

stimulation/near-UV detection OSL measurements can be handled. In other words,

the design provides following: the light emitted from the LED transmits through the

dichroic mirror, reaches and stimulates the sample. Then, the collimated UV

emission of luminescence is reflected from the dichroic mirror reaches the detector.

It is also possible change configuration and filters easily if necessary for different

configuration. The measurement chamber has dimension of 49 mm length, 40 mm

width and 83 mm height. A picture of measurement chamber (figure B.3) was given

in Appendix B.

4.2.2 Motorized Sample Changer Unit

 The automated OSL reader has a sample holder wheel (diameter = 135 mm)

made of aluminum. The sample holder’s outer rim is machined for holding eight 10

mm stainless steel sample holder cups. It is painted in black to reduce reflection of

stimulation light. The sample is positioned under the measurement chamber for the

measurement with the assist of a rotary stage (Micos DT-90). The rotary stage is

driven by a stepper motor with a precision of 0.015 degrees with the help of a gear

mechanism (24000 full steps per revolution). The origin for sample positioning is

determined with the help of two sensors. A mechanical switch determines the origin

of rotary stage, where an opto-switch determines inside position of tray. There is

also another opto-switch for determining the outside position of the tray. The sample

wheel is attached on the top of a tray which can move in one dimension on a belt

driven rail mechanism. Hence, the sample wheel can be taken out of the light tight

box for loading or unloading the samples. The distance between inside and outside

position of tray is 48 cm. A top view picture of motorized sample changer unit

(figure B.2) can be seen in Appendix B. The movement is provided by a direct

50

current (DC) motor (Faulhaber Motor, 2342L012CR) mounted to the tray. Open

hardware H-bridge circuit (L298, STMicroelectronics, 2000) is used for driving

stepper and DC motor. Moreover, there are two buttons placed on the front panel of

the OSL measurement device such that it is possible to take tray in/out and change

the position of samples without the need of user interface software.

Figure 4.3: Simplified sketch motorized sample changer unit.

4.2.3 Electronic Control Unit

 Both OSL measurement process (stimulation power control and photon

counting) and sample positioning of the instrument are handled by an Arduino DUE

single board microcontroller. Arduino DUE operates an Atmel SAM3X8E ARM

Cortex-M3 CPU running at 84 Mhz. General properties of this microcontroller are

mentioned in the chapter 3. In this section, hardware components and software of

electronic control unit of the automated OSL reader will be explained in detail.

51

4.2.3.1 Hardware and Connections

 In figure 4.4, a block diagram of electronic control unit hardware is

illustrated in order to make a better understanding of communication of components

inside the OSL reader. The electronic control unit consists of Arduino DUE

microcontroller, step and DC motor drivers and LED driver. Direction and speed of

motors, intensity of LED is determined and sent to relevant drivers as digital logic

signals by the microcontroller. The method of driving motors and LED will be

explained in the next section. In addition, the microcontroller has output for user

information screens such as LED indicators and 16x2 Liquid Crystal Display (LCD).

The connection between the user interface software (computer) and the

microcontroller is done with a serial communication (RS-232) protocol via USB

cable.

Figure 4.4: Block diagram of hardware of electronic control unit.

52

 There are also inputs to the microcontroller such as switch sensors, PMT

module and button inputs. A mechanical switch and two opto-switches (Honeywell,

HOA0866-T55) are placed on rotary stage and tray mechanism respectively so that

a reference position (home position) for the automated sample holder unit can be

determined. Since the sample holder changer is controlled by the microcontroller, it

constantly monitors the state of these digital output switches when sample tray is on

move. Outputs of buttons, which are used for changing sample holder position and

taking tray out, are also monitored by the microcontroller. The PMT module is

directly connected to the microcontroller as well with a shielded cable in order to

reduce noise. However, a voltage divider is placed to 5V output of the PMT module

for dropping to 3.3V, since the microcontroller cannot handle input voltage greater

than 3.3V (see Appendix A for Wiring Diagrams).

 Furthermore, all wiring diagrams of the system is given and explained in

Appendix A. The software of the electronics unit will be described in the next

section.

4.2.3.2 Software

 A software, which is based on C programming language, was compiled using

Arduino IDE for Arduino DUE microcontroller board. The code of the

microcontroller software is given in Appendix C. The software can be analyzed in

two parts. The first part handles with the operation of motorized sample changer unit

and sample positioning, whereas the second part deals with OSL measurement.

53

Figure 4.5: Flow chart of the motorized sample changer unit part of the software.

As the OSL reader is turned on, it starts with initializing mode in which

sample holder position is set. In other words, the tray and sample wheel motor run

to find a pre-determined home position with the help of the mechanical and optical

switches (see Figure 4.4). This is done by the first part of the software. In figure 4.5,

a flow chart of the motorized sample changer unit part of the software is given.

When the software starts to run, it checks opto-switches in order to determine the

54

current position of the tray. If tray-in opto-switch is read as digital HIGH (which

means the ray is not inside), the DC motor is initialized to take the tray inside until

tray opto-switch is read as digital LOW. Once the tray is inside the reader, the

software searches for home position of the sample wheel. This home position is

determined by the mechanical switch output. The stepper motor, which is driven at

150 revolutions per minute (rpm) by the software, rotates in the clockwise direction

until the mechanical switch output is read as digital HIGH (which means that the

home position is found). Once the home position is found, the sample holder is

moved to sample position 1 (the position where sample 1 is under measurement

chamber). Then, the software goes in to idle state and waits for a command to be

received for processing.

Table 4.1 gives a list of the commands that are implemented in the software

for the sample changer unit. These commands can be send to Arduino using serial

communication protocol.

Table 4.1: List of the commands implemented in the software for the sample

changer unit.

Command Response

“TO” Takes tray outside

“TI” Takes tray inside

“P”+x Goes to position x (x takes values between 1-8)

“RP” Gives current tray position information

“PP” Gives current sample position information

“HM” Runs a initializing process (home search)

 After initializing process, the OSL reader becomes ready for measurements.

The measurements process is utilized by the second part of the software. In figure

4.6, a flow chart of OSL measurement part of the software is given. The boxes with

55

dashed outline represents the process which is done by the first part of the software

and a detailed information regarding these processes is given previously.

 The OSL reader is capable of making three modes of OSL measurements as

follows: CW-, LM- and TR-OSL. Before initiating the measurement, OSL mode

and appropriate parameters for selected mode should be defined by the user. All

parameters, which are encoded as a 37-character string, should be sent to Arduino

using serial communication wire. Once, parameter values are taken by the

microcontroller, all timers and counter are set for requested values. As the

‘START’(ST) command is given, measurement process begins.

If a CW-OSL or a TR-OSL measurement is going to be performed, then LED

intensity is set to a constant value. If LM-OSL measurement is going to be

performed, then LED intensity is set to be increasing linearly from a pre-defined

value to a final value which are determined as percentage of the maximum output

light intensity of the LED. The LED intensity is controlled using the pulse-width

modulation (PWM) technique. It is a common technique in lighting applications and

advised by the LED manufacturers. Also, it is very similar approach to frequency

modulation technique (Bulur et. al, 2001), which is proven to be working for

controlling the average output power. In order to control LED output, an output pin

of Arduino is designated for PWM signal. The frequency of the PWM signal is

constant and set to be 4.2 KHz. The duty cycle of the signal can vary between 0 %

to 100% (with a resolution 0.01 percent for LM-OSL stimulation light ramping) and

the average power output of LED is determined by the duty cycle.

56

Figure 4.6: Flow chart of OSL measurement part of the software.

PMT module output signal works as an external clock pulses for a counter

of Arduino DUE. Hence, the number of photon counts can be recorded. Also, a timer

is designated for determining data collection intervals (integration time). This timer

counts down from a user defined value in real time with a resolution of 1 µs. Every

time the data collection interval timer value hits 0 (which means one integration time

57

interval has elapsed), the value of photon counter is written on the memory of the

microcontroller. In this way, it is possible to have luminescence data with respect to

time in the user defined time range. For example, a user wants to record the data of

the number of photons emitted every 100 ms. Then, the data collection interval timer

value is set to 100000 µs and the number of photons emitted every 100 ms is

measured and recorded.

Table 4.2: List of the commands implemented in the software for the sample

changer unit.

Command Response

“ST” Starts the measurement.

“SP” Stops the measurement.

“PA” Sets the appropriate measurement parameters. A 37-

character parameter string should follow.

“SN” Send the data of the last measurement performed.

 As the measurement process continues, the recorded luminescence data is

sent to the computer using serial communication wire. In order to prevent possible

fast data transfer problems, data of measurements which has less than 10 ms

integration time is transmitted to the computer after measurement is completed.

Moreover, the microcontroller resets all times and counters after the completion of

the measurement and make itself ready and wait for next measurement parameters.

In table 4.2, a list of commands for OSL measurement part of the software is given.

“ST’ command stands for starting the measurement. Using this command, a

previously defined (by loading measurement parameters) OSL measurement can be

started. Using “SP” command, which stands for stop, all measurement process can

be ceased immediately. Using “PA” command together with a following 37-

character parameter string, one can upload a sequence to the microcontroller. Three

examples of string for different measurement modes as follows.

58

Example 1: CW-OSL measurement with 80% light intensity. 100 data points to be

recorded every 1 second time interval during measurement

1⏟
𝑂𝑆𝐿
𝑇𝑦𝑝𝑒

080⏟
𝐷𝑢𝑡𝑦 𝐶𝑦𝑙𝑒

𝑥𝑥𝑥⏟
𝐿𝑀−𝑂𝑆𝐿

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑢𝑡𝑦
𝐶𝑦𝑙𝑒

𝑥𝑥𝑥⏟
𝐿𝑀−𝑂𝑆𝐿
𝐹𝑖𝑛𝑎𝑙 𝐷𝑢𝑡𝑦

𝐶𝑦𝑙𝑒

00100⏟
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓

𝐷𝑎𝑡𝑎
𝑃𝑜𝑖𝑛𝑡𝑠

0001000000⏟
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑇𝑖𝑚𝑒 (𝜇𝑠)

𝑥𝑥𝑥𝑥𝑥𝑥𝑥⏟
𝐿𝐸𝐷 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

(𝜇𝑠)

𝑥𝑥𝑥𝑥𝑥⏟
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Example 2: LM-OSL measurement with linear 0 to maximum light intensity

ramping. 200 data points to be recorded every 1 second time interval during

measurement.

0⏟
𝑂𝑆𝐿
𝑇𝑦𝑝𝑒

𝑥𝑥𝑥⏟
𝐷𝑢𝑡𝑦 𝐶𝑦𝑙𝑒

000⏟
𝐿𝑀−𝑂𝑆𝐿

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑢𝑡𝑦
𝐶𝑦𝑙𝑒

100⏟
𝐿𝑀−𝑂𝑆𝐿
𝐹𝑖𝑛𝑎𝑙 𝐷𝑢𝑡𝑦

𝐶𝑦𝑙𝑒

00200⏟
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓

𝐷𝑎𝑡𝑎
𝑃𝑜𝑖𝑛𝑡𝑠

0001000000⏟
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑇𝑖𝑚𝑒 (𝜇𝑠)

𝑥𝑥𝑥𝑥𝑥𝑥𝑥⏟
𝐿𝐸𝐷 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑥𝑥𝑥𝑥𝑥⏟
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Example 2: TR-OSL measurement with 50 ms LED ON duration. 500 data points

to be recorded every 1 ms time interval during measurement. The measurement will

be repeated 1000 times.

2⏟
𝑂𝑆𝐿
𝑇𝑦𝑝𝑒

100⏟
𝐷𝑢𝑡𝑦 𝐶𝑦𝑙𝑒

𝑥𝑥𝑥⏟
𝐿𝑀−𝑂𝑆𝐿

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑢𝑡𝑦
𝐶𝑦𝑙𝑒

𝑥𝑥𝑥⏟
𝐿𝑀−𝑂𝑆𝐿
𝐹𝑖𝑛𝑎𝑙 𝐷𝑢𝑡𝑦

𝐶𝑦𝑙𝑒

00500⏟
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓

𝐷𝑎𝑡𝑎
𝑃𝑜𝑖𝑛𝑡𝑠

0000001000⏟
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑇𝑖𝑚𝑒 (𝜇𝑠)

050000⏟
𝐿𝐸𝐷 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

01000⏟
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Finally, “SN” command can be used for requesting the measurement data after

measurement.

4.2.4 User Interface (PC Software)

 It is crucial that instrumentation systems have a user friendly and clearly

designed control and data collection software. In that sense, a user interface software

is written for the OSL reader. Python programming language (Rossum, 1995) is

used for design. As mentioned before, there is a great number of libraries available

for Python, since it is frequently used in high-level software programming. TkInter

(https://wiki.python.org/moin/TkInter, Accessed on April 11th, 2017), matplot

(Hunter, 2007), NumPy (http://www.numpy.org/, Accessed on April 11th, 2017) and

Python Imaging Library (http://www.pythonware.com/products/pil/, Accessed on

April 11th, 2017) libraries are utilized for coding this user interface software.

59

In figure 4.7, a screen shot of user interface software is given. This software

enables users to create measurement sequences for consecutive OSL measurements

and run them using the ‘Setup’ window. It is also possible to observe ongoing

luminescence measurement (luminescence intensity against measurement time plot)

in near-real time under the ‘Live Plot’ window.

Figure 4.7: Screenshot of user interface software.

60

The user interface software keeps track of ongoing measurement, send

appropriate commands to the microcontroller, obtains the measurement data from

the microcontroller and saves the data file for further analysis. A flow chart of user

interface software is given in figure 4.8. Once the software is executed, a

communication port should be selected by the user so that serial communication

between the OSL reader and the computer can be initialized. It can be selected using

‘Setup’ drop down menu. After the selection of communication port, a sequence

should be created or loaded. In order to load a previously saved measurement

sequence, ‘Sequence’ drop down menu should be used. Measurement sequences can

be created using the ‘Add’ button. User should select desired the OSL mode,

samples to be measured and fill relevant entry boxes for that measurement mode in

order to add a step to the sequence. These steps can be observed in the list box. It is

possible to delete a step or change the order of measurement using ‘Delete’, ‘Up’

and ‘Down’ buttons located in the setup window.

 Once a measurement sequence is created or loaded, ‘Start’ button becomes

active. As measurement process is started, a pop-up dialog box is opened and asks

user to write a file name and location for measurement data. As they are entered, the

software sends position command to the microcontroller and waits until the

microcontroller gives the information that desired sample position is ready. Then,

all measurement parameters are encoded to 37-character string and sent to Arduino.

Luminescence data, which is retrieved from the microcontroller during (or ‘after’,

depending on data collection interval – explained in the microcontroller section)

measurement, is recorded to a data file. The data file, which is saved to desired

location at the end of the measurement, also includes measurement parameters and

sample number in order to avoid possible confusion during a future data analysis.

 The code of the user interface software is given in Appendix D.

61

Figure 4.8: Flow chart of User Interface Software

62

4.3 Principles of Measurement Modes

4.3.1 CW-OSL

 A CW-OSL measurement can be added to the measurement sequence. In

order to add CW-OSL measurement step, users should check samples to be

measured and enter LED intensity, number of data and integration time values. LED

intensity is defined as percentage of maximum output power of LED and can have

a value between 1-100. Number of data value specifies how many data points will

be collected. It can have a values between 1 and 65535. The separation between the

data points is defined by integration time value. Integration time can have a value

between 1 µs and 10 s.

4.3.2 LM-OSL

 A LM-OSL measurement can be added to the measurement sequence. In

order to add CW-OSL measurement step, users should check samples to be

measured and enter LED intensity, number of data and integration time values. In

this mode, LED intensity values defines the initial stimulation intensity of LM-OSL.

In addition, there is a final intensity entry which should be filled by the user. The

linear increase of the stimulation light during the measurement is between these

initial and final values of intensity.

4.3.3 TR-OSL

 A TR-OSL measurement can be added to the measurement sequence. In

order to add CW-OSL measurement step, users should check samples to be

measured and enter LED intensity, number of data and integration time values. In

addition, there is a LED duration value which should be entered by the user. This

value defines the length of the stimulation and can have a values between 100 µs to

1 s.

63

CHAPTER 5

 RESULT AND DISCUSSION

 In this chapter, experiments done for determination of optical and/or

electronic characteristics of measurement system is explained in detail. In addition,

results of OSL measurements of some materials relevant for dosimetry in different

measurement modes are also given.

5.1 Determination of the Stimulation LED Characteristics

 As it was mentioned in Chapter 2, characteristics of stimulation light is a

very significant parameter for OSL measurements since energy required for

emptying traps is provided by it and the de-trapping rate of electrons are considered

to be proportional to the light intensity. Hence, stable output of stimulation light

(both in terms of wavelength and power) is a must in order to have an accurate OSL

measurement system. Time response of LED is also important for TR-OSL. For this

reason, some measurements were performed in order to determine the characteristics

of stimulation LED (Cree XQEBLU-SB-0000-000000Y01). For the measurements

presented in this section, a calibrated power meter (Newport Model 841), fiber-

coupled spectra-radiometer (International Light, RPS900-R), a signal generator

(OWON AG2052F), a digital oscilloscope (GW Instek GDS-2204), a DC voltage

source (Trio Model PR-554), a voltmeter (TT T-ECHNI-C MV-64 Multi-meter) and

an ammeter (Keithley 199 DMM) was used.

64

 It is known that the emission spectrum of an LED depends on the current

passing through (Bøtter-Jensen et al., 2000). When emission spectrum

measurements of LED are conducted, it was observed that there is wavelength shift.

In figure 5.1, emission spectra of the stimulation LED are given for 10 mA (dashed-

line), 160 mA (dotted-line) and 340 mA (solid line). Peak wavelength of the emitter

for 10 mA is 467 nm, whereas 340 mA is 464 nm. The full width half maximum of

emission is 21 nm. Even though, the shift is only 4 nm, it was taken in consideration

due to the wavelength dependency of OSL in the design of the measurement

electronics so that the current flow through the LED is constant.

Figure 5.1: Emission spectra of the blue stimulation LED at different current values.

 Dependence of the output power of LED on the current passing through was

also measured. As it can be seen from figure 5.2, the relation between output power

and current is almost linear. Maximum power achievable when driving LED in the

recommended range of current is 134 mW. The detector of the power meter is placed

65

13 cm away from the LED for this measurement. This is the distance between LED

and sample holder of OSL measurement system. This measurement also confirms

the importance of the driving LED at a constant current value and changing intensity

of LED using other than changing current passing through.

Figure 5.2: Output power of the blue LED with respect to current passing through.

Another important parameter for stability of the LED output is temperature

of the emitter. The efficiency of the LED is changing with the temperature.

Therefore, a thermocouple was placed under the printed circuit board (PCB) of the

LED and temperature of the PCB board was measured with respect to current

passing through the emitter. As it can be seen form figure 5.3, the PCB temperature

is constant from 70 to 350 mA. The temperature recording presented was taken using

TT T-ECHNI-C MV-64 multi-meter after 10 minutes of operating LED.

 Since the LED is driven with a constant voltage supply rather that constant

current supply, the relationship between current passing through the LED and the

66

voltage between the sides of the junction is another parameter that is significant.

Inset to figure 5.3, potential difference values with respect to current is given. It was

determined that in order to get maximum output power from the LED, 3.00 V should

be applied.

Figure 5.3: The PCB temperature of the blue LED after 10 minutes of operation

time with respect to current passing through. Inset: The relationship between voltage

applied to the junction and current passing through.

 The time response determines how small pulses can be generated using the

LED and it is significant for TR-OSL measurements. For this reason, rise and fall

time of the LED were measured. A photodiode (Hamamatsu S1336-8BQ, Rise Time

= 100 ns) was placed in front of the LED (driven with pulses) and the output signal

of the photodiode (together with paralelly connected 100 Ω terminator resistor) was

observed using an oscilloscope. In figure 5.4 the output signal of the photodiode is

given with respect to time. The rise and fall time of the LED (together with its driver)

67

was found to be 1.02 µs and 1.22 µs respectively. In the calculation, rise time and

fall time was considered to be the time elapses between 10% and 90% of the output

signal.

Figure 5.4: Output Signal of Photodiode in Time for a LED Pulse.

As a result of these measurements, it was determined that the current passing

through the LED should be constant for the stability of the output. For this reason,

the LED driver circuit was designed in a way that constant 350 mA current is passing

through LED (see Appendix A). Moreover, it is determined that stimulation pulses

in µs regime can be generated when the device is used in TR-OSL mode.

 As mentioned in the previous chapter, the stimulation light intensity is

controlled using PWM technique. In order to verify the linear relationship between

duty cycle of the signal and intensity output, illumination power drops on the sample

is measured after the completion of instrument. As it can be seen from figure 5.5,

the relationship is linear and the output power of LED on sample varies from 0.8

mW to 91.4 mW as duty cycle changes from 1% to 100%.

68

Figure 5.5: Output power of the LED on sample with respect to duty cycle.

5.2 Determination of Measurement Chamber Characteristics

 As mentioned in Chapter 2, it is very significant in OSL measurements that

stimulation and emission light should be separated well. For this reason, the OSL

measurement system is designed in a way that emission of luminescence in the near-

UV region of the electromagnetic spectrum where the stimulation light is blue. The

transmission and reflection spectra of the filters (including the dichroic mirror) was

measured and presented in this section. In order to make these measurements an

experimental setup wass prepared. A simplified sketch of the setup is given in figure

5.6.

69

Figure 5.6: A simplified sketch of the experimental setup used for reflection and

transmission measurements.

In this setup, measurement chamber of OSL reader was placed between the detector

of fiber spectrometer (International Light, RPS900-R) and a deuterium lamp source

(Hitachi 890-2430). The reason for the use of D2 lamp is to measure the reflectance

spectra of dichroic mirror in the near-UV region. Firstly, spectrum of light source

was recorded as input. Then, reflection/transmission spectrum was recorded as

output after placing dichroic mirror. Percentage reflection and transmission spectra

were obtained using the formula (
𝑜𝑢𝑡𝑝𝑢𝑡

𝑖𝑛𝑝𝑢𝑡
𝑥100).

 In figure 5.7, transmission spectrum of the dichroic mirror is given together

with emission spectrum of the stimulation LED. The intensity of LED emission is

normalized between 0 and 1. The transmission is around 70% in the visible region

and below 0.5% at 400 nm. This is preferred since the stimulation of samples done

with blue LED which peaks in the visible region.

70

Figure 5.7: Transmission spectrum of dichroic mirror (solid-line) and emission

spectrum of LED (dashed-line). [Transmission spectrum of the dichroic mirror is

measured at 45° incident angle]

 Moreover, transmission spectrum of UV filter pack, reflection spectrum of

dichroic mirror and combination of these spectra were measured using the same

setup given in figure 5.6. As it can be seen from the figure 5.8, reflection of the bare

dichroic mirror is around 36% at 365 nm. Combination of mirror and filter pack

results for the system to have 18% overall efficiency at the maximum. Total

efficiency of the measurement detection can only be calculated after the

consideration of efficiency of PMT module. Quantum efficiency of PMT at 375 nm

is around 16% according to the datasheet. Hence total efficiency of detection can be

roughly estimated as 3%.

As a result of these measurements, the stimulation and detection regions of

the system is verified to be separated from each other.

71

Figure 5.8: Reflection spectrum of dichroic mirror (black/square). Transmission

spectrum of the UV filter pack (purple/triangle). Transmission spectrum of dichroic

mirror and UV filter pack combination (red/circle). [Reflection and transmission

spectra of the dichroic mirror are measured at 45° incident angle]

After the completion of the OSL reader, background measurements were

conducted in order to determine the stability of the measurement system. For this

purpose, background was measured and recorded in one second intervals for 200

minutes when stimulation light source was on (at maximum power) and off (see

figure 5.9). For both measurements, background data points (represents counts per

second) were averaged. It was found that averaged background of light-on

measurement was 44.48 counts per second with standard deviation of 2.30 and it

was 1.45 counts per second with standard deviation 0.66 when light was off.

72

Figure 5.9: Background measurements of OSL measurement system when

stimulation light is on and off.

5.3 Test Experiments

Functionality and performance of the OSL measurement system were tested

using materials relevant to dosimetry and dating. Materials used for these tests

include α-Al2O3:C crystals (5 mm diameter and 1 mm thickness, Landauer Inc.),

Beryllia (BeO) ceramics (4mm diameter and 0.8 mm thickness, Thermalox 995,

BrushWellman Inc.), heated natural quartz (SiO2) grains (250-355 µm, Merck) and

gem quality zircon (100 µm, ZrSiO4). A picture of these samples after preparation

is given in figure 5.10. Samples were irradiated using 90Sr/90Y beta source

(Amersham International) with a dose rate around 25 mGy/s.

73

Figure 5.10: A picture of samples used for OSL measurements.

Samples were prepared for measurement using appropriate annealing

procedures given in table 5.1. Due to heating, color of the zircon samples (originally

brown) was removed and they were observed to have light orange color. After

heating, these zircon samples were crushed and ground in an agate mortar to a size

around 100 µm. During OSL measurements Al2O3:C and BeO samples used as they

are. However, a single layer of quartz grains and a single layer of zircon grains were

prepared and attached to aluminum disks of diameter 10 mm using silicone oil.

Table 5.1: Annealing temperature and durations of samples before OSL

measurements.

Material Annealing Temperature (°C) Annealing Duration

(minutes)

Al2O3:C 900 15

BeO 650 30

Quartz 500 30

Zircon 900 15

74

In order to eliminate the luminescence contribution originating from shallow traps,

all samples were pre-heated at 100°C for 15 min and cooled back down to room

temperature between irradiation and measurement. For pre-heating, the samples

were placed inside an aluminum case which is kept inside a hot sand oven whose

temperature was controlled within ±1°C.

Test experiments were conducted using three measurements modalities

namely CW-, LM- and TR-OSL. In the following sections, a brief summary of the

results of these experiments are given. OSL curves obtained with different

measurement modalities were analyzed using deconvolution by curve-fitting using

appropriate model functions given in Table 5.2. The non-linear curve fitting is based

on the minimization of the χ2 function using Levenberg-Marquardt algorithm

(Levenberg, 1944; Marquardt, 1963). For this purpose, a commercial software

package was used (OriginLab, Massachusetts, USA).

Table 5.2: Model functions used in curve-fitting for different OSL modalities.

OSL Mode Function

CW-OSL
𝐼𝐶𝑊−𝑂𝑆𝐿(𝑡) =∑𝐼0𝑖𝑒

−𝑏𝑖𝑡 +

𝑘

𝑖=1

𝐵

LM-OSL
𝐼𝐿𝑀−𝑂𝑆𝐿(𝑡) =∑𝐴𝑖𝑏𝑖

𝑡

𝑃
exp (−

𝑏𝑖𝑡
2

2𝑃
)

𝑘

𝑖=1

TR-OSL
𝐼𝑇𝑅−𝑂𝑆𝐿(𝑡) =∑𝐼𝑜𝑖𝑒

−
𝑡
𝜏𝑖

𝑘

𝑖=0

+ 𝐵

75

5.3.1 CW-OSL Mode

 CW-OSL measurements were performed using the materials mentioned

above in order to verify the OSL detection of system in this mode. In figure 5.11, a

decay curve of 100 mGy irradiated Al2O3:C (which is widely used commertial

dosimeter) disk is given with the background measurement. The background

measurement, which is the second OSL measurement of the same sample, was done

in order to verify that the measured decay curves are genuine OSL signal due to

depletion of trapped charges.

Figure 5.11 Decay curves of Al2O3:C (100 mGy irradiated) taken from consecutive

measurements [(line) is first measurement, (dashed) is second measurement]. Inset:

Dose response of Al2O3:C in the range from 0.1 Gy to 1 Gy.

76

Inset to figure 5.11, dose response of Al2O3:C in the dose range from 0.1 Gy

to 1 Gy is given. Signal intensities of different doses were obtained by deconvolution

using curve-fitting to model function. For every dose in dose response graph, three

measurements are done and their results are averaged. Error bars shown in the plot

represent the standard deviation of this averaged value. The dose response of the

sample was observed as linearly increasing in that range. It has been previously

reported that this material shows linearity in the dose response up to 2 Gy (Yukihara,

et al. 2014). Hence, the results obtained were consistent with the literature and it can

be stated that CW-OSL signals from Al2O3:C can be detected using the constructed

OSL measurement system as expected.

Figure 5.12: Decay curves of BeO chips with different doses: 0.50 Gy

(black/square), 0.25 Gy (red/circle), 0.10 Gy (blue/triangle), 0.05 Gy

(magenta/reverse triangle) and background (green/diamond). Inset: Dose response

of BeO chips in the interval 50 mGy to 500 mGy.

BeO, which is one of two commercial dosimeters available today, was used

for CW-OSL test measurements. In figure 5.12, decay curves of BeO chips

77

irradiated with different doses are given together with background signal.

Background signal is a repeated measurement (2nd measurement) on 500 mGy

irradiated sample. Dose response of BeO chips can also be seen inset to figure 5.12.

Signal intensities of different doses were obtained by deconvolution using curve-

fitting. For every dose in dose response graph, three measurements are done and

their results are averaged. Error bars shown in the plot represent the standard

deviation of this averaged value. It was reported by several authors that dose

response of BeO chips show linearity from 5 µGy to 5 Gy (see Yukihara and

McKeever, 2011 for a review). The measurements done with the OSL reader shows

this dose response linearity as well in the given range (50 – 500 mGy).

 The instrument’s minimum detectable dose (MDD) together with dosimeter

is another parameter to be calculated when one is investigating OSL measurements

of personal dosimetry materials like Al2O3:C and BeO. One can calculate the MDD

using 3σ method. In order to detect a dose using CW-OSL measurement, the signal

intensity should be greater than the sum of background and three times its standard

deviation (3σ) (Yukihara and Mckeever, 2011). Using this approach, it is possible

to say that MDD using the constructed OSL device is less than 100 µGy for Al2O3:C

and BeO. Even it can be enhanced 2.5 times for BeO and 4 times for Al2O3:C by

increasing stimulation light intensity.

 Another material used for CW-OSL measurements was quartz which is one

of the most preferred materials for luminescence dating and retrospective dosimetry.

As an example of CW-OSL decay curve of irradiated (100 Gy) quartz sample is

given in figure 5.13. As seen from figure, the OSL from quartz exhibit a fast decay

with a slower tail extending to around 250 seconds. Moreover, most of the signal is

erased after 1st measurement and 2nd measurement is very close to the background

signal. Inset to figure 5.13, dose response of quartz is also given in the range of 50

Gy to 250 Gy. The dose measurements were repeated three times. The error bars

represented in the plot are standard deviation of averaged intensities. In the dose

range used, OSL signal intensity was observed to be increasing linearly. The

saturation of luminescence intensity was reported for high dose irradiated quartz

78

(Lowick et. al, 2010). In order to observe this saturation, it is clear that dose response

measurements of the material should be extended to higher doses.

Figure 5.13: CW-OSL decay curves of quartz (100 Gy irradiated) taken from

consecutive measurements [(line) is first measurement, (dash) is second

measurement]. Inset: Dose response of quartz from 50 Gy to 250 Gy.

 Gem quality brown zircon (ZrSiO4) crystals collected from Cambodia were

also measured using CW-OSL mode. The preparation process of the samples before

measurements is described in the previous section. An example of the OSL decay

curve from an irradiated (25 Gy) zircon sample is shown in figure 5.14. OSL curve

of this samples were analyzed since there was no CW-OSL study reported for this

material. As it can be seen from the figure, zircon exhibits a bright, fast decaying

luminescence signal. The OSL decay curve can be approximated using a linear

combination of three exponential decay functions with decay constants of 46.32 s,

7.22 s and 0.79 s (see inset of figure 5.14).

79

Figure 5.14: CW-OSL signal from zircon samples fitted with a linear combination

of three exponential decay curves. Inset: Components of the OSL decay curve: Fast

Decay (dashed/blue line), Medium Decay (solid/black line) and Slow Decay

(dotted/red line).

 Figure 5.15 shows OSL decay curves of zircon samples irradiated at various

doses (5, 10, 25 and 50 Gy) together with the background signal which was obtained

by a repeated measurement of the 25 Gy irradiated sample. Dose response of zircon

samples can also be seen inset to figure 5.15. Signal intensities of different doses

were obtained by deconvolution using curve-fitting. Intensity represents the sum of

three components of the decay. OSL measurements were repeated three times and

error bars shown in the plot represent the standard deviation of averaged intensities.

The CW-OSL measurements performed shows that dose response was linear in the

range between 1 Gy to 50 Gy. Linear increase of luminescence with the dose was

shown by Bulur et. al. (2014) for the same samples. Even though TR-OSL technique

80

was employed on that study, it may be said that CW-OSL measurements show

consistency with the study on the samples in terms of dose response.

Figure 5.15: Decay curves of zircon samples with different doses: 5 Gy

(black/square), 10 Gy (blue/triangle), 25 Gy (red/circle) and background

(green/dashed). Inset: Dose response of zircon samples chips in the interval 1 Gy to

50 Gy.

5.3.2 LM-OSL Mode

 Linearly modulated OSL capability of the OSL measurement system was

tested using the same samples used in the previous tests. An example of an LM-OSL

signal from Al2O3:C (irradiated with 0.5 Gy) sample is shown in figure 5.16. The

stimulation light intensity is linearly increased from 0 to maximum power in a 500s

interval during the measurement. As seen from the figure, the LM-OSL curve has a

peak-shaped form and can be approximated using three first order LM-OSL

81

components (see Table 5.2). The general appearance of the LM-OSL curve and the

number of components are consistent with previously reported measurement and

analyses (Bulur et al., 2001). Inset to figure 5.16, LM-OSL curves of Al2O3:C

samples irradiated with various doses (0-500 mGy) are also shown.

Figure 5.16: LM-OSL data of 0.5 Gy irradiated Al2O3:C chip with fitted curve and

its components (dotted, dashed and dot-dashed lines). Inset: LM-OSL curves of

Al2O3:C chips with various doses together with background.

Another material used in LM-OSL measurements was BeO. In figure 5.17,

LM-OSL signal of irradiated BeO (0.5 Gy) is shown. The data was collected in 500s

interval where intensity of stimulation light is linearly increased from 0 to maximum

power. The data obtained from the measurement of BeO was fitted to a combination

of three first order LM-OSL components given in Table 5.2 and a linearly increasing

background component in a form of ct (where c is a contant and t is time).

82

Figure 5.17: LM-OSL data of 0.5 Gy irradiated BeO chip with fitted curve and its

components (dotted, dashed, dot-dashed and short dashed). Inset: LM-OSL curves

of BeO chips irradiated at 250 mGy and 500 mGy together with measurement

background.

The components of the fitted curve are given in the figure 5.17. Moreover, LM-OSL

curves of BeO chips irradiated to 250 and 500 mGy is given inset to figure 5.17 with

the background. Here, background signal is a repetition of the same measurement

(2nd measurement) on 500 mGy irradiated sample. As it can be seen from the plot,

there is a background linearly enhancing with increasing stimulation intensity. The

reason of observing such a background is probably that not all electrons in traps

were depleted after first LM-OSL measurement. It was also reported that LM-OSL

signal of BeO chips can be described of combination of three curves (Bulur et. al,

2001). It is also possible to describe the obtained luminescence signal as a

combination of two LM-OSL curves to conduct a relationship between CW-OSL

83

(see Bulur, 2010). However, this discussion is not in the scope of this study. The

measurement results were consistent with measurements reported in the literature.

Therefore, it can be stated that LM-OSL measurements for BeO chips are possible

to perform using the automated OSL reader.

Figure 5.18: LM-OSL data of 100 Gy irradiated quartz grains with fitted curve and

its components (dotted/blue, dashed/green, solid/magenta and dot-dashed/cyan

lines). Inset: LM-OSL curves of quartz grains irradiated with 50 Gy, 75 Gy and 100

Gy.

 LM-OSL test measurements was conducted on quartz samples as well. In

figure 5.18, LM-OSL signal of irradiated quartz (100 Gy) is shown. Intensity of

stimulation light is changed linearly from 0 to maximum power in 1000s interval

during the measurement. The LM-OSL curve of quartz can be approximated using

four first order LM-OSL components (see Table 5.2). The components of the

84

approximated curve are also given in the figure 5.18. Moreover, LM-OSL curves of

quartz samples for doses 50, 75 and 100 Gy can be seen inset to figure 5.18. The

enhancement of the OSL signal was observed with increasing radiation dose.

 It is possible to fit LM-OSL curve of a quartz sample as a combination of

multiple curves (see e.g. Bulur, 2000). The variety of LM-OSL curves shapes of

samples, that are collected from different places, was also reported (Li and Li, 2006;

Jain et. al., 2003). In addition, Jain et. al (2003) reported that fast components

observed in the LM-OSL decay cannot be erased unless samples were pre-heated at

260°C. It has been also stated that medium and slow components cannot be removed

applying pre-heating alone. It can be deduced from LM-OSL data given in figure

5.18 that observed components were ultra-fast, fast, medium and slow components

remaining after pre-heating at 100°C. Hence, it may be said that LM-OSL

measurements performed on quartz grains show consistency with literature.

Finally, some LM-OSL measurements were conducted using zircon

samples. In figure 5.19, a plot of LM-OSL data of irradiated zircon (10 Gy) can be

seen. Intensity of stimulation light changes linearly from 0 to maximum power in

1000s interval during the measurement. The peak-shaped LM-OSL curve of zircon

was approximated to fit three first order LM-OSL components (see Table 5.2). The

components of the fitted curve are given in the figure 5.19. It is clear that more study

should be performed for investigation of LM-OSL curves of zircon sample.

Moreover, LM-OSL curves of quartz samples for doses 5, 10 and 25 Gy can be seen

inset to the figure 5.19. An increasing LM-OSL signal with radiation dose can be

observed.

85

Figure 5.19: LM-OSL data of 10 Gy irradiated zircon sample with fitted curve and

its components (solid/blue, dotted/green and dashed/magenta lines). Inset: LM-OSL

curves of zircon samples irradiated with 5 Gy, 10 Gy, 25 Gy and background

measurement.

TR-OSL Mode

TR-OSL measurements were also conducted on Al2O3:C chips for operation

testing purposes. For these measurements, LED duration was set to 50 ms and

luminescence data was recorded every 1 ms. The measurement accumulation was

1000 times. TR-OSL decay from 0.5 Gy irradiated Al2O3:C is given in figure 5.20.

The luminescence data after stimulation was fitted into an exponential decay

function given in Table 5.2. As a result of fitting, lifetime of the decay was found as

around 36 ms. This calculated lifetime value is compared well with the result

obtained by Markey et al. (1995), Akselrod and McKeever (1999), Pagonis et al.

86

(2009). Moreover, dose response measurements were conducted using TR-OSL

measurement mode in the dose range between 0.1 Gy to 1 Gy. Signal intensities

(obtained by deconvolution using curve-fitting) were acquired using three

measurements per radiation dose step.

Figure 5.20: TR-OSL data of 500 mGy irradiated Al2O3:C chip with fitted curve.

Inset: Dose response of TR-OSL measurements of Al2O3:C.

87

CHAPTER 6

SUMMARY AND CONCLUSIONS

 In the scope of this thesis, a low-cost automated OSL measurement system

was designed and developed utilizing open hardware and software. This multi-

sample measurement device (which can be loaded up to eight samples) is able to

perform three main luminescence measurement modes known as CW-, LM- and

TR-OSL. It has an automated sample changer unit which consist of one dimensional

tray and a rotary stage fixed on it. The tray mechanism can be taken out for loading

samples with the help of a DC motor. The sample to be measured is positioned by

stepper motor driven rotary stage.

 The measurement chamber of the device was designed for stimulating with

visible light and detecting luminescence emission in the near UV-region of the

electromagnetic spectrum. For this reason, an epi-illumination measurement

chamber was constructed with the help of a dichroic mirror (which has visible

transmission and UV reflection) and proper filters. Stimulation of the samples is

done by a blue LED (λpeak ~475 nm). A PMT module working in photon counting

mode was utilized for OSL detection.

The control of sample positioning and measurements are handled by Arduino

DUE microcontroller board. Moreover, a user-friendly measurement control

software was written in Python language so that users can set measurement

parameters and sequences using a computer. It is possible to set parameters like light

intensity (up to ~90 mW), data collection interval (in the range from 100 µs to 5 s)

and number of data points to be recorded using the measurement control software.

88

The communication between the computer and the instrument is maintained by

serial RS-232 protocol using a USB cable.

After completion of the OSL measurement device, some experiments were

conducted for determining the characteristics of stimulation LED and measurement

chamber. The stability of LED temperature and output power with varying current

was measured as well as time response of the LED. It was found that stimulating

LED is stable in the acceptable range for the intended OSL measurements.

Furthermore, background measurements showed that 45 counts per second with

standard deviation of 2.30 was recorded by measurement system when the

stimulation light was on (average of 12000 data points). Measured photon counts

can be described using Poisson distribution since events randomly occur in a fixed

time interval (Knoll, 2000). Error of Poisson measurement can be approximated as

𝜎 ≈ √𝑁, where 𝑁 is number of counts per fixed measurement time interval. Hence,

the standard deviation of the background measurement was found to be lower than

maximum statistical error of the measurement. Then, it can be said that precision of

measurement system (including both PMT and LED source) was high and adequate

for OSL measurement.

Since separation of stimulation light and luminescence emission is very

important for OSL measurements, transmission and reflection characteristics of

filters were measured and reported. As a result of transmission and reflection

measurements, the design of measurement chamber (visible stimulation – UV

detection) is verified to be suitable for OSL measurements.

 Furthermore, OSL measurements were conducted on Al2O3:C chips, BeO

chips, quartz grains and natural zircon grains using the constructed OSL reader. The

measurement results were found to be consistent with previously reported studies in

the literature. Since, there is no detailed study on CW-OSL and LM-OSL curves of

natural zircon so far, presented work in this thesis related to this material could not

been compared to others. However, it is overt that more work should be done with

the material in order to make certain conclusions. Dose response of materials were

also presented with the result of test experiments. As previously reported, the

89

measurements repeated three times for each dose step. Taking average of these

values, the measurement uncertainty (including sample variations) was found to be

around 1.41 %. Furthermore, as a result of background measurements and OSL

signal of Al2O3:C and BeO chips, MDD of the instrument and dosimeters (calculated

using 3σ method) was found to be less than 25 µGy. However, OSL measurements

have not been conducted with the materials irradiated at these dose levels due to

absence of low activity radiation source.

Test experiments with different dosimetric materials revealed that precise,

reliable and repetitive measurements can be handled using this constructed

automated OSL reader. However, there is no valuable measurement or information

regarding the accuracy of the system. Since, neither sample variations were

considered during measurements (no proper sample calibration was performed) nor

samples were irradiated with a different radiation sources calibrated for each

material.

 In summary, the OSL measurement device, which shows its significance by

having open source software and hardware utilization, was proven to be trustworthy

for multi-sample OSL measurements. Even though this device has less abilities than

commercial measurement devices (i.e. less sample capacity, lack of sample heating

and built-in radiation source), its design using open source environment is a great

advantage for experienced users/researches. It is possible for them to add new

features or modify existing ones easily as necessary. Furthermore, the cost of the

device (costing less than $10,000) is much less than commercial ones.

 Due to the fact that this device is a part of open source family, it is and will

be always possible to enhance the capabilities of the measurement system. Multi-

wavelength stimulation and higher time resolution may be considered as possible

features to be added soon.

90

91

REFERENCES

Afouxenidis, D., Stefanaki, E., Polymeris, G., Sakalis, A., Tsirliganis, N., Kitis, G.,

2007. TL/OSL properties of natural schist for archaeological dating and

retrospective dosimetry. Nucl Instrum Methods Phys Res A 580, 705–709.

doi:10.1016/j.nima.2007.05.142

Aguirre, J., Alvarez, P., Followill, D., Ibbott, G., Amador, C. and Tailor, R., 2009.

SU-FF-T-306: Optically Stimulated Light Dosimetry: Commissioning of An

Optically Stimulated Luminescence (OSL) System for Remote Dosimetry

Audits, the Radiological Physics Center Experience. Med. Phys. 36, 2591-

2592.

Akselrod, M., McKeever, S.W.S., 1999. A Radiation Dosimetry Method Using

Pulsed Optically Stimulated Luminescence. Radiat. Prot. Dosim. 81, 167–

175. doi:10.1093/oxfordjournals.rpd.a032583.

Antonov-Romanovskii V. V., Keirum-Marcus I. F., Poroshina M. S. and

Trapeznikova Z. A., 1956. Conference of the Academy of Sciences of the USSR

on the Peaceful Uses of Atomic Energy, Moscow, 1955, USAEC Report AEC-

tr-2435 (Pt. 1) 239.

Ashcroft, N.W., Mermin, N.D., 1976. Solid State Physics. Saunders College, Fort

Worth.

Berger, T., Przybyla, B., Matthiä, D., Reitz, G., Burmeister, S., Labrenz, J., Bilski,

P., Horwacik, T., Twardak, A., Hajek, M., Fugger, M., Hofstätter, C., Sihver,

L., Palfalvi, J.K., Szabo, J., Stradi, A., Ambrozova, I., Kubancak, J., Brabcova,

K.P., Vanhavere, F., Cauwels, V., Hoey, O.V., Schoonjans, W., Parisi, A.,

Gaza, R., Semones, E., Yukihara, E.G., Benton, E.R., Doull, B.A., Uchihori,

Y., Kodaira, S., Kitamura, H., Boehme, M., 2016. DOSIS & DOSIS 3D: long-

92

term dose monitoring onboard the Columbus Laboratory of the International

Space Station (ISS). J. Space Weather Space Clim. 6.

Bergmann, N.W., Wallace, M., Calia, E., 2010. Low cost prototyping system for

sensor networks. 2010 Sixth International Conference on Intelligent Sensors,

Sensor Networks and Information Processing.

doi:10.1109/issnip.2010.5706802

Bhuyan, M., 2011. Intelligent instrumentation: principles and applications. CRC

Press, Boca Raton, FL.

Bolton, W., 2015. Instrumentation and control systems. Elsevier/Newnes,

Amsterdam.

Borcherds, P., 2007. Python: a language for computational physics. Comput Phys

Commun. 177, 199–201. doi:10.1016/j.cpc.2007.02.019.

Bøtter-Jensen, L., Larsen, N.A., Markey, B., McKeever, S.W.S, 1997. Al2O3:C as a

sensitive OSL dosemeter for rapid assessment of environmental photon dose

rates. Radiat. Meas. 27, 295–298. doi:10.1016/s1350-4487(96)00124-2

Bøtter-Jensen, L., Bulur, E., Duller, G.A.T., Murray, A., 2000. Advances in

luminescence instrument systems. Radiat. Meas. 32, 523–528.

doi:10.1016/s1350-4487(00)00039-1

Bøtter-Jensen, L., McKeever, S.W.S., Wintle, A.G., 2003. Optically stimulated

luminescence dosimetry. Elsevier, Amsterdam.

Bräunlich P., Schäfer D., Scharmann A., 1967. A simple model for

thermoluminescence and thermally stimulated conductivity of inorganic

photoconducting phosphors and experiments pertaining to infra-red

stimulated luminescence, Proceedings of the First 106 International

Conference on Luminescence Dosimetry, June 1965, USAEC 57-73.

Bretthauer, D.W., 2002. Open source software: a history. Inf. Technol. Libr 21, 3–

10.

93

Bri, D., Coll, H., Garcia, M., Lloret, J., 2008. A Multisensor Proposal for Wireless

Sensor Networks. 2008 Second International Conference on Sensor

Technologies and Applications (sensorcomm 2008).

doi:10.1109/sensorcomm.2008.103

Buechley, L., Eisenberg, M., 2008. The LilyPad Arduino: Toward Wearable

Engineering for Everyone. IEEE Pervasive Computing 7, 12–15.

doi:10.1109/mprv.2008.38

Bulur E., 1996. An alternative technique for optically stimulated luminescence

(OSL) experiment, Radiat. Meas. 26, 701-709.

Bulur E. and Göksu H.Y., 1998. OSL from BeO ceramics: new observations from

an old material. Radiat. Meas. 29, 639-650.

Bulur, E., Bøtter-Jensen, L., Murray, S.A., 2001. Frequency modulated pulsed

stimulation in optically stimulated luminescence. Nucl. Instrum. Meth. Phys.

Res. B 179, 151–159.

Bulur, E., Bøtter-Jensen, L., Murray, S.A., 2001. LM-OSL signals from some

insulators: an analysis of the dependency of the detrapping probability on

stimulation light intensity. Radiat. Meas. 33, 715–719. doi:10.1016/s1350-

4487(01)00089-0

Bulur, E., Kartal, E., Saraç, B.E., 2014. Time-resolved OSL of natural zircon: A

preliminary study. Radiat. Meas. 60, 46–52.

doi:10.1016/j.radmeas.2013.11.011

Chen R. and Leung P. L., 2002. The decay of OSL signals as stretched exponential

functions, Radiat. Meas. 37, 519-526.

Chithambo M.L. and Galloway R. B., 2000. On luminescence lifetimes in quartz,

Radiat. Meas. 32, 621-626.

Chithambo M.L., 2007. The analysis of time-resolved optically stimulated

luminescence: I. Theoretical considerations, J. Phys. D: Appl. Phys. 40, 1874-

1879.

94

Choi, J.H., Kim, M.J., Cheong, C.S., Hong, D.G., 2014. Development of OSL

system using two high-density blue LEDs equipped with liquid light guides.

Nucl. Instrum. Meth. Phys. Res. B 323, 19-24.

Cree Xlamp XQ-E LEDs, 2013. Cree Inc., viewed 01 May 2017,

<http://www.cree.com/led-components/media/documents/ds-XQE.pdf>.

DiBona, C., Ockman, S., Stone, M., 1999. Opensources: voices from the Open

Sources revolution. O'Reilly, Beijing.

Fisher, D.K., Gould, P.J., 2012. Open-Source Hardware Is a Low-Cost Alternative

for Scientific Instrumentation and Research. MI Modern Instrumentation 01,

8–20.

Gilmore, A.M., 2014. Luminescence: the instrumental key to the future of

nanotechnology. Pan Stanford, Singapore.

Gordon, D., Beigl, M., Neumann, M.A., 2010. Dinam: A wireless sensor network

concept and platform for rapid development. 2010 Seventh International

Conference on Networked Sensing Systems (INSS).

doi:10.1109/inss.2010.5573290

Guérin, G., Lefèvre, J.-C., 2014. A low cost TL -OSL reader dedicated to high

temperature studies. Measurement 49, 26e33.

Harland, L., Forster, M., 2012. Open source software in life science research:

practical solutions in the pharmaceutical industry and beyond. Woodhead

Publishing, Oxford.

Hughes, J.M., 2011. Real world instrumentation with Python. O'Reilly, Beijing.

Hunter, J. D., 2007. Matplotlib: A 2D Graphics Environment. Computing in Science

& Engineering 9, 90–95.

Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., 1985. Optical dating of

sediments. Nature 313, 105–107. doi:10.1038/313105a0

95

Hütt, G., Jaek, I., Tchonka, J., 1988. Optical dating: K-feldspars optical response

stimulation spectra. Quat. Sci. Rev. 7, 381–385. doi:10.1016/0277-

3791(88)90033-9

Imreh, G., 2014. Python in a Physics Lab. The Python Papers 9:4, pp. 1-8.

Jahn, A., Sommer, M., Ullrich, W., Wickert, M. and Henniger, J., 2013. The

BeOmax system -Dosimetry using OSL of BeO for several applications.

Radiat. Meas. 56, 324-327.

Jain, M., Murray, S.A., Bøtter-Jensen, L., 2003. Characterisation of blue-light

stimulated luminescence components in different quartz samples: implications

for dose measurement. Radiat. Meas. 37, 441–449. doi:10.1016/s1350-

4487(03)00052-0

Karvinen, T., Karvinen, K., 2011. Make: Arduino Bots and Gadgets. O'Reilly

Media.

Kavanagh, P., 2004. Open source software: implementation and management.

Elsevier Digital Press, Amsterdam.

Kearfott, K.J., West, W.G., 2015. An affordable optically stimulated luminescent

dosimeter reader utilizing multiple excitation wavelengths. Appl. Radiat. Isot.

104, pp.87–99.

Koenka, I.J., Sáiz, J., Hauser, P.C., 2014. Instrumentino: An open-source modular

Python framework for controlling Arduino based experimental instruments.

Computer Physics Communications 185, 2724–2729.

doi:10.1016/j.cpc.2014.06.007

Knoll, G.F., 2000. Radiation detection and measurement, 3rd ed. Wiley, New York.

Krbetschek, M., Götze, J., Dietrich, A., Trautmann, T., 1997. Spectral information

from minerals relevant for luminescence dating. Radiat. Meas. 27, 695–748.

doi:10.1016/s1350-4487(97)00223-0

96

Lakshmanan, A.R., 1996. Radiation induced defects and photostimulated

luminescence process in BaFBr: Eu2+. Phys. Stat. Sol. (a) 153, 3–27.

doi:10.1002/pssa.2211530102

Levenberg, K., 1944. A method for the solution of certain non-linear problems in

least squares. Q. J. Math 2, 164–168. doi:10.1090/qam/10666

Li, S.-H., Li, B., 2006. Dose measurement using the fast component of LM-OSL

signals from quartz. Radiat. Meas. 41, 534–541.

doi:10.1016/j.radmeas.2005.04.029

Lovelock, D., Lim, S., Losasso, T., 2012. SU-C-213CD-02: The Use of Optically

Stimulated Luminescent Dosimeters in a Cone Beam Quality Assurance

Testing. Medical Physics 39, 3604.

Lowick, S.E., Preusser, F., Wintle, A.G., 2010. Investigating quartz optically

stimulated luminescence dose–response curves at high doses. Radiat. Meas.

45, 975–984. doi:10.1016/j.radmeas.2010.07.010

Maraba, D., Bulur, E., 2017. Design and construction of an automated OSL reader

with open source software and hardware. Radiat. Meas.

doi:10.1016/j.radmeas.2017.04.011 (in press)

Markey, B., Colyott, L., McKeever, S.W.S., 1995. Time-resolved optically

stimulated luminescence from α-Al2O3:C. Radiat. Meas. 24, 457–463.

doi:10.1016/1350-4487(94)001190-I

Markey, B., McKeever, S.W.S., Akselrod, M.S., Bøtter-Jensen, L., Larsen, N.A.,

Colyott, L., 1996. The Temperature Dependence of Optically Stimulated

Luminescence From α-Al2O3:C. Radiat. Protect. Dosim. 65, 185–189.

doi:10.1093/oxfordjournals.rpd.a031617

Marquardt, D.W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear

Parameters. Journal of the Society for Industrial and Applied Mathematics 11,

431–441. doi:10.1137/0111030

97

McKeever, S.W.S., 1985. Thermoluminescence of solids. Cambridge University

Press, Cambridge.

McKeever S.W.S., Markey B.G. and Akselrod M.S., 1996. Pulsed optically

stimulated luminescence dosimetry using α-Al2O3:C, Radiat. Prot. Dosim. 65,

267–272.

McKeever, S.W.S., Bøtter-Jensen, L., Larsen, N.A., Duller, G., 1997. Temperature

dependence of OSL decay curves: Experimental and theoretical aspects.

Radiat. Meas. 27, 161–170. doi:10.1016/s1350-4487(96)00106-0

McKeever, S.W.S., Chen, R., 1997. Luminescence models. Radiat. Meas. 27, 625–

661. doi:10.1016/s1350-4487(97)00203-5

McMahon, G., 2008. Analytical instrumentation: a guide to laboratory, portable and

miniaturized instruments. J. Wiley & Sons, Chichester.

Nascimento, L., Hornos, Y., 2010. Proposal of a Brazilian accreditation program for

personal dosimetry using OSL. Radiat. Meas. 45, 51–59.

doi:10.1016/j.radmeas.2009.11.032

Nelli, F., 2015. Python data analytics data analysis and science using Pandas,

matplotlib and the Python programming language. Apress, Berkeley, CA.

Pagonis, V., Mian, S.M., Chithambo, M.L., Christensen, E., Barnold, C., 2009.

Experimental and modelling study of pulsed optically stimulated

luminescence in quartz, marble and beta irradiated salt. J. Phys. D: Appl. Phys.

42, 055407. doi:10.1088/0022-3727/42/5/055407

Pelant, I., Valenta, J., 2016. Luminescence spectroscopy of semiconductors. Oxford

University Press, Oxford.

Pearce, J., 2014. Open-source lab: how to build your own hardware and reduce

research costs. Elsevier, Amsterdam.

Placko, D., 2007. Fundamentals of instrumentation and measurement. ISTE Ltd.,

London.

98

Rossum, G. van, 1995. Python tutorial, Technical Report CS-R9526, Centrum voor

Wiskunde en Informatica (CWI), Amsterdam

Sanborn E. N., Beard E.L., 1967. Sulfides of strontium, calcium, and magnesium in

infra-red stimulated luminescence dosimetry. Proceedings of the First

International Conference on Luminescence Dosimetry, June 1965, USAEC

183-191, Stanford

Sanderson, D., Clark, R., 1994. Pulsed photostimulated luminescence of alkali

feldspars. Radiat. Meas. 23, 633–639. doi:10.1016/1350-4487(94)90112-0

Sarik, J., Kymissis, I., 2010. Lab kits using the Arduino prototyping platform. 2010

IEEE Frontiers in Education Conference (FIE).

doi:10.1109/fie.2010.5673417

Sheel, S., 2014. Instrumentation theory and applications. Alpha Science Internat.,

Oxford.

Sommer M. and Henniger J. 2006. Investigations of a BeO-based optically

stimulated luminescence dosimeter. Radiat. Prot. Dosim. 119, 394–397.

Tkachenko, N.V. 2006. Optical Spectroscopy. Amsterdam: Elsevier Science &

Technology.

von Seggern, H.., 1999. Photostimulable x-ray storage phosphors: a review of

present understanding. Brazilian Journal of Physics 29, 254–268.

doi:10.1590/s0103-97331999000200008

Whitley H. V. and McKeever S. W. S., 2000. Photoionisation of deep centers in

Al2O3. J. Appl. Phys. 87, 249-256.

Wintle, A., Adamiec, G., 2017. Optically stimulated luminescence signals from

quartz: A review. Radiation Measurements 98, 10–33.

doi:10.1016/j.radmeas.2017.02.003

Yukihara, E., Gasparian, P., Sawakuchi, G., Ruan, C., Ahmad, S., Kalavagunta, C.,

Clouse, W., Sahoo, N., Titt, U., 2010. Medical applications of optically

99

stimulated luminescence dosimeters (OSLDs). Radiat. Meas. 45, 658–662.

doi:10.1016/j.radmeas.2009.12.034

Yukihara, E.G., McKeever, S.W.S., 2011. Optically stimulated luminescence:

fundamentals and applications. Wiley, Chichester, West Sussex.

Yukihara, E.G., Mckeever, S.W.S., Akselrod, M.S., 2014. State of art: Optically

stimulated luminescence dosimetry – Frontiers of future research. Radiat.

Meas. 71, 15–24.

Yukihara, E., Andrade, A., Eller, S., 2016. BeO optically stimulated luminescence

dosimetry using automated research readers. Radiat. Meas. 94, 27–34.

doi:10.1016/j.radmeas.2016.08.008

Zacharias, N., Stuhec, M., Knezevic, Z., Fountoukidis, E., Michael, C., Bassiakos,

Y., 2007. Low-dose environmental dosimetry using Thermo- and Optically

Stimulated Luminescence. Nucl Instrum Methods Phys Res A 580, 698–701.

doi:10.1016/j.nima.2007.05.125

Zhang, J., Ong, S.K., Nee, A.Y.C., 2009. Design and development of a navigation

assistance system for visually impaired individuals. Proceedings of the 3rd

International Convention on Rehabilitation Engineering & Assistive

Technology - ICREATE '09. doi:10.1145/1592700.1592702

Zhou, D., Semones, E., Gaza, R., Johnson, S., Zapp, N., Weyland, M., Rutledge, R.

and Lin, T., 2009. Radiation measured with different dosimeters during STS-

121 space mission. Acta Astronaut 64, 437-447.

100

101

APPENDIX A

 WIRING DIAGRAMS

 In this section, wiring diagrams of the designed OSL measurement system

are given. The whole measurement electronics is controlled by Arduino DUE board.

In figure A.1, pinout diagram of the microcontroller board is given. In table A.1,

utilized input and output pins of the microcontroller is given together with their use

of purpose. In the following figures, pin numbers shown in the table A.1 are

referenced.

 In figure A.2, wiring and connection diagram of power supplies is given. A

150W power supply (Coinstars Power Supply, Model No: KT-T150FX-06A) was

used in order to supply electrical power in various voltages. This power supply has

outputs of +5V (max. 8A), 3.3V (max. 5A), 12V (max. 9A), and -12V (max. 0.5A).

Since there was a need for voltages like +6V and 10.5V in order to drive motors and

LED, two DC-DC configurable voltage regulator modules (see

http://www.instructables.com/id/The-Introduction-of-LM2596-Step-Down-Power-

Module-/ for product information, accessed on June 18th, 2017) were utilized. These

modules host LM2596 (Texas Instruments) integrated circuit for voltage regulation.

In order to get -5V (which is needed for PMT to run), a 3-terminal negative voltage

regulator (National Semiconductor, LM7905) was used.

 Figure A.3 show the wiring and connection diagram of front panel and

indicators and switched. As seen from the figure, there are three LED indicators

showing ‘On/Off’, ‘Busy’ and ‘Error’ status of the device. In addition, a liquid

crystal display was placed on the front panel. The user can observe the current status

(i.e. “in progress”, “ready”) of the device as well as current sample position using

102

the display. Connection of LED indicators and LCD to the microcontroller is also

shown in the figure. Moreover, wiring of switches and buttons, that are placed on

the front panel, are given.

 The wiring and connection diagram of motors and sensors, which are used

for detection of tray and rotary stage position, are shown in figure A.4. L298N

(STMicroelectronics) motor driver boards were utilized for driving both stepper and

DC motor. The connections of motor drivers to the microcontroller is shown in the

figure. In addition to that, connections of sensor is also shown.

 Finally, wiring and connection diagram of power LED (used for optical

stimulation) and PMT module is given in figure A.5. Also, connections of PMT

On/Off switch and its LED indicator is shown.

Figure A.1: Pinout diagram of Arduino Due microcontroller board (Taken from

https://forum.arduino.cc/index.php?topic=132130.0, Accessed on June 24th, 2017).

103

Table A.1: Input and Outputs Pins of the Microcontroller

Pin Number Pin Mode Use of Purpose

4 OUTPUT DC Motor Enable

6 OUTPUT DC Motor Control 1

7 OUTPUT DC Motor Control 2

8 OUTPUT Step Motor Control 1

9 OUTPUT Step Motor Control 2

10 OUTPUT Step Motor Control 3

11 OUTPUT Step Motor Control 4

12 OUTPUT Step Motor Driver Enable 1

13 OUTPUT Step Motor Driver Enable 2

22 INPUT PMT Output Signal (Counter Input)

24 OUTPUT LCD Screen “RS”

25 OUTPUT LCD Screen “Enable”

34 OUTPUT LED Intensity (PWM) Output

36 OUTPUT LCD Screen “Backlight”

50 OUTPUT LCD Screen “D4”

51 OUTPUT LCD Screen “D5”

52 OUTPUT LCD Screen “D6”

53 OUTPUT LCD Screen “D7”

A0 INPUT Tray Inside Sensor

A1 INPUT Tray Outside Sensor

A2 INPUT PULL UP Tray In-Switch

A3 INPUT PULL UP Tray Out-Switch

A4 INPUT Stepper Home Sensor

A6 INPUT PULL UP Next Position Switch

A7 OUTPUT Relay Control

A10 INPUT PULL UP Previous Position Switch

104

105

106

107

108

109

APPENDIX B

 GENERAL VIEW OF THE OSL MEASUREMENT SYSTEM

 In this section, general view of the OSL measurement system is presented

with the pictures of the components of the device.

 In figure B.1, the general view of the of the OSL measurement system can

be seen when sample holder tray is outside the instrument.

 Figure B.2 shows a picture of measurement chamber taken when LED (OSL

stimulation source) was on. PMT Module (on the right side), stimulation source

(LED) and sample holder can be observed from the view.

 In figure B.3, a top view of the OSL measurement system is given. Control

electronics (including microcontroller, LED and motor drivers), measurement

chamber, and sample holder tray can be seen together with connections

Finally, a front and rear view of the OSL measurement system is given in

figure B.4 and figure B.5 respectively. In these picture, LCD screen, LED indicator

(Power, Busy, Error and PMT On/Off indicators), switches (Tray in/out switch,

Position switch, PMT On/Off switch and Power switch), reset button, USB Type-B

connection port, D-sub connection port and 220 V power connection plug can be

observed.

110

Figure B.1: General View of the OSL measurement system.

111

Figure B.2: View of Measurement Chamber. PMT Module, stimulation source

(LED) and sample holder can be seen from the figure.

112

Figure B.3: Top view of the OSL measurement system.

113

Figure B.4: Front view of OSL measurement system. LCD Screen, LED indicators,

control switches of sample tray and PMT high voltage can be seen from the figure.

114

Figure B.5: Back view of OSL measurement system. USB connection port, D-sub

port and 220 V power plug can be seen from the figure.

115

APPENDIX C

 MICROCONTROLLER SOFTWARE CODE

 In this section, the software code, which was compiled and uploaded to

Arduino Due Microcontroller, is given together with informative comments.

LiquidCrystal, Stepper and DueTimer libraries written for Arduino environment are

used in the development of this code. It is possible to upload this code to any

Arduino Due using Arduino IDE.

#include <LiquidCrystal.h> // Liquid Crystal L-library

#include <Stepper.h> // Stepper library

#include <DueTimer.h> // DueTimer library by invansidel

#define TC_CHANNEL_2 2 // defines timer clock channel

#define PIN_TC0_TCLK0_ARD (22u) // defines external pin for clock

#define sei() // defines disable global interrupt function

#define cli() // defines enable global interrupt function

volatile long int data[20000]; // array of datas

word i = 0; // index for data

unsigned long int k = 0; //index for data request

boolean firstRun =0; //first run controller bit

unsigned long lastDatum= 0; //final data on the clock register

unsigned int duty_cycle = 5000; //duty cycle of PWM(between 0-1000)

unsigned int period = 10000; // period of PWM (calculate using 42MHz clock =>

23.8 ns per period integer)

unsigned int ledDuration =1000000; // LED on duration time during TR-OSL

unsigned int accum = 1; // number of accumulations (for TR-OSL mode only)

String serialData; //defines serialData as ASCII

String param; //defines measurement parameter input String

String inCom; //defines incoming command string

String cwoslStr=""; //defines osl type String

String duty_cycleStr=""; //defines cw-osl duty cycle String

String idcStr=""; //defines lm-osl initial duty cycle String

String fdcStr=""; //defines lm-osl final duty cycle String

String nodStr=""; //defines number of measurement data String

String tStr=""; //defines integration time String

String ledStr=""; //defines LED duration time String

String accStr=""; //defines accumulation String

unsigned int t = 1000000; //interval time in microseconds

unsigned int T = 100000000; //total measurement time

float m1 = 0.00; //before measurement time coefficent (between 0-1)

float m2 = 1.0; //during measurement time coefficent (between 0-1)

float m3 = 0.00; //after measurement time coefficent (between 0-1)

unsigned int n1 = T*(m1); //before measurement time

116

unsigned int n2 = T*(m2); //during measurment time

unsigned int n3 = T*(m3); //after measurment time

int cwosl = 1; //OSL type boolean

unsigned int countnb; //number of measurement data

boolean readData = false; //data send determination integer (0 or 1)

int nod = 0; //number of datas per measurements

int idc = 0; //initial duty cycle (0%-100%)

int fdc = 100; //final duty cycle (0%-100%)

int idcv = (((idc)*(period))/100); //initial duty cycle value

int fdcv = (((fdc)*(period))/100); //final duty cycle value

int timer5 = ((n2)/(100));

int j = (idcv); // index for duty cycle

unsigned int resolution = 1000; //resolution of LM-OSL

int relay = A7; // relay output pin

boolean inSensorVal; // inSensor status bit

boolean outSensorVal; // outSensor status bit

boolean oneTime=true;

boolean dataWrite = false;

/**************************Pin Definitions**************************/

LiquidCrystal lcd(24, 25, 50, 51, 52, 53); //initializes LCD screen control

outputs

int backLight = 36; //pin 36 will control the backlight

int homeSensorPin = A4; //defines home sensor pin

int outSensorPin = A1; //defines outside sensor pin

int inSensorPin = A0; //defines inside sensor pin

int prePin = A10 ; //defines backward sample switch pin

int nextPin = A6; //defines forward sample switch pin

int inSwitch = A2; //defines tray inside switch pin

int outSwitch = A3; //defines tray outside switch pin

int totalStep = 0; //defines number of steps integer

int pStep = 0; //defines number of steps between samples integer

int currentPos = 1; //defines current position of step motor integer

int rayPos = 0; //defines current position of tray integer

int NOS = 8; //defines number of samples

int lastValue = 0;

int speedstep = 150; //defines step motor's speed

int x = 0;

int y = 0;

int z = 0;

/* Sets the home state value*/

int getHomeStateValue(){

 int value = analogRead(homeSensorPin);

 int res;

 if(lastValue >1000 && value<10){

 res = 1;

 }else{

 res = 0;

 }

 lastValue = value;

 return res;

 }

Stepper myStepper(200, 8, 9, 10, 11); // defines stepper control output pins

/**********************Initialization Function**********************/

void setup() {

 Serial.begin(9600);// opens serial communications and sets serial data

transfer speed

 pinMode(relay, OUTPUT);// set digital pin 36 as output

 digitalWrite(relay, LOW);//disables relay

 pinMode(backLight, OUTPUT);//set pin 13 as output

 analogWrite(backLight, 100);//controls the backlight intensity

 lcd.begin(16,2); // columns, rows. size of display

 lcd.clear(); // clear the screen

 /* Definition of Pin Types and Special Pins*/

117

 pinMode(inSwitch, INPUT_PULLUP);

 pinMode(outSwitch, INPUT_PULLUP);

 pinMode(nextPin, INPUT_PULLUP);

 pinMode(prePin, INPUT_PULLUP);

 pinMode(12, OUTPUT);

 pinMode(13, OUTPUT);

 pinMode(2, OUTPUT);

 pinMode(5, OUTPUT);

 pinMode(6, OUTPUT);

 pinMode(7, OUTPUT);

 pinMode(homeSensorPin, INPUT_PULLUP);

 digitalWrite(6, LOW);

 digitalWrite(7, LOW);

 myStepper.setSpeed(speedstep); //sets stepper speed

 pinMode(PIN_TC0_TCLK0_ARD,INPUT_PULLUP); //sets external timer/clock pin as

digital with internal pullup resistor

 cli(); // disable global interrupts

 pmc_enable_periph_clk(ID_TC2); //enable using timer ID

 TC_Configure(TC0, TC_CHANNEL_2, TC_CMR_TCCLKS_XC0); // configures

timer/clock, uses XC0/TCLK0 on PB26(digital pin 22)

 TC_Start(TC0, TC_CHANNEL_2); // starts timer/clock taking external channel

as trigger

 pmc_enable_periph_clk (PWM_INTERFACE_ID) ; // turn on clocking to PWM unit

 PWMC_ConfigureChannel (PWM, 0, 1, 0, 0) ; // PWM channel 0, clock = MCLK/2 =

42MHz (for fastest case)

 PWMC_SetPeriod (PWM, 0, period) ; // period = number of PWM clocks

 PWMC_EnableChannel (PWM, 0) ; // enable

 PWMC_SetDutyCycle (PWM, 0 , 0); // Configure pin 34 (PC2) to be driven by

peripheral B (PWM channel 0 L)

 PIOC->PIO_PDR = 1<<2 ; // disable PIO control

 PIOC->PIO_IDR = 1<<2 ; // disable PIO interrupts

 PIOC->PIO_ABSR |= 1<<2 ; // switch to B peripheral

 sei(); // disable global interrupts

 goIn();

 digitalWrite(12, HIGH); // enable motor driver

 digitalWrite(13, HIGH); // enable motor driver

 delay(100);

 /* finds and sets the home state position of sample changer*/

 while(!getHomeStateValue()){

 if (i == 0){

 lcd.clear();

 lcd.print("initializing");

 i++;

 }

 else if (i!=0){

 }

 myStepper.step(100);

 }

 myStepper.step(3230);

 digitalWrite(12, LOW); // disable motor driver

 digitalWrite(13, LOW); // disable motor driver

 totalStep += 24000; //total number of steps of stepper motor for a

revolution.

 pStep = totalStep/NOS; //number of steps between consecutive sample

positions

 lcd.clear();

 lcd.setCursor(5,0);

 lcd.print("ready");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

 delay(1000);

}

/**********************Infinite Loop Function***********************/

void loop() {

 delay(100);

118

 /*Gets Incoming Serial Commands*/

 if (Serial.available()){

 /*gets 2 byte long incoming commands*/

 inCom=Serial.readStringUntil('\n');

 serialData=inCom.substring(0,2);

 if(serialData == "st"){

 lcd.clear();

 lcd.setCursor(5,0);

 lcd.print("in progress");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

 delay(10);

 if(cwosl==2){

 troslmainStart();

 }

 else{

 Start();

 }

 }

 if(serialData == "sp"){

 Stop();

 }

 if(serialData == "ti"){

 goIn();

 }

 if(serialData == "to"){

 goOut();

 }

 if(serialData == "sn"){

 sendData();

 }

 if(serialData =="rp"){

 Serial.write(rayPos);

 }

 if(serialData == "pa"){

 setParameters();

 }

 /*commands to execute when tray is inside*/

 if(rayPos == 0){

 if(serialData == "p1"){

 goPosition(1);

 }

 if(serialData == "p2"){

 goPosition(2);

 }

 if(serialData == "p3"){

 goPosition(3);

 }

 if(serialData == "p4"){

 goPosition(4);

 }

 if(serialData == "p5"){

 goPosition(5);

 }

 if(serialData == "p6"){

 goPosition(6);

 }

 if(serialData == "p7"){

 goPosition(7);

 }

 if(serialData == "p8"){

 goPosition(8);

 }

 if(serialData == "pp"){

 Serial.write(currentPos);

 }

 if(serialData == "ps"){

119

 dataReq();

 }

 }

 }

 /*switch status commands*/

 if(digitalRead(inSwitch) == LOW){

 goIn();

 }

 if(digitalRead(outSwitch) == LOW){

 goOut();

 }

 if(rayPos != 0){

 if(digitalRead(prePin) == LOW){

 if(currentPos == 8){

 goPosition(1);

 }

 else{

 goPosition(currentPos+1);

 }

 }

 if(digitalRead(nextPin) == LOW){

 if(currentPos == 1){

 goPosition(8);

 }

 else {

 goPosition(currentPos-1);

 }

 }

 }

 /*sends measurement data to host computer*/

 if (k < (nod) && readData == true){

 delay(t/1000);

 data[-1] = 0;

 Serial.print(k+1), Serial.print("-"), Serial.print(abs(data[k]-data[k-

1]));

 Serial.print("\n");

 k++;

 if(k==nod){

 k=0;

 readData=false;

 }

 }

 if(k<(T/t) && dataWrite == true){

 for (i=0; i < (T/t); i ++){

 Serial.print(i+1), Serial.print("-"), Serial.print(abs(data[i]-data[i-

1]));

 Serial.print("\n");

 }

 dataWrite=false;

 }

}

/*********************Counter Register Read************************/

void myHandler4 () {

 data[i]= TC_ReadCV(TC0,TC_CHANNEL_2); // reads timer/clock and writes on

ith element of the array

 i++;

}

/****************LM-OSL LED Intensity Ramp Function****************/

void myHandler5 (){

 if (j == 0 | j < (fdcv)){

 PWMC_SetDutyCycle (PWM, 0,j); //sets Duty Cycle

 j+=(1*((period)/(resolution)));

 }

 else if(j = (fdcv)){

 Timer1.stop(); //DueTimer.h library Timer1 stops

 j = 0;

 PWMC_SetDutyCycle (PWM, 0, 0); //sets Duty Cycle to 0

120

 Timer5.stop(); //DueTimer.h library Timer5 stops

 }

}

/***********************TR-OSL Start Function***********************/

void troslmainStart(){

 digitalWrite(relay, HIGH);

 if (i >=0 |i <= 10000){ //clears data array

 for (i=0; i < (nod+1) ; i ++){

 data[i] = 0;

 }

 firstRun=1;

 i = 0;

 readData = false;

 k = 0;

 }

 cli();

 TC0->TC_BCR = TC_BCR_SYNC;

 REG_TC0_BCR = 0x1; //clears timer/counter TC0 register (reset counter)

 sei();

 lastDatum=(TC_ReadCV(TC0,TC_CHANNEL_2));

 for (int acm=0; acm < (accum) ; acm ++){

 repeat();

 delayMicroseconds(T);

 }

 trsend();

 lcd.clear();

 lcd.setCursor(5,0);

 lcd.print("ready");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

}

/********************TR-OSL Accumulation Function*******************/

void repeat(){

 i=0;

 cli();

 TC0->TC_BCR = TC_BCR_SYNC;

 REG_TC0_BCR = 0x1; //clears timer/counter TC0 register (reset counter)

 sei();

 troslStart();

 Timer4.start(t); // starts Timer 4 using DueTimer library and sets time in

microseconds

 Timer4.attachInterrupt(myHandler4tr); // sets myHandler function as ISR for

Timer 4 using DueTimer library

 Timer7.start(n2); //starts Timer 7 using DueTimer library and sets time in

microseconds

 Timer7.attachInterrupt(myHandler7tr); // sets myHandler function as ISR for

Timer 7 using DueTimer library

}

/********************TR-OSL Read Counter Register*******************/

void myHandler4tr () {

 data[i]+= TC_ReadCV(TC0,TC_CHANNEL_2); // reads timer/clock and writes on

ith element of the array

 i++;

}

/************************TR-OSL Stop Function***********************/

void myHandler7tr(){

 Timer7.stop();

 Timer4.stop();

/******************TR-OSL Send Meas. Data Function******************/

}

void trsend(){

 delay(10);

 for (i=0; i < (T/t); i ++){

 Serial.print(i+1), Serial.print("-"), Serial.print(abs(data[i]-data[i-

1]));

 Serial.print("\n");

 dataWrite=false;

121

}

 digitalWrite(relay, LOW);

}

/*************************OSL Start Function************************/

void Start(){

 digitalWrite(relay, HIGH);

 if (i >=0 |i <= 10000){ //clears data array

 for (i=0; i < (nod+1) ; i ++){

 data[i] = 0;

 }

 firstRun=1;

 i = 0;

 readData = false;

 k = 0;

 }

 cli();

 TC0->TC_BCR = TC_BCR_SYNC;

 REG_TC0_BCR = 0x1; //clears timer/counter TC0 register (reset counter)

 sei();

 lastDatum=(TC_ReadCV(TC0,TC_CHANNEL_2));

 Timer4.start(t); // starts Timer 4 using DueTimer library and sets time in

microseconds

 Timer4.attachInterrupt(myHandler4); // sets myHandler function as ISR for

Timer 4 using DueTimer library

 Timer6.start(n1); // starts Timer 6 using DueTimer library and sets time in

microseconds

 Timer6.attachInterrupt(myHandler6); // sets myHandler function as ISR for

Timer 6 using DueTimer library

 if(t > 10000){

 //delay(100);

 readData = true;

 }

}

/********************OSL Emergency Stop Function********************/

void Stop(){

 digitalWrite(relay, LOW);

 Timer4.stop(); //stops Timer 4 using DueTimer library

 Timer5.stop(); //stops Timer 5 using DueTimer library

 Timer6.stop(); //stops Timer 6 using DueTimer library

 Timer7.stop(); //stops Timer 7 using DueTimer library

 Timer8.stop(); //stops Timer 8 using DueTimer library

 PWMC_SetDutyCycle (PWM, 0 , 0);

 readData = 0;

 lcd.clear();

 lcd.setCursor(5,0);

 lcd.print("ready");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

}

/***********************CW-OSL Start Function***********************/

void cwoslStart(){

 PWMC_SetDutyCycle (PWM, 0 , duty_cycle); // sets CW-OSL stimulation LED

intensity

}

/***********************LM-OSL Start Function***********************/

void lmoslStart(){

 Timer5.start(T/(resolution)); //starts Timer 5 using DueTimer library and

sets time in microseconds

 Timer5.attachInterrupt(myHandler5); // sets myHandler function as ISR for

Timer 5 using DueTimer library

 }

/************************TR-OSL LED Turn ON*************************/

void troslStart(){

 PWMC_SetDutyCycle (PWM, 0 , duty_cycle); // Turns ON LED for TR-OSL

 Timer5.start(ledDuration);

 Timer5.attachInterrupt(myHandler5tr);

122

}

/************************TR-OSL LED Turn OFF************************/

void myHandler5tr(){

 PWMC_SetDutyCycle (PWM, 0 , 0);

 Timer5.stop();

}

/************************OSL Type Definition************************/

void myHandler6(){

 if (cwosl == 1){

 cwoslStart();

 }

 else if (cwosl == 0){

 lmoslStart();

 }

 else if (cwosl ==2){

 troslStart();

 }

 Timer6.stop(); //stops Timer 6 using DueTimer library

 Timer7.start(n2); //starts Timer 7 using DueTimer library and sets time in

microseconds

 Timer7.attachInterrupt(myHandler7); // sets myHandler function as ISR for

Timer 7 using DueTimer library

}

/************************CW-OSL LED Intensity***********************/

void myHandler7(){

 PWMC_SetDutyCycle (PWM, 0 ,0);

 Timer5.stop();

 j = idcv;

 Timer8.start(n3);

 Timer8.attachInterrupt(myHandler8);

}

/*********************Finalize OSL Measurement**********************/

void myHandler8(){

 Timer4.stop();

 Timer8.stop();

 Timer7.stop();

 //readData=false;

 digitalWrite(relay, LOW);

 countnb = i;

 if (t <= 10000){

 dataReq();

 }

 lcd.clear();

 lcd.setCursor(5,0);

 lcd.print("ready");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

}

/* Sets data request available*/

void dataReq(){

 dataWrite = true;

}

/*************************Data Send Function************************/

void sendData(){

 countnb = i;

 for (i=0; i < countnb; i ++){

 Serial.write(i+1), Serial.write("-"), Serial.print(data[i]);

 Serial.write("\n");

 delay(10);

 }

}

/************************Tray Go-In Function***********************/

void goIn(){

 lcd.clear();

 digitalWrite(4, HIGH);

 while (analogRead(inSensorPin) > 10){

 if (z == 0){

123

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("tray >> in");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

 z++;

 }

 else if (z!=0){

 }

 digitalWrite(7, HIGH);

 digitalWrite(6,LOW);

 digitalWrite(4, LOW);

 delay(100);

 }

 z = 0;

 digitalWrite(4,LOW);

 digitalWrite(7, LOW);

 digitalWrite(6,LOW);

 if(rayPos == 1){

 digitalWrite(12, HIGH);

 digitalWrite(13, HIGH);

 }

 rayPos = 0;

 lcd.clear();

 lcd.setCursor(5,0);

 lcd.print("ready");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

 digitalWrite(12, LOW);

 digitalWrite(13, LOW);

}

/***********************Tray Go-Out Function***********************/

void goOut(){

 lcd.clear();

 digitalWrite(4, HIGH);

 while (analogRead(outSensorPin) > 10){

 if (y == 0){

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("tray >> out");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

 y++;

 }

 else if (y!=0){

 }

 digitalWrite(6, HIGH);

 digitalWrite(7,LOW);

 digitalWrite(5, LOW);

 delay(100);

 }

 y = 0;

 delay(10);

 digitalWrite(4, LOW);

 digitalWrite(7, LOW);

 digitalWrite(6,LOW);

 if(rayPos == 0){

 digitalWrite(12, HIGH);

 digitalWrite(13, HIGH);

 }

 rayPos = 1;

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("tray is out");

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

124

 digitalWrite(12, LOW);

 digitalWrite(13, LOW);

}

/********************Sample Positioning Function********************/

void goPosition(int val){

 lcd.clear();

 digitalWrite(12, HIGH);

 digitalWrite(13, HIGH);

 int newPos = val; //defines new position of

step motor due to input value

 delay(10); //waits 10 ms

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("proceeding to S"), lcd.print(newPos);

 delay(100);

 int counterPos = newPos - currentPos; //defines position difference

between new position and current position

 int absdiff = abs(counterPos); //defines absolute value of

position difference

 if (absdiff >= (NOS/2))

 {

 if (counterPos > 0)

 {myStepper.step((-1)*(NOS-absdiff) * pStep); //

 }

 else

 {myStepper.step((NOS-absdiff) * pStep);

 }

 }

 else

 {

 if (counterPos > 0)

 {myStepper.step((absdiff * pStep));

 }

 else

 {myStepper.step((-1)*(absdiff * pStep));

 }

 }

 currentPos = newPos;

 lcd.clear();

 lcd.setCursor(0,1);

 lcd.print("current pos.: S"), lcd.print(currentPos);

 if(rayPos == 0){

 lcd.setCursor(5,0);

 lcd.print("ready");

 }

 else if(rayPos == 1){

 lcd.setCursor(0,0);

 lcd.print("tray is out");

 }

 digitalWrite(12, LOW);

 digitalWrite(13, LOW);

 Serial.write("p");

 Serial.print(String(currentPos));

}

/****************Set Measurement Parameters Function****************/

setParameters() {

 param = Serial.readStringUntil('\n'); //gets measurement parameters from

host computer software and writes to param string.

 /* Substring generation part for next 8 (eight) lines*/

 cwoslStr=param.substring(0,1);

 duty_cycleStr=param.substring(1,4);

 idcStr=param.substring(4,7);

 fdcStr=param.substring(7,10);

 nodStr=param.substring(10,15);

125

 tStr=param.substring(15,25);

 ledStr=param.substring(25,32);

 accStr=param.substring(32,37);

 /*Generated subsstring are being converted to integers (next 8 lines)*/

 cwosl=cwoslStr.toInt();

 duty_cycle=duty_cycleStr.toInt();

 duty_cycle=duty_cycle*100;

 idc=idcStr.toInt();

 fdc=fdcStr.toInt();

 nod=nodStr.toInt();

 t=tStr.toInt();

 ledDuration=ledStr.toInt();

 accum=accStr.toInt();

 T=t*nod; //total measurement time is being calculated.

 n1 = T*(m1); //before measurement time

 n2 = T*(m2); //during measurment time

 n3 = T*(m3); //after measurment time

}

/*the end of the code*/

126

127

APPENDIX D

 USER INTERFACE SOFTWARE CODE

 In this section, the software code of user interface, which was written in

Python 2.7, is given together with informative comments. Tkinter, numpy and

matplot libraries were used in the development of this code.

-*- coding: utf-8 -*-

import pdb

import Tkinter as tk

import ttk

import platform

from module2 import * # import Comunication Port search

from Tkinter import * # import Tkinter Library

import Tkinter, Tkconstants, tkFileDialog

from tkMessageBox import *

from tkFileDialog import askopenfilename

import numpy as np

import time

import matplotlib

from random import randint

from PIL import Image, ImageTk

matplotlib.use("TkAgg") # it must come after importing matplotlib

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,

NavigationToolbar2TkAgg

from matplotlib.figure import Figure

class Interface:

 # --------initializes functions---------------------------

 def __init__(self):

 self.count = 1

 self.c = 1

 self.i = 1

 self.instant = Find_Port()

 self.main_window = Tk()

 self.main_window.title('OSL Reader - TOSL-METU')

 self.main_window.iconbitmap(default='TOSL2.ico')

 self.main_window.resizable(width=False, height=False)

 self.main_window.maxsize(width=900, height=600)

 self.init()

 self.my_buffer = []

 self.pos = 1

 self.portStatus = 0

 self.stopSeq = 0

 mainloop()

128

 # -------------initialize main window(buttons,figures,subplots)-----------

 def init(self):

 """ sets dropdown menus on main window """

 m = Menu(self.main_window)

 self.main_window.config(menu=m)

 self.port_menu = Menu(m)

 self.sequence_menu = Menu(m)

 self.about_menu = Menu(m)

 m.add_cascade(label="Sequence", menu=self.sequence_menu)

 m.add_cascade(label="Setup", menu=self.port_menu)

 m.add_cascade(label="About", menu=self.about_menu)

 self.sequence_menu.add_command(label="Open Sequence",

command=self.openSequence2)

 self.sequence_menu.add_command(label="Save Sequence",

command=self.saveSequence)

 self.sequence_menu.add_command(label="Add Sequence",

command=self.openSequence)

 self.about_menu.add_command(label="Credits", command=self.popCredits)

 """Puts present ports to port menu"""

 for i in self.instant.com:

 self.port_menu.add_command(label=i, command=lambda i=i:

self.port_o(i))

 # self.port_menu.entryconfig(self.port_menu.index(i),

command=self.port_o(i)

 """initializing check buttons' variables"""

 self.var1 = IntVar()

 self.var2 = IntVar()

 self.var3 = IntVar()

 self.var4 = IntVar()

 self.var4 = IntVar()

 self.var5 = IntVar()

 self.var6 = IntVar()

 self.var7 = IntVar()

 self.var8 = IntVar()

 self.showTime = time.strftime('%H:%M:%S', time.gmtime(0))

 self.remaningTime = 0.0

 tabSection = ttk.Notebook(self.main_window)

 setupTab = Label(tabSection)

 plotTab = Label(tabSection)

 tabSection.add(setupTab, text="Setup")

 tabSection.add(plotTab, text="Live Plot")

 tabSection.grid()

 frame_main = LabelFrame(setupTab, relief=FLAT)

 frame_main.grid(row=1, column=1)

 frame = LabelFrame(frame_main, bd=0, height=15)

 frame.grid(row=1, column=2, rowspan=2)

 """ Label frame of check buttons"""

 framealt = LabelFrame(frame, bd=3)

 framealt.grid()

 framealtr = LabelFrame(framealt, bd=0)

 framealtr.grid(row=1, column=2)

 framealtl = LabelFrame(framealt, bd=3)

 framealtl.grid(row=1, column=1)

 bard = Image.open("TOSL2.png")

 bardejov = ImageTk.PhotoImage(bard)

 frameimage = Label(framealtr, image=bardejov, relief=RAISED, bd=3)

 frameimage.image = bardejov

 frameimage.grid(row=0, column=1)

 """Label frame of check buttons and frame of other entry widgets"""

 frame2 = LabelFrame(setupTab, bd=2, height=15)

 frame2.grid(row=1, column=3)

129

 frame21 = LabelFrame(framealtl, text="OSL Type", bd=5, font="Averia 15

bold", relief=RIDGE)

 frame21.grid(row=1, column=1)

 frame22 = LabelFrame(framealtr, text="LED Intensity %", bd=0,

font="Averia 12")

 frame22.grid(row=2, column=1)

 frame26 = LabelFrame(framealtr, text="LED Duration", bd=0,

font="Averia 12")

 frame26.grid(row=3, column=1)

 frame232 = LabelFrame(framealtr, text="Final Intensity", bd=0,

font="Averia 12")

 frame232.grid(row=4, column=1)

 frame24 = LabelFrame(framealtr, text="# of Data", bd=0, font="Averia

12")

 frame24.grid(row=5, column=1)

 frame25 = LabelFrame(framealtr, text="Integration Time", bd=0,

font="Averia 12")

 frame25.grid(row=6, column=1)

 frame233 = LabelFrame(framealtr, text="Accumulation", bd=0,

font="Averia 12")

 frame233.grid(row=7, column=1)

 frameSample = Frame(framealtl, width=50, height=500, bd=5)

 frameSample.grid(row=2, column=1)

 frameButtons = Frame(setupTab)

 frameButtons.grid(row=2, column=1)

 self.statusframe = Label(frame, text="Please Select a Port",

bg="Black", fg="Red", font="Averia 12", width=26,

 height=2, wraplength=238)

 self.statusframe.grid(row=2, column=0, columnspan=1)

 frame4 = LabelFrame(frame_main, bd=2, height=16)

 frame4.grid(row=1, column=1)

 timeframes = LabelFrame(plotTab, bd=4, relief=RAISED)

 timeframes.grid(row=1, column=2)

 timeremain = Label(timeframes, text="Remaining Time", font="Averia 12

bold")

 timeremain.grid(row=0)

 self.clockframe1 = Label(timeframes, text=self.showTime, font="Averia

12 bold", bg="black", fg="red", width=10,

 height=1)

 self.clockframe1.grid(row=1, padx=70)

 """inserts ploting area on main page """

 self.fig = Figure(figsize=(7, 5), facecolor="white")

 canvas1 = FigureCanvasTkAgg(self.fig, plotTab)

 canvas1.get_tk_widget().grid(row=1, column=0)

 self.sub = self.fig.add_subplot(111)

 self.sub.plot([], [])

 self.sub.set_ylim(0, 1000)

 self.sub.set_xlim(0, 450)

 myframe = Frame(relief=GROOVE, width=50, height=75, bd=1)

 myframe.place(x=1, y=700)

 canvas = Canvas(myframe)

 canvas.pack()

 frame = Frame(canvas)

 frame.pack()

 self.fig1 = Figure(figsize=(50, 3), facecolor="white")

 eleman = FigureCanvasTkAgg(self.fig1, frame)

 # canvas.show()

 eleman.get_tk_widget().pack()

 ###

 # def entry(self):

130

 """initializing check buttons' variables"""

 self.var1 = IntVar()

 self.var2 = IntVar()

 self.var3 = IntVar()

 self.var4 = IntVar()

 self.var4 = IntVar()

 self.var5 = IntVar()

 self.var6 = IntVar()

 self.var7 = IntVar()

 self.var8 = IntVar()

 # -----------check buttons sample-1 to sample-8-------------#

 """Initializing place of check buttons"""

 """Each check buttons is inside one frame"""

 self.check_1 = Checkbutton(frameSample, text="Sample 1",

variable=self.var1, command=self.enable)

 self.check_1.grid(row=1, column=1)

 self.check_2 = Checkbutton(frameSample, text="Sample 2",

variable=self.var2, command=self.enable)

 self.check_2.grid(row=2, column=1)

 self.check_3 = Checkbutton(frameSample, text="Sample 3",

variable=self.var3, command=self.enable)

 self.check_3.grid(row=3, column=1)

 self.check_4 = Checkbutton(frameSample, text="Sample 4",

variable=self.var4, command=self.enable)

 self.check_4.grid(row=4, column=1)

 self.check_5 = Checkbutton(frameSample, text="Sample 5",

variable=self.var5, command=self.enable)

 self.check_5.grid(row=5, column=1)

 self.check_6 = Checkbutton(frameSample, text="Sample 6",

variable=self.var6, command=self.enable)

 self.check_6.grid(row=6, column=1)

 self.check_7 = Checkbutton(frameSample, text="Sample 7",

variable=self.var7, command=self.enable)

 self.check_7.grid(row=7, column=1)

 self.check_8 = Checkbutton(frameSample, text="Sample 8",

variable=self.var8, command=self.enable)

 self.check_8.grid(row=8, column=1)

 # ------------------osl check buttons-----------------------#

 """initializing cw-osl and lm-osl check buttons """

 self.v1 = IntVar()

 self.v2 = IntVar()

 self.v3 = IntVar()

 self.osl_button1 = Checkbutton(frame21, variable=self.v1, text="CW-

OSL", fg="red", font="times", state="normal",

 command=self.cw_osl)

 self.osl_button1.grid(row=1, column=1)

 self.osl_button2 = Checkbutton(frame21, variable=self.v2, text="LM-

OSL", fg="blue", font="times",

 state="normal", command=self.lm_osl)

 self.osl_button2.grid(row=2, column=1)

 self.osl_button3 = Checkbutton(frame21, variable=self.v3, text="TR-

OSL", fg="Dark Green", font="times",

 state="normal", command=self.tr_osl)

 self.osl_button3.grid(row=3, column=1)

 # ----------------values entry buttons----------------------#

 """initializing entry boxes"""

 self.cw_osl_duty_cycle_entry1 = Entry(frame22, state="disabled",

width=25, disabledbackground="grey")

 self.cw_osl_duty_cycle_entry1.grid()

 #

self.lm_osl_initial_duty_cycle_entry21=Entry(frame231,state="disabled")

131

 # self.lm_osl_initial_duty_cycle_entry21.grid()

 self.lm_osl_final_duty_cycle_entry22 = Entry(frame232,

state="disabled", width=25, disabledbackground="grey")

 self.lm_osl_final_duty_cycle_entry22.grid()

 self.tr_osl_sduration_entry23 = Entry(frame26, state="disabled",

width=16, disabledbackground="grey")

 self.tr_osl_sduration_entry23.grid(row=2)

 self.number_of_data_entry = Entry(frame24, state="disabled", width=25,

disabledbackground="grey")

 self.number_of_data_entry.grid(row=3)

 self.deviation_time_entry = Entry(frame25, state="disabled", width=16,

disabledbackground="grey")

 self.deviation_time_entry.grid(row=4, column=1)

 self.integvariable = StringVar(frame25)

 self.integvariable.set("s")

 self.timemag_entry = OptionMenu(frame25, self.integvariable, "s",

"ms", "µs")

 self.timemag_entry.grid(row=4, column=2)

 self.timemag_entry.config(width=1)

 self.acc_entry = Entry(frame233, state="disabled", width=25,

disabledbackground="grey")

 self.acc_entry.grid(row=5, column=1)

 self.accvariable = StringVar(frame26)

 self.accvariable.set("s")

 self.accmag_entry = OptionMenu(frame26, self.accvariable, "s", "ms",

"µs")

 self.accmag_entry.grid(row=2, column=2)

 self.accmag_entry.config(width=1)

 # -------------------------add list buttons-----------------#

 """delete button, start button , change button"""

 self.button9 = Button(framealtr, text="Add", state="disabled",

command=self.add_list)

 self.button9.grid(row=8, column=1)

 frame41 = LabelFrame(frame4, bd=0)

 frame41.grid(row=1, column=1)

 frame4.grid_rowconfigure(0, weight=1)

 frame4.grid_columnconfigure(0, weight=1)

 self.listbox = Listbox(frame4, width=35, height=16, font="Averia",

fg="black", selectmode=EXTENDED)

 self.listbox.grid(row=1, column=2)

 self.scrollbar = Scrollbar(frame4, orient=VERTICAL)

 self.listbox.configure(yscrollcommand=self.scrollbar.set)

 self.scrollbar.config(command=self.listbox.yview)

 self.scrollbar.grid(row=1, column=3, sticky=N + S)

 self.button10 = Button(frame41, text="Delete", font="Averia 10",

width=6,

 command=lambda: self.delete("general"))

 self.button10.grid(row=3, column=1, pady=15)

 self.button11 = Button(frame41, text="↑ Up", font="Averia 10",

width=6, command=lambda: self.change("up"))

 self.button11.grid(row=1, column=1)

 self.button11 = Button(frame41, text="↓ Down", font="Averia 10",

width=6, command=lambda: self.change("down"))

 self.button11.grid(row=2, column=1)

 frameButtons = Frame(frame_main)

 frameButtons.grid(row=2, column=1)

 self.button12 = Button(frameButtons, text="Start", fg='dark green',

font="Averia 12", command=self.start,

 state="disabled")

 self.button12.grid(row=1, column=1)

 self.button13 = Button(frameButtons, text="Stop", font="Averia 12",

fg='dark red', command=self.stop,

132

 state="disabled")

 self.button13.grid(row=1, column=2)

 self.clearAll = Button(frameButtons, text="Delete Sequence",

font="Averia 12", state="normal",

 command=self.clearSequence)

 self.clearAll.grid(row=1, column=0, padx=6)

 self.clockframe = Label(frameButtons, text=self.showTime, font="Averia

12 bold", bg="black", fg="red", width=10,

 height=1)

 self.clockframe.grid(row=1, column=3, columnspan=2, padx=4)

 # ---

 self.top = Toplevel()

 self.top.withdraw()

 self.top.protocol(name="WM_DELETE_WINDOW", func=self.top_level)

 def create_sub(self):

 self.sub_count = 10

 self.sub1 = self.fig1.add_subplot(1, self.sub_count, self.i)

 self.sub1.plot([], [])

 self.sub1.set_xlim(0, 200)

 self.sub1.set_ylim(0, 300)

 self.i = self.i + 1

 def top_level(self):

 self.top.withdraw()

 #--when cw osl type is checked it activates cw osl type entries-#

 """controls state of cw-osl """

 def cw_osl(self):

 self.osl_button1.select()

 self.osl_button2.deselect()

 self.osl_button3.deselect()

 self.cw_duty()

 def cw_duty(self):

 self.cw_osl_duty_cycle_entry1.config(state="normal")

 # self.lm_osl_initial_duty_cycle_entry21.config(state="disabled")

 self.lm_osl_final_duty_cycle_entry22.config(state="disabled")

 self.number_of_data_entry.config(state="normal")

 self.deviation_time_entry.config(state="normal")

 self.tr_osl_sduration_entry23.config(state="disabled")

 self.acc_entry.config(state="disabled")

 self.enable()

------when lm osl type is checked it activates lm osl type entries-----

---#

 def lm_osl(self):

 self.osl_button2.select()

 self.osl_button1.deselect()

 self.osl_button3.deselect()

 self.lm_duty()

 def lm_duty(self):

 self.cw_osl_duty_cycle_entry1.config(state="normal")

 # self.lm_osl_initial_duty_cycle_entry21.config(state="normal")

 self.lm_osl_final_duty_cycle_entry22.config(state="normal")

 self.number_of_data_entry.config(state="normal")

 self.deviation_time_entry.config(state="normal")

 self.tr_osl_sduration_entry23.config(state="disabled")

 self.acc_entry.config(state="disabled")

 self.enable()

133

 #--when tr osl type is checked it activates tr osl type entries-#

 def tr_osl(self):

 self.osl_button3.select()

 self.osl_button1.deselect()

 self.osl_button2.deselect()

 self.tr_duty()

 def tr_duty(self):

 self.cw_osl_duty_cycle_entry1.config(state="disabled")

 # self.lm_osl_initial_duty_cycle_entry21.config(state="disabled")

 self.lm_osl_final_duty_cycle_entry22.config(state="disabled")

 self.number_of_data_entry.config(state="normal")

 self.deviation_time_entry.config(state="normal")

 self.tr_osl_sduration_entry23.config(state="normal")

 self.acc_entry.config(state="normal")

 self.enable()

------when checked samples this function changes add list button's

satate to normal-----------------------------------#

 # def button_able(self):

 # self.button9.config(state="normal")

------controls whether the samples checked or not also changes state of

add list button------------------------------------#

 def enable(self):

 """if sample checked keeps 1 otherwise keeps 0 """

 self.sample_array = [self.var1.get(), self.var2.get(),

self.var3.get(), self.var4.get(), self.var5.get(),

 self.var6.get(), self.var7.get(),

self.var8.get()]

 count = self.sample_array.count(1)

 if ((count == 0) or (self.v1.get() == 0 and self.v2.get() == 0) and

self.v3.get() == 0):

 """if samples are not selected or osl types are not selected, it

disables add-list button. Otherwise it anables"""

 self.button9.config(state="disabled")

 else:

 self.button9.config(state="normal")

 # ------gets values from entries then sends these values "add" function

which appends values to the list box------------#

 def popCredits (self):

 showinfo("Credits", "Designed by Diren Maraba in Thermally and

Optically Stimulated Luminescence Laboratory at Middle East Technical

University, Ankara Turkey\nPhone: +90 312 210 4343\ne-Mail:

diren.maraba@metu.edu.tr")

 def add_list(self):

 if (self.v1.get() == 1):

 """if cw-osl type is checked gets and sets other values to

sample"""

 try:

 optionMenuVar = self.integvariable.get()

 self.osl = self.v1.get()

 print(self.osl)

 self.cw_osl_duty = int(self.cw_osl_duty_cycle_entry1.get())

 self.number_of_data = int(self.number_of_data_entry.get())

 self.deviation_time = int(self.deviation_time_entry.get())

 if (optionMenuVar == "s"):

 self.deviation_time *= 1000000

 elif (optionMenuVar == "ms"):

 self.deviation_time *= 1000

 self.time = self.number_of_data * self.deviation_time

 self.list2 = ["1", self.cw_osl_duty, 0, 100,

self.number_of_data, self.deviation_time, 0, 0]

134

 if (self.check_cw_osl_values() == 0):

 pass

 else:

 self.take_values()

 except(ValueError):

 showerror("error", "please check your entries ")

 if (self.v2.get() == 1):

 """if lm-osl type is checked gets and sets other values to

sample"""

 self.osl = self.v2.get()

 try:

 optionMenuVar = self.integvariable.get()

 self.lm_osl_duty_init =

int(self.cw_osl_duty_cycle_entry1.get())

 self.lm_osl_duty_final =

int(self.lm_osl_final_duty_cycle_entry22.get())

 self.number_of_data = int(self.number_of_data_entry.get())

 self.deviation_time = int(self.deviation_time_entry.get())

 if (optionMenuVar == "s"):

 self.deviation_time *= 1000000

 elif (optionMenuVar == "ms"):

 self.deviation_time *= 1000

 self.time = self.number_of_data * self.deviation_time

 self.list2 = ["0", 100, self.lm_osl_duty_init,

self.lm_osl_duty_final, self.number_of_data,

 self.deviation_time, 0, 0]

 if (self.check_lm_osl_values() == 0):

 pass

 else:

 self.take_values()

 except (ValueError):

 showerror("Error", "please check your entries ")

 if (self.v3.get() == 1):

 self.osl = self.v3.get()

 try:

 optionMenuVar = self.integvariable.get()

 optionMenuVar1 = self.accvariable.get()

 self.number_of_data = int(self.number_of_data_entry.get())

 self.deviation_time = int(self.deviation_time_entry.get())

 self.tr_osl_accdur = int(self.acc_entry.get())

 self.tr_osl_duty = int(self.tr_osl_sduration_entry23.get())

 print(self.tr_osl_duty)

 if (optionMenuVar == "s"):

 self.deviation_time *= 1000000

 elif (optionMenuVar == "ms"):

 self.deviation_time *= 1000

 if (optionMenuVar1 == "s"):

 self.tr_osl_duty *= 1000000

 elif (optionMenuVar1 == "ms"):

 self.tr_osl_duty *= 1000

 self.time = self.number_of_data * self.deviation_time

 self.list2 = ["2", 100, 100, 100, self.number_of_data,

self.deviation_time, self.tr_osl_duty,

 self.tr_osl_accdur]

 if (self.check_tr_osl_values() == 0):

 pass

 else:

 self.take_values()

 except (ValueError):

 showerror("Error", "plesae check your entires")

 if (self.portStatus == 1):

135

 self.statusframe.configure(text="Ready for Measurement",

fg="green")

 self.button12.config(state="normal")

 else:

 self.statusframe.configure(text="Please Select a Port", fg="red")

 def take_values(self):

 t = 0

 while (t <= 7):

 if(self.sample_array[t]):

 if (self.list2[0] == "1"):

 self.list1 = ["Sample " + str(t+1), "cw-osl",

str(float(self.time) / 1000000) + "s"]

 elif (self.list2[0] == "0"):

 self.list1 = ["Sample "+ str(t+1), "lm-osl",

str(float(self.time) / 1000000) + "s"]

 else:

 self.list1 = ["Sample "+ str(t+1), "tr-osl",

str(float(self.time)*self.tr_osl_accdur / 1000000) + "s"]

 self.add(self.list1, [t+1] + self.list2)

 t = t+1

 def check_cw_osl_values(self):

 value = 1

 if (self.cw_osl_duty < 0 or self.cw_osl_duty > 100):

 showerror("Input Error", "Enter Value Between 0-100 ")

 value = 0

 if (self.number_of_data < 0 or self.number_of_data > 65535):

 showerror("Input Error", "Invalid Value")

 value = 0

 if (self.deviation_time < 0 or self.deviation_time > 10000000):

 showerror("Input Error", "Enter Value Between 0-100 ")

 value = 0

 if ((self.deviation_time * self.number_of_data) > 4294967295):

 showerror("Input Error", "Invalid Values")

 value = 0

 return value

 def check_lm_osl_values(self):

 value = 1

 if (self.lm_osl_duty_init >= self.lm_osl_duty_final):

 showerror("Input Error", "Final Intensity must be Bigger than

Initial Intensity ")

 value = 0

 if (self.lm_osl_duty_init < 0 or self.lm_osl_duty_final < 0):

 showerror("Input Error", " Final Intensity and Initial Intensity

must be Positive ")

 value = 0

 if (self.number_of_data < 0 or self.number_of_data > 65535):

 showerror("Input Error", "Enter Value Between 0-100 ")

 value = 0

 if (self.deviation_time < 0 or self.deviation_time > 10000000):

 showerror("Input Error", "Enter Value Between 0-100 ")

 value = 0

 return value

 def check_tr_osl_values(self):

 value = 1

 if (self.tr_osl_duty < 0 or self.tr_osl_duty > 5000000):

 showerror("Input Error", "Enter Value Between 0-5000000 ")

 value = 0

 if (self.number_of_data < 0 or self.number_of_data > 65535):

 showerror("Input Error", "Enter Value Between 0-65535 ")

 value = 0

 if (self.deviation_time < 0 or self.deviation_time > 10000000):

 showerror("Input Error", "Enter Value Between 0-10000000 ")

136

 value = 0

 if (self.tr_osl_accdur < 1 or self.tr_osl_accdur > 50000):

 showerror("Input Error", "Enter Value Between 1-50000")

 value = 0

 return value

 # --------------adds values to listbox and adds values to buffer----------

 def add(self, List1, List2):

 List = ", ".join(List1)

 self.listbox.insert(END, List)

 size = self.listbox.size()

 self.my_buffer.append(List2)

 if(List1[1] == "tr-osl"):

 self.remaningTime += ((self.time)*self.tr_osl_accdur / 1000000)

 else:

 self.remaningTime += ((self.time) / 1000000)

 self.showTime = time.strftime('%H:%M:%S',

time.gmtime(self.remaningTime))

 self.clockframe.config(text=self.showTime)

 self.clockframe1.config(text=self.showTime)

 # --------------deletes values from listbox and deletes values from

buffer--------------------------------

 def delete(self, condition):

 """this function deletes the selected item-items from listbox and also

deletes from the buffer list"""

 """helps also to change order of these lists"""

 """look change function at below"""

 tuple_delete = self.listbox.curselection()

 """keeps index of selected item-items"""

 if (tuple_delete == ()):

 """if no item-items are selected or there is no item in the

listbox"""

 pass

 """ do nothing """

 elif (condition == "general"):

 """general purpose of deleting"""

 tempString = self.my_buffer[(tuple_delete[0])]

 substractTime = (tempString[5])

 """ "general" string comes with delete button """

 self.listbox.delete(tuple_delete[0], tuple_delete[-1])

 """ deletes selected item-items from listbox"""

 del self.my_buffer[(tuple_delete[0]):(tuple_delete[-1] + 1)]

 """ deletes selected item-items from buffer"""

 self.remaningTime -= (substractTime)

 self.showTime = time.strftime('%H:%M:%S',

time.gmtime(self.remaningTime))

 self.clockframe.config(text=self.showTime)

 self.clockframe1.config(text=self.showTime)

 elif (condition == "up"):

 """ "up" comes with up button command """

 self.listbox.delete(tuple_delete[0] - 1)

 """deletes the control item(control item is tuple_up in the change

function) from listbox"""

 del self.my_buffer[(tuple_delete[0] - 1)]

 """deletes the control item(control item is tuple_up in the change

function) from buffer list"""

 elif (condition == "down"):

 """ "down" comes with down button command """

 self.listbox.delete(tuple_delete[-1] + 1)

 """deletes the control item(control item is tuple_down in the

change function) from listbox"""

137

 del self.my_buffer[(tuple_delete[-1] + 1)]

 """deletes the control item(control item is tuple_down in the

change function) from buffer list"""

 print self.my_buffer

 def change(self, condition):

 """this fuction changes order of list and order of buffer items"""

 """this fuctions takes commands from "up" button and "down" button """

 """this function works with "delete" function at ebove"""

 # print

"###

#############"

 tuple_selected = self.listbox.curselection()

 """keeps index of selected items"""

 if (tuple_selected == ()):

 """if no item selected from listbox or there is no item in the

listbox"""

 pass

 """do nothing"""

 elif (condition == "up"):

 """if item or items are wanted to carry up"""

 if (tuple_selected[0] == 0):

 """if any item at the top of the list do nothing because

currently the items at top"""

 pass

 """because you dont need to cary it up"""

 else:

 """if there are positions ebove the selected items"""

 tuple_up = self.listbox.get(tuple_selected[0] - 1)

 """chose the next item which comes before the selected item-

items in the list"""

 """it is used as control item"""

 buffer_up = self.my_buffer[(tuple_selected[0] - 1)]

 """chose the next item which comes before the selected items

in the buffer list"""

 # print "buffer up =",buffer_up

 self.delete("up")

 """delete that item from list and also from buffer"""

 """look delete function at ebove"""

 self.listbox.insert(tuple_selected[-1], tuple_up)

 """insert that item just after the selected item-items so

selected item-items have been carried one index up in the listbox"""

 self.my_buffer.insert(tuple_selected[-1], buffer_up)

 """insert that item just after the selected item-items so

selected item-items have been carried one index up in the buffer list"""

 # print self.my_buffer

 elif (condition == "down"):

 """if item or items are wanted to carry down"""

 size = self.listbox.size()

 """keeps size of lisbox"""

 # print "size=",size

 if (tuple_selected[-1] == (size - 1)):

 """if selection is the top or there is no selection"""

 pass

 """because you dont need to cary it up"""

 else:

 tuple_down = self.listbox.get(tuple_selected[-1] + 1)

 """chose the previous item which just comes after the selected

item-items in the list"""

 buffer_down = self.my_buffer[(tuple_selected[-1] + 1)]

 """chose the previous item which just comes after the selected

item-items in the buffer list"""

 """it is used as control item"""

 # print "buffer down =",buffer_down

 self.delete("down")

 """look delete function at ebove"""

138

 self.listbox.insert(tuple_selected[0], tuple_down)

 """insert that item just before the selected item-items so

selected item-items have been carried one index down in the listbox"""

 self.my_buffer.insert(tuple_selected[0], buffer_down)

 """insert that item just before the selected item-items so

selected item-items have been carried one index down in the buffer list"""

 # print self.my_buffer

 # self.top.deiconify()

 # tuple_change=self.listbox.curselection()

 ###--------opens port------------------------------

 def port_o(self, param):

 self.name = param

 self.port_open()

 def port_open(self):

 """ This functions opens port then it checks once in a second whether

port is writable or not.If writable it goes track position """

 self.port = serial.Serial(port=self.name, baudrate=9600, timeout=None)

 while (self.port.writable() == False):

 time.sleep(1)

 pass

 if not self.my_buffer:

 self.statusframe.configure(text="Create or Upload a Measurement

Sequence", fg="yellow")

 time.sleep(4)

 self.portStatus = 1

 self.button12.config(state="disabled")

 else:

 time.sleep(4)

 self.statusframe.configure(text="Ready for Measurement",

fg="green")

 self.button12.config(state="normal")

 self.showTime = time.strftime('%H:%M:%S',

time.gmtime(self.remaningTime))

 self.clockframe.config(text=self.showTime)

 self.clockframe1.config(text=self.showTime)

 # --------checks track position-------------------------

 def tack_position(self):

 """wait for arduino to sends track's position like "to" or "ti" and

"pi"("to"=tray out,"ti"=tray in and "pi"=p1,p2,p3,p4,p5,p6,p7,p8)"""

 if (self.port.writable() == True):

 self.port.write("rp")

 self.port.write("\n")

 """responds track position"""

 """while(self.port.inWaiting()==0):

 pass"""

 self.track_p = self.port.read(1)

 def dumy(self):

 ran = randint(0, 1)

 if (ran == 0):

 self.real_time()

 else:

 self.end_time()

 def openSequence(self):

 sequenceFileName = tkFileDialog.askopenfilename()

 lista = []

139

 if sequenceFileName:

 dosy = open(sequenceFileName, "r")

 str1 = dosy.readline()

 strk = []

 while (str1):

 for x in str1.split(" "):

 strk.append(int(float(x)))

 print strk

 lista.append(strk)

 str1 = dosy.readline()

 strk = []

 dosy.close()

 self.add_listfrom(lista)

 else:

 pass

 def add_listfrom(self, lista):

 a = 0

 while (a < len(lista)):

 if(lista[a][1] == 1):

 self.add2(

 ["Sample " + str(lista[a][0]), "cw-osl",

str(float(lista[a][-3] * lista[a][-4]) / 1000000) + "s"],

 lista[a])

 elif(lista[a][1] == 0):

 self.add2(

 ["Sample " + str(lista[a][0]), "lm-osl",

str(float(lista[a][-3] * lista[a][-4]) / 1000000) + "s"],

 lista[a])

 elif(lista[a][1] == 2):

 self.add2(["Sample " + str(lista[a][0]), "tr-osl",

str(float(lista[a][-3] * lista[a][-4])*lista[a][-1] / 1000000) + "s"],

 lista[a])

 a = a + 1

 def openSequence2(self):

 sequenceFileName = tkFileDialog.askopenfilename()

 lista = []

 if sequenceFileName:

 self.listbox.delete(0, END)

 self.my_buffer = []

 dosy = open(sequenceFileName, "r")

 str1 = dosy.readline()

 strk = []

 while (str1):

 for x in str1.split(" "):

 strk.append(int(float(x)))

 print strk

 lista.append(strk)

 str1 = dosy.readline()

 strk = []

 dosy.close()

 self.add_listfrom(lista)

 else:

 pass

 def add2(self, List1, List2):

 List = ", ".join(List1)

 self.listbox.insert(END, List)

 size = self.listbox.size()

 self.my_buffer.append(List2)

 if(List2[1] == 2):

 self.remaningTime += ((List2[-3] * List2[-4] * List2[-1]) /

1000000)

 else:

 self.remaningTime += ((List2[-3] * List2[-4]) / 1000000)

140

 self.showTime = time.strftime('%H:%M:%S',

time.gmtime(self.remaningTime))

 self.clockframe.config(text=self.showTime)

 self.clockframe1.config(text=self.showTime)

 if (self.portStatus == 1):

 self.button12.config(state="normal")

 self.statusframe.configure(text="Ready for Measurement",

fg="green")

 def clearSequence(self):

 print "sa"

 self.listbox.delete(0, END)

 self.my_buffer = []

 self.remaningTime = 0

 self.showTime = time.strftime('%H:%M:%S',

time.gmtime(self.remaningTime))

 self.clockframe.config(text=self.showTime)

 self.clockframe1.config(text=self.showTime)

 def saveSequence(self):

 sequenceFileName = tkFileDialog.asksaveasfilename()

 # pdb.set_trace()

 if sequenceFileName:

 time.sleep(1)

 # file = open(self.sequenceFileName + ".txt", "w")

 x = np.array(self.my_buffer, np.int32)

 np.savetxt(sequenceFileName + ".txt", x)

 # file.close()

 else:

 pass

 def stop(self):

 self.port.write("sp" + "\n")

 def start(self):

 sampleSelection = 0

 self.statusframe.configure(text="Measurement in Progress", fg="red")

 self.button12.config(state="disabled")

 self.button13.config(state="normal")

 self.measurementTime = self.remaningTime

 self.tack_position()

 self.savef()

 print self.my_buffer

 for i in self.my_buffer:

 if (sampleSelection == 0):

 self.listbox.itemconfig(sampleSelection, {'bg': 'red'})

 else:

 self.listbox.itemconfig(sampleSelection - 1, {'bg': 'green'})

 self.listbox.itemconfig(sampleSelection, {'bg': 'red'})

 sampleSelection += 1

 """for each sample prepares track position then stars

experiment"""

 if (self.track_p == "\x01"):

 """if track is outside"""

 self.port.write("ti" + "\n")

 time.sleep(10)

 if (self.track_p == "\x00"):

 """if current track position is same with our needed

position"""

 self.sample = str(i[0])

 self.port.write("p" + str(i[0]))

 """i equals to each sample with their values. i[1] sample from

1 to 8. So it writes (p1-p8)"""

 position = "p" + str(i[0])

141

 waitTime = abs(i[0] - self.pos) * 7 ##waits for sample holder

to reach its desired position

 self.pos = i[0] ##sets current position value to new position

 time.sleep(waitTime)

 message1 = ""

 message1 = self.port.read(2)

 while (message1 != "p" + str(i[0])):

 message1 = self.port.read(2)

 print "daha gelmedi hacı"

 continue

 print message1

 deviation_time = i[-3]

 """says data will end with this characters for each sample"""

 array = []

 k = 0

 for p in i:

 """Each turn it takes one parameter from standby sample

then assign to param"""

 """param equals osl type, duty cycle, deviation time

respectively"""

 k = k + 1

 if (k == 3 or k == 4 or k == 5):

 dclen = len(str(p))

 dclen1 = 3 - dclen

 for x in xrange(dclen1):

 array.append(str(0))

 if (k == 6):

 dclen = len(str(p))

 dclen1 = 5 - dclen

 for x in xrange(dclen1):

 array.append(str(0))

 if (k == 7):

 dclen = len(str(p))

 dclen1 = 10 - dclen

 for x in xrange(dclen1):

 array.append(str(0))

 if (k == 8):

 dclen = len(str(p))

 dclen1 = 7 - dclen

 for x in xrange(dclen1):

 array.append(str(0))

 if (k == 9):

 dclen = len(str(p))

 dclen1 = 5 - dclen

 for x in xrange(dclen1):

 array.append(str(0))

 array.append(str(p))

 param = "".join(array)

 param = param[1:]

 param = param + "\n"

 self.port.write("pa" + "\n")

 self.port.write(param)

 print param

 """it writes params to arduino in sequence"""

 time.sleep(2)

 self.port.write("st")

 print "start"

 self.nod = int(str(i[5]))

 self.cod = int(str(i[2]))

 print self.nod

 self.timefortimer = int(str(i[6]))

142

 if (deviation_time <= 10000 or i[1] == "2"):

 """if deviation time smaller than 10 milisecond show

plotting at end of the measurement"""

 self.real_time()

 if (deviation_time > 10000):

 """if deviation time bigger than 10 milisecond show

plotting at real time"""

 self.real_time()

 self.listbox.itemconfig(sampleSelection - 1, {'bg': 'green'})

 self.button12.config(state="normal")

 showinfo("Information", "Measurement is completed.")

 self.statusframe.configure(text="Ready for Measurement", fg="green")

 self.button13.config(state="disabled")

 self.showTime = time.strftime('%H:%M:%S',

time.gmtime(self.remaningTime))

 self.clockframe.config(text=self.showTime)

 self.clockframe1.config(text=self.showTime)

 for k in range(0, sampleSelection):

 self.listbox.itemconfig(k, {'bg': 'white'})

 def real_time(self):

 m = 0

 data = ""

 x1 = 0

 y1 = 0

 x2 = 0

 y2 = 0

 x = [x1, x2]

 y = [y1, y2]

 X = []

 Y = []

 self.sub.clear()

 self.create_sub()

 while m <= self.nod -1 :

 """while there is data waiting buffer, it reads data then it plots

values on screen """

 if (self.stopSeq == 1):

 self.stopSeq = 0

 return

 data =self.port.readline()

 self.measurementTime-=(float(self.timefortimer)/1000000)

 self.showTime = time.strftime('%H:%M:%S',

time.gmtime(self.measurementTime))

 self.clockframe.config(text=self.showTime)

 self.clockframe1.config(text=self.showTime)

 print data

 m = m + 1

 data = data.strip()

 """clear empties around string like "\n" or "\r" """

 data = data.split("-")

 print data

 x[1] = data[0]

 y[1] = data[1]

 # print x,y

 self.sub.plot(x, y, 'b')

 self.fig.canvas.draw()

 self.fig.canvas.flush_events()

 x[0] = x[1]

 y[0] = y[1]

143

 X.append(data[0])

 Y.append(data[1])

 # pdb.set_trace()

 # self.sub.clear()

 # self.create_sub()

 # self.sub1.plot(X,Y,'r')

 print X, Y

 self.fig1.canvas.draw()

 self.fig1.canvas.flush_events()

 self.save_file(X, Y)

 def end_time(self):

 print "girdi"

 m = 0

 miniT =0

 data = ""

 x1 = 0

 y1 = 0

 x2 = 0

 y2 = 0

 x = [x1, x2]

 y = [y1, y2]

 X = []

 Y = []

 self.sub.clear()

 self.create_sub()

 while m <= (10*(self.nod)) -1 :

 """while there is data waiting buffer, it reads data then it plots

values on screen """

 if (self.stopSeq == 1):

 self.stopSeq = 0

 return

 data =self.port.readline()

 print data

 m = m + 1

 data = data.strip()

 """clear empties around string like "\n" or "\r" """

 data = data.split("-")

 print data

 x[1] = data[0]

 y[1] = data[1]

 # print x,y

 self.sub.plot(x, y, 'b')

 self.fig.canvas.draw()

 self.fig.canvas.flush_events()

 x[0] = x[1]

 y[0] = y[1]

 X.append(data[0])

 Y.append(data[1])

 # pdb.set_trace()

 # self.sub.clear()

 # self.create_sub()

 # self.sub1.plot(X,Y,'r')

 print X, Y

 self.fig1.canvas.draw()

 self.fig1.canvas.flush_events()

 self.save_file(X, Y)

144

 def savef(self):

 self.fileName = tkFileDialog.asksaveasfilename()

 self.dosya = open(self.fileName + str(self.c) + ".txt", "w")

 if self.fileName:

 time.sleep(1)

 def save_file(self, x, y):

 if self.c != 1:

 self.dosya = open(self.fileName + str(self.c) + ".txt", "w")

 if (self.list2[1] == "1"):

 dosya = open(self.fileName + str(self.c) + ".txt", "w")

 dosya.write("Sample = Sample " + self.sample + "\n"

 + "Duty cycle = " + str(self.cw_osl_duty) + "\n"

 + "Number of data = " + str(self.number_of_data) +

"\n"

 + "Integration time = " + str(self.deviation_time) +

"\n")

 elif (self.list2[1] == "0"):

 dosya = open(self.fileName + str(self.c) + ".txt", "w")

 dosya.write("Sample = Sample" + self.sample + "\n"

 + "Initial duty cycle = " + str(self.lm_osl_duty_init)

+ "\n"

 + "Final duty cycle = " + str(self.lm_osl_duty_init) +

"\n"

 + "Number of data = " + str(self.number_of_data) +

"\n"

 + "Integration = " + str(self.deviation_time) + "\n")

 elif (self.list2[1] == "2"):

 dosya = open(self.fileName + str(self.c) + ".txt", "w")

 dosya.write("Sample = Sample" + self.sample + "\n")

 i = 0

 # dosya=open("experiment"+str(self.c)+".txt","w")

 self.c = self.c + 1

 """sil"""

 while (i < len(x)):

 a = str(x[i])

 b = str(y[i])

 self.dosya.write(a + "," + b + "\n")

 i = i + 1

 self.dosya.close()

 X = []

 Y = []

instant = Interface()

def asksaveasfilename(self):

 """Returns an opened file in write mode.

 This time the dialog just returns a filename and the file is opened by

your own code.

 """

 # get filename

 filename = tkFileDialog.asksaveasfilename(**self.file_opt)

 # open file on your own

 if filename:

 return open(filename, 'w')

145

def askopenfilename(self):

 """Returns an opened file in read mode.

 This time the dialog just returns a filename and the file is opened by

your own code.

 """

 # get filename

 filename = tkFileDialog.askopenfilename(**self.file_opt)

 # open file on your own

 if filename:

 return open(filename, 'r')

end of the code

