
DIFFERENTIAL FACTORS AND DIFFERENTIAL CRYPTANALYSIS OF
BLOCK CIPHER PRIDE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EROL DOĞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CYBER SECURITY

JULY 2017





Approval of the thesis:

DIFFERENTIAL FACTORS AND DIFFERENTIAL CRYPTANALYSIS OF
BLOCK CIPHER PRIDE
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ABSTRACT

DIFFERENTIAL FACTORS AND DIFFERENTIAL CRYPTANALYSIS OF
BLOCK CIPHER PRIDE

DOĞAN, Erol
M.S., Department of Cyber Security

Supervisor : Assoc. Prof. Dr. Sevgi Özkan YILDIRIM

Co-Supervisor : Dr. Cihangir TEZCAN

July 2017, 83 pages

Today, IoT devices are used in very critical areas like payment cards, contactless
keys and biometric authentication. Moreover, while the number of IoT Technologies
increases, cryptographic systems that are optimized for IoT devices that require less
cost, less power, and less memory are highly required in today’s industry. Therefore,
in recent years several lightweight block ciphers are published to satisfy industry
needs. However, there are still more work needed to be sure about the security of
these block ciphers.

Differential cryptanalysis is one of the important methods used in block cipher anal-
ysis. This method deals with how minor differences made in the plaintext can lead to
certain differences in the cipher text. It is examined that whether the expected differ-
ences are observed or not by testing all candidate key bits on a number of plaintext-
ciphertext pairs. The correct key is expected to provide these differences more times
than the wrong keys. By this means the correct key is captured. However, a recent
study, Differential Factors showed that it may not be possible to fully capture the at-
tacked round key bits when performing a differential attack. Besides, another recent
study Undisturbed Bits can be used for discovering longer differential characteristics
that provides opportunity for more powerful differential attacks.

In this thesis, we have investigated several lightweight block ciphers for the existence
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of Differential Factors and Undisturbed Bits. We have also shown how differential
factors can be used to reduce the time complexity of differential attacks by summa-
rizing the corrected attacks on PRESENT and SERPENT block ciphers. Moreover,
we have also investigated the 18-round, 19-round and 20-round differential attacks
on PRIDE block cipher and we have corrected these attacks considering differential
factors. As a result, by our correction we have shown that these attacks require more
time complexity than they were claimed.

Keywords: Differential Cryptanalysis, PRIDE, Lightweight Block Ciphers, Differen-
tial Factors
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ÖZ

DİFERANSİYEL FAKTÖRLER VE PRIDE BLOK ŞİFRESİNİN DİFERANSİYEL
KRİPTANALİZİ

DOĞAN, Erol
Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi : Doç. Dr. Sevgi Özkan YILDIRIM

Ortak Tez Yöneticisi : Dr. Cihangir TEZCAN

Temmuz 2017 , 83 sayfa

Günümüzde IoT cihazları ödeme kartları, temassız anahtarlar ve biyometrik kimlik
doğrulama gibi çok kritik alanlarda kullanılmaktalar. Dahası, IoT teknolojilerinin sa-
yısı arttıkça, günümüzde IoT cihazları için optimize edilmiş daha düşük maliyet, daha
düşük enerji ve daha düşük bellek gerektiren kriptografik sistemlere çok ihtiyaç bu-
lunmaktadır. Bu nedenle, geçtiğimiz yıllarda endüstrinin bu ihtiyacını karşılayabil-
mek için birçok hafif ağırlıklı blok şifre yayınlanmıştır. Ancak, bu şifrelerin güvenli-
ğinden emin olabilmek için hala çok çalışmaya ihtiyaç vardır.

Diferansiyel kriptanaliz blok şifre analizinde kullanılan önemli yöntemlerden biridir.
Bu yöntem şifresiz metinde yapılan küçük değişikliğin, şifreli metinde ne tür deği-
şikliklere yol açtığıyla ilgilenir. Birçok şifresiz-şifreli metin çiftleri üzerinde aday
anahtar bitlerinin tümü denenerek beklenilen farkların gözlemlenip gözlemlenmediği
incelenir. Doğru anahtarın yanlış anahtarlara göre daha fazla kez bu farkları sağlaması
beklenir. Ancak son zamanlarda yapılan Diferansiyel Faktörler çalışması, diferansiyel
saldırıda anahtar bitlerinin tamamının ele geçirilmesinin mümkün olamayabileceğini
göstermiştir. Ayrıca, son zamanlarda yapılan bir başka çalışma olan Karıştırılmamış
Bitler güçlü diferansiyel ataklara imkan sağlayan daha uzun diferansiyel karakteris-
tikler keşfetmek için kullanılabilir.

Bu tezde, Diferansiyel Faktör ve Karıştırılmamış Bit varlığı için birçok hafif ağırlıklı
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blok şifreyi inceledik. Ayrıca, PRESENT ve SERPENT blok şifrelerinin düzeltilmiş
saldırılarını özetleyerek, diferansiyel saldırıların zaman karmaşıklığını azaltmak için
diferansiyel faktörlerin nasıl kullanılabileceğini gösterdik. Buna ek olarak, PRIDE
blok şifresine yapılmış 18-raund, 19-raund ve 20-raund diferansiyel saldırılarını in-
celedik ve diferansiyel faktörleri dikkate alarak bu saldırıları düzelttik. Sonuç olarak,
yaptığımız düzeltme ile bu atakların iddia edildiğinden daha fazla zaman karmaşıklığı
gerektirdiğini gösterdik.

Anahtar Kelimeler: Diferansiyel Kriptanaliz, PRIDE, Hafif Ağırlıklı Blok Şifreler,
Diferansiyel Faktörler
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CHAPTER 1

INTRODUCTION

Information security is the set of technologies, processes and practices designed to

protect information from unauthorized access, use, disclosure, disruption, modifica-

tion, inspection, recording or destruction. It is also composed of three main concepts

Confidentiality, Integrity and Availability.

• Condifentiality of information refers to protecting the information from dis-

closure to unauthorized parties.

• Integrity of information refers to protecting information from being modified

by unauthorized parties.

• Availability of information refers to ensuring that authorized parties are able to

access the information when needed.

The Science of Cryptology is the best method to provide the security of information.

Cryptographic encryption algorithms that are implemented on software and hardware

devices ensure the confidentiality and integrity of information. Therefore, today cryp-

tology, is used in all areas of information security.

Cryptology has two components, cryptography and cryptanalysis. Cryptography is

the science of designing secure ciphers and cryptanalysis is the science of analyzing

the security of ciphers by trying to find weaknesses in the design.
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1.1 Cryptography Basics

Cryptography has several areas like Symmetric Cryptography, Asymmetric Cryptog-

raphy, Hash Functions and Randomness. In this section a brief information will be

provided for these basic cryptographic areas.

In Symmetric Cryptography, same cryptographic key material is used for both en-

crypting plaintext and decrypting ciphertext. In other words, when sending a secret

message, sender uses the key material for encrypting the message and the receiver

uses the same key material for decrypting the encrypted message. Symmetric key al-

gorithms are fast and simple but they have a main drawback that is the sender and the

receiver must somehow exchange the keys in a secure way. This can be accomplished

with other cryptographic features that are discussed later in this section.

In general there are two types of symmetric algorithms; Block Ciphers and Stream

Ciphers. Stream ciphers encrypt the message as the data streams from the origin. In

other words, message is not divided into parts in stream ciphers when encrypting a

message. Because stream ciphers are beyond the scope of this thesis, there will not

be more information provided about it but block ciphers will be explained in detail

later in this section.

Caesar cipher, Spartan Scytale or Enigma machine are examples of some historical

symmetric algorithms. Same key is used to encrypt and decrypt the secret message in

these algorithms. Some of the examples of modern symmetric algorithms are DES,

AES [20], CAST [1], Blowfish [56], Twofish [57], Pride [3], Present [14], Rectangle

[78] block ciphers.

 

Figure 1.1: Symmetric Cryptography

2



However, in contrast to Symmetric Cryptography, in Asymmetric Cryptography pairs

of two keys are used which are called public key and private key. In these algorithms,

when any information is encrypted with one of these keys, it can also be decrypted

with the other key. While, public key is available for any party, private key is only

known by the owner of the key. While symmetric algorithms generally provide con-

fidentiality by encrypting a secret message, asymmetric algorithms can also provide

authentication, integrity and non-repudiation.

Some of the examples of asymmetric algorithms are RSA [55], Diffie-Hellman [23],

Digital Signature Algorithm, ElGamal [31] and Elliptic Curve Cryptography [4].

In some cryptographic applications, symmetric and asymmetric algorithms are used

together. For example, symmetric algorithm is used to encrypt the message and asym-

metric algorithm is used to exchange symmetric keys in a secure way such that sym-

metric key is encrypted with the public key of the receiver, so that it can only be

decrypted by the private key of the receiver which is only available by the receiver.

 

Figure 1.2: Symmetric and Asymmetric Cryptography

In the above example, secret message is encrypted with a symmetric key which is

also encrypted with the public key of the receiver. When the receiver receives the en-

crypted message and the encrypted symmetric key, first, symmetric key is decrypted

with the private key of the receiver. Last, encrypted message is decrypted with the

symmetric key. As a result, message and symmetric key are sent to the receiver in

a secure way. This application of asymmetric algorithm is a good example of key

exchange process.
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Asymmetric algorithm can also be used for digital signatures which provide to be

sure about the integrity of the message and the identity of the sender and receiver.

For example; after sending secret message, sender can encrypt the hash of plaintext

with his private key, and the receiver decrypt this information with the public key of

the sender. As a result of this process, the receiver can be sure that the information is

coming from the right sender because public key of the sender can decrypt a message

which is encrypted with the private key of sender which is only available by right

sender.

Hashing is another special subject of cryptography. A hash funtion creates a fixed-

length output from any length of input without using key. Generally hash funtions

divide the input message into blocks, and calculate XOR operation of each block.

The output is called as hash value of the input message, and this input can not be

retrieved from the hash value. The most important thing about hash functions are

that it is very difficult to have the same hash value from two different input. As a

result of this feature hash functions are used for assuring the integrity of transmitted

data. When we think about the above example, if the sender calculates and sends the

hash value of the plaintext to the receiver, the receiver can calculate the hash value

after decrypting the encrypted message and checks whether the hash value matches

with the sender’s hash value. If both results are the same, the receiver can be sure

about that the message is not changed during transit. Some of the examples of hash

functions are MD5, SHA-1, SHA-2, SHA-3 and RIPEMD-160.

Randomness is another cryptographic feature that are commonly used. The main pur-

pose about randomness is producing non-repeating really random numbers. Private

keys of digital signature algorithms, initialization values of encryption and password

generation are main used areas of randomness. Because we did not work about ran-

domness in this thesis, there will not be more information provided about it.

In this thesis we will focus on design and cryptanalysis of some of the block ciphers,

thus in the rest of this thesis, block ciphers will be investigated in detail.
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1.2 Block Ciphers

In a block cipher, plaintext information is divided into fixed length parts which are

called blocks. Moreover, block ciphers is composed of several rounds that contains

encrypting round function. Each block is encrypted at a time, by repeating the same

round function at each round. After each block is encrypted, they are combined to-

gether to make one encrypted ciphertext.

Generally, size of the block length does not affect the security of the block cipher, but

security is directly affected by the length of the key. As Kerckhoffs’ principle state

that crytographic algorithm should be secure even if the design of the algorithm is

known by public except only the key must be secure. Thus, the design of the block

cipher including size of the block is known by public but the key is kept as secure.

Today, there are many block ciphers and all have different designs. However, basically

they can be categorized as Feistel Networks and Substitution Permutation Networks

(SPNs).

In Feistel networks, blocks are divided into two parts as can be seen in Figure 1.3.

One of the parts is encrypted with round function and XOR’ed with the other part

and the result is replaced with the second part. At each round a different subkey is

used that is derived from the master key. Substitution and permutation operations are

completed inside the round function. DES algorithm is one of the example of Feistel

Network block ciphers.

F1

L

⊕
K1

R

⊕

F2⊕
K2

⊕

L′ R′

Figure 1.3: Feistel Networks
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SPN type block ciphers contain key addition, substitution and permutation layers as

can be seen in Figure 1.4. At the key addition layer, round key is XOR’ed with the

plaintext. At the Substitution layer, generally S-boxes are used which substitute the

n bits of the message with different m bits to perform confussion. Finally, at the per-

mutation layer generally bit positions are replaced to perform diffusion. Alternative

to bit-level permutation, matrix multiplication or shift-row functions are also used for

diffusion operation. These operations are completed for each round repeatedly.

In SPN block ciphers a key schedule algorithm is used to derive subkeys from the

master key. Thus, at each round different subkey is used at the key addition layer.

AES [20] is one of the example of SPN type block ciphers which is accepted as in-

dustry standard.
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Figure 1.4: PRESENT [14] - SPN Type Block Cipher

1.3 Motivation of Lightweight Block Ciphers

In today’s information technology environment we see some evolutionary changes.

At the first design, information technology systems were based on mainframe tech-

nology in which one super computer was serving many users through thin clients.

However, after the mainframe technology times, personal computers became popular

and each user had his own computer. This computing model can be called as one

user - one computer model and it is still being used today commonly. On the other

hand, nowadays we observe some technological improvements that change the com-

puting environment to a new model which can be called as one user - many computers
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model. In this model, computers are usually internet connected smart devices embed-

ded with electronics and software. This model is commonly known as Internet of

Things (IoT). IoT devices are used in very critical areas like payment cards, contact-

less keys, biometric information etc. Today, while the number of IoT technologies

increases, security of these devices becomes very important.

In the last few decades, security of computing environment was mainly provided

by Cryptographic applications like block ciphers. Cryptography is implemented on

almost every security intensive application on quite powerful devices like laptops and

personal computers. For IoT devices, Cryptography is again the first method coming

to mind to provide security. However, generally IoT devices run on platforms with

limited resource and limited computing power. Besides, most of the IoT devices

are produced in extremely high volumes, which requires them to be cost effective.

For all these reasons, cryptographic algorithms that are quite suitable for personal

computers, are not so suitable for IoT devices. Therefore, cryptographic systems that

are optimized for IoT devices that require less cost, less power, less energy and less

memory are highly required in today’s industry.

In the last few years, several lightweight cryptographic algorithms are published to

satisfy industry needs. They are designed for hardware and software implementa-

tions of IoT devices. Therefore, lightweight cryptographic algorithms need less chip

area and less energy for hardware implementations and need less memory and less

coding for software implementations. However there are still more work required

to design and optimize lightweight block ciphers considering some criteria like ease

of coding, power consumption, side-channel resistance, and ease of implementation.

PRESENT [14], LED [35], PRIDE [3], LBLOCK [74], RECTANGLE [78], TWINE

[62], KLEIN [33] are some examples of the most widely known lightweight block

ciphers.

1.4 Design of Lightweight Block Ciphers

As mentioned above there are several metrics that are considered when evaluating a

block cipher as a lightweight block cipher. These metrics must be carefully inves-
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tigated to meet the required design goals. Therefore, designing a lightweight block

cipher requires some special phases like Specification, Design, Implement and Crypt-

analysis. At the first phase, design criteria of the block cipher are specified with a

required threshold value. Some of the examples of design criteria are shown below:

• Memory Consumption

• Power Consumption

• Chip Area

• Cost of one implementation

• Side Channel Resistance

• Latency

• Throughput

At this stage, required threshold values must also be specified for each design criteria.

However, this specification is very much dependent on the platform on which the al-

gorithm is implemented. For this reason, for software and hardware implementations

the type of embedded micro processors (8bit or 32bit) and FPGAs are considered

when determining the threshold values.

At the Design phase, block cipher algorithm is designed with respect to the design

criteria specified in the Specification phase. At this stage, new design approaches

can be thought without reducing the security of the cipher. The main design criteria

that is considered during the design phase is latency. Latency is directly affected

by the number of rounds. Therefore, when optimizing a cipher, unnecessary rounds

can be removed without reducing the security of the cipher. In fact, instead of using

traditional iterative round functions, using unrolled cipher designs decrease latency

and the required computational power very much.

At the implementation phase, cipher is implemented as specified in the design phase.

In this stage implementation costs are investigated by considering different imple-

mentation platforms. Results from this phase feeds back to design phase and some
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changes can be applied to the design of the cipher. At the last phase, cryptanalysis

studies are performed on implemented cipher. Security of the cipher is tested in this

phase. Therefore, results from these tests feed back design phase which may cause

design of the cipher to change.

1.5 Recent Studies in Lightweight Block Ciphers

With the emergence of the IoT technologies, new lightweight cryptographic algo-

rithms were needed to suit the low computing resource constraint of IoT devices.

For this reason, during last few years, several lightweight block ciphers have been

proposed to satisfy this need. The main design objective of these ciphers is to pro-

vide enough security and performance with requiring less chip area, less energy con-

sumption, less memory and less cost. We have investigated several lightweight block

ciphers in our study and we have summarized them in Table 1.1.

During our research, we have seen that most of the lightweight block ciphers in the

literature used SPN and Feistel Network structures. Besides, the rest of them are

based on Add-Rotate-XOR (ARX) and NLFSR-based block ciphers. ARXs have

only addition and rotation phases without using S-boxes. Although ARXs have fast

implementations, their security is not studied as SPN and Feistel Networks. SPECK

[8] and LEA [37] are some of the ARX type block ciphers. NLFSR-based ciphers

are based on building blocks of stream ciphers and they are mostly used in hardware

implementations. KATAN [19], KTANTAN [19] and HALKA [22] are examples of

NLFSR based ciphers.
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Table 1.1: Recent Lightweight Block Ciphers

Block Cipher Publication Year Block Size Key Size Rounds Structure

KATAN [19] 2009 32,48,64 80 254 NLFSR
KTANTAN [19] 2009 32,48,64 80 254 NLFSR

TWIS [53] 2009 128 128 10 FEISTEL
KLEIN [33] 2011 64 64,80,96 12,16,20 SPN

LED [35] 2011 64 64,128 32,48 SPN
TWINE [62] 2011 64 80,128 36 FEISTEL

LBLOCK [74] 2011 64 80 32 FEISTEL
PICCOLO [58] 2011 64 80,128 25,31 FEISTEL

EPCBC [77] 2011 48,96 96 32 SPN
PICARO [54] 2012 128 - 12 SPN
PRINCE[17] 2012 64 128 12 SPN

32 64 32
48 72,96 36

SIMON [8] 2013 64 96,128 42,44 FEISTEL
96 96,144 52,54

128 128,192,256 68,69,72
32 64 22
48 72,96 22,23

SPECK [8] 2013 64 96,128 26,27 ARX
96 96,144 28,29

128 128,192,256 32,33,34
ZORRO [32] 2013 128 128 24 SPN
ITUbee[40] 2013 80 80 - FEISTEL
LEA [37] 2013 128 128,192,256 24,28,32 ARX

RECTANGLE [78] 2014 64 80,128 25 SPN
FeW [46] 2014 64 80,128 32 FEISTEL

HALKA [22] 2014 64 80 24 NLFSR
ROBIN [34] 2014 128 128 16 SPN

FANTOMAS [34] 2014 128 128 12 FEISTEL
HISEC [2] 2014 64 80 15 FEISTEL
PRIDE [3] 2014 64 128 20 SPN

SIMECK [75] 2015 32,48,64 64,96,128 32,36,44 FEISTEL
MIDORI [6] 2015 64,128 128 16,20 SPN

MYSTERION [38] 2015 128,256 12,16 SPN
ROADRUNNER [7] 2015 64 80,128 10,12 FEISTEL

SKINNY [9] 2016 64 64,128,192 32,36,40 SPN
128 128,256,384 40,48,56

SPARX [24] 2016 64 128 24 ARX
128 128,256 32,40

MANTIS [9] 2016 64 128,64 14 SPN
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In our study we have also seen that, lightweight block ciphers can be categorized

according to some characteristics like throughput, power consumption, chip size for

hardware implementations and code size for software implementations. In [29] soft-

ware and hardware implementations of lightweight block ciphers are evaluated. In

[51] and [50] recent lightweight block ciphers are evaluated according to hardware

efficiency, software efficiency and energy consumption. In [25] software implemen-

tations are compared in different platforms.

In our study we have seen that PRIDE [3] is one of the best software efficient ci-

pher after SPECK [8] proposed by NSA as shown in [50], [3] and [7]. SPECK [8]

does not have linear layer and have more number of rounds to provide security, while

PRIDE have very efficient linear layer with 20-rounds. This led us to study the secu-

rity of PRIDE [3] cipher and in the rest of this thesis PRIDE [3] and its attacks are

investigated in detail.

When we study the security of PRIDE block cipher, we have seen three differential

cryptanalysis attacks performed on PRIDE in the literature. In the first two attacks

[79] and [76] 18-round and 19-round key bits are captured, while in the last attack

[21] entire key bits for full of 20-round PRIDE are captured. In this thesis, we have

investigated these attacks in detail in Chapter 4.

Besides, during our study we have seen that the first Differential Fault Analysis on

the block cipher PRIDE was performed on [47]. Differential Fault Analysis is a kind

of Side-Channel attack [45] in which internal information of a chip can be derived

by observing some external physical characteristics like power consumption, electro-

magnetic radiation or calculation time. In the Differential Fault Analysis introduced

in [16], regular encryption process is disturbed and altered by injecting some faults

by means of light pulses, laser or electromagnetic disruption. In the Differential Fault

attacks of [47] authors were able to capture the full key by means of 4 faults which is

performed by electromagnetic injection method. Because Differential Fault Attacks

are beyond the scope of this thesis, there will not be more information provided about

them.

Furthermore, during our research, we have encountered new cryptanalytic time-memory-

data tradeoff attacks [26] on PRIDE block cipher. These attacks target the block
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ciphers with FX-constructions like PRIDE block cipher. In FX-constructions intro-

duced in [41], encryption keys are XORed with independent keys called whitening

keys at the begining and at end of the encryption process. Therefore, total key size

becomes sum of the size of the original key and the whitening keys. In these attacks,

authors used Hellman’s time-memory tradeoff model [36] and showed that the time

complexity of the attacks specified in [30] was reduced.

1.6 Cryptanalysis of Block Ciphers

The encryption algorithm of a block cipher is not secret. Actually, the security of

the block cipher is provided by keeping the key as secret. Therefore, plaintext infor-

mation can be obtained from the corresponding ciphertext by decrypting it with the

related key. For this reason, attackers try to capture the key material to obtain the

plaintext information. However, if they can not access the key material, then they try

several different methods to break the block cipher.

The most obvious method to attack the cipher is to try every possible key to decrypt

the ciphertext. This method is known as exhaustive search or brute force attack. This

attack can be performed by obtaining some plaintext, ciphertext pairs and encrypting

these plaintexts with every possible key. If the ciphertext matches with the previously

obtained ciphertext, then that key is identified as the correct key. This key is also

tried on different plaintext-ciphertext pairs to be sure about its accuracy. Because the

simplicity of this attack, this method can be used for every block cipher. In order to

provide the security of a block cipher against exhaustive search attacks key space is

kept large. In other words, the bit length of the key is kept as long as the computational

power of the current technology is not enough to try every possible key in meaningful

time. If the key length of a block cipher is n bits, then 2n operations are required to

perform an exhaustive search and it could be very time consuming.

Another attack method that requires less operations than exhaustive search is table

attack. In this case, every possible corresponding plaintext - ciphertext pairs for en-

crypting key are obtained and stored in a database. Then decrypting a ciphertext

requires only a database query operation that finds matching plaintext for a cipher-
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text. The downside of this attack is, it requires too much space to keep all possible

plaintext - ciphertext pairs. If the block size is b bits then 2b data must be stored.

Because, exhaustive search attack takes very long time and table attack requires too

much space, attackers can also use a more advanced attack called Time-Memory

Tradeoff Attack. The Time-Memory Tradeoff Attack [36] was first suggested by Hell-

man and it requires less encryptions and less space to capture the key material. The

main idea of this attack is to perform the exhaustive search in a clever way and store

only a small part of the resulting tables. When performing the attack for k-bit key,

attacker performs less than 2k operations to obtain a value that is already in the table.

If an attack that captures encrypting key for a block cipher with less operations than

exhaustive search and needed less data than table attack, then that block cipher is

considered as broken.

In the rest of our thesis, we have studied Differential Cryptanalysis which is one of the

best known cryptanalysis technique. Differential Cryptanalysis is one of the mostly

used attack method that enables cryptanalysts to capture the key by investigating re-

lations between the input differences and the corresponding output differences of a

block cipher. However a recent study, Differential Factors [67] showed that it may

not be possible to fully capture the attacked round key bits when performing a dif-

ferential attack. Besides, another recent study Undisturbed Bits [64] can be used for

discovering longer differential characteristics that provides more powerful differen-

tial attacks. Differential Cryptanalysis, Differential Factors and Undisturbed Bits are

explained in detail in Chapter 2.

1.7 Attack Types

Attacks to block ciphers can be categorized also according to the information that is

required to perform the attack:

• Ciphertext-only attack (CO): In this attack, attackers have only some cipher-

text information. To perform a ciphertext-only attack, the cipher should have

significant weaknesses (e.g. A5/1 Stream Cipher)
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• Known-plaintext attack (KP): In this attack, attackers can get n plaintexts

and the corresponding ciphertexts. Linear Cryptanalysis can be example of

Known-plaintext attack.

• Chosen-plaintext (ciphertext) attack (CP): In this attack, the attacker is able

to request the encryption of n plaintexts of his choosing and captures the corre-

sponding ciphertexts.

• Adaptive chosen-plaintext (ciphertext) attack (ACP): In this attack, the at-

tacker is able request encryptions of some plaintexts possibly seeing encryp-

tions of some plaintexts first and making some calculations using them.

Collecting data becomes harder as we move down the list.

1.8 Complexity

Attacks can be expressed according to the resources they require. These resources are

data complexity, time complexity and memory complexity.

• Data Complexity: The number of plaintext or ciphertext information that is

required to perform the attack.

• Time Complexity: The amount of time required to perform the attack. It is

calculated by the number of encryptions required to perform the attack.

• Memory Complexity: The amount of storage required to perform the attack.

In the case of exhaustive search, if the secret key is n bits, then the time complexity

is expressed as 2n encryptions.

In the case of table attack, data complexity and memory complexity can be expressed

as 2b. This attack’s time complexity can be negligible.
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1.9 Our Contribution and the Structure of the Thesis

In this thesis, we have investigated several lightweight block ciphers for the existence

of Differential Factors and Undisturbed Bits. We have also shown how differential

factors can be used to reduce the time complexity of differential attacks by summa-

rizing the corrected attacks on PRESENT [14] and SERPENT [10] block ciphers in

Chapter 2. Moreover, after investigating the structure of PRIDE [3] in Chapter 3,

we have also investigated the 18-round [79], 19-round [76] and 20-round [21] differ-

ential attacks on PRIDE [3] block cipher and we have provided some corrections for

these attacks considering differential factors in Chapter 4. On the 18-round attack, we

showed that authors fail to discover differential factors that exist in the first and 17th

round, that increase the time complexity from 266 to 270. We have also presented that,

on the 19-round attack authors fail to discover differential factors that exist in 2nd and

18th round which reduces time complexity from 264 to 263 and on the 20-round attack

we have showed that attack needs 252 encryptions exhaustive search not 248. We have

published these corrections in [70] and [71].

15



16



CHAPTER 2

DIFFERENTIAL CRYPTANALYSIS OF BLOCK CIPHERS

In this thesis, we have shown that differential attacks performed on PRIDE [3] block

cipher was wrong and we have corrected these attacks by using S-box properties

Differential Factors and Undisturbed Bits. In our correction, we have seen that these

attacks were required more time complexity values than it was claimed. We have

presented corrected attacks of PRIDE in Chapter 4.

Therefore, in this chapter, we first explain the concept of Differential Cryptanalysis

and mention about the S-box properties Differential Factors and Undisturbed Bits.

Until now, by using these properties attacks performed only on PRESENT [14] and

SERPENT [10] block ciphers were corrected and by this means, time complexity

of attacks on SERPENT [10] was significantly reduced. We explain these corrected

attacks of PRESENT [14] and SERPENT [10] in Section 2.3.1 and Section 2.4.1 in

this chapter.

2.1 Differential Crytpanalysis

Differential cryptanalysis [13] was discovered by Biham and Shamir in late 1980s

and it is used to attack various block ciphers, stream ciphers and hash functions. Dif-

ferential cryptanalysis is a chosen plaintext attack and it investigates the relations of

input differences and the corresponding output differences of encryption process.
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Notation:

• I : Plaintext 1

• I′: Plaintext 2

• O : Ciphertext of plaintext 1

• O′: Ciphertext of plaintext 2

• N: Number of plaintext and ciphertext pairs

• ∆I : Input Difference (∆I = I ⊕ I′), (Difference values are presented in Hex-

adecimal format)

• ∆O : Output Difference (∆O = O ⊕ O′), (Difference values are presented in

Hexadecimal format)

• p0 : Probability of difference

• r: Number of Rounds

If we explain more clearly, when two different plaintext information encrypted with

the same key, difference values of plaintext information and difference values of cor-

responding ciphertext information are investigated in differential cryptanalysis. Dif-

ference values are calculated by mathematically XOR operation of two values, in this

case they are plaintext and ciphertext values. If input difference value leads to some

output difference value with some probability greater than expected after r rounds,

this is called as differential characteristic. Differential characteristic can be used to

guess some parts of the secret key. It can also be used to distinguish block cipher

encryption from random permutation. These subjects related to differential crypt-

analysis are explained in detail below:

• Differential Characteristic: Let two inputs such as I and I
′

are XORed. The

result of this calculation is called as input difference and expressed as ∆I. Cor-

responding outputs such as O and O
′

are also XORed and the result of this cal-

culation is called as output difference, and expressed as ∆O. If after r rounds,
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∆I input difference causes ∆O output difference with some probability p0, it is

called as differential characteristic.

If the round operations are linear operations, then we can exactly know their

effect on the difference. However, result of the non-linear operations depend

on the input and we can trace the difference with some probability. If an S-

box is used and substitution operation is performed as a non-linear operation,

Difference Distribution Table (DDT) is used to determine which input differ-

ences lead to which output difference in what probability. Therefore, proba-

bility value of differential characteristic is determined by using Difference Dis-

tribution Table (DDT) if S-box is the only non-linear part of the block cipher.

DDT is explained in detail in Cryptanalysis of PRESENT example later in this

section. The structure of PRESENT can be seen in Figure 1.4.

• Effects of the Key Addition, Substitution and Permutation layers when

Constructing Differential Characteristic:

– Key Addition: We get (I⊕k) and (I′⊕k). Since both inputs are encrypted

with the same key, their difference is still the same: (I ⊕ k) ⊕ (I′ ⊕ k) =

I ⊕ I′ = ∆I

– Substitution: We don’t know the exact values of S(I ⊕ k) and S(I′ ⊕ k).

So we can not exactly know the difference S(I ⊕ k) ⊕ S (I′ ⊕ k). But we

can analyze the S-box to see which input differences provide which output

differences.

– Permutation: Permutation layer is the linear layer of the block cipher.

This layer can include different operations like changing bit positions or

matrix multiplications. Because this operation is linear, it is known that

if the input has a nonzero difference at the i-th bit, then the output has a

nonzero difference at the P(i)-th bit.

• Distinguishing Block Cipher: A differential characteristic can be used to dis-

tinguish random encryption from the specific block cipher by encrypting N

plaintext with fixed key and comparing the ∆I and ∆O results with the dif-

ferential characteristic. We expect to observe differential characteristic in N
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plaintext encryption with an expected value which is calculated by multiplying

differential characteristic probability and number of pairs.

• Guessing Secret Key: Differential characteristic can also be used to guess

some parts of the subkeys. In order to do that, one or more rounds of encryption

are added to the before or after of r round differential. For example; let’s say

we have 4x4 simple S-box and we have 4 rounds differential characteristic such

as ∆I = 00000001 and ∆O=00070000. We add one round encryption above

the 4 round differential. We must find out possible input differential values for

the newly added round by investigating the DDT tables of the related S-boxes.

So that we determine the input difference values that causes to ∆I=000000001

after one round. Let’s say these differences are (4,7,9,A). For the next phase, we

pick random input values that have difference of 4,7,9 and A values. Next, we

encrypt these input pairs for five round with every possible key and observe the

∆O values. If we detect that ∆O equals to 00070000, we increase the counter

of that key. After trying all possible keys, correct key must have the greatest

counter. So that, we can guess some parts of the subkeys. For the next parts of

the subkeys, we use exhaustive search.

2.1.1 Types of Differential Cryptanalysis

Differential cryptanalysis is one of the most important techniques to investigate the

security of a block ciphers. So that, designers try to develop block ciphers that are

more resistant to differential cryptanalysis.

Since its discovery, many variations of differentiial cryptanalysis are introduced.

• Truncated Differential Cryptanalysis [44] Truncated Differential Cryptanal-

ysis guesses only part of the difference in a pair of texts after each round of

encryption. More than one truncated differential characteristic can be used to-

gether to decrease the attack’s time complexity. Some of the examples of the

block ciphers that Truncated Differential Cryptanalysis is applied are CRYP-

TON [42] and SAFER [73] block ciphers.
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• Higher Order Differential Cryptanalysis [44] Differential cryptanalysis in-

vestigates difference between two inputs, but Higher Order Differential Crypt-

analysis investigates effects of a number of differences between a larger set of

inputs. Some of the examples of the block ciphers that Higher Order Differen-

tial Cryptanalysis is applied are MISTY1 [5], CAST [52] and SHA-256 [48].

• Impossible Differential Cryptanalysis [11] While regular differential crypt-

analysis investigates differences that are greater than expected probability, im-

possible differential cryptanalysis investigates differences that are impossible,

in other words some determined differential characteristic can not exist for the

correct key. The probability of such differentials should be 0. Therefore, any

candidate key that is tried on cryptanalysis operation satisfy the impossible dif-

ferential characteristic can not be the correct key. CLEFIA [59], SIMON [18],

CAMELLIA [18] and AES [49] are some of the block ciphers that had Impos-

sible Differential Cryptanalysis attacks.

• Improbable Differential Cryptanalysis [65] Improbable differential crypt-

analysis investigates the differences that are less likely exist for the correct key

than a wrong key. Impossible differential cryptanalysis is a subset of this at-

tack. Improbable Differential Cryptanalysis is applied on CLEFIA [66] and

PRESENT [64] block ciphers.

2.2 Differential Factors

In a differential attack, every possible key are tried on plaintext pairs expecting to

satisfy differential characteristic which allows us to guess the correct subkeys. It

is expected that correct key must satisfy the differential characteristic more times

than any other key, so that we can distinguish the correct key from the wrong ones.

However, in certain cases, output difference of the S-box operation may be invariant

when the round key is XORed with some specific value. Therefore, some candidate

keys can satisfy the differential characteristic for an equal number of times. Such

a case would prevent the attacker from fully capturing the round key. Differential

Factors [67] have been first described by Tezcan and they are defined as follows:
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Definition 1 (Differential Factor [67]) Let S be a function from Fn
2 to Fm

2 . For all

x, y ∈ Fn
2 that satisfy S (x) ⊕ S (y) = µ, if we also have S (x ⊕ λ) ⊕ S (y ⊕ λ) = µ, then

we say that the S-box has a differential factor λ for the output difference µ. (i.e. µ

remains invariant for λ).

It is useful to note the following additional properties of differential factors.

Theorem 1 ([67]) If a bijective S-box S has a differential factor λ for an output

difference µ, then S −1 has a differential factor µ for an output difference λ.

Theorem 2 ([67]) If λ1 and λ2 are differential factors for an ouput difference µ, then

λ1 ⊕ λ2 is also a differential factor for the output difference µ. i.e. All differential

factors λi for µ form a vector space.

Differential factors affect differential cryptanalysis when a block cipher contains key

XOR process prior to S-box substitution process. This structure is generally used in

SPN block ciphers. In order to see the effect of differential factors, there are some

conditions that must be satisfied. These conditions are listed as follows:

• There must be a differential factor λ for output difference µ for an S-box acti-

vated by the attack.

• The differential being used in the attack requires the output difference of this

S-box to be µ.

During regular differential cryptanalysis, candidate keys are tried to discover the cor-

rect keys. Correct key k, must satisfy the differential characteristic more times than

any other key. In other words, when correct key k is tried during attack, S-box pro-

duces µ more times than any other key. The problem arises at this point if there is

a differential factor. In other words, for any plaintext/ciphertext pair when k is tried

and µ is obtained from S-box substitution, k ⊕ λ also produce the same result which

is µ again. This situation can also be observed from the counter values of candidate

keys in that counter value of k and counter value of k ⊕ λ become equal. This means
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that, the correct candidate key k, is indistinguishable from an incorrect candidate key

containing k ⊕ λ.

As a result, during key guess step it is not possible to discover the key bits where dif-

ferential factors exist. These key bits must be discovered with the exhaustive search.

This causes that the time complexity of the key guess step is decreased and because

additional bits have to be discovered, time complexity of exhaustive search step is

increased.

This behavior is not only limited to the encryption process. It is also observed during

the decryption process.

Theorem 3 ([67]) In a block cipher let an S-box S contain a differential factor λ

for an output difference µ and the partial round key k is XORed with the input of

S . If an input pair provides the output difference µ under a partial subkey k, then

the same output difference is observed under the partial subkey k ⊕ λ. Therefore,

during a differential attack involving the guess of a partial subkey corresponding to

the output difference µ, the advantage of the cryptanalyst is reduced by 1 bit and the

time complexity of this key guess step is halved.

Corollary 1 ([67]) During a differential attack involving the guess of a partial sub-

key corresponding to the output difference µ of an S-box that has a vector space of

differential factors of dimension r for µ, the advantage of the cryptanalyst is reduced

by r bits and the time complexity of the key guess step is reduced by a factor of 2r.

Corollary 2 ([63]) Differential factors reduce the key space for the key guess process

and therefore reduce the data complexity of the attack. Thus, memory required to keep

the counters for the guessed keys also reduces. Reduction in the data complexity may

also reduce the time complexity depending on the attack.

During our research, we have investigated several block ciphers and discovered the

existence of differential factors on most of them. The S-boxes of block ciphers and

related differential factors are listed in Table 2.1
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Table 2.1: Differential Factors of Some Block Ciphers

Block Cipher S-box Differential Factors

PRIDE[3] S[x]: 0, 4, 8, F, 1, 5, E, 9, 2, 7, A, C, B, D, 6, 3 λ=1 µ=1
λ=8 µ=8

PRESENT[14] S[x]: C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2 λ=1 µ=5
λ=F µ=F

s0: E, 9, F, 0, D, 4, A, B, 1, 2, 8, 3, 7, 6, C, 5 s0, λ=3 µ=4
s0, λ=B µ=1

s1: 4, B, E, 9, F, D, 0, A, 7, C, 5, 6, 2, 8, 1, 3 s1, λ=3 µ=4
s1, λ=B µ=2

s2: 1, E, 7, C, F, D, 0, 6, B, 5, 9, 3, 2, 4, 8, A s2, λ=3 µ=1
s2, λ=B µ=2

s3: 7, 6, 8, B, 0, F, 3, E, 9, A, C, D, 5, 2, 4, 1 s3, λ=3 µ=8
s3, λ=B µ=1

LBLOCK[74] s4: E, 5, F, 0, 7, 2, C, D, 1, 8, 4, 9, B, A, 6, 3 s4, λ=3 µ=2
s4, λ=B µ=1

s5: 2, D, B, C, F, E, 0, 9, 7, A, 6, 3, 1, 8, 4, 5 s5, λ=3 µ=2
s5, λ=B µ=1

s6: B, 9, 4, E, 0, F, A, D, 6, C, 5, 7, 3, 8, 1, 2 s6, λ=3 µ=4
s6, λ=B µ=2

s7: D, A, F, 0, E, 4, 9, B, 2, 1, 8, 3, 7, 5, C, 6 s7, λ=3 µ=4
s7, λ=B µ=2

NOEKEON S[x]: 7, A, 2, C, 4, 8, F, 0, 5, 9, 1, E, 3, D, B, 6 λ=1 µ=1
λ=B µ=B

PICCOLO[58] S[x]: E, 4, B, 2, 3, 8, 0, 9, 1, A, 7, F, 6, C, 5, D λ=1 µ=2
λ=2 µ=5

RECTANGLE[78] S[x]: 6, 5, C, A, 1, E, 7, 9, B, 0, 3, D, 8, F, 4, 2 λ=2 µ=4
λ=E µ=C

CONTINUED ON NEXT PAGE
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Table 2.1 CONTINUED FROM PREVIOUS PAGE
SARMAL[80] Hash Function λ=F µ=4

λ=A µ=9

SPONGENT[15] Hash Function s1, λ=F µ=9
s2, λ=1 µ=F

s0: 4, A, 9, 2, D, 8, 0, E, 6, B, 1, C, 7, F, 5, 3 s0, λ=5 µ=3
s1: E, B, 4, C, 6, D, F, A, 2, 3, 8, 1, 0, 7, 5, 9 s3, λ=D µ=5
s2: 5, 8, 1, D, A, 3, 4, 2, E, F, C, 7, 6, 0, 9, B s5, λ=9 µ=B

GOST [28] s3: 7, D, A, 1, 0, 8, 9, F, E, 4, 6, C, B, 2, 5, 3 s7, λ=7 µ=5
s4: 6, C, 7, 1, 5, F, D, 8, 4, A, 9, E, 0, 3, B, 2 s7, λ=E µ=6
s5: 4, B, A, 0, 7, 2, 1, D, 3, 6, 8, 5, 9, C, F, E
s6: D, B, 4, 1, 3, F, 5, 9, 0, A, E, 7, 6, 8, 2, C
s7: 1, F, D, 0, 5, 7, A, 4, 9, 2, 3, E, 6, B, 8, C

HAMSI[43] S[x]:8, 6 , 7, 9, 3, C, A, F, D, 1, E, 4, 0, B, 5, 2 λ=2 µ=1
λ=4 µ=D

LED[35] S[x]:C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2 λ=1 µ=5
λ=F µ=F

JOLTIK V1 S[x]:E, 4, B, 2, 3, 8, 0, 9, 1, A, 7, F, 6 C, 5, D λ=1 µ=2
λ=2 µ=5

LAC V1 S[x]:E, 9, F, 0, D, 4, A, B, 1, 2, 8, 3, 7, 6, C, 5 λ=B µ=1
λ=3 µ=4

PROST V1 S[x]:0, 4, 8, F, 1, 5, E, 9, 2, 7, A, C, B, D, 6, 3 λ=1 µ=1
λ=8 µ=8

FOX [39] s0: 2, 5, 1, 9, E, A, C, 8, 6, 4, 7, F, D, B, 0, 3 s2, λ=5 µ=8
s1: B, 4, 1, F, 0, 3, E, D, A, 8, 7, 5, C, 2, 9, 6 s2, λ=1 µ=13
s2: D, A, B, 1, 4, 3, 8, 9, 5, 7, 2, C, F, 0, 6, E
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As can be seen from the Table 2.1, differential factors exist on most of the block

ciphers and the existence of differential factors depend on S-box design. Although,

differential factors are not applicable to all differential attacks, they directly affect the

time and memory complexity of them when they exist. Therefore, differential factors

should be considered during differential attacks.

In the next part of this Section, we have explained the examples of Differential Crypt-

analysis and Differential Factors on PRESENT and SERPENT block ciphers. We

have also shown corrected attacks of PRESENT and SERPENT by considering dif-

ferential factors.

2.3 Example: Differential Cryptanalysis of PRESENT

PRESENT [14] is a 31-round SPN (Substitution Permutation Network) type block

cipher with block size of 64 bits that supports 80 and 128-bit secret key. At each

round, as can be seen in Figure 2.1 64-bit input of the round function is XORed with

the subkey, then 16 4 × 4-bit S-boxes are used to provide confusion and then finally

permutation is performed to provide diffussion.

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1

Figure 2.1: Round function of Present
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PRESENT’s S-BOX is shown in Table 2.2.

Table 2.2: S-box of PRESENT

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Difference Distribution Table (DDT) of an S-box can be prepared by considering ev-

ery possible (x; y) input pairs with x ⊕ y = i and count the output differences where

S (x) ⊕ S (y) = j and construct a table with this count as the ij-th entry. DDT of

PRESENT’s S-box can be seen in Table 2.3.

Table 2.3: Difference Distribution Table of PRESENT

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2x 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3x 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4x 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5x 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6x 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7x 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8x 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9x 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
Ax 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
Bx 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
Cx 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
Dx 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
Ex 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
Fx 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

The highest values in the DDT (except the first entry) is called differential unifor-

mity. High differential uniformity provides characteristics with high probability,

hence lower is better. Values in DDT is even because the pairs (x; y) and (y; x)

provides the same difference. Thus, the theoretically best achievable differential uni-

formity is 2. PRESENT’s S-box is differentially 4 uniform.
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The best known differential attack on PRESENT is provided in [72] which breaks 16

round by adding two rounds to the bottom of 14 round differential characteristic that

is shown in Table 2.4.

∆1: 0700000000000700→14r 0000000900000009 with probability: 2−62.

Table 2.4: 14-round Differential Characteristic of PRESENT

Rounds Differences Probability
Input I x2 = 7 , x14 = 7
R1 S x2 = 1 , x14 = 1 2−4

R1 P x0 = 4 , x3 = 4 1
R2 S x0 = 5 , x3 = 5 2−4

R2 P x0 = 9 , x8 = 9 1
R3 S x0 = 4 , x8 = 4 2−4

R3 P x8 = 1 , x10 = 1 1
R4 S x8 = 9 , x10 = 9 2−4

R4 P x2 = 5 , x14 = 5 1
R5 S x2 = 1 , x14 = 1 2−6

R5 P x0 = 4 , x3 = 4 1
R6 S x0 = 5 , x3 = 5 2−4

R6 P x0 = 9 , x8 = 9 1
R7 S x0 = 4 , x8 = 4 2−4

R7 P x8 = 1 , x10 = 1 1
R8 S x8 = 9 , x10 = 9 2−4

R8 P x2 = 5 , x14 = 5 1
R9 S x2 = 1 , x14 = 1 2−6

R9 P x0 = 4 , x3 = 4 1
R10 S x0 = 5 , x3 = 5 2−4

R10 P x0 = 9 , x8 = 9 1
R11 S x0 = 4 , x8 = 4 2−4

R11 P x8 = 1 , x10 = 1 1
R12 S x8 = 9 , x10 = 9 2−4

R12 P x2 = 5 , x14 = 5 1
R13 S x2 = 1 , x14 = 1 2−6

R13 P x0 = 4 , x3 = 4 1
R14 S x0 = 5 , x3 = 5 2−4

R14 P x0 = 9 , x8 = 9 1
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Two rounds are added to the bottom of this characteristic, the output difference should

be in the form 0?0?0?0?0?0?0000. Overall attack procedure is shown below:

• Data Collection: Gather N plaintext ciphertext pairs with input difference

0700000000000700 and output difference 0?0?0?0?0?0?0000 after 16 rounds.

• Key Guess: Partially decrypt these pairs with every possible key bits of rounds

16 and 15 that correspond to S-boxes with nonzero difference. Correct key

should have the highest counter.

• Exhaustive Search: Remaining key bits are obtained by exhaustive search.

This attack captures 32 bits of the key with 233.18 2-round encryptions. Remaining 48

bits require 248 16-round encryptions.

2.3.1 Corrected Attacks on PRESENT

In the attack [72] authors claimed to capture 32 bits with 233.18 2-round encryptions,

and remaining 48 bits are captured with 248 16-round encryptions via exhaustive

search.

Table 2.5: Differential Factors of PRESENT

Differential Factor Output Difference
λ = 1 µ = 5
λ = F µ = F

However this attack is corrected in [63] that authors fail to discover 6 differential

factors which are shown in Table 2.6.

Therefore, as explained in [63], the number of bits that are actually captured is 26 bits

not 32 bits which require 227.18 2-round encryptions and remaining 54 bits require 254

16-round encryptions. Thus, the time complexity of this attack is 254 not 248.
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Table 2.6: 16-round differential-linear attack of [72]. Values that need to be obtained
are shown in bold.

Differences in bits
Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

X1,I 0000 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 0000 0000
14-Round Differential ∆1

X14,P 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 0000 0000 0000 0000 1001
X15,S 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 0000 0000 0000 0000 ???0
X15,P 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 0000 0000 0000
X16,S 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 0000 0000 0000

We have also provided further correction for this attack in [70] by considering over-

looked Undisturbed Bits.

2.4 Example: Differential Cryptanalysis of SERPENT

SERPENT [10] was designed by Anderson, Biham and Knudsen as the candidate for

Advanced Encryption Standard in 1998 and became one of the finalists in the contest.

It is an SPN type block cipher with 128-bit block size, 32 rounds and 256-bit key

length. Key length of Serpent can be any size between 64 and 256 bits. Keys that are

shorter than 256 bits are completed to 256 bit length, by having "1" bit to the top and

as many "0" bits as required. The S-boxes of SERPENT is shown below:

Table 2.7: S-boxes of SERPENT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S0 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12
S1 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4
S2 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2
S3 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14
S4 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S5 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S6 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S7 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6
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The general design of Serpent can be specified as follows:

The 128-bit input value contains four 32-bit words X0, X1, X2, X3 and it is represented

as B̂i where i ∈ {0, ...., 31}. At each 32 rounds of Serpent Key Mixing, Substitution

and Linear Transformation operations are performed.

• Key Mixing: At each round Ri, subkey generated by the key schedule Ki is

XORed with the input value of B̂i.

• Substitution: S-box operation are applied on four 32-bit words X0, X1, X2, X3

that had key mixing operation. 32 copies of S-Box operation are executed si-

multaneously for each 4-bit inputs and 128-bit output value is created. This

operation can be represented as S i(Bi ⊕ Ki).

• Linear Transformation: The four 32-bit words X0, X1, X2, X3 are linearly mixed

by the following operations:

X0, X1, X2, X3 = S i(Bi ⊕ Ki)
X0 = X0 ≪ 13
X2 = X2 ≪ 3
X1 = X1 ⊕ X0 ⊕ X2

X3 = X3 ⊕ X2 ⊕ (X0 � 3)
X1 = X1 ≪ 1
X3 = X3 ≪ 7
X0 = X0 ⊕ X1 ⊕ X3

X2 = X2 ⊕ X3 ⊕ (X1 � 7)
X0 = X0 ≪ 5
X2 = X2 ≪ 22

B̂i+1 = X0, X1, X2, X3

where ≪ denotes rotation to the left, � denotes shift to the left for the specified

number of bits. Formal description of design of Serpent is shown as follows:

B̂0 = IP(P)
B̂i+1 = Ri(B̂i)

C = FP(B̂r)

31



where;

IP = Initial Permutation

FP = Final Permutation

P = B̂0

C = B̂32

Ri(X) = L(Ŝ i(X ⊕ K̂i)) i = 0, ...., r − 2
Ri(X) = Ŝ i(X ⊕ K̂i) ⊕ K̂r i = r − 1

where Ŝ i represents S-box operation and L represents Linear Transformation.

The differential-linear attack on SERPENT was provided in [12] in which 11-round

of SERPENT was attacked. The attack was based on a 3-round differential character-

istic with probability of 2−7 which is shown below.

∆: 00000000000000000000000040050000→ 0??00?000?000000000?00?0??0??0?0

In the attack [12] 48 bits of the key are captured with the time complexity of 2139.2

11-round SERPENT encryptions.

The time complexity of the attack [12] was further improved in [27] and 48 bits

of the key was captured with the time complexity of 2135.7. Moreover, in the same

publication first 12-round attack on SERPENT was provided. In the 12-round attack

160 bits of the key are captured with the time complexity of 2249.4.

2.4.1 Corrected Attacks on SERPENT

In the attack [27], authors could not consider the existing differential factors which

can be seen in Table 2.8. Therefore, 11-round attack is corrected in [68] by using

differential factors. In the corrected attack it was shown that 5 S-boxes are activated

by 3-round differential characteristic and 2 of them had a output differences of 4x and

Ex which have differential factors as it is shown in 2.8. Therefore, at each round only

18 bits of the subkey can actually be captured, instead of 20 bits as it was claimed

in [27]. Therefore, totally only 46 bits of the key can be captured instead of 48 bits

and corrected time complexity is 2133.7 not 2135.7. Besides, in the same publication 12-
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round attack was also corrected by using the same differential factors in that 157 bits

of the key could actually be captured instead of 160 bits and correct time complexity

is 2249.4 not 2246.4.

Table 2.8: Differential Factors of SERPENT

S-box Differential Factor Output Difference
S 0 4x 4x

S 0 Dx Fx

S 1 4x 4x

S 1 Fx Ex

S 2 2x 1x

S 2 4x Dx

S 6 6x 2x

S 6 Fx Fx

2.5 Undisturbed Bits

Undisturbed bits [64] have been first described by Tezcan and they are defined as

follows:

Definition 2 (Undisturbed Bits [64]) Depending on the design of an S-box, when a

specific difference is given to the input (resp. output), difference of at least one of the

output (resp. input) bits of the S-box may be guessed with probability 1. We call such

bits undisturbed.

Undisturbed Bits are observed if some bits of the output differences of an correspond-

ing input difference does not change. For example, when we investigate the Differ-

ence Distribution Table of PRIDE block cipher which is presented in Chapter 4, we

can see that input difference of 1x leads to output differences of 4x (0100), 5x (0101),

6x (0110) and 7x (0111). We can also see from these results that the first two bits of

(10??) are the same for all output differences. In this case, the first two bits (10??) are

called as Undisturbed Bits.
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Undisturbed bits can be used for discovering longer differential characteristics which

leads to more effective differential attacks. When we review the literature, we see that

Undisturbed Bits are used in the differential attacks of PRESENT [64] and SERPENT

[69] block ciphers.

We have analyzed several block ciphers such as PRESENT, PRIDE, LBLOCK, LUFFA,

NOEKEON, PICCOLO, RECTANGLE, SARMAL, SERPENT, SPONGENT, GOST,

HAMSI, LED, JOLTIKv1, LACv1, PROSTv1 and FOX for the existence of undis-

turbed bits and they can be seen in Table 2.9.
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Table 2.9: Undisturbed Bits of Some S-boxes

Block Cipher S-box Input Output
1x 01??
2x 1???

PRIDE 0,4,8,F,1,5,E,9,2,7,A,C,B,D,6,3 3x 1???
8x ?0??
9x 01??

PRESENT C,5,6,B,9,0,A,D,3,E,F,8,4,7,1,2 1x ???1
9x ???0
1x ???1
2x ???1

LBLOCK E,9,F,0,D,4,A,B,1,2,8,3,7,6,C,5 3x ??10
8x ??1?
Bx ??0?
1x ??1?
2x ??1?

LBLOCK 4,B,E,9,F,D,0,A,7,C,5,6,2,8,1,3 3x ??01
8x ???1
Bx ???0
1x ??1?
2x ??1?

LBLOCK 1,E,7,C,F,D,0,6,B,5,9,3,2,4,8,A 3x 1?0?
8x 1???
Bx 0???
1x ???1
2x ???1

LBLOCK 7,6,8,B,0,F,3,E,9,A,C,D,5,2,4,1 3x ???0
8x ?1??
Bx ?0??
1x ???1
2x ???1

LBLOCK E,5,F,0,7,2,C,D,1,8,4,9,B,A,6,3 3x 1??0
8x 1???
Bx 0???
1x ???1
2x ???1

LBLOCK 2,D,B,C,F,E,0,9,7,A,6,3,1,8,4,5 3x ?1?0
8x ?1??
Bx ?0??

CONTINUED ON NEXT PAGE
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Table 2.9 CONTINUED FROM PREVIOUS PAGE
1x ??1?
2x ??1?

LBLOCK B,9,4,E,0,F,A,D,6,C,5,7,3,8,1,2 3x ??01
8x ???1
Bx ???0
1x ??1?
2x ??1?

LBLOCK D,A,F,0,E,4,9,B,2,1,8,3,7,5,C,6 3x ??01
8x ???1
Bx ???0
1x 11??
8x 0???

NOEKEON 7,A,2,C,4,8,F,0,5,9,1,E,3,D,B,6 9x 1???
Ax ?1??
Bx ?0??
1x 10??
2x 0???

PICCOLO E,4,B,2,3,8,0,9,1,A,7,F,6,C,5,D 3x 1???
8x ?1??
9x ?1??
1x ??1?
4x ??11

RECTANGLE 6,5,C,A,1,E,7,9,B,0,3,D,8,F,4,2 5x ??0?
8x ???1
Cx ???0
1x ???1

SERPENT C,5,6,B,9,0,A,D,3,E,F,8,4,7,1,2 8x ???1
9x ???0

GOST 4,A,9,2,D,8,0,E,6,B,1,C,7,F,5,3 - -
GOST E,B,4,C,6,D,F,A,2,3,8,1,0,7,5,9 - -
GOST 5,8,1,D,A,3,4,2,E,F,C,7,6,0,9,B - -
GOST 7,D,A,1,0,8,9,F,E,4,6,C,B,2,5,3 8x 1???
GOST 6,C,7,1,5,F,D,8,4,A,9,E,0,3,B,2 - -
GOST 4,B,A,0,7,2,1,D,3,6,8,5,9,C,F,E 2x ??1?
GOST D,B,4,1,3,F,5,9,0,A,E,7,6,8,2,C 9x ???1
GOST 1,F,D,0,5,7,A,4,9,2,3,E,6,B,8,C - -

2x ???1
HAMSI 8,6,7,9,3,C,A,F,D,1,E,4,0,B,5,2 8x ???1

Ax ???0
CONTINUED ON NEXT PAGE
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Table 2.9 CONTINUED FROM PREVIOUS PAGE
1x ???1

LED C,5,6,B,9,0,A,D,3,E,F,8,4,7,1,2 8x ???1
9x ???0
1x 10??
2x 0???

JOLTIK V1 E,4,B,2,3,8,0,9,1,A,7,F,6,C,5,D 3x 1???
8x ?1??
9x ?1??
1x ???1
2x ???1

LAC V1 E,9,F,0,D,4,A,B,1,2,8,3,7,6,C,5 3x ??10
8x ??1?
Bx ??0?
1x 01??
2x 1???

PROST V1 0,4,8,F,1,5,E,9,2,7,A,C,B,D,6,3 3x 1???
8x ?0??
9x ?1??

FOX 2,5,1,9,E,A,C,8,6,4,7,F,D,B,0,3 - -
1x ??1?

FOX B,4,1,F,0,3,E,D,A,8,7,5,C,2,9,6 4x ??1?
5x ??0?

FOX D,A,B,1,4,3,8,9,5,7,2,C,F,0,6,E - -
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CHAPTER 3

OVERVIEW OF PRIDE

In this thesis, we have corrected differential attacks performed on PRIDE [3] block

cipher by considering differential factors. We have presented these attack details and

our corrections in Chapter 4. Therefore, in this chapter we have analyzed the design

features of PRIDE [3] block cipher.

3.1 PRIDE

3.1.1 Description

PRIDE [3] is a lightweight block cipher designed by Albrecht in CRYPTO 2014. The

designers proposed a method to develop a good linear layer, which provides optimal

design between security and efficiency. Therefore, it performs well in software and

hardware implementations.

Pride is an SPN type block cipher with 64-bit block size, 128-bit key, and 20 rounds.

Except the last round, round function R is used for the first 19 rounds which consists

of successive key addition, substitution and linear layers. The last round function R′

omits the linear layer. The overall structure of Pride is shown in Figure 3.1.
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Figure 3.1: Overall structure of PRIDE

3.1.2 Linear Layer

Inside the round function of PRIDE as can be seen in Figure 3.2, at first 64-bit input

XORed with the round key, then split into 16 4-bit nibbles and put into the S-box.

And then the result is permuted and processed by the linear layer.

The linear layer L of Pride can be divided into three sub-layers, a permutation layer

P, a matrix layer M and another permutation layer P−1 which is the inverse of P. L

and M can be explained as:

L : P−1 ◦M ◦ P

M: L0 x L1 x L2 x L3

S S S S S S SS S S S S S S S S S S S S S S S

L0 L1 L3L2

R

R’

L

P

P -1

P -1 ( fi ( k1 ) )

Figure 3.2: Round Function of PRIDE
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In matrix layer M, 64-bit block is divided by 4 groups, and each group is multiplied

by separate constant matrix. Designers searched the optimal matrices in [3] to have a

very efficient linear layer. As a result, PRIDE outperforms recent lightweight block

ciphers both in terms of code size and cycle count as can be seen in Section 3.1.5.

Linear layer matrices L0, L1, L2, L3 and their inverses are defined as follows:
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L0 = L−1
0 =



0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0



L3 = L−1
3 =



1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1


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L1=



1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0



L2=



0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1


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L−1
1 =



0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0



L−1
2 =



0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1


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Permutation layers of P and P−1 are defined as follows:

Table 3.1: Permutation P(x) of PRIDE

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P(x) 1 17 33 49 2 18 34 50 3 19 35 51 4 20 36 52

x 17 18 19 20 21 22 23 24 25 27 27 28 29 30 31 32
P(x) 5 21 37 53 6 22 38 54 7 23 39 55 8 24 40 56

x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
P(x) 9 25 41 57 10 26 42 58 11 27 43 59 12 28 44 60

x 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
P(x) 13 29 45 61 14 30 46 62 15 31 47 63 16 32 48 64

Table 3.2: Permutation P−1(x) of PRIDE

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P−1(x) 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

x 17 18 19 20 21 22 23 24 25 27 27 28 29 30 31 32
P−1(x) 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
P−1(x) 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

x 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
P−1(x) 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
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3.1.3 Key Schedule

Key schedule of PRIDE [3] is defined as follows:

The 128-bit master key K of block cipher PRIDE is divided into two 64-bit parts

(k0‖k1). k0 is used for pre-whitening and post-whitening, while k1 is divided into 8

8-bit words

k1 = k1,1 ‖ k1,2 ‖ k1,3 ‖ k1,4 ‖ k1,5 ‖ k1,6 ‖ k1,7 ‖ k1,8

and used to generate the subkeys fr(k1) which is defined as follows:

fr(k1) = k1,1 ‖ g(1)
r (k1,2) ‖ k1,3‖ g(2)

r (k1,4) ‖ k1,5 ‖ g(3)
r (k1,6) ‖ k1,7 ‖ g(4)

r (k1,8)

as the subkey derivation function with four byte-local modifiers of the key as

g(1)
r (x) = (x + 193r) mod 256

g(2)
r (x) = (x + 165r) mod 256

g(3)
r (x) = (x + 81r) mod 256

g(4)
r (x) = (x + 197r) mod 256

which simply add one of four constants to every other byte of k1.
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3.1.4 Sbox

PRIDE’s Sbox is shown in Table 3.3.

Table 3.3: Sbox of PRIDE [3]

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] 0 4 8 F 1 5 E 9 2 7 A C B D 6 3

It can be seen from the Table 3.3 that there are 4 fixed points in the PRIDE S-box.

These fixed points are S[0x0]=0x0, S[0x5]=0x5, S[0xA]=0xA, S[0xD]=0xD.

3.1.5 Performance Analysis

Designers of PRIDE [3] presented the performance comparison of it with some of the

other known block ciphers. Atmel’s AVR micro-controller was the implementation

platform for all of these block ciphers.

It can be seen that PRIDE [3] has better performance than many of the block ciphers in

terms of cycle count and block size. Performance comparison of these block ciphers

is shown in Table 3.4.

Table 3.4: Performance Analysis of PRIDE [3]
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96

SP
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C
K

-6
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12
8
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ID

E

t(cyc) 3159 49314 10792 28648 17745 23517 3614 2607 2000 1152 1200 1514
bytes 1570 7220 660 3046 386 364 1108 716 282 182 186 266

According to the Table 3.4 only SPECK-64/96 and SPECK-64/128 have better per-

formance than PRIDE.
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3.1.6 Testvectors for PRIDE [3]

Testvectors for PRIDE [3] is shown in Table 3.5.

Table 3.5: Testvectors for PRIDE

Plaintext k0 k1 CipherText

0000000000000000 0000000000000000 0000000000000000 82b4109fcc70bd1f
ffffffffffffffff 0000000000000000 0000000000000000 d70e60680a17b956

0000000000000000 ffffffffffffffff 0000000000000000 28f19f97f5e846a9
0000000000000000 0000000000000000 ffffffffffffffff d123ebaf368fce62
0123456789abcdef 0000000000000000 fedcba9876543210 d1372929712d336e
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CHAPTER 4

ATTACKS ON PRIDE

We have published some parts of this section in paper [70] and [71]. In this section,

first we explain the 18-Round Attack [79], 19-Round Attack [76] and 20-Round At-

tack [21] applied on PRIDE, after that we provide corrections for each of these attacks

considering differential factors.

4.1 Notation

The notation that is used in this section is presented in Table 4.1.

Table 4.1: Pride notation conventions

Ir the input of the r-th round
Xr the state after the key addition layer of the r-th round
Yr the state after the substitution layer of the r-th round
Zr the state after the permutation layer of the r-th round
Wr the state after the matrix layer of the r-th round
Or the output of the r-th round
∆X the XOR difference of X and X′

? a bit with an uncertain value
X[n1, n2, . . .] the n1, n2, . . .-th nibbles of state X, 1 ≤ n1 < n2 < . . . ≤ 16
X{b1, b2, . . .} the b1, b2, . . .-th bits of state X, 1 ≤ b1 < b2 < . . . ≤ 64,

numbered from left to right.
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4.2 Difference Distribution Table of PRIDE

Difference Distribution Table of PRIDE is shown is Table 4.2.

Table 4.2: Difference Distribution Table of Pride

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0
2x 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
3x 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2
4x 0 4 0 0 0 0 4 0 0 2 2 0 2 0 0 2
5x 0 4 0 0 0 4 0 0 0 2 2 0 2 0 0 2
6x 0 4 0 0 4 0 0 0 0 2 2 0 0 2 2 0
7x 0 4 0 0 0 0 0 4 0 2 2 0 0 2 2 0
8x 0 0 4 4 0 0 0 0 4 0 4 0 0 0 0 0
9x 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
Ax 0 0 0 0 2 2 2 2 4 0 4 0 0 0 0 0
Bx 0 0 4 4 0 0 0 0 0 0 0 0 2 2 2 2
Cx 0 0 2 2 2 2 0 0 0 2 0 2 2 0 2 0
Dx 0 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2
Ex 0 0 2 2 0 0 2 2 0 2 0 2 2 0 2 0
Fx 0 0 2 2 2 2 0 0 0 2 0 2 0 2 0 2

4.3 Differential Factors of PRIDE

Table 4.3: Differential Factors of PRIDE

Sbox Differential Factors
0, 4, 8, F, 1, 5, E, 9, 2, 7, A, C, B, D, 6, 3 λ = 1 , µ = 1

λ = 8 , µ = 8
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4.4 18 Round Differential Attack on PRIDE

In 18-Round differential attack [79], authors found 16 different 2-round iterative char-

acteristics and they have constructed several 15-round differentials. And then, they

have attacked 18 rounds of PRIDE with 260 chosen plaintexts, 266 encryptions and 264

bytes.

4.4.1 Differential Characteristic of 18-Round Attack

In PRIDE Sbox, the input difference of 0x8, leads to the output difference of 0x8

with probability 2−2. Authors have found 2-round iterative differential characteristic

holding with probability 2−8 as in Table 4.4.

Table 4.4: 2-Round Differential Characteristic for Pride

∆Ir 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Xr 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Yr 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Zr 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Wr 0x0 0x4 0x4 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Ir+1 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0
∆Xr+1 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0
∆Yr+1 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0
∆Zr+1 0x0 0x4 0x4 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Wr+1 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Ir+2 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Authors have found 16 2-round iterative differential characteristics listed in Table 4.5.

Table 4.5: 16 2-Round Differential Characteristics for Pride

(8000000000000000)→1r (0000800080008000)→1r (8000000000000000)
(0800000000000000)→1r (0000080008000800)→1r (0800000000000000)
(0080000000000000)→1r (0000800000800080)→1r (0080000000000000)

.

.
(0000000000000800)→1r (0800080008000000)→1r (0000000000000800)
(0000000000000080)→1r (0080008000800000)→1r (8000000000000080)
(0000000000000008)→1r (0008000800080000)→1r (0000000000000008)
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Authors have iterated the 2-round differential 7 times and add one round below it to

obtain 15-round differential with the probability of 2−58. 15-round differential char-

acteristic can be seen in Table 4.6.

Table 4.6: 15 Round Differential Characteristic for Pride

∆Ir 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
∆Xr+15 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0

Authors have added one round to the top and two rounds to the bottom of 15-round

differential to attack 18-round of PRIDE block cipher as it is shown in Table 4.7.

Table 4.7: 18 Round Differential Attack of Pride

∆I1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆X1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Y1 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Z1 0000 0100 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W1 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I2 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆X17 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Y17 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Z17 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00
∆W17 0?00 0?00 0?00 0?00 00?0 ???0 0??0 0??0 ???0 00?0 0??0 0??0 0?00 0?00 0?00 0?00
∆I18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆X18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆Y18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000
∆O18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000

4.4.2 Data Collection Phase

In the data collection phase 2n structures are chosen in that for each plaintext nib-

bles 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16 are fixed and nibbles 6, 10, 14 are traversed.

In other words, for each plaintext pairs nibbles 6, 10, 14 are chosen different and the

other nibbles are kept the same. For these nibbles there are 223 plaintext and ciphertext

pairs. For the chosen plaintexts at the end of 18-round, ciphertext difference should

satisfy that the difference of nibbles 4, 8, 9, 12, 13, 16 must be zero. Because, there

are 24 possibility for each nibble, for the nibbles 4, 8, 9, 12, 13, 16 the probability of

having zero difference is 2−24. This means that only 2−1 pairs left.
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4.4.3 Key Recovery Phase

In this attack, 2n structures are chosen and 64 bits of the key are guessed that are

shown in Table 4.8. At the first round key bits of X1[6], X1[10], X1[14] and at the last

round Y18[1], Y18[2], Y18[3], Y18[5], Y18[6], Y18[7], Y18[10], Y18[11], Y18[14], Y18[15]

and at the 17th round Y17[6], Y17[10], Y17[14] are guessed.

• Step1: Encrypt the nibbles X1[6] and distinguish the pairs whose output differ-

ence ∆Y1[6] is equal to 1000 and guess the key bits of X1[6]. This means that

2−5 pairs remain.

• Step2: Encrypt the nibbles X1[10] and distinguish the pairs whose output dif-

ference ∆Y1[10] is equal to 1000 and guess the key bits of X1[10]. This means

that 2−9 pairs remain.

• Step3: Encrypt the nibbles X1[14] and distinguish the pairs whose output dif-

ference ∆Y1[14] is equal to 1000 and guess the key bits of X1[14]. This means

that 2−13 pairs remain.

• Step4: Decrypt the nibbles Y18[1], Y18[2], Y18[3], Y18[5], Y18[6], Y18[7], Y18[10],

Y18[11], Y18[14], Y18[15] and guess the corresponding key bits by distinguishing

pairs by factors 2−3, 2−3, 2−1, 2−2, 2−3, 2−1, 2−2, 20, 2−1, 20, 2−3 respectively.

After this step 2−29 pairs remain.

• Step5: In this step other remaining pairs are decrypted without guessing key

by distinguishing 2−12 pairs. This results in 2−41 pairs left.

• Step6: Decrypt the nibbles Y17[6] and distinguish the pairs whose output dif-

ference ∆X17[6] is equal to 1000 and guess the key bits of Y17[6]. 2−45 pairs

remain after this step.

• Step7: Decrypt the nibbles Y17[10] and distinguish the pairs whose output dif-

ference ∆X17[10] is equal to 1000 and guess the key bits of Y17[10]. This results

in 2−49 pairs remain.

• Step8: Decrypt the nibbles Y17[14] and distinguish the pairs whose output dif-

ference ∆X17[14] is equal to 1000 and guess the key bits of Y17[14]. 2−53 pairs

remain after this step.
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• Step9: Remaining 64 bits of the key are decrypted with the exhaustive search.

In this attack n is chosen to be 48, therefore 248+23 pairs are used to guess the keys.

Table 4.8: Guessed key bits in 18 Round Differential Attack of Pride

∆I1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆X1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Y1 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Z1 0000 0100 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W1 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I2 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆X17 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Y17 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Z17 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00
∆W17 0?00 0?00 0?00 0?00 00?0 ???0 0??0 0??0 ???0 00?0 0??0 0??0 0?00 0?00 0?00 0?00
∆I18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆X18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆Y18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000
∆O18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000

4.4.4 Attack Complexity of 18-Round Attack

The time, data and memory complexity of 18-round attack are shown as follows:

• Time Complexity: 266

– Step1: Encrypting nibbles X1[6] requires 2 × 247 × 24 × 1
16 ×

1
18 ≈ 243

encryptions.

– Step2: This step is similar to Step1 and it requires 2×243×24×24× 1
16×

1
18 ≈

243 encryptions.

– Step3: This step is also similar to Step1 and it requires 2× 239 × 28 × 24 ×

1
16 ×

1
18 ≈ 243 encryptions.

– Step4: Decrypting the nibbles Y18[1], Y18[2], Y18[3], Y18[5], Y18[6], Y18[7],

Y18[10], Y18[11], Y18[14], Y18[15] requires 2×219×248×24× 1
16 ×

1
18 ≈ 262

encryptions.

– Step5: Decrypting remaining pairs requires 2 × 219 × 252 × 1
4 ×

1
18 ≈ 266

encryptions.

– Step6: This step is also similar to Step1 and it requires 2× 27 × 252 × 24 ×

1
16 ×

1
18 ≈ 255 encryptions.
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– Step7: This step is also similar to Step1 and it requires 2× 23 × 256 × 24 ×

1
16 ×

1
18 ≈ 255 encryptions.

– Step8: This step is also similar to Step1 and it requires 2×2−1×260×24×

1
16 ×

1
18 ≈ 255 encryptions.

– Step9: 264 encryptions.

• Data Complexity: 260

• Memory Complexity: 264

4.4.5 Our Correction

In the provided attack [79] authors claim that they capture 64 bits of round keys with

266 18-round Pride encryptions. 40-bit round key is captured in the key addition layer

of round 18, 12-bit round key is captured in the key addition layer of round 17 and

12-bit round key is captured in the key addition layer of the first round. And they also

claim that, remaining 64-bit key is captured via exhaustive search with time complex-

ity of 264 encryptions.

However, we have corrected this attack in [70] as authors fail to discover differential

factors that exist in the first and 17th round which are shown bold in Table 4.9. This

shows that, it is not possible to capture the 6 bits of the key in the first part of the

attack, actually, only 58 bits can be captured not 64 bits which require 260 18-round

Pride encryptions. This also affects the exhaustive search part of the attack in that,

the correct time complexity is 270 18-round Pride encryptions not 266.
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Table 4.9: 18-round differential attack of [79]. Differences µ = 8 which have differ-
ential factors λ = 8 are shown in bold.

Differences in bits
Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

∆I1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆X1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Y1 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Z1 0000 0100 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W1 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I2 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

15-Round Differential ∆2

∆X17 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Y17 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Z17 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00
∆W17 0?00 0?00 0?00 0?00 00?0 ???0 0??0 0??0 ???0 00?0 0??0 0??0 0?00 0?00 0?00 0?00
∆I18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆X18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆Y18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000
∆O18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000
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4.5 19 Round Differential Attack on PRIDE

The 19-round attack [76] of PRIDE is based on a 15-round differential path that is ob-

tained by iterating 1-round differential 15 times. Authors have used automatic search

methods [60], [61] to find differential characteristics and they found 24 1-round it-

erative differential characteristics and 32 2-round iterative differential characteristics.

So that, they have used one of the 1-round iterative differential characteristics to con-

struct a 15-round differential path with the probability of 2−60. Finally, they have

attacked 19-round of PRIDE by adding two rounds to the bottom and two rounds to

the top of 15-round differential path. The data, time and memory complexity of the

attack is 262, 263 and 271 respectively.

4.5.1 Differential Characteristic of 19-Round Attack

Authors have found 24 different 1-round iterative differential characteristic which is

shown in Table 4.10. They have used the 4th differential characteristic in Table 4.10

to obtain a 15-round differential characteristics with the probability of 2−60.

Table 4.10: 1-Round Iterative Characteristics of Pride

1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
2 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
3 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000
4 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
5 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000
6 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000
7 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
8 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000
9 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000
10 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000
11 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000
12 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
13 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000
14 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000
15 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000
16 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000
17 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000
18 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000
19 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000
20 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000
21 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000
22 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000
23 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000
24 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000
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Authors have attacked 19-round by adding two rounds to the top and two rounds to

the bottom of a 15-round characteristics as it is shown in Table 4.11.

Table 4.11: 19-Round Attack on Pride

∆I1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
∆X1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
∆Y1 ?00? 00?0 00?0 0000 ?00? 0000 00?0 0000 ?0?? 00?0 0000 0000 ?00? 00?0 0000 0000
∆Z1 ?000 ?000 ?000 ?000 0000 0000 0000 0000 0??0 00?0 ??00 0?00 ?000 ?000 ?000 ?000
∆W1 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000
∆I2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆X2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆Y2 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Z2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I3 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

∆X18 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Y18 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆Z18 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000
∆W18 ?000 ?000 ?000 ?000 0000 0000 0000 0000 ??00 000? ??00 0000 ?000 ?000 ?000 ?000
∆I19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000
∆X19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000
∆Y19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000
∆O19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000

4.5.2 Data Collection Phase

In the data collection phase 225,65 structures are chosen in that for each plaintext nib-

bles 4, 6, 8, 11, 12, 15, 16 are fixed and nibbles 1, 2, 3, 5, 7, 9, 10, 13, 14 are traversed.

In other words, for each plaintext pairs nibbles 1, 2, 3, 5, 7, 9, 10, 13, 14 are chosen dif-

ferent and the other nibbles are kept the same. For these nibbles there are 271 plaintext

and ciphertext pairs. So that, the total number of pairs can be calculated as 271+25,65.

For the chosen plaintexts at the end of 19-round, ciphertext difference should satisfy

that the difference of nibbles 3, 4, 6, 7, 11, 12, 14, 15, 16 must be zero. There are 109

situations that satisfy this condition and thus, only 260,65 pairs remain.
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4.5.3 Key Recovery Phase

In this attack, 68 bits of the key are guessed as they are shown in Table 4.13. At the

first round key bits of X1[1], X1[2], X1[3], X1[5], X1[7], X1[9], X1[10], X1[13], X1[14]

and at the last round Y19[1], Y19[2], Y19[5], Y19[8], Y19[9], Y19[10], Y19[13] and at the

18th round Y18[5], Y18[9] and at the 2nd round X2[5], X2[9] are guessed.

Authors have chosen one of the 109 situations presented below to determine the right

number of pairs to attack. Because, 13th nibble of ∆X19 is chosen to be 0000, 260,65 ×

2−4 = 256,65 pairs remain.

Table 4.12: Chosen pair of 19-Round Attack

∆Y1 1000 0010 0010 0000 0001 0000 0010 0000 1011 0010 0000 0000 1001 0010 0000 0000
∆X19 0010 0010 0000 0000 1000 0000 0000 0010 1000 0010 0000 0000 0000 0000 0000 0000

By investigating the Difference Distribution Table of PRIDE on Table 4.2, authors

sieved the corresponding pairs in Table 4.12 with the proability of 4/16, 6/16, 6/16,

4/16, 6/16, 6/16, 6/16, 8/16, 6/16 for ∆Y1 and 6/16, 6/16, 4/16, 6/16, 4/16, 6/16 for

∆X19. Therefore, 256,65 × (4/16)4 × (6/16)10 × 8/16 ≈ 233.50 pairs remain.

Table 4.13: Guessed Key Bits in 19-Round Attack on Pride

∆I1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
∆X1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
∆Y1 ?00? 00?0 00?0 0000 ?00? 0000 00?0 0000 ?0?? 00?0 0000 0000 ?00? 00?0 0000 0000
∆Z1 ?000 ?000 ?000 ?000 0000 0000 0000 0000 0??0 00?0 ??00 0?00 ?000 ?000 ?000 ?000
∆W1 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000
∆I2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆X2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆Y2 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Z2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I3 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

15-Round Differential

∆X18 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Y18 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆Z18 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000
∆W18 ?000 ?000 ?000 ?000 0000 0000 0000 0000 ??00 000? ??00 0000 ?000 ?000 ?000 ?000
∆I19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000
∆X19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000
∆Y19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000
∆O19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000
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4.5.4 Attack Complexity of 19-Round Attack

The time, data and memory complexity of 19-round attack are shown as follows:

• Time Complexity: 263

– Step1: Considering the situation in Table 4.12, encrypt the nibbles X1[1]

and distinguish the pairs whose output difference ∆Y1[1] is equal to 1000

and store the values in a Table. The time complexity for this step is

233,50 × 1/16 × 1/19 ≈ 225,25

– Step2: Considering again the same situation in Table 4.12, encrypt the

nibbles X1[13] and distinguish the pairs whose output difference ∆Y1[13]

is equal to 1001 and store the values in the Table. The time complexity

for this step is

233,50 × 4 × 1/16 × 1/19 ≈ 227,25

– Step3: Considering again the same situation in Table 4.12, by investigat-

ing the Difference Distribution Table of PRIDE 4.2 distinguish the candi-

date pairs for ∆X1[2], ∆X1[3], ∆X1[5], ∆X1[7], ∆X1[9], ∆X1[10],∆X1[14]

and ∆Y19[1], ∆Y19[2], ∆Y19[5], ∆Y19[8], ∆Y19[9], ∆Y19[10]. These pairs

again are stored in the same table. The time complexity for this step is

254,65 × 1/16 × 1/19 ≈ 246,40

– Step4: For ∆X2 and ∆Y18 all the pairs determined in the previous steps

looked up four times.

– Step5: Previous steps are repeated for 109 other situations and candidate

table contains 256,65 × 28 × 3 × 27 ≈ 270,99 pairs for 68 bits of the key. The

most frequently appearing pair in the table is the right key and the time

complexity or this step is

256,65 × 28 × 3 × 27 × 1/16 × 1/19 ≈ 262,74

– Step6: For the rest 60 bits of the key are guessed with the exhaustive

search with 260 encryptions.

• Data Complexity: 262

• Memory Complexity: 271
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4.5.5 Our Correction

19-round attack captures 68 bits of the round keys with time complexity of 263 en-

cryptions and remaining 60 bits are captured via exhaustive search.

However, we have corrected this attack in [70] as authors fail to discover the differ-

ential factors existing in the 2nd and 18th round that can be seen in Table 4.14. This

shows that 4 bits of the round keys are not actually captured. Therefore, only 64 bits

of the keys are captured which requires 259 encryptions and remaining 64 bits are

found via exhaustive search. Thus, time complexity is 264 not 263.

Table 4.14: 19-round differential attack of [76]. Differences µ = 8 which have differ-
ential factors λ = 8 are shown in bold.

Differences in bits
Rounds x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

∆I1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
∆X1 ???? ???? ???? 0000 ???? 0000 ???? 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
∆Y1 ?00? 00?0 00?0 0000 ?00? 0000 00?0 0000 ?0?? 00?0 0000 0000 ?00? 00?0 0000 0000
∆Z1 ?000 ?000 ?000 ?000 0000 0000 0000 0000 0??0 00?0 ??00 0?00 ?000 ?000 ?000 ?000
∆W1 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000
∆I2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆X2 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆Y2 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Z2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W2 0000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I3 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

15-Round Differential

∆X18 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Y18 0000 0000 0000 0000 ?0?? 0000 0000 0000 ?0?? 0000 0000 0000 0000 0000 0000 0000
∆Z18 0000 ?000 ?000 0000 0000 0000 0000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000
∆W18 ?000 ?000 ?000 ?000 0000 0000 0000 0000 ??00 000? ??00 0000 ?000 ?000 ?000 ?000
∆I19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000
∆X19 ?0?? 00?0 0000 0000 ?00? 0000 0000 00?0 ?0?? 00?0 0000 0000 ?00? 0000 0000 0000
∆Y19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000
∆O19 ???? ???? 0000 0000 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? 0000 0000 0000

Besides, we have noticed that authors have used undisturbed bits of PRIDE Sbox as

input difference 1000 yields to output difference ?0?? which can be seen in Table

4.14 ∆X2[5], ∆X2[9], ∆Y18[5] and ∆Y18[9]. By this property, this attack has been

improved to cover 19-round. However, key bits corresponding to undisturbed bits

with 0 difference may also need to be captured. This can further increase the time

complexity value. Although, we have mentioned the effects of differential factors

in this correction, final time complexity of this attack may need further correction

because of the need for guessing these key bits corresponding to undisturbed bits.
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4.6 20 Round Differential Attack on PRIDE

In 20-Round differential attack [21], authors have used 18-round and 17-round related-

key differential characteristics to attack 20-round of PRIDE. They have also improved

18-round attack by using multiple related-key differentials. The details and the com-

plexity values of these attacks are provided in Table 4.15.

Table 4.15: 20-round attack details of PRIDE

Differential Characteristics Attacked Rounds Data Complexity Time Complexity
18-Round Related-key 20 239 260

18-Round Multiple Related-key 20 241,4 244

17-Round Related-key 20 234 253,7

4.6.1 Related-Key Differential Characteristic of 20-Round Attack

Authors provided 17-round and 18-round related-key differential characteristics by

using 2-round iterative related-key differential characteristics. They have found 8 dif-

ferent 2-round iterative related-key differential characteristic and each of them can be

used to construct 17-round or 18-round differential path to attack full PRIDE. One of

the 2-round iterative related-key differential characteristics that can be observed when

∆k1 = 8800000000000000 is provided in Table 4.16 and it has the probability of 2−4.

(8000800080000000)→1r (8000800000008000)→1r (8000800080000000)
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Table 4.16: 2-round iterative related-key differential characteristics

∆Ir 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Xr 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Yr 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Zr 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Wr 1000 1000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Ir+1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000
∆Xr+1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000
∆Yr+1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000
∆Zr+1 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Wr+1 1000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Ir+2 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

For 4 different ∆k1 values authors have found 8 different 2-round iterative related key

differential characteristics which are shown in Table 4.17.

Table 4.17: 8 2-round iterative characteristics

2-round characteristics ∆P−1(∆ fr(k1)) ∆ fr(k1)
8000800080000000→2r 8000800080000000 8000 8000 0000 0000 8800 0000 0000 0000
0800080008000000→2r 0800080008000000 0800 0800 0000 0000 4400 0000 0000 0000
0080008000800000→2r 0080008000800000 0080 0080 0000 0000 2200 0000 0000 0000
0008000800080000→2r 0008000800080000 0008 0008 0000 0000 1100 0000 0000 0000
8000800000000000→2r 8000800000000000 8000 8000 0000 0000 8800 0000 0000 0000
0800080000000000→2r 0800080000000000 0800 0800 0000 0000 4400 0000 0000 0000
0080008000000000→2r 0080008000000000 0080 0080 0000 0000 2200 0000 0000 0000
0008000800000000→2r 0008000800000000 0008 0008 0000 0000 1100 0000 0000 0000

4.6.2 Key Recovery Attack By Using 18-Round Path

Authors have used the following 2-round iterative characteristic to obtain 18-round

differential characteristic with propability of 2−36.

(8000800080000000→2r 8000800080000000)

Authors have added 2-round after the 18-round characteristics to attack full PRIDE

with 239 chosen plaintexts and 260 encryptions. Full PRIDE attack is shown in Table

4.18.

63



Table 4.18: Full PRIDE attack Based on 18-Round Differential

∆I19 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆X19 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Y19 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000
∆Z19 0000 0000 ?000 0000 0000 0000 ?000 0000 0000 0000 ?000 0000 0000 0000 ?000 0000
∆W19 ?000 ?000 0000 ?000 0000 0?00 0000 ??00 0?00 0000 ??00 0000 ?000 ?000 0000 ?000
∆I20 ?00? 00?0 0000 0000 ?00? 0?00 0000 0000 00?0 00?0 0000 0000 ??0? 0?00 0000 0000

∆X20 ?00? 00?0 0000 0000 ?00? 0?00 0000 0000 00?0 00?0 0000 0000 ??0? 0?00 0000 0000
∆Y20 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
⊕∆k0 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000

∆C ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00

This attack requires 239 chosen plaintexts and 260 encryptions and the detailed attack

steps are explained below:

• Step1: Decrypt the nibbles Y20[1,2,5,6,9,10,13,14] and guess the the related

key bits partially by comparing the results if the difference of the decrypted

nibbles of ∆X20[1,2,5,6,9,10,13,14] equals to *00*, 00*0, *00*, 00*0, *00*,

00*0, **0*, 0*00 and the probability is 2−2, 2−3, 2−2, 2−3, 2−3, 2−3, 2−1, and 2−3

respectively. This step requires 2 × 26 × 232 × 1/20 = 235 encryptions.

• Step2: Exhaustively guess key bits of Y20[3,4,7,8,11,12,15,16]. And guess

Y19[9] by checking if ∆X19[9] is 1000. This step requires 2 × 232 × 2−24 × 236×

1/20 = 241 encryptions.

• Step3: Exhaustively guess the rest 60-bit keys with 260 encryptions.

Therefore this attacks requires 260 encryptions.

This attack is improved by using multiple characteristics. This time, attack requires

241,4 chosen plaintexts and 244 encryptions.

4.6.3 Key-Recovery Attack By Using 17-Round Path

In this attack, authors have used another 2-round iterative differential characteristic

(8000800000000000 →2r 8000800000000000) to obtain 17-round differential char-

acteristic with probability of 2−32 with ∆k1 = 880000000000000. 17-round differen-

tial characteristic is shown as follows:
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8000800000000000→16r 8000800000000000→1r 0000000000000000

Authors have added 1-round before the characteristics and 2-round after the charac-

teristics to attack the full PRIDE. This attack is shown in Table 4.19.

Table 4.19: Full PRIDE attack based on 17-round differential

∆I1 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆X1 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Y1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Z1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I2 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆I19 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆X19 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Y19 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Z19 ?000 ?000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000 0000
∆W19 ?000 ?000 ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?000 ?000 ?000 ?000
∆I20 ???? 0000 0000 0??0 ???? 0000 0000 0??0 ???? 0000 0000 0000 ???? 0000 0000 0000

∆X20 ???? 0000 0000 0??0 ???? 0000 0000 0??0 ???? 0000 0000 0000 ???? 0000 0000 0000
∆Y20 ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 ???? 0000 0000 0000
⊕∆k0 ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 ???? 0000 0000 0000

∆C ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000

This attack requires 234 chosen plaintexts and 253,7 encryptions and the detailed attack

steps are shown below:

• Step1: Guess 8-bit keys by encrypting X1[1,5] and checking results if ∆Y1[1,5]

equal to 1000. This step requires 2 × 2 × 28 × 1/20 = 25,7 encryptions.

• Step2: Guess the key bits of Y20[1, 4, 5, 8, 9, 13] and checking results if ∆X20[1,

4, 5, 8, 9, 13] equal to ****, 0**0, ****, 0**0, ****, ****. The probability is

1, 2−2, 1, 2−2, 1, and 1 respectively. This step requires 28 × 2 × 2−7 × 224 × 1/20

= 221,7 encryptions.

• Step3: Guess 40 bits of the key corresponding to Y20[2, 3, 6, 7, 10, 11, 12, 14,

15, 16] and partially decrypt them. Guess 8-bit keys Y19[1, 5] by decrypting

and checking results if ∆X19[1, 5] equal to 1000. This step requires 232 × 2 ×

2−23 × 248 × 1/20 = 253,7 encryptions.

• Step4: Other 48-bit keys are guessed by exhaustive search and this step needs

248 encryptions.

Therefore this attacks requires 253,7 encryptions.
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4.6.4 Our Correction

In Section 4.6.2, authors claim to capture 68 bits of the key by using an 18-round

path with 241 encryptions and perform 260 encryptions to capture the remaining bits.

However, we have corrected this attack in [70] as authors fail to discover existing

single differential factor shown in Table 4.20. As a result, actual time complexity of

this attack is 261 not 260.

Table 4.20: Full PRIDE attack Based on 18-Round Differential. Differences µ = 8
which have differential factors λ = 8 are shown in bold.

∆I19 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆X19 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
∆Y19 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000
∆Z19 0000 0000 ?000 0000 0000 0000 ?000 0000 0000 0000 ?000 0000 0000 0000 ?000 0000
∆W19 ?000 ?000 0000 ?000 0000 0?00 0000 ??00 0?00 0000 ??00 0000 ?000 ?000 0000 ?000
∆I20 ?00? 00?0 0000 0000 ?00? 0?00 0000 0000 00?0 00?0 0000 0000 ??0? 0?00 0000 0000

∆X20 ?00? 00?0 0000 0000 ?00? 0?00 0000 0000 00?0 00?0 0000 0000 ??0? 0?00 0000 0000
∆Y20 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000
⊕∆k0 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000

∆C ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00 ??00

In the second attack presented in Section 4.6.3, one round is added to the top and two

rounds are added to the bottom of the 17-round related-key differential characteristics

that are also based on the 2-round iterative characteristics ∆5 with probability of 2−32

where

∆5: 8880000000000000→ 8000800080000000→ 0000000000000000

Authors claim to capture 80 bits of the key by using a 17-round path with 253.7 en-

cryptions and perform 248 encryptions to capture the remaining bits. However, we

have corrected this attack also in [70] as authors fail to discover four differential fac-

tors which are shown in Table 4.21. This shows that 4 bits of the round keys are not

actually captured. Therefore, only 76 bits of the keys are captured which requires

249.7 encryptions and remaining 52 bits are found via exhaustive search. Therefore,

time complexity for this attack is 252 + 249,7 encryptions not 253,7 + 248. As a result,

by this correction we have shown that this attack is approximately twice faster then it

is claimed.
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Moreover, since PRIDE [3] is not designed to resist the related key attacks, these 20-

round related-key attacks do not contradict the security claims of the designers.

Table 4.21: Full PRIDE attack Based on 17-Round Differential. Differences µ = 8
which have differential factors λ = 8 are shown in bold.

Differences in bits
Rounds x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

∆I1 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆X1 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Y1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Z1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆I19 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆X19 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Y19 ???? 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆Z19 ?000 ?000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000 0000 ?000 ?000 0000 0000
∆W19 ?000 ?000 ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?000 ?000 ?000 ?000
∆I20 ???? 0000 0000 0??0 ???? 0000 0000 0??0 ???? 0000 0000 0000 ???? 0000 0000 0000

∆X20 ???? 0000 0000 0??0 ???? 0000 0000 0??0 ???? 0000 0000 0000 ???? 0000 0000 0000
∆Y20 ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 ???? 0000 0000 0000
⊕∆k0 ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 ???? 0000 0000 0000

∆C ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000 ?00? ?00? ?000 ?000
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CHAPTER 5

CONCLUSION

5.1 Conclusion

In the last few decades, security of computing environment was mainly provided by

Cryptographic applications like block ciphers. Cryptography is implemented on al-

most every security intensive application. Besides, in recent years with the emergence

of IoT technologies, several lightweight block ciphers that are optimized for limited-

source devices are published. However, in order to be sure about the security of these

lightweight block ciphers, further studies should be done. In fact, if a block cipher

does not have a security vulnerability, capturing the secret key is the only way to ac-

cess the encrypted information. Although, Exhaustive Search or Table Attacks are

the easiest attack methods that cryptanalysts can use to capture the secret key, block

ciphers are designed today to have enough key length that can not be guessed with

the today’s computing capabilities. Therefore, different cryptanalysis techniques have

evolved over time.

Differential cryptanalysis is one of the most used cryptanalysis technique today, to

analyze the block ciphers. It is based on the relations of input differences and the

output differences of block ciphers. In order to have a differential attack, cryptanalysts

first try to discover a differential characteristic for a block cipher. If, after r rounds,

∆I input difference causes ∆O output difference with probability higher than it is for a

random permutation, it is called as differential characteristic. In a differential attack,

some rounds are added to before or after of differential characteristic. After that, every

possible activated round key bits are tried on plaintext pairs expecting to satisfy the
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differential characteristic. It is expected that correct key must satisfy the differential

characteristic more times than any other key, which makes possible to capture some

parts of the secret key.

Differential Factors that is a recent study discovered by Tezcan showed that it may not

be possible to fully capture the attacked round key bits when performing a differential

attack. If there exists a differential factor in a block cipher, for any plaintext/ciphertext

pair when a key k is tried and S-box output difference µ is obtained from S-box

substitution, k ⊕ λ also produces the same result which is µ again. This situation

can also be observed from the counter values of candidate keys in that counter value

of k and counter value of k ⊕ λ become equal. This means that, the correct candidate

key containing k is indistinguishable from an incorrect candidate key containing k⊕λ.

As a result, during key guess step it may not be possible to discover the key bits where

differential factors exist. In this case, the advantage of the cryptanalyst is reduced by

1 bit and the time complexity of this key guess step is halved. Therefore, these key

bits must be discovered with the exhaustive search.

In this thesis, we have explained the concepts of Differential Cryptanalysis, Differ-

ential Factors and Undisturbed Bits. Furthermore, We have also investigated several

lightweight block ciphers for the existence of differential factors and presented dif-

ferential factors and undisturbed bits of these block ciphers. In our research we have

also seen that, most of the differential attacks towards block ciphers did not consider

differential factors which directly affects the time complexity of these attacks. After

that, by following these findings, we have investigated PRIDE block cipher which

has very good performance and studied differential attacks towards it in detail. We

have investigated 18-round, 19-round and 20-round differential attacks of PRIDE and

presented our findings in this study. In the mean time, we have noticed that in 18-

round, 19-round and 20-round attacks, authors did not take into account differential

factors that exist in PRIDE block cipher. As a result, we have provided some correc-

tions for these attacks by considering differential factors. Finally, we have presented

the correct time complexity values for the 18-round, 19-round and 20-round attack of

PRIDE which are 270, 264 and 248 instead of 266, 263 and 252 as authors claimed.

We have also published some parts of our research in papers [70] and [71].
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