
VARIABLE CONNECTORS IN COMPONENT ORIENTED DEVELOPMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ANIL ÇETINKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2017

Approval of the thesis:

VARIABLE CONNECTORS IN COMPONENT ORIENTED DEVELOPMENT

submitted by ANIL ÇETINKAYA in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Ali H. Doğru
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Prof. Dr. Ali H. Doğru
Computer Engineering Department, METU

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Assist. Prof. Dr. Ebru Aydın Göl
Computer Engineering Department, METU

Assist. Prof. Dr. Gül Tokdemir
Computer Engineering Department, Çankaya University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ANIL ÇETINKAYA

Signature :

iv

ABSTRACT

VARIABLE CONNECTORS IN COMPONENT ORIENTED DEVELOPMENT

Çetinkaya, Anıl

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Ali H. Doğru

June 2017, 71 pages

Variability is incorporated in component oriented software development especially
in the connectors besides components, for efficient configuration of software prod-
ucts in this thesis. Components have been regarded as the main building blocks in
the development of software, especially in component based approaches. Connec-
tors, however, were also part of the solution but with not much of a responsibility
when compared to components. When considered in a holistic approach to yield exe-
cutable code starting with the commonalities and variabilities in a domain model, one
can realize the importance of the connectors: A realistic integration can and should
utilize connectors for the various connector responsibilities, recently studied in the
literature. Thus the connector structures are proposed to take place in the compo-
nent model of COSEML within the classification for their responsibilities. Assigning
more responsibilities to connectors suggests the enhancement of their internal struc-
tures with respect to some configurability along variability modeling and handling
the tasks expected from the connector as such classifications require. This research
defines the configurable mechanisms in connectors for 1) variability management and
2) conducting the defined responsibilities that are more than merely providing a con-
nection port. As a future result, connectors will be managed like components, having
some functionality and corresponding executable code in them. A case study is pre-
sented for the demonstration of the functioning of the proposed connector.

v

Keywords: Component Oriented Software Engineering, Domain Specific Language,
Metamodel, Variability Modeling, Software Connector, Process Modelling

vi

ÖZ

BİLEŞEN YÖNELİMLİ GELİŞTİRMEDE DEĞİŞKEN BAĞLAYICILAR

Çetinkaya, Anıl

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ali H. Doğru

Haziran 2017 , 71 sayfa

Bu tezde, bileşen odaklı yazılım geliştirmede yazılım ürünlerinin etkin bir şekilde
konfigürasyonu için, özellikle bileşenler dışındaki bağlayıcılara değişkenlik dahil edil-
miştir. Bileşenler, özellikle bileşen tabanlı yaklaşımlarda yazılım geliştirmedeki baş-
lıca yapı taşları olarak görülmektedir. Bununla birlikte, çözümün bir parçası olan bağ-
layıcılar ise bileşenlere kıyasla fazla bir sorumluluk taşımamaktaydı. Bir alan mo-
delinde ortak noktalar ve değişkenliklerden başlayarak çalıştırılabilir kod üretmek
için bütünsel bir yaklaşım düşünüldüğünde bağlayıcıların önemi anlaşılabilir. Yakın
zamanlarda literatürde çalışıldığı üzere, gerçekçi bir entegrasyon için bağlayıcılara
çeşitli bağlayıcı sorumlulukları yüklenilerek yararlanılmalıdır. Bu sebeple, bağlayıcı
yapılarının sorumluluklarına göre sınıflandırılarak COSEML bileşen modelinde yer
alması önerilmiştir. Bağlayıcılara daha fazla sorumluluk atamak, değişkenliğin mo-
dellenmesi ve belirlenen sınıflandırmaların gerektirdiği görevleri yerine getirmenin
yanısıra iç yapılarının bazı konfigürasyon özelliklerine göre geliştirilmesini gerektir-
mektedir.Bu araştırma bağlayıcılarda 1) değişkenlik yönetimi ve 2) sadece bir bağ-
lantı kapısı sunmak dışında tanımlanmış sorumlulukları yerine getirmek için tanımla-
nan yapılandırılabilir mekanizmaları tanımlar. Gelecekte bağlayıcıların bilşenler gibi
yönetilerek, bazı işlevleri ve bunlara karşılık gelen çalıştırılabilir kodları olacağı dü-
şünülmektedir. Önerilen bağlayıcıların işleyişinin gösterilmesi için bir durum çalış-
ması içerilmiştir.

vii

Anahtar Kelimeler: Alana Özgü Dil, Bileşen Yönelimli Yazılım Mühendisliği, Değiş-
kenlik Modelleme, Metamodel, Süreç Modelleme, Bağlayıcı

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to thank one of the greatest personalities I have ever known, my supervi-
sor Professor Ali H. Doğru for his constant support, patience and guidance throughout
this research. I have learnt a lot from him and I still have a lot more to learn. I also
want to thank Professor Halit Oğuztüzün for his interest at my work and guidance he
has offered. I also would like to thank committee members, Professor Ahmet Coşar,
Assistant Professor Ebru Aydın Göl and Assistant Professor Gül Tokdemir for their
valuable suggestions and feedback.

This thesis would not been possible without the support, help and motivation from
M. Çağrı Kaya. You are one of the kindest persons I have ever met. Your help is
really appreciated. I am also grateful to Dr. Selma Süloğlu for all the guidance and
motivation she has offered.

I would like to thank my fellow friends Alper Karamanlıoğlu and Mehmet Koça, who
I began this journey together. We have shared a lot, I really hope that we would
always be there for each other.

I am thankful to my friends, Ahmet Rifaioğlu, Tuğberk İşyapar and Hasan Acar for
their technical and moral support when most needed. I am also really thankful to
my dear friends, Alperen Dalkıran, Fatih Calip and Samet Sezek for all the great
memories that we get to share. It is always a gg with you guys.

I want to thank Ali Özkahraman, Hasan Abughosh, İbrahim Kılıç, Uğur Dal, Önder
Çağlar, Hakan Yılmaz, İlhan Yumer, Ozan Koçak, Barış Küçük, Murat Arslan and
Adem Ayan for their friendship and moral support. Also, I would like to thank to my
friends and colleagues from CENG, Gökhan Özsarı, Alperen Eroğlu, Mahdi Saeedi
Nikoo, Arınç Elhan, Abdullah Doğan, Aybike Şimşek Dilbaz, Murat Öztürk, Ahmet
Atakan and Hüsnü Yıldız for their support and friendship.

Last but not least, I want to express my sincerest gratitudes to my father Necdet
Çetinkaya, my mother Aysel Çetinkaya and my dear sister Dilan Çetinkaya for their
constant support and unconditional love throughout my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Approach . 2

1.4 Contribution . 3

1.5 Outline of Thesis . 3

2 BACKGROUND . 5

2.1 Component Oriented Software Engineering and COSEML . . 5

xi

2.1.1 Software Components 5

2.1.2 Component Based Software Engineering 6

2.1.3 Component Oriented Software Engineering 7

2.1.4 COSEML . 8

2.2 Variability Modeling in Software Systems 10

2.2.1 Variability in Software Systems 10

2.2.2 Variability Modeling 12

2.2.3 XCOSEML . 13

2.3 Software Connectors . 15

2.3.1 Classification of Connectors 16

2.3.2 Commonly Used Connector Types 16

3 DEFINING VARIABLE CONNECTORS IN XCOSEML 19

3.1 Software Connectors and Variability 19

3.2 XCOSEML Metamodel and Connector Extension 20

3.3 Extended Grammar . 23

3.4 Case Study: Disaster Management System 24

3.5 Modeling Disaster Management System in XCOSEML . . . 25

4 EXECUTION OF XCOSEML COMPOSITON SPECIFICATION . . 35

4.1 XCOSEML Tool . 35

4.1.1 Parser . 36

4.1.2 Transformation 39

xii

4.1.3 Configuration . 39

4.1.4 Matching . 40

4.2 Disaster Management System Implementation in Java 40

4.3 Execution of the DMS_cmps compositon specification 42

5 CONCLUSION AND FUTURE WORK 53

5.1 Conclusion . 53

5.2 Future Work . 54

REFERENCES . 57

APPENDICES

A XCOSEML GRAMMAR LISTINGS 61

A.1 Package . 61

A.2 Component . 62

A.3 Interface . 62

A.4 Connector . 63

A.5 Configuration . 65

A.6 Composition . 67

B A GRAPHICAL TOOL DESIGN AS A FUTURE EXTENSION . . . 71

xiii

LIST OF TABLES

TABLES

Table 2.1 Services provided by connector types 17

Table 3.1 XCOSEML representation of DMS_pkg package. 25

Table 3.2 XCOSEML representation of DMC_comp component. 27

Table 3.3 XCOSEML representation of DMC_int interface. 27

Table 3.4 XCOSEML representation of FireFighter_int interface. 27

Table 3.5 XCOSEML representation of DMC_FF_conn interface. 29

Table 3.6 XCOSEML representation of DMS_conf configuration. 30

Table 3.7 XCOSEML representation of DMS_cmps composition. 31

Table 3.8 [Continued]XCOSEML representation of DMS_cmps composition.. 32

Table 4.1 Configured XCOSEML file for the configuration: "Standard" 44

Table 4.2 Configured XCOSEML file for the configuration: "Advanced" 45

Table 4.3 Generated outputs after the execution of sequence diagram given in
Figure 4.6 . 50

Table 4.4 Generated outputs after the execution of sequence diagram given in
Figure 4.7 . 51

Table 4.5 Generated outputs after the execution of sequence diagram given in
Figure 4.8 . 52

Table 4.6 Generated outputs after the execution of sequence diagram given in
Figure 4.9 . 52

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 General development phases for component based development . . 8

Figure 2.2 Graphical representations of COSEML assets 9

Figure 2.3 Development costs for n kinds of systems as single systems com-
pared to SPL . 11

Figure 2.4 Variability change based on approaches 12

Figure 3.1 Overview of the metamodel . 20

Figure 3.2 XCOSEML metamodel . 21

Figure 3.3 Variability Mapping in XCOSEML. 22

Figure 3.4 Disaster Management System environment 24

Figure 3.5 COSEMLConn . 26

Figure 4.1 XCOSEML Tool . 37

Figure 4.2 XCOSEML tool development environment. 38

Figure 4.3 Class Diagram of DMS . 41

Figure 4.4 Invoking the connectors in proposed approach 43

Figure 4.5 Illustration of component and connector instances in implementation 43

Figure 4.6 Sequence diagram for fire response in standard scenario 46

Figure 4.7 Sequence diagram for fire response in advanced scenario 47

Figure 4.8 Sequence diagram for security alert in standard scenario 48

Figure 4.9 Sequence diagram for fire response in advanced scenario 49

xv

Figure B.1 Class Diagram for the graphical tool designed for future work . . . 71

Figure B.2 (continued)Class Diagram for the graphical tool designed for fu-
ture work. 72

xvi

LIST OF ABBREVIATIONS

ADL Architectural Description Language

ANTLR Another Tool for Language Recognition

API Application Programming Interface

BPMN Business Process Modelling Language

CBD Component Based Development

CBSE Component Based Software Engineering

COSE Component Oriented Software Engineering

COSEML Component Based Software Engineering Modeling Language

DSL Domain Specific Language

DMC Disaster Management Center

DMS Disaster Management System

FTS Featured Transition System

IDE Integrated Development Environment

MDD Model Driven Development

MoRE Model Based Reconfiguration Engine

SPL Software Product Line

SPLE Software Product Line Engineering

TVL Textual Variability Language

VP Variation Point

XCOSEML Extended Component Based Software Engineering Modeling
Language

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Background

Reuse is an important paradigm for software development. Reusing software assets

reduces costs and time to market. Component technologies are in the set of devel-

opment methods that aim reusing software components systematically. Component

Based Software Engineering (CBSE) or Component Based Development (CBD) use

generally pre-built components to have a complex software system. Similarly, Com-

ponent Oriented Software Engineering (COSE) aims reuse of software components.

Different from CBSE, COSE takes advantage of having component technology dur-

ing the whole development process. It considers development of components as the

last option and does not impose a development method for this purpose.

Another important asset for the component based methods and sofware architectures

is connectors. While components represent the functionality of the software, con-

nectors deal with communication concerns among components. Their main role is to

manage interactions among components.

Running programs directly from models is another important topic. Model-Driven

Development (MDD) helps obtaining executable code from a model. This requires

interpreting the model and adding extra information to achieve runnable code. More-

over, more simpler approaches are available such as mapping model assets to exe-

cutable assets.

1

1.2 Problem Statement

Systems composed of components should ideally not involve the multi-purpose com-

ponents for system-specific coordination duties. Components should be general pur-

pose, not system aware. Therefore, a lot of code development is required for integra-

tion, that is the ‘glue’ functionality. However, the sole purpose of CBD is to reuse

rather than code writing whereas this integration requires specific code development.

Connectors, on the other hand, are very appropriate structures to assume this duty

that have not been exploited sufficiently in this direction. Connectors, accommodat-

ing the interaction functionalities, should include necessary code for it, preferably

that is configurable through variability management operating on a pre-defined set

of functionalities. This is because most of the interaction expectations should also

be reusable. Such use of connectors will both support the separation of concerns

principle and reuse, if managed effectively.

1.3 Approach

Based on the separation of concerns principle, component oriented development is

equipped with a detailed connector definition, in this research. This definition con-

tains service type and connector type. To manage the connector selection process,

variability management for connectors are also considered. In the proposed varibil-

ity approach when a connector is used, some parts of it can be included and other

parts can be ignored. Therefore, the approach provides configurable connectors. In

the proposed approach, variability takes place in the process model. Based on the

variant selection some interactions -that are conducted by connectors- are included

in the final model and others are ignored. At the end of the customization, the main

execution stream of the system is produced. With an effort to map the model items

to pre-implemented executables, developers can run the process model directly. It

is assumed that a process model is also provided with a component model. Cur-

rently such a process model is distributed in the "package" primitives of the Extended

Component Oriented Software Engineering Modeling Language (XCOSEML). Fu-

ture enhancements may interface an XCOSEML specification with a process model

2

- such as expressed in Business Process Modelling Language (BPMN) for example.

In this view, an executable system is considered as a dynamic part that is responsible

for the ordered invocation of component methods, and a static part that is basically a

declaration of a set of connected components. To improve reusability of the connec-

tors, they are equipped with configuration capability, that is compliant with variability

modelling.

1.4 Contribution

Contribution of this thesis is twofold: Firstly, connector definition of XCOSEML

is enriched, that previously was only an abstract asset. With the new definition of

connectors, XCOSEML’s variability model can be reflected on connectors that results

in variable connectors. Secondly, XCOSEML’s tool support is improved with the

ability of matching the languages process model to executable code. This is a step

towards the executable modeling of XCOSEML.

1.5 Outline of Thesis

In chapter 2, some background information is provided on software connectors, CBSE,

COSE, COSEML and XCOSEML. Also, importance of the variability in component

oriented systems is explained. Some approaches are mentioned about variability mod-

elling. Finally, connector types and their provided services are explained.

Chapter 3 includes some information for connector variability and connector defini-

tion. Furthermore, detailed background is given for connector definition in XCOSEML

along with its relation with used mechanisms to manage variability. At the end of this

chapter, Disaster Management System (DMS) case study is demonstrated.

In chapter 4, performed process to get an executable XCOSEML composition model

is shown. Some important steps are detailed such as developing a tool to parse a

configured XCOSEML composition file and developed mechanisms for matching in-

cluded abstractions to running the pre-built code. Finally, Disaster Management Sys-

tem (DMS) case study is demonstrated in detail with the class diagram of the system

3

and sequence diagrams for different scenarios based on the configured XCOSEML

composition file.

4

CHAPTER 2

BACKGROUND

In this chapter, some background information is provided on component-based and

component oriented approaches, variability and its importance in software systems.

Then, some information is given about Extended Component Based Software En-

gineering Modeling Language (XCOSEML) and its predecessor, Component Based

Software Engineering Modeling Language COSEML. Finally, connector definitions

are provided along with their provided services and types.

2.1 Component Oriented Software Engineering and COSEML

2.1.1 Software Components

Components are defined as implemented code blocks for software building [34]. They

are usually pre built. Components are intended to use as run-time connecting modules

which can be composed and deployed according to a composition standard. In this

way, components can be seen as structural pieces of a software system.

Components should be composable and deployable independently from other com-

ponents that are selected to yield a software system. Also, provided services by a

component and required services for a component’s operations should be shown in

an interface provided for each of the components. Since there can be more than one

component for the same purpose with small differences, their provided and required

services for their operation should be clear and well documented [32]. So, the users

can select the most suitable option according to their needs.

5

2.1.2 Component Based Software Engineering

Component Based Software Engineering (CBSE) is a sub-discipline of software en-

gineering whose main aim is to separate the functional parts of software systems to

be reused in different systems. The first applications of CBSE started in 1990s with

the aim of constructing software components to be used in several software systems.

In CBSE, first, functionally separable software components are defined and created.

Subsequently, previously constructed software components are used to build large-

scale software systems instead of creating the whole system from scratch. Object-

oriented software development also aims software reuse. However, component based

software development and object-oriented software development are different for sev-

eral reasons. First, object-oriented approach cannot be used for general software reuse

purposes, since each object is defined specifically in detail. Therefore, integrating ob-

jects to different software systems requires redefining the objects based on the new

system. In addition, one who wants to use the previously defined objects should get

all the source code, understand and modify it according to his or her needs which

requires tremendous work. As a result, reusability, distribution and marketing of soft-

ware objects is infeasible [32]. On the contrary, software components can be created

and classified in a more generic manner without requiring detailed information. Com-

ponents can be used by their interfaces which defines their functionalities without the

need of implementation details. Components are larger than objects in general, how-

ever their reusability capabilities are higher. As software systems are becoming larger

and larger in today’s world, the importance and need of CBSE is increasing as well.

This approach supports fast and reliable development of large-scale complex systems

via reusable components that work in a harmony.

There are several characteristics of CBSE. First, each component is defined by its in-

terface which is a high-level abstraction independent from the implementation of the

software component. Software engineers can change the implementation of the com-

ponents without changing its interface thanks to this feature of components. There-

fore, a modified component can still be used without changing other parts of the

systems. Second, components have some standards which define how their inter-

faces are used and how they will communicate. These standards provide necessary

6

information about the integration of components to the other components. The latter

characteristic is that software components depend on a middleware which deals with

low-level communication problems in the integration part of the components. Lastly,

each software component should have a mechanism to enable the modification of the

component based the functional needs.

2.1.3 Component Oriented Software Engineering

Component Oriented Software Engineering (COSE) is another approach in software

engineering which is solely based on component oriented software approach rather

than component based approach. This approach was first proposed in [10] in 2003.

CBSE approaches are usually based on the object-oriented approaches with one ex-

ception: In CBSE, components can be defined and represented similar to objects.

However, using object oriented approach limits the capabilities of programmers to

utilize the main features and advantages of component based software development

approach. In this approach, all phases of software development need to be compo-

nent compatible. Therefore, software developers’ main effort is spent on construction

of components rather than composition of them. As a result, the main difference

between the component based and component oriented approaches can be summa-

rized as follows: In component based approaches developers focus on development

of the overall system by other means (such as object orientation) and allow import-

ing of components to it, which makes using component based approach less efficient

whereas, in component oriented approach developers do not use conceptions about

any structures other than components [10]. To eliminate this problem, component

oriented system considers each component as a building block of the software system

and these systems are constructed using a component model.

In COSE, modelling process starts with structural decomposition of the existing sys-

tem with the aim of identifying the components to be integrated. The software system

at hand should be represented in both physical and logical levels. The general process

model of a COSE is given in Figure 2.1. Specifications of the system is constructed by

following two phases which are decomposition and definition of extracted modules.

The outcome of these two phases is a connected set of abstract components. Once

7

the abstract components are identified, the target components that are needed for the

system are positioned within the system. The target components are like the imple-

mentations of the abstract components. At the end, these components are developed

and integrated to the software system to construct the large-scale system.

Figure 2.1: General development phases for component based development [10].

2.1.4 COSEML

A graphical modeling language is a language that provides a graphical representation

of the components and their connections in a software system via set of consistent

rules. COSEML stands for Component Oriented Software Engineering Modeling

Language which is a graphical modeling language that was developed to be used in

COSE [9]. COSEML has its own graphical tools for representation of components

along with their connections. COSEML provides a way of developing software by

composition rather than implementation which was explained in the previous sec-

tion. This language provides the basic primitives, logical entities and implementation

units. In COSEML, a development process starts with the identification and defini-

tion of parts of the system in an abstract level. In this first level, first, sub-systems

should be determined. Subsequently, at the physical level, lower level system compo-

nents should be defined. The system components defined in this level should include

implementations of the abstract modules of the system which was determined in the

previous level. There are several symbols in COSEML. For example, physical im-

8

plementation of an abstract module and corresponding abstract module are linked by

the “represents” link. Connections among abstract entities and physical entities were

described by a “connecter” symbol. COSEML includes five symbols to represent

abstract entities which are “package”, “data”, “function”, “control” and “connector”,

respectively. In physical level, the main symbol is “component”. Developers can also

use special symbols to represent components having only one interface. If a compo-

nent has more than one interface, these interfaces can also be represented by different

symbols at the physical level where each symbol represents a unique interface. In

this way, a system can be represented as a whole including its physical and logical

components with structural and operational connections using the provided symbols

in COSEML. The graphical symbols that can be used in COSEML is given Figure

2.2.

Figure 2.2: Graphical representations of COSEML assets [9].

9

2.2 Variability Modeling in Software Systems

2.2.1 Variability in Software Systems

As the software systems are getting bigger, complexity of the systems increases. In

the old approaches, management of complex software systems was inefficient because

any change or modification required to the system meant a change in the source code.

Since it was very hard to keep track of all the interactions in the huge chunk of code,

a change in the source code could create unexpected bugs or even crashes. With the

introduction of CBSE, using pre-built components to develop software systems has

become more and more popular rather than writing code from the scratch [10].

As a result of the increasing complexity, software systems required to be more dy-

namic and adaptable. In order to achieve this goal, software systems should have the

ability to be changed, configured and extended and one of the ways to provide these

abilities comes with the variability support [17].

Software Product Lines (SPL) are closely associated with variability management.

They adopt a systematic approach to manage variability. In SPL, software assets

should be created according to a defined software architecture and requirements of a

software product family in order to be utilized later. Since it is possible for different

products to share the same features and code, SPL can help to reduce development

costs dramatically. Estimated development costs comparison between the systems

developed with traditional methods and SPL approach is given in Figure 2.3 [28].

10

Figure 2.3: Development costs for n kinds of systems as single systems compared to

SPL (adapted from [28]).

Delayed design principle is embraced in SPL as well as in run-time adaptive sys-

tems. There is no determined final product at the beginning. System will be deter-

mined along the development phase by selecting pre-defined alternatives or adding

new modules to the system [25].

Figure 2.4. shows that there could possibly be infinitely many systems developed

before seting any constraints. During the development some constraints are set and

with every decision number of possible systems decreases. Each of these delayed de-

sign decisions causes system to differantiate and can be regarded as variation points.

Finally, there could be only one configured system working at run-time. Delayed de-

sign decisions are usefull in SPL because it allows product line assets to be used more

effectively according to changing requirements [36].

11

Figure 2.4: Variability change based on approaches(adapted from [36]).

2.2.2 Variability Modeling

Variability modeling is crucial to show variants of a software system efficiently in a

formal way. Developing a system with variability allows developers to take advantage

of reusability thus increase productivity. On the other hand, it may cause an increase

in the complexity of the system. Therefore, systematic approaches are required to

handle variability more effectively [2] [33] [3].

There have been several variability modeling approaches proposed to manage vari-

ability through all stages of the software development from requirements to running

code. While these modeling approaches are introduced to achieve the same goal,

they vary in model characteristics. These characteristics can be model choices, ab-

stractions, tooling, guidance etc. A classification of proposed variability modeling

12

approaches is given in [31].While variability can be modeled in through all develop-

ment phases, suitable modeling techniques may differ from phase to phase. For in-

stance, feature models can be used in SPL when defining variability in requirements

phase.

As it can be seen in Figure 2.4, variation points can be introduced in different levels

of abstraction through all development stages ranging from requitements to running

code. Also these variation points can be in implicit, designed and bound states based

on following conditions. A variation point is implicit when it is shown in a higher

level of abstraction. It is designed when design of a variability point took place in

architectural design phase. A variation point is in binding state when it is bound to

a variant in product architecture, during derivation time, compilation time, linking

time, start-up time and run-time. [36]. Additionally, a variability point can either be

open or closed due to its openness to adding new variants. If it is possible to add new

variants it is open, closed if it is not.

2.2.3 XCOSEML

XCOSEML is a modeling language for the COSE approach. Its aim is to bring the

advantages of component-orientation and variability management together. Unlike its

predecessor COSEML it is a text-based language. Other than newly added connector

definition, XCOSEML has five constructs: package, component, interface, configura-

tion interface, and composition specification. Following paragraphs briefly introduce

these concepts. XCOSEML packages correspond to the logical abstractions of the

system. A package can represent a system as a whole, or a small part of the system (a

subsystems) can be represented by packages. Packages are realized by physical enti-

ties, such as components. A package can include components, interfaces, connectors,

and other packages. Components represent the physical equivalence of the system

decomposition. They can be considered as running code of the system. They are usu-

ally pre-implemented. Their functionality is represented in their interfaces. Interfaces

have provided and required methods. Provided methods represent the functionality

that is conducted by the component itself. Each component must have at least one

provided method. Required methods show the functionality that component needs

13

to be done outside of the component (i.e. in another component) to operate com-

pletely. Connectors were defined in XCOSEML metamodel when it was first defined.

Although they took place in the metamodel as a construct, their definition was not

provided in detail. In [5], XCOSEML is enriched with a detailed connector defini-

tion. Their definition, relationship with variability mechanism, and role in component

communication are provided in Chapter 3. Configuration interface is the variability

model for XCOSEML. It contains different types of variation points and constraints

among them. Three types of variation points are defined; configuration, external,

and internal variation points. Configuration variation points are high-level variation

points that are used to configure low-level variation points. They are generally shown

to developers to let them select desired variants. Then, they configure other varia-

tion points (lower-level ones) based on the variant selection. This is how variability

binding occurs in XCOSEML hierarchically. External variation points are shown to

the developers for variant selection. They are not abstract or high-level like configu-

ration variation points. Configuration variation points are usually tagged as external

to be open to developers’ selection. Internal variation points are configured by other

variation points to select specific functionalities of the system.

Composition specification is the process model of XCOSEML. It contains atomic and

composite interactions. Atomic interactions are “send” and “receive” interactions

conducted through connectors. Composite interactions contain “sequence”, “paral-

lel”, and “repeat”. Composite interactions contain atomic interactions and further

composite interactions in a nested manner. Sequence contains a set of interactions to

be executed consecutively. Parallel includes interactions to be executed concurrently.

Repeat structure executes its content like a loop. Composition specification is a do-

main process model that contains all possible interactions with the defined system. It

imports configuration interface - variability model of the language. Variation points

and variants are associated to interactions through variability tags. Based on the vari-

ability bindings, corresponding interaction are included in the configured composition

file. However, this customized XCOSEML process model is not executable yet. In

Chapter 4, mapping XCOSEML constructs to executable assets is introduced. The

aim here is to run the desired system directly from XCOSEML.

14

2.3 Software Connectors

Modern software systems consist of many complex components. Components are re-

sponsible for both processing and data, separately or together at the same time. The

interactions among these components are one of the main issues in CBSE approaches.

Management of these components can be challenging considering the size and com-

plexity of modern systems. Interactions among components can be even more im-

portant than components themselves with regard to ensuring the system stability and

extendibility from an architectural point of view.

A definition for connector is given as “architectural element tasked with effecting

and regulating interactions among components” in [35]. According to this definition,

connectors are abstractions in charge of the interactions among components in an

architectural level.

Connectors have generally indicated themselves as simple procedure calls or shared

data access in traditional software systems. In terms of architecture, they were treated

as invisible. Abstractions were symbolized as lines and boxes where components

were represented by boxes, connectors were represented by lines. These lines were

simply inadequate to represent the identity or properties of a connector. Also, these

connectors were only able to manage the interactions between pairs of components.

Increasing complexity of software systems caused connectors to adapt and evolve.

More demanding requirements have led connectors to have their own identities, roles

and bodies of codes. They have also gained an ability to work with many different

components, even simultaneously.

In simple terms, software connectors are responsible for transfer of the control and

data among components. While the most of the components take on specific roles in

the composition of an application, connectors are usually independent from applica-

tion or context.

15

2.3.1 Classification of Connectors

There are four general classes of services that can be provided by a software connec-

tor; communication, coordination, conversion and facilitation[24].

Communication: These connectors are used for the transmission of data among com-

ponents. In component interactions, data transmission services are one of the major

building blocks. This type of connectors can be used for passing messages, exchang-

ing data to be processed and communication of the computation results.

Coordination: These connectors are responsible for transfer of control among com-

ponents. Interactions among components are handled by switching thread of execu-

tion from one component to another. Function calls and method invocations can be

given as examples.

Conversion: Conversion connectors allows heterogeneous components to interact

with each other. It is a major task considering that probable mismatches is one of the

major problems in the way of building large and complex systems.

Facilitation: This kind of connectors are used for mediating and streamlining com-

ponent interactions. Heterogeneous components needs some mechanisms even if they

have been created to interoperable with each other. Facilitation components are very

useful for facilitating and optimizing component interactions.

2.3.2 Commonly Used Connector Types

Abstractions obtained by these four classes are not enough to build connectors since

they do not provide sufficient details to model and analyze them. Therefore, eight

connector types are defined based on which way they realize their roles in interactions

[24]. These connector types and their probable classes are shown in Table 2.1.

Procedure Call Connectors: This is the most widely used type of connectors. This

type of connectors is used to manage the distribution of control and synchronous

data between a pair of components. Hence, they can be classified as coordination

and communication connectors. The caller component forwards the thread of control

16

Table 2.1: Services provided by connector types

Services Provided
Communication Coordination Conversion Facilitation

C
on

ne
ct

or
Ty

pe
s

Procedure Call X X
Event X X
Data Access X X
Linkage X
Stream X
Arbitrator X X
Adaptor X
Distributor X

along with the parameters to the callee component; then the callee returns the control

along with the results to the caller when the operation completed. Object oriented

methods, fork and join in environments such as Unix, operating system calls can be

given as examples of this types of connectors.

Event Connectors: Event connectors model the flow of control among components

just like it was in the procedure call connectors, on the other hand unlike procedure

call connectors the flow is disrupted with an event. Therefore, they provide coordina-

tion services.

Data Access Connectors: This type of connectors provides communication services

to allow components to access a shared memory. Since data access can occur in dis-

tributed time, the component which data is stored should be invoked for preparation

of data before the access and should clean up after the access. Data access connectors

can also provide conversion services if there is a difference in the stored data format

and required data format.

Linkage Connectors: Purpose of these connectors are to bundle the system compo-

nents to each other and hold them together along their operation. By this way, they

provide the channels for communication and coordination for higher order connectors

to communicate through. Linkage connectors are used for facilitation of enforcing the

interaction semantics. Main goal of this type of connectors are to assist repair, expand

and monitor an existing system. After the foundation of channels in a system, linkage

connectors can disappear or remain in the system in order to help with extendability.

17

Stream Connectors: Stream connectors are used for communication purposes by

performing considerable amounts of transfers among autonomous processes. They

can also be used for delivering computation results in client server systems with data

transfer protocols. This type of connectors have been utilized to represent connec-

tors with complex usage protocols in formal architectural models [1], [30]. Stream

connectors can be paired with various connectors such as data access connectors to

perform database and file storage access, or event connectors to help with the delivery

of multiple events. UNIX pipes, TCP/UDP communication sockets can be given as

examples of stream connectors.

Arbitrator Connectors: Presence of other components can effect the operation of

a component when the states and and requirements are unknown in a software sys-

tem. Arbitrator connectors are used for streamlining system operations and resolving

conflicts. They can also redirect the control flow for coordination purposes. Multi

threaded systems with shared memory access can be given as a usage area for these

types of connectors.

Adaptor Connectors: Since component oriented systems are built from pre-implemented

components, some inconsistency among components is almost inevitable. Adaptor

connectors provide conversion services to ensure the interactions among heteroge-

neous components. Conversion can also be done to optimize the interactions in a

software system. The systems include different computing platforms or programming

languages can be given as examples which requires adapter connectors.

Distributor Connectors: These connectors exist to provide the assistance required

by other connectors such as procedure calls and streams. They help to acknowledge

the paths and allow routing through these paths in order to allow other components

to communicate and coordinate more efficiently. They are classified as facilitation

connectors.

18

CHAPTER 3

DEFINING VARIABLE CONNECTORS IN XCOSEML

In this chapter, extension of the Extended Component Based Software Engineering

Modeling Language (XCOSEML) language with explicit connector definition and as-

sociating them with variability are introduced. In Section 3.1, a literature summary

on connector definition and connector variability is provided. XCOSEML connector

definition is explained in detail. Finally, the relationship between variability mecha-

nism of the language and connector definition is explained.

3.1 Software Connectors and Variability

As first-class citizens of the software modeling, connectors should be taken into ac-

count while modelling variability. During the system development, or even at run-

time, connectors should be added or removed to the system. Besides plugging a

connector directly to a system, a connector is supposed to be configured for different

purpose of usage. This depends on the definition of the connectors. A detailed and

precise definition provides developers a chance to select desired parts, and discard

undesired parts inside the connectors. There are some approaches that consider con-

nector as a variable asset. In [29], connector variability is used in the component and

connector view of software architecture. However, their connector definition is not

detailed and connectors’ operations are not explicitly defined. In [15], a mapping to

software connectors are provided in their hierarchical variability modeling approach,

again without detailed connector definition. In [14], an approach is proposed for in-

tegration of Software Product Line Engineering (SPLE) and Component Based Soft-

19

ware Engineering (CBSE). This approach also does not have a detailed connector

definition. Other approaches that "contain variable connectors" can be classified as

follows: Cetina et al. [4] propose Model-Based Reconfiguration Engine (MoRE) with

the capability of run-time adaptability in the context of autonomic computing. Us-

ing different communication channels during reconfiguration is a method of defining

variability to communication among components. Although this is a kind of connec-

tor variability, the variability logic is hidden in feature models that makes it difficult to

manage it in large-scale systems. In [13], connector variability is conducted through

ports of a specific component. In [16], authors employ connector variability through

adaptation middleware. Dynamic reconfiguration is applied to components and their

connections.

3.2 XCOSEML Metamodel and Connector Extension

XCOSEML adds dynamic constructs to static constructs of the Component Based

Software Engineering Modeling Language (COSEML). Also, as an important exten-

sion, it extends COSEML with variability. For the sake of separation of concerns,

variability constructs are separated from language constructs. For the connection of

these two model parts, mapping constructs are used. Figure 3.1 depicts an overview

of the XCOSEML metamodel.

Figure 3.1: Overview of the metamodel.

20

Figure 3.2: The language constructs of the XCOSEML metamodel with connector

variability. The boxes at the right-hand side of the figure (outside of the language

constructs) are variability mapping constructs. (adapted from [5])

21

Figure 3.3: Variability Mapping in XCOSEML (adapted from [23]).

In [5], abstract definition of connectors in XCOSEML is extended. The connec-

tor definition is enhanced by adding connector message and message operation con-

structs. A detailed version of the extended XCOSEML grammar is provided in Figure

3.2 and Figure 3.3. Connector message represents messaging between two compo-

nent interfaces. Message operation represents connectors roles in the communication

other than basic communication (if any), such as data transformation. Basic commu-

nications such as a procedure call or an event, do not need further operations on data

- they simply transfer it.

22

3.3 Extended Grammar

XCOSEML grammar was first developed in [11]. In this thesis, the grammar is re-

developed in ANTLR (Another tool for Language Recognition) [27]. ANTLR plug-

ins for different development environments produce parsers for a defined grammar.

This eases the process of development of a grammar and making necessary updates.

Intellij IDEA is used besides reconstructing the grammar in a new development envi-

ronment, the following extensions are done for the XCOSEML grammar:

• Connector definition is extended with service type and connector type.

• A connector message is defined to encapsulate communication concerns.

• Connectors additional responsibilities (e.g. data transformation) are represented

with the "Operation" keyword.

• Communication protocols for the two interacting components are added to the con-

nector message structure.

In a connector definition, the name of the connector is stated first. Service type and

connector type follow this name. Then, one or more connector messages take part in

the connector definition.

The name of the connector is a user defined identifier. It can be any string including

alphanumeric combinations. XCOSEML does not restrict the syntax of identifiers.

However, it is better to follow the naming rules of well-known modeling and pro-

gramming languages. When naming connectors, it is a good practice to use short

forms of components’ names that are connected by this connector. Service type and

connector type are used based on the categorization defined in the work of Mehta

et al. [24]. Using this categorization in the connector definition is an idea of Ous-

salah et al. [26]. In this thesis, this idea is combined with the advantages of using

variability. Service type indicates the connector’s purpose of usage. This aim can be

achieved through different types of connectors. For example, "procedure call" con-

nector can be used for "communication". However, each type of connector does not

have only one service type. In other words, a kind of connector can be used for differ-

ent purposes. For example, "procedure call" can also be used for "coordination". In

23

XCOSEML, service type and connector type specifications allow developers to find

required connectors easily for their system. Search process becomes easy and it helps

development of connectors for specific purposes.

3.4 Case Study: Disaster Management System

A Disaster Management System (DMS) is used as a case study to illustrate the usage

of new abilities of XCOSEML. It is a kind of cyber-physical system where humans

and various systems work together to manage the emergency situation to lessen the

effects of it. This includes understanding the type of the disaster and its effects with

all aspects, locating people who need help, organizing various teams to help people

and control the situation, and using the time and resources effectively. Figure 3.4

depicts the disaster management system environment.

Figure 3.4: Disaster Management System environment.

24

Disaster Management Center (DMC) coordinates the system. UAVs, sensors and

cameras are used to collect data from the environment. When a disaster is detected or

reported by the staff, DMC activates necessary teams.

3.5 Modeling Disaster Management System in XCOSEML

Package: XCOSEML representation of the package which contains disaster manage-

ment system assets named “DMS_pkg” is given in Table 3.1.

Table 3.1: XCOSEML representation of DMS_pkg package.

1 Package DMS_pkg
2 i nc ludedComponen t s DMC_comp Drone_comp F i r e F i g h t e r _ c o m p

MedicalTeam_comp Pol ice_comp SWAT_comp UAV_comp
3 i n c l u d e d C o n n e c t o r s DMC_Drone_conn DMC_FF_conn DMC_MT_conn

DMC_Police_conn DMC_SWAT_conn DMC_UAV_conn
SWAT_UAV_conn

4 C o n f i g u r a t i o n I n t e r f a c e DMS_conf
5 C o m p o s i t i o n S p e c i f i c a t i o n DMS_cmps

It can be seen that the package “DMS_pkg” which represents DMS includes all in-

cluded components and connectors in the system. Configuration interface and com-

position specification is also included in the package.

Component: The components used to model the system are DMC “(DMC_comp)”,

Drone “(Drone_comp)”, UAV “(UAV_comp)”, FireFighter “(FireFighter_comp)”, Po-

lice “(Police_comp)”, SWAT “(SWAT_comp)” and MedicalTeam “(MedicalTeam_comp)”.

Each of the components has their own interfaces keeping their methods. XCOSEML

representation of the DMC component is given in Table 3.2.

25

Figure
3.5:C

O
SE

M
L

m
odelforthe

D
M

S
system

.

26

Table 3.2: XCOSEML representation of DMC_comp component.

1 Component DMC_comp
2 I n t e r f a c e DMC_int

Interface: Interfaces are aimed to store the methods corresponding to their asso-
ciated components. Interfaces for DMC and FireFighter components are given in
XCOSEML representation in Table 3.3 and Table 3.4 respectively.

Table 3.3: XCOSEML representation of DMC_int interface.

1 I n t e r f a c e DMC_int
2

3 P r o v i d e d Methods
4 m a n a g e D i s a s t e r
5 p r o v i d e B i r d s V i e w
6

7 R e q u i r e d Methods
8 r e q u e s t S u r v e i l l a n c e D a t a
9 a c t i o n R e q u e s t

10 r eques tRepor tF romTeams

Table 3.4: XCOSEML representation of FireFighter_int interface.

1 I n t e r f a c e F i r e F i g h t e r _ i n t
2

3 P r o v i d e d Methods
4 e x t i n g u i s h F i r e
5 c r e a t e R e p o r t
6

7 R e q u i r e d Methods
8 r e q u e s t L o c a t i o n
9 r e q u e s t B i r d s V i e w

27

Methods in an interface are divided into 2 parts like it was in the COSEML. Interface

of the DMC components is given in Table 3.3. The methods shown under the “Pro-

vided Methods” tag in lines 4-5 corresponds to “Method In”s of COSEML diagram

given in Figure 3.5 with the same names. The methods provided under “Required

Methods” tag matches the methods shown in “Method Out” part of the corresponding

COSEML diagram of the system.

The methods contained by the “FireFighter” interface are shown in Table 3.4. As

it can be seen from the given interfaces, provided methods of a component match

required methods of another component such as “provideBirdsView” method shown

in line 5 of the Table 3.3 and “requestBirdsView” method shown in line 9 of the Table

3.4.

Connector: Communication among components are done through connectors linking

with the in and out method ports of COSEML specifications. These connectors are

defined for handling all communication among components; “DMC_Drone_conn”,

“DMC_FF_conn”, “DMC_MT_conn”, “DMC_Police_conn”, “DMC_SWAT_conn”,

“DMC_UAV_conn” connectors are created to handle all interactions between the

“DMC” and its associated components.

The connector that handles all interactions between DMC and FireFighter compo-
nents is shown in Table 3.5. Connectors include their service and connector types in
their definitions. It is helpful for developers since it provides information and hints
regarding with connectors usage and purpose.

28

Table 3.5: XCOSEML representation of DMC_FF_conn interface.

1 Connec to r DMC_FF_conn
2 S e r v i c e T y p e communica t ion
3 Connec torType p r o c e d u r e c a l l
4

5 Connec torMessage e x t i n g u i s h F i r e _ a c t i o n R e q u e s t {
6 R e q u e s t e r I n t e r f a c e DMC_int
7 MethodOut a c t i o n R e q u e s t
8 R e s p o n d e r I n t e r f a c e F i r e F i g h t e r _ i n t
9 MethodIn e x t i n g u i s h F i r e

10 }
11

12 Connec torMessage c r e a t e R e p o r t _ r e q u e s t R e p o r t F r o m T e a m s {
13 R e q u e s t e r I n t e r f a c e DMC_int
14 MethodOut reques tRepor tF romTeams
15 R e s p o n d e r I n t e r f a c e F i r e F i g h t e r _ i n t
16 MethodIn c r e a t e R e p o r t
17 }
18

19 Connec torMessage p r o v i d e B i r d s V i e w _ r e q u e s t B i r d s V i e w {
20 R e q u e s t e r I n t e r f a c e F i r e F i g h t e r _ i n t
21 MethodOut r e q u e s t B i r d s V i e w
22 R e s p o n d e r I n t e r f a c e DMC_int
23 MethodIn p r o v i d e B i r d s V i e w
24 }

A Connector operates through a structure called “ConnectorMessage”. Body of a con-

nector message refers to interfaces of related components for which it binds a method

out from the requester interface to a method in from the responder interface. Name

of a connector message is constructed by MethodIn of responder and MethodOut of

requester, merged together with an underscore.

The connector which binds DMC and FireFighter components has 3 defined connec-

tor messages to handle 3 different operations among these components as it can be

seen in Table 3.5. The message “extinguishFire_actionRequest” is used when DMC

request firefighters to put off a fire at a certain location. The message “createRe-

port_requestReportFromTeams” is called when DMC requests a situation report from

29

firefighters. According to variability configuration, “provideBirdsView_requestBirdsView”

message can be used to pass bird’s-eye view from DMC to FireFighter.

Configuration: In the configuration file, external-internal variabilities are defined.

Configuration file for the DMS is shown in Table 3.6.

Table 3.6: XCOSEML representation of DMS_conf configuration.

1 C o n f i g u r a t i o n DMS_conf o f Package DMS_pckg
2

3 c o n f i g u r a t i o n V P SystemType :
4 e x t e r n a l
5 v a r i a n t s t a n d a r d
6 v a r i a n t advanced
7 b ind ingTime dev t ime
8

9 i n t e r n a l V P S e c u r i t y T e a m S e l e c t i o n :
10 v a r i a n t s e c u r i t y V i o l a t i o n
11 v a r i a n t s u r v e i l l a n c e
12 b ind ingTime dev t ime

Between the lines 3-6 of Table 3.6, a couple of scenarios are defined as “standard”

and “advanced” to be utilized in the composition. External tag means these selections

are open to user and can be selected according to user’s needs while configuring the

final product. Between the lines 9-11, internal variants are defined to be mapped to

the external variants and manage variation points to be defined in the composition.

Composition: Composition file includes the scenario to be processed. Variability

points will be set based on the definitions on the configuration file and the final con-

figured file will be generated by eliminating some variants from the composition file.

XCOSEML representation of composition for DMS is given in Table 3.7 and 3.8.

30

Table 3.7: XCOSEML representation of DMS_cmps composition.

1 Compos i t ion DMS_cmps
2 import c o n f i g u r a t i o n DMS_conf
3

4 has component DMC_comp Drone_comp F i r e F i g h t e r _ c o m p
MedicalTeam_comp Pol ice_comp SWAT_comp UAV_comp

5 has c o n n e c t o r DMC_Drone_conn DMC_FF_conn DMC_MT_conn
DMC_Police_conn DMC_SWAT_conn DMC_UAV_conn
SWAT_UAV_conn

6

7 mapping
8 advanced −> s e c u r i t y V i o l a t i o n
9 s t a n d a r d −> s u r v e i l l a n c e

10

11 C o n t e x t P a r a m e t e r s
12 f i r e F l a g f a l s e
13 s e c u r i t y V i o l a t i o n F l a g f a l s e
14 Method DMSProcess :
15 #vp SystemType i f O n e S e l e c t e d (s t a n d a r d) #
16 DMC −> Drone (DMC_Drone_conn .

o b s e r v e A r e a _ r e q u e s t S u r v e i l l a n c e D a t a)
17

18 #vp SystemType i f S e l e c t e d (advanced) #
19 DMC −> UAV (DMC_UAV_conn .

o b s e r v e A r e a _ r e q u e s t S u r v e i l l a n c e D a t a)

31

Table 3.8: [Continued]XCOSEML representation of DMS_cmps composition..

1 guard (f i r e F l a g == t rue) p a r a l l e l {
2 s e q u e n c e {
3 DMC −> F i r e F i g h t e r (DMC_FF_conn .

e x t i n g u i s h F i r e _ a c t i o n R e q u e s t)
4 #vp SystemType i f S e l e c t e d (advanced) #
5 F i r e F i g h t e r −> DMC (DMC_FF_conn .

p r o v i d e B i r d s V i e w _ r e q u e s t B i r d s V i e w)
6 F i r e F i g h t e r −> DMC (DMC_FF_conn .

c r e a t e R e p o r t _ r e q u e s t R e p o r t F r o m T e a m s)
7 }
8 s e q u e n c e {
9 DMC −> MedicalTeam (DMC_MT_conn .

h e l p P e o p l e _ a c t i o n R e q u e s t)
10 DMC −> MedicalTeam (DMC_MT_conn .

c r e a t e R e p o r t _ a c t i o n R e q u e s t)
11 }
12 }
13

14 guard (s e c u r i t y V i o l a t i o n F l a g == t rue) s equnce {
15 #vp S e c u r i t y T e a m S e l e c t i o n i f S e l e c t e d (s e c u r i t y V i o l a t i o n) #
16 s e q u e n c e {
17 DMC −> SWAT (DMC_SWAT_conn .

p r o v i d e S e c u r i t y _ a c t i o n R e q u e s t)
18 SWAT −> UAV (SWAT_UAV_conn .

o b s e r v e A r e a _ r e q u e s t L i v e F e e d)
19 }
20 #vp S e c u r i t y T e a m S e l e c t i o n i f S e l e c t e d (s u r v e i l l a n c e) #
21 DMC −> P o l i c e (DMC_Police_conn .

p r o v i d e S e c u r i t y _ a c t i o n R e q u e s t)
22 }

In Table 3.7, context parameters to specify fire and security are created as “fireFlag”

and “securityViolationFlag”, then they are initialized to “False” in lines between 11-

13 of. “#vp” tags are used to define variation points in the system. Variants and

their mappings defined in configuration phase are used for determining which vari-

ation point is going to be selected in execution. For instance, 2 variation points are

defined between lines 15-19. Depending on the selected configuration (standard or

advanced), different components and connectors will be used to respond to the events.

32

If the user selects standard configuration, DMC will alert drone to gather data. If the

advanced configuration is selected Unarmed Air Vehicle (UAV) will be used. When

a variation point is activated, 2 components communicate through a connector via a

connectorMessage defined in the connector body.

The code given between the lines 1-12 of Table 3.8 is used for DMC to respond to the

events. In case of a fire, DMC was assigned to send firefighters and medical teams

as synchronized. Purpose of the “parallel” tag given in line 21 is to synchronize

the communication between DMC-FireFighter and DMC-MedicalTeam. “sequence”

tag is tasked with binding multiple messages together. If the fireFlag is toggled to

“True”, sequences given between the lines 2-12 will be executed. Also, depending on

the configuration of this file based on selected scenario, the lines between 4-5 might

be deleted from final configured file. That means in case of a fire, DMC will assign

firefighters and medical teams to the area. Also, if the advance scenario is selected

by the user, DMC will be providing bird’s eye view images or video from the UAV.

DMC will also request situation reports from both medical teams and firefighters.

If the flag which is used to identify security problems based on the info gathered from

drone or UAV is changed to “True”, the sequence given between the lines 16-22 will

be processed. In the given configuration file advance scenario was mapped to “se-

curityViolation” and standard scenario was mapped to “surveillance”. According to

the sequence given in this part, police will be assigned to the area in standard sce-

nario. However, if the user selects advanced variation, SWAT teams can be assigned

to the area with live steaming support provided by UAV. As it can be seen in line 18

of Table 3.8, the SWAT component has direct access to UAV through the provided

“SWAT_UAV_conn” connector.

33

34

CHAPTER 4

EXECUTION OF XCOSEML COMPOSITON SPECIFICATION

In this chapter, an effort to execute the Extended Component Based Software En-

gineering Modeling Language (XCOSEML) composition model is introduced. To

achive this goal, the XCOSEML tool is redeveloped and a matching part between

configured composition specification and executable code is added. This effort is

introduced in section 4.1. Then, implementation of Disaster Management System

(DMS) with object-oriented programming is introduced in section 4.2. Finally, exe-

cution of "DMS_cmps" composition specification is introduced in section 4.3.

4.1 XCOSEML Tool

The XCOSEML tool has 4 main parts;

• a parser to read XCOSEML files,

• transformation for the model checking tool,

• configuration of variable domain models for customization, and

• matching from XCOSEML models to executable code.

The XCOSEML tool is first introduced in [21] with the parts for parser and config-

uration. Then, the part for transformation is added in [22] [20]. In this thesis, these

three parts are redesigned and recoded. This is done because the desing of the pre-

vious version was not modular. Moreover, the previous version of the grammar was

developed in Xtext that is a powerful tool working on Eclipse environment. However,

35

the parser was developed manually and any change of the grammar was required sig-

nificant effort to update the parser. ANTLR (Another tool for Language Recognition)

is prefered for the new version. It otomatically generates the parser. The grammar of

the language is designed in a modular fashion which allows generating parsers sep-

arately. Therefore, the new tool is easy to update and improve the grammar and the

other parts. Grammars for six assets of the XCOSEML are provided in the Appendix

A.

As an extension for the tool, a new part for matching XCOSEML models to exe-

cutable code is introduced in this thesis. This part achives one of the major con-

tribution of the thesis: executable modeling of XCOSEML. Each part of the tool is

explained in detail in the below sections.

4.1.1 Parser

Intellij IDEA IDE [19] is used which serves as a good development environment for

developing Domain Specific Languages (DSL) with its ANTLR [27] plugin. Figure

4.2 is a screen shot taken from the editor. The structure of the project can be seen

from the project window at the left side of the figure. Grammar files of the language

are created in ANTLR. To test the language, XCOSEML files are created with the

".xcml" extension. Parser files are created in Java.

36

Fi
gu

re
4.

1:
X

C
O

SE
M

L
To

ol
.

37

Figure 4.2: XCOSEML tool development environment.

ANTLR is a tool that is designed to deal with textual structures. It contributes to

the advancement of programming language design by offering some capabilities for

making development of DSL easier. Generating parse trees for the defined context

free grammars is one of these capabilities. In this thesis, ANTLR is used to parse

38

input strings. Each model element has its own structure and they are stored in different

files. In ANTLR, we have defined a different grammar for each model element such

as connector, interface and component. Then, the parser processes the input files

according to the defined grammar for the input type. The final product is gathered via

processing the inputs with the generated parse trees.

4.1.2 Transformation

XCOSEML domain models can be verified through model checking with Featured

Transition System (FTS) approach [8] before the customization. FTS approach uses

SNIP [7] that can handle a domain feature model and a process model separately that

is conveniet for XCOSEML. The SNIP tool takes the variability model as a text-based

language - Textual Variabiltiy Language (TVL) [6]. The process model of the tool is

fPromela, which is an extended version of Promela language of the well-known SPIN

model checker [18]. Configuration interface of the XCOSEML is transformed to

TVL and composition specification of XCOSEML is transformed to fPromela. Then,

domain models are checked against deadlocks and assertions. This transformation

process is semi-automated and requires some manual intervention due to some limi-

tations of the source and target languages. Deatailed information for transformation

and model checking processes is introduced in [20] [22].

4.1.3 Configuration

In software product lines (SPL) to handle variability we do configuration which refers

to the selection of a set of features or parts from the list of all possible elements in

the solution space to get a final product. In XCOSEML, variability model resides

in a configuration interface. Composition specification has variability tags before an

interaction. If the specified variant is chosen, that interaction is included in the final

product. These variant selections are done at the specified binding time of the varia-

tion point in the configuration interface. Therefore, selected variants are provided by

the developer if the binding time is development time. If the binding time were run

time, the end user would provide the selected variants. When an interaction is chosen

39

in the composition specification, components and connectors which take place in that

interaction are added to the final product. In the connector message structure, inter-

faces of the interacting components and their methods are provided. In this way, only

desired methods can be included in the final product. This is also the case for choos-

ing a connector message itself. In an interaction different messages of a connector can

be used. Therefore, XCOSEML has variability for four assets; component, connector,

interface, and composition. Also inner structures of component and connectors are

configurable.

4.1.4 Matching

In this thesis, matching part is added to the XCOSEML tool in order to execute the

process model of the language. After the configuration of domain process model

of the language, i.e. composition specification that contains variability tags, a cus-

tomized composition file is obtained. This file contains the names of included assets

to the system. Matching tool uses these names to map model assets to executables.

4.2 Disaster Management System Implementation in Java

Eclipse [12] is used as an Integrated Development Environment (IDE) with the inclu-

sion of Java 8 version 31. Class diagram of the program is given in 4.3.

One of the challenges with the implementation using connectors was to isolate the

components from each other. Which means components would not be able to access

other components directly. Since the components are not allowed to access each oth-

ers methods, we match the method declaration of both requester and responder com-

ponents in the connector, then allow the connector to be invoked through a connector

message as mentioned in section 3.3. When a connector is called with a connector

message as a parameter, it determines which component to access according to def-

initions and methods inside of its body of code. And when it receives the answer

from the responder component, it passes the answer to the requester component. The

types of these answers may vary according to the type of the connector used based

on the defined connector types in [24]. Connectors can also process and change these

40

Fi
gu

re
4.

3:
C

la
ss

D
ia

gr
am

of
D

M
S.

41

answers if they are in their job description. For instance, adapter connectors can be

used to compress or enhance the resolution of an image if needed.

4.3 Execution of the DMS_cmps compositon specification

Used components and connectors are specified in the composition file with the "has

component" and "has connector" keywords. During the execution of the system,

classes will be created for each of these components and connectors according to

mentioned keywords. By this way only included components and connectors will be

used, and unused ones will be discarded from the final system. Java reflection Aap-

plication Programming Interface (API) is used to create these classes dynamically

in run-time without needing any information of the system by the process. Thus,

execution of the composition file is not dependent on context.

Java reflection is used throughout the execution to prevent system to be context or

application dependent. Execution starts from the configured composition file which

is considered a process model of the system. Our approach for invoking the connector

is given in Figure 4.4.

Firstly, process invokes the connector through its "start()" method by sending connec-

tor message as a parameter. When the connector is invoked via its "start()" method, it

recognizes the connector message. Since the connector includes the requester inter-

face, responder interface, method in and method out information for each connector

message, the connector performs the interaction among the components. For this pur-

pose, an object with the type of the connector is defined for every component. Also,

an object for each of the component is created with the type of component. This

approach is illustrated in Figure 4.5. Then, the connector communicates with the re-

sponder component through its required methods by using "method in" defined in the

connector message. When the responder component receives the request, a method

with the same name with the "method in" is triggered in the provided methods of the

responder component. Through this provided method, results will be passed to the

connector to be delivered to the requester component.

42

Figure 4.4: Invoking the connectors in proposed approach

Figure 4.5: Illustration of component and connector instances in implementation

The Composition file DMS_comp as shown in Table 3.7 and Table 3.8 is configured

with the configuration file DMS_conf as shown in Table 3.6. Generated configuration

files for various scenarios such as "Standard", "Advanced" are given in Table 4.1 and

Table 4.2 respectively.

A sequence diagram for the configured composition file given in Table 4.1 (Standard

scenario) when the global variables "fireFlag" is set to "true" and "securityViolation-

Flag" is set to "false" is shown in Figure 4.6. Outputs generated after the execution of

the sequence diagram are shown in Table 4.3.

A sequence diagram for the configured composition file given in Table 4.2 (Advanced

scenario) when the global variables "fireFlag" is set to "true" and "securityViolation-

Flag" is set to "false" is shown in Figure 4.7. Outputs generated after the execution of

the sequence diagram are shown in Table 4.4.

A sequence diagram for the configured composition file given in Table 4.1 (Standard

scenario) when the global variables "fireFlag" is set to "false" and "securityViolation-

Flag" is set to "true" is shown in Figure 4.8. Outputs generated after the execution of

the sequence diagram are shown in Table 4.5.

43

A sequence diagram for the configured composition file given in Table 4.2 (Advanced

scenario) when the global variables "fireFlag" is set to "false" and "securityViolation-

Flag" is set to "true" is shown in Figure 4.9. Outputs generated after the execution of

the sequence diagram are shown in Table 4.6 .

Table 4.1: Configured XCOSEML file for the configuration: "Standard" .

1 Compos i t ion DMS_cmps
2 import c o n f i g u r a t i o n DMS_conf
3

4 has component DMC_comp Drone_comp F i r e F i g h t e r _ c o m p
MedicalTeam_comp Pol ice_comp

5 has c o n n e c t o r DMC_Drone_conn DMC_FF_conn DMC_MT_conn
DMC_Police_conn

6

7 C o n t e x t P a r a m e t e r s
8 f i r e F l a g f a l s e
9 s e c u r i t y V i o l a t i o n F l a g f a l s e

10 Method DMSProcess :
11 DMC −> Drone (DMC_Drone_conn .

o b s e r v e A r e a _ r e q u e s t S u r v e i l l a n c e D a t a)
12

13

14 gua rd (f i r e F l a g == t rue) p a r a l l e l {
15 s e q u e n c e {
16 DMC −> F i r e F i g h t e r (DMC_FF_conn .

e x t i n g u i s h F i r e _ a c t i o n R e q u e s t)
17 DMC −> F i r e F i g h t e r (DMC_FF_conn .

c r e a t e R e p o r t _ r e q u e s t R e p o r t F r o m T e a m s)
18 }
19 s e q u e n c e {
20 DMC −> MedicalTeam (DMC_MT_conn .

h e l p P e o p l e _ a c t i o n R e q u e s t)
21 DMC −> MedicalTeam (DMC_MT_conn .

c r e a t e R e p o r t _ a c t i o n R e q u e s t)
22 }
23 }
24

25 gua rd (s e c u r i t y V i o l a t i o n F l a g == t rue) s equnce {
26 DMC −> P o l i c e (DMC_Police_conn .

p r o v i d e S e c u r i t y _ a c t i o n R e q u e s t)
27 }

44

Table 4.2: Configured XCOSEML file for the configuration: "Advanced" .

1 Compos i t ion DMS_cmps
2 import c o n f i g u r a t i o n DMS_conf
3

4 has component DMC_comp F i r e F i g h t e r _ c o m p MedicalTeam_comp
SWAT_comp UAV_comp

5 has c o n n e c t o r DMC_FF_conn DMC_MT_conn DMC_SWAT_conn
DMC_UAV_conn SWAT_UAV_conn

6

7 C o n t e x t P a r a m e t e r s
8 f i r e F l a g f a l s e
9 s e c u r i t y V i o l a t i o n F l a g f a l s e

10 Method DMSProcess :
11 DMC −> UAV (DMC_UAV_conn .

o b s e r v e A r e a _ r e q u e s t S u r v e i l l a n c e D a t a)
12

13 gua rd (f i r e F l a g == t rue) p a r a l l e l {
14 s e q u e n c e {
15 DMC −> F i r e F i g h t e r (DMC_FF_conn .

e x t i n g u i s h F i r e _ a c t i o n R e q u e s t)
16 F i r e F i g h t e r −> DMC (DMC_FF_conn .

p r o v i d e B i r d s V i e w _ r e q u e s t B i r d s V i e w)
17 DMC −> F i r e F i g h t e r (DMC_FF_conn .

c r e a t e R e p o r t _ r e q u e s t R e p o r t F r o m T e a m s)
18 }
19 s e q u e n c e {
20 DMC −> MedicalTeam (DMC_MT_conn .

h e l p P e o p l e _ a c t i o n R e q u e s t)
21 DMC −> MedicalTeam (DMC_MT_conn .

c r e a t e R e p o r t _ a c t i o n R e q u e s t)
22 }
23 }
24

25 gua rd (s e c u r i t y V i o l a t i o n F l a g == t rue) s equnce {
26 DMC −> SWAT (DMC_SWAT_conn .

p r o v i d e S e c u r i t y _ a c t i o n R e q u e s t)
27 SWAT −> UAV (SWAT_UAV_conn .

o b s e r v e A r e a _ r e q u e s t L i v e F e e d)
28 }

45

Figure
4.6:Sequence

diagram
forfire

response
in

standard
configuration.

46

Fi
gu

re
4.

7:
Se

qu
en

ce
di

ag
ra

m
fo

rfi
re

re
sp

on
se

in
ad

va
nc

ed
co

nfi
gu

ra
tio

n.

47

Figure
4.8:Sequence

diagram
forsecurity

alertin
standard

configuration.

48

Fi
gu

re
4.

9:
Se

qu
en

ce
di

ag
ra

m
fo

rs
ec

ur
ity

al
er

ti
n

ad
va

nc
ed

co
nfi

gu
ra

tio
n.

49

Table 4.3: Generated outputs after the execution of sequence diagram given in Figure
4.6

1 DMC_Drone_conn : Reques t f o r s u r v e i l l a n c e r e c e i v e d .
2 drone : Reques t f o r s u r v e i l l a n c e a r e r e c e i v e d .
3 DMC_Drone_conn : Ph o to s a r e r e c e i v e d .
4 dmc : Pho to s a r e r e c e i v e d .
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 DMC_FF_conn : Reques t f o r F i r e F i g h t e r s r e c e i v e d .
7 f f : Reques t f o r F i r e F i g h t e r s r e c e i v e d .
8 DMC_FF_conn : F i r e F i g h t e r s s e n t .
9 dmc : Acknowledged .

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 DMC_FF_conn : Reques t f o r f i r e r e p o r t r e c e i v e d .
12 f f : Reques t f o r f i r e r e p o r t r e c e i v e d .
13 DMC_FF_conn : FF R ep or t r e c e i v e d .
14 dmc : FF Re po r t r e c e i v e d .
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 DMC_MT_conn : Reques t f o r p a r a m e d i c s has r e c e i v e d .
17 mt : Reques t f o r p a r a m e d i c s has r e c e i v e d .
18 DMC_MT_conn : P a r a m e d i c s s e n t .
19 dmc : Acknowledged .
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 DMC_MT_conn : Reques t f o r m e d i c a l team r e p o r t has r e c e i v e d .
22 mt : Reques t f o r m e d i c a l team r e p o r t has r e c e i v e d .
23 DMC_MT_conn : Re po r t s e n t .
24 dmc : Re po r t r e c e i v e d .
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50

Table 4.4: Generated outputs after the execution of sequence diagram given in Figure
4.7

1 DMC_UAV_conn : Reques t f o r s u r v e i l l a n c e a r e r e c e i v e d .
2 uav : Reques t f o r s u r v e i l l a n c e r e c e i v e d .
3 DMC_UAV_conn : Pho to s a r e r e c e i v e d .
4 dmc : Pho to s a r e r e c e i v e d .
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 DMC_FF_conn : Reques t f o r F i r e F i g h t e r s r e c e i v e d .
7 f f : Reques t f o r F i r e F i g h t e r s r e c e i v e d .
8 DMC_FF_conn : F i r e F i g h t e r s s e n t .
9 dmc : Acknowledged .

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 DMC_FF_conn : Reques t f o r BirdsView r e c e i v e d .
12 dmc : Reques t f o r BirdsView r e c e i v e d .
13 DMC_FF_conn : P ho to s a r e r e c e i v e d .
14 f f : P ho t o s a r e r e c e i v e d .
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 DMC_FF_conn : Reques t f o r f i r e r e p o r t r e c e i v e d .
17 f f : Reques t f o r f i r e r e p o r t r e c e i v e d .
18 DMC_FF_conn : FF R ep or t r e c e i v e d .
19 dmc : FF Re po r t r e c e i v e d .
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 DMC_MT_conn : Reques t f o r p a r a m e d i c s has r e c e i v e d .
22 mt : Reques t f o r p a r a m e d i c s has r e c e i v e d .
23 DMC_MT_conn : P a r a m e d i c s s e n t .
24 dmc : Acknowledged .
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 DMC_MT_conn : Reques t f o r m e d i c a l team r e p o r t has r e c e i v e d .
27 mt : Reques t f o r m e d i c a l team r e p o r t has r e c e i v e d .
28 DMC_MT_conn : Re po r t s e n t .
29 dmc : Re po r t r e c e i v e d .
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

51

Table 4.5: Generated outputs after the execution of sequence diagram given in Figure
4.8

1 DMC_Drone_conn : Reques t f o r s u r v e i l l a n c e r e c e i v e d .
2 drone : Reques t f o r s u r v e i l l a n c e a r e r e c e i v e d .
3 DMC_Drone_conn : Ph o to s a r e r e c e i v e d .
4 dmc : Pho to s a r e r e c e i v e d .
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 DMC_Police_conn : S e c u r i t y a l e r t has r e c e i v e d .
7 p o l i c e : S e c u r i t y a l e r t has r e c e i v e d .
8 DMC_Police_conn : P o l i c e u n i t s a r e d e p l o y e d .
9 dmc : Acknowledged .

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Table 4.6: Generated outputs after the execution of sequence diagram given in Figure
4.9

1 DMC_UAV_conn : Reques t f o r s u r v e i l l a n c e a r e r e c e i v e d .
2 uav : Reques t f o r s u r v e i l l a n c e r e c e i v e d .
3 DMC_UAV_conn : Pho to s a r e r e c e i v e d .
4 dmc : Pho to s a r e r e c e i v e d .
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 DMC_SWAT_conn : S e c u r i t y a l e r t has r e c e i v e d .
7 swat : S e c u r i t y a l e r t has r e c e i v e d .
8 DMC_SWAT_conn : SWAT teams a r e d e p l o y e d .
9 dmc : Acknowledged .

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 SWAT_UAV_conn : Reques t f o r l i v e s t r e a m r e c e i v e d .
12 uav : Reques t f o r l i v e s t r e a m r e c e i v e d .
13 SWAT_UAV_conn : Live s t r e a m r e c e i v e d .
14 swat : L ive s t r e a m r e c e i v e d .
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

52

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, connector variability for component-oriented development is intro-

duced. XCOSEML is extended with variable connectors that declare their service

and connector type, and additional operations if exist. A single connector is used for

communication between two components. If two components require different types

of connectors for different communication concerns, one separate connector must be

defined for each concern.

For execution of XCOSEML’s process models, a method is proposed by match-

ing model assets to executables. XCOSEML composition specification is parsed,

and included components, interfaces, and connectors are found from the set of pre-

implemented assets. Then, interactions are triggered through connectors in the order

of execution. If a component requires another component to perform its service as

a sub-interaction, component itself triggers the connector for this sub-interaction in-

stead of the global process.

The Disaster Management System (DMS) case study proves the applicability of our

approach. Pre-built components and connectors of the system can easily be composed

to derive a new system by using XCOSEML. Because definitions of components are

purified from communication details, their functionality is clearly shown. Moreover,

communication details are provided in the connectors explicitly that makes it easy

to choose required connector for binding two components. Running the system from

XCOSEML’s process model - composition specification - is also accomplished. DMS

53

components and connectors are implemented in Java. Configured composition spec-

ification is parsed and included component and connectors are instantiated. Then,

connectors are triggered for each interaction.

Dealing with all communication concerns simplifies components which is desirable

especially for large scale systems. With a precise definition, reusability for com-

ponents are increased. Connectors can be reused with a little or no modifications.

By undertaking all communication responsibility, connectors collectively constitute

a middleware. Therefore, a development methodology by using plug-and-play assets

becomes closer.

Besides the mentioned benefits, message trafficking is increased. Traditionally, a

component is connected to another component, and this requires request and respond

messages. In our approach, connectors are in the middle. They behave like requesters

for both of the components. Then they send a message to the other component in the

same way. This messaging traffic is not a problem for general information systems.

However, for real-time systems this network latency may not be tolerable.

5.2 Future Work

Although the applicability of our approach is proven by the DMS case study, the

approach should be tested for large-scale systems. For this purpose, a domain will

be chosen and existing components for that domain will be found. Also, additional

components will be created. Cyber-pyhsical systems is an appropriate candidate ap-

plication field for the proposed approach. Diversity of the components and their com-

munication requirements will be handled by connectors. Collaboration of a company

would be helpful for industrial scale testing.

Also, a graphical tool is planned to be developed in the future since the use of a

graphical tool instead of a textual one would be more user friendly. The design is

inspired by Business Process Modelling Language 2.0 (BPMN) and consists of the

very similar constructs. The class diagram of the the planned tool is given in Ap-

pendix B. Eventually, the aim is to create a software ecosystem where the users can

draw a process model and immediately can resolve variation points through the same

54

tool.

55

56

REFERENCES

[1] Robert Allen and David Garlan. A formal basis for architectural connec-
tion. ACM Transactions on Software Engineering and Methodology (TOSEM),
6(3):213–249, 1997.

[2] Felix Bachmann and Paul C Clements. Variability in software product lines.
Technical report, DTIC Document, 2005.

[3] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J Obbink, and Klaus
Pohl. Variability issues in software product lines. Software Product-Family
Engineering, pages 303–338, 2002.

[4] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic com-
puting through reuse of variability models at runtime: The case of smart homes.
Computer, 42(10), 2009.

[5] Anil Cetinkaya, M. Çağrı Kaya, and Ali H. Dogru. Enhancing xcoseml with
connector variability for component oriented development. In Proceedings of
the 2016 Society for Design and Process Science, 2016.

[6] Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based ap-
proach to feature modelling: Syntax and semantics of tvl. Science of Computer
Programming, 76(12):1130–1143, 2011.

[7] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. Model checking software product lines with snip. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), pages 1–24,
2012.

[8] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Jean-Francois Raskin. Featured transition systems: Foun-
dations for verifying variability-intensive systems and their application to ltl
model checking. IEEE Transactions on Software Engineering, 39(8):1069–
1089, 2013.

[9] Ali H Dogru. Component oriented software engineering modeling language:
Coseml. Computer Engineering Department, Middle East Technical University,
Turkey, TR, pages 99–3, 1999.

[10] Ali H Dogru and Murat M Tanik. A process model for component-oriented
software engineering. IEEE software, 20(2):34–41, 2003.

57

[11] Eclipse. Xtext 2.7.0 available at. https://eclipse.org/Xtext/. Ac-
cessed: 2015-02-03.

[12] IDE Eclipse. The eclipse foundation, 2007.

[13] Iris Groher and Rainer Weinreich. Supporting variability management in ar-
chitecture design and implementation. In System Sciences (HICSS), 2013 46th
Hawaii International Conference on, pages 4995–5004. IEEE, 2013.

[14] Amina Guendouz, Djamal Bennouar, and Bouira Algeria. Component-based
specification of software product line architecture. In ICAASE, pages 100–107,
2014.

[15] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank Van
Der Linden. Hierarchical variability modeling for software architectures. In
Software Product Line Conference (SPLC), 2011 15th International, pages 150–
159. IEEE, 2011.

[16] Svein Hallsteinsen, Kurt Geihs, Nearchos Paspallis, Frank Eliassen, Geir Horn,
Jorge Lorenzo, Alessandro Mamelli, and George Angelos Papadopoulos. A de-
velopment framework and methodology for self-adapting applications in ubiqui-
tous computing environments. Journal of Systems and Software, 85(12):2840–
2859, 2012.

[17] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic
software product lines. Computer, 41(4), 2008.

[18] Gerard Holzmann. Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, 2003.

[19] I Jet Brains. Intellij idea. On-line at www. intellij. com, 2011.

[20] Muhammed Çağrı Kaya, Mahdi Saeedi Nikoo, Selma Suloglu, and Ali H. Do-
gru. Towards verification of component compositions incorporating variability.
In Proc SDPS the 20th International Conference on Transformative Science and
Engineering, Business and Social Innovation, 2015.

[21] Muhammed Çağrı Kaya, Selma Suloglu, and Ali H. Dogru. Variability model-
ing in component oriented software engineering. In In Proceedings of the 2014
Society for Design and Process Science, 2014.

[22] MUHAMMED CAGRI KAYA. Modeling variability in component oriented
software engineering. Master’s thesis, MIDDLE EAST TECHNICAL UNI-
VERSITY, 2015.

[23] Muhammed Çağrı Kaya, Alper Karamanlıoğlu, Mahdi Saeedi Nikoo, Sina En-
tekhabi, Selma Süloğlu, and Ali H. Doğru. Bileşen modellerinde değişken-
lik yönetimi yaklaşımlarının incelenmesi. Ulusal Yazılım Mühendisliği Sem-
pozyumu, pages 502–513, 2016.

58

https://eclipse.org/Xtext/

[24] Nikunj R Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a taxon-
omy of software connectors. In Proceedings of the 22nd international confer-
ence on Software engineering, pages 178–187. ACM, 2000.

[25] Peyman Oreizy, Michael M Gorlick, Richard N Taylor, Dennis Heimhigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S Rosenblum, and
Alexander L Wolf. An architecture-based approach to self-adaptive software.
IEEE Intelligent Systems and Their Applications, 14(3):54–62, 1999.

[26] Mourad Oussalah, Adel Smeda, and Tahar Khammaci. An explicit definition
of connectors for component-based software architecture. In Engineering of
Computer-Based Systems, 2004. Proceedings. 11th IEEE International Confer-
ence and Workshop on the, pages 44–51. IEEE, 2004.

[27] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[28] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product
line engineering: foundations, principles and techniques. Springer Science &
Business Media, 2005.

[29] Maryam Razavian and Ramtin Khosravi. Modeling variability in the component
and connector view of architecture using uml. In Computer Systems and Appli-
cations, 2008. AICCSA 2008. IEEE/ACS International Conference on, pages
801–809. IEEE, 2008.

[30] Jason E Robbins, Nenad Medvidovic, David F Redmiles, and David S Rosen-
blum. Integrating architecture description languages with a standard design
method. In Proceedings of the 20th international conference on Software en-
gineering, pages 209–218. IEEE Computer Society, 1998.

[31] Marco Sinnema and Sybren Deelstra. Classifying variability modeling tech-
niques. Information and Software Technology, 49(7):717–739, 2007.

[32] Ian Sommerville. Software engineering. Pearson, 2016.

[33] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. A taxonomy of variabil-
ity realization techniques. Software: Practice and experience, 35(8):705–754,
2005.

[34] Clemens Szyperski, Jan Bosch, and Wolfgang Weck. Component-oriented pro-
gramming. In European Conference on Object-Oriented Programming, pages
184–192. Springer, 1999.

[35] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software architec-
ture: foundations, theory, and practice. Wiley Publishing, 2009.

[36] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability
in software product lines. In Software Architecture, 2001. Proceedings. Working
IEEE/IFIP Conference on, pages 45–54. IEEE, 2001.

59

60

APPENDIX A

XCOSEML GRAMMAR LISTINGS

A.1 Package

1 grammar XPackage ;

2

3 s t a r t R u l e :

4 packageName

5 EOF

6 ;

7

8 packageName :

9 ’ Package ’ ID

10 i n c l u d e

11 c o n f i g u r a t i o n I n t e r f a c e ?

12 c o m p o s i t i o n S p e c i f i c a t i o n ?

13 ;

14

15 / / T h i s r u l e c o r r e s p o n d s t o i n c l u d e d components

16 i n c l u d e :

17 ’ i n c l u d e s ’ ID+

18 ;

19

20 / / For . c o n f f i l e

21 c o n f i g u r a t i o n I n t e r f a c e :

22 ’ C o n f i g u r a t i o n I n t e r f a c e ’ ID

23 ;

24

25 / / For . cmps f i l e

61

26 c o m p o s i t i o n S p e c i f i c a t i o n :

27 ’ C o m p o s i t i o n S p e c i f i c a t i o n ’ ID

A.2 Component

1 grammar Component ;

2

3 s t a r t R u l e :

4 componentName

5 EOF

6 ;

7

8 componentName :

9 ’ Component ’ ID

10 x i n t e r f a c e

11 c o n f i g u r a t i o n I n t e r f a c e ?

12 ;

13

14 x i n t e r f a c e :

15 ’ I n t e r f a c e ’ ID+

16 ;

17

18 c o n f i g u r a t i o n I n t e r f a c e :

19 ’ C o n f i g u r a t i o n I n t ’ ID

20 ;

A.3 Interface

1 grammar X I n t e r f a c e ;

2

3 s t a r t R u l e :

4 i n t e r f a c e N a m e

5 EOF

6 ;

7

8 i n t e r f a c e N a m e :

9 ’ I n t e r f a c e ’ ID

62

10 prov idedMethods

11 r e q u i r e d M e t h o d s ?

12

13 ;

14

15 prov idedMethods :

16 ’ P r o v i d e d Methods ’

17 pmethods+

18 ;

19

20 r e q u i r e d M e t h o d s :

21 ’ R e q u i r e d Methods ’

22 rme thods +

23 ;

24

25 pmethods :

26 ID

27 i n p u t P a r a m e t e r s ?

28 o u t p u t P a r a m e t e r ?

29 ;

30

31 rme thods :

32 ID

33 i n p u t P a r a m e t e r s ?

34 o u t p u t P a r a m e t e r ?

35 ;

36

37 i n p u t P a r a m e t e r s :

38 ’ i n p u t ’ ’ (’ ID+ ’) ’

39 ;

40

41 o u t p u t P a r a m e t e r :

42 ’ o u t p u t ’ ID

43 ;

A.4 Connector

63

1 grammar Connec to r ;

2

3 s t a r t R u l e :

4 connectorName

5 EOF

6 ;

7

8 / / d e f i n i t i o n o f c o n n e c t o r name

9 connectorName :

10 ’ Connec to r ’ ID

11 ’ S e r v i c e T y p e ’ ID

12 ’ Connec torType ’ ID

13 c o n n e c t o r M e s s a g e +

14 ;

15

16 / / Connec tor message s t r u c t u r e

17 c o n n e c t o r M e s s a g e :

18 ’ Connec torMessage ’ ID ’ { ’

19 ’ R e q u i r e d I n t e r f a c e ’ ID

20 ’ MethodOut ’ ID

21 ’ P r o v i d e d I n t e r f a c e ’ ID

22 ’ MethodIn ’ ID

23 (’ R e q u e s t e r P r o t o c o l ’ p r o t o c o l R e q) ?

24 (’ R e s p o n d e r P r o t o c o l ’ p r o t o c o l R e s) ?

25 (’ O p e r a t i o n ’ o p e r a t i o n) ?

26 ’ } ’

27 ;

28

29 p r o t o c o l R e q :

30 ID

31 ;

32

33 p r o t o c o l R e s :

34 ID

35 ;

36

37 o p e r a t i o n :

64

38 ID

39 ;

A.5 Configuration

1 grammar C o n f i g u r a t i o n ;

2

3 s t a r t R u l e :

4 c o n f i g u r a t i o n N a m e

5 EOF

6 ;

7

8 c o n f i g u r a t i o n N a m e :

9 ’ C o n f i g u r a t i o n ’ ID ’ o f ’ op = (’ Package ’ | ’ Component ’)

ID

10 v a r i a t i o n P o i n t +

11 (c o n s t r a i n t ∗) ?

12 ;

13

14 v a r i a t i o n P o i n t :

15 c o n f i g u r a t i o n V a r i a t i o n P o i n t | e x t e r n a l V a r i a t i o n P o i n t |

i n t e r n a l V a r i a t i o n P o i n t

16 ;

17

18 c o n f i g u r a t i o n V a r i a t i o n P o i n t :

19 ’ c o n f i g u r a t i o n V P ’ ID ’ : ’

20 ’ varType ’ v p t = (’ i n t e r n a l V P ’ | ’ e x t e r n a l V P ’)

21 v a r i a n t S e t

22 (c o n f V a r i a n t W i t h C h o i c e s +) ?

23 ’ d e f a u l t V a r i a n t ’ ID

24 ’ b ind ingTime ’ op =(’ dev t ime ’ | ’ d e r i v a t i o n ’ | ’

c o m p i l a t i o n ’ | ’ l i n k i n g ’ | ’ s t a r t −up ’ | ’ r u n t i m e ’)

25 ;

26

27 / / e x t e r n a l v a r i a t i o n p o i n t s

28 e x t e r n a l V a r i a t i o n P o i n t :

29 ’ e x t e r n a l V P ’ ID ’ : ’

65

30 v a r i a n t S e t

31 ’ b ind ingTime ’ op =(’ dev t ime ’ | ’ d e r i v a t i o n ’ | ’

c o m p i l a t i o n ’ | ’ l i n k i n g ’ | ’ s t a r t −up ’ | ’ r u n t i m e ’)

32 ;

33

34 / / i n t e r n a l v a r i a t i o n p o i n t s

35 i n t e r n a l V a r i a t i o n P o i n t :

36 ’ i n t e r n a l V P ’ ID ’ : ’

37 v a r i a n t S e t

38 ’ b ind ingTime ’ op =(’ dev t ime ’ | ’ d e r i v a t i o n ’ | ’

c o m p i l a t i o n ’ | ’ l i n k i n g ’ | ’ s t a r t −up ’ | ’ r u n t i m e ’)

39 ;

40

41 v a r i a n t S e t :

42 mandatory ?

43 o p t i o n a l ?

44 a l t e r n a t i v e ?

45 ;

46

47 mandatory :

48 ’ mandatory ’ (’ v a r i a n t ’ ID) +

49 ;

50

51 o p t i o n a l :

52 ’ o p t i o n a l ’ (’ v a r i a n t ’ ID) +

53 ;

54

55 a l t e r n a t i v e :

56 ’ a l t e r n a t i v e ’ (’ v a r i a n t ’ ID) +

57 ’ min : ’ INT ’ max : ’ INT

58 ;

59

60 c o n s t r a i n t :

61 l o g i c a l C o n s t r a i n t | n u m e r i c a l C o n s t r a i n t

62 ;

63

64 l o g i c a l C o n s t r a i n t :

66

65 ’ L o g i c a l C o n s t r a i n t : ’

66 ID (s t r) ? op = (’ r e q u i r e s ’ | ’ e x c l u d e s ’ | ’ i m p l i e s ’

| ’ n e g a t e s ’) ID (’ s e l e c t e d V a r i a n t s (’ ID+ (’

min : ’ INT) ? (’ max : ’ INT) ? ’) ’) ?

67 ;

68

69 s t r :

70 ID

71 ;

72

73 n u m e r i c a l C o n s t r a i n t :

74 ’ Numer ica l C o n s t r a i n t : ’

75 ID ID ’ c o n s t ’ ID ID op = (’> ’ | ’>= ’ | ’< ’ | ’<= ’ | ’

== ’ | ’ != ’ | ’= ’) / / v a r i a t i o n p o i n t−v a r i a n t

76 (STRING | ’ va lueOf { ’ ID+ ’ } ’) / / v a r i a n t

77 ;

78

79 c o n f V a r i a n t W i t h C h o i c e s :

80 ’ c o n f v a r i a n t ’ ID ’ mapping ’

81 c h o i c e +

82 ;

83

84 c h o i c e :

85 ’VPName ’ ID ’ s e l e c t e d V a r i a n t s (’ ID+ (’ ; min : ’ INT) ? (’ ,

max : ’ INT) ? ’) ’

86 ;

A.6 Composition

1 grammar Compos i t ion ;

2

3 s t a r t R u l e :

4 composi t ionName

5 EOF

6 ;

7

8 composi t ionName :

67

9 ’ Compos i t ion ’ ID

10 c o n f i g u r a t i o n I m p o r t ?

11 component Impor t +

12 (’ C o n t e x t P a r a m e t e r s ’ c o n t e x t P a r a m e t e r +) ?

13 (’ V a r i a b i l i t y Mapping ’ v a r i a b i l i t y M a p p i n g +) ?

14 compos i t i onMethods +

15 ;

16

17 c o n f i g u r a t i o n I m p o r t :

18 ’ i m p o r t c o n f i g u r a t i o n ’ ID

19 ;

20

21 component Impor t :

22 ’ has ’ ID (’ w i th c o n f i g u r a t i o n ’ ID) ?

23 ;

24

25 c o n t e x t P a r a m e t e r :

26 ID (INT | STRING | TRUE | FALSE)

27 ;

28

29 v a r i a b i l i t y M a p p i n g :

30 ’VP ’ ID ’ maps c o n f i g u r a t i o n ’ ID ’VP ’ ID

31 v a r i a n t M a p p i n g +

32 ;

33

34 v a r i a n t M a p p i n g :

35 ’ V a r i a n t ’ ID ’ maps ’ ’ V a r i a n t ’ ID

36 ;

37

38

39 compos i t i onMethods :

40 ’ Method ’ ID ’ : ’ i n t e r a c t i o n +

41 ;

42

43 i n t e r a c t i o n :

44 (s i m p l e I n t e r a c t i o n | c o m p o s i t e I n t e r a c t i o n) +

45 ;

68

46

47 s i m p l e I n t e r a c t i o n :

48 v a r i a b i l i t y A t t a c h m e n t ?

49 gua rd ?

50 ID op = (’−> ’ | ’<− ’) ID ’ { ’ ID ’ . ’ ID ’ } ’

51

52 ;

53

54 / / i n t e r a c t i o n o p t i o n s

55 c o m p o s i t e I n t e r a c t i o n :

56 r e p e a t I n t e r a c t i o n | p a r a l l e l I n t e r a c t i o n |

s e q u e n c e I n t e r a c t i o n

57 ;

58

59 / / f o r r e p e a t

60 r e p e a t I n t e r a c t i o n :

61 v a r i a b i l i t y A t t a c h m e n t ?

62 gua rd ?

63 ’ r e p e a t ’ i n t C o n d i t i o n S e t ’ (’ i n t e r a c t i o n + ’) ’

64 ;

65

66 / / f o r p a r a l l e l

67 p a r a l l e l I n t e r a c t i o n :

68 v a r i a b i l i t y A t t a c h m e n t ?

69 gua rd ?

70 ’ p a r a l l e l (’ i n t e r a c t i o n + ’) ’

71 ;

72

73 / / f o r s e q u e n c e

74 s e q u e n c e I n t e r a c t i o n :

75 v a r i a b i l i t y A t t a c h m e n t ?

76 gua rd ?

77 ’ s e q u e n c e (’ i n t e r a c t i o n + ’) ’

78 ;

79

80 v a r i a b i l i t y A t t a c h m e n t :

81 ’ #vp ’ ID /∗VP∗ / op = (’ i f O n e S e l e c t e d (’ | ’

69

i f A l l S e l e c t e d (’ | ’ i f S e l e c t e d (’) ID+ ’) ’ ’ # ’

82 ;

83

84 gua rd :

85 ’ gua rd (’

86

87 ’) ’

88 ;

89

90 / / s e t t i n g c o n d i t i o n s

91 i n t C o n d i t i o n S e t :

92 i n t C o n d i t i o n ((’ o r ’ | ’ and ’) i n t C o n d i t i o n) ∗

93 ;

94

95 / / s e t t i n g c o n d i t i o n s

96 i n t C o n d i t i o n :

97 ID (’> ’ | ’< ’ | ’= ’ | ’<= ’ | ’>= ’ | ’ != ’) INT

98 ;

70

APPENDIX B

A GRAPHICAL TOOL DESIGN AS A FUTURE EXTENSION

Figure B.1: Class Diagram for the graphical tool designed for future work.

71

Figure
B

.2:C
lass

D
iagram

forthe
graphicaltooldesigned

forfuture
w

ork
(continued).

72

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Background
	Problem Statement
	Approach
	Contribution
	Outline of Thesis

	BACKGROUND
	Component Oriented Software Engineering and COSEML
	Software Components
	Component Based Software Engineering
	Component Oriented Software Engineering
	COSEML

	Variability Modeling in Software Systems
	Variability in Software Systems
	Variability Modeling
	XCOSEML

	Software Connectors
	Classification of Connectors
	Commonly Used Connector Types

	Defining Variable Connectors in XCOSEML
	Software Connectors and Variability
	XCOSEML Metamodel and Connector Extension
	Extended Grammar
	Case Study: Disaster Management System
	Modeling Disaster Management System in XCOSEML

	Execution of XCOSEML Compositon Specification
	XCOSEML Tool
	Parser
	Transformation
	Configuration
	Matching

	Disaster Management System Implementation in Java
	Execution of the DMS_cmps compositon specification

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	XCOSEML Grammar Listings
	Package
	Component
	Interface
	Connector
	Configuration
	Composition

	A Graphical Tool Design as A Future Extension

