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Assoc. Prof. Dr. Hande TOFFOLI
Physics Department, METU

Prof. Dr. Gürkan KARAKAŞ
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ABSTRACT

COVALENT AND NON-COVALENT FUNCTIONALIZATION OF GRAPHENE
FOR APPLICATION IN CATALYSIS AND DEVICE TECHNOLOGY: A FIRST

PRINCIPLES COMPUTATIONAL STUDY

AKAY, TUĞÇE İRFAN

Ph.D., Department of Micro and Nanotechnology

Supervisor : Assoc. Prof. Dr. Hande TOFFOLI

Co-Supervisor : Assoc. Prof. Dr. Burcu AKATA KURÇ

June 2017, 135 pages

In the past few decades, nanomaterials have received increasing attention in various

applications such as drug delivery, sensors, hydrogen storage and solar cells. This

thesis focuses on the theoretical exploration of pristine and defective graphene in

order to highlight the functionalization potential with the use of a wide variety of

molecules such as benzene (C6H6), toluene (C7H8), fluorobenzene (C6H5F), ben-

zonitrile (C7H5N) , benzoic acid (C7H6O2), and boron (B) atom. The structures as

well as electronic properties of these graphene based nano structures are investigated

in detail using first-principle calculations using planewave pseudopotential method

based on density functional theory (DFT).

In order to understand the effect of different van der Waals (vdW) dispersion forces

on structural and electronic properties, the adsorption of C6H6 and C7H8 on pris-

tine and defective graphene are investigated with three different exchange-correlation

functionals namely vdW-DF, vdW-DF2-C09 and Grimme-D2. This study reveals that
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the vdW-DF2-C09 exchange-correlation protocol for the vdW interactions produces

the closest agreement with literature. Furthermore, the adsorption of C6H6 and C7H8

is investigated on bilayer graphene to understand the effects of number of layers on

adsorption characteristics. This study reveals that the presence of the second layer

increases the adsorption energy by approximately 70 meV for both molecules.

Following the exploration of the interaction of pristine graphene and its derivatives

with C6H6 and C7H8, boron (B) is introduced in the graphene network with mono

and divacancy defect to controllablly engineer the electronic properties of graphene.

A systematic study for the magnetization characteristics is demonstrated where the

resulting magnetization of B-doped vacancy-defected graphene (BVG) is 0.9 µB per

cell while it is 0 µB per cell for B-doped divacancy-defected graphene (BDG). For

the electronic properties, we show the role of B concentration and position on charge

transfer and band structure. The band gap opening increases with the increased con-

centration of B while graphene sheet becomes p-doped with B as a dopant.

Finally, we focus on organic adsorbates for additional control of the electronic prop-

erties of BVG. C6H6, C7H8, C6H5F, C7H5N, and C7H6O2 are studied with different

adsorption geometries. C6H5F and C7H6O2 are found to adsorb through weak vdW

interactions, C7H5N molecules are observed to form strong covalent bonds with the

atoms surrounding the defect, and in particular the B atoms. Different bond formation

characteristics are observed resulting in phenyl (C6H5) and benzaldehyde (C7H6O)

formation. The charge transfer analysis indicate the fact that organic adsorbates do-

nate electron resulting in positively charged species at the end of calculations.

Keywords: Graphene, Density Functional Theory, Benzene, Toluene, Boron, Fluo-

robenzene, Benzonitrile, Benzoic Acid
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ÖZ

KATALİZ VE CİHAZ TEKNOLOJİSİ UYGULAMALARI İÇİN GRAFENİN
KOVALENT VE KOVALENT OLMAYAN ŞEKİLDE İŞLEVSELLEŞTİRİLMESİ:

İLK-İLKELER HESAPLAMA ÇALIŞMASI

AKAY, TUĞÇE İRFAN

Doktora, Mikro ve Nanoteknoloji Bölümü

Tez Yöneticisi : Doç. Dr. Hande TOFFOLI

Ortak Tez Yöneticisi : Doç. Dr. Burcu AKATA KURÇ

Haziran 2017 , 135 sayfa

Son birkaç on yılda, nanomalzemeler ilaç salınımı, sensörler, hidrojen depolama ve

güneş pilleri gibi çeşitli uygulamalarda artan bir ilgi görmektedir. Bu tez, benzen

(C6H6), toluen (C7H8), florobenzen (C6H5F), benzonitril (C7H5N) , benzoik asit (C7-

H6O2), ve boron (B) atomu gibi çok çeşitli moleküllerin kullanımı ile işlevselleştirme

potansiyelini vurgulamak için bozulmamış ve kusurlu grafenin teorik araştırılması

üzerine odaklanmaktadır. Grafene dayalı nano yapıların yapıları ve elektronik özel-

likleri, yoğunluk fonksiyonel teorisine (YFT) dayalı düzlem dalga sanki potansiyel

metodu kullanılarak ilk-ilkeler hesaplamaları kullanılarak detaylı olarak incelenmiş-

tir.

Farklı van der Waals (vdW) dağılma kuvvetlerinin yapısal ve elektronik özelliklere et-

kisini anlamak için, C6H6 ve C7H8’in bozulmamış ve kusurlu grafene adsorpsiyonu

vdW-DF, vdW-DF2-C09 ve Grimme-D2 olmak üzere üç farklı değişim-korelasyon
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fonksiyonu ile araştırılmıştır. Bu çalışma, vdW etkileşimleri için vdW-DF2-C09 deği-

şim-korelasyon protokolünün literatür ile en yakın sonucu ürettiğini ortaya koymak-

tadır. Ayrıca, tabaka sayılarının adsorpsiyon karakteristiğine etkilerini anlamak için

iki katmanlı grafen üzerinde C6H6 ve C7H8’lerin adsorpsiyonu araştırılmıştır. Bu ça-

lışma, ikinci katmanın varlığının, adsorpsiyon enerjisini her iki molekül için de yak-

laşık olarak 70 meV arttırdığını ortaya koymaktadır.

Bozulmamış grafen ve türevlerinin, C6H6 ve C7H8 ile etkileşiminin araştırılmasını ta-

kiben, grafenin elektronik özelliklerini kontrol edebilmek için grafen ağına, tek ve çift

boşluk kusuru ile birlikte boron (B) verilir. B-katkılı ve tek boşluk kusurlu grafenin

(BVG) sonuçlanan manyetizasyonunun hücre başına 0.9 µB iken B-katkılı çift boşluk

kusurlu grafen (BDG) için bu değerin hücre başına 0 µB olarak hesaplandığı manyeti-

zasyon özellikleri için sistematik bir çalışma gösterilmiştir. Elektronik özellikler için,

B konsantrasyonunun ve konumunun yük aktarımı ve bant yapısı üzerindeki etkile-

rini gösteriyoruz. Bant aralığı, artmış B konsantrasyonuyla birlikte artarken, grafen

p-katkılı hale gelir.

Son olarak, BVG’nin elektronik özelliklerinin daha ileri kontrolü için organik adsor-

bantlara odaklanılmıştır. C6H6, C7H8, C6H5F, C7H5N, ve C7H6O2 farklı adsorpsiyon

geometrileri ile incelenmiştir. C6H5F ve C7H6O2’lerin zayıf vdW etkileşimleri vasıta-

sıyla adsorbe edildiği, C7H5N moleküllerinin ise kusuru çevreleyen atomlar ve özel-

likle B atomları ile kuvvetli kovalent bağlar oluşturduğu gözlenmiştir. Fenil (C6H5)

ve benzaldehit (C7H6O) oluşumuna neden olan farklı bağ oluşum özellikleri gözlem-

lenmiştir. Yük transferi analizi, hesaplamaların sonunda pozitif yüklü türler oluşturan

organik adsorbatların elektron bağışı yaptığını göstermektedir.

Anahtar Kelimeler: Grafen, Yoğunluk Fonksiyoneli Teorisi, Benzen, Toluen, Boron,

Florobenzen, Benzonitril, Benzoik Asit
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CHAPTER 1

INTRODUCTION

In the past few decades, nanomaterials have received increasing attention with the de-

velopment of nanotechnology. They display unique properties when compared with

their bulk counterparts. These properties have opened up numerous possibilities of

using nanomaterials in many applications such as drug delivery [1], sensors [2], hy-

drogen storage [3, 4] and solar cells [5].

Materials at the nanoscale exhibit properties that are completely different from the

macroscopic scale. As the system size approaches the nanoscale, many special and

useful features of nanomaterials emerge. Carbon nanotubes [6], nanowires [7], graphe-

ne [8] and quantum dots [9] are some of the most commonly investigated nanoscale

materials in the literature displaying a much wider range of physical, mechanical,

electrical and magnetic properties compared with their bulk forms. The electrical [10]

and thermal [11] resistances of nanoscale materials go down to very low values while

the magnetization [12,13] may emerge despite the fact that bulk form of such materi-

als does not exhibit magnetic properties. Small structural and compositional changes

can lead to large variations in electronic and optical properties of the nanomaterials.

This large selection of properties enables the fabrication of devices tailored specif-

ically to the goals of each application. Since the properties of a specific material

can not be extrapolated by simply scaling down the bulk material scale of that mate-

rial, experimental work supported by an atomistic scale description of such systems

becomes crucially important in materials design.

In this thesis, we focus on pristine and defective graphene, highlighting potential for

functionalization with the use of a wide variety of molecules. This chapter provides
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an overview of the properties of graphene and its extraordinary properties.

1.1 Graphene

Since carbon can form various organic compounds with other elements, in addition

to the capability of forming a variety of allotropes, it receives significant attention in

the scientific community [14]. Two of its allotropes, diamond and graphite, have been

known since antiquity. A recent allotrope, synthesized successfully for the first time

in 2004 [15], is the two-dimensional graphene.

Graphite is a three dimensional layered hexagonal lattice of carbon atoms. A sin-

gle layer of graphite forms a two dimensional material namely graphene. In the

broader sense, graphene is a single layer of carbon atoms bonded in the form of

two-dimensional hexagonal sp2 bonds [15, 16]. Even if it was theoretically proved

that a free ideal two-dimensional film cannot be obtained due to instability with re-

spect to folding or twisting [17, 18], graphene is now synthesized routinely in many

labs [15]. In graphite, each carbon atom forms a two-dimensional structure by bond-

ing covalently with three neighboring carbon atoms. Each layer is then connected to

the neighboring layers via van der Waals (vdW) forces to form graphite. Since the

vdW bond strength is much weaker than the covalent bond, graphite can be easily

separated into its constituent layers. The distance between two adjacent layers (3.35

Å) is much larger than the distance between two carbon atoms (C-C bond length)

which is 1.42 Å [19, 20].

The unit cell and the Brillouin zone (BZ) of graphene are given in Figure 1.1. ~a1 and

~a2 are the lattice vectors in real space while~b1 and~b2 are reciprocal lattice vectors.

The real space unit vectors~a1 and~a2 of the hexagonal lattice are expressed as:

~a1 =

(√
3

2
a,

a
2

)
, ~a2 =

(√
3

2
a,
−a
2

)
(1.1)

where a is 2.46 Å(1.42 x
√

3) which is the lattice constant of graphene and equal to

|~a1| and |~a2|.
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Figure 1.1: The unit cell and the BZ of graphene.

The reciprocal lattice vectors~b1 and~b2 of the reciprocal lattice are expressed as:

~b1 =

(
2π√
3a

,
2π

a

)
, ~b2 =

(
2π√
3a

,
−2π

a

)
(1.2)

The first BZ is the shaded hexagon shown in Figure 1.1, and the highest symmetry

points designated by Γ, K and M are the center, the corner and the center of the edge,

respectively. The symmetry points are expressed as;

Γ = (0,0) , K =

(
2π√
3a

,
2π

3a

)
,M =

(
2π√
3a

,0
)

(1.3)

As shown in Figure 1.1, there are two carbon atoms per unit cell. Each carbon atom

has four valence electrons three of which are utilized to make chemical bonds with the

other three carbon atoms on the graphene plane [21] which are referred to as sigma

(σ ) bonds. σ bonds are responsible for the robustness of the lattice structure. The

fourth electron is in the 2pz orbital and perpendicular to the surface constituting the

π system.

The two π electrons produce two bands, namely π and π∗, intersecting at six points

in the first BZ, K and K′. As shown in Figure 1.2, these points are called Dirac points,

and the electron dispersion relation is linear in their vicinity.

In many simple calculations, only π energy bands are considered since conduction is

realized via the delocalized π electrons.
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Figure 1.2: The electron dispersion relation of graphene (a) when the Fermi level is
above the Dirac point, (b) when the Fermi level is below the Dirac point.

1.2 Applications Involving Graphene-Based Materials

Graphene can be seen as the building block of carbon materials such as graphite,

carbon nanotubes, fullerenes and a variety of other materials. As such it has become

one of the most intensively studied systems after the mechanical exfoliation (repeated

peeling) of graphite to prepare graphene sheets in 2004 by Novoselov et al. [15]. In

this study, it was shown that very thin graphite sheets (including monolayer graphene)

can be obtained in stable and in high-quality crystal form under normal conditions,

and these structures possess superior electronic properties.

Just six years after 2004, when it was shown to be an isolated and stable structure,

its popularity enjoyed a steady increase in physics and material science, bringing

the 2010 Nobel Prize for Physics. The reason behind this interest is the superior

physical properties of graphene such as high elastic constants [22], mechanical sta-

bility [23, 24], low defect rate [25], very high electron mobility [26], long spin relax-

ation distance and time [27, 28] in addition to spin Hall effect [29, 30]. Additionally,

with superior electronic properties and having at least 10 times more mobility than

that of silicon, graphene seems to be a breakthrough in device technology, sensors,

etc. [31, 32]. Several comprehensive review articles [33–36] show the potential of

graphene and its derivatives.

Graphene has been widely investigated for the applications in drug delivery [1], sen-

sors [2], hydrogen storage and solar cells [5]. For sensor applications, graphene is a
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very sensitive sensor due to single atomic thickness. Unlike similar sensors, graphene

allows recognition of even a single molecule with its high electrical conductivity and

low noise level. Schedin et al. were able to detect the sticking and breaking events

of various gas molecules by using graphene detectors at the micrometer scale [37].

Graphene-based nanoscale devices was already synthesized successfully [38, 39].

Recently, graphene has been used as an alternative nanofiller in the preparation of

nanocomposites having improved mechanical [40], thermal (having thermal conduc-

tivity 25 times that of silicon) [41] and electrical properties [42]. Due to its excellent

electrical conductivity and mechanical flexibility, graphene has great potential of re-

placing metal conductors in electronic devices [43]. Graphene is also considered as

an attractive material for nanoelectromechanical system (NEMS) applications with

properties such as high strength, low mass density and high elastic constants.

One of the most interesting electronic feature of graphene is massless Dirac fermions.

As mentioned previously, the Fermi surface of graphene consists of six points at the

edges of the BZ where the valence and conduction bands meet with linear dispersion.

The dynamics of these particles are similar to the massless fermions in quantum elec-

trodynamics. As a result, it is possible to observe the quantum Hall effect [44] in

graphene at room temperature. Furthermore, the electron and hole densities can be

adjusted up to 1013 cm2, and the charge carrier mobility can exceed 15x103 cm2/Vs

even at room temperature [15, 31, 44].

While monolayer graphene is a semimetal, it was demonstrated that bilayer graphene

can be treated as a variable band-gap semiconductor by applying an external electric

field perpendicular to the structure [45].

Even if graphene has been explored in several investigations for the electronics appli-

cations, it has one very severe limitation as it has no band gap [34, 46, 47]. Since the

band gap governs the operation of devices such as p-n junctions, transistors, photo

diodes and lasers, having no band gap limits the usage of graphene in electronic de-

vices due to the lack of a high on/off ratio [48]. In order to eliminate this limitation,

several methods have been utilized under the umbrella approach of band gap engineer-

ing, including the introduction of defects, application of strain and chemical function-

alization [8]. By tuning the band gap and controlling the location of the Fermi level,
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flexibility is achieved in design and optimization of devices. The electronic properties

of graphene can be changed by shifting the Fermi level relative to the Dirac point by

controlling the carrier type and concentration through electrical [44, 48] or chemical

doping [1, 48].

The functionalization techniques can be divided into three as defect introduction, dop-

ing and molecular adsorption. In the first technique, defects and additional atoms

(adatoms) can be introduced to the network [33, 49, 50]. Point defects such as mono

and divacancies and adatoms locally change the electronic structure and act as func-

tionalization centers [39,49–51]. By breaking down the symmetry of pristine graphene,

point defects may induce magnetism in the graphene sheet [52, 53]. In this thesis, in

addition to the pristine graphene, defective graphene with a single vacancy (VG) and

a divacancy (DG) is considered for adsorption of organic molecules since the vacancy

sites exhibit high reactivity with them [54–56].

In literature, there are several studies regarding the doping of graphene in order to ob-

tain improved electronic properties. Depending upon the dopant type, the Fermi level

can shift downwards or upwards. When compared with the number of valence elec-

trons of C, the electron deficient atoms like boron (B), aluminum (Al), beryllium (Be)

are the atoms causing Fermi level shift downwards (p-type doping) while the electron

rich atoms like nitrogen (N) and alkali metals cause Fermi level shift upwards (n-type

doping) [57–60]. Since the atomic radii of B and N are very close to the atomic radius

of C atom, B and N are the mostly used atoms as dopants with which graphene be-

comes p-type and n-type, respectively [57,61]. Parallel to the result obtained by Chen

et al. [22], it was found that the charge carrier mobility of n-type graphene (n-doped)

is in the range 200-450 cm2/Vs [61] while the charge carrier mobility of undoped

graphene is around 2x105 cm2/Vs [29]. Furthermore, it was observed that band gap

position shifts with respect to the Fermi energy [62] for both B and N doping. In

numerous studies, it has been reported that B and N doping to graphene has a promis-

ing potential for energy storage applications such as lithium ion batteries (LiBs) [58]

and with the altered chemical reactivity properties in the presence of dopant, B and

N doped graphene can be used as bio-sensors [63, 64]. In this thesis, the change of

electronic and magnetic properties as a result of B doping is investigated in Chapter 4.

Additionaly, B-doped vacancy-defected graphene (BVG) is studied as a substrate for

6



molecular adsorption of benzene (C6H6) derivatives on BVG and given in Chapter 5.

The third alternative way of functionalization can be achieved by means of covalently

or noncovalently bonded atomic or molecular species adsorbed on graphene [65–67].

Among them, the adsorption of transition metal atoms [68], the bonding of light atoms

including small gas molecules (H2O, H2, O2, CO, NO2, NO, and NH3) [69], aromatic

and non-aromatic molecules to the graphene surface are among the most commonly

studied. For the adsorption of small molecules, it has been reported that nitrogen

dioxide (NO2) and water (H2O) act as acceptors (p-type doping), while ammonia

(NH3), carbon monoxide (CO), and nitric oxide (NO) act as donors (n-type dop-

ing) [48, 70]. In several studies, it has been observed that graphene can be n-doped

by depositing alkali metal atoms on the surface [38]. For both techniques, it was ob-

served that they were very effective in order to enhance the properties of graphene

and to obtain processable graphene. However, electrical conductivity and surface

area of functionalized graphene obtained from both cases were observed to decrease

when compared with pure graphene [71]. Furthermore, in the presence of charged

impurities, it was reported that carrier mobility of graphene is reduced [22]. As an

example of a noncovalently bonded molecule, tetrafluoro-tetracyanoquinodimethane

(F4-TCNQ) molecule is in the group of non-aromatic molecules with a strong electron

affinity, 5.2 eV [72], and molecular adsorption of F4-TCNQ results in p-type doped

graphene with charge of 0.3 e/molecule being transferred from the highest occupied

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of

graphene [22, 59, 69, 73]. F4-TCNQ, the halogenated adsorbate, is widely used in or-

ganic solar cells as an electron acceptor [74] with decreased carrier mobility because

of the molecular separation of adsorbate and graphene and as the concentration of

adsorbate increases, the Fermi level of graphene shifts towards the Dirac point. In

order to see the effect of vdW interactions to the binding of molecules on graphene

surfaces and since graphene has been observed to be a promising material for DNA

sequencing [75–79], Le et al. [80] studied the physisorption of DNA bases namely

adenine, cytosine, guanine, and thymine on graphene while Cho et al. [81] studied

noncovalent interactions of these DNA bases with naphthalene and graphene. In

DNA related studies, the binding energies of nucleobases on graphene were found

to be 9.31, 8.48, 8.53, 7.30 kcal/mol (404, 368, 370, 317 meV/molecule) for guanine,
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adenine, thymine, and cytosine, respectively while the binding separations were in

the order of 3 Å for all DNA bases [80, 82, 83].

To compare the effect of functionalization techniques on electrical properties of grap-

hene, the covalent functionalization of graphene converts the planar, sp2 hybridiza-

tion into a tetrahedral sp3 resulting in distorted Dirac cone and introducing band

gap while no change is observed in the structure after the noncovalent functional-

ization [84]. Noncovalent interactions basically involve hydrophobic, vdW, and elec-

trostatic forces. VdW interaction between aromatic molecules and graphene is rather

weak (order 50 meV) [85]. As a result, the superior physical properties of graphene

are preserved, while improving its solubility, increasing conductivity or modifying

other properties [29, 57, 61, 71, 86, 87].

The covalent functionalization of graphene is the most studied type of graphene func-

tionalization because of resulting in more significant changes for electrical proper-

ties of graphene than the other techniques [84]. In literature, four different mech-

anisms have been offered to achieve covalent functionalization of graphene [86].

Different kinds of covalent functionalization have been possible with different mod-

ifying agents, dispersion stability in various solvents, dispersibility, and electrical

conductivity [71]. The first mechanism offered is nucleophilic substitution where do-

decyl amine [88], 4-amin-obenzenesulfonic acid [89], polyethylene [90], dopamine

[91] and polyglycerol [92] are the most commonly studied functionalizing molecules

while sulfanilic acid [93] and polystyrene [94] are the functionalizing molecules for

the second mechanism named as electrophilic addition. Amino acids and protein [95]

can functionalize graphene covalently with condensation reaction. The last mech-

anism offered is addition reaction where polyacetylene [96], aryne [97] and alky-

lazides [98] are utilized as functionalizing molecules.

Another way of functionalization is through chemical adsorption of species, which

has potential in applications since it enables graphene to be processed by solvent-

assisted techniques. Chemical functionalization also maintains the properties of grap-

hene by preventing its agglomeration [71]. As a starting material, graphene oxide

(GO) has been used widely for the synthesis of processable graphene. The presence

of additional carbonyl and carboxyl groups located at the edge of the sheets makes
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GO sheets hydrophilic which allows the sheets to disperse in water [99–101].Liu et

al. [102] reported GO functionalization and the product is highly oxygenated resulting

in improved noncovalent vdW interactions and leading to a range of solubility in

water and organic solvents [101, 103–105].

There are various methods used for studying the physical properties of nanomaterials,

and the theoretical methods are so well developed for designing materials with desired

properties. One of the most preferred theoretical methods in calculations is the Den-

sity Functional Theory (DFT) that yields successful results in predetermining several

properties of systems not yet synthesized and giving rise to experimental work. In

this thesis, the structural and electronic properties of graphene based nanomaterials

are investigated by DFT.

Accordingly, research objectives and scopes are defined, along with an outline of a

roadmap for this research.

1.3 Research Objective and Scope

In this thesis, the focus is graphene functionalization by covalent and noncovalent

techniques. With this respect, combination of three functionalization techniques given

in Section 1.2, as defect introducing followed by B-doping and molecular adsorp-

tion, have been utilized in order to have more control on the properties of graphene.

The method of choice is the state-of-the-art computational materials science methods

based on DFT and its generalizations to treat long range vdW interactions.

Our aim in these investigations is to design, develop, and characterize novel materials

and structures that can realize the functionality of conventional electronic devices in

much smaller scales and with superior properties. It is our hope that theoretical and

computational studies proposed in this thesis will support, clarify, and possibly lead

to some experimental studies in graphene device physics.

Our work explores the complex interplay between defects, dopants and adsorption

of organic molecules. As a benchmark of our method, the well-known adsorption

characteristics of C6H6 on pristine graphene are reproduced. To see the effect of
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different vdW corrections and functionals on adsorption geometry, adsorption energy

and band structure, two different vdW functionals are used, namely vdW-DF [106],

vdW-DF2-C09 [107,108] and one vdW correction is used, namely Grimme-D2 [109].

This study reveals that the vdW-DF2-C09 exchange-correlation protocol for the vdW

interactions produces the closest agreement with literature.

Using this protocol, the adsorption of C6H6 and toluene (C7H8) is investigated on

bilayer graphene to understand the effects of number of layers on adsorption charac-

teristics. This study reveals an interesting fact that the presence of the second layer

increases the adsorption energy by approximately 70 meV for both molecules.

As a means of extending the degree of control over functionalization, two comple-

mentary, and sometimes opposing techniques are introduced simultaneously. One or

two B atoms are combined with various single and double vacancy (divacancy) con-

figurations in a 6x6 graphene unit cell. Several configurations are explored and their

electronic structures are found to reveal interesting trends.

Finally, C6H6, C7H8, fluorobenzene (C6H5F), benzonitrile (C7H5N), and benzoic

acid (C7H6O2) molecules are adsorbed on the B-doped defected sheets to further en-

hance our understanding of functionalization. While C6H5F and C7H6O2 are found

to adsorb through weak vdW interactions, C7H5N molecules are observed to form

strong covalent bonds with the atoms surrounding the defect, and in particular the

B atoms. The molecules are seen to introduce an unexpected reconstruction of the

defective, doped graphene substrate and as a result induce significant changes to the

electronic structure.

1.4 Organization of This Dissertation

Figure 1.3 presents the roadmap of this thesis, including significance of research topic

and research objective, theoretical background, computational details of functional-

ization techniques and results.
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The significance of research topic and objective are discussed in Chapter 1 while

Chapter 2 provides detailed theoretical information about DFT utilized throughout

this thesis followed by the preliminary calculations including benchmark study for the

lattice constant and the band structure calculation of pristine and defective graphene.

In Chapter 3, we study the adsorption of organic molecules on pristine and defective

graphene by choosing two types of organic molecules namely C6H6 and C7H8. As

defective graphene, VG and DG graphene are explored. In addition to adsorption of

organic molecules on single layer graphene, C6H6 and C7H8 are also adsorbed on

bilayer graphene in order to compare with experimental studies in the literature.

In Chapter 4, the main structure in focus is B doping to defective graphene, as BVG

and B-doped divacancy-defected graphene (BDG), in order to investigate the change

of electronic properties. In addition to these calculations, magnetization properties of

the obtained structures are also studied.

In Chapter 5, the next aim is to concentrate on organic molecules. By exploring large

number of organic dopants being adsorbed on graphene surface, adsorption energies

are calculated with the most stable adsorption geometry. After calculations of B dop-

ing to defective graphene given in Chapter 4, additional molecule doping to BVG

is studied by choosing additional molecules from C6H6 derivatives namely C7H8,

C6H5F, C7H5N, and C7H6O2. Conclusions are summarized in the last chapter.
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CHAPTER 2

THEORETICAL BACKGROUND

Determining the physical properties of many-particle systems such as atoms, molecu-

les and solids requires solving the Schrödinger equation [110] for a many-particle

system. Since the degrees of freedom of many electron systems are large, the solution

of the Schrödinger equation for such systems is extremely difficult. In this case,

there are many advantages of using a theoretical approach that focuses on particle

density instead of the wave function [111]. The first such density-based approach

was put forward by Thomas and Fermi, constituting a precursor DFT [112,113]. The

theoretical basis of DFT was first established by Hohenberg-Kohn [114] while the

practical solution was made possible by Kohn and Sham and the constant evolution

of computational resources [111, 115, 116]. Besides being a fundamental theory in

the computation of electronic structures of solids, DFT has also played a major role

in determining the physical and chemical properties of nanomaterials in recent years.

In this chapter, we give a brief account of the theoretical foundations of the DFT

methodology as well as the approximations and technicalities necessary for its prac-

tical implementation. We also present the calculation details utilized in the rest of the

thesis and some benchmark calculations.
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2.1 Density Functional Theory

2.1.1 The Schrödinger Equation

In quantum mechanics, the Schrödinger equation has to be solved and many-body

wave function has to be obtained in order to describe the physical properties of the

many-body system. For an atomic or molecular system consisting of N electrons with

coordinates~r1 . . . ,~rN and M nuclei with coordinates ~R1, . . .~RM, this equation is [117]:

ĤΨi

(
~r1 . . . ,~rN ;~R1, . . .~RM

)
= EiΨi

(
~r1 . . . ,~rN ;~R1, . . .~RM

)
(2.1)

where Ψi is the many-body wave function of the ith state of the system containing

all the information available about the system. Here, E is the energy of the system,

and Ĥ is the many-body Hamiltonian operator. As seen in Equation 2.1, the wave

function of a many-particle system depends on the coordinates of the nuclei, ~RI , and

the coordinates of the electrons,~ri, while the many-body Hamiltonian operator for an

N-electron system is described as:

Ĥ = T̂e + T̂n +V̂ee +V̂en +V̂nn

=−1
2

N

∑
1

∇
2
i −

1
MA

M

∑
A=1

∇
2
A−

N

∑
i=1

M

∑
A=1

ZA

riA
+

M

∑
A=1

M

∑
A<B

ZAZB

RAB
+

N

∑
i=1

N

∑
i< j

1
ri j

(2.2)

where, A and B represent nuclei while i and j denote electrons in the system. Addi-

tionally, riA is the electron-nuclei distance, RAB is the distance between nuclei and ri j

is the distance between electrons.

For systems with a Hamiltonian seen in Equation 2.2, it is quite difficult to solve the

Schrödinger equation analytically or numerically, and it is complicated to describe

physical and chemical properties. For the sake of convenience, it is possible to sim-

plify the problem by using the Born-Oppenheimer approximation where since the

mass of the nucleus is much larger than the mass of the electron, is treated as sta-

tionary [118]. According to this approximation, the electrons adapt to the motion of

atoms instantenously. Therefore, we are able to separate the electronic and nuclear
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degrees of freedom, treating the nuclei as classical particles. We then only concern

ourselves with the electronic Hamiltonian:

Ĥ = T̂e +V̂en +V̂ee

=−1
2

N

∑
i=1

∇
2
i −

N

∑
i=1

Zi

|~r−~ri|
+

N

∑
i=1

N

∑
I=1

1
RiI

(2.3)

The electronic Schrödinger equation is reduced to:

ĤelecΨelec = EelecΨelec (2.4)

In the following sections, we present a brief account of the steps necessary to convert

this many-particle description into a density-based one.

2.1.2 Hohenberg-Kohn Theorem

An alternative way to the direct solution for the Schrödinger equation is to focus on

the electron density instead of wave function having 4N (3 position, 1 spin for each

electron) variables. This alternative way was introduced by Hohenberg and Kohn

[114] which gave rise to DFT shifting the focus from the full wave function to density

In terms of the wave function, the electron density can be written as:

ρ (~r) = N
∫

. . .
∫
|ψ(~r,~r2, . . .~rN |2d~r2d~r3 . . .d~rN (2.5)

Integration over all space of electron density gives total number of electron as:

∫
ρ (~r)d~r = N (2.6)

In 1964, Hohenberg and Kohn proposed two theorems [114] giving rise to DFT. Ac-

cording to their first theorem, the ground state energy of a system of interacting elec-

trons in an external potential is a functional of ρ (~r) [119] determining all properties
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of the ground state including kinetic energy, T [ρ], potential energy, V [ρ] and total

energy, E[ρ].

E [ρ] = T [ρ]+Vne [ρ]+Vee [ρ] =
∫

ρ (~r)v(~r)dr+FHK [ρ] (2.7)

where Vee (ρ) is the potential energy of the electron-electron interactions, Vne (ρ) is

the potential energy of the nucleus-electron interactions, and v(~r) is the external pote-

natial. FHK [ρ] is the universal Hohenberg-Kohn functional and described as:

FHK [ρ] = T (ρ)+Vee [ρ] (2.8)

where T (ρ) is the kinetic energy of the system. Vee (ρ) defined in Equations 2.7 and

2.8 consists of two terms as:

Vee(ρ) = J[ρ]+non-classical term (2.9)

In Equation 2.9, non-classical term consists of quantum mechanical effects such as

self-interaction correction, exchange and Coulomb correlation, and J[ρ] is the classi-

cal Coulombic interaction between the electrons.

The second Hohenberg-Kohn theorem states that FHK[ρ] delivers the lowest energy if

and only if the input density is the true ground state density meaning that the energy

obtained from Equation 2.7 (given in Equation 2.10) represents an upper bound to the

true ground state energy, E0 with an external potential, Ṽext and trial density, ρ̃(~r).

E0 ≤ E[ρ̃] = T [ρ̃]+Vne[ρ̃]+Vee[ρ̃] (2.10)

As the Hohenberg-Kohn theorems are only formulated for the ground state, conven-

tional DFT can not be rigorously used to calculate any excited state properties.

2.1.3 The Kohn-Sham Method

Shortly after the Hohenberg-Kohn theorem was proposed, the Kohn-Sham method

was suggested an auxiliary system of noninteracting electrons was imagined whose
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density was thought to be the same as the true system in the ground state. The density

in this case can be written within the Kohn-Sham ansatz as:

n(~r) =
N

∑
i
|φi(~r)|2 (2.11)

with the total energy

E[n(~r)] =
N

∑
i

εi (2.12)

where εi are single-particle energy levels.

F [ρ (~r)] is separated into three parts as:

F [ρ (~r)] = T [ρ (~r)]+EH [ρ (~r)]+Exc [ρ (~r)] (2.13)

where T [ρ (~r)] is the kinetic energy, EH [ρ (~r)] is the Hartree energy, and Exc [ρ (~r)] is

the exchange correlation energy. To produce reasonably accurate values, approxima-

tions to the exchange-correlation functional have been utilized.

The kinetic energy of the system is given by:

T [ρ (~r)] =−
N

∑
j=1

1
2

∫
ψ
∗
j (~r)∇

2
ψ j(~r)d3~r (2.14)

T [ρ (~r)] corresponds to the kinetic energy of a set of N non-interacting Kohn-Sham

particles. The difference between this energy and the true electronic energy is a part

of the exchange-correlation term in Equation 2.13.

The Hartree energy, EH [ρ (~r)] corresponds to the classical electrostatic energy of the

electrons and is given by:

EH [ρ (~r)] =
1
2

∫
ρ (~r)ρ (~r′)
|~r−~r′|

d3~rd3~r′ (2.15)

The energy expression given in Equation 2.18 must be minimized with respect to the

orbitals in order to obtain the orbitals that give rise to the ground state energy. The
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minimization of energy is performed under the usual constraint < ψi|ψ j >= δi j. The

resulting equations are the Kohn-Sham equations:

[
−1

2
∇

2 +
∫

ρ(~r′)
~r−~r′

d~r′+Vxc(~r)−
M

∑
A

ZA

|~rA−~r|

]
ψi = εiψi (2.16)

which needs to be solved self-consistently. The simple sum of Kohn-Sham ener-

gies overcounts the Hartree energy and includes a spurious term originating from the

exchange-correlation energy. This sum must therefore be corrected appropriately to

yield the ground state energy of the true system.

2.1.4 Exchange-Correlation Functionals

DFT models the electron correlation as a function of the electron density, ρ (~r). Exc

embodies both static and dynamic correlation. At this point, the quality of a DFT cal-

culation depends largely on the choice of the exchange-correlation (XC) functional.

Since the XC functional cannot be calculated exactly, numerous approximations have

been developed throughout the years.

The very first approximation developed is local density approximation (LDA) in

which main principle is taking the known result of a homogeneous electron gas sys-

tem and applying it locally to a non-uniform system [120].

ELDA
xc [ρ] =

∫
ρ (~r)εxc (ρ (~r))d~r (2.17)

where εxc (ρ (~r)) is the exchange-correlation energy per electron for a uniform elec-

tron gas with the density ρ (~r). The values of εxc (ρ (~r)) are obtained by Monte Carlo

calculations [121] in practice. This energy per particle is then weighted with ρ (~r).

This approximation gives good results for bulk properties while it is not appropriate

for molecular systems where charge density is non-uniform. The atomic ground state

energies and ionization energies are underestimated while the binding energies are

overestimated [122, 123].

LDA can be improved by using the gradient of the density at a given point~r within

the generalized gradient approximation (GGA). For this type of approximation, the
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main principle is using the information about ρ (~r) at~r in addition to the information

about the gradient of the charge density, ∇ρ (~r).

EGGA
xc =

∫
ρ(~r)εxc[ρ(~r),∆ρ(~r)]d~r (2.18)

In our work, GGA is used for all calculations.

2.1.5 Van der Waals Interactions

VdW forces result from the interaction of fluctuating charge distributions in one dis-

cernable fragment with those in an adjacent one. Although very weak vdW interac-

tions between atoms and molecules play an important role in many systems [124].

Since conventional DFT fails to describe long-range electron correlations that are re-

sponsible for vdW forces [125, 126], some suggestions have been made recently in

order to include the effect of vdW interactions in DFT [127–129]. These suggestions

are based on either directly adding a semi-empirical dispersion correction to the to-

tal energy [124, 130] or reconstructing the exchange-correlation functional [106] that

enables its inclusion self-consistently.

These suggestions are classified in literature as starting from the most approximate

approach and leading to the more sophisticated one [129]. As shown in Figure 2.1,

"stairway to heaven" [131] starts with a vdW corrected pseudopotential and continues

with simple C6 correction (DFT-D method), environment dependent C6 correction

(DFT-D3 and vdW(TS) methods) and non-local vdW correlation functional (vdW-

DF).

The bottom step of the stairway shown in Figure 2.1 is the dispersion corrected atom-

centered potentials (DCACP) [132] and the local atomic potentials (LAP) methods

which involves the addition of a dispersion-corrected pseudopotential [90]. Since

these simple approaches have become inadequate to be applied for all systems, it is

necessary to have new suggestion and move to the next step.

The DFT-D method is based on a semi-empirical dispersion correction to the total

energy, EDFT . The energy functional is:
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Figure 2.1: Classification of functionals as “stairway to heaven”.

EDFT−D = EDFT +Edisp (2.19)

where Edisp is the dispersion and described as:

Edisp =−∑
A,B

(
CAB

6

r6
AB

+
CAB

8

r8
AB

+
CAB

10

r10
AB

+ ...

)
(2.20)

The simplified form of Edisp used in DFT-D method is:

Edisp =−∑
A,B

CAB
6

r6
AB

(2.21)

where A and B are pairwise additives while CAB
6 is the dispersion coefficient. Even

if C6/r6 correction is the most commonly used one, it represents only the leading

term of the correction while neglecting many-body dispersion effects in addition to

the faster decaying terms (CAB
8 /r8

AB, CAB
10 /r10

AB, etc.).

To achieve better accuracy, a better estimate for the dispersion coefficient is required

and for this purpose, Grimme developed an improved method commonly referred to

as the DFT-D2 method [109, 124]. Similar with DFT-D method, DFT-D2 method

adds an additional term to the total energy, and similar with the Equation 2.19, the

energy functional becomes:

EDFT−D2 = EDFT +Edisp (2.22)

Different from DFT-D method, the dispersion coefficients are calculated from a for-
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mula coupling ionization potentials and static polarizabilities of isolated atoms. Edisp

with the damping function, f (rAB,A,B), is described as:

Edisp =−∑
A,B

f (rAB,A,B)
CAB

6

r6
AB

(2.23)

where f (rAB,A,B) is equal to one for large r values while it vanishes for small r

values.

A more natural way of introducing vdW interactions to DFT calculation is to re-

construct the exchange-correlation functional entirely to include a non-local kernel.

This method is commonly referred to in the literature as the vdW-DF method. In

Figure 2.1, it is represented by the third step.

The vdW-DF method adds non-local (i.e., long range) correlations to local or semi-

local correlation functionals and the exchange-correlation for this method, Exc is

given as:

Exc = EGGA
x +ELDA

c +Enl
c (2.24)

where EGGA
x is the exchange energy approximated within GGA, ELDA

c is the corre-

lation energy approximated within LDA, and Enl
c is the non-local correlation energy

describing dispersive interactions. Enl
c is defined as:

Enl
c =

∫ ∫
dr1dr2n(r1)ϕ(r1,r2)n(r2) (2.25)

where n(r) is the electron density, ϕ(r1,r2) is integration kernel.

VdW-DF is an important development, however, it has drawbacks such as overesti-

mating long range dispersion interactions. In order to overcome this overestimation,

the method involving changes to exchange and non-local correlation terms has been

suggested and named as vdW-DF2 [133, 134]. The Perdew-Burke-Ernzerhof (PBE)

and revised PBE (revPBE) exchange functionals are mostly used in combination with

the vdW-DF and vdW-DF2 method [136]. However, revPBE results in large inter-

molecular binding distances and inaccurate binding energies, C09 exchange has been

proposed as an alternative way to remedy this shortcoming [107].
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In Chapter 3, vdW-DF, vdW-DF2-C09 and Grimme-D2 (DFT-D2) will be used to

study the effect of different vdW functionals and corrections on adsorption geome-

try, adsorption energy and band structure. These calculations reveal that the vdW-

DF2-C09 exchange-correlation protocol for the vdW interactions produces the clos-

est agreement with the literature, therefore vdW-DF2-C09 is used in the calculations

presented in later chapters.

2.1.6 Pseudopotentials

Electrons can be divided into two groups as the core and the valence electrons around

the nucleus. Core electrons are localized around the nucleus and not affected by

chemical interactions. On the other hand, valence electrons play a major role in the

formation of chemical bonds and in the determination of the electronic properties of

materials. These electrons, which fill the valence orbitals, experience a field formed

by the nucleus and the core electrons.

The wave functions of the valence electrons are orthogonal to the wave functions

of the core electrons. In order to maintain this constraint, valance wave functions

oscillate rapidly in the core region. This is due to the fact that the interaction potential

between the valence electrons and the core electrons is very large in the region r < rc

[137], as shown in Figure 2.2. Here, rc is the core radius, the blue straight lines

represent the pseudopotential and pseudo wave function while the red dashed lines

are for real potential and real wave function.

In most periodic software that implements DFT, a plane wave basis is used to ex-

pand the Kohn-Sham orbitals. The sharp Columbic potentials close to the nuclei

necessitates a large number of plane wave basis functions in order to resolve the os-

cillations in the wave functions of the valence electrons in the core region. To avoid

this and to limit the calculations only to the chemically relevant electrons, the pseu-

dopotential approach has been developed which treats only valence electrons explic-

itly [138–140].

The generation of a pseudopotential begins with the solution of the Kohn-Sham equa-

tion for an isolated atom. Pseudowave functions are obtained by placing a smoother
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Figure 2.2: The real and pseudo potentials and wave functions.

function in place of the part of the real wave function oscillating in the core region

(r < rc). This wave function should be compatible with the real wave function out-

side the core region [141]. The Schrödinger equation is then inverted to obtain the

pseudopotential, which must then be identical to the true potential outside the core

region. In this thesis, we employ ultrasoft pseudopotentials [142] since they require a

much smaller set of planewaves in the basis set expansion.

In our work, the interaction of the valence electrons with the atomic core states is

described by ultrasoft pseudopotentials and we use PBE type ultrasoft pseudopoten-

tials with vdW-DF2-C09 and Grimme-D2 while revPBE is used with vdW-DF for

hydrogen (H) and carbon (C) in Chapter 3. In Chapter 4 and in Chapter 5, PBE

type ultrasoft pseudopotentials are used for boron-doped vacancy-defected graphene

(BVG) and boron-doped divacancy-defected graphene (BDG) calculations. Addition-

ally, PBE type ultrasoft pseudopotentials are used for fluorine (F) and nitrogen (N)

while PBE type Vanderbilt ultrasoft pseudopotential is used for oxygen (O) atom in

Chapter 5.
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2.2 Mechanism of a Density Functional Theory Calculation

2.2.1 Self-Consistency Cycle

The calculations in our work are performed by using the Quantum Espresso (QE)

package [143] which uses a Plane-Wave-Self-Consistent field (PWscf) approach. QE

is an open source code based on DFT, plane-waves and pseudopotentials aiming to

solve the Kohn-Sham equations self-consistently. The flowchart of the self-consistency

cycle [144] is shown in Figure 2.3.

Figure 2.3: Kohn-Sham self-consistency cycle.

As shown in Figure 2.3, the initial density is selected in accordance with the atom type

and the atomic positions. Afterwards, the Kohn-Sham equations for the Kohn-Sham

orbitals are solved and the density obtained from the solution of these equations is

compared to the initial density. If the density obtained is close enough to the density

obtained in the previous cycle, the calculation is terminated. Otherwise, the second
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step will be repeated with the calculated density. This process continues until there is

agreement between the consecutive densities.

2.2.2 Structure Optimization

A system reaches the structural equilibrium configuration when the forces on the

nuclei reach zero. Once the ground state density has been obtained through self-

consistent iterations indicated in Section 2.2.1, the Kohn-Sham orbitals corresponding

to this density can be used to calculate several properties of the system including the

force on the atoms.

The Hellman-Feynman (HF) theorem is a general statement about derivatives of ex-

pectation values at the ground state and force for the electronic part is expressed as:

which states that the change in the Hamiltonian operator can be calculated by ignoring

the change in the wave function while differentiating the energy to obtain forces. The

atoms are displaced along the HF forces. Afterwards, the self-consistency cycle dis-

played in Figure 2.3 is repeated with the addition of electronic and ionic contributions

to find the total force of ith atom.

2.2.3 Computational Details

The calculations presented in this thesis are performed by using QE package [143].

For the exchange-correlation functional, the Perdew-Burke-Ernzerhof (PBE) approx-

imation is used [143]. The interaction of the valence electrons with the atomic core

states is described by ultrasoft pseudopotentials. The Brillouin Zone (BZ) is sam-

pled according to the Monkhorst-Pack scheme [145] with 3x3x1 k-points for 6x6 unit

cells. A kinetic energy cutoff of 30 Ry for wave functions and 300 Ry for charge

density are used in all calculations since they gave well-converged values for both

graphene and molecules in the previous studies [64, 146–151].

Another point that has to be taken into account is that atoms are free to relax in

each cell and the vacuum between periodic cells needs to be large enough in order to

prevent the interaction. For this purpose, a vacuum thickness of 15 Å is used in all
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calculations.

Electronic bands are calculated on the path between certain critical points in Bril-

louin zone. Starting from Γ (center of the Brillouin zone), the path reaches K and M.

XCrysDen [152] and Jmol [153] are used to visualize the structures during calcula-

tions.

Density of states (DOS) is the total number of the states in a given energy interval.

DOS is described as:

DOS(E) =
1
N ∑

k
δ (E− εk) (2.26)

where N is the number of wave vector, k is the phonon frequencies for wave vectors

and εk is the energy of the single particle.

A partial density of states (PDOS) calculations are performed to obtain a projection

of the Kohn-Sham orbitals onto a suitably defined atomic regions. The PDOS calcu-

lation is a useful tool for analyzing the charge transfer in a chemical process.

In addition to the DOS and PDOS calculations, the charge density difference calcu-

lations are performed to look at the difference or the effect of the adsorbed system’s

interaction with the substrate. These calculations are performed after structure opt-

mization calculations. VESTA visualization software [154] is used in order to visual-

ize charge density plots. Furthermore, charge transfer between the graphene network

and the adsorbates are investigated using the Bader charge analysis implemented by

Henkelman et al. [155]. Additionally, Löwdin charge analysis [156] is used for an-

alyzing the charge transfer characteristics of benzene derivatives presented in Chap-

ter 5.
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2.3 Preliminary Calculations

2.3.1 Lattice Constant Optimization Calculations

As a benchmark, lattice constant optimization calculations for graphene were per-

formed for the functionals and correction described in Section 2.1.5. To check whether

turning on spin polarization has any effect on lattice constants, we conduct some cal-

culations with spin-polarizaed exchange-correlation (XC) functionals as well. In our

production calculations, we include spin-polarization.

In experimental studies given in literature, lattice constant of graphene (a) is 2.46 Å

[157]. The optimized lattice constant (a) values and error with respect to experimental

value are tabulated in Table 2.1. From these results, it may be concluded that the vdW-

DF2-C09 yields the best results for graphene based structures, and it is observed that

lattice constants are independent of spin magnetization. These benchmark tests are

also in good agreement with the previous studies reported in literature [158, 159].

Table 2.1: The lattice constant optimization for graphene.

Functional a (Å) % error

vdW-DF 2.4629 0.1175
spin polarized vdW-DF 2.4629 0.1175
vdW-DF2-C09 2.4602 0.0096
spin polarized vdW-DF2-C09 2.4602 0.0096

Correction a (Å) % error

Grimme-D2 2.4615 0.0617
spin polarized Grimme-D2 2.4615 0.0617

a (Å) % error

PBE 2.4619 0.0766
spin polarized PBE 2.4617 0.0691
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2.3.2 Pristine and Defective Graphene Calculations

As a basis for this work, the electronic properties of pristine graphene and graphene

with point defects (mono and divacancy) have been reviewed. The other aim of these

preliminary calculations is to test the accuracy of the parameters being used in the

calculations.

For pristine graphene, as shown in Figure 2.4a, a 6x6 unit cell consisting of 72 C

atoms is used. For the optimized geometry, bond length is calculated to be 1.4215 Å

which agree well with the values reported in the literature [160, 161]. For graphene

with point defects, 6x6 unit cells consisting of 71 C and 70 C atoms have been cho-

sen to model vacancy-defected (VG) and divacancy-defected graphene (DG), respec-

tively. For the geometry optimized structures, it is observed that total magnetization is

equal to 0.00 µB per cell for DG while it is 1.43 µB per cell for VG in good agreement

with the previous works [162–164]. From these results, it is concluded that there is

no effect of magnetization for divacancy in graphene sheet.

The optimized geometries of spin-unpolarized VG, spin-polarized VG and DG are

presented in Figure 2.4b, Figure 2.4c and Figure 2.4d, respectively. For VG, one

of the C atoms in Figure 2.4b and in Figure 2.4c, surrounding the vacancy under-

goes an out-of-plane displacement of about 0.48 Å resulting in a distorted structure

while the remaining two atoms surrounding the vacancy move close to each other to

a distance of 2.1 Å where the initial distance is 2.46 Åfor pristine graphene. When

spin-polarization is included, C atoms surrounding the defect comes closer to each

other and one of the C atoms surrounding the vacancy becomes coplanar with 0.07

Å out-of-plane displacement while the initial displacement is 0.2 Å away from the

planar surface.

In addition to pristine graphene, spin-unpolarized VG and DG, band structure calcula-

tions have been performed for spin-polarized VG to see the effect of spin polarization

on the electronic properties of VG since magnetism is observed with a monovacancy

in graphene sheet [52, 53] as indicated in Section 1.2. The optimized structures with

their band structures are presented in Figure 2.4 in addition to their charge density

and DOS plots. For the band structure of spin-polarized VG, red lines in Figure 2.4c
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represent the majority spin while blue lines represent the minority spin. As seen from

Figure 2.4a, for pristine graphene, the Fermi level appears at the Γ point due to zone

folding and for VG, spin polarization lifts the degeneracies while the Fermi level is

depressed below the original location similarly with DG.

(a) (b) (c) (d)

Figure 2.4: Optimized structures, band structures, DOS and charge density plots of
pristine graphene (a), spin-unpolarized VG (b), spin-polarized VG (c), and DG (d).

For VG and DG, the defect formation energies are calculated from:

Ede f = Ede f−gr +µC−Epr−gr (2.27)

where Ede f is the defect formation energy, Ede f−gr is the energy of defective graphene

while µC is the chemical potential of the C atom which is taken as Epr−gr/N where

N is the number of C atoms in the unit cell of graphene and Epr−gr is the energy of

pristine graphene.

From Equation 2.27, VG and spin-polarized VG formation energies are calculated

to be 7.80 eV and 7.60 eV, respectively which are very high due to the existence
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of an under-coordinated carbon atom while being in good agreement with previous

theoretical and experimental results [165–169]. On the other hand, DG formation

energy is calculated to be 7.71 eV which shows similar trend with the previous studies

where formation energies of divacancies in carbon nanotubes and graphene are found

to be much lower than the formation energy of monovacancy, suggesting that the

coalescence of monovacancies into divacancies is energetically favorable [169–174].
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CHAPTER 3

ORGANIC MOLECULES ON PRISTINE AND DEFECTIVE

GRAPHENE

In this chapter, we study the adsorption of benzene (C6H6) and toluene (C7H8) on

pristine and defective graphene. In addition to single layer graphene, we study ad-

sorption of C6H6 and C7H8 on bilayer graphene. Van der Waals (vdW) dispersion

forces are included in order to treat molecule-graphene interaction. To see the effect

of different vdW dispersion forces on adsorption geometry, adsorption energy and

band structure, three different exchange-correlation functionals are employed: vdW-

DF [106], vdW-DF2-C09 [107, 108] and Grimme-D2 [109].

3.1 Previous Work

C6H6 is a flat polycyclic aromatic hydrocarbon (PAH). C atoms (each carbon contains

three sigma bonds) are each bonded to two neighboring C atoms and two H atoms.

C6H6 is a colourless liquid with a characteristic odor evaporating into the air very

quickly while dissolving slightly in water. It is mainly employed in the production

of polystyrene and other chemicals such as detergents, dyes, pesticides and drugs

[175]. Due to its industrial applications, adsorption characteristics of C6H6 is widely

investigated in addition to its detection since exposure to C6H6 increases the risk of

cancer and other illnesses [176, 177]. As indicated in Chapter 1, for applications

involving graphene based devices, molecular adsorption on graphene with different

chemical species such as small gas molecules [69, 70, 178, 179] are the subject of

various theoretical [54, 70, 180–183] and experimental [15, 37] studies.
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Non-covalent functionalization of graphene using various organic molecules [38,184]

and bio-molecules [23] has attracted growing attention in electrical and optical appli-

cations. In many previous studies [185,186] C6H6 was investigated as a prototype for

π-π interactions [187]. Different exchange-correlation functionals [106, 188] were

tested in order to provide an improved description of the long-range weak dipole-

dipole interaction and the electronic structure of the interface between graphene and

organic molecules [189]. For the adsorption of C6H6 on graphene, graphite or carbon

nanotubes, the distance between the graphene sheet and C6H6 was calculated to be

3.60± 0.2 Å based on the weak vdW forces [69,188,190,191] while adsorption ener-

gies range from 20 to 29 kJ/mol (207-301 meV/C6H6 molecule) [20, 186]. However,

in some recent DFT studies, larger adsorption energies (79.2 kJ/mol - 821 meV/C6H6

molecule) for C6H6 on graphene were calculated which would prevent the desorption

of C6H6 [192].

Chakarova-Käck et al. [188] conducted vdW-DF calculations for the adsorption en-

ergies of C6H6 and naphthalene (C10H8) on graphite while Alzahrani [193] focused

on the electronic properties of these adsorbed systems and found that graphene’s low

energy electronic properties remain unchanged upon C6H6 and C10H8 adsorption un-

less C6H6 was artificially placed very close to graphene resulting in a covalent bond

formation [186, 192, 194]. Caciuc et al. [195] concluded that the strength of C6H6-

graphene interaction corresponds to physisorption with no significant charge transfer

between adsorbent and adsorbate. In spite of the several studies for C6H6 adsorption

on pristine graphene, the studies dealing with the adsorption of C6H6 on defective

graphene are missing.

The other organic molecule studied in this work is toluene, a colorless, water insol-

uble molecule with the chemical formula C7H8. C7H8 is a C6H6 derivative with an

extra CH3 group. Contrary to C6H6, there are very few studies dealing with the ad-

sorption mechanism of C7H8 on graphene [196], it has been observed that, electronic

properties of graphene around the Dirac point are not disturbed by adsorption of C7H8

while the Fermi level remains at the Dirac point indicating that no charge transfer be-

tween C7H8 and graphene [197]. Similar to C6H6, studies dealing with the adsorption

of C7H8 on defective graphene are missing.
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3.2 Organic Molecules on Single Layer Graphene

Before starting the adsorption calculations, C6H6 and C7H8 are optimized separately

and the resulting geometries are used for the following calculations. The molecular

adsorption energies are calculated using:

Eads = Egraphene +Emolecule−Emolecule+graphene (3.1)

where Egraphene is the energy of graphene sheet, Emolecule is the energy of an isolated

neutral organic molecule, and Emolecule+graphene is the total energy of the system con-

sisting of the organic molecule and graphene. With this definition, positive adsorp-

tion energies correspond to stable adsorption geometries. For physisorbed species,

Emolecule and Egraphene are both calculated using the relevant exchange-correlation

functionals.

As a result of geometry optimization, equilibrium separation between the organic

molecule and graphene can be obtained in addition to adsorption energy values. How-

ever, simple geometry optimization may miss the correct adsorption height values due

to the possibility of multiple minima. As a check, we run a series of single-point scf

calculations for a specified adsorption height value interval in order to obtain a bet-

ter resolved profile. A similar study was conducted by Chakarova-Käck et al. [188]

and for a direct comparison, the configuration utilized in their study is subjected to

scf calculations. The configuration used for the parallel adsorption of C6H6 on pris-

tine graphene (PG) is displayed in Figure 3.1 which will be referred to as site Br in

Section 3.2.1.

For this scan, the adsorption height of C6H6 in the z-direction is changed from 2.5 Å

to 4.5 Å with an increment of 0.1 Å an scf calculation is performed for each height,

and equilibrium adsorption heights are determined from each data set. The adsorption

energy curves with respect to different adsorption heights for vdW-DF, vdW-DF2-

C09 and Grimme-D2 are shown in Figure 3.2 for C6H6 adsorption on 6x6 PG where

the adsorption heights are calculated to be 3.43 Å, 3.27 Å and 3.19 Å for vdW-DF,

vdW-DF2-C09 and Grimme-D2, respectively which are in very good agreement with

the values tabulated in Table 3.1. For vdW-DF, the calculated adsorption height is in

33



Figure 3.1: Configuration of C6H6 on single layer graphene for adsorption height
calculations.

good agreement with the previous theoretical and experimental results reported to be

3.60 ± 0.2 Å [188, 190, 191].

In order to probe the adsorption behaviour of C6H6 in lateral directions, the adsorption

height values are fixed and the optimization calculations are performed where atomic

positions in a plane parallel to the graphene sheet are free to change. After obtaining

the optimized geometry, the final energy values are compared with the adsorption

energy values presented in Figure 3.2 and it is observed that the difference is around

1 meV showing that the full optimization gives a robust geometry.

The defect formation energies of VG and DG are calculated using Equation 2.27 for

vdW-DF, vdW-DF2-C09 and Grimme-D2. For VG, the formation energies are calcu-

lated to be 7.30 eV, 7.78 eV and 7.84 eV for vdW-DF, vdW-DF2-C09 and Grimme-

D2, respectively and when spin-polarization is included, the formation energies re-

duce to 7.24 eV, 7.66 eV and 7.64 eV for vdW-DF, vdW-DF2-C09 and Grimme-D2,

respectively. DG formation energies are calculated to be 7.10 eV, 7.77 eV and 7.79

eV for vdW-DF, vdW-DF2-C09 and Grimme-D2, respectively which shows the same

trend with VG as formation energy is lowest for vdW-DF and formation energies for

vdW-DF2-C09 (7.78 eV for VG and 7.77 eV for DG) are very similar with the for-

mation energies where vdW interactions are excluded (7.80 eV for VG and 7.71 eV

for DG) which confirms the indication in Section 2.3.1 that vdW-DF2-C09 yields the

best results.
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(a) (b)

(c)

Figure 3.2: The adsorption energy curve of C6H6 on single layer graphene with vdW-
DF (a), vdW-DF2-C09 (b), and Grimme-D2 (c).

3.2.1 Organic Molecules on Pristine Graphene

A 6x6 unit cell of PG, consisting of 72 atoms, is used as substrate during calculations.

C6H6 and C7H8 are adsorbed on graphene, separately. In literature, it is stated that

due to the unreactivity of organic molecules and graphene, organic molecules interact

weakly with graphene [8]. In order to confirm this weak interaction and determine

the preferred sites, 14 different configurations are investigated including both paral-

lel and perpendicular adsorption of C6H6 and C7H8. These configurations are seen

in Figure 3.3 and Figure 3.4 along with labels where the letter "r" in the label indi-

cates rotation along the axis perpendicular to the molecular plane with respect to the

configuration labeled without the letter "r".
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(a) (b)

Figure 3.3: Different initial configurations for C6H6 on PG for parallel (a), and per-
pendicular adsorption (b).

(a) (b)

Figure 3.4: Different initial configurations for C7H8 on PG for parallel (a), and per-
pendicular adsorption (b).

The adsorption energies and graphene-molecule distances obtained from these config-

urations are listed in Table 3.1. During structural optimization, the organic molecules

induce small degrees of curvature on the graphene layer where the degree of curvature

is highest for vdW-DF. Thus, the adsorption height distances are taken as the vertical

separation of the average value in the z-direction of C atoms in graphene and the H

atom of the organic molecule closest to the graphene layer.
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As observed from Table 3.1, the preferred geometry of C6H6 and C7H8 molecule on

graphene is a parallel configuration for all exchange-correlation functionals. When

the geometries with the highest adsorption energy are investigated, a general trend

is deduced where the axial H atoms of the molecule facing the graphene layer are

located on top of the centers of the empty hexagonal sites of the honeycomb lat-

tice of graphene. The preferred geometries of C6H6 are labeled C for all exchange-

correlation functionals (see Figure 3.3) while the preferred geometries of C7H8 are

labeled C, C and B for vdW-DF, vdW-DF2-C09 and Grimme-D2, respectively. More-

over, it is observed that adsorption energies are very close to each other for some sites

in parallel configuration.

In its optimized structure, C6H6 is located at a distance of 3.46 Å and the adsorption

energy is 596 meV while C7H8 is located at a distance of 3.13 Å and the adsorption

energy is 689 meV for vdW-DF. The adsorption distance of C6H6 is 3.30 Å with

441 meV and 3.21 Å with 524 meV for vdW-DF2-C09 and Grimme-D2, respectively

while the adsorption distance of C7H8 is 2.93 Å with 498 meV and 2.74 Å with

593 meV for vdW-DF2-C09 and Grimme-D2, respectively. These values are in good

agreement with the previous theoretical and experimental results [20, 186, 197].

The top view and the side view of the optimized geometries with the highest ad-

sorption energies tabulated in Table 3.1 are presented with their band structures in

Figure 3.5 and Figure 3.6 for C6H6 and C7H8, respectively. The band structure for

the non-covalent interaction of C6H6 and C7H8 with PG reveal no deviation around

the K-point from PG’s band structure.

In order to separate the contribution of states coming from the adsorbate and the

substrate, we present the results of a partial density of states (PDOS) analysis in

Figures 3.7 and 3.8.
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(a) (b) (c)

Figure 3.5: The top view, the side view and the band structure of C6H6 on PG for
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(a) (b) (c)

Figure 3.6: The top view, the side view and the band structure of C7H8 on PG for
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).
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In order to understand the effect of the adsorption on charge distribution, charge den-

sity difference calculations are performed for those geometries with the highest ad-

sorption energy and plots are presented in Figure 3.7 and Figure 3.8 for C6H6 and

C7H8, respectively. In these plots, red color represents regions with charge depletion

while blue color represents those with charge accumulation. From the Bader charge

analysis, the charge transfer between the substrate and the molecule is calculated to

be negligibly small for the physisorbed species. C6H6 donates a charge of 0.007 e

to the graphene network while donation is 0.013 e for C7H8 when vdW-DF2-C09 is

employed.

(a) (b) (c)

Figure 3.7: PDOS and charge density plot of C6H6 on PG for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to ±0.00011 Å−3.

(a) (b) (c)

Figure 3.8: PDOS and charge density plot of C7H8 on PG for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to ±0.0003 Å−3.
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The charge density difference plots shown in Figure 3.7 indicate a small amount of

charge transfer between the π-systems of both C6H6 and graphene and the other or-

bitals. This seems to introduce a small dipole moment pointing away from graphene

and towards C6H6 in the interface. Interestingly, the charge rearrangement profile of

C6H6 appears somewhat different for Grimme-D2 than it does for the other two vdW

protocols.

The charge transfer upon adsorption in the case of C7H8 is somewhat different when

compared to that of C6H6. The positively charge region immediately below the

molecule is absent although the charge depleted region above graphene is still vis-

ible. The axial H molecules are still depleted while those belonging to the CH3 group

have acquired a small amount of positive charge.

3.2.1.1 Unoccupied States in PDOS Plots

As indicated in Chapter 2, PDOS calculations are performed in order to analyze the

charge transfer. The QE package [143] provides a parameter by the name of as de-

gauss symbolyzing Gaussian broadening in Ry which defines the sharpness of peaks

in the PDOS plot. By examining the sharpness of peaks for PDOS plot of C6H6

adsorption on PG with vdW-DF2-C09, a benchmark study has been done in order

to determine degauss value to be used during the production calcultions. For this

purpose, 3 different degauss values are studied namely 0.01, 0.015 and 0.02 Ry.

The peaks in Figure 3.9a are very sharp with 0.01 Ry Gaussian broadening and oscil-

lations take place in the PDOS plot of pristine graphene while peaks become wider by

increasing Gaussian broadening. Upon analysis of Figure 3.9b and Figure 3.9c, 0.015

Ry Gaussian broadening was seen to give optimal results and was preferred during

calculations.

On the other hand, it is observed that summation of C6H6 states and PG states does

not give the total DOS for unoccupied states in Figure 3.9b since the effect of un-

occupied d and f-orbitals have been ignored in the pseudopotential used for C. In

order to include the effect of unoccupied d and f-orbitals to the PDOS plot, calcula-

tions have been repeated for C6H6 adsorption on PG with a different pseudopotential
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(a) (b)

(c)

Figure 3.9: The benchmark study for Gaussian broadening value: (a) 0.01 Ry, (b)
0.015 Ry, and (c) 0.02 Ry.

containing contributions from the d- and f-orbital. While including d- and f-orbital

configurations appears to fix this problem (Figure 3.10), we continue to use the for-

mer pseudopential excluding these contributions as the effect is largely confined to

the unoccupied states.

3.2.2 Organic Molecules on Vacancy-Defected Graphene

A 6x6 unit cell of VG consisting of 71 atoms is used as adsorbent for the calcula-

tions in this section. C6H6 and C7H8 are adsorbed on defective graphene, separately.

5 different configurations for C6H6 and 7 different configurations for C7H8 are are

considered, all in the vicinity of the defect and all in the parallel configuration. These

configurations are displayed in Figure 3.11a and Figure 3.11b, respectively.
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(a) (b)

Figure 3.10: PDOS plot of C6H6 on PG (a), and d and f-states of C6H6 and PG
including DOS (b).

(a) (b)

Figure 3.11: The different initial configurations for C6H6 (a) and C7H8 (b) on VG.

As some graphene point defects are expected to be magnetic (indicated in Section

2.3.2), spin polarization is activated in all calculations conducted in this section. Af-

ter optimization calculations, it is observed that total magnetization of the VG/C6H6

system is equal to 0.69 µB, 1.27 µB and 1.40 µB per cell for spin-polarized vdW-DF,

vdW-DF2-C09 and Grimme-D2, respectively while total magnetization of C7H8/VG

is equal to 0.68 µB, 1.31 µB and 1.45 µB per cell for spin polarized vdW-DF, vdW-

DF2-C09 and Grimme-D2, respectively. Previous calculations conducted on the

graphene vacancy defect yields a total magnetization of about 1.43 µB. Consider-

ing the weak interaction between the substrate and the adsorbate, we do not expect
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this value to change significantly upon adsorption. This result can be considered a

further and interesting indication of the shortcomings of the vdW-DF scheme for the

problem at hand.

The adsorption energies obtained from these configurations are listed in Table 3.2.

Similar to the adsorption of organic molecules on PG, C6H6 and C7H8 induce small

degrees of curvatures on VG while one of the C atoms surrounding the vacancy is

distorted in the opposite direction of curvature formation and the degree of curvature

is highest for vdW-DF as seen from the side view displayed in Figure 3.12 and Fig-

ure 3.14 for C6H6 and C7H8, respectively. In the spin-polarized case, the distortion

of all C atoms around the vacancy is in the same direction as the curvature formation

as presented in Figure 3.13 and Figure 3.15 for C6H6 and C7H8, respectively.

In the optimized structure, C6H6 has the highest adsorption energy with a value of

555 meV, 391 meV and 435 meV while C7H8 has the highest adsorption energy with

a value of 607 meV, 425 meV and 482 meV for vdW-DF,vdW-DF2-C09 and Grimme-

D2, respectively. For spin-polarized cases, the highest adsorption is calculated to be

596 meV for C6H6 with vdW-DF and for C7H8, it is 678 meV with the same func-

tional. As apparent from Table 3.2, sites with the highest adsorption energy changes

not only with the change of exchange-correlation functional but also with inclusion

of spin-polarization.

Similar to the adsorption on PG (Figure 3.5 and Figure 3.6), the band structure for

the non-covalent interaction of C6H6 and C7H8 on VG reveal no deviation around

the K-point from defective graphene’s band structure as shown in Figure 3.12 and

Figure 3.14. For the band structure of spin-polarized cases, red lines represent the

majority spin while blue lines represent the minority spin in Figure 3.13 and Fig-

ure 3.15 for C6H6 and C7H8, respectively, and it is observed that spin polarization

lifts the degeneracies while the Fermi level is depressed below the original location.
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(a) (b) (c)

Figure 3.12: The top view, the side view and the band structure of C6H6 on spin-
unpolarized VG for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(a) (b) (c)

Figure 3.13: The top view, the side view and the band structure of C6H6 on spin-
polarized VG for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).
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(a) (b) (c)

Figure 3.14: The top view, the side view and the band structure of C7H8 on spin-
unpolarized VG for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(a) (b) (c)

Figure 3.15: The top view, the side view and the band structure of C7H8 on spin-
polarized VG for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).
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PDOS and charge density difference plots for C6H6 and C7H8 are displayed in Fig-

ure 3.16 and Figure 3.18 while the plots for calculations including spin-polarization

are presented in Figure 3.17 and Figure 3.19 for C6H6 and C7H8, respectively where

red color represents charge depletion while blue color represents charge accumula-

tion. The rearrangement of charge in the case of the monovacancy is rather different

from that of defect-free graphene. In this case, the portions of the molecule that is

closer to the elevated atom has lost some electrons to both its own π orbitals and the

lone atom. Although there are still remnants of the interface transfer familiar from

PG, the charge transfer is decidedly asymmetric. There is 0.007 e donation from

C6H6 to VG while 0.011 e is transferred from C7H8 to VG when vdW-DF2-C09 is

employed.

(a) (b) (c)

Figure 3.16: PDOS and charge density plots of C6H6 on VG for spin-unpolarized
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to
±0.00029 Å−3.

3.2.3 Organic Molecules on Divacancy-Defected Graphene

A 6x6 unit cell of graphene was used with two neighboring C atoms missing to model

the divacancy defected graphene in this section. C6H6 and C7H8 are adsorbed on DG,

separately. Similarly to the previous section (Section 3.2.2), 5 different configurations

for C6H6 and 7 different configurations for C7H8 are formed around the defect as

parallel adsorption of organic molecules on defective graphene which are shown in

Figure 3.20.
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(a) (b) (c)

Figure 3.17: PDOS and charge density plots of C6H6 on VG for spin-polarized vdW-
DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to±0.0002 Å−3.

(a) (b) (c)

Figure 3.18: PDOS and charge density plots of C7H8 on VG for spin-unpolarized
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to
±0.00042 Å−3.

The adsorption energies obtained from these configurations are listed in Table 3.3.

Similar to the adsorption geometry of organic molecules on PG, DG has a negligi-

ble degree of curvature which can be taken into account as almost planar geometry

without any distortion of the atoms surrounding the defect.

In the optimized structure, C6H6 has the most stable configuration with an adsorption

energy of 576 meV, 404 meV and 452 meV while these values for C7H8 are 651 meV,

448 meV and 518 meV for vdW-DF,vdW-DF2-C09 and Grimme-D2, respectively. As

seen from Table 3.2, the sites with the highest adsorption energy does not change with
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(a) (b) (c)

Figure 3.19: PDOS and charge density plots of C7H8 on VG for spin-polarized vdW-
DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to±0.0004 Å−3.

(a) (b)

Figure 3.20: The different initial configurations for C6H6 and C7H8 on DG.

the change of exchange-correlation functional.

The band structures for the molecule/DG systems reveal no deviation around the K-

point from the band structure of graphene with a divacancy as seen in Figure 3.21 and

Figure 3.22 for C6H6 and C7H8, respectively. PDOS and charge density difference

plots for C6H6 and C7H8 are shown in Figure 3.23 and Figure 3.24. As consistent

with PDOS plots, additional states from the molecules only fall on the conduction
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Table 3.3: The adsorption energies of C6H6 and C7H8 on DG at different sites.

vdW-DF vdW-DF2-C09 Grimme-D2

site E [meV] E [meV] E [meV]

C6H6 A 575 401 450
B 564 400 447
C 553 382 426
D 576 404 452
E 575 401 451

C7H8 A 649 440 512
B 641 445 512
C 630 428 496
D 650 444 516
E 650 444 516
F 651 448 518
G 647 447 513

(a) (b) (c)

Figure 3.21: The top view, the side view and the band structure of C6H6 on DG for
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

and valence bands. The charge transfer upon adsorption is once again reminiscent of

the PG case where there seems to be a small dipole moment induced in the interface

region that points from the molecule to the substrate. Bader charge analysis shows
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(a) (b) (c)

Figure 3.22: The top view, the side view and the band structure of C7H8 on DG for
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

there is 0.019 e transfer from C6H6 to DG while 0.012 e is transferred from C7H8 to

DG confirming the electron accepting characteristics of graphene-based surfaces.

(a) (b) (c)

Figure 3.23: PDOS and charge density plots of C6H6 on DG for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to ±0.00019 Å−3.

There are numerous theoretical studies in literature on C6H6 adsorption on graphene

while the experimental studies are still rare. In experimental studies, graphene is
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(a) (b) (c)

Figure 3.24: PDOS and charge density plots of C7H8 on DG for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c).The isovalue is set to ±0.00035 Å−3.

grown continuously on both sides of the copper (Cu) surface, forming a crystalline

single layer [8, 185, 198, 199]. In these experiments, adsorption energy is calculated

for different coverages. It has been found that C6H6 adsorption characteristics on

graphene is affected by the supports while the desorption energy for C6H6 adsorption

on a graphene layer depends on the reactivity of the support. This, then, makes a

direct comparison of theoretical and experimental results rather difficult. In spite of

this difficulty, previous computational adsorption energy calculations and the exper-

imental adsorption energy [20, 186, 188, 192, 194, 195] are found to be in agreement

with our results.

When adsorption energy values are compared for organic molecules on pristine and

defective graphene, it can be seen that the adsorption energy is highest for adsorption

of species on PG. In addition to the change in adsorption energies, for vdW-DF2-C09

adsorption site with the highest adsorption energy changes with respect to the change

of adsorbent. For instance, site C of C6H6 exhibits the highest adsorption energy of

441 meV on PG while the energy is 391 meV on VG for site B and 404 meV on DG

for site D. In this case, adsorption energy is higher for the adsorption on divacancy

than on vacancy.
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3.3 Organic Molecules on Bilayer Graphene

In order to understand the effects of the number of graphene layers on adsorption

characteristics, the adsorption of C6H6 and C7H8 on bilayer graphene has been inves-

tigated.

First, adsorption height calculations have been performed for the three exchange-

correlation functionals with the methodology described in Section 3.2. Concerning

the relative location of the two layers, AB stacking has been utilized since AB-stacked

structure is more stable than the AA-stacked structure [200]. The adsorption en-

ergy curves with respect to different adsorption heights for three different exchange-

correlation functionals are shown in Figure 3.25. The calculated adsorption heights

are 3.64 Å, 3.29 Å and 3.23 Å for vdW-DF, vdW-DF2-C09 and Grimme-D2, respec-

tively where the adsorption height is minimum with Grimme-D2 while it is maximum

with vdW-DF. These adsorption heights are taken as the initial distance between two

layers of graphene sheets in the following calculations.

C6H6 and C7H8 are adsorbed on top of bilayer graphene with the adsorption dis-

tance as calculated and presented in Section 3.2. Regarding the position of organic

molecule, the geometry with the highest adsorption energy on single layer graphene

(Section 3.2.1) have been used. The optimized geometries are shown in Figure 3.26

and Figure 3.27. The adsorption energy values are calculated from Equation 3.1

where Egraphene is the energy of bilayer graphene sheet. With this definition, the ad-

sorption energy values for vdW-DF2-C09 are 508 meV at a distance of 3.31 Å for

C6H6 and 565 meV at a distance of 2.84 Å for C6H6 on bilayer graphene where a

pristine graphene layer is on top of another pristine graphene layer (PP).

Organic molecules induce small degrees of curvatures on the layers of graphene layer

as also observed in Section 3.2.1. However, the distortion remains largely confined to

the first layer.

Furthermore, organic molecules are adsorbed on top of bilayer graphene where the

top layer of the bilayer has a single vacancy. The adsorption geometry is chosen to be

the one with the highest adsorption energy on VG (Section 3.2.2. In the rest of this

section, we will refer to the bilayer as PV, signifying the presence of a pristine layer
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(a) (b)

(c)

Figure 3.25: The adsorption energy curve of bilayer graphene with vdW-DF (a), vdW-
DF2-C09 (b), and Grimme-D2 (c).

together with a layer with a single vacancy.

(a) (b) (c)

Figure 3.26: The top view and the side view for optimized geometries of C6H6 on PP
for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).
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(a) (b) (c)

Figure 3.27: The top view and the side view for optimized geometries of C7H8 on PP
for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

The optimized geometries are shown in Figure 3.28 and Figure 3.30 and the adsorp-

tion energy values for vdW-DF2-C09 are 432 meV at a distance of 3.57 Å for C6H6

and 486 meV at a distance of 3.12 Å for C7H8. For spin-polarized calculations, the

adsorption energy values are calculated to be 462 meV at a distance of 3.28 Å for

C6H6 and 331 meV at a distance of 3.32 Å for C7H8 while their optimized geome-

tries are shown in Figure 3.29 and Figure 3.31 for C6H6 and C7H8, respectively. The

calculated spin magnetization is 1.24 µB and 1.27 µB per cell for C6H6 and C7H8,

respectively while spin magnetization is 1.34 µB per cell for PV. Interestingly, the

magnetization value is seen to decrease slightly upon adsorption of the molecule.

(a) (b)

Figure 3.28: The top view and the side view for optimized geometries of spin-
unpolarized C6H6 on PV for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

As another group of calculations, organic molecules are adsorbed on top of bilayer

graphene where the top layer of the bilayer has a divacancy. The adsorption geometry
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(a) (b)

Figure 3.29: The top view and the side view for optimized geometries of spin-
polarized C6H6 on PV for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(a) (b)

Figure 3.30: The top view and the side view for optimized geometries of spin-
unpolarized C7H8 on PV for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(a) (b)

Figure 3.31: The top view and the side view for optimized geometries of spin-
polarized C7H8 on PV for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).
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is chosen to be the one with the highest on DG (Section 3.2.3). In the rest of this

section, we will refer to the bilayer as PD, signifying the presence of a pristine layer

together with a layer with a divacancy.

The optimized geometries obtained after optimization calculations are shown in Fig-

ure 3.32 and Figure 3.33 and the adsorption energy values for vdW-DF2-C09 are 466

meV at a distance of 3.37 Å for C6H6 and 515 meV at a distance of 2.87 Å for C7H8.

(a) (b)

Figure 3.32: The top view and the side view for optimized geometries of C6H6 on PD
for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(a) (b)

Figure 3.33: The top view and the side view for optimized geometries of C7H8 on PD
for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

From the band structures displayed in Figure 3.34, it is observed that there is no

deviation around the K-point from bilayer graphene’s band structure (displayed on

top of Figure 3.34). For defective graphene, no deviation is observed around the

K-point of defective graphene’s band structure (displayed on top of Figure 3.35 and

Figure 3.37 ) as displayed in Figure 3.35 for PV and Figure 3.37 for PD.

Additional states from the molecules only fell on the conduction and valence parts

as observed for organic molecules on single layer graphene sheet (for PDOS plots,
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(1)

(2)

(3)

444 (a) (b) (c)

Figure 3.34: Band structure of (1) PP alone, (2) C6H6 on PP, and (3) C7H8 on PP for
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(1)

(2)

(3)

444 (a) (b) (c)

Figure 3.35: Band structure of (1) PV alone, (2) C6H6 on PV, and (3) C7H8 on PV
for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

see Figure 3.38 and Figure 3.39 for PP adsorbent Figure 3.40 and Figure 3.42 for PV

adsorbent, Figure 3.44 and Figure 3.45 for PD adsorbent).
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(1)

(2)

(3)

444 (a) (b) (c)

Figure 3.36: Band structure of (1) PV alone, (2) C6H6 on PV, and (3) C7H8 on PV
for spin-polarized vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).

(1)

(2)

(3)

444 (a) (b) (c)

Figure 3.37: Band structure of (1) PD alone, (2) C6H6 on PD, and (3) C7H8 on PD
for vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c).
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The charge density plots for adsorption on PP are presented in Figure 3.38 and Fig-

ure 3.39 for C6H6 and C7H8 (see Figure 3.40 and Figure 3.42 for PV, Figure 3.44

and Figure 3.45 for PD). The charge difference profiles are very similar to those for

the single layer graphene, as expected. Bader charge analysis shows there is 0.008 e

transfer from C6H6 to PP while 0.008 e is transferred from C7H8 to surface confirm-

ing the electron accepting characteristics of graphene-based surfaces. For PV, 0.006 e

donation from C6H6 is observed to the top layer as VG while 0.009 e is donated from

C7H8. Similar characteristics is observed with 0.013 e donation from C6H6 to the top

layer of PD while C7H8 donates 0.009 e to the surface.

(a) (b) (c)

Figure 3.38: PDOS and charge density plots of C6H6 on PP for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c).The isovalue is set to ±0.000095 Å−3.

(a) (b) (c)

Figure 3.39: PDOS and charge density plots of C7H8 on PP for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to ±0.0003 Å−3.
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(a) (b) (c)

Figure 3.40: PDOS and charge density plots of C6H6 on PV for spin-unpolarized
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to
±0.00035 Å−3.

(a) (b) (c)

Figure 3.41: PDOS and charge density plots of C6H6 on PV for spin-polarized vdW-
DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to±0.0002 Å−3.

In order to see the effect of the second layer of graphene on the adsorption energy,

the adsorption energy values for vdW-DF, vdW-DF2-C09 and Grimme-D2 are tabu-

lated in 3.4. As seen from Table 3.4, the adsorption energy is higher for both organic

molecules on bilayer graphene than the adsorption energy of organic molecules on

single layer graphene. From Table 3.4, with the existence of vdW-DF2-C09, an in-

teresting fact has been revealed that the presence of the second layer increases the

adsorption energy by approximately 70 meV for both molecules. For vdW-DF and

Grimme-D2, this difference is approximately 50 meV. Furthermore, adsorption ener-
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(a) (b) (c)

Figure 3.42: PDOS and charge density plots of C7H8 on PV for spin-unpolarized
vdW-DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to±0.0004
Å−3.

(a) (b) (c)

Figure 3.43: PDOS and charge density plots of C7H8 on PV for spin-polarized vdW-
DF (a), vDW-DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to±0.0004 Å−3.

gies of both molecules on divacancy defects are higher than being adsorbed on va-

cancy defect probably due to a higher degree of alignment, which results from the flat

geometry of the divacancy. Additionally, charge transfer values are tabulated with the

adsorption energy values and adsorption distances for organic molecules on bilayer

graphene and single layer graphene in Table 3.5 where vdW-DF2-C09 is employed.
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(a) (b) (c)

Figure 3.44: PDOS and charge density plots of C6H6 on PD for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to ±0.00013 Å−3.

(a) (b) (c)

Figure 3.45: PDOS and charge density plots of C7H8 on PD for vdW-DF (a), vDW-
DF2-C09 (b), and Grimme-D2 (c). The isovalue is set to ±0.00038 Å−3.
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CHAPTER 4

BORON DOPING TO DEFECTIVE GRAPHENE

In this chapter, we focus on one of the most commonly utilized dopants for graphene,

namely boron (B). Our motivation derives from the academic and technological im-

portance of doped graphene. The vacancy defect and substitutional B both result

in the displacement of the Fermi level. Introducing them both in the graphene net-

work may provide us with a potential tool to controllably engineer the electronic

properties of graphene. For this purpose, we present a systematic study ofthe mag-

netization characteristics of B doped defective graphene and the effect of the details

of substitutional doping of boron in the defective graphene sheet by changing the

doping configuraton. This chapter can be viewed as a preliminary study for the in-

vestigation of adsorption of benzene derivatives on B doped defective graphene to

be presented in Chapter 5. To act as our undoped substrate, we choose two types

of defective graphene sheets with a single mono vacancy and a single divacancy de-

fect. In all of the calculations presented in this chapter, vdW dispersion forces are

included with vdW-DF2-C09 since this exchange-correlation protocol for the vdW

interactions produces the closest agreement for graphene-based structures [159, 201]

and spin-polarization is included for the calculations of B doped vacancy-defected

graphene.

4.1 Previous Work

Pristine graphene has limited usage in electronic devices since it has zero band gap,

and it is important to have tunable band gap for device applications. Various ap-
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proaches including chemical doping have been proposed for band gap engineering of

graphene so as to improve their semiconducting properties. Furthermore, chemical

doping of elements in graphene gives rise to useful applications such as superca-

pacitance ability [202], fuel cells [203], batteries [58] and water splitting [204, 205],

oxygen reduction reaction (ORR) [206], hydrogen evolution reaction (HER), field

emission [207], hydrogen storage [208], solar cells [209], battery applications [210]

and anode materials for lithium ion batteries (LiBs) [211, 212].

Experimental and theoretical studies show the possibility of producing p-type and

n-type semiconducting graphene for manipulating the band structure [197]. P-type

dopants such as aluminum (Al), boron (B), hydrogen (H), fluorine (F), oxygen (O),

tetracyanoethylene (TCNE) and n-type dopants such as nitrogen (N), phosphorus (P)

and sulphur (S) have been extensively studied earlier [213–218] in the form of sub-

stituted and covalently bonded foreign atoms [60, 212].

Among the dopants described above, B and N are the most commonly studied ones

due to their comparable sizes and atomic masses with carbon. Such chemically doped

materials have unique properties; for example, N is a good electron-donor while B is

a good electron-acceptor which allows graphene to be a versatile material which can

be used in many energy-related areas [63]. Lherbier et al. [216] studied the charge

mobilities and conductivity of the system by doping graphene with different concen-

trations of B and N impurities while Wu et al. [219] studied the band gap opening in

graphene by doping B and N separately, and Deng et al. [220] studied the band gap

opening in graphene by codoping with B and N [197].

The heteroatom in our focus is B which is a unique element in terms of electron

deficiency and Lewis acidity. B doping causes the Dirac point to move below the

Fermi level [56, 220] and offers a wide variety of functionalization in chemical sens-

ing [221], nanoelectronics [222, 223], photocatalysis [224] and battery electrodes

[225, 226]. In literature, several synthesis methods, like the chemical vapour de-

position (CVD) with diborane (B2H6), boron trichloride (BCl3), and phenylboronic

acid (PhB(OH)2) [224, 225, 227–229], the reactive microwave plasma method with

trimethylborane (B(CH3)3) [230], arc-discharge process [227], hydrothermal method

[231] have been reported [212, 226]. From the studies of Faccio et al. [232], it was
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reported that the process of boron doping was unfavorable for pristine graphene while

it turned to be favorable when B atoms fill in already existing carbon vacancies.

Despite all the available work, a systematic study of exact role of concentration and

position of dopant atoms in modulating the band gap of graphene has not appeared

in the literature yet. In the rest of this chapter, we first present a brief investigation

of the magnetic properties of B defective graphene, as the magnetic state of graphene

defects may depend sensitively on the calculation parameters. Once an unambigious

understanding of the magnetic behavior is achieved, we proceed with the structural

and electronic properties of these composite defects.

4.2 Magnetization of Boron Doped Defective Graphene

4.2.1 Magnetization of Boron Doped Vacancy-Defected Graphene

When a vacancy is formed, two of the three neighboring atoms form a weak bond,

leaving out the third neighbor as seen in Figure 2.4. This unsaturated atom may

further break the symmetry by means of an out-of-plane displacement or remain at the

same level as the graphene sheet. The extent of the out-of-plane displacement depends

on the spin state. In our preliminary calculations (Section 2.3.2), the magnetization

of the single vacancy in graphene was calculated to be 1.43 µB per cell in the state

where the unsaturated atom is 0.07 Å above the graphene plane.

In the case of the unsaturated C atom replaced by B (see Figure 4.1), the energy of

the system depends very sensitively on the magnetization state. A simple geometry

optimization may miss the correct ground state of the system. In order to shed light on

this issue, we conduct a series of geometry optimizations with fixed magnetization.

The energy as a function of the magnetization state is shown in Figure 4.2. In Fig-

ure 4.2, two sets of calculations are presented. The red curve corresponds to an initial

configuration where the B atom starts out at the same level as the graphene sheet.

The blue curve, on the other hand, corresponds to an initial configuration where the B

atom is initially displaced by 0.4 Å. Both configurations, however, result in very sim-

ilar final states. In either case, the configuration corresponding to the minimum has
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a magnetic moment of about 0.9 µB per cell and the B atom is only 0.01 Å elevated

with respect to the surface. When the optimized coordinates from the µ = 0.9µB cal-

culation is subjected to a second geometry optimization with free magnetization, the

magnetization remains around 0.94 µB per cell.

Figure 4.1: The geometry of the B doped vacancy-defected graphene (BVG).

Figure 4.2: The total energy (in eV) vs. total magnetization (in µB) for BVG. The
energy values are referenced to the minimum energy.

4.2.2 Magnetization of Boron Doped Divacancy-Defected Graphene

When a divacancy is formed, atoms around the divacancy rearrange to form bonds.

As the strength of the bonds are different the atoms may once again further break

the symmetry by means of some sort of distortion. To analyze the dependence of

optimized geometry on the spin state, the same analyses are done as explained in the

previous section. In our preliminary calculations (Section 2.3.2), the magnetization
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of the divacancy in graphene is found to be 0 µB with the unsaturated atoms at the

same level as the graphene sheet.

In the case of the replacement by B of one of the C atoms in the immediate vicinity

of the void, as shown in Figure 4.3, we conduct a series geometry optimizations with

fixed magnetization. The energy as a function of the magnetization state is shown in

Figure 4.4. Similar to Figure 4.2, the red curve represents the calculations of BVG

where B is initially planar while the blue curve is for the configuration of B being

displaced by 0.4 Å. In either case, the configuration corresponding to the minimum

has a magnetic moment of about 0 µB, and the B atom is only 0.01 Å elevated with re-

spect to the surface. When the optimized coordinates from the µ=0 µB is subjected to

a second geometry optimization with free magnetization, the magnetization remains

around 0 µB per cell.

Figure 4.3: The geometry of the B doped divacancy-defected graphene (BDG).

Figure 4.4: Total energy (in eV) vs. total magnetization (in µB) for BDG. The energy
values are referenced to the minimum energy.
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4.3 Electronic Properties of Boron Doped Defective Graphene

In this section, we first focus on VG followed by a study of DG. For B doping, the

formation energies are calculated from:

E f orm = EB−doped−Epr−gr +µCarbon +µBoron (4.1)

where E f orm is the formation energy, EB−doped is the energy of the B doped defective

graphene while µCarbon is the chemical potential of the C atom which is taken as

Epr−gr/N where N is the number of C atoms in the unit cell of graphene. µBoron is

the chemical potential for B as the energy per atom. There are several crystal forms

of B and among them, only α-rhombohedral (α-B), β -rhombohedral (β -B), and γ-

orthorhombic boron (γ-B) have been currently established as pure phases [233, 234].

With the form of B, chemical potential and accordingly formation energy can change.

In literature, there are several studies differing in the formation energies depending on

the crystal form of B used as referecnce. Panchakarla et al. [57] studied B doping both

experimentally and theoretically and estimated the energy of formation by utilizing

gaseous form of dopant. With this estimation, formation energy of pristine graphene

was 5.6 eV/B atom, suggesting the possibility of B doped graphene synthesis. Besides

that, Faccio et al. [232] expressed µBoron=−77.06 eV from the previous studies [235]

where B was in its β -rhombohedral structure. For B doping to 6x6 pristine graphene,

formation energy was calculated to be 0.919 eV while it was -1.582 eV for B doping

to 6x6 VG where B is doped in vacancy with symmetric disposition [232]. In another

study done by Hardikar et al. [236], the formation energies were expressed as -2.30

eV for one B doping to VG and -1.25 eV for one B doping to DG without giving

information about the crystal structure of B. In our work, we take B in its gaseous

form and formation energies are calculated to be -2.99 eV and -2.25 eV for one B

doping to VG and DG, respectively which are in parallel agreement with previous

results of Hardikar et al. [236].
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4.3.1 Boron Doped Vacancy-Defected Graphene

Starting out with the optimized geometry of VG, we study two groups for configura-

tions. In the first group we remove one C atom from the optimized geometry of VG

and replace it with B while in the second group we remove two C atoms and replace

them with B. In one of the configurations (labeled as E), out of plane displacement

of B by 0.2 Å is examined. In order to see the effect of the B position, the opti-

mization calculations are performed for different configurations of these groups. The

optimized configurations are shown in Figure 4.5.

Upon single B doping, the atoms of VG remain coplanar, while the bond length of the

two C–B bonds around B slightly increase by 0.15 Å to 1.54 Å. In the case of double

B-doped graphene, C-B bonds lengths increase by 0.11 Å to 1.50 Å and the distance

between B-B shrinks by 0.21 Å to 2.30 Å in case of two B doping. Additionally, out

of plane doped B becomes coplanar at the end of optimization calculations.

Figure 4.5: The optimized configurations of BVG.

During calculations, an initial spin-polarization is applied to C in different optimiza-

tion calculations where the starting magnetization is set to 0.2 µB. After geometry

optimization, for the configuration utilized in Section 4.2.1, the resulting magnetiza-

tion is calculated to be 0.94 µB per cell confirming our previous results obtained in

Section 4.2.1.
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Additionally, we study B introduced as an adatom close to the defect where B is

placed 1.5 Å away from VG surface. The initial and the optimized geometries are

displayed in Figure 4.6. After optimization, B atoms become nearly coplanar and

forms three C-B bonds resulting in a configuration of B doped pristine graphene with

1.49 Å C-B bond length while the resulting magnetization is calculated to be 0 µB.

(a) (b)

Figure 4.6: The initial and the optimized configurations of BVG where B is doped as
an adatom.

For the configurations shown in Figure 4.5 and 4.6, the magnetization values of BVG

are tabulated in Table 4.1 with the initial and the optimized displacement (in z posi-

tion) of B atoms. As observed from Table 4.1, resulting magnetization is 0 µB per

cell for two B introduced configurations while it is 0.94 µB per cell when one B is

placed planlarly. Furthermore, for B atom displaced by 0.02 Å initially, even if it

becomes nearly planar at the end of optimization, magnetization is 0.75 µB per cell

different from the initially planar B doped configurations. For B as an adatom, since

the resulting configuration is B doped pristine graphene, magnetization is 0.00 µB per

cell as expected.

When compared with the band structure of bare VG presented in Figure 4.7, VG with

B impurity is positively doped which is reflected in the band structure as an upward

shift. For the band structure, red lines in Figure 4.7 represent the majority spin while

blue lines represent the minority spin. The band gap opening increases with increased

concentration of B and for B doping as an adatom, the band structure is similar with

the band structure of bare PG with Fermi level being shifted downwards. Addition-
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Table 4.1: The displacement of B atoms and total magnetization (µB per cell) of
optimized BVG. The configurations of BVG are displayed in Figure 4.5 and 4.6.

Label initial z-position
of B (Å)

optimized z-position
of B (Å)

µB

per cell

A 0.00 0.00 0.94

B 0.00 0.00 0.94

C 0.00, 0.00 0.00, 0.00 0.00

D 0.00, 0.00 0.00, 0.00 0.00

E 0.20 0.02 0.75

adatom 1.50 0.07 0.00

ally, B doping has very small contribution on total states of BVG around the Fermi

level and in the conduction band as presented in the PDOS plots (see Figure 4.8).

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.7: Band structure of PG (a), spin-polarized VG (b), BVG with configuration
labeled as A (c), B (d), C (e), D (f), E (g) and adatom (h).

75



(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.8: PDOS plot of PG (a), spin-polarized VG (b), BVG with configuration
labeled as A (c), B (d), C (e), D (f), E (g) and adatom (h).

4.3.2 Boron Doped Divacancy-Defected Graphene

Similarly to the procedure explained in Section 4.3.1, the initial configurations are di-

vided into two groups involving the replacement of one B atom with one C atom and

two B atoms with two C atoms with the optimized geometry of DG taken as the start-

ing point. Furthermore, an additional configuration (labeled as G) with out of plane

introducing of B by 0.2 Å is examined. Finally, we study one more configuration

where we place B at the center of the defect in two configurations at the same level

as the graphene sheet and 2.5 Å away from the graphene sheet. In order to see the

effect of B position, optimization calculations have been performed for these several

configurations and optimized configurations are shown in Figure 4.9.

Upon B doping, the atoms of DG remain coplanar, while those B atoms placed with an

initial out-of-plane displacement result in distortion of the planar graphene sheet, and
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Figure 4.9: The optimized configurations of BDG.

B settles approximately at the same level as C atoms. When B is placed at the center

of the defect, the resulting configuration is BVG with coplanar B while B remains at

the center of distorted DG and 2.5 Å out of plane displacement reduces to zero.

A further optimization calculation is performed for the two B atoms doping case

by applying positive starting magnetization to one of the B atoms while negative

starting magnetization to the other B atom in order to explore the possibility of an

antiferromagnetic ground state. As a result of calculations, the magnetization is found

to be 0 µB which is in good agreement with the results presented in Section 4.2.2.

Similar to the B doping as an adatom to VG, B atoms become almost coplanar with

a distance of only about 0.2 Å away from the surface while the C atoms around B

are slightly distorted from the planar surface by 0.5 Å. Three C-B bonds are formed

resulting in a configuration of VG with a C-B bond lengths of 1.51, 1.58 and 1.61 Å
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in addition to small shanges in C-C bond lengths and positions of C around the defect

(see Figure 4.10).

(a) (b)

Figure 4.10: The initial and the optimized configurations of BDG where B is doped
as an adatom.

For B doped as an adatom, we conduct a series geometry optimizations with fixed

magnetization. The energy as a function of the magnetization state is shown in Fig-

ure 4.11 with the magnetization of BVG shown in Figure 4.2. For magnetization

greater than 1 µB per cell, state of the BVG-adatom changes and show similar trend

with BVG.

Figure 4.11: Total energy (in eV) vs. total magnetization (in µB) for where B is doped
as an adatom. The energy values are referenced to the minimum energy.
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For the configurations displayed in Figure 4.9 and Figure 4.10, the magnetization val-

ues of BDG are tabulated in Table 4.2 with the initial and the optimized displacement

(in z position) of B atoms. For both BVG and BDG, charge transfer takes place from

B to C.

Table 4.2: The displacement of B atoms and total magnetization (µB per cell) of
optimized BDG. The configurations of BDG are displayed in Figure 4.9 and 4.10.

Label initial z-position
of B (Å)

optimized z-position
of B (Å)

µB

per cell

A 0.00 0.00, 0.00 0.00

B 0.00 0.00, 0.00 0.00

C 0.00 0.00 0.00

D 0.00 0.00 0.00

E 0.00 0.00 0.00

F 0.00 0.00 0.00

G 0.20 0.02 0.00

H 0.00 0.00 0.00

I 2.50 0.01 0.00

adatom 1.50 0.20 0.00

After optimization calculations, the band structure and PDOS calculations are per-

formed. When compared with the band structure of bare DG presented in Figure 4.12,

BDG has a band structure with an upward shift. The band gap opening increases with

the increased concentration of B and for B doping as an adatom, the band structure

is similar with the band structure of bare VG while the Dirac point moves below the

Fermi level. Additionally, similar with BVG, B doping has very small contribution

on total states of BDG as presented in the PDOS plots (see Figure 4.13).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l)

Figure 4.12: Band structure of spin-unpolarized VG (a), DG (b) and BVG with con-
figuration labeled as A (c), B (d), C (e), D (f), E (g), F (h), G (i), H (j), I (k) and
adatom (l).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l)

Figure 4.13: PDOS plot of spin-unpolarized VG (a), DG (b) and BVG with configu-
ration labeled as A (c), B (d), C (e), D (f), E (g), F (h), G (i), H (j), I (k) and adatom
(l).
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CHAPTER 5

GRAPHENE FUNCTIONALIZATION WITH BENZENE

DERIVATIVES

In this chapter, as a means of extending the degree of control over functionalization,

we focus on organic adsorbates for additional control of the electronic properties of

the boron (B) doped vacancy-defected graphene sheets. For this purpose, we study

the geometry and electronic structure of benzene derivatives as organic adsorbates. In

order to probe a wide range of electronic properties, we sample molecules from dif-

ferent subgroups such as hydrocarbon (toluene), halogen-containing (fluorobenzene),

nitrogen-containing (benzonitrile) and oxygen-containing (benzoic acid) derivatives.

VdW dispersion forces with vdW-DF2-C09 are included in order to treat molecule-

graphene interaction. Spin polarization is included in all calculations.

5.1 Previous Work

Graphene functionalization attracted considerable interest with halogen containing

molecules such as hydrofluoric acid (HF) [241], hydrogen cyanide (HCN) [242], hy-

drogen chloride (HCl) [243] and nitrobenzene (C6H5NO2) [244, 245] for their po-

tential applications [8, 246]. They were also well described by theoretical calcula-

tions [247]. Moreover, introducing metal atom dopants such as nickel (Ni), cop-

per (Cu), aluminum (Al) and iron (Fe) has been reported to enhance the molecule

graphene interaction, which is highly important for sensing devices [178, 179, 248].

Leenaerts et al. [70, 249] studied the charge transfer mechanisms of small molecules

adsorbed on graphene, such as ammonia (NH3) and nitrogen dioxide (NO2). It
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was reported that when molecules adsorb on graphene, charge transfer occurs. In

particular, polycyclic aromatic hydrocarbons (PAH) [250] are rather well studied

[251]. Corno et al. [252] studied the effective potential energy surfaces for the in-

teraction of C6H6, naphthalene (C10H8), coronene (C24H12), and ovalene (C32H14),

with graphene. Caciuc et al. [195] studied the bonding mechanism of C6H6, tri-

azine (C3N3H3) and borazine (B3N3H6) adsorbed on graphene and a single boron ni-

tride (BN) sheet reaching the conclusion that there is no charge transfer between the

molecules and graphene sheets while the strength of the molecule–surface interaction

corresponds to a strong physisorption. In another study, the local dipole moments in

PAHs were found to have a strong effect on the surface charges of graphene. As an ex-

ample, B3N3H6 was found to induce a band gap of 62.9 meV [253]. Ganji et al. [244]

studied the adsorption of three benzene derivatives namely aniline (C6H5NH2), ni-

trobenzene (C6H5NO2), and toluene (C7H8) on carbon nanotubes (CNT) and ob-

served that benzene (C6H6) binds more strongly to the sidewall of the CNTs when

compared with the other H-capped molecules. On the subject of benzene derivatives,

studies have been widened to phenol (C6H6O), fluorobenzene (C6H5F) and benzoni-

trile (C7H5N) [254]. Despite all such work for graphene functionalization, study

of chemical doping on defective graphene sheets are rarely observed. Furthermore,

study for additional doping on the B-doped defective graphene sheets is still missing.

5.2 Molecules

Molecular structures of benzene derivatives studied in this Chapter are given in Fig-

ure 5.1. Additionally, two parameters that are important for determining the disper-

sion portion of the vdW interactions, namely the isotropic polarizabilities (1/3 of the

trace of the polarizability tensor) and dipole moments of the gas phase molecules are

calculated in the DFT framework using the GAUSSIAN (G09) software [255] and

collected in Table 5.1.
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(a) (b) (c)

(d) (e)

Figure 5.1: Geometries of benzene (C6H6) (a), toluene (C7H8) (b), fluorobenzene
(C6H5F) (c), benzonitrile (C7H5N) (d) and benzoicacid (C7H6O2)(e). C: gray, H:
blue, F: green, N: purple, and O: red.

Table 5.1: Isotropic polarizabilities (α), and dipole moments (µ) of the gas phase
molecules.

α (Å3) µ (Debye)

C6H6 10.28 0.00

C7H8 12.30 0.41

C6H5F 10.29 1.56

C7H5N 12.89 4.71

C7H6O2 13.40 2.15

5.3 Molecular Doping to B Doped Defective Graphene

As a preliminary study, C6H6 and C7H8 are adsorbed on B-doped vacancy-defected

graphene (BVG) in order to observe the effect of B doping on the adsorption energy

and electronic structure. Adsorption geometries with the highest adsorption energies

presented in Section 3.2.2 are employed and their top view and side view of optimized

geometries are presented in Figure 5.2 and Figure 5.3 for C6H6 and C7H8 with spin-

polarized and spin-unpolarized conditions, respectively.

In the spin-polarized calculations, magnetization is found to be 0 µB per cell and

85



(a) (b)

(c) (d)

Figure 5.2: Top view and side view of C6H6 on VG with spin-polarized vdW-DF2-
C09 (a), and spin-unpolarized vdW-DF2-C09 (b), C6H6 on BVG with spin-polarized
vdW-DF2-C09 (c), and spin-unpolarized vdW-DF2-C09 (d).

it can therefore be concluded that there is no effect of magnetization for C6H6 and

C7H8 adsorption on BVG. In the optimized structure, C6H6 has an adsorption energy

of 776 meV while C7H8 has an adsorption energy of 819 meV. These values are 391

meV and 425 meV for adsorption of C6H6 and C7H8 on vacancy-defected graphene

(VG), respectively (see Table 3.2). In Figure 5.2 and Figure 5.3, B is at the center

of the defect in the optimized structure where B causes increased adsorption energy

by the additional organic molecule−B interaction (an increase of 380-390 meV) with

respect to bare VG. Furthermore, B doping on VG results in decreased curvature

effect. For the band structure of spin-polarization VG, red lines in Figure 5.4 and

Figure 5.5 represent the majority spin while blue lines represent the minority spin.

The band structure of BVG/molecule system does not deviate significantly from the
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(a) (b)

(c) (d)

Figure 5.3: Top view and side view of C7H8 on VG with spin-polarized vdW-DF2-
C09 (a), and spin-unpolarized vdW-DF2-C09 (b), C7H8 on BVG with spin-polarized
vdW-DF2-C09 (c), and spin-unpolarized vdW-DF2-C09 (d).

case of VG.

As seen in the PDOS plots shown in Figure 5.6 and Figure 5.7, additional states from

the molecules only fall on the conduction and valence bands similarly to the PG cases

investigated previously. In the charge density difference plots, red color represents

regions with charge depletion while blue color represents those with charge accumu-

lation. In this case, the portions of the molecule closer to the elevated atom lose some

electrons to both its own π orbitals and the lone atom resulting in asymmetric charge

transfer. For the spin-unpolarized case, from the Bader charge analysis, the charge

transfer between BVG and the molecule is calculated to be negligibly small for the
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(a) (b)

(c) (d)

Figure 5.4: Band structure of C6H6 adsorption on spin-unpolarized VG (a), spin-
unpolarized BVG (b), spin-polarized VG (c), and spin-polarized BVG (d).

(a) (b)

(c) (d)

Figure 5.5: Band structure of C7H8 adsorption on spin-unpolarized VG (a), spin-
unpolarized BVG (b), spin-polarized VG (c), and spin-polarized BVG (d).
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physisorbed species where C6H6 donates a charge of 0.001 e to BVG while donation

is 0.007 e for C7H8 when vdW-DF2-C09 is employed.

(a) (b)

Figure 5.6: PDOS and charge density plots of C6H6 on spin-polarized BVG (a), and
spin-unpolarized BVG (b). The isovalue is set to ±0.0003 Å−3.

(a) (b)

Figure 5.7: PDOS and charge density plots of C7H8 on spin-polarized BVG (a), and
spin-unpolarized BVG (b). The isovalue is set to ±0.00045 Å−3.
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5.3.1 Fluorine Containing Benzene Derivative

As a prototype for halogen-containing benzene derivatives, we focus on the inter-

action of fluorobenzene (C6H5F) with BVG. We explore several possibiities whose

initial and optimized geometries are presented in Figure 5.8.

(a) (b) (c)

Figure 5.8: Initial (a), and optimized configurations of C6H5F doped BVG with vdW-
DF2-C09 (b), and without vdW-DF2-C09 (c).

To probe the possibility of functionalization of graphene through covalent bonds, we

generate initial configurations that could encourage covalent bonding. As seen from

Figure 5.8, F-B and F-C covalent bonds are broken at the end of structure optimization

calculations and C6H5F is non-covalently adsorbed on the BVG sheet. Furthermore,

it is observed that C6H5F induces small degrees of curvatures on the BVG sheet

resulting in a distorted structure where the distortion is more observable when vdW-

DF2-C09 is used.

The adsorption heights are taken as the vertical separation of the average value in

the z-direction of C coordinates in the BVG sheet and the F atom of the organic
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molecule. The adsorption distances are between 2.66 Å and 3.32 Å, with adsorption

energies consistent with an interaction somewhat stronger than vdW forces for a typ-

ical, perpendicularly adsorbed species but weaker than the energy of a covalent bond.

This result indicates that covalent bonding for this molecule is unlikely although some

level of ionic interaction is plausible. We further study a single parallel configruation

where C6H5F is placed on BVG with the distance between F and B atoms is set to

2.70 Å. Initial and optimized geometries of parallel adsorption is presented in Fig-

ure 5.9 where the F-B distance increases to 3.30 Å with the calculations including

vdW dispersion forces while it is 4.01 Å within the conventional PBE approximation.

Calculated adsorption heights, adsorption energies with the magnetization values of

the optimized configurations and charge transfer values are tabulated in Table 5.2.

Interestingly, and in support of the ionic character of the bond in the perpendicular

calculations, the adsorption energy for the parallel case is similar to some of the per-

pendicular cases. No tilting of the molecular plane is observed in the case of parallel

configurations.

(a) (b) (c)

Figure 5.9: Initial (a), and optimized configuration of parallel adsorption of C6H5F
on BVG with vdW-DF2-C09 (b), and without vdW-DF2-C09 (c).
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We finally explore C6H5F on top of B where B is positioned as an adatom close to

the defect placed 1.5 Å away from VG surface. Initial and optimized geometries

are given in Figure 5.10. The resultant magnetization is 1.00 µB per cell when vdW

dispersion forces are included while it is 0.94 µB per cell when they are excluded.

After optimization, the B atom forms three C-B bonds and approaches the VG surface

with distances of 0.80 Å and 0.60 Å for calculations including and excluding vdW

interactions, respectively. During optimization, the B atom migrates downwards, into

the graphene vacancy, while at the same time, the F atoms dissociates to form an

B-F bond. This leaves behind a phenyl group (C6H5) whose adsorption energy is

calculated to be 106 meV. This adsorption energy is reduced all the way down to 14

meV when vdW dispersion forces are excluded which results in a conclusion that 92

meV adsorpiton energy is related with vdW dispersion forces while the rest is due to

the ionic interactions confirmed with the charge density difference analysis tabulated

in Table 5.2

(a) (b) (c)

Figure 5.10: Initial (a), and optimized configuration of C6H5F on BVG with vdW-
DF2-C09 (b), and without vdW-DF2-C09 (c) where B is doped as an adatom.

As tabulated in Table5.2, the molecule loses electron and becomes a cation while the

band gap opening shows similar characteristics with the band structure of BVG (see

Figure 4.7). Additionally, the PDOS plots shown in Figure 5.11 are similar to the

PDOS plot of BVG (see Figure 4.8). From the PDOS plot of adatom, it is observed

that the contribution of F states to total DOS is negligible while C6H5 group has

considerable effect.
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(a)

(b)

(c)

(d)

Figure 5.11: Band structure, PDOS and charge density plots of C6H5F on BVG with
differents configurations labeled as F1-1 (a), F2-1 (b), F3-1 (c), and adatom (d) where
vdW dispersion forces are included. The isovalue is set to ±0.0003 Å−3.

5.3.2 Nitrogen Containing Benzene Derivative

For nitrogen (N) containing benzene derivatives, benzonitrile (C7H5N) is the chosen

molecule as a prototype and the interaction of the molecules with BVG is discussed

in this Section. Initial and optimized geometries of C7H5N doped BVG are presented

in Figure 5.13.

As seen from Figure 5.13, contrary to C6H5F on BVG, covalent N-B and N-C bonds

are formed with bond distances of 1.64 Å and 1.43 Å, respectively. Tha adsorption

energy is calculated to be 3.6 eV indicating the strength of covalent bonds. For the

hollow site (label:N1), C7H5N induces distortion of sheet towards itself while the
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(a)

(b)

(c)

(d)

Figure 5.12: Band structure, PDOS and charge density plots of C6H5F on BVG with
differents configurations labeled as F1-2 (a), F2-2 (b), F3-2 (c), and adatom (d) where
vdW dispersion forces are excluded. The isovalue is set to ±0.0004 Å−3.

molecule approches the subtrate and tilts.

On the other hand, C7H5N adsorption on top of B (label:N2) resulting in out-of-plane

displacement of the B atom without any broken bond in addition to the tilting of the

molecule towards the plane. Calculated adsorption heights with respect to the distance

between N and the surface, adsorption energies with the magnetization values of the

optimized configurations are tabulated in Table 5.3.

Finally, we once again consider the adsorption of the molecule on adatom B placed

1.5 Å away from VG surface. Initial and optimized geometries are displayed in Fig-

ure 5.14. During optimization, B atom becomes coplanar and forms three C-B bonds

resulting in a configuration of B doped pristine graphene with 1.49 Å C-B bond length
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(a) (b) (c)

Figure 5.13: Initial (a), and optimized configurations of C7H5N doped BVG with
vdW-DF2-C09 (b), and without vdW-DF2-C09 (c).

Table 5.3: Adsorption distances, energies and magnetization (µB per cell) of C7H5N
on BVG.

Label Configuration d [Å] E [meV] µB /cell

N1 N1-1 hollow, with vdW 0.34 3585 0.98
N1-2 hollow, without vdW 0.42 3220 0.98

N2 N2-1 on top B, with vdW 2.19 882 0.69
N2-2 on top B, without vdW 2.23 99 -0.01

adatom with vdW 3.22 82 0.00
without vdW 3.43 5 0.00

and non-covalently adsorbed C7H5N while the resulting magnetization is calculated

to be 0 µB. The adsorption heights are calculated to be 3.22 Å with 82 meV ad-

sorption energy and 3.43 Å with 5 meV for with and without vdW dispersion forces,

respectively. Furthermore, with Löwdin charge analysis, it is calculated that 0.556

e donation occurs from C7H5N to surface when vdW dispersion forces are included

while the magnitude of charge transfer is 0.565 e for vdW excluded case. The band

structure (see Figure 5.15e and 5.15f) is similar to band structure of B doped pristine

graphene displayed in Figure4.7 while in the PDOS plot, the peak around the Fermi

level indicates the presence of pristine graphene structure.
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(a) (b) (c)

Figure 5.14: Initial (a), and optimized configuration of C7H5N on BVG with vdW-
DF2-C09 (b), and without vdW-DF2-C09 (c) where B is doped as an adatom.

Different from previous plots, red lines in Figure 5.15d represent the minority spin

while blue lines represent the majority spin since the resulting magnetization is neg-

ative as tabulated in Table 5.3. The band structure of system does not deviate signif-

icantly from the case of VG. Additionally, the isosurfaces display the characteristics

of covalent bonding in the charge density difference plots displayed in Figure 5.15.

5.3.3 Oxygen Containing Benzene Derivative

Finally, benzoic acid (C7H6O2) is chosen as a representative of oxygen (O) containing

benzene derivatives. We study three configurations presented in Figure 5.16.

As seen from Figure 5.16, in the case of adsorption on the hollow site (label:O1),

the O atom of C7H6O2 detaches from the molecule, forming a bond with B and C

resulting in a graphene sheet co-doped with B and O while small degrees of curvature

is observed on the BVG sheet resulting in a distorted structure where the distortion

is more pronounced for the vdW-DF2-C09 calculation. The benzaldehyde (C7H6O)

fragment is left behind at an adsorption height of 2.84 Å with an adsorption energy of

579 meV in the presence of vdW forces. When vdW forces are ignored, the distance

is 3.05 Å with an adsorption energy of 216 meV.

For C7H6O2 adsorption on top of B (label:O2), the O-H bond is broken at the end of

optimization and H forms a bond with the C atom of the BVG sheet with an out-of-

plane displacement. VdW dispersion forces effect the direction of this displacement

as H causes positive value for displacement and becomes closer to the organic dopant
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.15: Band structure, PDOS and charge density plots of C7H5N on BVG with
differents configurations labeled as N1-1 (a), N1-2 (b), N2-1 (c), N2-2 (d), adatom
(e), and adatom w/o vdW (f). The isovalue is set to ±0.00015 Å−3.

when vdW is included while it gets far from the dopant when vdW is excluded.

Furthermore, the O-C bond is broken when C7H6O2 is placed on top of C (label:O3)
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(a) (b) (c)

Figure 5.16: Initial (a), and optimized configurations of C7H6O2 doped BVG with
vdW-DF2-C09 (b), and without vdW-DF2-C09 (c).

and it is non-covalently adsorbed on the BVG sheet by inducing small degrees of

curvatures on BVG sheet where the distortion is more apparent for vdW-DF2-C09 in-

cluded geometries. The adsorption height is calculated for O1 and O3 configurations

by taking vertical separation of the average value in the z-direction of C atoms in the

BVG sheet and the C atom bonded to O atom of the organic molecule. Calculated

adsorption distances by calculating the vertical distance between single O (not having

O-H bond) and the surface (for hollow site, it is taken as the distance of broken C-O

bond), adsorption energies with the magnetization values of the optimized configu-

rations and charge transfer values are tabulated in Table 5.4. The surprisingly large

difference in the spin polarization is possibly due to the existence of nearby energy

minima, which increase in number when vdW interactions are introduced.
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Similar with the previous sections, we investigate the adsorption of C7H6O2 on top

of B. Initial and optimized geometries are given in Figure 5.17. During optimization,

B atom becomes coplanar and forms three C-B bonds resulting in a configuration of

B doped pristine graphene with 1.49 Å C-B bond length and non-covalently adsorbed

C7H6O2 while the resulting magnetization is calculated to be 0 µB. By calculating the

vertical separation of the average value in the z-direction of C atoms in BVG sheet

and the O atom closest to the BVG sheet, the adsorption height is calculated to be 2.92

Å with 16 meV adsorption energy and 3.31 Å with 155 meV when vdW dispersion

forces are included and excluded, respectively.

(a) (b) (c)

Figure 5.17: Initial (a), and optimized configuration of C7H6O2 on BVG with vdW-
DF2-C09 (b), and without vdW-DF2-C09 (c) where B is doped as an adatom.

The band structure of the system given in Figure 5.18 and Figure 5.19 does not deviate

significantly from the case of VG. From the PDOS plot of hollow site, it is observed

that the contribution of O being in the BVG network after the geometry optimization

to total DOS is negligible while C7H6O has considerable effect.
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(a)

(b)

(c)

(d)

Figure 5.18: Band structure, PDOS and charge density plots of C7H6O2 on BVG
with differents configurations labeled as O1-1 (a), O2-1 (b), O3-1 (c), and adatom (d)
where vdW dispersion forces are included. The isovalue is set to ±0.00025 Å−3.

102



(a)

(b)

(c)

(d)

Figure 5.19: Band structure, PDOS and charge density plots of C7H6O2 on BVG
with differents configurations labeled as O1-2 (a), O2-2 (b), O3-2 (c), and adatom (d)
where vdW dispersion forces are excluded. The isovalue is set to ±0.00012 Å−3.
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CHAPTER 6

CONCLUSION

In this thesis, we present a density functional theory investigation of graphene func-

tionalization by means of doping, introduction of defects and adsorbates. We explore

the complex interplay between defects, dopants and adsorption of organic molecules.

To test our calculation parameters, we perform a series of benchmark calculations

where we examine the structural and electronic properties of graphene. For pristine

graphene (PG), the bond length is calculated to be 1.4215 Å with very little variation

between different exchange-correlation functionals. For vacancy-defected graphene

(VG), one of the C atoms surrounding the vacancy undergoes an out of plane dis-

placement of about 0.7 Å resulting in a distorted structure while the remaining two

atoms surrounding the vacancy are at a distance of 2.1 Å. The Fermi point appears at

the Γ point due to zone folding of PG and for VG, spin polarization lifts the degen-

eracies while the Fermi level is depressed below the original location similarly with

divacancy-defected graphene (DG).

In the first chapter, the adsorption characteristics of benzene (C6H6) and toluene

(C7H8) on PG, VG and DG are explored. In order to see the effect of different

vdW corrections and functionals on adsorption geometry, adsorption energy and band

structure, two different vdW functionals are used, namely vdW-DF, vdW-DF2-C09

and one vdW correction is used, namely Grimme-D2. Several configurations are ex-

plored to determine the most stable sites and after optimization it is observed that

the preferred geometry of C6H6 and C7H8 molecule on graphene is a parallel config-

uration for all exchange-correlation functionals. In its optimized structure, C6H6 is

located at a distance of 3.30 Å away from PG and the adsorption energy is 441 meV
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while C7H8 is located at a distance of 2.93 Å and the adsorption energy is 498 meV

within vdW-DF2-C09. The results indicate that vdW-DF2-C09 exchange-correlation

protocol for the vdW interactions produces the closest agreement with literature.

In preliminary calculations, resulting magnetization of VG is calculated to be 1.43

µB per cell where the unsaturated atom is 0.07 Å above the graphene plane when

vdW dispersion forces are excluded. For DG, it is observed that total magnetization

is equal to 0.00 µB per cell concluding that there is no effect of magnetization for

divacancy in graphene sheet. For the VG/C6H6 system, total magnetization is equal

to 0.69 µB, 1.27 µB and 1.40 µB per cell for spin-polarized vdW-DF, vdW-DF2-C09

and Grimme-D2, respectively while total magnetization of C7H8/VG is equal to 0.68

µB, 1.31 µB and 1.45 µB per cell for spin polarized vdW-DF, vdW-DF2-C09 and

Grimme-D2, respectively.

The band structure for the non-covalent interaction of molecule with substrate reveals

no deviation around the K-point from the substrate’s band structure. From the Bader

charge analysis, the charge transfer between the substrate and the molecule is cal-

culated to be negligibly small for the physisorbed species while substrate acts as an

elctron acceptor.

Using vdW-DF, vdW-DF2-C09 and Grimme-D2, C6H6 and C7H8 are adsorbed on

bilayer graphene separately in order to investigate the effects of number of layers on

adsorption characteristics. While band structure, PDOS and charge density difference

plots show similar characteristics to those of the single layer, this study reveals an

interesting fact that the presence of the second layer increases the adsorption energy

by approximately 70 meV for both molecules when vdW-DF2-C09 is used.

In the second chapter, one or two B atoms are combined with a single and divacancy

configurations in a 6x6 graphene unit cell for extending the degree of control over

functionalization.For B-doped vacancy-defected graphene (BVG), the resulting mag-

netization is about 0.9 µB per cell and the B atom is only 0.01 Å elevated with respect

to the surface while it is 0 µB for B-doped divacancy-defected graphene (BDG). Fur-

thermore, formation energies of BVG and BVG are calculated to be -2.99 eV and

-2.25 eV with gaseous B and graphene are taken as reference systems. With the in-

troduction of B, VG and DG becomes positively doped and band structure has an

106



upward shift while the band gap opening increases with increased concentration of B.

and for B doping as an adatom, the band structure is similar to the band structure of

bare PG with Fermi level being shifted downwards.

For B introduced as an adatom, the resultant geometry is BVG with three different

C-B bond lengths of 1.51, 1.58 and 1.61 Å in addition to small shanges in C-C bond

lengths and positions of C around the defect. Furthermore, from the magnetic prop-

erty analysis, it is observed that state of the BVG-adatom changes and shows a similar

trend to BVG for magnetization greater than 1 µB per cell, state of the BVG-adatom

changes and show similar trend with BVG.

Finally, to further enhance our understanding of functionalization C6H6, C7H8, flu-

orobenzene (C6H5F), benzonitrile (C7H5N), and benzoic acid (C7H6O2) on the B-

doped defected sheets. C6H6 and C7H8 are adsorbed on BVG in order to serve as a

comparison to the adsorption taking place on VG. The adsorption energy of C6H6 is

calculated to be 776 meV on BVG while it is 391 meV on VG. For C7H8, these en-

ergy values are 819 meV and 425 meV on BVG and VG, respectively. These findings

gives conclusion as B causes increased adsorption energy by the additional organic

molecule−B interaction (an increase of 380-390 meV) with respect to bare VG. Fur-

thermore, B doping on VG results in decreased curvature effect.

Other molecules are investigated on the hollow site, on top of a B atom and on top

of a C atom. In case of C6H5F, F-B and F-C covalent bonds are broken at the end

of structure optimization calculations and C6H5F is non-covalently adsorbed on the

BVG sheet with weak vdW interactions. When C6H5F on top of B where B is po-

sitioned as an adatom, the resultant magnetization is 1.00 µB per cell when vdW

dispersion forces are included and the B atom forms three C-B bonds approaching

the VG surface with distances of 0.80 Å. The optimization leaves behind a phenyl

group (C6H5) whose adsorption energy is calculated to be 106 meV. This value is 14

meV when vdW dispersion forces are excluded which results in a conclusion that 92

meV adsorpiton energy is related with vdW dispersion forces while the rest is due to

the ionic interactions confirmed with the charge density difference analysis as 0.404

e donation occurs from the molecule to the surface.

C7H5N molecules are observed to form strong covalent bonds with an adsorption
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energy of 3.6 eV for the hollow site when vdW dispersion forces are included. When

the molcule is adsorbed on an B adatom, B atom becomes coplanar and forms three

C-B bonds resulting in a configuration of B doped pristine graphene with 1.49 Å C-

B bond length and non-covalently adsorbed C7H5N cation with 82 meV adsorption

energy while in the PDOS plot, the peak around the Fermi level indicates the presence

of pristine graphene structure. The resulting magnetization is calculated to be 0 µB.

Finally, C7H6O2 is adsorbed on BVG and after optimization, it is found to adsorb

through weak vdW interactions. In the case of adsorption on the hollow site, ben-

zaldehyde (C7H6O) fragment is formed with an adsorption energy of 579 meV in the

presence of vdW forces with the detachment of O atom and surface becomes graphene

sheet co-doped with B and O. For C7H6O2 adsorption on top of B, O-H bond is bro-

ken at the end of optimization and H forms a bond with the C atom of the BVG sheet

with an out-of-plane displacement. VdW dispersion forces effect the direction of this

displacement as H causes positive value for displacement and becomes closer to the

organic dopant when vdW is included while it gets far from the dopant when vdW

is excluded. For all molecules being adsorbed on BVG, the band structure of system

does not deviate significantly from the case of VG.

The systematic investigation presented in this thesis that combines different func-

tionalization methods that may enhance or reduce the effects of one another thereby

creating the possibility of finer control of the band structure. The immense variety of

dopants, defects and adsorbates can be combined to produce endless possibilities for

various applications relying on band gap engineering. As evidenced in the sections

on bilayer and B-doped defective graphene, the electronic and structural properties

of the substrate change the physics of the problem quite remarkably. This fact can

motivate the extension of the substrates investigated here to different systems such as

nanotubes and other two-dimensional materials.
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• Karakaş G., Ersöz T.İ., “Application of Semiconductor Films over Glass Sub-

strates and Their Low Temperature Photocatalytic Activity”, NCC-3, April 28-

May 1, 2010, Zonguldak, Turkey (poster presentation).
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