USING ULTRA HIGH FREQUENCY DATA IN INTEGRATED VARIANCE
ESTIMATION: GATHERING EVIDENCE ON MARKET MICROSTRUCTURE
NOISE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
INCI KILICKAYA

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN FINANCIAL MATHEMATICS

APRIL 2017






Approval of the thesis:

USING ULTRA HIGH FREQUENCY DATA IN INTEGRATED VARIANCE
ESTIMATION: GATHERING EVIDENCE ON MARKET
MICROSTRUCTURE NOISE

submitted by INCI KILICKAYA in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Department of Financial Mathematics, Middle East
Technical University by,

Prof. Dr. Bulent Karas6zen
Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Yeliz Yolcu Okur
Head of Department, Financial Mathematics

Assoc. Prof. Dr. Seza Danisoglu
Supervisor, Department of Business Administration, METU

Examining Committee Members

Assoc. Prof. Dr. Seza Danigoglu
Department of Business Administration, METU

Prof. Dr. Zehra Nuray Giiner
Department of Business Administration, METU

Prof. Dr. Aslihan Salih
Department of Business Administration, TED UNIVERSITY

Assoc. Prof. Dr. Sevtap Kestel
Department of Actuarial Sciences, METU

Assoc. Prof. Dr. Siiheyla Ozyildirim
Department of Business Administration, BILKENT

UNIVERSITY

Date:













I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, | have fully cited and referenced all

material and results that are not original to this work.

Name, Last name: Inci KILICKAYA

Signature



Vi



ABSTRACT

USING ULTRA HIGH FREQUENCY DATA IN INTEGRATED VARIANCE
ESTIMATION: GATHERING EVIDENCE ON MARKET MICROSTRUCTURE
NOISE

Kiligkaya, Inci
PhD., Department of Financial Mathematics
Supervisor : Assoc. Prof. Dr. Seza Danisoglu

February 2017, 284 pages

In recent years, as a result of more readily available ultra high frequency data (UHFD),
realized volatility (RV) measures became popular in the finance literature since in
theory, sampling at increasingly higher frequency should lead to, in the limit, a
consistent estimator of integrated return volatility (IV) for Ito-semimartingale asset
prices. However, when observed prices are contaminated with an additive market
microstructure noise (MMN), an asymptotic bias appears, and, therefore, it becomes
necessary to mitigate the effect of MMN in estimation of IV. The success of the
available methods in the literature to suppress the MMN effects must be considered
only if the empirical evidence backs the assumptions underlying the methods
developed for handling MMN. On this issue, we realize that empirical evidence on the
MMN structure should be collected taking into account the dimensions of volatility
estimation using high frequency data as these dimensions may impair the validity of
the methods adopted to handle MMN in the first place. Accordingly, in this Thesis,
first we provide a complete discussion of the dimensions of volatility estimation using
UHFD. Next, we prove that the formal tests regarding the existence of MMN and the
constant variance of MMN increments originally developed under calendar time
sampling can also be used under transaction time sampling. Third, we propose a new
approach to measure the liquidity of stocks in a high frequency setting. Finally, by
using tick data from Borsa Istanbul National Equity Market for a period of 6 months,
we show that (i) the data handling procedures as various combinations of cleaning and
aggregation methods do not distort UHFD’s original traits, (ii) the return dynamics in
transaction time are different from those in calendar time, (iii) the RV dynamics are
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affected by the sampling scheme and liquidity, (iv) the volatility signature plots point
to the existence of MMN and suggest a positive relationship between the noise
increment and the true price return, valid in all possible dimensions (sampling scheme,
liquidity, data handling methods, and session-based or daily calculations), (v) the
MMN exhibits statistically significant existence under both CTS and TTS for all
stocks, however, the liquidity and the data handling methods matter under TTS in
terms of rejection rates of the null hypothesis that the MMN statistically does not exist,
(vi) the formal tests on the existence of MMN offer positive correlation between the
noise and the efficient price, (vii) the liquidity and the sampling schemes are very
influential on the rejection of the null hypothesis that the MMN increments have
constant variance independent of the sampling frequency, in particular, under CTS,
(assuming an i.i.d MMN with constant variance is proper for frequencies lower than 1
minute but under TTS, this assumption fails especially for liquid stocks), (viii) data
handling has suppressive effects under TTS on the rejection percentages regarding the
null hypothesis that the MMN increments have constant variance independent of
sampling frequency.

Keywords: Integrated Variance, Realized Volatility, Market Microstructure Noise,
Sampling Schemes, Data Handling Methods, Liquidity in High Frequency Finance
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BIRIKIMLI VARYANS HESAPLAMASINDA ULTRA YUKSEK FREKANSLI
VERI KULLANIMI: PIYASA MIKROYAPISINDAN KAYNAKLANAN
GURULTU HAKKINDA KANIT TOPLAMA YONTEMLERI

Kiligkaya, Inci
Doktora, Finansal Matematik Boliimii
Tez Yoneticisi: Dog. Dr. Seza Danisoglu

Subat 2017, 284 sayfa

Ultra Yiiksek Frekansli Veri setlerinin (UYFV) yayginlagsmasi ile varlik getirilerinin
birikimli varyans (BV) tahmininde ger¢eklesmis oynaklik (GO) tipi tahmin edicilerin
kullanimi popiiler hale gelmistir ¢iinkii teoride, belli bir zaman araliginda toplanan veri
sayist sonsuza ulastiginda GO, BV’ nin tutarli bir tahmincisidir. Ancak, gézlemlenen
varlik fiyatlarinin piyasa mikroyapisindan kaynaklanan bir giiriilti (PMYG) ile
kirlenmesi durumunda, asimptotik bir sapma ortaya ¢iktigindan PMYG’niin GO
tahmin edicisi lizerindeki etkilerinin azaltilmasi ihtiyac1 dogar. Literatiirde PMY G niin
GO tahmin edicisi lizerindeki etkilerinin bastirilmas1 amaciyla c¢esitli yontemler
onerilmigse de, bu yontemler benimsenmeden once s6z konusu yontemlerin PMYG
hakkinda dayandig1 varsayimlarin ampirik kanitlarla desteklenmesi gerekmektedir.
Dolayisiyla, GO kullanilarak BV tahmininde, PMY G’nin istatistiksel yapis1 hakkinda
kanit toplanmal1 ancak, kanit toplanirken BV hesabinda UYFV kullanilmasina iligskin
sorun ve boyutlar dikkate alinmalidir. Bu gercevede, bu tezde ilk olarak BV hesabinda
UYFV kullanilmasima iligkin sorun ve boyutlar hakkinda kapsamli bir tartisma
yapilmis, arkasindan takvim zaman altinda gelistirilen PMYG’nin varligina ve veri
toplama sikligindan bagimsiz olarak farklarinin sabit varyansina yonelik istatistiksel
testlerin islem zamani altinda da kullanilabilecegi gosterilmistir. Ek olarak, yiiksek
gore siniflandirmak i¢in yeni bir yontem Onerilmistir. Son olarak, bu tezde, 6 aylik
Borsa Istanbul Ulusal Pazar UYFV’si kullanilarak, (i) hata temizleme ve ayni anl
verileri 0zetleme tekniklerinin kombinasyonlar1 olarak uygulanan veri hazirlama
metotlarinin UYFV’ nin orijinal 6zelliklerini bozmadigi, (i1) takvim zamani altindaki



getiri dinamiklerinin islem zamani altinda farkli oldugu, (iii) GO tahmin edicisinin
dinamiklerinin veri toplama tekniginden ve likiditeden etkilendigi, (iv) oynaklik
imzas1 grafiklerinin olasi tim boyutlarda (veri hazirlama metotlar1, veri toplama
teknikleri, likidite ve hatta GO’nun giinliik veya seanslik hesaplanmasi) gecerli olmak
tizere PMYG’nin varhi@ ve gercek varlik fiyatlar1 ile PMYG arasinda pozitif
korelasyona dair gorsel kanit sundugu, (v) istatistiksel test sonuclarina gore,
PMYG’nin varliginin hem islem hem de takvim zamaninda teyit edildigi ancak,
takvim zamani altinda likidite ve veri hazirlama metotlarmin test sonuglarini
etkiledigi, (vi) PMYG’nin varligini test eden istatistigin aldig1 degerlerin PMYG ile
gercek varlik fiyatlar1 arasinda pozitif bir korelasyonun varligini destekledigi, (viii)
PMYG farklarinin veri toplama araligindan bagimsiz olarak sabit bir varyansi olup
olmadigina yonelik istatistiksel test sonuclarmin likidite ve veri toplama
tekniklerinden biiyiikk oOlglide etkilendigi, nitekim, takvim zamani altinda sabit
varyansli ve bagimsiz ve ayni dagilan PMYG varsayiminin 1 dakikadan az veri
toplama araliklar1 i¢in uygun oldugu ancak, islem zamani altinda bu tip bir varsayimin
ozellikle likit hisse senetleri i¢in reddedildigi, (viii) iglem zamani altinda veri
hazirlama metotlarinin PMYG farklarinin sabit varyansina yonelik test sonuglarini
asag1 yonde baskiladig1 gdsterilmistir.

Anahtar  Kelimeler: Birikimli Varyans, Gergeklesmis Oynaklik, Piyasa
Mikroyapisindan Kaynakli Giriltii, Veri Hazirlama Metotlari, Veri Toplama
Teknikleri, Yiiksek Frekansli Finansta Likidite
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CHAPTER 1

INTRODUCTION

Although the Turkish capital markets have undergone great progress over the last few
decades, what is evident regarding the economy as a whole is also evident for the
capital markets: the prices of financial securities are very volatile due to macro-
economic imbalances as well as domestic factors such as political stability and
international factors such as exchange rates. For instance, in a general pattern of
cyclical fluctuations, Borsa Istanbul A.S. indices that are calculated in order to reflect
the price and return performance of all shares exhibit a high degree of volatility. This
type of an investment environment is only preferable if the investor is a risk taker.
However, investment theory suggests that different investors may have different
choices regarding the level of risk to assume and even the same investor may prefer
different risk levels at different times. In order to accommodate these different risk
preferences, the financial system has to offer means by which investors can manage
and adjust the level of risk that they take. The derivative markets and derivative
instruments as a means of risk management are one of the best possible ways of
achieving this objective. However, benefiting from derivative markets requires
measuring return volatilities correctly since volatility is the most crucial and
challenging input used in portfolio selection, derivative pricing and risk management,
mainly because volatility is a latent variable and is not directly observable. Fortunately,
the finance literature offers many parametric and nonparametric volatility models to
measure or forecast return volatilities. Some of the models that are developed over the
last few decades include ARCH, GARCH, EGARCH, and stochastic volatility
specifications and the performance of these models has been studied frequently [51].

Accompanying the introduction of several complex volatility models, one important
development in the volatility measurement context has been the advent and availability
of “ultra high frequency data” (UHFD), which refers to the data sets including
thorough reports of all the financial markets activity information that is available,
where “ultra” high frequency data means that it is not possible to dive into finer details
than that is provided in these data sets [37]. The basic unit of information contained in
UHFD is called the “tick”, which represents a time stamp and a set of information
summarizing specifics of the market activity at that time [37].

The availability of UHFD sets is considered to be one of the most groundbreaking
changes in the field of volatility measurement and forecasting since such high



frequency data not only fostered the development of improved ex-post volatility
measurements but also inspired research into their potential value as an information
source for longer horizon volatility forecasts [66]. However, due to the complex
structures of parametric models, modeling volatility in a high-frequency setting is very
challenging. As Andersen et al. [13] put it, volatility models using daily data cannot
accommodate high- frequency data whereas parametric models specified directly for
intraday data usually cannot capture the daily volatility movements. Therefore, with
the advent of UHFD in 1990s, an interest boomed in nonparametric approaches to the
estimation of return volatility using high-frequency data. One of the very first of such
nonparametric approaches was to use realized volatility measures, which became
famous in the late 1990s and early 2000s.

It was first pointed out by Andersen and Bollerslev [8] that squared daily returns
provide a poor approximation of actual daily volatility. They suggested that more
accurate estimates could be obtained by summing the squared intraday returns.
Following this valuable contribution to the finance literature, Andersen et al. [12],
Andersen et al. [10], and Barndorff-Nielsen and Shephard [24] were among the
pioneers who studied the “‘realized’’ volatility (RV) and its relevance in volatility
measurement.

The availability of UHFD made RV measures popular in the finance literature during
the last two decades because in theory sampling at increasingly higher frequencies
should lead to, in the limit, a consistent estimator of the return volatility when asset
prices satisfy a certain semimartingale representation. The semimartingale
representation of asset prices is adopted widely in the studies because, as explained by
Harrison and Pliska [63], with continuous trading allowed, an arbitrage free market is
complete (every contingent claim is attainable) if and only if there is a unique
probability measure IP* equivalent to P under which the discounted asset prices are
martingales, and, in this setting, asset prices must satisfy the semimartingale property.

Regarding the semimartingale property of asset prices, one can choose among different
specifications but the most popular specification in the finance literature is the
Brownian semimartingale representation, which implies that asset prices do not exhibit
any discontinuous behavior. In a Brownian semimartingale setting, the log of an asset's
price is a real-valued process defined as the solution of a stochastic differential
equation such that log of the asset’s price is a function of time, drift, a Brownian
motion and return volatility. When return volatility is itself a stochastic process, the
main object of interest is the quadratic variation or integrated variance (IV) and it is
defined as the amount of variation at a certain point in time accumulated over a finite
past time interval. Note that while the asset price can be observed, the volatility is an
unobservable latent variable that scales the Brownian process continuously through
time [96].

The RV exploits the information in high-frequency returns and estimates volatility by
summing the squares of intraday returns sampled at very short intervals [51]. RV per
day in this context is calculated as the sum of all squared immediate returns within a
day.



In the stochastic processes literature, the sum, RV, is shown to consistently estimate
the integral IV and to converge to the true underlying integrated variance when the
length of the intraday intervals goes to zero [11], [24].

Barndorff-Nielsen and Shephard [24] prove the consistency of RV and show that its
asymptotic distribution is normal. In this context, if asset prices follow a Brownian
semimartingale, then the return volatility can be estimated consistently and effortlessly
by calculating the RV at the highest frequency possible. However, sampling returns as
many times as possible without any further consideration may not be the right
approach since there are several aspects of UHFD that should be taken into account in
volatility measurement.

The first issue that should be examined when using an UHFD for estimating the IV of
asset prices is the fact that UHFD exhibit interesting characteristics such as a
tremendous number of ticks per day, temporal spacing of transactions/quotes, strong
intraday patterns in the form of diurnal shapes in trade volume and/or returns per fixed
amount of time, and the existence of errors and simultaneous entries for the same time
stamp. Therefore, before using UHFD in volatility estimation, one should decide on
how to handle these aspects before commenting on the results from any volatility
estimation attempt.

As a second issue, O’Hara [92] and many other market microstructure researchers
claim that the observed asset prices can be decomposed as sum of the unobserved true
price and the unobserved aggregate effect of the market microstructure (noise or
MMN, henceforth). There are several arguments in the literature about the sources of
the MMN but, in general, the MMN is accepted as a combination of factors such as
frictions inherent in the trading process, informational effects, and measurement or
data recording errors [3]. Many high frequency finance researchers such as Zhou [112],
Andersen et al. [11], Andersen et al. [12], Barndorff-Nielsen and Shephard [24], [25],
Bandi and Russell [19], Hansen and Lunde [58], Zhang et al. [111] provide abundant
mathematical and empirical evidence of a noise contamination in observed asset prices
as we increase the sampling frequency.

Contamination of observed prices with market microstructure is a vital concern in
volatility estimation via realized type of measures mainly because if there is such a
contamination, then the quadratic variation of observed prices calculated over the
highest frequency possible does not simply converge to the IV of true prices since an
asymptotic bias appears due to the existence of MMN [10], [24], [25]. Accordingly,
one would choose to sample at lower frequencies to eradicate the bias due to MMN
but this would increase the variance of the total estimation error due to discretization.
This is called “the bias-variance trade-off” in the literature. In order to examine how
RV deviates from IV as we increase the sampling frequency and to come up with
methods to handle those deviations and the bias-variance trade-off (mitigation of
MMN effects on RV measures), we first have to make some assumptions regarding
the statistical features of market microstructure noise. The most popular assumption in
the RV literature states that the MMN is a sequence of independent and identically
distributed (i.i.d) random variables with zero mean, constant variance and finite fourth
moment, while the MMN and the true prices are orthogonal to each other. Therefore,
it is of great importance to mitigate the effect of MMN when we try to estimate the
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true price volatility of assets using high frequency data, especially considering that
high frequency prices include more information compared to data sets of lower
frequencies.

The third aspect in volatility estimation using UHFD relates to the asynchronous
characteristic of markets. In actual equity markets, transactions take place and quotes
arrive asynchronously, leading to transaction and/or quote time series to be observed
at discrete and irregularly spaced intervals. This asynchronous characteristic of the
stock markets allows us to sample the returns in various ways, i.e., one can follow
different sampling schemes for estimating return volatility over a fixed time period.
The most common sampling scheme is calendar time sampling (CTS), under which
sampling is done at equal intervals in physical time; for instance, sampling at every 1
minute or 10 minutes. However, CTS has one big shortfall: the transactions and/or
quotes are irregularly spaced in time and calendar time sampled data needs to be
constructed artificially. Alternatively, one can sample prices whenever a transaction
takes place, a.k.a. transaction time sampling (TTS). Similarly, if we sample data every
time the stock price changes, then the sampling scheme is called tick time sampling
(TKTS). Another option is called business time sampling (BTS) where the sampling
times are determined to ensure that the IV of all intraday intervals are equal. On this
issue, Oomen [94] shows that the mean squared error of the RV can be decreased by
sampling returns on a transaction time scale as opposed to the common practice of
sampling in calendar time. Hansen and Lunde [61] reveal that MMN is time-dependent
and correlated to the unobservable true price under both CTS and TKTS. Likewise,
Griffin and Oomen [55] argue that the return dynamics in TTS are different from those
in TKTS and the choice of the sampling scheme may have a substantial effect on the
properties of realized variance (microstructure noise is highly dependent under TKTS,
so the bias correcting method should be decided accordingly). They find that tick time
sampling is superior to transaction time sampling in terms of mean squared error,
especially when the level of noise, number of ticks, or the arrival frequency of the
efficient price moves is low [55]. Accordingly, it is also of great importance to shed
light on the influence of the sampling scheme on the statistical properties of realized
volatility whenever UHFD are used for IV estimation.

The fourth aspect in measuring realized volatility is the presence of non-trading hours.
Realized volatility may underestimate the 1V if the RV is calculated by using prices
sampled only during trading hours. A number of researchers advocate the upscaling of
RV calculated over trading hours to reach the daily RV. Interestingly, only a small
number of papers [58], [59], [60], [61], [28], [101] in the RV literature discuss the
ways for adjusting the estimator for non-trading hours whereas the majority of studies
on the estimation of the quadratic variation of asset prices using high frequency data
stay silent about non-trading hours. Regarding this silence, one should acknowledge
that there are several questions to be answered before upscaling the RV measures to
find the daily RV: Does the existence of non-trading hours only cause a time shift in
volatility and is the daily volatility the same regardless of the length of trading hours
leading us to observe diurnal shapes in trading volumes and returns due to this fact?
Are the trading incentives that accumulate overnight and during the lunch break
reflected in the market or limit orders once the markets are open? When the return
volatility is u-shape per session, would adjusting RVopentoclose fOr non-trading hours
cause a double-counting of daily volatility? Should we include opening and closing
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sessions or should we only work with sessions where only continuous auction is
allowed? What is the best way to adjust the RV estimators under tick and transaction
time sampling schemes? These questions underline the fact that adjusting the IV
estimators for non-trading hours is not a straightforward step in the calculation of daily
RVs.

Returning back to the issue of the contamination of observed prices with MMN, we
remind that the estimation of the IV of the true asset prices using observed prices leads
to the estimation of the quadratic variation of the MMN as we increase the sampling
frequency, however decreasing sampling frequency causes the variance of the
estimation error to increase. This result forces researchers and practitioners to come
up with methods to mitigate the bias in IV estimation while taking into account the
bias-variance trade-off. The approaches in the literature with respect to handling an
additive MMN in the calculation of the quadratic variance of the unobserved
efficient/true price can be grouped into 4 categories:

e Adjusting the RV estimator such as using kernel based estimators and
subsampled kernel based estimators as in [27] and [28] or employing the two-
time-scale or multi-time-scale estimators suggested in [111] and [3].

e Sparse sampling such that a bias-variance tradeoff is attained by choosing a
sampling frequency at which MMN is supposed to be not too substantial, as in
[11].

¢ Finding an optimal sampling frequency where the RV calculation is not adjusted
but the sampling frequency is optimized such that the mean squared error is
minimized or the forecasting performance is maximized as in [20], [21],[55] and
[94].

¢ Pre-whitening of data such as smoothing the intraday returns by fitting a moving
average or an autoregressive model as in [10] or [46] or pre-averaging of a
certain number of observed prices as in [68].

Such methods to reduce/remove the impact of the noise component in IV estimation
have been subject to a great deal of research but all these methods depend on the
assumed structure of the MMN. For instance, Awartani et al. [16] draw attention to the
fact that many methods to handle the MMN while estimating the 1V of the unobserved
true returns by using UHFD, including kernel based estimators, subsampling
approaches, optimal sampling, and, simple bias correction methods, depend on the
assumption that the MMN has an i.i.d and/or constant variance structure. Therefore,
the success of the methods used to mitigate the MMN effects must be considered only
after gathering empirical evidence from developed and developing markets regarding
whether the assumptions underlying the aforementioned methods truly hold.
Accordingly, rather than comparing the methods for handling the MMN in the IV
estimation with respect to their forecasting performance or some other economical
criteria, we delve into gathering evidence regarding the statistical structure of the
MMN and aim to answer the question of whether popular assumptions about the
statistical features of MMN are adoptable in light of the empirical findings.



We believe that such empirical evidence on the MMN structure should be collected
taking into account all the dimensions/aspects of volatility estimation using high
frequency data because the validity of methods for handling the MMN in the
estimation of the IV may be compromised if all of these issues are not taken into
account in the analysis. More specifically, we argue that the MMN evidence can be
valid only after addressing the need to detect and clear errors, the need to aggregate
simultaneous observations and to interpolate the data under CTS, the need to choose
one or more sampling schemes, the need to make assumptions on the MMN structure
and the need to consider non-trading hours in the estimation of the daily RV. In the
literature, discussions and evidence on the IV estimation using RV only focus on some
portion of these dimensions/aspects, such as the effect of sampling scheme on the
return and RV dynamics [93], [61], [55], or, the effect of the aggregation methods on
the RV calculation [27], or, the effect of cleaning procedures on the RV estimators [3],
[27], or, the different ways for scaling RVs over trading hours to reach daily figures
[58], [59], [60], [61], [28], [101]. In addition, the literature does not touch the issue of
how to examine the existence and the statistical features of the MMN formally under
sampling schemes other than CTS. Moreover, all the aforementioned studies use data
coming from stock markets of developed economies such as the US or Japan and the
literature lacks research on volatility estimation and the MMN structure providing
empirical evidence from developing markets. In summary, to the best of our
knowledge, none of the published literature on volatility estimation using UHFD

e discusses dimensions/aspects of volatility estimation simultaneously,

e considers how data handling methods in the form of cleaning and aggregation
affect the characteristics of UHFD, and, whether the widely accepted outlier
handling methods end up overscrubbing or underscrubbing the data,

e examines what happens to the return and RV series dynamics under varying
combinations of sampling schemes and data handling methods while controlling
for the liquidity of the stock, and,

e examines what happens to the visual and statistical evidence on the existence
and/or statistical features of MMN under varying combinations of sampling
schemes and data handling methods, and, whether findings about the MMN
structure are robust with respect to the liquidity of the stock

at the same time.

Furthermore, we recognize that the liquidity of traded assets is an important issue that
is discussed in the finance literature and there are many liquidity definitions and
measures that find support in different studies. For instance, a widely accepted
definition by Black [35] describes a liquid asset as an asset which can be sold in a short
period of time for a price not too different from the price at which the seller would be
able to sell if s/he opted to wait longer. Interestingly, when the high frequency finance
literature is examined, it is seen that dealing with an asset's liquidity is somewhat
problematic in the sense that many of the liquidity indicators/measures fall short when
it comes to addressing the existence or the statistical properties of MMN embedded in



the observed stock prices, especially if such measures are calculated under different
sampling schemes such as CTS. This postulation is accentuated especially when there
is a relatively long time lag between two consecutive transactions. As it will be
explained in detail in Chapter 2, Section 2.1, in such a case of infrequent trading, the
previous tick method is typically used to construct artificial return series, but this, in
turn, means that returns are calculated by using pieces of information that belong to
distant points in time leading to inflated serial correlations due to long sequences of
zero returns [37]. Hence, the previous tick method may work best in IV estimation for
very actively traded stocks since we would not want to spur such correlation structures
by artificially introducing additional autocorrelation (serial correlation) due to the
interpolation method selected. These arguments pave the way for the introduction of a
new method to classify stocks with respect to their liquidity (active trading) in a high
frequency setting.

In order to realize all these goals, we begin by discussing the dimensions of IV
estimation using high frequency data sets in detail in Chapter 2.

Next, in Chapter 3, subject to certain assumptions, we prove that the formal tests
developed under CTS by Awartani et al. [16] for determining whether there is any
statistically significant asymptotic bias due to the existence of MMN on the RV
estimator and whether MMN increments have a constant variance independent of
sampling frequency are also applicable under TTS.

In Chapter 4, we first suggest a new approach to classify liquid and illiquid stocks that
can be used in a high frequency setting, and then, by applying a grid of the data
cleaning methods and different sampling schemes, TTS and CTS in particular, to six
stocks that are listed on Borsa Istanbul National Equity Market, we examine what
happens to the common characteristic of UHFD, the dynamics of the return and RV
series, volatility signature plots and formal tests of the existence and the constant
variance of MMN developed by Awartani et al. [16] as we move on the grid while we
also look for any significant changes in results due to the liquidity of the sample stocks.

Chapter 5 provides our conclusions.






CHAPTER 2

DIMENSIONS OF VOLATILITY ESTIMATION USING UHFD

2.1. Nature of UHFD and Errors in UHFD Sets

As Brownlees and Gallo [37] put it, the term “financial high/ultra high frequency data”
(UHFD) in the literature refers to the data sets including thorough reports of all
available financial markets activity information. The term “ultra” also means that it is
not possible to dive into finer details than that are provided in these data sets. The basic
unit of information contained in the UHFD is called the “tick”, which represents a time
stamp and a set of information summarizing specifics of the market activity [37]. With
the advent and increasing availability of the UHFD, many researchers examined the
common properties of such data sets that cause greater complexity in analysis
(Andersen and Bollerslev [7], Engle and Russell [48], Dacorogna et al. [45] ,
Falkenberry [50], Brownlees and Gallo [37], Verousis and Gwilym [106], Engle and
Russell [49] among many others). In this context, the literature reports the common
properties of UHFD as follows:

e Number of ticks can reach thousands (millions) per day (year),

e The time interval between two consecutive ticks is random (temporal spacing),

e There can be anomalies in the behavior of ticks due to particular market
conditions such as openings, closings, trading halts, circuit breakers, etc. (strong

intraday patterns),

e The rules and procedures of the institution that records and disseminates UHFD
affect the structure and sequence of ticks,

e The data sets can contain wrong ticks such as zero prices or volumes and there
is a diversity of possible errors and their causes.

Although using historical high frequency data in finance applications became popular
since the 2000’s, there is a limited number of studies that address the necessity of
detecting errors/outliers while preparing the time series data at hand for further
analysis. Furthermore, the literature does not agree on a single definition of what
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constitutes an unclean data point/error/outlier. For instance, Dacorogna et al. [45]
define a data error as “a piece of quoted data that does not conform to real situation
of the market”, whereas Verousis and Gwilym [106] state that an outlier is an
observation which does not reflect the trading process so that the real connection
between market participants’ behavior and recorded observations are broken.
Falkenberry [50] adds that ‘the most difficult aspect of cleaning data is the inability to
universally define what is unclean’. In spite of the lack of a common definition, there
is consensus in the high frequency finance literature that data errors (outliers) should
be defined and removed somehow by a data filter/cleaning algorithm before any
computation. Specifically, Dacorogna et al. [45] state that the problem of outliers
distorting the reliability of calculations in high frequency setting gets accentuated for
finance applications mainly because much of these applications work with returns and
the difference operator is quite sensitive to outliers. Dacorogna et al. [45] also
underline the fact that professional users may immediately detect erroneous pieces of
information and clean the data using their immense practical knowledge, but
researchers investigating historical data have a lesser understanding of what constitutes
an erroneous tick and why such errors occur. In other words, using UHFD in academic
research requires attention with respect to detecting errors and pinpointing the human
and/or system failures that give rise to such errors.

In addition to the lack of a common definition, the explanations regarding why bad
data/erroneous data/outliers exist change from one researcher to the next. For instance,
Falkenberry [50] associates bad data with the asynchronous and voluminous nature of
financial data whereas Dacorogna et al. [45] list unintentional (such as typing) and
intentional (such as dummy ticks produced just for technical testing) human errors as
well as system errors caused by computer systems, their interactions and failures, and
they do not make any reference to the trading intensity. Meanwhile, Brownlees and
Gallo [37] assert that there are no clear reasons for the existence of erroneous data.

There are a number of studies that mark the first few attempts that underline the
importance of treating outliers in a high frequency finance setting. For instance,
Dacorogna et al. [44] analyze large amounts of high frequency German mark - US$
quotes by market makers around the world (up to 5000 irregularly spaced prices per
day) in order to develop a set of real-time intra-day trading models that give explicit
trading recommendations under specific constraints. Likewise, Huang and Stoll [65]
examine transaction data encompassing bid-ask quotations, transaction prices, and
volumes in order to compare the execution costs for NASDAQ stocks with the
execution costs for comparable NYSE stocks. Finally, Zhou [112] concentrates on
high frequency exchange rate data for modeling the negative autocorrelation in
observed time series and proposes a realized volatility estimator that is suitable for the
high frequency setting.

In order to detect outliers and clean the high frequency financial data, in addition to
the detection and treatment of obvious errors such as corrected, negative or zero
quotes/prices, the initial studies on the subject suggest comparing each quote/price
with a median that is calculated by using data points within the close neighborhood of
a given trade [112] or deleting trades (quotes) whenever the return calculated by using
the previous trade exceeds 10% [65] or 25% [31]. Chung et al. [39] improve on [65]
in the sense that the percentage of the return threshold is increased to 50% and the
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return is calculated in absolute terms in order to make sure that negative returns also
trigger outlier detection. Interestingly, although there are several papers published
before 2008 which criticize the 10% return criterion and promote alternative criteria
such as examining the distance of a data point from a rolling transform, Bandi et al.
[21] and Pigorsch et al. [95] continue to adopt the 10% immediate return rule in their
studies.

Following such pioneering approaches, Dacorogna et al. [45], Falkenberry [50],
Brownlees and Gallo [37], Oomen [94], Gutiérrez and Gregori [56], Verousis and
Gwilym [106] and Barndorff-Nielsen et al. [27] also examine outlier handling in high
frequency financial data.

The algorithm suggested by Dacorogna et al. [45] concentrates on data from the FX
spot and FX derivative markets while the algorithms by Brownlees and Gallo [37],
[38] and Barndorff-Nielsen et al. [27] concentrate on data from the stock market and
the algorithm by Verousis and Gwilym [106] concentrates on data from the stock
option market. These different algorithms share some common characteristics. For
instance, each quote/price is compared with a moving threshold that is calculated by
using the neighboring data points where a symmetrical number of preceding and
following quotes/prices are selected and then the ticks that exceed the threshold are
classified and deleted as outliers. More specifically, in order to delete outliers in high
frequency stock market data sets, Brownlees and Gallo [37] propose to delete prices
whenever the absolute difference between a current price, p;, and the 10% trimmed
sample mean, p;(k), is more than 3 sample standard deviations, s;(k), of a
neighborhood of k observations around the current tick plus a parameter, &, that
represents a multiple of the minimum allowable price variation for the stock at hand:

_ true, observation i is kept
Ip; = i (k)| < 3sy(k) + ¢ = false, observation i is removed

Falkenberry [50] states that the higher velocity in trading induces a higher probability
of an error in the reported trading data and advocates the use of transaction frequency
as a criterion in determining the number of data points to be used in the calculation of
a moving transform to which the data point is compared. Likewise, the Brownlees and
Gallo [37] approach described above incorporates the trading intensity, y, in the
selection of the number of neighboring data points, k, while calculating the moving
average and moving standard deviations. Brownlees and Gallo [37] suggest that
inactive trading should lead to a “reasonably small” k so that the window of
observations does not contain too distant prices, while active trading should lead to a
“reasonably large” k so that the window contains enough observations to produce
reasonable estimates of the local characteristics of the price. In order to visually choose
the pair of k and y, they count the number of observations deleted for a grid of
parameters k and &.

One can also choose not to delete the outliers but replace the outliers with corrected
values. This is called the “Search and Modify” approach by Falkenberry [50] who
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analyses stock market tick data. Falkenberry [50] describes the “Search and Modify”
approach as follows. First, a moving transform of the tick is calculated where the
number of points to be used in the moving transform calculation is a function of tick
frequency in order to adapt the filter to the unique activity levels of various securities.
Next, each tick’s distance (in standardized units across different securities) from its
moving transform is found. If the tick’s distance exceeds a user-defined threshold, then
it is defined as an outlier. Finally, the moving transform replaces the ticks that are
classified as outliers.

Some other studies focus on the bid-ask spread in order to detect and delete outliers.
For instance, Chordia et al. [41] delete transaction data by using criteria that depends
on the quote data. Chordia et al. [41] record an outlier whenever either of the following
conditions are met: (i) the Quoted Spread exceeds $5, or, (ii) the Effective Spread to
Quoted Spread ratio or the % Effective Spread to % Quoted Spread ratio exceed 4.0,
or, (iii) the Quoted Spread to Transaction Price ratio exceeds 0.4. By using this criteria,
Chordia et al. [41] end up removing less than 0.02 % of all transaction records.
Meanwhile, Benston [30] deletes prices when (i) the effective spread exceeds 20% and
the price or bid or ask quote exceeds $5, or, (ii) the effective spread exceeds 20% and
the price is less than $5 but is between the bid and ask quotes. Likewise, Hansen and
Lunde [61] exclude transaction prices that are more than 1 spread away from the bid
and ask quotes and Barndorff-Nielsen et al. [27], [28] remove prices whenever the
price is above the ask plus the bid-ask spread or below the bid minus the bid-ask
spread. These approaches in general can be summarized as ‘disciplining trade data
using quote data’ [27].

Within the context of this Thesis, disciplining trade data using quote data is not
applicable for our research because in Borsa Istanbul's National Equity Market, two
continuous auction sessions (morning and afternoon) plus an “opening session” prior
to each of the sessions to set the opening price for each session, and a “closing session”
at the end of the second session to set the closing price of each trading day are held.
During the opening and closing sessions, orders are received for a specific period of
time, and then the price is set in order to achieve the highest trading volume where
trading volume is defined as aggregate price times the amount traded. During these
sessions, orders are executed at these single prices and the remaining orders are
automatically cancelled. With such an auction mechanism in place, proper quote data
are missing for securities included in BIST 100 Index as they are always subject to
continuous auction system. In this context, our approach needs to utilize the existing
trade information in the detection and deletion of outliers. Barndorff-Nielsen et al.
[27], whose cleaning algorithm is also adopted by Koopman and Scharth [74], propose
an important step in outlier handling when there is no quote data available. They
propose that entries for which the price deviates by more than 10 mean absolute
deviations from a rolling centered median of 50 observations (25 preceding, 25
following) should be deleted. They justify the selection of the sample median and mean
absolute deviations rather than the sample mean and sample standard deviation by
arguing that the first pair is less sensitive to runs of outliers. Verousis and Gwilym
[106], on the other hand, argue that the median absolute deviation is more resistant to
outliers than the mean absolute deviation and add that if normality cannot be assumed,
the median is more efficient than mean. In their study, MAD is defined as the median
value of absolute deviations around the median. Verousis and Gwilym [106] first
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calculate the daily median price, then take the median of the absolute deviations of the
prices from that daily median, normalize the MAD, and finally delete a price if (after
controlling for the minimum tick, price level and daily price effects) (i) the price is
greater than one minimum tick compared to the previous tick, price is higher than a
certain level, price is less than 90% or more than 110% of daily average price, simple
return with respect to prior price exceeds 10% and/or normalized MAD is less than the
standardized price, or, (ii) the price is equal to or less than one minimum tick compared
to previous tick, price is lower than a certain level, price is less than 80% or more than
120% of daily average price, simple return with respect to prior price exceeds 20%
and/or normalized MAD is less than the standardized price.

Another notable contribution to the data cleaning literature is the algorithm that is
designed for transaction time sampling by Oomen [94]. Using IBM transaction data,
Oomen [94] investigates the statistical properties of the RV estimator for varying
sampling frequencies and sampling schemes. Before applying his methodology to IBM
transaction prices, he cleans the data set from obvious errors and data points with time
stamps outside of trading hours. He also removes days where trading begins late or the
market is closed early. When it is time to detect and treat outliers, he prefers to filter
the data for instantaneous price reversals in transaction time. In particular, p(k) (k™
transaction price) is deleted if the following two conditions are satisfied
simultaneously,

[r(kID] > c,

and

Ir(k +1|D] € [-(1 = w)|r(k|D], =1 + w)|r(k|DI],

for any 0 <w <1, where r(k|1) = p(k) — p(k — 1), meaning that, for the k™
transaction to be removed, the absolute price change from the k-1"" transaction to the
k™ transaction should exceed both a threshold set arbitrarily as well as the price
changes from the k™ transaction to the k+1" transaction such that the absolute price
reversal is included in the region of - (1 — w) and - (1 + w) times the price change
from the k-1"" transaction to the k™ transaction. Based on experimentation, he chooses
w as 0.25 and c as eight times a robust interquantile volatility estimate of transaction
returns (no further details are provided in the paper).

Compared to Oomen [94], a simpler reversal rule is executed by Bessembinder et al.
[32] who suggest a model to reveal the effect of transaction reporting on trade
execution costs. In their study, Bessembinder et al. [32] test their model by using a
sample of institutional trades in corporate bonds and eliminate “reversal” transactions
when a given price exceeds both the preceding and the following prices by at least
15% or is less than both prices by the same magnitude.

13



Marshall et al. [81] employ a high-frequency data cleaning rule inspired by Brownlees
and Gallo [37] with the purpose of guaranteeing that outliers do not affect their
findings regarding liquidity commonality in commodity futures markets. For the
liquidity measures used in their study, their method estimates an a-trimmed sample
mean and standard deviation. Marshall et al. [81] select a as 5%, meaning that the top
and bottom 2.5% of the observations are excluded in calculating the trimmed mean
and standard deviation, and they remove observations that are outside the trimmed
mean plus/minus three standard deviations. Unlike Brownlees and Gallo [37],
Marshall et al. [81] neither mention whether the mean and standard deviation are
calculated in a rolling k neighborhood or for the whole day, nor incorporate trading
intensity in their outlier detection rules.

In another related study, Ait-Sahalia et al. [3] also draw attention to the fact that most
of the empirical papers using high frequency data discuss cleaning procedures slightly
or do not touch the issue at all. Obviously, raw high frequency financial data sets are
preprocessed in order to remove data errors and/or outliers. However, as discussed
earlier, cleaning data for evident errors is easy to visualize and implement. The tricky
part of the cleaning procedures depend on the definition and treatment of marginal
outliers. On this score, like the approach adopted by Oomen [94], Ait-Sahalia et al. [3]
define an outlier as a “bounceback”:

“a log return from one transaction to the next that is both greater in magnitude
than an arbitrary cutoff, and is followed immediately by a log return of the same
magnitude but of the opposite sign, so that the price returns to its original level
before that particular transaction.”

Their analysis is based on a 1% log return cutoff level. Moreover, their paper is the
second in the literature after the paper by Barndorff-Nielsen et al. [27] which
emphasizes the effects of cleaning procedures on RV estimators. We reviewed many
papers on RV but few to none delve into the cleaning procedures or their impact on
the RV calculation. Interestingly, in their study on detecting jump and other volatility
components in high frequency data using stock market transaction and quotes, Ait-
Sahalia and Jacod [4] prefer to clean the data set only for obvious errors. Apart from
this, they perform no further cleaning in order to produce “unfiltered transactions”.

Rossi [99], who proposes a bond-specific, time-varying friction measure of round-trip
liquidity costs, combines two rules: reversals and deviation more than a certain
threshold calculated over k neighboring data points. This combination of rules is
described by Rossi [99] as follows:

“eliminate 50% return reversal, i.e. eliminate a bond price if it is preceded and
followed by a price increase or drop of more than 50% and |p — med(p, k)| >
5 * MAD(p, k) + g, where g is a granularity parameter which | set equal to
$1, and med(p, k), and MAD(p,k) are respectively the centered rolling
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median, and median absolute deviations of the price p using k observations (I
setk = 20).

The common traits of algorithms proposed in the literature are that they are data-
specific (authors focus on data from a specific market such as FX or stock market) and
data selection rules are arbitrary (10% return threshold, 3 standard deviations threshold
etc) [106]. These traits make outlier detection and handling in high frequency finance
an art.

In the application of data cleaning algorithms to UHFD, one should also consider the
risk of “overscrubbing/underscrubbing” as described by Falkenberry [50]. He states
that filtering data too loosely might result in a data set with too many errors and
filtering data too tightly might cause the data set’s statistical properties to be distorted.
He concludes that a proper cleaning algorithm should manage the
overscrub/underscrub tradeoff in such a way that the outliers in the user’s base unit of
analysis (for instance 1 minute) are removed and the resulting time series can support
historical backtesting without distorting the real-time properties of the data. Dacorogna
et al. [45] discuss the same risk of unwanted side effects caused by cleaning algorithms
and propose a general method to test the effects of the algorithm. They argue that the
data cleaning application, whichever is chosen, should be implemented twice using
two different filters where one filter is weaker in terms of being more tolerant and
leading to lesser rejection rates. Comparison of the results from both applications
reveals the robustness of the analysis against changes in the cleaning algorithm.
Likewise, Jan Wrampelmeyer [108] states that

“Removing outliers from the sample is not a meaningful solution since subjective
outlier deletion or algorithms as described by Brownlees and Gallo (2006) have
the drawback of risking to delete legitimate observations which diminishes the
Value of the statistical analysis.”

Even after we complete detecting and deleting outliers/errors in UHFD, there are still
other peculiar patterns that emerge in such data sets. Brownlees and Gallo [37], Hansen
and Lunde [61], and Barndorff-Nielsen et al. [27] among others suggest some handling
methods for such patterns:

a.  Simultaneous Observations: In order to demonstrate this pattern, 1 minute of
transaction prices for TKCELL stock on the 2" of January 2012 from 10:10:00 to
10:11:00 are displayed in Figure 2.1. Each square marks a different transaction. Due
to the asynchronous nature of trades, simultaneous transactions at different price levels
are present in the data. Specifically, 4 transactions at prices ranging from 8.90 to 8.96
TL have the same time stamp (10:10:56). Explanations regarding this phenomenon by
Brownlees and Gallo [37] include executions of market orders resulting in more than
one transaction report and approximations causing even non-simultaneous trades to be
reported as simultaneous.
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Figure 2.1: TCELL transaction data- 1 minute during the first session on 2nd of January, 2012.

The UHFD literature agrees that simultaneous transaction and/or gquotation data is
common across many financial markets and since UHFD models necessitate having
one observation per time stamp, some form of aggregation needs to be applied.
Barndorff-Nielsen et al. [27] suggest that when there is more than one transaction
reported per time stamp, either the median price for that time stamp should be used or
a unique price should be determined and the volume should be aggregated by using
one of the following rules:

e Use the price that has the largest volume.

e Use the volume weighted average price.

e Use the log volume weighted average price.

e Use the number of trades weighted average price.

If multiple transactions have the same time stamp, Brownlees and Gallo [37] propose
to use the median price that is less prone to discreteness of prices where Barndorff-
Nielsen et al. [27] favor the same approach but only after examining what happens to
deleted observation counts, realized volatilities and realized kernels under each of the
aggregation methods listed above. Interestingly, the Dacorogna et al. [45], Falkenberry
[50] and Verousis and Gwilym [106] studies do not address the subject of handling
prices when the data set includes more than one entry per time stamp.

b.  Irregularly Spaced Observations: Several of the studies on the subject reveal
that UHFD sets may also include transactions with irregular spacing in time. For
visualization purposes, Figure 2.2 presents TCELL transaction data over a 10—minute
period on an arbitrarily selected date.
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Figure 2.2: TCELL transaction data - 10 minutes during the first session on 2nd of January, 2012.

Irregularly spaced transactions pose a problem since the majority of econometric
models require data sets to be regularly spaced in time. Therefore, in order to use such
econometric models, one needs to arbitrarily generate a regularly spaced time series
by adopting an interpolation rule. The most favorable interpolation methods in the
UHFD literature are (i) the previous tick method (if the data point for a time stamp is
absent, then use the previously observed transaction [61], [101], [28]), (ii) linear
interpolation (if the data point for a time stamp is absent, then take an average of the
previous and the next observations with the weights depending on the distance between
the time stamps [12]), and, (iii) other interpolation methods such as splines (curve
fitting) as in [59] and [73]. Interpolation methods in general need to use information
that is not available as of the time of the transaction and Engle and Russell [49] argue
that such methods may induce spurious correlations. For instance, using splines with
weighted averages causes spurious positive correlation because now the constructed
price is a weighted average of the previous and following prices. Additionally, Hansen
and Lunde [61] argue that because the quadratic variation of a straight line is zero* and
since the linear interpolation means fitting straight lines for missing parts, linear
interpolation methods will distort quadratic variation (IVV) estimations. Hansen and
Lunde [61] prefer the previous tick method. On this issue, Brownlees and Gallo [37]
direct readers’ attention to non-frequently traded stocks. They assert that when there
are long periods between two consecutive transactions, the previous tick method will
result in using a piece of information that belonged to some considerable time before
which, in turn, will lead to inflated serial correlation due to long sequences of zero
returns. In light of all the academic debate regarding the methods, the previous tick
method is used as the interpolation method in this Thesis since the highly liquid and

L A process X is said to have a finite variation if it has bounded variation over every finite time interval
(with probability 1). Such processes are very common including, in particular, all continuously
differentiable functions. The quadratic variation exists for all continuous finite variation processes, and
is equal to zero.
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actively traded BIST stocks included in the sample are unlikely to suffer from
infrequent trading.

2.2. Market Microstructure Contaminates Observed Prices

The term “market microstructure” is first suggested in the seminal paper of the same
title by German [53]:

We depart from the usual approaches of the theory of exchange by (1) making
the assumption of asynchronous, temporally discrete market activities on the
part of market agents and (2) adopting a viewpoint which treats the temporal
microstructure, i.e., moment to moment aggregate exchange behavior, as an
important descriptive aspect of such markets. [p. 257]

As Hasbrouck [64] puts it, there is no “microstructure manifesto”. Accordingly,
O’Hara [92] defines market microstructure as the study of the process and outcomes
of exchanging assets under explicit rules while Madhavan [79] states that the market
microstructure field focuses on how investors’ latent or hidden demands are ultimately
translated into prices and volumes and Hasbrouck [64] describes market
microstructure as the study of the trading mechanisms used for financial securities. All
in all, the field of market microstructure studies an undeniable truth: although the
traditional finance theories assume frictionless and perfect capital markets, specific
trading mechanisms and imperfections of the markets affect the price formation
process. Some examples of these trading mechanisms are the existence of specific
intermediaries such as stock specialists or order clerks, or the trading taking place at a
centralized location such as an organized exchange or at a decentralized location as in
the case of over the counter markets [92].

The traditional view of price formation predicts that the intersection of the demand and
supply curves determines the price of an asset in equilibrium. O’Hara [92] emphasizes
that the beginnings of the market microstructure research stems from the incompetency
of the standard economics paradigm in providing answers to how the equilibrium price
is actually attained and what coordinates the desires of demanders and suppliers in
order for a trade to occur.

O’Hara [92] discusses that before the advent of research on market microstructure,
there were two traditional approaches to price formation mechanism. The first one
opted for the irrelevance of the price formation process and focused mainly on the
analysis of equilibrium and the properties of equilibrium prices and finding market
clearing prices without considering how the clearing actually takes place [92]. A
classic example of this traditional approach is the rational expectations literature?. This

2 An easy definition of rational expectations theory is provided by Wikipedia:
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way of modeling expectations was originally proposed by Muth [88] and became
widespread when other researchers adopted this assumption to study how economic
agents make choices under uncertainty. The rational expectations assumption is used
in many modern day macroeconomic models, game theory and applications of the
rational choice theory. The rational expectations literature does not concern itself with
behavior that is out of equilibrium. O’Hara [92] argues that implicit to this approach
is the assumption that the trading mechanism has no effect on the equilibrium price
and this assumption is problematic in modeling markets in which traders have
differential information.

The second traditional approach to the mechanics of price formation is the assumption
of a Walrasian auction setting. In this setting, a Walrasian auctioneer takes no trading
position and aggregates the demand for and the supply of an asset in order to set an
equilibrium (market clearing) price in a market with perfect competition, perfect
information and no transaction costs. Each trader submits his/her demand to the
auctioneer and the auctioneer pronounces a possible trading price. After the
announcement of this potential trading price, traders calculate their optimal demand at
that price and resubmit their new demand to the auctioneer. The auctioneer re-
determines the potential price for traders to in order to reflect the changes in the
demand schedule at this new price. This process continues until there is no further
revision so that the quantity supplied equals quantity demanded. O’Hara [92] argues
that this representation of market prices arising from a series of preliminary no-cost
auctions where no trading is allowed outside of the equilibrium does not capture the
actual process by which prices in financial markets are formed.

One can easily pinpoint how traditional approaches to price formation fail to represent
the actual pricing process of financial assets, especially in a market setting such as an
organized stock exchange where there are many regulations governing the trading
process which is itself assumed to be informationally efficient. O’Hara [92] states that
a broad understanding of the securities market design is a prerequisite for the study of
price behavior in stock markets. For instance, the most current trading mechanism
regulations relevant for the National Equity Market of Borsa Istanbul A.S. (BIST)
[109] demonstrate how the pricing process in practice may deviate from the traditional
economic paradigm's somewhat unrealistic view of the market.

All in all, regardless of the definition of market microstructure and the mechanisms
that affect the price formation in stock markets, O’Hara [92] and many other market
microstructure researchers claim that the observed asset prices can be decomposed as
follows:

Yt=Xt+Et' OStST

Rational expectations states that economic agents' predictions of the future value of economically
relevant variables are not systematically wrong in that all errors are random. Equivalently, agents'
expectations equal true statistical expected values.
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In this equation, Y;, X; and €; represent the observed price, the unobserved true price
and the unobserved aggregate effect of market microstructure, respectively.
Furthermore, Ait-Sahalia et al. [3] suggest that we can roughly divide the market
microstructure effect into three classes. The first class represents the frictions inherent
in the trading process such as bid-ask bounces, the discreteness of price changes and
rounding, trades occurring on different markets or networks, etc. The second class
captures the informational effects such as differences in trade sizes or the informational
content of price changes, the gradual response of prices to a block trade, the strategic
component of the order flow, inventory control effects, etc. The third class
encompasses measurement or data recording errors such as prices entered as zero,
misplaced decimal points, etc.

One important note about this so called "market microstructure noise" is that the high
frequency finance literature including research by Zhou [112], Andersen et al. [11],
Andersen et al. [12], Barndorff-Nielsen and Shephard [24], [25], Bandi and Russell
[19], Hansen and Lunde [58], Zhang et al. [111] all provide abundant mathematical
and empirical evidence of a noise contamination in observed asset prices as we
increase the sampling frequency, which leads to realized volatility to be a biased
estimator of the quadratic variance of asset returns. Therefore, it is of great importance
to mitigate/cleanse the effect of market microstructure noise when we try to estimate
the true price volatility of assets using high frequency data, especially considering the
fact that high frequency prices include more information compared to data sets of
lower frequencies.

2.3. A Choice for True Asset Prices

During the last decades, many researchers endeavoring to model the stock price
behavior increasingly nested in the theory of stochastic processes for describing the
uncertainty in financial markets. Although the use of stochastic processes in modeling
asset prices dates back to Bachelier [17], accepting that the logarithm of an asset price
follows an 1t6 semimartingale became popular in the late 1960°s and early 1970’s
thanks to the seminal papers by Robert Merton [84], [85], [86] and Black and Scholes
[36]. The semimartingale representation of asset prices received wide acceptance
because, as explained by Harrison and Pliska [63], with continuous trading allowed,
an arbitrage free market is complete (every contingent claim is attainable) if and only
if there is a unique probability measure P* equivalent to P under which discounted
asset prices are martingales, and, in this setting, asset prices must satisfy the
semimartingale property. Specifically, when the log price of an asset is accepted to
follow a specific form of semimartingales, i.e. the It6 semimartingale® (where elements
of the characteristic triple stemming from a Levy-It6 decomposition are absolutely
continuous with respect to the Lebesgue measure), the formal statement of the log asset
price, denoted by X;, is given as below:

3 Theoretical discussions in [5], [42], [47], [71], [72], [75] and [97] provide a comprehensive review
of semimartingale representation of asset prices.
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In this equation, t represents the time index up until a finite maturity T, B, is a real-
valued Brownian motion defined on a probability space (2, F,P), u is the jump
measure of the log asset price with the predictable compensator @, 1 and @ are random

positive measures on R, X R and w(dt, dx) = dtF;(dx), fot b,ds represents the drift,
fot o.d B, represents the continuous part, fot f{|x|55}x(“ — w)(ds, dx) represents small

jumps and finally fotf{|x|>g}x(u) (ds, dx) represents big jumps. The threshold that

distinguishes small jumps from big jumps is arbitrary and a semimartingale generates
a finite number of big jumps until a finite maturity with an infinite or a finite number
of small jumps. Such a Levy-It6 decomposition of semimartingales shows that log
asset prices in an arbitrage free market can be written as the sum of a drift, a continuous
local martingale and discontinuous small and big jumps. Ait-Sahalia and Jacod [4]
provide a mapping of each of these components to an economic source of risk: the
continuous part may represent the part of the asset's total risk that can be hedged, the
big jumps may capture the effect of the big news related events, and the small jumps
may model price changes that are substantial for a short period of time but not
significant over daily or longer sampling intervals. Ait-Sahalia and Jacod [4] further
state that this type of small jumps may occur due to the market’s inability to absorb
large transactions without any price effect. It should be noted that it is still being
debated in the finance literature whether stock markets are a good candidate for asset
prices to be modeled as discontinuous 1t6 semimartingales. In fact, some researchers
promote Brownian semimartingales where jump components in a regular It6
semimartingale have a size of zero (asset prices do not jump) while others underline
the fact that a portion of price changes in financial markets may be too large to be
explained by continuous Brownian semimartingales and favor discontinuous Ito
semimartingales for modeling log asset prices.

At this point, before commencing with the discussions regarding whether a
discontinuous or continuous It6 semimartingale better represents log asset prices, let
us remember that the market microstructure literature provides abundant evidence of
a noise contamination in observed asset prices as we increase the sampling frequency.
Therefore, in a high frequency setting, assuming a proper form It6 semimartingale for
the observed log asset prices means choosing a proper semimartingale form for the
unobservable true log asset prices and making assumptions regarding the structure of
the microstructure noise. With respect to the representation of true log asset prices, the
high frequency finance literature’s most popular choice (for instance, [112], [8], [29],
[801, [24], [25], [82], [60], [61], [111], [73], [2], [19], [20], [77], [14], [28], [43], [6],
[23], [78] among many others) has been Brownian semimartingales, i.e., the true log
asset prices are accepted to not exhibit any discontinuous behavior. In this Thesis, we
also favor the Brownian semimartingale approach mainly because most of the
researchers who promote jump-diffusions to model log asset prices ignore the market
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microstructure noise, take observed prices as true prices and try to explain the big
movements in observed asset prices with the existence of jumps in true prices. As Lee
and Mykland [76] argue, interpreting the empirical results as evidence of the existence
of jJumps in financial markets may be erroneous in the sense that since both the true
asset prices and the market microstructure noise are unobservable, sharp movements
observed in asset prices may be caused by the microstructure noise and not a jump
component within the asset's true price. In a setting where the observed prices are
accepted to be composed of two unobserved parts, any interestingly large price change
should not only be tied to jumps in only one of these parts. The existing literature does
not provide a conclusive methodology for identifying the exact source of such price
changes. Moreover, there are some practical problems attached to using discontinuous
It6 semimartingales: difficulty of estimation as well as dealing with additional
dimensions to volatility modeling such as the structure of jump intensity or jump size
distribution.

Another aspect to be noted when a researcher models true asset prices as Ito-
semimartingales with jumps is the disappearance of market completeness as we
introduce jumps. Recall that market completeness and the availability of no arbitrage
strategies allow us to price assets using replicating strategies. However, in an
incomplete market, some payoffs (contingent claims) cannot be replicated by cash
flows from other securities, i.e., in an incomplete market, we cannot be sure that each
and every cash flow represented by a security can be replicated by trading in carefully
selected other securities. Accordingly, asset pricing with jJumps requires us to drop the
assumption of market completeness.

In light of above discussions, this Thesis adopts the Brownian semimartingale
approach in the modeling of asset prices.

2.4. Assumptions on Market Microstructure Noise

Up until now, in order to generate consistent estimates of asset return volatilities we
motivated ourselves to sample returns at intervals converging to zero causing number
of returns going to infinity. However, the number of sampled returns during a fixed
period of time cannot converge to infinity due to the fact that number of quotations
and transactions in an organized market per a fixed period of time (for instance a day)
are not infinitely many. Moreover, as stated earlier, observed prices at high frequencies
deviate from the efficient theoretical prices as a result of the presence of the MMN.

Recall that number of returns per period [0, T] is n. Then, the i" return r; = X; — X;_,

within the period [0, T'] can be decomposed as

n=1 +v i=12,n
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where v; = €; — €;_, and the observed return consists of an efficient return, r;*, and an
intraday noise increment. As a result, the observed RV can be written as

n n
RV =RV* + ZZri*vi + Zvl?,
i=1 i=1

where the last term on the right-hand side (RHS) can be interpreted as the unobservable
realized variance of the noise process and the second term is affected from the
dependence between the efficient price and the noise [95].

This decomposition of the observed RV implies that the aggregate effect of market
microstructure on the properties of the RV estimator is shaped by the assumed
structure of the noise process. In this context, the following are examples of the
assumptions in the literature regarding noise structure, where first one is the most
popular:

Assumption 2.1.

e The microstructure noise, €, has zero mean and is an independent and identically
distributed (i.i.d) random variable.

e The noise is independent of the efficient price process.
e The variance of the noise is constant (the intraday noise increment, v, also has

constant variance) and the noise has a finite fourth moment.

Under this favorite set of assumptions about noise, conditionally on the efficient
returns,

E[RV|r*] = RV* + 2nE[€?],

and therefore RV for the period [0, T'] is a biased estimator of the IV [10], [24], [25].
Moreover, under Assumption 2.1, Zhang et al. [111] show that i.i.d noise introduces a
bias into the RV estimator and the asymptotic distribution of RV can be expressed as
follows:

(RV — 2nE[€?)]) a NOD).
2/ nE[€*]
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Considering the market microstructure of Borsa Istanbul National Stock Market as an
example of organized equity markets, we believe assuming that the aggregate effect of
microstructure on price process being i.i.d might be improper. Indeed, other
researchers also realize how Assumption 2.1 is unrealistic and work under different
set of assumptions as given in Assumption 2.2 and Assumption 2.3.

Assumption 2.2.

e The microstructure noise, €, has zero mean and is a strictly stationary stochastic
process where joint density might alter depending on the sampling frequency.

e The noise is independent of the efficient price process.

e The variance of the noise increment is allowed to change with sampling
frequencies; however, for a specific sampling frequency it is A + o(1) where
A > 0.

Under this partially generalized version of Assumption 2.1, Bandi and Russell [20]
prove that as the number of returns converges to infinity, the observed RV converges
to infinity as well.

Likewise, Ait-Sahalia et al. [3] examine a similar case where the noise is not i.i.d and
adopt the following set of assumptions in estimation of RV:

Assumption 2.3.

e The microstructure noise, €, has zero mean, is stationary, and strong mixing
stochastic process, with the mixing coefficients decaying exponentially. In
addition, E[e***] < oo, for some k > 0

e The noise is independent of the price process.

Under Assumption 2.3, Ait-Sahalia et al. [3] demonstrate that the RV diverges to
infinity linearly in n and for large n, the realized variance may have no connection to
true returns.

Even Assumption 2.3 has a potentially problematic component, which says that noise
is independent of the efficient price. On this issue, Hansen and Lunde [61] deviate
from the existing literature to allow for dependence between true prices and noise
where the research setting in [61] includes the following assumption on the MMN:
Assumption 2.4.

e The microstructure noise, €, has zero mean, is covariance stationary such that its
autocovariance function is defined by 7(s) = E[€€.4¢].
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Hansen and Lunde [61] not only show that when the true price follow a Brownian
semimartingale form and the MMN satisfies Assumption 2.4, the asymptotic bias on
the RV estimator grows linear in number of sampling intervals, but also do they
provide evidence of serial dependence in the noise process and correlation with the
efficient price for the case of Dow Jones Industrial Average stocks.

All in all, in light of the literature providing abundant mathematical and empirical
evidence pointing to the existence of MMN, which may not be i.i.d and be correlated
to the true price, we believe the estimation of the IV of true prices must be carried out
only after evidence on the MMN structure is gathered so that a proper method to
mitigate the MMN effect could be chosen. Accordingly, we examine evidence from
Borsa Istanbul National Equity Market while we control for factors such as sampling
scheme, liquidity and data handling methods with the aim of deducing robustly
whether the MMN visually and statistically exerts presence and whether it exhibits
I.i.d behavior.

2.5. Sampling Schemes

In organized equity markets, transactions take place and quotes arrive asynchronously,
leading to transaction and/or quote time series to be observed at discrete and irregularly
spaced intervals. This asynchronous character of markets allows us to sample the
returns in various ways, i.e., one can follow different sampling schemes to estimate
the IV over a fixed time period, [0, T].

The most common sampling scheme is calendar time sampling (CTS), under which

sampling is done at equal intervals in physical time; i.e., 6;, = %for all i. Sampling at
every 1 or 10 minutes are examples of such a scheme. Even though it is commonly
used, CTS has a shortfall: the transactions and/or quotes are irregularly spaced in time
and calendar time sampled data need to be constructed artificially. As discussed in
Section 2.1, in order to arbitrarily generate a regularly spaced time series, one needs
to adopt an interpolation rule such as the previous tick method, the linear interpolation
method or the cubic splines method. However, since some interpolation methods in
general need to use information that is not available as of the time of the transaction,
the researcher must be cautious of spurious correlations induced by the interpolation

method selected.

Alternatively, one can sample prices whenever a transaction takes place, which is
called transaction time sampling (TTS). If we sample the data everytime the price is
changed, the sampling scheme is called tick time sampling (TKTS). Another alternative
is called business time sampling (BTS), where the sampling times are determined to
ensure that the IV of all intraday intervals are equal; i.e., IV; = . When these methods
are compared, it is seen that an important feature of BTS pops out: under BTS, the
observation times become latent, whereas under CTS, TTS, and TkTs they can be
observed. Moreover, the BTS depends on the 1V, the very unobservable parameter we
would like to estimate. Pigorsch et al. [95] argue that since observing data under BTS
requires us to estimate the IV before calculating the latent IV, this method is infeasible.

25



It is of great importance to shed light on the influence of the sampling scheme on the
statistical properties of realized variance, if any. The first to contribute in this area is
Oomen [93], who examines the following sampling alternatives:

e calendar time sampling,
e transaction time sampling,
e tick time sampling,

e business time sampling.

Oomen [94] develops on Oomen [93] and provides a framework to examine the
statistical properties of the RV when data are contaminated with the MMN. Oomen
[94] emphasizes that in the absence of the MMN, regardless of the sampling scheme,
the plain RV estimator is an unbiased estimator of the IV. His framework, diverting
from the standard literature, which prefers diffusion type price processes, takes the
efficient price process as a pure jump process (Compound Poisson Process) and adds
on a moving average structure to incorporate the microstructure noise. This
specification of the observed price models the price as the sum of a finite number of
jumps, where the number of transactions is counted by a Poisson Process. Oomen
states that, as in the case of the diffusion-based models, the RV is a biased estimator
of the jump analogue of the IV under microstructure noise. However, unlike previous
results, the bias does not diverge to infinity as the sampling frequency converges to
infinity. Oomen derives the closed form expressions for the bias and the mean squared
error (MSE) of the RV as functions of model parameters as well as the sampling
frequency. It is shown that the MSE of the RV can be decreased by sampling returns
on a transaction time scale as opposed to the common practice of sampling in calendar
time. This result is shown to be more pronounced when the trading intensity pattern is
volatile.

At approximately the same time, in another study, Hansen and Lunde [61] assume that
the efficient price follows a continuous diffusion process and use kernel-based
estimators to unearth the properties of the MMN. The most notable of these
characteristics is the noise being time-dependent and correlated with the unobservable
efficient price. Interestingly, their findings are robust under both of CTS and TKTS.

In a later study, Griffin and Oomen [55], propose a new model for transaction prices
in order to study the properties of two different time scales, transaction versus tick
time. Their results show the finding that the return dynamics in transaction time are
different from those in tick time and the choice of the sampling scheme may have a
substantial effect on the properties of the RV*. They find that tick time sampling is
superior to transaction time sampling in terms of the MSE, especially when the level
of noise is low and the number of ticks, or the arrival frequency of the efficient price
moves are small.

4 Microstructure noise is highly dependent under TKTS, so bias correcting method should be decided
accordingly.
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Finally, in his unpublished master’s thesis, Sen [102] introduces a new concept of
business intensity and names the sampler as “Optimizable Multiresolution Quadratic
Variation Filter”. He concludes that his filter is less prone to microstructure effects
than any other common sampling method for Turkish Interbank FX market.

All of these aforementioned contributions to the literature underline the fact that the
possible technics to sample returns in organized markets due to asynchronous nature
of the trading have the potential to influence the return and RV dynamics, which may
alter the evidence on the MMN. Consequently in Chapter 4, as we search for the
evidence on the existence and the statistical structure of the MMN in Borsa Istanbul
National Equity Market, we define sampling schemes as one factor to be controlled
for (in addition to data handling methods and liquidity) and compare the evidence
acquired under TTS and CTS to conclude if our findings are robust regardless of the
sampling schemes we work under.

2.6. Presence of Non-trading Hours

Another problem in measuring the realized volatility is the presence of non-trading
hours during a trading day. Organized stock exchanges are open for trading only for
certain hours on each weekday. The realized volatility may underestimate the
integrated volatility if the realized volatility is calculated by using prices sampled only
during the trading hours. In order to avoid this underestimation bias, we may include
returns on non-trading hours (overnight and/or lunch break) but such a calculation may
cause discretization noise of returns to make realized volatility noisy [104]. In addition,
Bannouh et al. [23] state that non-trading hours are not necessarily a source of the
MMN in a strict sense, and, therefore in addition to a bias correction, we may need to
adjust our estimator for other market microstructure effects such as bid-ask bounce
etc. Quote by Bannouh et al. [23] explains this as follows:

“For the RV estimator, non-trading increases the variance but does not cause a
bias. In contrast, infrequent trading introduces a downward bias in RR
estimators as the observed intraday high and low prices are likely to be below
and above their ‘true’ values, respectively.”

Hansen and Lunde study the adjustment of the RV estimates for non-trading hours in
3 different papers [58], [59], [61]. In [58], they present 3 ways of adjusting the RV
estimators in order to incorporate the variance over non-trading hours: (i) scaling of
RV pentociose DY Using a constant scaling factor (the scaling factor is same for each day),
(if) by adding the squared overnight return to RVopentociose and, (iii) by optimally
selecting weights to linearly combine the RV gpentociose and the squared overnight return
(by minimizing the MSE as the objective function). Under the scaling approach, each
original 6.5-hour variance estimate (before forecasting) is multiplied by a constant
factor o defined as
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_ L1(R; — R)?
i=1 RV;

)

where R; is the daily log return on the stock/index for day i, N is the total number of
days in the sample and R = N1 ¥¥ | R;. This procedure ensures that the average of
the scaled realized volatility, i.e., o[X, X], is equal to the variance of the daily return.
Hence, o will inflate the 6,5-hour variance estimate. Unfortunately, [58] makes strong
assumptions about the noise such as independence of efficient/true asset price.
Therefore, there is a chance that the estimator employed in [58] by Hansen and Lunde
may not fit the empirical findings if such findings pointed to a correlation between the
noise increment and efficient/true return. Hansen and Lunde [58] state that this
estimator is only slightly biased for the IV when the MMN is time dependent and
correlated with the efficient returns.

In [59], Hansen and Lunde use a different scaling factor given as follows:

-1\'N

n i=17i

0=—v—
M~ RV,

)

where r; is the daily return. Likewise, in [61], again an upscaling ratio is employed for
Zhou’s kernel based RV estimator [112]. However, Hansen and Lunde state that the
upward scaling as offered in [61] causes the variance of the estimator to become
inflated and they switch to the Bartlett kernel in their RV estimation in [58].

Hansen and Lunde [58] discuss the conditions that justify a simple scaling. They state
that for the scaled RV to be a proper estimator of the daily volatility, a particular
scaling of the RVopentoclose 1S assumed to be informative about the daily 1V and the
scaling coefficient is assumed to be estimated consistently by incorporating
information from an increasing number of days. In particular, their scaling approach
assumes that (a) a fixed proportion of the daily integrated variance occurs during the
active period (the validity of this assumption is checked in their empirical analysis),
(b) the conditional bias of the RV gpentociose IS proportional to the daily IV (they indicate
that this requirement is fulfilled whenever the RV measure is unconditionally unbiased
and for some of the biased estimators -under additional “mild suitable” assumptions
such as MMN having constant variance independent of time-, the assumption still
holds), and, (c) the squared overnight return is conditionally proportional to the
overnight IV. This set of assumptions is problematic when we try to prove the
statistical and economic gains of applying MMN adjusted methodologies in estimation
of the 1V using intraday data, since it is not clear what would happen if we divided
several different estimates of the RV by the squared overnight return? More than
likely, there would be no single proportion or no single scaling factor. Each RV
estimator would have its own scaling factor but this would contradict the initial
assumption that volatility calculated by using data from the trading hours is
proportional to the volatility of the entire day. We believe that if this proposition holds,
then the proportion should not change from one estimator to the next.
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Martens [82] also emphasizes the idea that the absence of overnight trading should be
reflected in RV measures by adjusting the RV estimator by summing the overnight
squared returns with the RVopentociose. He adds that since the square of overnight returns
is a noisy estimator, an alternative volatility measure using only intraday returns would
be to multiply the vanilla RV by (1 + ¢), where c is the proportion of the sum of all
RV pentociose t0 the sum of all overnight RVs and it is a positive constant that makes the
adjusted RV to be equal to the daily volatility (whereby the correct expected value is
attained). Koopman et al. [73] follow Martens [82] in adjusting the vanilla RV to reach
a better estimate of the daily IVV. Meanwhile, Fleming et al. [51] prefer a dynamic
scaling approach in the sense that the adjusting factor ¢ is calculated for each day
separately in the following fashion:

t Q2
i=1P Tt

p =L
' :;:1 pLRVt—i

where p € (0,1) is a factor that manages the weights allocated to the lagged values of
the returns and RVs. Unlike Hansen and Lunde [58], [59], Fleming et al. [51] do not
lay out the statistical effects and or the assumptions with respect to scaling. They do
not show what happens to the consistency, unbiasedness and efficiency of the RV
estimator when we scale it using their approach.

Only a small number of papers [58], [59], [60], [61], [28], [101] in the RV literature
discuss the methods for adjusting the bias corrected estimator for non-trading hours,
whereas the majority of the literature on the estimation of quadratic variation of asset
prices using high frequency data stays silent about non-trading hours. Examples of
papers that do not address the non-trading hours issue are by Barndorff-Nielsen et al.
[27] (kernel based), Barndorff-Nielsen et al. [28] (subsampling), Bandi and Russell
[20] (optimal sampling when there is noise), Bandi et al. [22] (optimal sampling
frequency in forecasting), Oomen [94] (pure jump process plus MA(Q) to analyze the
effect of varying sampling schemes and optimal sampling frequencies over realized
variance estimator), Griffin and Oomen [55], Gatheral and Oomen [52], Andersen et
al. [14] (forecasting in the presence of MMN), Ghysels and Sinko [54] (volatility
forecasting and the MMN) etc. The same observation is also mentioned by Brownlees
and Gallo [38].

“Note that overnight information is not included in these series and this may
have a consequence when we use intra-daily information to predict the
conditional variance of daily (close-to-close) returns. Gallo (2001) shows that
the overnight squared return has a significant impact when used as a
predetermined variable in a GARCH for the open-to-close returns. For realized
volatility measures, the problem is recognized, among others, by Martens
(2002), Fleming, Kirby, and Ostdiek (2003), and Hansen and Lunde (2005).”
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There may be a number of reasons why volatility over non-trading hours is not
typically included in the RV literature. It may be that the existence of non-trading
hours only causes a time shift in volatility and daily volatility is the same regardless of
the length of the trading hours, and as a result a diurnal shape in trading volumes and
returns is observed. Alternatively, trading incentives over the night and lunch are
already reflected in the market or limit orders given once the market opens. Finally, it
may be that when the return volatility displays a U shape per session, adjusting the
RVopentoclose fOr non-trading hours leads to a double counting of the daily volatility.

The first problem that arises when the IV estimates are adjusted for non-trading hours
relates to the variety of the RV measures proposed in the literature. Depending on the
empirical findings with respect to structure of the MMN, let’s say that one chooses
subsampling or kernel based estimators that specifically fit the MMN findings. In such
a case, it is not clear how the bias corrected estimator can be adjusted for non-trading
hours. Moreover, in order to determine the statistical gains by bias correcting the
estimators when there is MMN, one should compare the bias corrected and vanilla RV
settings with respect to some criteria such as the MSE. Now, if the vanilla RV is
adjusted for non-trading hours following Hansen and Lunde [58] and the bias corrected
estimator is not, such comparisons are flawed from the very beginning.

The second problem with adjusting the RV estimators for non-trading hours is the
existence of opening and closing sessions in BIST. With such a market structure, it is
necessary to decide whether the opening and closing sessions should be included in
the adjustment process or whether we should only work with sessions where a
continuous auction is allowed. There is also a lunch break in BIST. Hansen and
Lunde’s [58] analogy applies to block trading hours, since there are no lunch breaks at
the NYSE during the trading day. Therefore, a simple scaling of the RV as in Hansen
and Lunde [58] cannot reflect the daily volatility of returns in BIST.

Another major concern regarding the adjustment of RV estimators for non-trading
hours is the effect of sampling schemes. More specifically, [58] and other papers such
as [82] and [73] that adopt and adjustment for non-trading hours mainly work under
CTS. In addition, the literature about upscaling the RVpentociose fOr estimating the daily
IV, regardless of whether the scaling factor is constant for the entire sample period
[58] or recalculated for each day [51], accepts implicitly or explicitly that the
relationship between RVopentoclose aNd RVovernight Can be revealed. We believe that the
same analogy may not apply for TTS and/or TKTS.

In light of above discussions, depending on the structure of the MMN and the selected
method for correcting the bias, we believe that it is best not to adjust estimators for
non-trading hours, particularly if estimation is carried out under different sampling
schemes and/or the organized market, from which the data is disseminated, defines a
trading day as a combination of continuous auction sessions and single price opening
and closing sessions.
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CHAPTER 3

TESTING THE STATISTICAL STRUCTURE OF MMN UNDER
CTSAND TTS

3.1. Realized Variance formula under CTS and TTS®.

Let S; denote the price process of a security and the log price of this security be
represented by the process X; which satisfies the following stochastic differential
equation on finite time horizon t € [0, T]:

dXt = ‘utdt + O-tdBt' (31)

The log price X, of this security is assumed to belong to the Brownian semimartingale
family, i.e. X, is F,-measurable, X; has continuous sample paths, drift u, is a locally
bounded, predictable continuous process, the continuous stochastic process o, that
derives the volatility of the log return of the security is square integrable, and B,
denotes the standard Wiener process. We assume that the leverage effect is ruled out,
meaning that o, is orthogonal to B;. In this setting, as discussed in the preceding
chapters, the parameter of interest for the majority of financial applications is the
integrated volatility of log return accumulated over a fixed period of time T, usually a
trading day, which is written as follows:

T
J s2dt. (3.2)
0

Unfortunately, the integrated volatility accumulated until time T, IV, is unobservable
and latent, forcing us to estimate it. In doing so, we benefit from the concept of

S Interested reader should consult to [71] and Chapter 2 of [97] for further discussions on Brownian
motions and quadratic variation of semimartingales, respectively.
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quadratic variation since the quadratic variation process of semimartingale X; denoted
by [X,X] = ([X,X])es0 is defined as

[X,X] = X2 — zfx_dx,

where X_ at time s represents the value as lim X, (Chapter 2, Section 6, p. 58 of

U—-S,u<s
[97]). Since we assume that the security price has continuous sample paths, X_ at time
sequals to X, i.e., the price process has no jumps.

Theorem 3.1. (Theorem 22 in Chapter 2, Section 6, p. 59 of [97]) The quadratic
variation process of a semimartingale is a cadlag (abbreviation of right continuous with
left limits in French), increasing and adapted process satisfying the conditions given
below:

i) [X,X]o = X3 and A[X, X] = (AX)?,
i) If T shows a finite sequence of stopping times, 0 < t, < t; - <t < oo, it is

called a random partition (the distance between two consecutive stopping times
are random). In this context, if 7, :=tg <t -+ < t;_is a sequence of random

partitions tending to identity, i.e.,
lim supy, tj} = oo almost surely (a.s) and ||z, || = supkltis; — til = Oas.,
n

then
2
Xg +Z(Xti+1 _Xti) = [X, X1,
i

where the convergence is in probability. In other words, if the maximum distance
between observation times converges to 0 as the number of observation points
(stopping times) converges to infinity, then the sum of squared differences of
process X with differences taken over consecutive stopping times converge in
probability to the quadratic variation of X.

A corollary (Corollary 1 in Chapter 2, Section 6, p. 60 of [97]) to Theorem 3.1 reveals
that the quadratic variation of a semimartingale X has paths of finite variation on
compact sets and is also a semimartingale. Accordingly,

T
. 2 [P
AI_I)I;IOZ(XQH _Xti) _>J O—tZdt’ (3.3)
0
ti
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showing that the estimation error of the realized variance on [0, T] defined as

T

Z(Xtm -x,)° —f odt, O0<t<T,
0

t

shrinks to 0 when the number of stopping times (the observation points) increases to
infinity and at the same time maximum of sampling intervals converge to zero. This
suggests that from a financial applications point of view, the RV calculated over the
highest data frequency should give the best possible estimate for the IV both under
CTS and TTS because the RHS of the convergence in Equation (3.3) is defined over a
sequence of random partitions tending to identity, i.e., the observations times are
allowed to be random with CTS being a special case of equidistant observations. In
practice, however, trading in organized markets introduces market microstructure
frictions to the observed prices, which makes the estimation of return volatility of true
prices a challenging task.

3.2. Asymptotic bias of the RV when an MMN exists.

Following the majority of the market microstructure noise literature discussed in the
previous chapters, the observed price Y; is assumed to be contaminated with an
additive market microstructure noise. i.e.,

Y =X + &, 0<t<T, (3.4)

where T shows a finite horizon, X; denotes the logarithm of the true/efficient price of
the security at time t and &, represents the logarithm of combined effect of all
microstructure noise sources at time t including frictions in the market, trading rules,
informational asymmetries, bid-ask bounces, non-trading hours etc. The
contamination of observed prices with market microstructure noise is a very important
assumption in volatility estimation via realized type of measures because if there is
such a contamination, then the quadratic variation of observed prices calculated over
the highest frequency possible does not simply converge to the IV of the true prices
since an asymptotic bias, in addition to the discretization error appear due to existence
of the MMN. In order to examine how RV deviates from IV as we increase the
sampling frequency and to come up with methods to handle those deviations
(mitigation of the market microstructure noise effect on RV measures), we first have
to make some assumptions regarding the statistical properties of the MMN. Recall
from the preceding chapter that regarding the MMN, the most popular assumptions in
the RV literature are as follows:
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Assumption 3.1. The market microstructure noise, &, is a sequence of independent
and identically distributed (i.i.d) random variables with zero mean, constant variance
and finite fourth moment.

Assumption 3.2. Market microstructure noise and true prices are orthogonal to each
other for each t € [0, T].

These assumptions imply that
a) Ele,, | =E[e,] =0andE[e, ]| L E[e,]forany 0 <i<n,

b)  the increment of the noise also has a constant variance. More specifically, if v,
represents the noise increment from time t; to t;, 4, Vt; € [0, T], then

Varlv] = E[vZ] - (E[v,,])"

= E[vtzi] - (]E[gti+1 o gti])z ,

= E[vZ] - (E[er,,,| - E[z,])

= E[vi]

=E [(gti+1 - gti)z]

= E [(gti+1)2 - z(gti+1)(£ti) + (Eti)z]

= 2(E[&;?] — E[e]E[e.])
= 2Var[g.],

(3.5)

where since Var[e,] is constant, Var[v,] constant as well. In order to continue with the
examination of the asymptotic bias of the RV estimator when observed prices are
contaminated with the MMN, as the next step, we restate® the definition of the

quadratic variation of a generic semimartingale {Kti}te[o - relative to a grid (or
i ,

partition) G = {ty, t1,*, thn_1}, to = 0,t,_, = T as follows:

n-—2

[K, K19 = Z(Kti+1 —K,)".

i=0

The number of data points in grid G is denoted by |G| and equals to n. Let A(G) =
max (t;;, — t;), then for n - 0 if A(G) — 0, for all t € [0,T] there is a process

1<isn
[K,K]; so that [K, K]f — [K, K], in probability (Theorem 1.4.47 in [70]). This is the
same theorem as the one given in Theorem 3.1.

® The asymptotic distribution of the discretization error when there is no MMN under TTS is constructed
in [91] and for ease of reading, we prefer following their notation for the rest of the chapter. For this
purpose, please see that grid and partition terms are used interchangeably, A(G) = ||G||, conditionn —
oo and A(G) — 0 means partition G tends to identity.
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Under these notations, assumptions and definitions, following Zhang et al. [111],
Hansen and Lunde [61], Awartani et al. [16] and many other authors, the conditional
asymptotic bias of RV on [0, T] calculated using observed prices, Y;, that are
themselves defined as the sum of true prices, X;, and the aggregate effect of market
microstructure, &, is derived as below:

From Equation (3.4), applying the quadratic variation operator to both sides, we get
[Y, Y13 = [X, X1 + 2[X, €]3 + [&, €]5. (3.6)
Taking the expectation conditional on the true price process X on both sides yields
E[[Y,Y]9|X] = E[[X, X1%|X] + 2E[[X, e]%|x] + E[[e, €]%| X]. 3.7)
Asn - 0 if A(G) - 0, [X,X]% - IV, and

E[[Y,Y]|X] - IVy

= 2E X[+ E

n-2
Z(etHl - gti)z X
i=0

By the linearity of the expectation operator and the independence of the true price and
the MMN, where E[e,,, |X] = E[e,|X] = 0,asn —» o and A(G) - 0

n-2
Z(XtHl o Xti)(gti+1 o gti)
i=0

n—-2 n—2 n-2
E z(XtHl _Xti)(gti+1 _gti) X|=E Z(Xti+1€ti+1) X|+E Z(Xfigti) X
=0 n_i;O n_2i=0
—E Z(Xtiﬂgti) X|—E Z(Xtigtiﬂ) X
o
= D ElXuy e [X]+ ) BlXee |A]
i=0 i=0
n-2 n-2
= B[ e X] - ) Xz, [X]
i=0 i=0
n-2
= E[Xt +1|X] ]E[gt +1|X]
=0



n-2
+ ) B[, |X] Bz, |x]
=

= > E[X,,, X Ble |x]

=
= > B[, |X] B[, |X]
i=0
and
n—2 n-2
2 2
E [z (Sti+1 - gti) X|= z E [(gti+1 - gti) |X]
i=0 i=
n—-2

= Z ]E[gti+12 + gtiz - 28ti+1gti|X]
"2

= > E[ey, 2]

=0 (3.8)

Therefore, asn —» oo
E[[Y,Y]9]X] = IV; = 2(n — 1) E[e,2] - oo (3.9)

We would like to underline that if we let the expectation of the MMN to be different
than 0, as long as we take the variance of noise as constant, E [(Stm — eti)z] equals

to some constant by Equation (3.5) and the asymptotic bias, E[[Y, Y]%|X] — IV, still
explodes to infinity linear in n as n diverges because now Equation (3.8) becomes
2(n — 1) Var[g,].
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Awartani et al. [16] point out that even if we take the true price as correlated to the
MMN, the asymptotic bias, 2E[[X,]%|X] + E[[¢, €]%|X], is still dominated by
E[[e, e]ﬂX]. Likewise, Bandi and Russell [20] state that [X, ], is stochastically
dominated by [¢, €];. We hereby provide the reasoning of these statements as follows:

A version of Cauchy-Schwarz Inequality,

PIRCEROEIN (310)

implies that
[X; S]% < [XIX]T[EI E]T'

Due to the definition of It6 processes and Brownian semimartingales with square
integrable a;, we know that [X, X] is stochastically bounded, i.e. for any 1 > 0, there
exists a finite M > 0 such that

which is denoted by [X, X]r = 0,(1).

As Hansen and Lunde [61] state, r'® variation of the white noise type processes with a
constant mean explode as data points in the partition diverges. Recall that, based on
our assumptions, the MMN under Assumption 3.1 belongs to the white noise family.
The explosion of the quadratic variation of the MMN as n goes to infinity can also be
deduced from Equation (3.8) because from Equation (3.8), it is evident that under the
assumption that MMN has constant variance, IE[[e, s]g] — oo as n diverges. If the
quadratic variation of a stochastic process is stochastically bounded, then the
expectation of the aforementioned quadratic variation cannot diverge in n.
Accordingly, Assumption 3.1 and Equation (3.8) together ensure that as n goes to

infinity, [¢, e]g explodes.
Therefore, we can write

[X, g]%‘ S [XIX]T[E’E]T < [8’8]%"

and
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[Xr g]T < [8, S]T;

in probability. Taking expectations on both sides of the inequality, we get E[[X, €];] <
E[[e, €]+] and the asymptotic bias is dominated by [¢, €] under both TTS and CTS,
regardless whether MMN and true price are correlated and/or MMN has a constant
mean other than 0.

3.3. Testing the existence of MMN under TTS

Awartani et al. [16] form the following null and alternative hypotheses in order to
check whether, under CTS, there is any statistically significant asymptotic bias on RV
estimator due to the existence of MMN:

Ho: E (e, — &) | =0, (3.11)
HoE (s, —£,)] > 0. (3.12)

We assert that the same set of hypotheses are also relevant for TTS because under both
TTS and CTS, we have proved that if the observed prices are contaminated with the
MMN which satisfies Assumption 3.1, then as we increase observation frequencies,
the RV, scaled by (2-number of sampling intervals))~! and calculated over
observed prices, estimates more and more the variance of the MMN rather than the
quadratic variation of the true price.

Awartani et al. [16] develop a test statistic under CTS to test if we can reject H, against
H, implying that the MMN has a statistically significant effect on the RV estimators
of the IV at a given sampling frequency. The test statistic Zr, , employs the RVs
calculated at two artificially selected frequencies, one low and one high, as well as the
Realized Quarticity (RQ) calculated at low frequency and is formulated as below:

_ Vh—1(RVyy, — RVpp)

Zrnn’ ' (3.13)
2(h—1 :
\/% RQrp

where h and n stand for the number of observations for the whole estimation period,
T, (for instance, the number of observations per day) at low frequency and high
frequency, respectively, and

38



2
RVrpn = Z(th -Y,), (3.14)
i=0
h—-2
2
RVpp = Z(YtHl Ytl) ’
i=0 (3.15)
h-2
4
RQT,h = Z(Yti+1 - Yti) ) (316)
i=0
n
n>h, E—>Ooasn,h—>oo_

Beware that the notation in [16] requires to attach each observation with a time index
that starts from 1, i.e., in prior and following sections, we take the grid on which
observations are positioned in the form G = {t,, t;, -, tn_1},to = 0,t,—1 = T, Where
Awartani et al. [16] write same grid in a slightly different form G = {t,, t,, -, t,,}, t; =
0,t, = T. This is why we have differences in the upper and lower bounds in sigma
operators between Equations (3.14), (3.15), (3.16) and calculations suggested in fifth
equation in [16]. In addition, the multiplier (h — 1) in Equation (3.13) is one less than
the multiplier h = NT in eight equation in [16]. The reader should keep in mind these
notation nuances while reading the following sections henceforth.

3.3.1. Deriving a statistic to test the existence of MMN under CTS

The test statistic Zr, , has a standard normal distribution asymptotically and its
asymptotic distribution is constructed on two main pillars:

1)  Awartani et al. [16] first describe their setting as follows:

e the true price is generated as in Equation (3.1),
T 4
o fo otdt < oo,
e the MMN increments have a finite fourth moment on [0, T'],

e one can find at least one ¢ >0 such that for ¥ € (0,1), liminf (n —
n—oo
1%, e]r > ¢ and lim inf (h—1D¥ e elr > C.

39



Awartani et al. [16] then explain the expansion of the numerator in this setting as
below:

VR —1(RVyy, — IVy ) _ VR =1(RVy ), — IVy)

Zrnn = ) (3.17)
(A Bpg,, (AL,

reveals that the first term on the RHS of Equation (3.17) converges to 0 in probability
and asymptotically speaking, the limiting distribution of Zy,, is determined by
second term on the RHS of Equation (3.17). This argument is built on a result by Jacod
and Protter [69], who show that in the absence of the MMN for equidistant
observations, the estimation error of the RV, scaled by the square root of the number
of sampling intervals is stochastically bounded, i.e.,

(RVyn — IVr) = 0,((n—1)71/2), (3.18)
(RVyp —1Vr) = 0,((h — 1)7Y/2). (3.19)

The Equations (3.18) and (3.19) show that estimation error when the total number of
observations equals n needs to grow at least by the square root of (n — 1) in order to
be bounded asymptotically, and, any smaller amount that scales the estimation error

causes it to converge to 0. Since we assumed that% — coasn,h - oo,

lim P[|[Vh—1(RVy, — IVr)| =y] = 0,Vy € (0,),

h,n—oo

and such convergence in probability is denoted by vh — 1(RVT,n —1Vy ) = 0,(1).

2)  Since the limiting distribution of the statistic Z7 ,, 5 is driven by the second term
on the RHS of Equation (3.17), Awartani et al. [16] benefit from a central limit theorem
developed by Jacod and Protter [69] and a result in [24] which shows that the realized
quarticity is a consistent estimate of the quadratic variation of the estimation error. The
central limit theorem by Jacod and Protter [69] proves that, in the absence of the MMN,
the estimation error of the RV with respect to the IV has a limiting mixed normal
distribution under CTS, i.e.,

d T
VR—1(RVy, —IVy ) > N <O,ZTJ a;*ds>.
0
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By using this central limit theorem combined with the realized quarticity being a
consistent estimate of the variance of the estimation error, Awartani et al. [16] deduce
that the second term on the RHS of Equation (3.17) is asymptotically standard normal
under H, defined in (3.11). They also demonstrate that Zr, , diverges under H,,
described in (3.12) iffory > 0

. (h — 1)1p+0.5
n,lfllr—l}oo P (n — 1)¥+05 — (B — 1)¥+05 Zrpn >V|=1

If the statistic Zr,, , for a certain calculation horizon, such as one day, is calculated to
be negative and we reject the null hypothesis in (3.12) and conclude that the MMN has
a statistically significant effect on the RV estimator, then for that day, there should be
a negative correlation between the true price X;, and the aggregate effect of market
microstructure, &; due to the fact that the quadratic variation of the MMN is always
nonnegative. In other words, for Zr, , to be negative, the RV calculated at higher
frequency should be smaller than the RV calculated at lower frequency. However, we
know that the quadratic variation of the MMN is non-decreasing in the number of
observation points, and, therefore the only source of negativity of the test statistic
Z7n.n Should be a negative correlation between the true price and the MMN which
becomes more accentuated as the sampling frequency increases.

3.3.2. Deriving a statistic to test the existence of MMN under TTS

Zhang et al. [111] and Mykland and Zhang [91] show that the two pillars providing
the foundation for Awartani et al.’s [16] test statistic also hold under TTS. Based on
[111] and [91], we suggest that the same test statistic Zr, , can be employed to
examine the existence of MMN under TTS. Next, we explain how Awartani et al.’s
[16] test statistic Z7,,, works under TTS by following the notations and proofs in
[111] and [91].

Subsection 3.3.2.A: Step 1

Let’s take a close look at the estimation error when observations are spaced irregularly
in time (TTS) under the null hypothesis H, in (3.11). Recall that when the observed
prices are not contaminated by the MMN, the estimation error of the RV comes only
from the discretization error regardless of the sampling scheme. The discretization
error appears because, in practice, the number of observations during a trading day, in
other words the number of data points in a grid, is limited. Also, for most financial
applications, due to computational challenges, practitioners prefer to estimate the IV
using the RV calculated at certain frequencies such as returns at every 3 or 30
transactions. This is called calculating the RV using a subgrid of all available
information. More specifically, if G represents all available trading information, i.e.,
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all transaction prices recorded, then the estimation error, denoted by Z;, is written as
[Y, Y]} — 1V, and it equals to [X, X]}* — IV,, when there is no MMN over a subgrid
H,H < G. Here, the number of data points in grids ' and G are h and n, respectively.

Following Mykland and Zhang [91], we make two assumptions in order to simplify
the examination of estimation error under TTS:

Assumption 3.3. The true price of the security has no drift and it is local martingale

by definition, i.e., the logarithm of the true price of the security satisfies the following
equation: forall t € [0, T]

t
X, =X, + f ) (3.20)

0

Assumption 3.4. The instantaneous true return volatility,o;, is bounded, i.e., there is a
nonrandom a such that 2 < a? forall ¢t € [0, T].

Under Assumptions 3.3 and 3.4, X, becomes a martingale and we apply 1t6’s formula
to (X,,,, — X,)". Recall that the It6°s formula states that

1
df (Xo) = f(X)dX, + - f7 (X)d[X, X],. (3.21)

Therefore, if f(X,) = X2, df (X,) = 2X,dX, + o?dt. Hence from t; to t; 4,

tiy1

tiy1
(X, — X)) = j 2(X, — X;,)dX, +f o2ds.

t t

If the last time point in the grid does not coincide with the end of the time horizon, as
it happens frequently in market data when the last observation on a trading day is
before the end of the trading session, then max{t;} # t. At this point, following
Mykland and Zhang [91], we consider the upper edge of the partition H and set

t, = max{t; € H,t; < t}.

Then,
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t t
(X, - x.)" =f 2(X, — X, )dX, +f o2ds, (3.22)

t* *

and

(X, X1 = z (Xe,,, —Xti)z + (X, —Xt*)z- (3.23)

tiy1st

Therefore, the estimation error, Z, is rewritten as follows:

t
2 2
Z,=[X,X|{ -1V, = E (Xep, —Xe)" + (X — Xe,) —f alds.  (3.24)
0
t

tiy1=

Incorporating Equations (3.22) and (3.23) in Equation (3.24) gives,

tiv1
z f o2ds
t

tig1St

Liva
Z, = Z zf (Xs — X;,)dXs +
ti

tiy1st

t
+f 2(Xs — X;,)dXg

*

t t
+f aszds—f olds,
t. 0

where
tit1 ti+1
o2ds = f olds,
tigasT U 0
and
Liv1 t t
f aszds+f olds :f olds.
0 t. 0
Hence,
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t; t
Z, = Z zf +1(XS—th.)dXs+f 2(X, — X, )dX,.
t; [

tip1st :

Since
tiv1 tiva
Z 2 f (Xs — X¢,)dXs = f 2(Xs — X,,)dXs,
tigast U 0
and
tiv1 t t
j 2(Xs — X¢,)dXs + j 2(Xs — X, )dXs = j 2(Xs — X¢,)dXs.
0 t 0
Then

t
Z, = f 2(Xs — X¢,)dXs,
0

and the differential form of Z, is
dZ, = 2(X; — X, )dX,.
Accordingly,
d[2, 2], = 4(X, — X)) d[X,X].. (3.25)

If we apply 1t6’s formula to £(X,) = (X, — X,,)", then we get
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(e = Xe)" = FO8) + [ 40K, = x,)ax,
+ft112(xs—xt.)2d[x,x15 (3.26)
0 2 '

t t
:f(XO)+f 4(X5_Xti)3dXs+f ;d[Z'Z]S
0 0

Following Mykland and Zhang [91], let’s define the realized quarticity of the true price
process, [X, X, X, X];, relative to grid ', as

[X, X, X, X]{ = Z (Xe,,, — Xti)4 + (X, _Xt*)4- (3.27)

tiy1st

By 1t6’s formula, Equation (3.27) can be written as

d[X, X, X, X1} = Z 4(X,,,, — X)) dX,
tiyqst
+ z 6(X,,,, — X;,) dIX, X, + 4(X, — X.)’dx,  (3.28)
tiy1st

+6(X, — X,.) d[X, X]..

Now, since

3 tiva 3
z a(x,,,, — X,) dxX, = Z 4 f (%, — X.) dx,,

tiyqst tigast G

and for t; ., # t,
3 ti+a 3 3
4(X, — X)) dX, =4 Z f (Xs — X¢,) dXs + (X, — X)) dX, ),

tiy1st ti

and
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6(X. — X,,) d[X,X], = 6 Z f tm(Xs—Xti)3d[x,X]s+(Xt—Xt*)zd[x,X]t :

tiggst "l

and by Equation (3.25), Equation (3.28) evolves to

d[X, X, X, X12 = 4(X, — X)X, + 6(X, — X)) d[X, X],

3
= 4(X, — X,) dX, + 5 dIZ,2].

By deflnlng (71’ aS ZtH,lSt(Xt - Xti)ngt’ We get

3
[X, X, X, X1 =43, + > [2.2].. (3.29)

Mykland and Zhang [91] then examine the quadratic variation of the estimation error
process, Z,, written as

z2=4 ) | (% - X)X X, + 4 [ G -x)arxs, @)
t.

tigast U

to show that 2/3 (h— DI[X, X, X, X]is a consistent estimate of (h — 1)[Z, Z],. This
result is also stated by Barndorff-Nielsen and Shephard [24] for the approximation of
the quadratic variation of the estimation error of RV where returns are sampled
equidistantly in time. Mykland and Zhang [91] reach the same result under TTS and
prove that J, converges to 0 in probability at an order of (h — 1)~ 1.

Proposition 3.1. (Proposition 2.17, p.138 in [91]) If the true log price of the security
is pure diffusion and the stochastic process o, which drives the return volatility is

bounded, for a sequence of grids H;, = {0 =t, < t; < - <ty =T}, ifash - oo,
A(Hy) = 0,(1) and X155 (ti41 — ) = 0, ((h — 1)72), then

sup |[2, 2], — 2/3 [X, X, X, X]{*"| = 0,((h — D7Y). (3.31)

0<t<T

Proof of this proposition is provided in Appendix A.
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At this point, we make additional assumptions as in [91].

Assumption 3.5. The observation times ¢t; in grid H}, are independent of the true price
process X;.

Assumption 3.6. Over small intervals, the following approximation holds
2
(Xt _Xt*) ~ [X, X]; — [X'X]t*-

Under these assumptions, the quadratic variation of estimation error of the RV in
Equation (3.30) changes to an approximation as follows:

z.zl~4 Yy | (16X, - [X,X1,,)dIX, X1,

tiggst U

+ 4ft([x,x1t ~ [X, X1z, )d[X, X]s.
t.

Assumption 3.7. The instantaneous true return variance, ¢#, is continuous in mean
square, which means that

sup E(cZ —02)? > 0asa— 0.
0<t-s<a

Assumption 3.8. The maximum distance between two consecutive observation times
in grid 7€, converges to 0 in probability at an order of (h — 1)™*/2 as h — oo,

Assumption 3.9. ¥;(t;41 — t;)% = 0,((h — 1)72).

Assumption 3.10. Asymptotic Quadratic Variation of Time (AQVT) calculated as

h-1 ,
D, := flll_{roloT Z (tivr — )%,
t

tiy1=

and denoted by D, exists.

Under Assumptions 3.5 through 3.10, Mykland and Zhang [91] show that
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Z,2), =2 X, X1, — X x1.)° +2(1%, X1, — [X, X1,.)°
[2,2] 2([ (2

+o,((h—1D™).
Since

tiv1
X, Xle, — XKL = [ o2,

t

t
X, X1, — [X,X],. = f o2ds.

*

Equation (3.32) can be rewritten as

tiya 2 t 2
[Z,2Z], =2 Z <f ofds) + 2 <f a_fds) +o,((h—17)
t t
tiyqst *

i

=2 3" (= t)02) +2(=£)02) +0,((h =D

tiy1st

—2 Z (tisr — t)20% + 2(t — £.)%0¢ + 0, ((h — 1)71)
tiygst
T t
=2——| 0dDs+0,((h—1)71).
h—1),

Therefore, as mentioned by Zhang et al. [111] and expressed in Proposition 2.23 in
Chapter 2, p.147 of [91], for a fixed period of time [0, T1],

P t
(h—1D[Z, 2] - zrf ot dD,.
0

Subsection 3.3.2.B: Step 2

The next step would be to examine the Central Limit Theorem (CLT) for continuous
local martingales by Mykland and Zhang [91]. Before doing so, following Mykland
and Zhang [91], it may be helpful to provide some definitions and concepts from
probability theory and statistics.
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We require a filtration (&) to which all relevant processes such as the true price
process X, and the instantaneous return volatility ; in our setting are adapted. We take
the estimation error sequence Z, which is the error at time ¢t when the total number
of data points in the grid is h, as being measurable with respect to a o-field X, where
T C X.

Now, if Z} is a sequence of X-measurable random variables with € X and for a Z,
that is adapted to an extention of X such that for all U € & and for all bounded
continuous function g, E[Iyg(Z21)] - Ellyg(2Z,)] as h > oo, then Z!* converges -
stably in law to Z; as h — oo.

L
We adopt the notation in [91] and stable convergence is denoted by —.

As the number of observations increases, the number of data points in grid H also
increases and, at each frequency, there will be an estimation error. These estimation
errors will construct a sequence and estimation errors are continuous martingales. We
are interested in such sequences of continuous martingales converging to a limit.
Continuous martingales can be interpreted as random variables taking values in the set
C of continuous functions with domain [0, T] and range (—oo, ). For this context, a

function g is called a continuous function C — R if sup |x;,(t) — x(t)| = 0 implies
0<t<T

glxn) = gx).

Mykland and Zhang [91] note that the stable convergence of a sequence of random
L L
variables Z! - Z, also implies Z > Z as a random variable.

Limits and the quadratic variation are interchangeable when a sequence of continuous
local martingales stably converge to a process (Proposition 2.27, p.151 of [91]).

These definitions and concepts pave the way for CLT for continuous local martingales
(Theorem 2.28, p. 152 of [91]")

Theorem 3.2. If we assume that
e Brownian motions B, ---, B¥, for some k, generating the filtration (&) exist,

o (Z?)qu is a sequence of continuous local martingales that starts at 0 and is
measurable with respect to (&) forany t € [0.T],

P
e A process p, exists such that for any t € [0.T], [Z2",2Z"], > fot p2ds,

7 The proof of this theorem is summarized in page 152 of [91], but is omitted here as it is beyond the
scope of this Thesis.
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e Foreach i =1,--,k, the quadratic covariation of B and Z}* converge to 0 in
probability,

then, on [0, T], (Zth) stably converges to a martingale Z, that is measurable with
respect to filtration (&,"), an extension of (&,). Additionally, a Wiener process B;
exists where (Btl, .-+, Bk, B} ) are all Wiener processes adapted to (g,"). Finally,

t
2, = f ps dB.
0

A very intriguing application of this CLT for the sequence of local martingales relates
to the quadratic variation of the estimation error which comes from observing
processes in discrete time while the processes are assumed to be continuous in time.
Mykland and Zhang [81, [90], [91] work on this application and prove the following
theorem:

Theorem 3.3. When the estimation error process, (Z[’)O<t<T =[X, X1 —1v,, is

scaled by the square root of the total number of sampling intervals in the grid ', for
fixedt € [0,T],

r t
Vh—12F SN <O,2Tj a;*dl)s)
0
under conditions of Theorem 3.2 and Assumptions 3.3-3.5, 3.7-3.10 where AQVT is
absolutely continuous.

Subsection 3.3.2.C: Step 3

From the beginning of Subsection 3.3.2 up to this point, the CLT and mixed normality
of the estimation error due to discretization under TTS (where observations are
randomly scattered in time) are built on the assumption that the true security prices are
pure diffusions with no drift observed. This assumption as given in Assumption 3.3 is
made by benefiting from the idea of changing measures in asset pricing literature such
as Ross [98] or Harrison and Pliska [63] etc., where the studies suggest that discounted
asset prices are martingales under a risk-neutral measure that is equivalent to the actual
risky probability measure. Mykland and Zhang [90], [91] show that the consistency
and the rate of convergence of the RV estimator calculated using grid  is not affected
by the change of measure due to the time period [0, T] being finite. More specifically,
Mykland and Zhang [90] deduce that asymptotic variance of estimation error Z[* keeps
unaltered even if we change the measure. As a simplification strategy for inference,
Mykland and Zhang [90] rewrite dX; under a probability measure P*, equivalent to
the measure P, where under the measure [P the true prices are observed with the drift
and under the measure P, the drift disappears, i.e.,
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dXt == O-tdB:,XO == xo,

where B/ is a Brownian motion measurable with respect to measure P*. In such a case,
by Girsanov’s Theorem (see Theorem 2.37 in Chapter 2, p.159 of [91]),

apP” T e 17 rue\?
1 —— | Hgp; = (—) dt,
%8 P J;,atd ‘ 2[0 ot ‘

with dB; = dB, +*dt.
t

Mykland and Zhang [90] ask the question of excluding or including the drift in the true
price process by offering to carry out the analysis under a risk neutral measure P* so
that the drift disappears and adjust results back to P using the likelihood ratio %.
Recall that by the Radon-Nikodym Theorem (Theorem 2.35 in Chapter 2, p.158 of
[91]), if the probability measure P* is absolutely continuous under P on a o-field A,

then a random variable %, adapted to A, exists such that for all events A € A,

*

P*(4) = Ep (‘% ]IA>.

Mykland and Zhang [90], [91] give the example of fOT gidt or foT ofdt as quantities
to be estimated and propose to find an estimator for a quantity by working under P*
such that an asymptotic convergence in law is found under IP*, then switch to IP relying
on measure theoretic equivalence of P and P*. Such equivalence of measures ensures
that convergence under risk neutral measure P* would also hold under the risky

L
measure IP. For instance if VA — 1Z - N(a, b) under P*, Vh — 1Z} also converges
in law under P.

Accordingly, following Mykland and Zhang [91], Ait-Sahalia et al. [3] and many other
studies in the lierature, we assume that the true price process, which is continuous in
time but can only be observed at discrete times, is observed with no drift.

Similarly, Mykland and Zhang [91] discuss that it is possible to weaken Assumption
3.4 on instantaneous true return volatility. In fact, Theorem 3.3 is shown to be holding
even if condition o2 < a? for all t € [0, T] is substituted with Assumption 3.11 as
given below:

Assumption 3.11. The instantaneous return volatility, a;, is locally bounded so that

for a sequence of stopping times 7, and a constant gy, ¢, P[7,, < T] —» 0 as h — oo and
of < o, forall t € [0,74].
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All in all, under the null hypothesis H, in Equation (3.11), for all t € [0,T], for
contaminated observed prices Y, = X, + &, the total estimation error [Y, Y]} — IV, is
equal to the discretization error, [X, X]* — IV,. We assume that we observe Y, on two
different grids (meaning two different frequencies), % and G, both tending to identity,
where |H| = hand |G| = n, then

[Y,Y]F = IVp = 0,((h— D7),
[Y, Y15 — IVy = 0p((n — 1)7Y).

As shown in Section 3.3.1, if %—> o0 as h,n — oo, then vVh — 1([Y, Y15 — IV;) =
0, (1).

By this token, (\/h —1([v, Y1y — 1vy) =R = 1([Y, Y]} - IVT)) is driven by
VR=1([Y, Y]} — IVy).

Following discussions and proofs in [90], [91], we apply Theorem 3.3 to the estimation
error of the RV under conditions and assumptions mentioned in Theorem 3.3 but
assume that the true prices have no drift at irregularly spaced times (on grid H or G)
and the process o7 is locally bounded on [0, T]. So, we know that the amount that the
RV over observed prices deviates from the 1V of the true price converges in law to a
mixed normal distribution asymptotically. The asymptotic distributions of the

estimation errors on grid  and grid G have 0 mean and 2T/h _ 1f0T otdD, and
2T/n _ 1f0T ofdD; variance, respectively. For instance, vh— 1([Y,Y1} —Ivy)
L

>N (0,27 f o}dD,) and

(VR=1(1v, Y — 1v) = VR=1(I, YI¥ = 1V7)) .

- - N(0,1). (3.33)
/ZT [} o4dD;

In order to estimate the RHS of the convergence in (3.33), we use Proposition 3.1 such
that for any grid 7, where grid tends to identity, 2/3 (h— DI[X, X, X, X]¥ consistently
estimates variance of (h— 1)([X,X]¥ —IV;) and under the null hypothesis in
Equation (3.11), [X, X3 — IV, is equal to [Y, Y] — IV;. Hence,
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(VR=1(lv, Y1 - [v.Y))) .
\/2/3 (h— D22 (Ve — V)

N(O 1).

Under H, in (3.12) when the microstructure noise statistically affects the RV measure,

Zrnn Will diverge because [Y, Y] will explode at a larger rate compared to [V, Y]3.
Remember that as we increase the sampling frequency, [Y, Y] on any grid starts to be
dominated by the quadratic variation of the microstructure noise. Similar supporting
arguments are also presented in Lemma 2 in [61] and Lemma 1 and Proposition 1 in
[111]. These studies calculate the total estimation error that is due to both of
discretization and MMN. Their results agree that under slightly different conditions
compared to conditions of Theorem 3.3, when there is MMN satisfying Assumptions
3.1 and 3.2 and it is related to observed prices through Equation (3.4) on grid G, the
asymptotic distribution of the estimation error is mixed normal with mean
2(n — 1)E[e?] and variance is commanded by 4(n — 1) E[e¢*].

In detail, when MMN is independently distributed with finite fourth moment almost
surely such that for all t € [0,T], i.e., E[|Ae|*] < o a.s., and Assumptions 3.2, 3.3,

3.5-3.11 hold, then under alternative hypothesis defined in (3.12), following the
discussions by Awartani et al. [16], the test statistic, Zr ,, , diverges if for i) € (0,1)

(n—h)¥
h—1Dos» %

holds. The reasoning is explained below:

1) Under the alternative hypothesis, from Equation (3.6), we can expand the
numerator and denominator of the test statistic Zy ,, , as

(VE=T(1x, XI5 — [X, XI + [,€]§ — [e, €] + 2[e, X]§ — 2[X, €]¥))

\/Z(h— DX, X, X, X1¥ + [e,6,6,€] + A)
3

where

h-2

[X, X, X, X]¥ := Z(AXti)4,

i=0
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h-2

[€,€,€ €]F := Z(Aeti)4,

=0

=3 h=2 h—2
A= z 6(Ax;)" (de,)” + Z 40X, (2e,)’ + Z 4(8%, ) e,
=0 i=0

i=0

2)  As justified in Sections 3.1. and 3.2, under both CTS and TTS, [X,X]; is
stochastically bounded where [X, €], < [g, €] causing [Y,Y]; on any grid to be
dominated by [e, ] asymptotically. Therefore, regarding the numerator of Zr,, 5,

VRE=1([v,Y1% — [v,Y]¥), under the alternative hypothesis, the asymptotic

commanding term is [e, €]5 — [e, e]7.

3)  When a random variable has finite absolute moments of order k, it has absolute
moments of orders 1,2, ..., k — 1 (Chapter 4, Section 21, p. 292 of [34]). By this token,
E[|Ae |*] < oo implies E[|Ae|3] < o0, E[|A€]?] <o and E[|Ae]] < oo. By
Markov’s Inequality, which states that for any nonnegative random variable x,

1
Pllx| = y] < FIE[IxI"],Vy € (0, ),

E[|Ae.|*] < o means stochastic boundedness of (Ae,)*, (Ae,)3, (Ae,)? and (Ae,)?,
i.e. for any A;,4,,45,4, >0, there exist finite and nonnegative bounds
M(Aet)4' M(Aet)3' M(Aet)z and M(Aet)l such that

P[lAec|* > Mepr] < A1,V €[0,T],
P[lAe]? > Mpe,2] < 25,V € [0,T],
P[lAe]® > Muez]| < 23, Vt € [0,T],
P[lAe]* > Mpe,)| < Ao, Vt € [0, T].

Hence, supremum of [e,€]¥, supremum of [e, €6 €]¥ and supremum of

[Z?;()Z(Axti)z(Aeti)z] should be bounded with
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(h - 1)M(A€t)2’
(h - 1)M(A5t)4'

and

t;€[0,T

tit1
(h—1) sup (f oszds> Mae,)2s
] t;

respectively.

Moreover, from Appendix C, we conclude that E[[X, X, X, X13'], E [Z?;OZ(AXtifAeti]

and E [Z?;OZ(AetifAXti] are all stochastically bounded even if the sequence of MMN
is not identically distributed, which by Markov’s Inequality causes [X,X,X,X]%,
Y1-2(AX,,)’ Ae, and T2 (Ae,, ) AX,, to be also 0,(1).

Hence, for Z,, , to diverge to plus infinity where % — oo as h,n - oo,

(n—h) M2
= > 3.34
\/(h 1) \/0p(1) + Mpep+ + Sup (ft i Gs,zds) Mpe,)2 ( :
tielor] ~

must diverge. Considering the fact that the second term on the RHS of (3.34) is finite

but can take values in the close neighborhood of 0 depending on M)z, Mx¢,)+ and
sup ( ) tt_"“ aszds), for (3.34) to go to infinity, the first term must reach infinity at a

tiefo,r] N

suitable rate, which is satisfied when

(n—h)¥
(h—1osv %
fory € (0,1).
Thus, we completed the discussion regarding the test statistic Z;,, 5, developed by

Awartani et al. [16] to be used for equidistant observations and we demonstrated that
Z7 n,n WOrks also for irregularly spaced observations under conditions and assumptions
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of Theorem 3.3. This postulation holds even if we release Assumption 3.4 such that
the instantaneous return volatility is only locally bounded.

3.4. Testing the constant variance of MMN increments under TTS

As it is explained in detail in Chapter 2, many of the robust IV estimators in the
literature, such as kernel based estimators or estimators built on subsampling, depend
on the validity of the assumption that the MMN has constant variance through time.
Likewise, handling the MMN in the estimation of the true price’s IV may be carried
out via an “optimal sampling” of the returns following Bandi and Russell [19].
However, this method also relies on the assumption that the MMN has constant
variance. Therefore, the failure to reject the model with the noise having constant
variance would be quite interesting if one plans to employ aforementioned
estimators/methods that take the variance of the MMN constant independent of the
sampling frequency. To this end, Awartani et al. [16] suggest to test the following set
of null and alternative hypotheses:

Ho: grg = Gt (3.35)

Hy: e # G (3.36)

where g and g4 denote the variance of MMN increments on grids # and g,
respectively, and are defined as

E [(‘Sti+1 - Sti)z] =295 Vtiv1, L EG,

E [(Eti+1 — Eti)z] = ZQt’ﬁ,VtiH, ti eEH.

The null hypothesis in (3.35) reflects the constant variance of MMN increments
through time and the alternative hypothesis in (3.36) is consistent with presence of
autocorrelation in MMN.

For the purpose of testing whether the MMN increments have constant variance
independent of the sampling frequency, Awartani et al. [16] advocate a test statistic
Vrnn, Which combines RVs calculated at 3 different sampling frequencies (on 3
different grids), one low, one high and one very very low compared to each other as
well as the Realized Quarticity (RQ) calculated at low frequency. This test statistic is
defined as follows:
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(RVrn —RVry)  (RVpa—RVr,)
2(n—1) 2(h—1)

RQ RV. 2\ (3:37)
j3 <Z(h 5z o) )

where n, h and | stand for the number of observations for the whole estimation period
, T (for instance the number of observations per day), at high frequency, low frequency
and very low frequency, respectively and as before

Venni:=Vh—1

n-2
RVpp = > (Ve = ¥e)'
i=0

h-2

RVr = Z(Yti+1 - Yti)z’

=0
2 h-2
— 4
RQrn = 3 h — 1Z(Yti+1 - Yti) ’
i=0

h
n>h>lI, — > 00,——>0asn,hl—> .

h l

The very low frequency that is included in the test statistic Vr, ,, represents a
frequency at which the consensus in the literature makes it possible to ignore MMN.
In this context, Awartani et al. [16] suggest that | might be chosen at 20 minutes
sampling interval under CTS by referring to sparse sampling literature and the 5-
minutes threshold promoted by Andersen et al. [11].

3.4.1. Deriving a statistic to test the constant variance of MMN increments under
CTS

Similar to the test statistic Zr,, ,, the test statistic Vr,,; has a standard normal
distribution asymptotically and its asymptotic distribution is built on three main pillars:

1) Awartani et al. [16] demonstrate that under the null hypothesis in (3.35)

(RVTZ";__ZVT'I) and (RVTZ""I__ZVT'I) converge to the same limit in probability, say the limit

corresponds to g;, but the former term converges faster compared to the latter. Thus,
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asymptotically, it is possible to ignore the term (RVT.n—RV7) and, in limit, as the number

n—
of observations at each frequency goes to infinity, Equation (3.37) boils down to

_ (RVr, — RVyy)
gt 2h — 2

RQ, RVr,
\/3 <2(h i~z o) )

2) Awartani et al. [16] next illustrate that if a) the true price is generated as in
Equation (3.1), b) fOT o ds < oo, ¢) MMN satisfies Assumption 3.1, then under the

h—1

d
null hypothesis in (3.35), as n, h,l — oo, % - oo,% — 00, Vpopy = N(0,1). They also

show that when (a) and (b) hold and MMN increments have finite fourth moment,
under the alternative hypothesis in (3.36), forany 1 > 0

. 1
n}tl,{goo P [\/m |VT,TL,h,l| > /1:| =1.

In order to prove the asymptotic distribution of V7, ,; under the null hypothesis in
(3.35), Awartani et al. [16] employ a central limit theorem for the estimation error of
RV with respect to IV under TTS, provided in Theorem Al in [111]. The CLT
proposed by Zhang et al. [111] is applicable to both CTS and TTS, making this CLT a
breakthrough in IV estimation.

Theorem 3.4. (Theorem Al in [111]): Let’s assume that the true and observed prices
are generated as in Equation (3.1) and (3.4), respectively. The observation times are
represented by the grid G, tending to identity, where G = {to,t1, ", th_1}, to =
0,t,—1 =T, |G| = n such that transactions take place irregularly in time. Then, under
Assumptions 3.1 and 3.2, as the number of observations in the grid G diverges to
infinity, conditional on the true price process

Vn—1(E[€2] - E[e?]) S N(0, E[€*]),

1
Vvn—1

(I, Y15 = [X,X1% — 2(n — 1)E[€?]) > N(0,4E[¢*]).

Explanation of the proof of this theorem is provided here and proof in full version is
given in Appendix B.
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In summary, the proof is made in two steps: first it is shown that [X, e] and [X, X]
are both stochastically bounded (Lemma A.2 in [111]) so that a restatement of
Equation (3.6) leads to

[Y,Y15 = [X,X15 + 2[X, €)% + [¢, €]5
= 0,(1) + [€ €l

Additionally, we know from Section 3.2 and Equation (3.9) that the asymptotic bias
conditional on the true price is 2(n — 1)E[€?]. Hence, the expected estimation error
conditional on the true price, E[[Y, Y19 — [X, X19|X] = 2E[[X, e]%|X] + E[[e, e]%|X]
is driven by E[[e, £]%|X] since the expected value of a figure that is stochastically

bounded cannot diverge while [g, s]g inflates very erratically as the number of
observations goes to infinity.

Therefore, the second step includes investigating the convergence and distribution of
\/%([e, €% — E|[[¢, €]%|x]). By showing that — ( e, €]7 — E[[€, €]3]X]) can be
written as the sum of two independent and asymptotlcally mlxed normal terms and a
term that converges to 0 in probability, the proof is complete. However, we differ from
Zhang et al. [111] in this step such that while they use CLT for martingale differences
given in Theorem 3.2 and Condition 3.1 in Chapter 3, p.58 of [57], we employ Law of
Large Numbers (LLN) and CLT for triangular arrays laid out in Theorem 27.2 in
Chapter 5, Section 27, p. 352 of [34]. This Theorem 2.27 in [34] is also known as the
Lindeberg Theorem and states that if for each n and k, the sequence x4 ,,, -+, %
represents independently distributed random variables with 0 means and finite
variances, then

k
Di=1 Xin

K Var[z;,]

d
- N(0,1),

provided that Lindeberg’s condition is satisfied, i.e., for each sequence x4, ***, Xy
forany 6 > 0,

eMw

E x ]] ,
|xm|>6 g 1Var[xln]}

Var[xl n

converge to 0 as n — oo.
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Concurrently, Theorem 3.2 and Condition 3.1 in Chapter 3, p.58 of [57] assert that if
for each n and k, the sequence S; ,,,---, Sk, represents a 0 mean, square integrable
martingale array with respect to filtration Fj, , with differences x; ,,, -+, x} ,, such that
fory<ocas.andd >0

k

2 P
xi,nﬁni

i=1
Tk,n c :Fk,n+1r
k
z E |7 nl{ja, o) Fiotn| = O,

i=1

then

where random variable Z has characteristic function [E [exp (— %r)tz)].

3) Zhang et al. [111] state but do not prove that

E[e7] : [v,v,v,v]$ — 3(E[2])’,

T2-1)
is a consistent estimator of E[e*] where

_ 1

E[e2] := m[Y, Y]3.

The proof of this postulation is provided in Appendix C.

As the third pillar, Awartani et al. [16] then exploit the estimator with respect to E[e*]
suggested by Zhang et al. [111] and propose that
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_ (RVr, — RVp)
gt 2h — 2

RQr, RVyn 1\
j3 <Z(h —y2 - (Z(h ih1)) )

Accordingly, Awartani et al. [16] comment that if we reject the null hypothesis, we
can conclude that the MMN increments do not have constant variance independent of
grids (sampling frequencies) so that it is possible to reject at the same time that MMN
has an i.i.d structure with constant variance independent of time.

d
h—1 - N(0,1).

3.4.2. Deriving a statistic to test the constant variance of MMN increments under
TTS

We suggest that the same statistic Vr,, 5, can be employed to examine the constant
variance of the MMN increment under TTS since three pillars which Awartani et al.
[16] built their test statistic on are developed under TTS in the first place. In detail,
Proposition 1 in [111] suggests that under similar but slightly different conditions of
Theorem 3.3 (true price and observed prices satisfy Equations (3.1) and (3.4),
respectively, |u;| and o, are bounded above by a constant, Assumptions 3.1, 3.2, 3.4-
3.6, 3.8-3.10 hold but the law of MMN is allowed to depend on the number of
observations) where grid G represents observation/transaction times that are scattered
irregularly in time, |G| = n, G tends to identity, and U;,;q; IS @ quantity that is
asymptotically standard normal, conditional on true price

[v,Y1% — 1v; 5 2(n - DE[e?]

+ (4(n — 1)E[e*] + 8[X, X]iIE[eZ] — 2var[e?]

1 1
+—| of st> Usorar + Oy ((n = D73 (EL?D )
— Yo

+ 0, ((n - 1)_%).

Meanwhile, Hansen and Lunde [61] advocate that again under similar but slightly
different conditions of Theorem 3.3 (true price and observed prices satisfy Equations
(3.1) and (3.4), respectively, o, is a random function that is independent of Brownian
motion B;, |62 — af.| < 6c for some £ and all ¢ and 6 with probability one,
Assumption 3.3 holds, e, L €, t; # t;, E[e,] = 0, E[|€.]?] < o0, and E[|e,]*] < oo,
for all t) where grid G represents observation times that are scattered irregularly in
time, |G| = n, G tends to identity and U, IS @ quantity that is asymptotically
standard normal
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[v,Y1% — 1v, % 20n — DE[e?]

n-1

+ (4(71 ~ DE[e*] + 8Ele?] ) o, — 2varle?]

i=0

(3.39)

n-—1
+ 2(E[€2])? + 2 z q‘;) Uporar.

=0

Results in [61] and [111] differ depending on the assumptions regarding

o the form of the true price (whether or not the true price has a bounded drift, or
whether the instantaneous return volatility o, is bounded above or Lipschitz
almost surely),

e the MMN (whether it is identically distributed or not).

However, we would like to underline the fact that both of the convergences in (3.38)
and (3.39) tell us that as the number of observations tend to infinity, conditional on
true price

([v, Y15 — IVy — 2(n — DE[€?])

d
- N(0,1),
J4(n — 1)E[e*] oL

G
. . . . . Y, Y]S5 -1V .
since the scaled asymptotic variance of the estimation error, % , is completely

determined by the estimation error due to noise as the discretization error divided by
the number of sampling intervals diminishes to 0.

In this context, we, by following methods offered in proofs of Lemma 1 and
Proposition 1 in [111] as well as Lemma 2 in [61], also prove in Appendix D that the
estimation error of the RV with respect to the IV is asymptotically mixed normal.

Theorem 3.5. Once we assume that we observe the contaminated prices as in Equation
(3.4) on a grid = {ty,t1, ", tn-1},to =0,t,—1 =T, |G| =n, G tends to identity,
conditions of Theorem 3.2 are satisfied, the Assumptions 3.1, 3.2, 3.3, 3.5-3.11 hold
and AQVT is absolutely continuous,

d
[Y,Y]% — IV, - 2(n — 1E[€?]

+ <4(n — 2)E[e*] + 8E[€?] ([X.X]? - Op(l)) (3.40)

2T (T 4
+m 05 dDs | Utorars
0
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where the convergence in law is conditional on the true price and U;,:q; 1S @ quantity
that is asymptotically standard normal.

Hence,

[Y, Y19 — IVy — 2(n — 1E[€2]
SN (0,4(n — 2)E[e*] + 8E[¢?] ([X, X1§ — 0,(D))

27 (T,
+m . Og dDS
:>[Y,Y] — IV — 2(n — DE[€?] a

2vn—1

- N(0,E[¢*]),

8[E[62]<[X,X]79~—0p(1))
4(n-1)

where —— = 0,(1),

J—

n — oo,

= 0,(D) and = 1)2 [} 64dDs = 0,(1) as

Therefore, g, equaling to E[€2], we have

[Y, Y15 a E[e*]
2(n—1) g)t_)N<0'(n—1)>

G
=>vVn — <[ adii ) gt>iN(0,IE[64]). (3.41)

-1

As stated before, inspired by Zhang et al. [111], we have proved in Appendix C that

2
v, Y]?) ,

[E/[ET]'=—[YYYY]9—3(;[
T 2m=1) T 2(n—1)

is a consistent estimator of E[e*]. Therefore, we can estimate the asymptotic
distribution in (3.41) as
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In order to benefit from the above convergence in law, we will manipulate the test
statistic Vr,p; as defined in Equation (3.37) such that for the observations of
contaminated prices on three different grids, G, H and W, where all the grids tend to
identity, |G| =nand |H| =hand |W|=1,n>h >, §—> 00,% — o0 asn,h,l - o
if conditions of Theorem 3.2 are satisfied, the Assumptions 3.1, 3.2, 3.3, 3.5-3.11 hold
and AQVT is absolutely continuous, then

(v,y)3 - v, Y1P)  (Iv.YI¥ - [v,YI¥)

v V120D 2(h— 1)
IAAAINEIAGAY
2(h—1)  “\2(h—-1)
[v, Y] VY Lo N
e L (VA (TS VI A
IABAIIINEIATAY
2(h—1)  “\2(h-1

Adding and subtracting g, to and from numerator of Equation (3.42) produces

[v, Y13 v, Y17
(B -0 - (F ) + oo
Vrnnt =Vh—1 > (3.43)
MKKH¥_3[KH¥
2(h—1) 2(h—1)
g
Since convergence in (3.41) as Vvn—1 (Z[E/r’ly_]f) - gt) iN (0, E[e*]) entails that

g
vn—1 ( L4 . gt) is stochastically bounded, Equation (3.43) develops into

2(n-1)

(s -

[Y,v,Y,Y]¥ 3[xﬂ¥2
2(h—1)  “\2(h—-1)

Venpt =Vh—1 + 0, (1),

which was proved to converge to standard normal distribution asymptotically.
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Under the alternative hypothesis in (3.36), when we observe the contaminated prices
as in Equation (3.4) on grids G = {to,t1, ", th_1}, 1G]l =n, H = {to, ty,*, th_1},
|H| = h, W = {ty, ty,, t;i_1}, IW|=1,t,=0,t,_1 =t,_1 =t;_, =T, all grids
tending to identity, conditions of Theorem 3.2 are satisfied, the Assumptions 3.2, 3.3,
3.5-3.11 hold and AQVT is absolutely continuous, then if the MMN is independently
distributed with finite fourth moment almost surely for all ¢t € [0, T], then following
the discussions by Awartani et al. [16], we claim that the absolute value of the test
statistic, Vr , ; diverges. The reasoning is explained below:

Under the alternative hypothesis, we can organize the test statistic Vr,, p; in (3.43) as

v, Y17 [y, V7t
S e R e R

jWJYYW_3<WJﬁ>Z

2(h—1) 2(h—1)
Vh—1(grg — )

jWJJJW_3<WJW>Z

(3.44)

+

2(h—1) 2(h—1)

where the first term on the RHS of (3.44) is asymptotically normal because although
we broke the i.i.d structure of the MMN by assuming that the MMN increments have
different variances on different grids, since we accept that all other conditions of
Theorem 3.5 are satisfied and on a single grid the MMN increments have constant
variance, the first term on the RHS of (3.44) still has a mixed normal limiting
distribution. Furthermore, since we assumed that the MMN has finite fourth moment,
the denominator of (3.44), being a consistent estimate of the fourth moment of the
MMN, is finite, therefore as h — oo, the second term on the RHS of (3.44) diverges.

This completes the discussion that V7 ,, , ; can be used under TTS to test whether MMN

increments have constant variance independent of sampling frequency (grid) and,
therefore, is also orthogonal to time.
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CHAPTER 4

EMPIRICAL EVIDENCE FROM THE BORSA ISTANBUL
NATIONAL STOCK MARKET

As discussed in Chapter 2, in organized stock exchanges, the observed stock prices are
subject to distortions due to reasons such as trading rules and regulations, frictions in
the markets and informational asymmetries. The aggregate effect of such distortions
in observed prices is called the MMN and may cause the observed prices to deviate
from the true prices of assets. In Chapter 3, it is shown that if the MMN is additive,
then as the sampling frequency for observed prices increases, the bias of the RV
explodes while estimating the IV of the true prices. In theory, sampling the observed
prices as many times as possible should yield an IV estimate with a smaller total
estimation error since the discretization error is expected to diminish with more
frequent sampling. However, in the presence of the MMN, the quadratic variation of
the observed prices calculated over the highest frequency possible does not simply
converge to the IV of the true prices. The existence of such a bias needs to be addressed
in the empirical estimation of the IV. There are several methods developed in the
literature for mitigating the effect of the MMN on the IV estimate and the success of
such methods should be evaluated based on empirical evidence obtained from both
developed and developing markets.

We believe that such empirical evidence on the MMN structure should be collected by
taking into account the dimensions/aspects of volatility estimation using high
frequency data. Such an effort should address issues like the characteristics of UHFD,
contamination of the observed prices with the MMN, specification options regarding
an asset’s true and unobservable price, the need make some assumptions in order to
handle the unobservable MMN, the possibility of calculating returns using different
sampling schemes, and, finally, the existence of non-trading hours. The existence of
such issues may threaten the validity of methods developed to handle the MMN in the
estimation of the IV. Typically, studies in the related literature take into account one
or a few of these issues while estimating the IV without addressing all of the potential
issues simultaneously. In addition, most of the studies use UHFD obtained from
developed economies such as the US or Japan. Accordingly, one of the main objectives
of the analyses conducted in this Chapter is to take into account all relevant MMN
issues simultaneously while using UHFD from an emerging market.
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The liquidity of traded assets is an important issue that is discussed in the finance
literature and there are many liquidity definitions and measures that find support in
different studies. For instance, a widely accepted definition by Black [35] describes a
liquid asset as an asset which can be sold in a short period of time for a price not too
different from the price at which the seller would be able to sell if s/he opted to wait
longer. Interestingly, with respect to the high frequency finance literature, it is seen
dealing with an asset's liquidity is somewhat problematic in the sense that many of the
liquidity indicators/measures fall short when it comes to addressing the existence or
the statistical properties of MMN embedded in the observed stock prices, especially if
such measures are calculated under different sampling schemes such as CTS. This
postulation is accentuated especially when there is a relatively long time lag between
two consecutive transactions. As explained in Chapter 2, Section 2.1, in such a case of
infrequent trading, the previous tick method is typically used to construct artificial
return series, but this, in turn, means that returns are calculated by using pieces of
information that belong to distant points in time leading to inflated serial correlations
due to long sequences of zero returns [37]. Hence, the previous tick method may work
best in IV estimation for very actively traded stocks since we would not want to spur
such correlation structures by artificially introducing additional autocorrelation (serial
correlation) due to the interpolation method selected. These arguments pave the way
for the introduction of a new method to classify stocks with respect to their liquidity
(active trading) in a high frequency setting.

In this Chapter, we first suggest a new liquidity measure for UHFD. Next, we apply a
grid of data cleaning methods and different sampling schemes, to a sample of 6 stocks
that are listed on Borsa Istanbul's National Equity Market. By applying this
methodology, we are able to observe the common characteristics of the UHFD at hand
and to understand the dynamics of the return and RV series obtained from these data.
We also generate volatility signature plots and run formal tests of the existence of
MMN and the constant variance of MMN increments, as suggested by Awartani et al.
[16]. By moving across the grid, we also note any significant changes that result from
the liquidity levels of the sample stocks.

In accordance with proofs and discussions in Chapter 3, all analyses in this Chapter
are carried out under the following assumptions:

e The observed price Y; is contaminated with an additive market microstructure
noise. i.e.,

Yt:Xt-I_gt' OStST

where T shows a finite horizon, X, denotes the logarithm of the true/efficient
price of a security at time t and &; represents the logarithm of the combined
effect of all microstructure noise sources at time t.

e Conditions and assumptions of Theorem 3.2 hold,
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e The true price of the security is observed with no drift and it is a local martingale
such that if S; denotes the true price process of a security, the log price of this
security is represented by the process X, and it satisfies the following stochastic
differential equation over a finite time horizon t € [0, T]:

dXt = O-tdBt

The log price X, is assumed to belong to Brownian semimartingale family so
that X, is F,-measurable, X, has continuous sample paths with no drift, the
continuous stochastic process o, that derives the volatility of log return of the
security is locally bounded and continuous in mean square, B; denotes standard
Wiener process, and finally o; is orthogonal to B;.

e The observation times are independent of the true price process X, and the
maximum distance between two consecutive observation times converges to 0
in probability at an order of

1
(number of sampling intervals — 1) 2

as the number of observations tend to infinity.

e For any two consecutive observation times t;,; and t;, Y;(ti 1 —t;)3
= 0, ((number of sampling intervals — 1)72).

e The Asymptotic Quadratic Variation of Time (AQVT) is calculated as

D, := ,lll_r){}o T (tisr — t)?

tiy1st
D, exists and is absolutely continuous.

4.1. Data

The original data set consists of tick by tick transaction data for all BIST 30 Index
constituent stocks between January 1, 2010 and December 31, 2014. The data are
obtained directly from Borsa Istanbul. When the five year period between 2010 and
2014 is analyzed, it is seen that there are some important political/economic events
that may have an influence on the price formation process in Borsa Istanbul:
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e 12/09/2010: Constitutional referendum,

e 12/06/2011: General elections,

e 2012: Relatively stable period, closing sessions begin taking place on
02.03.2012, therefore our sample period cannot start before 02.03.2012. We
choose 01.07.2012-31.12.2012 as the sample period.

e 2010-2012: Arabian Spring and its effects on Turkey (Dispute between Turkish
and Syrian Prime Ministers)

e 2013:Gezi Park Events (June 2013) and corruption allegations about high level
government officials and 4 ministers (17-25 December 2013)

e 2014: Local elections on 30/03/2014 and Presidency elections on 10/08/2014
In order to avoid the possibility of these events confounding the price formation
process, we have chosen the six-month horizon between July 1 and December 31, 2012

as the sample period. There are a total of 124 trading days in our sample period. The
distribution of these days over the sample months is as follows:

Table 4.1: The Number of Trading Days in the Sample Period by Month

July 22
August 20
September 20
October 19
November 22
December 21

In addition, due to the computational burden of our methodology, 6 of the BIST-30
Index constituents are included in the final sample. These stocks are AKBNK (Akbank
T.A.S. — commercial bank), MIGRS (Migros Ticaret A.S. - chain of supermarkets),
GARAN (Tiirkiye Garanti Bankas1 A.S. — commercial bank), ISCTR (Tiirkiye Is
Bankas1 A.S. — commercial bank), NETAS (Netas Telekomiinikasyon A.S. -
telecommunications) and ARCLK (Argelik A.S. - home appliances). The selection of
these particular stocks is random to some extent but the inclusion of financial
institutions, manufacturing and telecommunications companies as well as a fast
moving consumer products seller is on purpose in order to introduce an acceptable
level of diversification to our data set.

Table 4.2 reports descriptive statistics regarding each stock in our sample set. All
descriptive statistics in the table reflect transactions data prior to any data handling
except for summarizing the opening and closing sessions. The transaction data for the
morning and afternoon opening sessions and the afternoon closing session are included
in the set as 3 singular transaction entries at 09:49:59, 14:19:59, and 17:30:01,
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respectively. Log returns and durations are calculated between consecutive
transactions starting with the second transaction in each session. Minimum - maximum
returns, average — maximum durations and respective standard deviations are
computed over the full sample period. None of the log return series in Table 4.2 exhibit
normality as revealed by the corresponding Jarque-Bera statistics and skewness-
kurtosis figures.
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4.2. A New Measure of Liquidity in a High Frequency Setting

Liquidity in economics and finance literature has several definitions depending on the
context and purpose. For instance, macroeconomic liquidity refers to the monetary
base controlled by a central bank through its monetary tools such as open market
operations or reserve requirements. Alternatively, an asset’s liquidity refers to the ease
and speed of selling the asset without triggering drastic changes in its price, and,
accounting liquidity refers to the ability of a company to fulfill its financial
commitments with the liquid assets on hand. Among the different definitions the most
relevant to our attempt for uncovering the MMN structure using individual stock data
is the concept of “an asset’s liquidity”. Although there is no single definition of an
asset’s liquidity, a widely accepted definition by Black [35] describes a liquid asset as
an asset which can be sold in a short period of time for a price not too different from
the price at which seller would be able to sell if s/he opted to wait longer. Sarr and
Lybek [100] add on to this definition and argue that liquid financial assets are
identified by low transaction costs, easy trading, prompt settlement, and, a limited
effect of large trades on the asset’s price. Sarr and Lybek [100] also draw attention to
the possible changes in the perception of investors with respect to liquidity due to time
and economic developments:

“...during periods of stability, the perception of an asset’s liquidity may
primarily reflect transaction costs. During period of stress and significantly
changing fundamentals, prompt price discovery and adjustment to a new
equilibrium becomes much more important.[p.5]”

Sarr and Lybek [100] distinguish between an asset’s liquidity and the liquidity of a
financial market and state that liquid markets possess five characteristics. These
characteristics are tightness, referring to low transaction costs, immediacy,
representing the speed at which orders can be executed, depth, showing the existence
of abundant orders at below or above the current transaction price, breadth, pointing
to the volume and number of orders at each price tick (lower and higher compared to
the current price) so that large orders in either direction have a minimal impact on
price, and, finally, resiliency, referring to new orders arriving immediately to correct
order imbalances [100].

In line with the aforementioned diverse understanding of what constitutes an asset’s
liquidity, a closer look at the literature on the liquidity of financial assets reveals that
several measures/indicators are proposed to gauge the liquidity of stocks. For instance,
transaction cost measures focus on costs of trading assets and frictions in secondary
markets, volume-based measures assess breadth and depth by looking at the volume
of transactions while controlling for price volatility, equilibrium-price based measures
identify orderly movements towards equilibrium prices and are used as indicators of
resiliency, and market-impact measures try to distinguish between price changes
stemming from liquidity such that they are used to comment on resiliency and the
speed of price discovery [100].
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Unfortunately, none of these definitions/indicators/measures are usable when
analyzing the existence of MMN, especially when such analyses are carried out under
different sampling schemes. Recall from the discussions in Chapter 2, Sections 2.1 and
2.5 that due to trading data being observed at discrete and irregularly spaced intervals,
it is possible to calculate returns from UHFD under different sampling schemes such
as CTS (sampling prices every 10 minutes or 5 seconds or 2 hours etc.), TKTS
(sampling prices whenever there is a price change), TTS (sampling prices whenever
there is a transaction) and BTS (sampling prices so that the integrated volatility (V)
for all sampling periods throughout a day is constant). The most popular one in
literature amongst these sampling schemes is the CTS. However, as explained in
Section 2.1, the asynchronous nature of trading in stock exchanges makes it necessary
to artificially construct a time series where all time stamps of interest (for instance
every five seconds) become attached to a transaction price. The liquidity measures
proposed in the literature are not designed to accommodate such artificially
constructed time series and would result in misleading liquidity assessments if they are
used in the high frequency data setting.

When the methods for building the artificial time series under CTS are examined, it is
seen that the previous tick method may be more appropriate compared to other linear
or nonlinear interpolation methods since methods that employ information which is
not available at a particular time may induce spurious correlations [49] and linear
interpolation will distort quadratic variation (IV) estimations [61]. On this issue, let’s
demonstrate how the previous tick method is implemented. Suppose that a small
portion of transaction data for Stock X are given in Table 4.3.

After the application of previous tick method, the artificial calendar sampled time
series should look like information reported in Table 4.4 (no quantity or short selling
information is provided because the time series is artificially constructed only for
prices).

From Table 4.3 and Table 4.4, it is evident that when there is a long time lag between
two consecutive transactions, the previous tick method will use a piece of information
that belonged to some considerably older time and this may lead to inflated serial
correlation due to long sequences of zero returns [37]. Taking into consideration all
pros and cons of several interpolation methods, we concluded in Section 2.1 that the
previous tick method works best in 1V estimation for very liquid and actively traded
stocks listed on BIST, as we would not want to spur such correlation structures by
artificially introducing additional autocorrelation (serial correlation) due to the
interpolation method selected.
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Table 4.3: A hypothetical portion of transaction information on a stock

Date Time Ticker Price (TL) Quantity
(Day/Month/Year)
02-01-2012 09:50:00 X 8.88 5
02-01-2012 09:50:03 X 8.86 10
02-01-2012 09:50:06 X 8.88 300
02-01-2012 09:50:08 X 8.90 24567
02-01-2012 09:50:11 X 8.92 562

Table 4.4: Previous tick method applied to information on Table 4.3

Date Time Ticker Price (TL)
(Day/Month/Year)
02-01-2012 09:50:00 X 8.88
02-01-2012 09:50:01 X 8.88
02-01-2012 09:50:02 X 8.88
02-01-2012 09:50:03 X 8.86
02-01-2012 09:50:04 X 8.86
02-01-2012 09:50:05 X 8.86
02-01-2012 09:50:06 X 8.88
02-01-2012 09:50:07 X 8.88
02-01-2012 09:50:08 X 8.90
02-01-2012 09:50:09 X 8.90
02-01-2012 09:50:10 X 8.90
02-01-2012 09:50:11 X 8.92

This is the point where the frequency of trading in a stock becomes crucial in the MMN
analysis under different sampling schemes. The results of visual and/or statistical
analyses regarding the existence and statistical features of the MMN should be
interpreted keeping in mind that results may be distorted by the artificial correlation
induced by the previous tick method. Therefore, any study that attempts to analyze the
empirical features of the MMN via using UHFD should take into account the liquidity
(how transactions are distributed in time) of the assets under analysis. Unfortunately,
not only the aforementioned liquidity measures do not serve properly to distinguish
transaction frequencies per each trading day but also the average number of
transactions/quotations per session or trading day is insufficient to pinpoint the liquid
versus illiquid stocks. We would like to explain this insufficiency as follows: Suppose
that over a given trading session we have collected transaction data for Stocks A and
B with the same number of transactions taking place in each stock. This would imply
that the average number of transactions per session in each stock equals each other.
However, if the percentage of simultaneous transactions in Stock A is greater than that
of Stock B, then the time gap between transactions in Stock A will be longer compared
to Stock B causing the researcher, working under CTS, to fill a greater number of blank
time points in the data, and, therefore, increasing serial autocorrelation artificially.

In this context, inspired by the approach adopted by Ait-Sahalia et al. [3], who employ
the average duration between two consecutive transactions as an indicator of liquidity,
we introduce a new approach to sort stocks with respect to liquidity to be used in
UHFD and define the liquidity in a high frequency setting as the number of all time
stamps (under calendar time) having at least one transaction entry. In other words,
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during the sample period, if the number of sessions with no transactions during a given
time period, such as 10 minutes, for a stock exceeds the same number for another stock,
then the first stock is characterized as being less liquid, which means that this
classification of stocks is specific to the sample set at hand. Based on this definition,
we analyze the raw data on our sample stocks to find the number of continuous auction
sessions for which the maximum duration between two consecutive transactions
exceeds a set of arbitrarily selected 300 seconds, 600 seconds, 1200 seconds, 1800
seconds and 3600 seconds (coded in MATLAB). The results are given in Tables 4.5
and 4.6. The findings are in line with what average durations suggest and show that
ISCTR, GARAN and NETAS stocks are more liquid compared to the others in the
sample. We interpret the liquidity of AKBNK as moderate and classify the ARCLK
and MIGRS stocks as illiquid. These classifications are reflected in the Table 4.5 and
Table 4.6 with colors, where blue, red and yellow are used to highlight liquid, illiquid
and in-between stocks, respectively.
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4.3. Data Handling — A Necessary Step in Analyzing UHFD

4.3.1. Data Handling in the Form of Cleaning and Aggregating

As previously discussed in detail in Chapter 2, Section 2.1, UHFD may include
erroneous entries distorting the validity of results coming from any type of analysis
conducted with the data set. Moreover, due to recording algorithms of stock exchanges
as well as the asynchronous nature of trading, many transactions are attached to a
single time stamp. Correspondingly, before commencing with testing the existence of
MMN and the validity of popular assumptions on the MMN, we apply data handling
methods as combinations of cleaning and aggregation algorithms. In doing so, for each
continuous auction session in the sample, the cleaning rules are applied separately.
Therefore, an entry from one session is not compared with an entry from the preceding
or following sessions.

A comprehensive list of all of the cleaning and aggregation rules that are available in
the literature and mentioned in Chapter 2, Section 2.1 are turned into algorithms that
are applied to each stock in our sample before carrying out any return calculations
under the calendar or transaction time sampling schemes. The summary of these data
cleaning and aggregation algorithms in application order is given below:

1) Delete entries with time stamps that lie outside of opening, closing and
continuous auction sessions.

2)  Delete entries when price or volume is zero or negative.

3)  Delete entries when price is not a multiple of the respective price tick.

4)  Delete entries that satisfy one of the following criteria of being an outlier:
4.i.) Delete entries if the immediate return (absolute or not — percentage
return since last transaction) exceeds an arbitrarily selected threshold (rule
proposed by Huang and Stoll [65] and Bessembinder [31] and improved by
Chung et al. [39] and later adopted by Bandi et al. [21], Bandi et al. [22] and
Pigorsch et al. [95])

4.i.a) Delete the entry if percentage return since last transaction
exceeds 10% [65], [21] [22] [95].

4.1.b) Delete the entry if percentage return since last transaction
exceeds 25% [31].

4.1.c) Delete the entry if absolute percentage return since last
transaction exceeds 50% [39].
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4.ii) Delete entries for which the price deviates by more than a threshold
from an average of daily or arbitrarily selected neighborhood prices. This
approach was first introduced by Zhou [112] and later developed by Dacorogna
et al. [45], Falkenberry [50], Brownlees and Gallo [37]8, Verousis and Gwilym
[106] and Barndorff-Nielsen et al. [27] among others.

4.ii.a)  Delete the entry if the absolute difference between the current
price and the 10% trimmed sample mean over a Kk transaction
neighborhood exceeds or equals to 3 (k neighborhood) standard
deviations over the same neighborhood plus a granularity parameter A,
which is used to introduce a lower positive bound on price variations
accepted as admissible and is equal to a multiple of the relevant tick
size for the stock price [37].

4.ii.b)  Delete the entries for which the price deviates by more than
10 mean absolute deviations from a rolling centered median of 50
observations (25 preceding, 25 following) (proposed by Barndorff-
Nielsen et al. [27] and adopted by Koopman and Scharth [74] among
others).

4.ii.c) Delete the entries for which the price deviates by more than
2.9652 median absolute deviations from a daily median (inspired by
Verousis and Gwilym [106]).

4.ii1)  Delete entries which are bouncebacks/reversals as defined by Ait-
Sahalia et al. [3] or Oomen [94] and Bessembinder et al. [32].

4.iii.a)  Filter data for instantaneous price reversals in transaction
time. For the k! transaction to be removed, (i) the absolute price change
from the k-1'" transaction to the k™" transaction exceeds a threshold set
arbitrarily, and, (ii) the price change from the k™ transaction to the k+1%"
transaction is such that the absolute price reversal is included in the
region of —(1-w) and —(1+w) times the price change from the k-1*"
transaction to the k™" transaction [94].

4.iii.b)  Delete a particular entry if the log return from one transaction
to the next is both greater in magnitude than an arbitrary cutoff and
followed immediately by a log return of the same magnitude but of the
opposite sign, so that the price returns to its original level before that
particular transaction [3].

4.iii.c)  Eliminate “reversal” transactions, where a given price
exceeds both the preceding and following prices by at least 15%, or is
less than both prices by the same magnitude [32].

& This paper of Brownlees and Gallo is cited 136 times, making it quite popular in high frequency
literature.
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5)  Ifthere are multiple entries per second (trades that took place at different or same
prices at the same time, i.e. there is more than one entry that have the same time stamp),
then aggregate the price and calculate a single price for that time stamp:

5.1) Determine unique prices and aggregate volume. Use the price that has
the largest volume.

5.ii) Determine unique prices and aggregate volume. Use the volume
weighted average price.

5.ii1))  Determine unique prices and aggregate volume. Use the logvolume
weighted average price.

5.iv)  Determine unique prices and aggregate volume. Use the number of
trades weighted average price.

5.v) Use the median price.
We implement steps 1, 2 and 3 for the detection of obvious errors, and then select one
option under step 4 and one option under step 5 and go through each possible
combination of the options. As a result, the number of cleaning and aggregation
combinations is 45.

The results from the application of the various options under step 4 are summarized in
the Table 4.7.
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By examination of Table 4.7, we deduce that only cleaning methods 4.ii.a and 4.ii.b
shall be included in the analysis of testing the existence and statistical features of the
MMN under different data handling and sampling schemes (recall overscrubbing and
underscrubbing risks discussed in Section 2.1.) because:

e 10% price limit per session rule as applied by Borsa Istanbul’s for stocks quoted
on National Market nullify the error detection by method 4.i.aand 4.i.b and 4.i.c.

e Cleaning method 4.ii.c identifies many entries as errors because the 2.96 MAD
(MAD over session) criterion might be too low (MADs are close to 0) and
therefore, the errors caught by method 4.ii.c are most probably correct entries
that artificially signified as errors. Due to this high probability of artificial
success at catching errors, method 4.ii.c is not included in our analysis.

e Cleaning methods 4.iii.a, 4.iii.b and c do not catch significant amount of errors,
so application of these rules is practically same as not cleaning the data at all.

4.3.2. Does Data Handling Alter UHFD’s Characteristics?

Now that all of the obvious errors, outliers and simultaneous ticks are cleaned and/or
aggregated, it is time to discuss what happens to the common characteristics of the
UHFD after cleaning and aggregation procedures are applied as we want to make sure
that the data handling procedures do not overscrub the UHFD and distort its original
characteristics, such as discreteness, irregular temporal spacing, and diurnal patterns.

i)  Discreteness: Transaction price changes occurring as multiples of ticks causes
price discreteness [20]. Organized exchanges introduce rules such as price limits in the
form of price bands and minimum allowed price changes that are called ticks. Borsa
Istanbul is no exception. Recall that for any session in National Equity Market of Borsa
Istanbul, the price of a stock is allowed to oscillate between 90% and 110% of its base
price where the base price is determined using information from previous session. In
addition, the smallest price variation that may occur between consecutive trades is 0.01
TLor0.02 TL or 0.50 TL or 0.10 TL depending on the range of the base price. These
trading rules result in prices to assume a small set of possible outcomes [49]. As Engle
and Russell [49] underline, such discreteness will affect the characteristics of prices
especially when they are small relative to the tick size. In this context, the discreteness
of transaction prices holds under CTS and TTS for all data handling methods and for
all stocks in our sample because as long as there are price ticks, especially when the
ticks are large in size, discreteness is a natural consequence.

i)  Irreqular temporal spacing is defined as the arrival of transactions being random
in calendar time. Comparing this characteristic under CTS and TTS is meaningless
because the random arrival of transactions is relevant only for TTS. Additionally, this
characteristic cannot change from one cleaning method to the other or amongst
aggregation methods, since errors or transactions recorded with the exact same time
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stamp are not the cause of irregular temporal spacing. Therefore, this characteristic
holds for all data handling methods and for all stocks in our sample.

iii)  There can be diurnal patterns in the behavior of stocks due to particular market
conditions such as openings, closings, trading halts, circuit breakers, etc. A few of the
pioneering researchers who examined patterns of average intraday financial market
returns and reported a U-shape pattern in return volatility over the trading day are
Woodi Mclnish and Ord [107], Harris [62], Miiller et al. [87] and Baillie and
Bollerslev [18], Andersen and Bollerslev [7]. In more recent studies, similar strong
periodic patterns in intraday financial data are observed in many dimensions such as
trading frequency, trading volume or returns per some predetermined amount of time
such as 15 minutes. A set of similar findings was reported for the Borsa Istanbul
National Equity Market by Bildik [33].

By examining 15-min, 5-min and 1-min. interval stock returns in the Istanbul Stock
Exchange National Equity Market for the period from 1996 to 1999, Bildik [33] finds
that stock returns follow a W-shaped pattern over the trading day, where such patterns
are tied to the existence of lunch breaks and two continuous auction sessions per
trading day. He adds that return volatility is higher at the market openings and exhibits
an L-shaped pattern (if we ignore the relative increase in return volatility at the opening
of the second session) during both of the sessions. Bildik [33] argues that the relatively
higher mean return and standard deviation at the openings of the trading sessions may
be explained by the existence of non-trading hours, i.e., information accumulates
overnight and during the lunch breaks so that once the market is open, traders
immediately take positions in light of the information flow during the non-trading
hours.

The existence of such behaviors is very important for us since we argue in Chapter 2,
Section 2.6 that such intraday patterns may remove the need for adjusting RVs for non-
trading hours. These patterns can be analyzed only under CTS because of their
definitions such as the number of trades per x minutes or the absolute return per y
seconds. Examples of these aforementioned diurnal patterns over cleaned and
aggregated AKBNK transaction data under CTS is provided in Figure F.3.

In order to check the diurnal patterns in all stocks and to find out whether data handling
distorts such diurnal patterns, we calculate 10-minute average transaction volumes,
10-minute absolute percentage returns, 10-minute average trade intensities, and, 10-
minute average absolute returns for each stock 11 times, i.e., once for the raw data and
10 times for cleaned and aggregated data (there are 10 combinations of cleaning rules
4.ii.a and 4.ii.b and aggregation rules 5.i, 5.ii, 5.iii, 5.iv and 5.v). Results, which are
summarized in Table 4.8 and given in detail in Appendix E, suggest that for all the
stocks in our sample, there are significant diurnal patterns in returns and trading
activity in the form of intensity and volume under CTS and these patterns look exactly
the same even after various combinations of cleaning and aggregation methods are
applied. This finding suggests that the data handling methods do not distort the
naturally occurring diurnal patterns in stock returns.
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4.4. Calculating Returns and RVs - CTSand TTS

Calculating Returns and RV under Calendar Time Sampling:

After the data sets are cleaned of errors and all simultaneous entries are successfully
aggregated, we prepare 11 different (1 uncleaned, 10 cleaned and aggregated) artificial
transaction time series for each stock in our sample by applying the previous tick
method for continuous auction sessions and summarizing opening and closing session
information as entries at 09:50:00, 14:20:00 and 17:30:00 if there are no entries in the
original data for those time stamps. Due to the existence of non-trading hours in Borsa
Istanbul (recall that first and second continuous auction sessions take place between
09:50-12:30 and 14:20-17:30, respectively, with a lunch break), the resulting artificial
time series has 9601 entries for the first session and 11401 entries for the second
session on each trading day. The total number of entries in a trading day is 21002.

In agreement with the discussions in Chapter 2, Sections 2.1. and 2.6, we pick prices
at frequencies appropriate for the analyses in this Chapter while acknowledging the
trading halt due to the lunch break. With the first and second session’s continuous
auction periods corresponding to 9601 and 11401 seconds, respectively, a plausible
set of frequencies is given Table 4.9:

Table 4.9: A plausible set of sampling frequencies under CTS

Sampling Interval ~ Sampling Interval Number of Returns Number of Returns
in Seconds in Minutes During First Session During Second Session

10 0.17 960 1140

30 0.50 320 380

60 1.00 160 190

150 2.50 64 76

300 5.00 32 38

600 10.00 16 19

900 15.00 10 12

1200 20.00 8 9

Since the majority of empirical research in the RV literature uses UHFD coming from
the New York Stock Exchange (NYSE) where trading is carried out without any lunch
breaks, there are not many studies that address the non-trading hours over lunch. The
existence of a lunch break complicates return sampling. As an illustration of this
complication we present the starting and ending time stamps for 15, 20, 30 and 60
minutes sampling. For these frequencies, it is not possible to include the last several
minutes of the morning sessions causing the session hours to be shrunk and we cannot
benefit from the information (highlighted in grey) that is contained in the trimmed last
minutes of each session.
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This complication is discussed by papers that examine the RV of transaction prices in
Tokyo Stock Exchange and Hong Kong Exchanges and Clearing Limited. Ishida and
Watanabe [67], Chow et al. [40], Masuda and Morimoto [83], Takaishi et al. [105] and
Ubukata and Watanabe [103] are the studies that we reference for handling the lunch
breaks in the RV calculation.

Ishida and Watanabe [67] apply the ARFIMA-GARCH model to the RV and the
continuous sample path variations constructed from high-frequency Nikkei 225 data
coming from the Tokyo Stock Exchange (TSE). The TSE sets trading hours as 09:00-
15:00 over two sessions with a lunch break between 11:00 and 12:30, where price limit
rules apply in each session. Ishida and Watanabe [67] treat each session individually
and calculate 23 and 30 five-minute returns for session 1 and 2, respectively. They
calculate the RV for each day using all of the five-minute returns from the entire day.
Although they consider that it is possible to adjust the RV for non-trading hours by
adding squared returns during night and lunch, they state that since the TSE is open
only for 4.5 hours during a day, such an adjustment might be “stretch”ing the
information available. In summary, they do not take squared returns from closing
session 1 to opening session 2 and do not adjust the daily RV for the lunch breaks or
the overnight period.

Chow et al. [40] underline the fact that many of the studies on volatility structures
using high-frequency financial data are concentrated on developed markets but there
is little evidence regarding emerging markets such as Hong Kong. Accordingly, using
transaction data, they investigate the statistical properties of the return volatility of
shares listed on the Hong Kong Exchanges and Clearing Limited (HKEXx). Similar to
the approach adopted by Ishida and Watanabe [67], Chow et al. [40] use all available
5 min returns coming from session 1 and session 2 separately to calculate the daily
RV. They do not mention lunch breaks or non-trading hours and, therefore, do not
make any adjustments to the daily RV calculation for overnight or lunch breaks.

Masuda and Morimoto [83] also carry out an empirical study with data from TSE and
treat each session separately while adding the RV from each session to get RV _daily.
However, they divert from Ishida and Watanabe [67] in the sense that the adjustment
of the RV as the sum of RV_sessionl and RV_session2 for non-trading hours is taken
as a requirement. They modify Hansen and Lunde’s [58] approach and solve for the
optimal weights for RV _sessionl1, RV_session2, squared overnight return and squared
lunch return. They argue that adding the optimally weighted squared returns overnight
and the lunch break onto the RVs from session 1 and session 2 improves forecasting
performance.

Takaishi et al. [105] claim that, consistent with a mixture of distributions hypothesis,
price returns standardized by realized volatilities on the TSE become approximately
Gaussian. In the calculation of the RVs, they acknowledge the complexity induced by
the lunch break and in order to avoid the adjustment for non-trading hours, they
calculate RVs of each session separately and then divide the returns in each session
with the corresponding RV.

More recently, Ubukata and Watanabe [103] investigate whether handling the
microstructure noise, the non-trading hours and large jumps in the calculation of
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realized volatilities would change the pricing performance of options on the Nikkei
225 index. Regarding non-trading hours, they emphasize that adding the squares of
overnight and lunchtime returns may yield a noisy RV (due to price discreteness) and
opt for scaling RV, as is done by Hansen and Lunde [58], calculated over all available
transaction data. They claim that the adjustment for non-trading hours in [58] improves
the option pricing performance and if the Hansen—Lunde adjustment is used, other
methods (such as kernel or subsampling based estimators) that mitigate noise induced
bias are not necessarily needed.

By distilling all these papers, depending on the analysis we carry out, we sample prices
at a subset (or full set) of Table 4.9 to calculate stock returns at each frequency and
calculate RV_sessionl and RV _session2, then sum these figures to find the RV_open
to close. For plotting the volatility signature plots and calculating the Average RV, we
take the simple average of daily RVs over the whole sample period at each frequency.

Following arguments in Chapter 2, Section 2.6, no adjustment is made to RV_open to
close for the existence of non-trading hours since we claim that the existence of diurnal
patterns in trading intensity and returns already reflect the volatility accumulated
during the non-trading hours.

Calculating Returns and RV under Transaction Time Sampling:

Sampling prices under TTS does not require the artificial construction of time series
except for cleaning and aggregating the raw data as well as summarizing the opening
and closing sessions at the beginning and end of each session. After the data sets are
cleaned of errors and all simultaneous entries are successfully aggregated, we get 11
different (1 uncleaned, 10 cleaned and aggregated) transaction time series for each
stock in our sample. Obviously, the asynchronous nature of trading causes entries in
the actual transaction data per each session to be different in number. Accordingly, the
set of frequencies (in terms of the number of transactions), reported in Table 4.10, are
determined to make sure that such frequencies fit the purpose of the analyses in this
Chapter rather than ensuring the number of returns from the first and second sessions
from different trading days are always equal. The decision with regards to sampling
intervals in transactions is made by also taking into consideration the liquidity of
stocks defined in Section 4.2. of this Chapter, for instance, the number of returns in a
session may be very small for relatively illiquid stocks for the longer intervals such as
100 transactions.

Table 4.10: A plausible set of sampling frequencies under TTS

Sampling Interval
in Transactions

3
6
10
15
20
30
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Following our discussions on calculating returns and RVs under CTS, depending on
the analysis we carry out, we again sample prices at a subset (or full set) of Table 4.10
to calculate returns at each frequency and find the RV _open to close by adding
RV _sessionl and RV _session2. For the Average RV, we again take the simple average
of daily RVs over the whole sample period at each frequency.

In line with the arguments in Chapter 2, Section 2.6, we still do not make any
adjustments to the RV_opentoclose for the existence of non-trading hours since we
claim that the existence of diurnal patterns in trading intensity and returns may already
reflect the volatility accumulated during the non-trading hours.

4.5. Is Temporal Dependence in Returns Distorted By Data Handling
Procedures and/or Sampling Schemes?

Literature is abundant with evidence from stock exchanges scattered around the world
that points to the existence of first order autocorrelation and volatility clustering in
intraday returns. Correspondingly, checking whether the data handling procedures
and/or sampling schemes alter the return structure becomes vital before commencing
the analysis of the MMN's significance and structure, keeping in mind that such
analyses use the RV as an input and any change in the return (consequently the RV)
structure due to data handling and/or sampling scheme should be carefully scrutinized
before commenting on what happens to the MMN under different data handling or
sampling schemes.

In order to shed some light on this question, work by Andersen and Bollerslev [7],
Andersen et al. [11] and Engle and Russell [49] leads us to delve into correlograms of
returns and durations under different sampling schemes and data handling procedures.
We give special importance to these correlograms because an intriguing finding of
Griffin and Oomen [55] reveals that while moving from transaction time to tick time,
the dependence structure of returns is altered dramatically which, in turn, affects the
properties of the RV. In order to illuminate the robustness of this finding across
securities, they list the first five autocorrelations of returns in both transaction time and
tick time for all DJ30 components and show that in tick time all first and third (second
and fourth) autocorrelations are negative (positive) without exception.

By comparing the autocorrelation and partial autocorrelation functions of 60-second
and/or 600-seconds® absolute returns and log returns under CTS (clean and aggregated
and interpolated) as well as absolute returns, log returns and durations in seconds from
one transaction to the next under TTS (raw versus clean and aggregated) for each stock
in our sample set for December of 2012, we observe that for stocks in our sample:

9 Since first order autocorrelation was observed in 10-min returns for all cleaning and aggregation
methods under CTS, we do not feel the urgency to check for 1-min returns under CTS for ARCLK,
AKBNK, GARAN and ISCTR. We examine 1-min returns in addition to 10-min returns under CTS for
MIGRS and NETAS because the 10-min log returns exhibit no autocorrelation at all.
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e There are differences between the ACF and PACF structures of absolute and log
returns between 10-minutes CTS and 1 transaction TTS, i.e., transforming 1
transaction sampled data by first cleaning, then aggregating and then
interpolating (all needed for CTS) to 600-seconds sampled data distorts the ACF
and PACF of log and absolute return series. The absolute return autocorrelation
structure is changed under CTS at the 600-seconds sampling interval compared
to results under TTS at the 1 transaction interval. Likewise, switching to CTS
and calculation returns at 600 seconds suppresses partial autocorrelation figures
at several lags of both absolute and log returns.

e Regardless of the cleaning or aggregation methods, volatility clustering is
verified in the form of very slow decay in ACF and PACF of absolute returns
under TTS and durations between two consecutive transactions- lags are positive
and significant up to 20.

¢ In line with findings by Griffin and Oomen [55], return dynamics in transaction
time are different from those in calendar time and the choice of sampling scheme
may have a substantial effect on the properties of realized variance.

e In general, comparing data handling combinations to each other, any
combination of the cleaning and aggregation methods (compared to other
combinations) does not cause any major change in the total and partial
correlation structures once we move under a sampling scheme, whether it is
either TTS or CTS, regardless of liquidity. However, cleaning and aggregation
under TTS yields different PACF structures in the absolute and/or log returns:®
compared to the results produced with raw data.

e Working at different frequencies under CTS distorts the autocorrelation structure
of absolute returns and log returns in the same way: returns become less
autocorrelated as we sample a smaller number of prices.

4.6. Do Sampling Schemes or Data Handling Methods Change the
Empirical Distributions, Correlograms and Stationarity of RV
Series?

A number of papers analyze the properties of the RV. Andersen et al. [12] focus on
currencies, Andersen et al. [10] examine individual stocks, Ebens [46] studies the Dow
Jones Industrial Average, and Areal and Taylor [15] work on stock index futures. The
results are interesting such that the RV appears to be lognormally distributed and daily
returns standardized by the RV are approximately normal [51]. Moreover, the RV
exhibits long-memory dynamics consistent with a fractionally integrated process with

10 For AKBNK, GARAN, and NETAS, PACF of log returns is affected. For ARCLK and MIGRS,
PACF of both of log and absolute returns are different when data handling methods are applied under
TTS. With regards to ISCTR, such an effect of data handling methods is not observed.
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a degree of integration around 0.4, volatility clustering is apparent at as long as the
monthly level, and the RV obeys precise scaling laws under temporal aggregation [51].

Accordingly, in addition to assessing the effects (if any) of data handling and/or
sampling schemes on return dynamics in the form of temporal dependence, we also
inquire whether sampling schemes and/or data handling procedures have a significant
impact on the RV dynamics by focusing on the empirical distributions, correlograms
and stationarity of the RV series (by session and daily) for each of the 6 stocks in our
sample.

For each frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300,
600 seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 4.ii.b)
-aggregation method (5.1, 5.1i, 5.iii, 5.iv, 5.v) combination, we construct two RV time
series, namely session-based RVs and daily RVs. Consequently, the number of RV
series per stock becomes 36 (6- TTS—raw, 30-CTS-clean and aggregated). Each daily
RV time series has 124 data points, whereas each session-based RV time series is
comprised of 248 entries.

For each RV series under each sampling scheme, for each frequency and for each
cleaning and aggregation method combination we calculate preliminary statistics,
conduct ACF and PACF analyses and lastly check the existence of a unit root wherever
autocorrelations exhibit a slow decay.

With regards to preliminary statistics, we analyze the mean, skewness and kurtosis
values and Jarque-Bera (JB) test results at the 5% significance level in order to
determine the normality or lognormality of the RV series at hand. The preliminary
statistics also allow us to determine whether the mean of the session-based and daily
RVs become smaller as the sampling interval is lengthened or whether there is an
identifiable relationship between the sampling frequency and the change in skewness,
kurtosis or the JB statistic values.

By constructing the correlograms with 20 lags, we check for the existence of
autocorrelation in our RV series.

In order to test for stationarity, i.e. whether the series moves around a constant mean
or diverges as time passes, the Augmented Dickey Fuller (ADF) test is preferred. By
a visual inspection of graphs, we do not observe any trend in any of our RV series,
and, therefore, the ADF test is run with an intercept and no trend. The number of lags
to be used in the stationarity tests is chosen by the Schwarz criterion as it is the default
choice suggested by E-views.

Respective sections of Appendix E are summarized in Table 4.11, Table 4.12, Table
4.13 and Table 4.14
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By careful examination of summarized and aggregated information reported in Table
4.11, Table 4.12, Table 4.13 and Table 4.14 as well as results in Appendix E, we find
that

e Regardless of liquidity, sampling scheme, daily or session-based calculations,
cleaning and aggregation methods or frequency, the mean of the RV series
becomes smaller as the sampling interval is lengthened.

e Regardless of liquidity or frequency or daily or session calculation, all RV series
under raw-TTS are non-normal (except for the AKBNK 20 tr daily RV series).
Normality is achieved for only some of the liquid stocks under CTS and only at
the highest 1 min frequency.

e Liquidity matters in terms of the RV normality: for illiquid stocks, no RV series,
either under raw-TTS or CTS (for all combinations of cleaning and aggregation
algorithms), session or daily or at any frequency is normal. Therefore, sampling
scheme or cleaning and aggregation or sampling frequency or session-daily
calculation do not change the non-normality of RV series if the stock is illiquid.

e However, for liquid stocks, although all the RV series under raw-TTS are non-
normal, switching to CTS and increasing frequency and calculating RVs on a
daily basis make the RV series more and more normal such that at 1 min
frequency, we cannot reject the null hypothesis of the daily 1 min RV sample
coming from a normally distributed population at the 5 significance level for
ISCTR and GARAN. We also see that for GARAN, daily-session-based
calculation changes normality, where such a calculation choice does not affect
ISCTR or NETAS.

e The cleaning and aggregation algorithm combinations do not affect the
normality if we work under CTS, whether the stock is liquid or not.

e Unlike the results on normality, liquidity turns out to be ineffective on the log
normality of the RV series.

e Generally speaking (except for GARAN), session-based-daily choice, frequency
and sampling scheme are found to be effective on the log normality of the RV
series. For GARAN, and only under CTS-daily calculations, switching between
cleaning methods 4.ii.a and 4.ii.b alters the frequencies at which the RV series
is lognormal.

e Under CTS, the ACFs of session and daily RVs change as the sampling
frequency changes, such that for increasing frequencies, RV series exhibit
significant positive total autocorrelation up to a higher number of lags. Such a
particular relationship between frequency and decay patterns in ACF is not so
obvious under raw-TTS for GARAN, MIGRS and ISCTR (for AKBNK,
ARCLK and NETAS, inflating frequencies vyields stronger total
autocorrelations).
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e Under raw-TTS and CTS, regardless of liquidity, although the correlograms of
all the daily RVs resemble one another, compared to the correlogram of session-
based series, the autocorrelation structure of daily RVs looks different, i.e., under
both raw-TTS and CTS, session-based-daily calculation matters as it influences
the autocorrelation decay patterns.

e The cleaning and aggregation methods do not affect autocorrelation decay
patterns and the structure of the RV series.

e Liquidity does not alter the stationarity of the RV series in a specific way.

e Regardless of liquidity, under raw-TTS, all RV series, either session-based or
daily at all frequencies are found to be stationary at the 5% significance level.
Non-stationarity becomes a problem only under CTS for some RV series.

e Under CTS, no particular patterns are observed with respect to effect of UHFD
dimensions on stationarity of the RV series. Irrespective of liquidity, some stocks
for some frequencies for some cleaning and/or aggregation methods and
depending on session-based-daily calculation, turn out to be non-stationary at
the 5% significance level. In detail, for ISCTR and NETAS, stationarity results
are affected from the sampling schemes, frequencies, the cleaning/aggregation
methods, or, the session/daily basis choice, while for GARAN, the sampling
scheme, frequency and the cleaning methods, for AKBNK, the sampling
scheme, frequency, the cleaning methods and session-based/daily basis choice,
for ARCLK, the sampling scheme, daily-session-based calculation, frequency
and the aggregation method and, lastly, for MIGRS, sampling scheme, daily-
session-based calculation and frequency distort the stationarity of the respective
RV series.

4.7. Do Sampling Schemes or Data Handling Methods Alter Volatility
Signature Plots?

Recall from Chapter 3, Section 3.1 that when the observed price, Y;, is contaminated
by an additive market microstructure noise, as in Equation (3.4) such that

Yt:Xt-I_gt' OStST

where T shows a finite horizon, X; denotes the logarithm of true/efficient price of the
security at time t and &, represents the logarithm of the combined effect of all
microstructure noise sources at time t, the quadratic variation of observed prices
calculated over the highest frequency possible does not converge to the IV of the true
prices since an asymptotic bias (quantified in Equation (3.9)) appears due to the
existence of MMN. Basically, applying the quadratic variation operator to both sides
of Equation (3.4), we get
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[v,Y) = [X,X19 +2[X, ]! + [e,€]?

Where the last and first terms are always positive so that if the RV becomes smaller
with increasing sampling frequency, then such a decrease in the RV should stem from
the large enough negativity of the second term which can offset the positive last term.
Hansen and Lunde [58] interpret decreasing RVs accompanying increasing sampling
returns in the same way. Moreover, Hansen and Lunde [61] state that

“...If the correlation is sufficiently negative, the second bias component can
more than offset the first component. Thus the total bias may be negative, as is
often seen when RV(m) is based on midquotes.”

Hansen and Lunde [61] conclude that the negative correlation between the noise and
the efficient price could be due to the nonsynchronous revision of the bid and ask
prices once efficient prices change. In order to back their argument, they present actual
versus bid and ask prices over a 20-minute window and show that the bid-ask spread
tends to get wider when prices move up or down.

In addition, we prove in Chapter 3, Section 3.2 that the asymptotic bias is shown to be
dominated by E[[e, €];|X] under both TTS and CTS, regardless of the fact that the
MMN and the true price are correlated and/or MMN has a constant mean other than 0.

Therefore, it is important to confirm the existence of MMN as well as to test the
assumptions regarding the statistical features of the MMN in order to examine how the
RV deviates from the IV as we increase the sampling frequency. Remember from
Chapter 2, Section 2.4 that the most popular assumptions in the RV literature on the
MMN state that the MMN is a sequence of i.i.d random variables with a 0 mean, a
constant variance and a finite fourth moment where the MMN and the true prices are
orthogonal to each other at each point in time within the time horizon.

One tool to reveal if there is any bias in the RV due to the MMN as well as the
frequency at which the MMN becomes evident and the direction of the bias is the
visual inspection of volatility signature plots. A volatility signature plot (VSP), a
version of which can be traced back to Zhou’s work in 1996 [112], is defined as a plot
of average realized volatility (Ave RV) against sampling frequencies and is made
popular by Andersen et al. [11]. Andersen et al. [11] explain how to derive inferences
via volatility signature plots. If Ave RV falls or rises as frequency increases, there is a
MMN that kicks in with higher frequencies. A fall in Ave RV as frequency increases
is tied to a negative correlation between the efficient returns and the noise. In detail,
Andersen et al. [11] state that this negative correlation may be caused by the bid-ask
bounce, one of the reasons suggested in the literature for the existence of MMN in
stock exchanges such as the NYSE where market making is the usual practice.
Andersen et al. [11] interpret a rise in the Ave RV when frequency increases as
evidence of the existence of positive correlation between the efficient returns and the
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noise and state that this positive correlation may be caused by inactive trading, which
is another reason for the existence of MMN.

Since VSPs are used as a visual inspection tool for deriving conclusions regarding the
existence of MMN and/or correlations (including the direction of correlations)
between the true price of an asset and the MMN, we believe that it is crucial to test
whether the results driven from VSPs are consistent across sampling schemes and data
handling approaches. In this attempt, we analyze VSPs for each stock under various
data handling procedures and sampling schemes (CTS and TTS) to conclude about the
potential bias problems of the RV type estimators due to the existence and statistical
characteristics of the MMN. We plot 3 VSPs, one from session 1 RV series, one from
session 2 RV series and one from daily RVs, per each data handling procedure. We
compare VSPs produced under CTS for 10 different combination of cleaning rules
4.ii.a and 4.ii.b with aggregation methods 5.i, 5.ii, 5.iii, 5.iv and 5.v and VSPs
produced under TTS for raw data and cleaned and aggregated data. At this point, we
would like to emphasize that regarding VSPs under TTS, we skip 4.ii.a-5.i-5.ii-5.iii-
5.iv-5.v combinations, mainly because the number of cleaned points under 4.ii.a is so
small that cleaning makes no real difference. Any possible difference stemming from
cleaning may be observed under cleaning method 4.ii.b, which ends up deleting more
data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we additionally
search for any marginal effect that the cleaning method 4.ii.b has over the cleaning
method 4.ii.a. By this logic, the resulting number of VSPs produced per stock is 48.
Discussions on these VSPs are given in Appendix E, while we provide Figure 4.1 to
summarize our findings regarding VSPs of each stock under TTS and CTS (cleaned
and aggregated).
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Based on Figure 4.1 as well as the results in Appendix E, we observe that

e The sampling schemes or the cleaning and aggregation techniques do not alter
the fact that inflating sampling frequency, either in seconds or in transactions,
causes the average realized volatility of return based on transaction prices to
boom, irrespective of the liquidity. This observation is valid both for session-
based and daily figures.

e Explosion becomes trivial for the sampling intervals that are less than 300
seconds or 15 transactions. These frequencies serve as optimal sampling
frequencies at which market microstructure noise dominates the RV of observed
prices.

e In all possible dimensions (sampling scheme, liquidity, data handling methods,
and session-daily calculation) for all stocks, we find visual proof regarding the
existence of market microstructure noise and pointing to a positive relationship
between the noise increment and true price return, under both CTS and TTS.

4.8. Do Sampling Schemes or Data Handling Methods Affect Results
of Formal Tests on the Statistical Structure of MMN?

In order to search whether there is a MMN effect on observed prices and whether the
popular assumptions regarding the MMN structure are backed by empirical data, we
employ Awartani et al.'s [16] formal statistical tests of the no noise and noise
increments with constant variance assumptions. Their approach depends on the
comparison of two or more realized volatilities computed over different frequencies
under CTS where the artificial construction of price series ensures that prices are
regularly spaced in time. In Chapter 3, as a contribution to the available literature, we
provide discussions and proofs that the same tests can be used under TTS where prices
are scattered irregularly over time. In line with those arguments and proofs, we
examine

a) in Section 4.8.1 whether the formal test results confirm the existence of MMN
under CTS and TTS for varying data handling procedures,

b)  in Section 4.8.2 whether the formal test results confirm the constant variance of
MMN increments under CTS and TTS for varying data handling procedures,

while liguidity in the sense of Section 4.2 is also taken into account.
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4.8.1. Formal Tests of the Existence of MMN under Different Sampling Schemes
and Data Handling Procedures

Suppose that the observed price Y; is assumed to be contaminated by an additive
market microstructure noise as in Equation (3.4) such that

Yt:Xt-I_gt’ OStST

where T shows a finite horizon, X, denotes the logarithm of true/efficient price of the
security at time t and &, represents the logarithm of the combined effect of all
microstructure noise sources at time t. Moreover, X, the log price of an asset, satisfies
the Equation (3.1) which gives the following stochastic differential equation on the
finite time horizon t € [0, T]:

dXt == ﬂtdt + O—tdBt

where X, is F,-measurable, X, has continuous sample paths, drift u; is a locally
bounded, predictable continuous process, the continuous stochastic process o, that
derives the volatility of log return of the security is square integrable, B, denotes a
standard Wiener process and a; is orthogonal to B,.

In this setting, Awartani et al. [16] propose to check whether, due to the existence of
MMN, there is any statistically significant asymptotic bias on the RV estimator under
CTS by testing the null hypothesis in Equation (3.11) which asserts that the second
moments of all MMN increments equal zero against the alternative hypothesis in
Equation (3.12) which claims that the second moments of all MMN increments are
greater than zero.

We claim in Chapter 3, Section 3.3 that the same set of hypotheses are also relevant
for TTS because under both TTS and CTS, as shown in Chapter 3, Section 3.2, if
observed prices are contaminated with a MMN where the MMN s a sequence of i.i.d
random variables with a 0 mean and a finite fourth moment while the noise increments
have constant variance as we increase observation frequencies, the RV, scaled by
(2 - number of sampling intervals))™! and calculated over observed prices,
estimates more and more the variance of MMN rather than the quadratic variation of
the true price.

Awartani et al. [16] develop a test statistic under CTS to test if we can reject the null
hypothesis in Equation (3.11) against the alternative hypothesis in Equation (3.12) so
that the MMN has a statistically significant effect on RV estimators of the IV at a given
sampling frequency. The test statistic Zr ,, , employs RVs calculated at two artificially
selected frequencies, one low and one high, as well as the Realized Quarticity (RQ)
calculated at low frequency and is formulated in Equation (3.13) as follows:
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B VR =1(RVy, — RVpp)

A
o \/Z(h 1),
3 QT,h

where h and n stand for the number of observations for the whole estimation period, T
(for instance, the number of observations per day) at low frequency and high
frequency, respectively, and

n-2

RVT,Tl = Z(Yti+1 o Yfi)2

=0

h-2

RVT;h = Z(Yti+1 - Yti)z

=0

h-2

RQT,h = Z(Ytiﬂ - Yti)4

1=0

n
n > h, ——>ooasnh—>

h

Awartani et al. [16] prove that the test statistic Zr ,, , has a standard normal distribution
asymptotically under the following assumptions:

e the true price is generated as in Equation (3.1),
T 4
. fo oidt < oo,
e the MMN increments have a finite fourth moment on [0, T']

e there is at least one ¢ > 0 such that for i € (0,1), lim inf (n — 1)¥~[e, &) >
n—oo
¢ and lim inf (h—1D¥ e elr > C

We suggest and show in Chapter 3, Section 3.3 that the same test statistic Zr,, , can
be employed to examine the existence of MMN under TTS where
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¢ conditions and assumptions of Theorem 3.2 hold,

e the true price of the security is observed with no drift and it is a local martingale
by definition as in Equation (3.20),

e the instantaneous true return variance, ¢?, is locally bounded and continuous in
mean square,

o the observation times are independent of the true price process X;, and the
maximum distance between two consecutive observation times converges to 0
in probability at an order of (number of sampling intervals — 1)~/ as the
number of observations tend to infinity,

e for any two consecutive observation times t;,, and t;, Y;(tjyq — t;)3
= 0, ((number of sampling intervals — 1)72)

e Asymptotic Quadratic Variation of Time (AQVT) is calculated as

. h-1
Dt‘=flll_f)£10T z (tiy1 — t)?

tiy1st

and denoted by D, exists and is absolutely continuous.

For both TTS and CTS, since bias of the RV estimator is dominated by the expectation
of the square of the noise increment, if we reject the null hypothesis in Equation (3.11),
this implies that a MMN exerts a statistically significant impact on the realized
estimator of the IV.

In this context, we calculate the Zr,, , statistic testing the null hypothesis in Equation
(3.11) by comparing RVs that are calculated over different frequency pairs, under
sampling schemes CTS and TTS for raw and cleaned and aggregated data series. The
high-low frequency pairs are (60,600) (10,1200), (30, 1200) (60,1200), (150,1200),
(300,1200), (600,1200) (900,1200) seconds for CTS and (3,30), (6,30), (10,30),
(15,30), and (20,30) transactions for TTS. Regarding data handling methods, we
consider test results for 10 different combinations of cleaning methods 4.ii.a and 4.ii.b
with aggregation methods 5 i, 5 _ii, 5_iii, 5_iv and 5_v once under CTS and once
under TTS. For each day in the sample period of 124 days and each frequency pair,
we run the aforementioned test at a 5% significance level.

The results for each stock, for each frequency pair, under each data handling method
and sampling scheme are given in the respective sections of Appendix E. To
summarize, carefully selected examples of these findings comparing each stock for
two different data handling procedures under CTS (4.ii.a_5.i versus 4.ii.b_5.i)and TTS
(raw versus 4.ii.b_5.i) are reported in Figure 4.2.
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Based on Appendix E and Figure 4.2, we learn the following:

e The existence of MMN is verified statistically (i.e. there is a significant decrease
in the rejection percentages as we increase the "high frequency" leg of each pair)
under both CTS and TTS for all stocks, regardless of the liquidity of the stock
or the data handling method.

o Rejection rate graphs reveal that the MMN starts to accentuate as the
sampling frequency converges to 10-15 transactions under TTS, and 250-300
seconds under CTS. These findings are in conformity with those supplied by
the VSP analysis. The MMN is felt strongly once we cross over the sampling
interval thresholds of 15 transactions or 5 minutes under TTS and CTS,
respectively. For higher frequencies, rejection rates turn out to be quite high,
and especially after 150 seconds under CTS and 10 transactions under TTS,
rejection rates explode.

e The liquidity and the data handling methods matter such that for all stocks in our
sample we observe the following:

o The lower the liquidity, the lower the rejection percentage at all frequency-
pairs under TTS (raw or clean and aggregated).

o Cleaning and aggregating the data do not amend the downward trend in
rejection percentages under TTS, but make it steeper.

o A visual inspection of the test statistic Zr, , for several frequency pairs,
either under TTS or CTS, reveals that majority of the time the test statistic is
positive and outside the 5% standard normal confidence interval, meaning
that there is a positive correlation between the noise and efficient price, which
is again in conformity with the exploding VSPs.

4.8.2. Formal Tests of the Constant Variance of MMN Increments under
Different Sampling Schemes and Data Handling Procedures

In addition to developing a formal test to find out whether the MMN has a statistically
significant effect over the RV estimator, Awartani et al. [16] also suggest testing the
popular assumption stating that the MMN has constant variance independent of time.
Their effort in revealing whether the MMN has constant variance over time is
particularly important since, as explained in Chapter 2, methods proposed in the
literature for handling the MMN effects while estimating the IV of the true price
depend on the validity of this assumption. Hence, before using any of the methods to
mitigate the MMN effects on the IV estimators, one has to make sure that this
assumption is backed by empirical evidence. For this purpose, as we delve into detail
in Chapter 3, Section 3.4, Awartani et al. [16] suggest testing the null hypothesis in
Equation (3.45) which states that that the variance of the MMN increments, defined as
2 times the second moment of the increments while the mean of MMN is taken as zero,
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observed over different grids H and G under CTS are equal whereas the alternative
hypothesis given in Equation (3.46) claims that such variances over different grids are
not equal.

The null hypothesis in (3.35) employs the analogy that if the MMN increments have
constant variance through time, then the variance of MMN increments over different
grids under CTS should also be equal to each other. Therefore, the alternative
hypothesis in Equation (3.36) is consistent with the presence of autocorrelation in the
MMN.

As explained in Chapter 3, Section 3.4, for the purpose of testing whether MMN
increments have constant variance independent of the sampling frequency, Awartani
et al. [16] develop a test statistic Vr ,, ,, that compares RVs calculated at 3 different
sampling frequencies (on 3 different grids), one low, one high and one very low
compared to each other and requires the Realized Quarticity (RQ) to be calculated at
low frequency. Vr ,, , is defined as follows:

(RVrn—RVry)  (RVrn—RVy)
2(n—1) 2(h—1)

RQr, RVrp \°
j3 (2(h i () )

where n, h and | stand for the number of observations for the whole estimation period,
T (for instance, number of observations per day), at high frequency, low frequency and
very low frequency, respectively and as before

Vennii=Vh—1

n-—2
2
RVp, = Z(th -Y,)
i=0
h—2
2
RVp, = Z(th Y;,)
i=0
h-2
— 4
RQTh ==Vh-1 Z(Yt1+1 Ytl)
i=0
n
n>h>l, E—>00,7—>ooasn,h,l—>oo
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The very low frequency that is employed in the test statistic Vr, ,, represents a
frequency at which we can safely ignore the MMN according to the literature. On this
issue, Awartani et al. [16] argue that | might be chosen as a 20-minute sampling
interval under CTS following the sparse sampling literature and the 5-minute threshold
promoted by Andersen et al. [11].

In addition, Awartani et al. [16] show that if

e the true price is generated as in Equation (3.1),
T 4

o [, 0dds <o,

e the MMN satisfies Assumption 3.1,

then under the null hypothesis in (3.35), as n, h,l - o, %—> oo,%—> o, Vrnnt

d
- N(0,1).

We suggest and show in Chapter 3, Section 3.4 that the same statistic Vr,, ,; can be
used to test the constant variance of MMN increments under TTS due to the fact that
the three pillars that are used by Awartani et al. [16] for building their test statistic are
developed by Zhang et al. [111] under TTS in the first place. Therefore, since the
alternative hypothesis is in harmony with the presence of autocorrelation in the MMN,
following Awartani et al. [16] we argue in Chapter 3, Section 3.4 that the rejection of
the null hypothesis in Equation (3.35) under CTS and/or TTS would provide the
empirical evidence that we need to reject the assumption of an i.i.d MMN with a
constant variance.

In this context, we calculate the V7 ,, , ; statistic testing the null hypothesis in Equation
(3.35) by comparing RVs that are calculated over different frequency triples, where
various frequency pairs are combined with a sampling interval of 20 minutes, under
sampling schemes CTS and TTS for raw and cleaned and aggregated data series.
Frequency triples are (3,10,30), (3,15,30), (3,20,30), (6,15,30) (6,20,30) and
(10,20,30) transactions under TTS, (60,150,1200), (60,600,1200), (150,300,1200),
(150,600,1200) and (300,600,1200) seconds under CTS. Regarding data handling
methods, we consider the test results for 10 different combinations of cleaning
methods 4.ii.a and 4.ii.b with aggregation methods 5 i, 5_ii, 5 iii, 5 _ivand 5_v once
under CTS and once under TTS. For each day in the sample period of 124 days and
each frequency triple, we run the aforementioned test at a 5% significance level.

The results for each stock, for each frequency triple, under each data handling method
and sampling scheme are given in the respective sections of Appendix E. To
summarize, carefully selected examples of these findings comparing each stock for
two different data handling procedures under CTS (4.ii.a_5.i versus 4.ii.b_5.i)and TTS
(raw versus 4.ii.b_5.i) are reported in Figure 4.3.
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Based on Appendix E and Figure 4.3, we learn the following:

e Under CTS, assuming an i.i.d MMN with a constant variance may be appropriate
for frequencies lower than 1 min but under TTS, this assumption fails especially
for liquid stocks. The finding regarding CTS is in line with results provided by
Awartani et al. [16] and Pigorsch et al. [95].

o Awartani et al. [16] conclude that for ultra-high frequencies, the assumption
of an i.i.d noise with a constant variance is not verified by their empirical
findings. Likewise, Pigorsch et al. [95] find that the constant variance
assumption is rejected only at very high frequencies.

e The liquidity and the sampling schemes are discovered to be very influential on
the rejection of the null hypothesis that the MMN increments have a constant
variance independent of sampling frequency.

o For liquid stocks, the assumption of an i.i.d MMN with a constant variance
may be appropriate under CTS but under raw-TTS, for more than 50% of the
days, the null of the MMN increments having constant variance is rejected
for triples with very high frequencies combined with very low. This may be
evidence of the i.i.d assumption not holding at frequencies lower than 15
transactions. As liquidity diminishes, rejection percentages also shrink to a
point that, for the least liquid stocks ARCLK and MIGRS, the null of the
MMN increments having constant variance is only rejected for a maximum
of 13% of the days for any frequency triples. This finding implies that the
assumption of an i.i.d MMN having constant variance across sampling
frequencies may be more appropriate for MIGRS and ARCLK instead of the
other more liquid stocks.

e Cleaning algorithms have a suppressive effect on rejection percentages
particularly under TTS. For all stocks in our sample, cleaning and aggregating
the data shift the rejection rate graphs downwards under TTS.

e The liquidity of the stocks and the data handling methods do not present a
particular relationship under CTS: moving across the grid of cleaning and
aggregation algorithm combinations does not change the rejection results
substantially for any of the stocks in our sample.
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CHAPTER 5

CONCLUSION

It is first pointed out by Andersen and Bollerslev [8] that the squared daily returns
provide a poor approximation of the actual daily volatility. They suggest that more
accurate estimates could be obtained by summing the squared intraday returns.
Following this valuable contribution to the finance literature, Andersen et al. [12],
Andersen et al. [10], and Barndorff-Nielsen and Shephard [24] are among the pioneers
who studied ‘‘realized’’ volatility (RV) and its relevance in volatility measurement.
RV exploits the information in high-frequency returns and estimates volatility by
summing the squares of intraday returns sampled at very short intervals [51].

Barndorff-Nielsen and Shephard [24] prove the consistency of the RV and show that
its asymptotic distribution is normal. In this context, if asset prices follow a Brownian
semimartingale, return volatility can be estimated consistently and effortlessly by
calculating the RV at the highest possible frequency. However, sampling returns as
many times as possible without any further consideration on the characteristics of the
high frequency data set may not be the right approach. UHFD should be analyzed first
to determine whether there are any effects on the observed asset prices that become
more significant as we increase the sampling frequency, whether the Brownian
semimartingale representation of asset prices is appropriate, whether there are different
ways of sampling returns, and, whether non-trading hours limit the accuracy of
volatility estimation. All of these issues constitute the dimensions of volatility
estimation using UHFD.

Among the aforementioned concerns of a researcher/practitioner who aims to measure
return volatility using UHFD, one issue stands out: the observed prices are
contaminated with a noise component which represents the aggregate effect of all
market microstructure frictions. If there is such a contamination, then the quadratic
variation of the observed prices calculated over the highest frequency possible does
not simply converge to the integrated variance of the true prices because an asymptotic
bias appears due to the existence of MMN [10], [24], [25]. In order to examine how
RV deviates from the 1V as we increase the sampling frequency and to come up with
methods to handle these deviations (mitigation of the MMN effects on RV measures),
we first have to make some assumptions regarding the statistical features of the MMN.
The most popular assumption in the RV literature states that MMN is a sequence of
i.i.d random variables with zero mean, constant variance and finite fourth moment,
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while MMN and true prices are orthogonal to each other for each t € [0,T].
Therefore, although it is of great importance to mitigate the effect of the MMN in the
estimation of the true price volatility using high frequency data, success of the
available methods in literature to suppress the MMN effects must be considered only
if empirical evidence from developed or developing markets support the assumptions
made by these methods regarding MMN.

We realize that empirical evidence including visual and formal tests on MMN structure
should be collected taking into account the dimensions of volatility estimation using
high frequency data as these dimensions might result in impairment to validity of
methods adopted to handle the MMN in estimation of the IV in the first place.
However, none of the available literature on the IV estimation using UHFD takes into
account all of these dimensions simultaneously. Besides, the literature does not touch
the issue of how to examine existence and statistical features of the MMN under
sampling schemes other than CTS formally. Meanwhile, the published literature on
the IV estimation using UHFD relies on data coming from stock markets of developed
economies such as US or Japan and the literature lacks research on volatility estimation
and MMN structure with empirical evidence from developing markets.

Additionally, we recognize that the generally accepted definition of an asset's liquidity
-the speed and ease of the sale of a stock at a price not too different from the price at
which the seller would be able to get if s/he opted to wait longer- may not be
appropriate to use for analyzing the MMN embedded in the observed stock prices,
especially if such analyses are carried out under CTS. This observation is underlined
particularly when there are long periods between two consecutive transactions and the
interpolation method selected causes an artificially introduced additional
autocorrelation in returns. Therefore, there is room in the literature about offering
alternative methods for measuring the liquidity of assets by taking into account how
evenly tick by tick data are distributed in time.

In this framework, In Chapter 2, we elaborate on

1.  thecharacteristics of UHFD sets and the methods to detect and clean errors, ways
to aggregate simultaneous observations, approaches on interpolating the data for
constructing artificial series if returns are to be calculated based on a fixed
frequency over time,

2. observed prices being contaminated by a MMN,

3. how the semimartingale representation of the true/efficient/equilibrium asset
prices necessitates implicit decisions regarding the structure of the MMN and
whether the asset prices should be taken as continuous or discontinuous,

4.  popular assumptions regarding the statistical features of the MMN,

5. the sampling schemes and their relevance to RV estimation, and,

6.  how the presence of non-trading hours is reflected in daily RV estimations by
various researchers and the types of problems that accompany such approaches.
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After providing comparative discussions on the available literature regarding the
dimensions of volatility estimation using UHFD in Chapter 2, we show in Chapter 3
that formal tests developed under CTS by Awartani et al. [16] can be used under TTS
as well for determining whether there is any statistically significant asymptotic bias in
the RV estimator due to the existence of MMN and whether the MMN increments have
constant variance independent of the sampling frequency. In our discussions, we
benefit from the fact that if the true price of an asset fulfills a Brownian semimartingale
specification then

¢ the RV calculated over the highest data frequency should give the best possible
estimate for the IV both under CTS and TTS provided that there is no MMN
contamination,

e when observed prices are not contaminated by a MMN, the estimation error of
RV only stems from the discretization error that appears as a result of the number
of observations per trading day being limited in practice, regardless of the
sampling scheme,

e in the presence of an additive MMN and if the MMN is a sequence of i.i.d
random variables with a constant mean and a finite fourth moment, its
increments having constant variance, while MMN and true price are
independent, then the conditional asymptotic bias of RV calculated using
observed prices explodes to infinity as the number of observations increases,

o the test statistic developed by Awartani et al. [16] to examine the existence of
MMN under CTS also can be employed for the same task under TTS since the
two pillars supporting the Awartani et al. [16] test statistic are shown to hold
under TTS in [111] and [91],

o the test statistic developed by Awartani et al. [16] to find out if the MMN
increments possess a constant variance orthogonal to sampling frequency can
also be used for the same purpose under TTS since the three pillars supporting
the Awartani et al. [16] test statistic are developed under TTS in the first place.

In the next step, in Chapter 4, we gather evidence from Borsa Istanbul National Equity
Market regarding the validity of the most popular assumptions on the market
microstructure noise, i.e., whether the aggregate effect of deviations from perfect
capital markets lead to i.i.d MMN or whether the unobservable true prices and MMN
are independent, under combinations of CTS or TTS with data handling methods and
if liquidity is important in terms of the assumed MMN structure. For these analyses,
we use tick by tick transaction data for 6 stocks listed on Borsa Istanbul National
Equity Market for the sample period of 01.07.2012-31.12.2012, (a total of 124 trading
days). The data are retrieved directly from Borsa Istanbul. The 6 stocks are selected
with the purpose of having an acceptable level of diversification in the sample.

As explained earlier, if the previous tick method is used to construct return series under
CTS then there is a risk of introducing artificial serial correlation into the returns for
inactively traded stocks. In order to avoid this problem, in Chapter 4 we propose a new
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approach for classifying stocks with respect to their liquidity in the high frequency
data setting. Our approach defines the liquidity as the number of all time stamps (under
calendar time) having at least one transaction entry. In other words, during the sample
period, if the number of sessions with no transactions during a given time period, such
as 10 minutes, for a stock exceeds the same number for another stock, then the first
stock is characterized as being less liquid. Coherent with our definition, we examine
the raw data to find the number of continuous auction sessions in which the maximum
duration between two consecutive transactions exceeds a set of arbitrarily selected
thresholds. Based on this definition, we categorize three stocks in our sample set as
more liquid, one stock as moderately liquid, and two stocks as illiquid. This
categorization is relative and specific to the existing sample set in the sense that
inclusion of additional stocks with different trading activities has the potential of
inducing a different categorization.

Before any return calculations under calendar or transaction time sampling are carried
out, we apply data handling methods as combinations of cleaning and aggregation
algorithms. With these methods, we address the possibility that the UHFD we use in
our analyses may include erroneous entries due to the recording algorithms of the stock
exchange and there may be transactions that are attached to a single time stamp due to
the asynchronous nature of trading. After covering all the available literature on data
handling methods, we design a data cleaning methodology in four steps, where the first
three steps aim to detect obvious errors such as zero prices or volumes, and step four,
with nine options regarding detection, finds and removes outliers. By considering the
number of deleted entries under each option of step 4 and taking into account the
overscrubbing and underscrubbing risks, we conclude that only two cleaning methods
should be included in the analysis of testing existence and statistical features of MMN
under different data handling and sampling schemes. These two methods delete entries
for which the price deviates by more than a threshold from an average of daily or
arbitrarily selected neighborhood prices. After cleaning, we apply five different
aggregation rules, resulting in a total of ten different data handling method
combinations.

Now that all obvious errors, outliers and simultaneous ticks are cleaned and/or
aggregated, we explore whether there are any changes in the common characteristics
of UHFD due to the application of these cleaning and aggregation procedures since we
want to make certain that our data handling procedures do not overscrub the UHFD
set and distort its original traits such as discreteness, irregular temporal spacing and
diurnal patterns. Regarding the discreteness of prices, we observe that it holds under
CTS and TTS for all data handling methods and stocks in our sample because as long
as there are price ticks, especially when the ticks are large in size, discreteness seems
to be a natural occurrence. On irregular temporal spacing, since the errors or
transactions recorded at the same second are not the cause of irregular temporal
spacing, this characteristic is found to hold for all data handling methods and stocks in
our sample as well. In order to check the diurnal patterns in the sample stocks, we
calculate average transaction volumes, absolute percentage returns, average trade
intensities and average absolute returns over 10-minute intervals for each stock 11
times, i.e., one time for raw data and 10 times for cleaned and aggregated data. Results
suggest that, under CTS, all stocks in our sample exhibit significant diurnal patterns in
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returns, trading intensity and volume, and these patterns look exactly the same
regardless of the various combinations of cleaning and aggregation methods applied.

In order to calculate returns and RV series under CTS, we prepare 11 different (one
uncleaned, 10 cleaned and aggregated) artificial transaction time series for each stock
in our sample. These series are formed by applying the previous tick method for
continuous auction sessions and summarizing opening and closing session information
as entries at 09:50:00, 14:20:00 and 17:30:00 if there are no entries in the original data
for these time stamps. The resulting artificial time series has 9601 entries for the first
(morning) sessions and 11401 entries for the second (afternoon) sessions in each
trading day. Hence, the total number of entries under CTS in a trading day is 21002.

For calculating returns and RV series under TTS, since sampling prices under TTS
does not require the artificial construction of time series, after the data sets are cleaned
of errors and all simultaneous entries are successfully aggregated, we produce 11
different (1 uncleaned, 10 cleaned and aggregated) transaction time series for each
stock in our sample. In accordance with our discussions on calculating returns and RVs
when there are lunch breaks during the trading day, we sample prices at the appropriate
frequencies and calculate the RV over trading hours by adding the RV from session 1
and RV from session 2. Following arguments in Chapter 2, Section 2.6, we do not
make any adjustments for the non-trading hours since the existence of diurnal patterns
in trading intensity and returns imply that volatility accumulated during non-trading
hours is reflected in these patterns, regardless of sampling scheme.

The literature provides abundant evidence that points to the existence of first order
autocorrelation and volatility clustering in intraday returns. Accordingly, checking to
see whether the data handling procedures and/or sampling schemes alter the return
structure becomes vital before continuing with the analyses on MMN significance and
structure. By comparing autocorrelation and partial autocorrelation functions of 60-
second and/or 600-second absolute returns and log returns under CTS (clean and
aggregated and interpolated) as well as absolute returns, log returns and durations in
seconds from one transaction to the next under TTS (raw versus clean and aggregated)
for each stock in our sample for December 2012, we observe that for stocks in our
sample

o volatility clustering is verified,

e in line with the findings of Griffin and Oomen [55], return dynamics in
transaction time are different from those in calendar time,

e any combination of cleaning and aggregation methods (compared to other
combinations) does not cause any major change in total and partial correlation
structures once we move under a sampling scheme, either TTS or CTS,

o data handling under TTS yields different PACF structures in absolute and/or log
returns compared to results produced with raw data under TTS.
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In addition to assessing the effects (if any) of data handling and/or sampling schemes
on return dynamics in the form of temporal dependence, we also inquire whether the
sampling schemes and/or data handling procedures have a significant impact on RV
dynamics. For each sample stocks, each RV series under each sampling scheme, for
each frequency and for each cleaning and aggregation method combination, we
calculate preliminary statistics and conduct ACF and, PACF analyses and unit root
tests. Results show that

¢ liquidity matters in terms of RV normality such that the sampling scheme or
cleaning and aggregation or sampling frequency or session-daily calculation do
not change the non-normality of RV series if the stock is illiquid,

o unlike results for normality, liquidity does not have an effect on the log normality
of RV series,

¢ the session-daily choice and the frequency and sampling schemes have an effect
on the log normality of RV series,

e autocorrelation decay patterns and structures of RV series are affected by the
sampling scheme, regardless of liquidity,

¢ decreasing the sampling frequency depresses the autocorrelation structure of the
RV series under CTS regardless of liquidity or session-daily calculation,

e cleaning and aggregation methods do not affect the autocorrelation decay
patterns of the RV series significantly,

¢ liquidity does not alter the stationarity of the RV series in a specific way,

o regardless of liquidity, under raw-TTS, all RV series, both the session or daily
at all frequencies are stationary at the 5% significance level. Non-stationarity
becomes a problem only under CTS for some RV series.

In the next step, in order to determine the frequency at which MMN becomes evident
as well as the direction of the bias, we compare the VSPs produced under CTS for 10
different combinations of cleaning rules and aggregation methods with the VSPs
produced under TTS for raw data and cleaned and aggregated data. In all possible
dimensions (sampling scheme, liquidity, data handling methods, and session-daily
calculation) for all stocks, we find visual proof regarding the existence of MMN and a
positive relationship between the noise increment and the true price return, under both
CTS and TTS. More specifically, sampling intervals of 300 seconds under CTS and
15 transactions under TTS appear to be the thresholds at which MMN begins to
dominate the RV of the observed prices.

Following the visual inspection via VSPs, we employ formal statistical tests of the no
noise and the noise with increment of constant variance assumptions proposed by
Awartani et al. [16]. Their approach depends on the comparison of two or more
realized volatilities computed over different frequencies under CTS where the artificial

122



construction of price series ensures that prices are regularly spaced in time. In line with
the arguments and proofs in Chapter 3 that the same tests can be used under TTS where
prices are scattered irregularly in time, we examine the formal test results under CTS
and TTS for 10 different combinations of data handling methods compared with raw
data in order to confirm the existence of MMN and the constant variance of MMN
increments. Test results show that

e MMN exhibits statistically significant existence under both CTS and TTS for all
stocks regardless of the data handling methods and liquidity such that MMN
starts to accentuate as the sampling interval converges to 10-15 transactions
under TTS and 250-300 seconds under CTS (in conformity with the results from
V/SPs)

¢ liquidity and data handling methods matter under TTS such that for all stocks in
our sample the lower the liquidity, the lower the rejection percentage at all
frequency-pairs under TTS (raw or clean and aggregated) and data handling does
not change the downward trend in the rejection percentages under TTS, but
makes it steeper,

o there is evidence of positive correlation between noise and efficient price, which
Is again in conformity with exploding VSPs,

¢ liquidity and sampling schemes are very influential on the rejection of the null
hypothesis that the MMN increments have constant variance that is independent
of sampling frequency; in particular, under CTS, assuming an i.i.d MMN with
constant variance is appropriate for frequencies lower than 1 min but under TTS,
this assumption fails especially for liquid stocks,

e data handling has a suppressive effect on the rejection percentages of the null
hypothesis that the MMN increments have constant variance that is independent
of sampling frequency particularly under TTS while it does not exhibit a
particular effect under CTS.

All in all, in this Thesis we

¢ discuss many dimensions/aspects of volatility estimation,

e consider how data handling methods in the form of cleaning and aggregation
affect the characteristics of UHFD and whether the widely accepted outlier
handling methods end up overscrubbing or underscrubbing the data,

e examine what happens to return and RV series dynamics under varying
combinations of sampling schemes and data handling methods while controlling

for liquidity of the stock,

e examine visual and statistical evidence regarding the existence and/or statistical
features of MMN under varying combinations of sampling schemes and data
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handling methods and whether our findings on the MMN structure are robust
with respect to the liquidity of the stocks

simultaneously. Our efforts justify our hesitance regarding deriving conclusions on the
significance and structure of MMN using empirical evidence without considering as
many dimensions of volatility estimation using UHFD as possible because we show
that liquidity, sampling scheme and data handling methods have the potential to affect
the return and RV dynamics. If these dimensions are not taken into account, then
findings regarding the validity of popular assumptions about the statistical features of
MMN have the potential of telling different tales in different research settings. Thus,
we hope that our findings will serve as additional bricks in the wall of high frequency
finance research and future researchers will benefit from the theoretical
discussions/proofs made and empirical evidence gathered in this Thesis.
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APPENDIX A

PROOF OF PROPOSITION 3.1

The proof depends on showing that J, defined as (Xt — Xti)stt converges to 0 in
probability at a rate of 1/(h — 1) where [X, X, X, X]}'=47, +% d[Z,Z];. To do so,

we first focus on quadratic variation of J; to benefit from the Burkholder-Davis-Gundy
inequality which connotes that there are universal constants c,, and C, so that for all
generic continuous martingales N,

cllIN N1 < (| sup INI|| - < G IlIN, NI 112/2,
0<t<T p
where |[N,]| = (E[IN|P])'/?, and
pp—1) 1
CZ =qP y -=1
b 2 p * q

In this effort, the quadratic variation of J, is as follows:

3,30 = ) (X = Xe) dIX X1, + (X, = X,) X, X1,
tiy1st
tiv1 t
_ Z f (Xs — X;,)°dIX, X1, +f (X, — X,.) d[X, X]s.
ty

tiggst U

Moreover, application of 1to’s formula to f(X,) = (X, —th.)s with X, = 0, under
Assumption 3.3, yields
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(X, - X.)° = F(Xo) + fts(xs —x,) dX, + ftzs(xs — X)) d[X, XI5,
0 0

where on a grid 7, [X; 8]% denotes (X, — X,,)" and

e =%)" = D (K = Xe) 4 (K= X))

tiyqst

Hence,

1 8 [t
19,91 = 55 181 = o [ (6 = %) e (A1)
0

By Theorem 20 in Chapter 2, p.56 of [97], because under Assumptions 3.3 and 3.4, X;

is locally square integrable local martingale and (XS — th.)7 is an adapted process with
cadlag paths, the second term on the RHS of the Equation (A.1) is a locally square
integrable local martingale.

Additionally, for any stopping time = < T, [X; 8] = ¥;(Xcar,,, — XWL.)S.
To show that supremum of | J,| converge to O in probability at an order of (h — 1)71,

i.e., P|h sup |J:| > 5] = 0, for any 6 > 0 we need to look at [J, J]; and prove that
0<t<T

1/2

< GlIlT, Izl -

sup |7l

0<t<T P

Let’s define 7, as 7, :=inf{t € [0,T]: (h — 1)2 X;(t;x1 At — t; A)* < ]} for any
@ > 0. Then,

Pl —1) sup IJt|>6]SlP>

0<t<T

(h—1) sup |Ji| > 8|+ Pz, # T].

Oststp

Recall that Chebyshev’s inequality requires that for any integrable random variable A
and positive r,
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E[lAI"]

PAl 2 k] < —

For the proof, we take r = 2 and write

2
1
P|(h—1) sup |J:| > 6] SﬁIE ((h—l) sup IJt|> + P[t, # T].

0<t<T 0st<ty

By definition,

sup |Jel

Oststp

(el )

Now, we apply the last part of Burkholder-Davis-Gundy inequality

2 1 2
( ) = (calis.an, )
2

2
> [(ﬂlp I&I) < C3E[[J,J]s,]
st=stp

=P [(h —1) sup |J,| > 6] < %(h — 1)2CZE[[d, Iy, | + Plry # T1.

0<t<T

sup |Jel

0<st<tp

(A2)

At this stage, let’s examine the term E[[J, J].]. Since o, 1 B;, (XT —th.) 1 dX,,
E[dB,] , the true price X; is a local martingale from Assumption 3.3, and by Theorem
2.13 in Chapter 2, p.129 of [91], which explains that it is possible to write difference
of a martingale at different times in terms of difference of quadratic variation of the
same martingale at those times,

1 8 1 7
[19, 91 = 7 EILX; 811 — 2 B [ (X, — X,,) dX]
1 8 1 77
= ?E[[x; 8171 - %E :(XT - X)) JEldx:]
= ?E[[X; 8]13'{] - %E :(Xr - Xti) : ]E[O-‘L'dB‘L']
= 55 ELX; 8] — o5 B | (X: = X,) | Eloc]E[dB]
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1 (A.3)
_ Q1K
1 8
) Y,
[
1 4
= %]E Z([X’X]T/\tHl - [X’X]T/\ti) !
[
When we set c, as 3/1/28, Burkholder-Davis-Gundy inequality yields
1
8| 1 4 8
% ]E Z([X)X]T/\ti+1 - [X)X]T/\ti)
: 1
s 1 4 8
< %68 E z([X’X]TAti+1 - [X’X]TAti) |
i
Taking the 8™ power of both sides gives
1 4
B[ (X Xeng, = X XTene)
; (A.4)

<1C8IE
~28°8

4
Z([X’X]T/\ti+1 - [X’X]‘L'/\ti) ]
i
By the linearity of expectation operator,

E

> (X Xlepe,,, — X, X]mi)“] = > B Xenr, = X XTene)"

By the definition of quadratic variation and Assumption 3.4,

TALj41

4
4
[E([X!X]T/\ti+1 - [X'X]T/\ti) =E |:<f 0-52st>
TAL;

< E[a®(t Atjy — T AL,
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Hence, from Equation (A.3) and Burkholder-Davis-Gundy inequality,

E < ! CEE
[[J,J]T]_ﬁ 8

4
Z([X'X]T/\tHl - [X;X]‘[/\ti) ]
1 i
4
<—C§ Z]E( (X, X]enty,, — [X, X T/\t-)
28
_2868ZEQ(T/\t1+1 T/\t)]

- %csas Z E[(T Atips — T A)*]

L
1
= %CSG,S]E [Z(T ANtigq1 —TA ti)4]'
L

Since we assumed that 7, satisfies the condition inf{t € [0,T]: (h — 1)2X;(t;iz1 At —
t;iAnt)* <@} for any ¢ >0, therefore Y;(tAtjy; —TAt)* < (h—1)"20,
Inequality (A.2) is restated as below:

Pl(h—1) sup |7, > 6] — (h— 1)2C2E[[3, 1., ] + Py # T]

0<t<T

1
6_(h 1)2¢? %aSCSS(h -1 2%2¢p + P, # T]

1

It is time we consider P[t,, # T] as h — oo. If we assume that
P
(h=17 ) (tia At =t AD* < (b= D?AG0 ) (tig = 1)° =0,
i i
then as Mykland and Zhang [91] put it, P[z;, # T] — 0 as h — co. Accordingly,

P [ sup |J¢| > 5] ! asiCZZCSS(p.
0<t<T N 152

28

[P[sup IJt|>6]—>0ash—>00.

0<t<T

139



We have proved that supremum of |J;| converge to O in probability at an order of
(h —1)~L. Finally from Equation (3.29) and because supremum of absolute value of

a stochastic process going to 0 in probability implies that the process itself is also
convergent in probability, we have

sup |[2, 2], — /3 [X. X, X, X]{""| = 0,((h —1)71) as h > oo.

0<t<T
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APPENDIX B

PROOF OF THEOREM 3.4

Step 1: Showing that [X, e]g = 0,(1) following Lemma A.2 in [111]

On a full grid G with |G] = n

-2

> (a%:)(8er) = Z(Axt)(etm— )

3

[Xe

S e~
NO

AXt )Et1+1 z(AXt )Etl

= Xt0€t1 AXtoeto + AXi €, —AXp €0 +

+AX,, e, —AX, € (B.1)
= €, (AX;, — AX)) + €, (8X,, — AX,,)

+ee, (AX, — AX,) + -

ter, , (8K, , — DXe, ) — AXp €q, + AXe, €0,

n-2

= Z(Axti—1 o AXfi)Efi o Aleoe-fo + Aan—z €tn_s
i=1
=a+b-—c,

O

where
AXy, = (Xti+1 _Xfi)'

Aeti = (Eti+1 - Eti)’

n-2
a= Z(Axti—1 - AXti)Eti'
i=1
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b= Ath_ZEtn_l,

c = AX; €,

Now, under Assumptions 3.1 and 3.2, we calculate Var[[X, €]%|X] = E [([X, e]§)2| X]

where E[[X, €]7]X] = 0 from the true price and the MMN being orthogonal to each
other, i.e., on the grid G, X, L €., AX,, L Ae,, for all t; € G. Moreover, E[e, |X] =
]E[Gt] = 0.

E [([X, 6]?)2|X] = E[a? + b? + ¢? — 2ac — 2bc + 2ab|X], (B.2)

E[b2|X] = E [(Ath_zetn_1)2|X]

E[(ax., )| X] E[(er,.)| ¥]
E[(aX,,.,)°| X| El(e)?)

E[c?|X] = E [(AX,e.,)’|X]

E[(a%:,)| X] E[(e.,)"| X]
E[(ax,,)°| x| El(en?,

2

[ n-2
[a?|X] =E (Z (AX,, . - AXti)eti> X
i=1
-631 (AXto - AXt1)2 +ot Efzn—z (Ath—3 - Ath—z)
+2€,, (AX,, — DX, e, (BX,, — AX,,)
+2e., (X, — AX,, e, (AX,, — AX,,)

2

=E +2€t1 (AXto - AXt1)Etn—2 (Ath—3 h Ath_z) X
+26t2 (Ath - AXt2)6t3 (Ath - AXt3)

+2 €t, (Axt1 - Ath ) €tn2 (Axtn—s - Ath—z)

| +2€,_,(AXe,_, — DXy, )er, ,(AX;, , — AX;, )
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ef, (AX;, — AXt1)2 +o el (A, — Ath—z)z

E n-3 n-2
e Zi:l zj=z (Axti‘l B AXti)Eti (Ath—l - Aij) €t;

x|, i#j.

Recall that from i.i.d structure of MMN, if i # j, ;, L €t Hence,

1X
j

n-3 n-—-2
E [2 zi:l ijz (AXe,_, — AXe)er, (AX,,_, — AX,) €.
n-3 n—2
- 221 1 Z E[(aX,,_, - AX,)e, (AX,,_, — AX,) e | X]
n-3
= Z Z E[e. |X|E[AX,,_, — AX,, |X]]E[AXt L —AX, |X] [et | ]
i=1

and
2 2 2 2 2
E[a?X] = E|eZ(8X,, — AX,,) + -+ €2, (AX,,_, — AX, )| x|
Incorporating E[a?|X], E[b?|X] and E[c?|X] into Equation (B.2) gives rise to

E[a? + b? + ¢? — 2ac — 2bc + 2ab|X]

rm—2

=k Z Etzi(AXti—l - AXti)z

+ E :(;th 2)2|X] [(e)?]
+ E (AXto) | ] [(€:)?] — 2E[ac + bc — ab|X].

X

(B.3)

To calculate the last term on the RHS of Equation (B.3), we focus on E[ac|X],
E[ab|X], and E[bc|X].

Elac|X] = E X

n—2
<Z €t; (AXti—1 - AXti)> AXto €to

i=1

= IIE:[EiﬁetoAxto (Axto - AXt1)|X]
+ ]E[etzetoAXto (Ath - AXt0)|X] + ce
+ Eler,,_,€,0Keo (AXe,,_, — DXy, ) |X],

(B.4)
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where as long as i # j, €, L €, and Elec, €, AX;, (AX,, — AX,, )|X] = 0, so each

term on the RHS of Equation (B.4) equals to 0. By this token, E[ac|X] =0
[ab|X] = 0, and E[bc|X] = 0. Therefore, Equation (B.2) becomes

E [([X, e]§)2| X]
Z etzi(AXti—l - AXfi)z

+E [(Z)lfto)2| X| El(e)?]

(8%, )" + (8%, )" + ) (A%, - 8X,)

i=1
(AXto ) : + (Ath—z ) ’ I

:
I
— [E[(E)Z] E n-2 ) n—2 , -2 x|
+ Z(Axti_l) + Z(AXti) -2 z AX,,  AX,, J
L =1 i=1 i=1

r n-—2 n-2
— E[(e)%] E|2 Z(Axti)2 —2 Z AX, AX,|X
L =0 i=1

x|+ E[(ax,,_,)°| x| El(e)?)

=E

X (B.5)

= E[(e)*] E

where

) n-2 ) n-2 )
(8%, )"+ ) (8% )" = ) (a%.)’,
i=1 i=0

X n-2 X n-2 X
(8%,)" + D (a%.)" = > (ax,)"
i=1 i=0

Since (a — B) < |a| + |B]| and for any duo of real numbers @ and S, we can rewrite
Equation (B.5) as an inequality,

(B.6)

E[(x€9) | x] < 2E[(&)?] [

sl = [Z (ax,)

=0

n-2
Z AX,,  AX, || X
i=1
-2

_AX,,

)
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By using the inequality |};; a; £;| < Y.;|a;B;| and the interchangeability of expectation
and sigma operators, Inequality (B.6) is restated as

E[(x.€1)’| x| < 2E[©)?] (

Z(Axt
nz: (ax ti)

i=0

+2E[(e)?] ) E|[|aX,,_,||ax, || ].

metl Jlaxy || x

X (B.7)

2E[(e)?]

S

,~
1l
=

From the Cauchy-Schwarz Inequality, which says that for two random variables § and

9, |[E[$Q]I* < E[S?]E[Q?],
E[Ja%., , ||ax, || x] < EZ [(ax..)"|x] E? [(ax,.,)"| x]

and Inequality (B.7) becomes

E [([X, e]§)2| X]
E[()?] ( Z(Axt

+ z IE% |(ax.,_,)"| x| E2 [(AXti)2|X]).

i=

By application of the version of Cauchy-Schwarz Inequality laid out in Inequality
(310) and [X,X]7 >0, (AX,,)" >0, (AX,,)" >0, E[Sr23(ax,) | x| =1
we get
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n-2

Z E2 |(ax,._)°| x| E2 |(ax.)"| x|

(Z (ax,) |X]>(z (ax,.) |X])
J
< JIX,

2
Z(Axt -, )X
Then, the final version of Inequality (B.7) is as follows:

IA

Z(AXt (Axt0

(1,41 — | (ax,,)°] 4])

(AXt L)X

E[(Lx, €19)’] X] < 4E[©)?]1x, X1

From Assumption 3.1, E[(¢)?] is constant and from the stochastic boundedness of
[X, X]r, mentioned in Section 3.2 before,

2
E [([X, €1%) |X] = 0, (D),
We now apply the Markov Inequality to [X, e]g with

P[|[X, el9|x| = v] < y—lzlE (1%, €19)°| %], v ¥ € 0, 00). (B.8)

Because ]E[([X, e]§)2|X] is stochastically bounded, the RHS of Inequality (B.8)
equals to a real number p. As it is possible to find a y for any p, the definition of
stochastic boundedness is satisfied and [X, e]g = 0, (D).

. . . T 1 g
Step 2: Showing asymptotical convergence and distribution of ﬁ([e, €]} —

E[le, ][ ])
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e, €17 — E[[€, €]5]|X = [e, €] — 2(n — 1)E[€?]

n-2

(A, ) —2(n—1DE[€?]

i=0
n-—2

z etm — 26, €t eé) —2(n - 1DE[€?]

t0+ +Etn1+6tn2

n
—2( €t,0, €t ) 2(n — 1E[€?]
= 2€f, + -+ 2ef _ + et tet

—2<Zetl+1 ) 2(n — 1)E[¢?]

i=0

n-2 n—2 (Bg)
= z el + (e +el_)—2 (Z €t Et; )

—Z(n - 1)[E[62] =

where

5
N

2(n—1)E[e?] =2 ) E[e?] + 2E[€?].

...
1]
oy

As stated in Assumption 3.1, we take E[e*] as finite, then by the Markov’s Inequality,

1
PlIE[e?]l 2 y] < WIE[E"],VV € (0, ),
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and for any finite value on the RHS of the above inequality, we can find at least one
finite and positive y, which shows that E[e?] is stochastically bounded. Embedding
this fact into Equation (B.9) leads to

[€, e]g —2(n—1E[e?] =2 (Z €t — ]E[€2]> -2 ( Eti+16ti> +0,(1),n = 3.
=0

i=1 i

If we make the following definitions:

1 n—2
M;l) = ez — E[€?],
n—2 ‘
i=1
1 n-2
2)._
MT T n—2 6-ti+1etl’

Then, Equation (B.9) is rewritten as

e, €19 — 2(n — 1E[€?] = 2vn — 2(M§” - MP) +0,(1).

Ifn=3,
1 1
(€)) 2 2
M’ =—(ef — E[e*]) = —=(byq),
T \/T( tq ) \/T( 1,1)
by, = 6t21 — E[€?],
2 1 1
M§ ) = \/_T(Etlfto + Etzftl) = \/_I(Cl'l + C1,2),
C1,1 *= €, €t C12 *= €, €
If n =4,

1 1
My = = (ct, — Ble?) + e, = Ble?l) = —(baa + baa),

by, = 61_?1 - E[Gz]sz,z = 61_?2 — E[€?],
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1 1
2
M’I(v ) == —(6t16t0 + 6t26t1 + 6t3€t2) S r—

V2 V2

C21 "= €, €4y Cop "= €1, €p,,Cp3 *= € €,

(C2,1 +Cyp + 02,3);

M = ﬁ (€t16t0 + €€, + €€, + Et46t3) = ﬁ (C3,1 +c3,+ 33+ c3,4),

€31 *= €t €y, C32 1= €, €,,C33 '= €4 €,y C34 1= €, €.

Accordingly, as n — oo, if we organize terms in the form b,_,; and c¢,_,;4; in a
triangular way separately, we have two arrays in the following forms

bl,l
b2,1 b2,2
b3,1 b3,2 b3,3

C11C12
C21C22C23
C31C32C33C34

Then, for a specific n, M?) and M%Z) are separate sums of the row n — 2 in first and
. .. 1 .
second triangular array divided by = respectively.

Entries in each row of each triangular array are i.i.d with mean 0 and finite variance,
since for i # j,V t;,t; € G, by Assumptions 3.1 and 3.2

2 2 2 2
e, — E[e’] L €, — Ele?], €€, L €t;€t;,, €t L Xt

E[e? — E[e?]|X] = E[e*] — E[e?] = 0,
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[etieti+1|X] = ]E[eti]]E[etHl] = ]E[EZ]]E[EZ] =0,

Var[etzi — E[e?]|X] = E [(e,_?i - ]E[ez])z] - (]E [etzl. - D [(et E[e?]) ]
= E |¢f +(E[€?])? - 2¢2E[€?]| = [ ] - (Ele
= Var[e?] < oo,

Var[etieti+1|X] =E [(EtiEtHl)z] - ([E[Etieti+1])2 = E [(EtietHl)z]

= E[€;]E[eZ,,]
= (E[e*])” < oo,

In this context, application of LLN and CLT for triangular arrays (Theorem 27.2 in
Chapter 5, Section 27, p. 352 of [34]) yields

iﬁ - N(0,1),
n-2, " — &
L Ziibnai 40y V0D MT 4y,
J(n — 2)Var[e?] J(n— 2)/Var[e?

w4
= M;’ = N(0,Var[e?]) asn - oo,

K, d
Q__)N(O 1),
— (2)
N Zl 0 Cn—2,i+1 N( 1) = V(n M iN(O,l),
V(= D(E[?])? Jm—nJm
:>M§2) — N(0, (E[€?])?) asn — 00,M -1,
Jin—1)

where

n-—2
= E bn—Z,il
i=1

= Var[5 Z Var[b,_,;| = Z Var[e?] = (n — 2)Var[e?],
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8= Cn—2,i+1»
=0
n-—2 n-—2
8 1= Varlfi,] = ) Varlen o] = ) (Ele2D? = (1= D(ELE]?,
=0 =0

required that the Lindeberg’s condition is satisfied for each row in each triangular
array, i.e., whether or not for any § > 0,

n-—2

1 IE[b2 I
S% n—-2,i {lbn_z_i|253n}

i=1

x|,

and

n-2
1 2
az E [Cn—z,i+1]1{|cn_2 i+1/262n}
L2 £ :
l

1]

1l
o

convergeto 0 as n — oo,

Since i.i.d characteristic of MMN under Assumption 3.1 makes b,,_,; and c¢,_5 ;41
i.i.d as well,

n-—2 n-2
2 _ 2
z E [bn—z,iH{|bn_2‘i|263n} X ] = z E [bn-z,iﬂ{|bn_2,i|zasn}]
i=1 i=1
= E b 2alfp, , eo5al] 7+ E[DEo2n-2lny o fosn)]

_ 2
=(n-2)E [bn—2,1H{|bn_2‘1|25 (n—Z)Var[ez]}]'

n-2 n-2
2 _ 2
E [Cn—Z,i+1H{|cn_2_i+1|26ﬁn} X] = Z E [Cn—Z,i+1H{|cn_2‘i+1|262n}]
i=0 i=0
= E[cZaaljie, o] + o+ B[Rzl fesen)]
= (- DE [C%‘2'1H{|Cn—2.1|253n}]'
Then,
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. 1 n
lim = E n 2,iH{|bn—z i|>53n}]
RH] = '

n—-oo
n-2
— 2 .
= pim (n— 2)Var[€2] Z E [bn_z’l]l{lbn—zi|>5 ("—Z)Var[fz]}] (B.10)
i=1

1
— ] —_— 2
= = 2)varer] Dﬂ%ﬂ%mﬁwwmmﬂ
1
- 2
= A Varle? ]]E[b”‘z’lH{Ibn—z,1|><S <n—2>Var[621}]’

2
E [Cn—z,i+1H{|Cn—2,i+1|25’3n}]

= 711_1)1010 = 1)(IE )ZZ [ Cn—2,i+1l Icn 21|>6m}] (B.11)

1
‘;garqu D*n‘nmkmﬂﬂmz¢amAMWWﬂ

= Al_rf}o (E[ 2])2 [E[ Cn— 21]1 |cn 2,126y (n-1)(E[€?] )2}]

Next, we apply the Dominated Convergence Theorem which allows us to interchange
limit and expectation in Equations (B.10) and (B.11)

lim —Z [bn 2,10, 21|>5‘5n}] Varle [E[hm b Zlﬂ{lbn r 1|26\ 2 Varle?] }]

n—-oo

Al—fgoﬂ_zz [ Cn-zi41l{]c,_ 21+1|>553n}]

1 .
= _(IE[EZ])Z E [rlll_{lgo Cn—2,1[[{|cn_2‘1|25 (n—l)(IE[ez])Z}]'

At this moment, we return to Assumption 3.1, and recall that we take second and fourth
moment of the MMN finite, so

E[bZ_|X] = E[b2_,1] = E[(e}, — E[€?])’] = E[e£] - (E[€2])? < oo,
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[ch-21|X] = E[ci_24] = [(Etleto) ] €?])? < oo,

and
2 — 2 2
Elbi-za] = E [b"—zrlﬂ{lbn_z.l|z6\/(n—z)Var[62]}] +E [b"—z'lﬂ{lbn_z,l|<6\/(n—z)Var[eZ]}]'

2 _ 2 2
E[ci21] = E [Cn—zrlﬂ{lcn-z,ﬂ?& (n—l)(IE[GZ])Z}] +E [C”_Z'lﬂ{lcn-z,1|<6 (n—l)(lE[ezl)z}]’

8/ (n — 2)Var[e2] - 0,8,/ (n — 1)(E[€2])2 —» casn — .

The postulations E[bZ_,,] <o and E[c2_,,] <o contradict with positive
probabilities of the event that |b,_,.| =8/ (n—2)Var[e?] or |cp_p4|=
8y/(n — 1)(E[€2])?, because if there is at least one event where |b,_,;| = o or

|cn—2:| = o with positive probability, then E[b2_, ] = o or E[c2_,,] - « but
now Assumption 3.1 is broken.

Hence, Assumption 3.1 ensures that E[bZ_, ;] < o0 and E[c2_, ;]| < oo, which in turn

requires both H{lbn—z,i|25 (n_Z)Var[EZ]} and H{Icn_2,1|z6 (n—1)(ns[62])2} to converge to 0 as
n — oo, Thus, Equations (B.10) and (B.11) should equal to 0, i.e.,

il—l;go_z [bn Zlﬂ{lbn 21|>5Jn}] Var ] =0

AEEIOQ_ZZ [ Cn-2i+1 {lcn 21+1|>52n}] E[0] = 0.

It follows that, the final job to be done with regards to asymptotic distribution of
e, €]% — E[[e, €]%|X] is to find covariance of M{" and M.

o .02 ] (o~ =[] (4 — [
= E[Mn?|
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i=

[ 1 1
1 -2 n—-2 n-2
=— E [( €to€t, €0 — etoetllE[ez]> + ( ef, — E[€?] Eti+16ti>]
i=1 i=1 '

1
= ]E[(etoef1 + € €, €6, + o+ € € €, — (n— Z)EtoetllE[ez])]

) [ €7 € €, +EEE €, + ot EREL E .
+n — E el € €, + ot e e, €
|+€f,_ €t €, T €L €0 €, + ot €D €
_r : - E -etoetlIE[ez] + €, €, E[€*] + - + etn_zetn_lIE[ez]]
) Ele., |E[€ ] + Elec, |E[er, |E[€Z]
= +---+[E[eto]IE[etl]IE[eEn_l]
—(n— Z)E[eto] [etl][E
/ [Eto]E[Etl] + E[Etz]E[Etl] \
1 -+ Eleq,,_, |Ele, , |E[€ ] |
o i +IE[eto] e, |E[€2 ] + [E[etl]IE[etz] i
\ +--+ Ele, _, |Elee,_ |E[€2] +- /
+E [etO]IE[etl]]E[et 2] + -+ ]E et 1]IE etn 2
—(E[ec, |Elec, |E[€2] + - + Elee,_, |E[ec,_, |E[€?
= 0.

Thus, we have shown that [e, €]% — E[[¢, €]%]|X can be written in terms of M{" and
Mﬁz) that are independent, centered normal asymptotically with variances Var[e?] and

(E[e*])?.

Because asn — o

1 2vn=2(M? - MP) +0,(1)
\/m([E, 6]?w - IE[[e, e]g]lx) — ( TmT ) b

N 2(M§1) - M§2)) +0,(1),
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asymptotic distribution of — ( [e, €17 — E[[e, €]%]|X) is also centered normal while
its asymptotic variance is caIcuIated as follows.

Var

e, €15 — E[[€, €]9] |X)] - Var [Z(M(l) — M(Z))]

= 4Var[M(1)] + 4var| M| - 4Cov| M, M|

= 4 Var[e?] + 4(E[e?])? = 4 E[¢*] — 4(E[e*])* + 4(E[€*])?
= 4 E[e*].

1
Nl

Furthermore, we have proved in Step 1 that [X, e]?; = 0,(1), and Equation (3.6)
converts to

[Y, Y13 = [X, X19 + [€,€]3 + 0,(1) = [¢,€]% + 0,(1).
Correspondingly with E[[e, €]%|X]=2(n — 1E[€?],

[Y, Y17 — 2(n — DE[e2]|X = ([e, €]7 — 2(n — DE[e )|X +0,(1)

. ([v, Y13 — 2(n — DE[€?]|X) ([e, €]7 — 2(n — 1)E[e |X) D
Vn-1 e Vn-1 * ot

and

[v,Y19 = [X, X159 +2[X,&]% + [, €)% = [X X19 + [e, €] + 0,(1)
=[v, Y19 — [X, X1 — 2(n — DE[?] = [¢, €] — 2(n — DE[?] + 0,(1).

Then,

(Iv, Y15 - [%, X)5 — 2(n — DE[2])|x  ([e,€l% — 2(n— DE[e )|X

+ 0,(1).
= _— T p()
From above convergences, we deduce that conditional distribution of — ( € €ld
2(n— DE[e?]) is also condltlonal \/_( —
2(n — DE[e \/_( — [X,X]3 - 2(n — DE[2]), ie., condltlonal on
true price
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Y, Y19 — 2(n — DE[€?] > N(0,4(n — D)E[¢*]),
(v, Y15 = [X,X1% — 2(n — E[€?]) > N(0,4(n — DE[e*]).

Let’s define E[€Z] as [Y, Y] /2(n — 1) like it is suggested by Zhang et al. [111]. Then,
2(n— DE[e?] = [V, Y]g and conditional on true price

2(n — DE[EZ] — 2(n — 1DE[€?] S N(0,4(n — 1)E[e*])
= 2(n — 1)(E[e?] - E[¢?]) S N(0,4(n — DE[e*])

= v — 1(E[e?] — E[¢2]) S N(0, E[¢*]).
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APPENDIX C

AN UNBIASED AND CONSISTENT ESTIMATOR OF THE
FOURTH MOMENT OF MMN

Suppose that we observe security pricesonagrid G = {ty, t1, ", th—1},to = 0,tp—1 =
T, where the number of data points in grid G is denoted by |G| and equals to n. Let
A(G) = max (t;+1 — t;), then for n - oo, A(G) — 0. In this setting,

<isn

[Y,Y,Y,Y]9 = Z(AYt )= ((AXt + A&l-)z)z
i=0 i=0
n-2
((AXt) + (Aet) + 20X, A€y, )
i=0
n-2
lZO(AXt) +Z(A€t) (1)

where

[X, X, X, X]5 Z(AXt
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eeee Z(Aet)

n-—

z 6(Ax, )" (ne.)” + z 4nX, (be,)’ + 2 4(0X,,) Aey..

=0

Taking expectation on the both sides of Equation (C.1) conditional on true price yields
E[[v,Y,Y,YI|X] = E[[X, X, X, X]15|X] + E[[¢, ¢, €, €]5|X] + E[A]X].  (C.2)

Handling terms in the RHS of Equation (C.2) one by one under Assumptions 3.1, 3.2,
3.3, 3.11 and the null hypothesis that the MMN increments have constant variance
gives us

rm—2

E[[X, X, X, X]5|X] = E Z(AXti)4

L i=0

X

- :([X,X]?)2 X] —2

;)IE[(AXt ) (ax,)) |X]

= E[(x.x15)°] x| - 2 IE[(AXti)2|X]IE[(AXtJ.)2|X]

= E[(x. x19)°| ]

n-2n-2

=2 ) (Gstivs = 0200) (08,60 = o)

(=0 j=0

i#j
= 0,(1) - 0,(1)
= 0,(1),

where by no leverage effect, the definition of Brownian Motion and Assumptions 3.3
and 3.11, AX, LAX., AX, LX., E[X,|X]=0, Var[X, |X] =02 tiss,
L ] L L L i+1 1+1

[X,X1% = 0,(1) and 0,(1)0,(1) = 0,(1), so that ([X,X]?)Zzop(n and
E[(1x,X19)°| x| = 0,(1), while
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(8%, )7 X] = E[x2., ] + E[X2[] - 2B[x, X, }¥]
= Var[X,,,[X] + (E[X,,,[X])" + Var[X,|x]
+ (E[Xe |X])" = 2B [, ((Xe,, — X)) + X,,)| X]
= O-fzi+1ti"‘1 + O-tziti -2 E[szilx] + ZIE[Xfi(XtiH - Xti)lx]
= 0, ti +0it; — 2 E[XZ|X]
+ 2E[ X, |X]E[ (Xe,,, — X0)IX]
= o2, tix1 + 0it; — 2E[X2|X]
= 0f, tis1 T 05t — 208t = 0f, tiq — Ot
= 0,(D),

(C.3)

because under Assumption 3.1, E[|o,|?] < o for all t € [0,T] and if a random
variable has finite absolute moments of order k, then it has absolute moments of orders
1,2,...,k — 1 (Chapter 4, Section 21, p. 292 of [34]) so that E[|o;|] < oo also holds.
First moment of o; being finite opens the way for the Markov’s Inequality,

1
Pllol =z v] < ]—/IE[IGtI],V y € (0,),

so that as y — oo, P[|o;| = y] — 0. Recall that definition of stochastic boundedness
requires that for any 1 > 0, there exists a finite M > 0 such that

P[|o;| > M] < 4, V¢,
Setting y = M and i[E[latl] = A, we geto, = 0,(1) and o7 = 0,(1)0,(1) = 0,(1)

forallt € [0,T].

Regarding remaining terms on the RHS of Equation (C.2), we have
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n-2

:[Ez

i=0
n—2

[[e, €€, e]ﬂX] =E Z(Aeti)4]

i=0

I
S5

4 4 2.2 _p.3 — 3
€, T € T 6660, —4€r €, — A€y et+1]
i=0

5
N

= > Elet, ] +E[et] + 6E[e2]E[e?, | — 4E[e}]E[e,,,]

i=0
— 4E[e,, |E[e} ] = ZZ]E 1+ 6(E[€2])?

=2(n— DE[e*] + 6(n — 1) (E[e?])?

n-—2

E|) (%) (ae,)’

i=0
[ n- 2 [ n-2n-2 ]
= ]E ( AXtiAEti> - ]E|2 AXt AEt AXt AEt XI
i=0 [ =0 j=0 J
3 i+j
n—-2n-2
=E|(Ix.€f) | x| -2 E [AX, A€, AX, Ac, | X]|
=3 7=0
i#j
=E(Xeﬂ|]
n-2n-2
-2 Z Z E[AX, [X]E[Ae, |X]E [AX, | X] E [ae, | x|
=0 j=0
i%)
2
=E[(Ix,€I7) | x| = 0,1,
y n-2
E Z(AXti)3Aeti x| =) E[(ax,)’| x| E[ae,|x] =0,
[ L i=0
rn—2 1 n-2
E z(Aeti)3Axti x| = [E[(Aet) |X] [ax, |x] = o.
Li=0 - i=0

Consequently, Equation (C.2) is found out to be sum of a stochastically bounded term
and [E[[e, €, €, e]*‘T;|X], ie.,
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[[v,v,v,Y15|X] = 2(n — DE[e*] + 6(n — 1)(E[€?])? + 0, (1). (C.4)

Adopting the estimators proposed by Zhang et al. [111], let’s make the following
definitions:

. 1
Ele*] == 2n—1) (RIOF

E[e*] :=

Z(n_l)[YYYY -~ 3(E[e2])",

Then, from Equation (C.4) and above definitions, we obtain

TP 2(n — 1DE[e* 6(n — D (E[e2])?
[E“E[G‘*]—IE[E“]”X]:IEI (-1 [62](;_011) ) (E[e?]

0,(1) I\’ \
l( —1)‘ l_ o (( —1)) X| ~ EEEIXT (¢ 5
AN
— 3(E[e ])2+op(1)—3ml<2( %) ‘X.

Since
E[([v, Y]§)2| X| = var|(Ir, Y]§)2| x| + (E[1v, v191x])°,

and following Barndorff-Nielsen and Shephard [24], Zhang et al. [111] and Hansen
and Lunde [61] we have verified thatas n — oo

Var [([Y, Y]g)2| X] - 4(n — 1) E[¢*],

E [([Y, Y]§)2| X] - 2(n — 1) E[€2].

Equation (C.5) converts to

161



[|ETe%1 - El*]]| X]
- 3(E[€*])? + 0,(1)
= 3o 40— DELET+ 4(n - 1 (Be’D?)

= 3(E[€?D? + 0p(1) — 0, (1) — 3(E[€*])? = 0,(1)

as n — oo, Thus, E[e*] is an unbiased estimator of E[¢*]. Remember that for an
estimator to be consistent, it should converge to the parameter estimated as sample size

goes to infinity, i.e., E[e*] is called a consistent estimator of E[e*] if
lim P [|]E[e4‘] — ]E[e4]||X > y] =0,Vy € (0,).
n—>o0o

By Markov’s Inequality, as n — o

IE[|IET;T] —IE[64]||X]
y

IA

lim P [|ETe®] ~ E[e*]]| X 2 v
s 521« 20

N rlli_r)rt}OIP’“IE/[ET] —IE[64]||X >y|=o0.
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APPENDIX D

PROOF OF THEOREM 3.5

From Equation (3.6)

[v,Y19 = [X, X195 +2[X,€]% + [e,€]9 0.1)
[Y, Y13 — [X,X]3 — 2(n — DE[e?] = 2[X, £]} + [, €]7 — 2(n — DE[e?].
We blend Equations (B.9) and (B.1) in Equation (D.1) so that

[Y,Y]7 - [X,X]7 —2(n — 1)E[€?]

n—2

= 2 Z(AX,:L 1 AXti)Eti - AXtOEtO + Ath_ZEtn_l)

+2 €t — [E[EZ]> + (etzo —E[e?]) + (efn_l — E[€?])

-2 6ti+16fi>'
i=

Since AX, €, + AX,, €., , and (eZ — E[e?]) + (e?,_, — E[€?]) are both 0, (1), as

n — oo

3<
N

S e~
N

(=]

[v,Y)% - [X,X]3 —2(n — 1E[e?]

Vn —2
(Axtl .~ AXy, )Et + 2(Xf €t — €?]) — 2(Ti 6tl+1€t.) (D.2)

Vn — 2

+ 0,(1).
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1 —
Vn-2 ?=12 elgi - ]E[EZ]

and M?) as %Z?;OZ €t,,,€; and applying CLT for triangular arrays after checking

Recall that in proof of the Theorem 3.4 that by defining M%l) as

for Lindeberg’s conditions, we demonstrated that M;l) and M;Z) are asymptotically
independent and centered Gaussian with variances Var[e?] and (E[€2])?, respectively.

At this point, if we define M as VI—ZZ?le(AXti_l — AX,,)e,, then Equation (D.2)
is affirmed to be

n—

[Y,Y]% — [X,X]% —2(n — 1)E[e?]

D.3
=2vn—2(MY + MP - MP) + 0,(1). (B3)

So, to find asymptotic distribution of the LHS of Equation (D.2) conditional on true
price, we need to examine applicability of the CLT for triangular arrays or martingale

sequences with respect to Mf). In this endeavor, let’s write

n-2 n-2
PO Z(AXt, — AX;))ey, = ;Z dn—2,i-
T Vn — 24 o S oAn-24 '
If n =3,
1 1
M’I("3) = ﬁ (AXto - AXt1)6t1 ﬁ (dl'l)'
dyy = (BXe, — AXy, ey,
If n =4,
M = i((AXt — AX,, e, + (DXy, — AXy, )€, ) = i(du +dy2),
T NGl 0 1/5t 1 2/"t2 287 '
d2,1 = (AXtO - Ath)Etl, dZ,Z = (Axtl - Ath)etz'
If n =35,
1
M’I(‘3) - ﬁ((Axto - AXt1)6t1 + (AXt1 - Ath)Etz + (AXtZ - AXt3)6t3)

1
= ﬁ (d3,1 +d3, + d3,3)»
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dsy i= (DXe, — DXy, )€, dsy = (AX,, — AXy,)€r,, dss = (AX,, — AXy, )€,

If we organize the terms in the form d,,_,; in a triangular fashion as n — oo, we get
the following array

dl,l
d2,1 d2,2
d3,1 d3,2 d3,3

See that, for a specific n, Mf) Is the sum of the row n — 2 in the above triangular array
divided by \/% while entries in each row of the above triangular array are i.i.d with
mean 0 and finite variance, since for i # j,V t;,t; € G, by Assumptions 3.1, 3.2 and
3.3, with respect to the filtration F; = a(etj,j <iX;,Vte [O,T]) (AXy, is Fy,
measurable)

Eti 1 Xti' AXti 1 Ath, Eti 1 Etj,VaI‘[Xti] = o—tzltl’ ]E[th] = O,AXti 1 Xti+1'
e, LF, ,AX, LF, ,AX, LF,,

E[(AX,,_, — AX¢,)er,|Fioa] = E[(AX,,_, — AX,)|Fi—1]E[€] = 0. (D.4)

Var[(AXti—1 o AXti)EtilTi—l]
2
=E [((Axti—l - AXti)Eti> “Fi—l] - (IE[(AXti—l - AXfi)Etil“Fi—lDz
2
- E [((Axti_1 — AX,)er,) iFi_l]

_ (IE (0%, | Fia| + :(Axti)2|:ri_1]>E[62]
_ZIE[(AXti_—1AX i)lfpi—l]

= (E[(ax, )| 7] + B[ (0%, 7t ) B
(E[(ax._ )] + E|(ax,)’] ) ELe?] = 0,(1)E[€?] < oo, (D.5)

o~

where by Equation (C.3), E [(Axti_1)2| Ti-1] and E [(AXti)2| Ti_l] are deduced to be
stochastically bounded and E[(AX.,_ AX.)|F;—1] equals to O, because X =
((Xti+1 o Xti) + Xti) and
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[(Xe Xe, )|Fici] = E [(Xti (Ko, —Xe) + Xti))| Fis

= E[XZ|Fi-1] + E [(Xti(XtHl - Xti))| Ti—l]

= E[XZ|Fioa] + E[Xe, | Fica JE[(Xey, — Xe)|Fica]
- e[xi/7 |

= Var[X,,|Fi_1],

so that

E[(Axfi—1AXti)|Ti—1] = [E[(Xti - Xti—1)(Xti+1 _Xfi)lj:i—l]
= E[(Xe Xe,, ) Fima] — B[ (Xe_ Xeyy )| Fina] — E[(XE)|Fia]
+[E[(Xti—1Xti)|:Fi—1]
= Var[X,,|F;_1]| — Var[X,,_ |Fi_1] — Var[X,,|Fi_]
+Var[X,,_ |Fi_4]
= 0.

In summary from Equations (D.4) and (D.5), we infer that each sequence of

summands \/”_2‘ in each M(3) for all n > 3 is a martingale difference sequence, i.e.,

n21

i

:Fi—l =O

A2
Additionally, each summand is square integrable, i.e., E [(%) |Ti_1] is finite.

Then, we immediately check for the conditional Lindeberg’s condition as given in
Condition 3.31, Chapter VIII in [70] to conclude if the CLT for triangular array of
martingale sequences is applicable, i.e., whether or not for any § > 0,

n21

[

asn — oo, With n > 3 and d?_ . = 0 by definition, the convergence in probability
given above can be rewritten as
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n—

lim P z e 2Ly { }ﬂ-"i_l - 0| <y|=1,vy € (0,).

n—oo

We benefit from the idea that for proving an arbitrary sequence of random variables
{v,,}n=1 CONverging in probability to a constant 0, i.e., limP[|o,, — 0| <y] =1,Vy €
n—-oo

(0,0), we can examine if limP[|y,, — 0| <y] =1, Vy € (0,0) for |y,| > |v,],
n—-oo

since if |y,| > |v,| and limP[|y, — 0] <y] =1, then limP[|o,, — 0| <y]=
n—-oo n—-oo

1,Vy € (0,00). From [X; n;| < X;lv;l

n— n-—2

Z nZL -0 E n21 Ti—l -0
{nZL 5} [nz,i 5}

>
i=1 n-2 i=1 n-2

i-11]

n—ZE‘E[dn Zl n21 8‘/"_2}

From Equations (D.4) and (D.5) and the definition of identity function, we realize that
asn,i —» oo

D W, feovi=z) T Yja,_, f<ovimz) = 1

b) [ n— 21|TL 1 >[E[dn 2,1 |dn 21|>5\/E} ?i—l]:

C) [ n— 21|:Fl 1] @,

i-1| < .

E [d%—z'iﬂ{|dn_2‘i|28\/ﬁ}

Hence, as n,i - o, §vVn — 2 — oo and probability of |dn 2l| being greater than or

equal to §vn — 2 should reach 0 and stay at there, otherwise E[dZ_, ;|F;_,]| would
diverge. Therefore,

supl]P’[]I |dn 21 6m}:0]—>1,
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and

P
n—ZZ‘E[dn Zl n21 6Vn—2} =1 -0,
should be true as n,i — oo, since contribution of
[dn 2,1 d,_ 21 >5 n—z} Ti—l]
to
Z|E[dn 21 |dn 21 i-1

should shrink to 0 as n, i — oo such that the growth rate of

Z|E[dn 2ilf|a, _, |s

i-1

is less than growth rate of i

In this context, the application of the LLN and the CLT for the triangular arrays of
martingale difference sequences (Chapter 3, p.58 of [57]) yields conditional on true
price
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where from Equation (D.5)

Sy = 2 dn—z,i'
Vn —2 i=1

1

T3 i = Var[G,|F;_4] = n—2

n-—2
z Var[dy | Fii]

E[e?]

=n62[E[Z(Ath ) +Z(AXt
E[e? -

=n[f;[5[[x,x —(ax, )" + X, X]8 (AXto)]
E[e?] (

2 ([x,x15 -0 (1))

Now, we have illustrated that the LHS of Equation (D.3) divided by vn — 2, is sum of
3 asymptotically centered Gaussian terms, namely M",M{* and M(3), with

E[E] ([x X1§ - 0,(D)).

respective conditional variances as Var[e?], (E[€?])? and

Consequently, the final step in order to find asymptotic conditional distribution of the
LHS of Equation (D.3) is to find covariances between M\ and M{* as well as M$>
and MS) and calculate the asymptotic conditional variance where by Theorem 3.4
Cov [M(l), M§2)|X] is already known to be 0.
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Cov [M§3),M§2)|Ti_1] ~E [(Mg) _

and

Cov[ﬂds)

5 [uPu 7|

o) -

B[i])| 7o

1 r /n—2 n—2
n—2 E (Z (AXti—1 o AXfi)Efi> (Z Eti+16fi> Fi-a
L \j=1 i=0
1 '< (AX,, — AX, e, + >(ehe%-+--) . l
n—2 | +(Ath , —AX; 2)Efn 5 T, 1€ty , o
[ (AXtO Ath)Etletleto +
1 +(0X,, — Ath)etletn €t
— Fiq
(AXt 2 AXt Z)Etn 26t16t0 + *
+(Ath 2 AXt Z)Etn 2€tn_1€tn_s
=0,
] = [0 e ) o = o[
=E [M§3)M(1)|Tl .|
1 n-—2
——E (Z (AX,, , — AX,, )etl> (Z €t — IE[62]> Fiq
=0
1 . ( (AX,, — AX,, )€, + ) <Et20 ¥t E?n_2> - l
n—2"|\+(ax, _, - Ath_z)etn_z —(n—1E[e?])|”
(AX,, — AX,, e, €2 + ]
+(AXto - AXt1)€t1etzn—2
1 —(8X,, — AX,, )€, (n — DE[€?]
—E : Fiq
(Ath—z - AX’fn—z)etn—zetzo +
+(Ath—2 - Ath—z)etn—z efzn—z
—(AX,,_, — AX, _,)e,_,(n— DE[€?]
rm—2
1
—E Z(Axti_1 — AX;)ed | Fia
L =1
n-—2
——B[e}|Fia] ) E[(8X,, - AX,)|Fis]
n-2 =1
_ E[(Xt Xti—1 + Xti_Xti+1)]
1 i=1
3
n_zEk]O
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Then,

Var [[y, Y1 — [X,X1¢ —2(n— 1)[5[62]]
= Var|2vn —2(M" - M + MP)|
= 4(n — 2) (Var[M"| + Var| M| + var[MP] - Cov| M, M|
— Cov| M, MP| + Cov| M, MP)|)

2 21)2 E[e’] g
= 4(n — 2) | Var[e?] + (E[e2])? + zm([x,xh - 0,(1))

=4(n—2) ([E[e“’] — (E[€?])? + (E[€?])?
E[€?]

n—2

+2— (1%, X5 - op(1))>

= 4(n — 2)E[e*] + 8E[€?] ([X,X]?w - op(1)).
As a conclusion, the asymptotic distribution of [Y, Y]g — [X,X]g —2(n - 1DE[€?]

conditional on true price turns out to be also centered normal, i.e., conditional on true
price asn — o

(Iv, Y17 - [X, X]7 — 2(n — DE[€?])
d
SN (0,4(n — 2)E[e*] + 8E[¢?] ([X, X175 - op(1)))

or with U,,,;se being a random variable that is asymptotically standard normal,

[v,v1% — [x, X)5
= 2(n — DE[¢?] + (4(n — 2)E[e]

+ SE[EZ] ([X’ X]g‘ - Op(]-)))l/z Unoise-

Finally, following Zhang et al. [111], to gauge the total estimation error, [Y, Y]g -1V,
stemming from discretization and existence of noise at the same time, we merge the
results on asymptotic distribution of discretization error with those on asymptotic
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distribution of error due to noise. From Theorem 3.3, under conditions explained
therein, we can write (stably in law)

¢ T T \ 1/2
[X' X]T =1Vr + n—1 o5 dDy Uaiscretization
0

where Ugiseretization TEPresents another random variable that is also asymptotically
standard normal. As Zhang et al. [111] argue, since MMN is taken as orthogonal to
the true price process, Uiiscretization 1S @150 orthogonal to U,,,;s.. Then,

[Y! Y]g - IVT =
2(n — DE[e?] + <4(n — 2)E[e*] + 8E[e?] ([X, X]§ — 0,(D))

T T 1/2
+ n—1 ngDs) Utotal
0

such that U;,:4; denotes a third random variable which is again asymptotically standard
normal.
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APPENDIX E

CHAPTER 4 RESULTS

AKBNK SUMMARY AND REVIEW OF CHAPTER 4 RESULTS

1) UHFD Characteristics Under Different Sampling Schemes and Error
Cleaning and Data Filtering Combinations

a) lrregular Temporal Spacing

AKBNK
Plot of Durations Between Consecutive Transactions (Inside a session)
Transaction Time Sampling-Raw Data
Second Half of 2012
1000 T T T T T T

900 [~ !

800 - il

700 —~ -

600 - il

500 [

400 f1

300 [y

200

Time Elapsed Between Two Transactions (seconds)

I
L

0 \n‘m\‘ L ‘mﬂh\hu ALY

Bl WHL il ‘ I ‘Hu “\ \L \‘mm li w.\“ﬂmm A “ L.\m\‘h“m iy \\Hh ‘h‘ el M‘u B,
0 0.5 1 1.5 .

2 25 3

Nth Transaction In Second Half of 2012 . 105

Figure F.1: Plot of durations between consecutive transactions (inside a session) for AKBNK TTS-
raw data throughout second half of 2012.

b) Temporal dependence: By comparing autocorrelation and partial
autocorrelation functions of 600 seconds! absolute returns and log returns under
CTS (clean and aggregated and interpolated) as well as absolute returns, log

11'We also included 1 min returns under CTS for MIGRS and NETAS just because 10 min log returns
exhibited no autocorrelation at all.
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returns and durations in seconds from one transaction to the next under TTS (raw
versus clean and aggregated) for December of 2012, we see that there are
differences between ACF and PACF structure of absolute and log returns
between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction
sampled data by first cleaning, then aggregating and then interpolating (all
needed for CTS) to 600 second sampled data distorts ACF and PACF of return
series.

e TTS-Raw-Durations: ACF (slowly decaying positive significant up to 20
lags) and PACF (moderate decay, positive significant up to 10 lags)
(shocks persist)

e TTS-Raw-Absolute Returns: ACF (hyperbolic slow decay, positive
significant up to 20 lags) and PACF (moderate decay, positive and
significant up to 11 lags) (shocks persist)

e TTS-Raw-Log returns: ACF (quick decay, first three lags negative-
positive-negative significant) PACF(slower hyperbolic decay, first 14 lags
negative significant)

e TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (slowly wave like
decaying positive significant up to 20 lags) (shocks persist) and PACF
(wave like decay, positive significant up to 20 lags)

e TTS(4.ii.a and b-5.i-5.1i-5.1ii-5.1v-5.v)-Absolute returns: ACF (decaying
positive and significant up to 20 lags ) and PACF (hyperbolic decay, lags
up to 10" lag positive significant)

e TTS(4.ii.a and b-5.i-5.1i-5.iii-5.iv-5.v)-Log returns: ACF (quick decay,
first three lags negative-positive-negative significant) PACF(slower
hyperbolic decay, first 8 lags negative significant)

e CTS-Durations: Meaningless, after interpolation duration from one entry
to the next is always 1 second

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF
(lags 1, 2,3 and 6 positive significant), PACF (lags 1 and 2 are positive
significant)

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF (only
first lag is negative significant) and PACF (first order negative partial
autocorrelation)

Under TTS, with raw or clean and aggregated data, there is significant positive
autocorrelation up to 20 lags in absolute returns, significant up to third order
autocorrelation in log returns and very significant positive autocorrelation up to
20 lags in seconds elapsed between two transactions, thus volatility clustering is
verified. Whereas, for 10 min returns under CTS, log returns display first order
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autocorrelation, which is in conformity with evidence laid out by the finance
literature in general, that very short term returns exhibit strong autocorrelation
especially on the first lag. Absolute return autocorrelation structure is changed
under CTS at 600 seconds sampling interval compared to results under TTS at 1
transaction interval. Likewise, switching to CTS and calculation returns at 600
seconds suppresses partial autocorrelation figures at several lags of both absolute
and log returns. Meanwhile, comparing data handling combinations to each
other, any combination of cleaning methods and aggregation methods (compared
to other combinations) does not cause any major change in total and partial
correlation structures once we move under a sampling scheme, it being either
TTS or CTS. However, cleaning and aggregation under TTS yield different
PACEF structures in log returns compared to results produced with raw data.
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Figure F.2: ACFs and PACFs of logreturn and absolute return series of AKBNK for December 2012
under TTS and CTS

176



c¢) Diurnal Patterns: These patterns can be sought only under CTS because of their
definitions such as number of trades per x minutes or absolute return per y
seconds. For AKBNK case, there are strong W shapes which are persistent
across cleaning and aggregation methods in 10 minutes trade volumes and 10
minutes trade intensities throughout days in second half of 2012, whereas
patterns in 10 minutes absolute returns and 10 minutes absolute percentage
returns are closer to W without last spike at the end of the day*2. All in all, there
are significant diurnal patterns in returns and trading activity in the form of
intensity and volume under CTS and these patterns look exactly same when
various combinations of cleaning and aggregation methods are applied.

Average of 10 Minutes Volume Average of 10 Minutes Absolute
Percentage Returns
500000 0,0012
400000 0,0010
300000 0,0008
0,0006
200000
0,0004
100000 0.0002
0 0,0000
1 4 7 101316 19 22 25 28 31 34 1 4 7 101316 1922252831 34
Average of 10 Minutes Trade Intensity Average of 10 Minutes Absolute
Returns
70 0,0250
60
0,0200
50
40 0,0150
30 0,0100
20
10 0,0050
0 0,0000
135 7 911131517192123252729313335 1 4 7 1013 16 19 22 25 28 31 34

Figure F.3: Diurnal patterns - AKBNK cleaned and aggregated transaction data under CTS

12 Unlike the rough L shape in MIGROS and ISCTR or rough W without last spike in NETAS, for 10
min absolute percentage returns.
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2)

a)

0,0000

Visual and Formal Statistical Tests of Existence and Statistical Features of
Market Microstructure Noise

VSP: In line with findings for MIGRS, ISCTR and ARCLK, sampling schemes
or cleaning and aggregation techniques do not alter the fact that inflating
sampling frequency, either in seconds or in transactions, causes average realized
volatility of return on transaction price to boom. Specifically, 6 month VSPs
explode as the sampling frequency increases under raw or cleaned TTS as well
as under CTS. At this point, we would like to emphasize that for VSPs, we
skipped 4.ii.a-5.i-5.1i-5.iii-5.iv-5.v combinations under TTS, mainly because the
number of cleaned points under 4.ii.a is so small, cleaning makes no real
difference comparing to no cleaning of the data set. Any possible difference
might have been observed under cleaning method 4.ii.b, which ended up deleting
more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we
additionally search for any marginal effect that cleaning method 4.ii.b has over
cleaning method 4.ii.a.
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CTS- 4iia- 5i Volatility Signature Plot TTS-Raw Volatility Signature Plot of
of OpentoClose OpentoClose
0,0035 0,0040
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TTS- 4iib-5i Volatility Signature Plot of
OpentoClose
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0,0000 0®e o o o
0 20 40 60 80

Figure F.4: VSPs for AKBNK over Daily RVs using clean and aggregated data under CTS, raw data

under TTS, and clean and aggregated data under TTS.

Explosion becomes trivial for the sampling intervals that are less than 200
seconds or 15 transactions. This observation is valid both for session and daily
figures, serving as a visual proof regarding existence of market microstructure
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b)

noise and pointing to a positive relationship between noise increment and true
price return, both under CTS and raw or cleaned TTS, showing that sampling
scheme, or cleaning or aggregation do not affect the results.

Statistical Tests Regarding Existence and Statistical Features of MMN :

e Existence of MMN is verified statistically under both of CTS and TTS.

We calculated Zr,, , testing null hypothesis in (3.11) by comparing RVs
that are calculated over different frequency pairs composed of high-low
frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200),
(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30),
(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias
of the RV estimator is dominated by expectation of square of the noise
increment. Therefore, if we reject the null hypothesis, it means that the
MMN has statistically significant impact on realized estimator of the 1V.

For each day in the sample period of 124 days and each frequency pair, we
run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis are 100% under raw-TTS, 99% under clean
and aggregated TTS and around 99% under CTS for all cleaning and
aggregation method combinations when we compare RVs calculated over
3 and 30 transactions under TTS and 60 and 600 seconds under CTS3, As
we decrease the sampling frequency at the high frequency leg, rejection
percentages of null hypothesis shrink, which is true under both of TTS and
CTS. For raw-TTS, the rejection percentages begin with 100% and
decrease gradually to 40% as high frequency leg moves toward 20
transactions when low frequency leg is 30 transactions. Cleaning and
aggregating the data does not amend the downward trend in rejection
percentages under TTS, but make it steeper. For all aggregation choices
with cleaning method 4.ii.b applied under TTS, the rejection percentages
begin with 99% and decrease gradually to 24% as high frequency leg
moves toward 20 transactions. Switching to CTS as well as moving across
the grid of cleaning and aggregation combinations do not change the
results either. For CTS, the rejection percentages begin with around 100%
for 10 to 1200 seconds pair and goes down the hill to 15% as high
frequency legs are slowed to 900 seconds.

Following representative rejection rate graphs reveal that MMN starts to
accentuate as the sampling frequency converges to 10-15 transactions
under TTS, and 300 seconds under CTS. These findings are in conformity
with those supplied by VSP analysis. MMN is felt strongly once we cross
over the sampling interval thresholds of 15 transactions or 5 minutes under
TTS and CTS, respectively. Moreover, visual inspection of the test statistic
Zr n p, for several frequency pairs either under TTS or CTS reveals that for
the majority of the time test statistic is positive and outside 5% standard

13 These rejection percentages resemble to those for NETAS, GARAN and ISCTR cases, but are higher
than those for ARCLK.
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Test Statistic
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normal confidence interval, which can be interpreted as a positive
correlation between noise and efficient price, again in conformity with
exploding VSPs.

AKBNK
Test Statistic Z in Equation 3.13 with upper and lower tail critical values of a standard normal
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Figure F.5: AKBNK - Plots of Z;,, , for each day in the sample period with upper and lower tail

critical values of standard normal under TTS and CTS.
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e Summary: Model of an i.i.d MMN with constant variance might be proper
under CTS but not under raw-TTS (cleaned and aggregated TTS), for more
than 40% (19%) of the days, null of constant variance is rejected for triples
with very high frequencies combined with very low. This might be
evidence of i.i.d assumption not holding at frequencies lesser 15
transactions under TTS. Sampling scheme, but not the aggregation
method, is discovered to very influential on rejection of null hypothesis
that the MMN has variance independent of sampling frequency.
Meanwhile, like NETAS and ISCTR cases cleaning algorithms have some
suppressive effect on rejection percentages particularly under TTS.

Awartani et al. [16] derive a test with the idea that if the MMN has constant
variance, then noise variances calculated over frequencies 1/M or 1/N
should be same independent of M or N chosen. Their null and null
hypotheses are as in (3.35) and (3.36).

Since alternative hypothesis is in harmony with the presence of
autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde
[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign
of the rejection of the null hypothesis that the MMN is a sequence of i.i.d
random variables with constant variance. To test the validity of this null
hypothesis, a test statistic compares RV differences using two frequency
pairs, where pairs are M,L and N,L. L represents a frequency at which we
can ignore the MMN safely, say 20 minutes and M and N are frequencies
at which the MMN is considered to be significant. Therefore, the test is
build on RVs calculated over frequency triples i.e. for each high frequency
pair combined with 20 minutes, we test null hypothesis that E(noise
increment square at low frequency)=E(noise increment square at high
frequency). If we reject the null hypothesis, it means that the MMN has
variance that is NOT independent of sampling frequency, therefore any
assumptions regarding i.i.d nature of MMN can be taken as invalidated.
Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30)
(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200),
(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200)
seconds under CTS.

For each day in the sample period of 124 days and each frequency triple,
we run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis clearly change from one triple to another
and as we clean and aggregate data. Beware that under raw-TTS especially
for combinations of frequencies with highest differences between frequent
legs, rejection percentages exceed 40%, while they fall to 15% for 3-10-
30 triple with lowest distance between first two legs. However, once we
clean and aggregate the data, rejection percentages range decline to levels
19-7% depending on the triple**. For CTS 4.ii.a and 4.ii.b, constant

14 1n a sense, these findings agree with findings for MIGRS and ISCTR cases, where rejection
percentages are highest for triples with distant constituents and TTS-raw data; however, MIGRS and
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variance assumption rejection percentages vary between at most 6% and
at least 1%, both of which are just a fraction of rejection percentages under
TTS-raw or TTS-cleaned. Therefore, unlike ARCLK but like NETAS,
GARAN and ISCTR results, sampling scheme is discovered to be
influential on rejection of null hypothesis that the MMN has variance
independent of sampling frequency. We reject this null hypothesis under
TTS, either raw or cleaned and aggregated but cannot reject for any
combination of cleaning and aggregation methods under CTS confidently
and conclude that i.i.d with constant variance MMN assumption does not
reflect the real life structure of the MMN under TTS, whereas under CTS,
such an assumption seems to hold for all frequencies. Evidence reveals
that aggregation method does not affect rejection percentages and for
triples with high frequency legs being close to very slow frequency leg,
rejection percentages are severely damaged independent of the sampling
scheme.

ARCLK rejection percentages are way below those of ISCTR’s or NETAS’ or AKBNK's rejection

percentages.
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3) RV Analysis

We constructed two RV time series, namely session RVs and daily RVs, for each
frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600
seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a,
4.ii.b) - aggregation method (5.1, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time
series has 124 data points, whereas session RV time series is constituted of 248
entries. Each time, RV series under each sampling scheme and cleaning and
aggregation method combinations is subjected to preliminary statistics, ACF and
PACF analysis and lastly unit root is checked where autocorrelation exhibits
slow decay.

e The factors that have any effect on RV series’ normality-lognormality and
autocorrelation structure turn out to be whether the RV is on a session or daily
basis, whether it is under raw-TTS or CTS and the frequency at which the RV
is calculated. Under raw-TTS, session and daily RV series at all frequencies
except daily 20 are found to be nonnormal. Higher frequencies also lead to
skewness and kurtosis values to converge to those of normal distribution to
such an extent that on the level, daily RV series at 1 min frequency under
CTS can be inferred to come from a normally distributed population at 5%
significance level. Taking logarithm makes daily RV series at frequencies 10
and 5 minutes normal under CTS, while such a transformation only works in
terms of normality for RV session series at 3 and 20 transactions under raw-
TTS®. All of remaining log RV series, either under raw-TTS or CTS, either
raw or cleaned and aggregated, either on a session or daily basis, are not
normally distributed as JB statistics and kurtosis-skewness values suggest.

o Decreasing frequencies cause less number of lags being significant with lesser
significant levels, i.e. decreasing frequency again depresses autocorrelation
structure of RV series regardless of sampling scheme, the cleaning and
aggregation methods or session-daily calculation, which is in line with the
existence of MMN. In fact, ACFs of session and daily RVs change as the
sampling frequency changes, such that for increasing frequencies RV series
exhibit significant positive total autocorrelation up to higher number of lags.
Calculating RVs on a session basis make the RV series more autocorrelated
at higher lags under both of raw-TTS and CTS. Once we are working on a
daily or session series at a particular frequency under CTS, cleaning and
aggregation methods do not alter RV series’ non-normality/normality or
autocorrelation structure.

e Sampling scheme, frequency and cleaning methods or session/daily basis
choice affects the stationarity results®®. E-views ADF Test results reveal that
we can reject null of unit root at 5%significance level for RV series under
raw-TTS at all frequencies’’; however, switching to CTS and moving
between cleaning methods or session or daily RV calculation basis while

15 Unlike the case of MIGRS
16 Unlike the findings for ISCTR, NETAS and ARCLK cases.
17 Unlike the case of MIGRS.
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increasing the frequency changes the game such that under cleaning method
4.ii.a, regardless of aggregation method, the null hypotheses that daily or
session 1 min RV series have unit root cannot be rejected even weakly.
Whereas, adopting cleaning method 4.ii.o makes session 1 min series
stationary at 1% significance level orthogonal to aggregation methods®8. On
the contrary, only frequency and daily/session choice matter if we change the
tests parameters. ADF test with fixed two lags and an intercept in MATLAB
show us that all RV series session or daily, TTS or CTS at 10 min or 5 min
frequencies are stationary but with 1 min daily RV series, at 5%significance
level, we cannot reject null of unit root.

a) Descriptive statistics by frequency, by sampling scheme and by cleaning and
aggregation methods:

e TTS-Raw: For all frequencies, the session and daily RV series except
daily RV series at 20 transactions frequency are not normally distributed
as skewness, kurtosis and JB test statistic values reveal. Nevertheless, JB
test gives that the null of daily RV series at 20 transaction frequency
coming from a normally distributed population cannot be rejected at 5%
significance level. Unlike other stocks in our sample, skewness and
kurtosis values of this daily RV series are close to 0 and 3. Mean of the
session and daily RVs become smaller as the sampling interval is
lengthened, but there is no clear relationship between sampling frequency
and change in skewness, kurtosis or JB statistic values, which deviates
from the findings for MIGRS and ISCTR®®. Correlograms of all session
RV series look alike such that even lags are positive significant up to 20™"
lag with odd lags being insignificant where decreasing the sampling
frequencies depresses significance levels. Lags 1, 2, 4, and 6 are positive
significant in PACF of all session RV series at all frequencies, where lag
6 drops from the significant lags list at 30 transactions frequency. Although
correlograms of all daily RVs resemble one another, compared to
correlogram of session series, autocorrelation structure of daily RVs looks
different. ACFs of daily RV series exhibit similar shapes where decreasing
frequencies cause less number of lags being significant with lesser
significant levels, i.e. frequency again depresses autocorrelation structure,
which is in line with existence of the MMN. Generally speaking, for daily
RV series, lags 1, 2, 3 and 14 are significant in the PACF. The change in
autocorrelation structure of RV series by looking at session and daily RVs
separately calls for stationarity test and accordingly, we checked for unit
roots in daily series to see if summing RV from session one and session
two to reach daily RV distorts anything in RV stationarities at different
frequencies.

18 Matlab ADF test with NO INTERCEPT reveals that taking logarithm ensures stationarity at all
frequencies under CTS with all cleaning and aggregation methods.

1% For MIGRS and ISCTR, a decrease in skewness, kurtosis and JB statistic was observed as we sample
less frequently.
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TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions

Date: 021916 Time: 18:17 Date: 02/19/16 Time: 18:28

Sample: 1248 Sample: 1248

Included observations: 248 Included obsenvations: 124

Autocorrelation Partial Correlation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC Q-Stat Prob
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p i 9 0.112 -0.070 202.99 0.000 3 L 9 0.278 0093 14839 0.000
= =} 10 0365 0144 237.75 0.000 B K 10 0229 0.003 15557 0.000
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ain i 19 0.055 -0.027 33461 0.000 g g 19 -0.070 -0.106 177.65 0.000
= i 20 0269 0.053 35432 0.000 e e 20 0021 0023 17772 0.000
TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions

Date: 02/19M6 Time: 18:27 Date: 02/19M16 Time: 18:34

Sample: 1248 Sample: 1248

Included observations: 248 Included observations: 124

Autocorrelation Partial Correlation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC  Q-Stat  Prob
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= = 2 0.422 0399 54740 0.000 = = 2 0469 0301 58.747 0000
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Figure F.8: AKBNK - Correlograms of session and daily RV series under TTS for different sampling

intervals

CTS: The session RV series at all frequencies, plus daily RV series at 10
min and 5 min frequencies are not normally distributed as skewness,
kurtosis and JB statistic values reveal. However, JB test produces such a
test statistic that we cannot reject the null of normality for the daily RV
series at 1 min frequency. This finding is in line with we have found for
ISCTR. Like the case under TTS,

i. mean of the session and daily RVs become smaller as the sampling
interval is lengthened.

However, contrary to findings for RV series under TTS,

i. decrease in skewness, kurtosis and JB statistic values is observed as
we sample more and more frequently (resembles to MIGRS,
ARCLK and ISCTR, deviates from NETAS and GARAN)

ii. ACFs of session and daily RVs change as the sampling frequency
changes, such that for increasing frequencies RV series exhibit
significant positive total autocorrelation at higher number of lags
with higher significances. Apart from this common trait, the decay
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patterns in total correlation of daily and session RVs are different,
especially obvious at 1 min frequency.

CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series
Date: 02/25M6 Time: 16:48 Date: 02/25M6 Time: 16:51
Sample: 1248 Sample: 1248
Included observations: 248 Included observations: 248
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Figure F.9: AKBNK - Correlograms of session and daily RV series under CTS for different sampling
intervals

iii. PACFs of session RVs differ slightly from one another depending
on the frequency. For frequency 1 min, lags 1, 2, 4 and 6 are
significant in PACF, whereas lags 1, 2, and 4 and only 2 are
significant for 5 min and 10 min frequencies, respectively.

iv. PACEFs of daily RVs differ slightly from one another depending on
the frequency. For frequency 1 min, lags 1 and 9 are significant in
PACF, whereas lags 1 and 2 and lags 1, 2, 3, and 8 are significant
for 5 min and 10 min frequencies, respectively.

e Regardless of the shapes, slow decay in some of the ACFs calls for
stationarity tests.

o All of these observations hold under all cleaning methods and aggregation
algorithms.
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b)

Stationarity-Unit root test:

e To test for stationarity and unit root, i.e. if the series move around a

constant mean or diverge as time passes, Augmented Dickey Fuller (ADF)
Test is preferred. By visual inspection of graphs, no trend is observed in
any of our RV series, therefore, ADF Test is run with an intercept and no
trend, the number of legs to be involved in the analysis is chosen by
Schwarz criterion as it is the default choice suggested by E-views.

TTS-Raw-: In the E-views setting, where number of lags are optimized
by E-views according to Schwarz criterion, R-squared values vary in a
band of 19-54% (higher for session values). The null of nonstationarity is
rejected at 1% significance level for all session and daily series?® except
session series for 3, 6 and 10 transactions sampling intervals, for which the
rejection significance level increases to 5%.

CTS: In the E-views setting, where number of lags are optimized by E-
views according to Schwarz criterion, R-squared values have a range of
29% to 59%. At 1% significance level, RV series calculated at 5 and 10
min sampling intervals, either session or daily or under any cleaning or
aggregation combination, are found to be stationary. The frequency 1 min
IS intriguing in the sense that under cleaning method 4.ii.a, regardless of
aggregation method, the null hypotheses that daily or session RV series
have unit root cannot be rejected even weakly. Whereas, adopting cleaning
method 4.ii.b makes session 1 min series stationary at 1% significance
level. It can be inferred that cleaning methods as well as frequencies matter
for stationarity such that increasing frequency to 1 min under CTS and
calculating RVs on a daily basis makes the RV series nonstationary.

20 In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we
switch to daily series. Here, switching between daily or session series does not affect significance level
at which we can reject null for half of the frequencies. For the remaining half, switching to session
calculations deteriorates rejection significance levels.
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ARCLK SUMMARY AND REVIEW OF CHAPTER 4 RESULTS

1) UHFD Characteristics Under Different Sampling Schemes and Error
Cleaning and Data Filtering Combinations

a) Irregular Temporal Spacing

ARCLK
Plot of Durations Between Consecutive Transactions (Inside a session)
Transaction Time Sampling-Raw Data
Second Half of 2012
1500 T T T T T

1000 .

500

Time Elapsed Between Two Consecutive Transactions (Seconds)

‘\ B \H‘M ‘ ‘M‘\ (L ARLLLA \N““H‘HM“
8 10
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Nth Transaction in Second Half of 2012 M 104

Figure F.10: Plot of durations between consecutive transactions (inside a session) for ARCLK TTS-
raw data throughout the second half of 2012.

b) Temporal dependence: By comparing autocorrelation and partial
autocorrelation functions of 600 seconds?! absolute returns and log returns under
CTS(clean and aggregated and interpolated) as well as absolute returns, log
returns and durations in seconds from one transaction to the next under TTS (raw
versus clean and aggregated) for December of 2012, we see that there are
differences between ACF and PACF structure of absolute and log returns
between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction
sampled data by first cleaning, then aggregating and then interpolating (all
needed for CTS) to 600 second sampled data distorts ACF and PACF of return
series.

e TTS-Raw-Durations: ACF (slowly wave like decaying positive significant
up to 20 lags) and PACF (wave like decay, positive significant up to 15
lags) (shocks persist)

21 Recall that we also included 1 min returns under CTS for MIGRS and NETAS just because 10 min
log returns exhibited no autocorrelation at all.
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e TTS-Raw-Absolute Returns: ACF (hyperbolic decay, positive significant
up to 20 lags) and PACF (hyperbolic decay, positive and significant up to
9 lags)

e TTS-Raw-Log returns: ACF (quick decay, first two-three lags negative
significant) PACF(slower hyperbolic decay, first 14 lags negative
significant)

e TTS(4.ii.a and b-5.i-5.1i-5.1ii-5.iv-5.v)-Durations: ACF (slowly wave like
decaying positive significant up to 20 lags) and PACF (wave like decay,
positive significant up to 15 lags)

e TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying
positive and significant up to 20 lags ) and PACF (quick decay, first lag
positive significant, other lags are significant but close to critical value
boundaries)??

e TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay,
first lag negative significant) PACF(slower hyperbolic decay, first 6 lags
negative significant)

e CTS-Durations: Meaningless, after interpolation duration from one entry
to the next is always 1 second.

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: 10 min
Absolute Returns: ACF (no autocorrelation), PACF(no significant partial
autocorrelation) Except 4.ii.b-5.iv. Under this combination, lags 1,2, 4 and
5and 1, 2 and 4 are positive significant in ACF and PACF, respectively?.

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF (only
first lag is negative significant) and PACF (first two legs are negative
significant)

Under TTS, with raw or clean and aggregated data, there is significant positive
autocorrelation up to 20 lags in absolute returns, significant up to third order
autocorrelation in log returns and very significant positive autocorrelation up to
20 lags in seconds elapsed between two transactions, thus volatility clustering is
verified. Whereas, for 10 min returns under CTS, log returns display first order
autocorrelation, which is in conformity with evidence laid out by the finance
literature in general, that very short term returns exhibit strong autocorrelation
especially on the first lag. Absolute return autocorrelation structure is changed
under CTS at 600 seconds sampling interval compared to results under TTS at 1
transaction interval. Likewise, switching to CTS and calculating returns at 600
seconds suppresses partial autocorrelation figures at several lags of both absolute

22 Unlike findings on MIGRS, ISCTR and NETAS.

2 For MIGRS, ISCTR and NETAS, aggregation or cleaning did not major differences in absolute
returns correlograms. Now, aggregation method 5iv yields different results under 4iib-CTS, compared
to other aggregation methods under CTS.
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and log returns. Meanwhile, comparing data handling combinations to each
other, any combination of cleaning methods and aggregation methods (compared
to other combinations) does not cause any major change in total and partial
correlation structures once we move under a sampling scheme, it being either
TTS or CTS. Nevertheless, this postulate fails at aggregation method 5.iv, since
it yields different results under 4.ii.b-CTS, compared to other aggregation
methods. Moreover, cleaning and aggregation under TTS yields different PACF
structures in log and absolute returns compared to results produced with raw
data.
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Figure F.11: ACFs and PACFs of logreturn and absolute return series of ARCLK for December 2012
under TTS and CTS.

c) Diurnal Patterns: These patterns can be sought only under CTS because of their
definitions such as number of trades per x minutes or absolute return per y
seconds. For ARCLK case, there are strong W shapes which are persistent across
cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes
trade intensities throughout days in second half of 2012, whereas patterns in 10
minutes absolute returns are closer to W without last spike at the end of the day?*.
Regarding 10 minutes absolute percentage returns, there are so many churnings
throughout the day such that we cannot name the pattern as W or U or L.
Nonetheless, the unnamed pattern is same across all cleaning and aggregation

24 Unlike the rough L shape in MIGROS and ISCTR or rough W without last spike in NETAS, for 10
min absolute percentage returns.
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methods. All in all, there are significant diurnal patterns in returns and trading
activity in the form of intensity and volume under CTS and these patterns look
exactly same when various combinations of cleaning and aggregation methods
are applied.

Average of 10 Minutes Volume Average of 10 Minutes Absolute
Percentage Returns
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Figure F.12: Diurnal patterns - ARCLK cleaned and aggregated transaction data under CTS

Visual and Formal Statistical Tests of Existence and Statistical Features of
Market Microstructure Noise

VSP: In line with findings for MIGRS and ISCTR, sampling schemes or
cleaning and aggregation techniques do not alter the fact that inflating sampling
frequency, either in seconds or in transactions, causes average realized volatility
of return on transaction price to boom. Specifically, 6 month VSPs explode as
the sampling frequency increases under raw or cleaned TTS as well as under
CTS.
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Figure F.13: VSPs of ARCLK over Daily RVs using clean and aggregated data under CTS, raw data
under TTS, and clean and aggregated data under TTS.

Explosion becomes trivial for the sampling intervals that are less than 200
seconds or 15 transactions. This observation is valid both for session and daily
figures, serving as a visual proof regarding existence of market microstructure
noise and pointing to a positive relationship between noise increment and true
price return, both under CTS and raw-TTS.

However, for clean and aggregated TTS, first session average RVs in June,
August, September and December and second session average RVs in June
exhibit a somehow erratic behavior in the sense that rising sampling frequencies
does not inflate average RVs hyperbolically. These erratic shapes do not change
from one aggregation method to the next under a particular cleaning method. To
be more precise, please consider the following VSPs.
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Figure F.14: VSPs of ARCLK over Session RVs using clean and aggregated data under CTS, raw data
under TTS, and clean and aggregated data under TTS.

Although, average RV at 3 transactions frequency is the highest one compared
to average RVs at other frequencies, postulate being true for all months in the
sample period, the shape of the VSPs of session 1 average RVs in August and
December are especially hard to comment, since examination of the disclosures
by ARCLK throughout second half of 2012 reveals that no specific information
that is disclosed to public seems responsible for unexpected VSP patterns in
aforementioned months.

Recall that we found another extraordinary pattern in VSP of NETAS for session
1in June, which caused 6 month daily averages to exhibit a swing for all cleaned
and aggregated average RV series under TTS. However, contrary to NETAS
case, the erratic shapes in VSPs of ARCLK in several months are smoothed by
figures coming from remaining months such that 6 month average of daily or

197



session RVs still increase hyperbolically as the sampling frequency converges
to lowest available value under TTS, with all combinations of cleaning method
4.ii.b and aggregation methods 5.i, 5.ii, 5.iii, 5.iv and 5.v.

This piece of information supports our finding that in general, sampling scheme,
or cleaning or aggregation do not affect the result that market microstructure
becomes dominant after 15 transactions under TTS and 200 seconds under CTS
and that the shape of VSPs suggest a positive correlation between noise
increment and true price return.

b)  Statistical Tests Regarding Existence and Statistical Features of MMN :

o Existence of MMN is verified statistically under both of CTS and TTS.
We calculated Zr ,, ;, testing null hypothesis in (3.11) by comparing RVs
that are calculated over different frequency pairs composed of high-low
frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200),
(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30),
(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias
of the RV estimator is dominated by expectation of square of the noise
increment. Therefore, if we reject the null hypothesis, it means that the
MMN has statistically significant impact on realized estimator of the V.

For each day in the sample period of 124 days and each frequency pair, we
run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis are 90% under raw-TTS, 68% under clean
and aggregated TTS and around 76% under CTS for all cleaning and
aggregation method combinations when we compare RVs calculated over
3 and 30 transactions under TTS and 60 and 600 seconds under CTS?. As
we decrease the sampling frequency at the high frequency leg, rejection
percentages of null hypothesis shrink, which is true under both of TTS and
CTS. For raw-TTS, the rejection percentages begin with 90% and decrease
gradually to 18% as high frequency leg moves toward 20 transactions
when low frequency leg is 30 transactions. Cleaning and aggregating the
data does not amend the downward trend in rejection percentages under
TTS, but make it steeper. For all aggregation choices with cleaning method
4.ii.b applied under TTS, the rejection percentages begin with 68% and
decrease gradually to 10% as high frequency leg moves toward 20
transactions. Switching to CTS as well as moving across the grid of
cleaning and aggregation combinations do not change the results either.
For CTS, the rejection percentages begin with around 94% for 10 to 1200
seconds pair and goes down the hill to 14% as high frequency legs are
slowed to 900 seconds.

Following representative rejection rate graphs reveal that MMN starts to
accentuate as the sampling frequency converges to 10-15 transactions
under TTS, and 300 seconds under CTS. These findings are in conformity
with those supplied by VSP analysis. MMN is felt strongly once we cross

2 These rejection percentages are significantly lower than those for NETAS and ISCTR cases.
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over the sampling interval thresholds of 15 transactions or 5 minutes under
TTS and CTS, respectively. Compared to NETAS and ISCTR findings,
although steady increase in ARCLK rejection rates as sampling frequency
is increased still suggest accentuating MMN depending on frequency, we
have to underline the fact that unlike NETAS and ISCTR results, now, the
marginal increase in the rejection rates with inflating sampling frequencies
do not fall, i.e., there seems to be a positive linear relationship between
rejection rates and sampling frequencies, holding both under CTS and
TTS. Moreover, visual inspection of the test statistic Zr,, , for several
frequency pairs either under TTS or CTS reveals that for the majority of
the time test statistic is positive and outside 5% st. normal confidence
interval, which can be interpreted as a positive correlation between noise
and efficient price, again in conformity with exploding VVSPs.
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Figure F.15: ARCLK - Plots of Z; ,, , for each day in the sample period with upper and lower tail
critical values of standard normal under TTS and CTS.
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e Summary: Model of an i.i.d MMN with constant variance might be proper
under both of CTS and TTS, for more than 90% of the days, the null
hypothesis of constant variance is not rejected for triples with very high
frequencies combined with very low. This might be evidence of i.i.d
assumption holding at all frequencies. Sampling schemes or aggregation
methods are discovered to be not influential on rejection of the null
hypothesis that MMN has variance independent of sampling frequency.
Additionally, cleaning algorithms do not have any substantial suppressive
effect on rejection percentages unlike NETAS and ISCTR cases.

Awartani et al. [16] derive a test with the idea that if the MMN has constant
variance, then noise variances calculated over frequencies 1/M or 1/N
should be same independent of M or N chosen. Their null and null
hypotheses are as in (3.35) and (3.36).

Since alternative hypothesis is in harmony with the presence of
autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde
[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign
of the rejection of the null hypothesis that the MMN is a sequence of i.i.d
random variables with constant variance. To test the validity of this null
hypothesis, a test statistic compares RV differences using two frequency
pairs, where pairs are M,L and N,L. L represents a frequency at which we
can ignore the MMN safely, say 20 minutes and M and N are frequencies
at which the MMN is considered to be significant. Therefore, the test is
build on RVs calculated over frequency triples i.e. for each high frequency
pair combined with 20 minutes, we test null hypothesis that E(noise
increment square at low frequency)=E(noise increment square at high
frequency). If we reject the null hypothesis, it means that the MMN has
variance that is NOT independent of sampling frequency, therefore any
assumptions regarding i.i.d nature of MMN can be taken as invalidated.
Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30)
(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200),
(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200)
seconds under CTS.

For each day in the sample period of 124 days and each frequency triple,
we run the aforementioned test at 5% significance level. Sample rejection
percentages of the null hypothesis clearly change from one triple to another
and as we clean and aggregate data. Beware that under raw-TTS especially
for combinations of frequencies with highest differences between frequent
legs, rejection percentages exceed only 10%, while they stagger around
4% for 3-10-30 triple with lowest distance between first two legs.
However, once we clean and aggregate the data, rejection percentages
range decline to levels 6-4% depending on the triple®. For CTS 4.ii.a and
4.1i.b, constant variance assumption rejection percentages vary between at

% In a sense, these findings agree with findings for MIGRS and ISCTR cases, where rejection
percentages are highest for triples with distant constituents and TTS-raw data; however, MIGRS and
ARCLK rejection percentages are way below those of ISCTR’s or NETAS’ rejection percentages.
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most 3% and at least 1%, resembling the rejection percentages under
cleaned TTS. Therefore, unlike NETAS, AKBNK, GARAN and ISCTR
results, sampling scheme is discovered NOT to be influential on rejection
of null hypothesis that the MMN has variance independent of sampling
frequency. We cannot reject this null hypothesis under either of TTS and
CTS confidently and conclude that i.i.d with constant variance MMN
assumption might reflect the real life structure of MMN. Evidence reveals
that cleaning or aggregation method does not affect rejection percentages

substantially.
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3)

RV Analysis

We constructed two RV time series, namely session RVs and daily RVs, for each
frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600
seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a,
4.ii.b) - aggregation method (5.1, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time
series has 124 data points, whereas session RV time series is constituted of 248
entries. Each RV series under each sampling scheme and cleaning and
aggregation method combinations is subjected to preliminary statistics, ACF and
PACF analysis and lastly unit root is checked where autocorrelation exhibits
slow decay.

¢ The factors that have any effect on RV series’ lognormality and autocorrelation
structure turn out to be whether the RV is on a session or daily basis, whether it
is under raw-TTS or CTS and the frequency at which the RV is calculated.
Normality is not affected by any of these factors. All of RV series, either under
raw-TTS or CTS, either raw or cleaned and aggregated, either on a session or
daily basis, are not normally distributed as JB statistics and kurtosis-skewness
values suggest. Taking logarithm makes daily and session RV series at all
frequencies normal under raw-TTS except session RV series at 20 transactions
frequency, while such a transformation works in terms of normality for 10 and
5 min RV session and daily series under CTS but not for 1 min session or daily
series under any cleaning or aggregation combination.

e Specifically, frequency is effective on RV autocorrelation structure under both
of raw-TTS and CTS, regardless of the cleaning and aggregation methods. ACFs
of all session RV series look alike for frequencies 3, 6, 10, 15 and 30
transactions. Likewise, ACFs of all daily RV series look alike for frequencies 3,
6, 10, 15 and 30 transactions. ACFs of session and daily RVs change as the
sampling frequency changes, such that for increasing frequencies RV series
exhibit significant positive total autocorrelation up to higher number of legs
under CTS. Moreover, calculating RVs on a session basis makes the RV series
more autocorrelated at higher lags under both of raw-TTS and CTS.

e Once we are working on a daily or session series at a particular frequency
under CTS, cleaning and aggregation methods do not alter RV series’ non-
normality/normality or autocorrelation structure.

e \When it comes to stationarity, the picture changes. E-views ADF Test results
reveal that under raw-TTS, all RV series are found to be stationary at 5%
significance level, while turning to CTS alters the stationarity at certain
frequencies for certain cleaning methods and certain aggregation algorithms.
Under CTS, daily/session calculation of RV, the frequency and aggregation
method affect ADF test results. For instance, daily 10 min RV series is
nonstationary and stationary at 5% significance level for cleaning method 4.ii.a
and 4.ii.b, respectively. Moreover, even under a cleaning method, stationarity
results might differ from one aggregation method to next, which is obvious for
1 min RV series being not stationary under 5.i and 5.ii aggregation methods
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while becoming stationary under remaining aggregation techniques combined
with cleaning method 4.ii.a%’. Likewise, if we run ADF test for fixed lag length
(2) and intercept in MATLAB, test results leads us to reject null hypothesis of
unit root for all session RV series under CTS or raw-TTS, for all daily series
under raw-TTS, and daily series under CTS for 1 and 5 min frequencies.
MATLAB results also support our finding that aggregation method affect
stationarity such that daily RV series at all frequencies are nonstationary at 5%
significance level under 4.ii.a-5.i and 4.ii.a-5.ii, while daily RV series at
frequencies 5 and 1 minutes become stationary for remaining aggregation
method combinations under cleaning method 4.ii.a. Surprisingly, MATLAB
results unveil the fact that cleaning method alters stationarity results for daily
RV series, because under cleaning method 4.ii.b, all daily RV series regardless
of the aggregation method turn out to be stationary at 5% significance level.

a)  Descriptive statistics by frequency, by sampling scheme and by cleaning and
aggregation methods:

e TTS-Raw: For all frequencies, the session and daily RV series are not
normally distributed?® as very high skewness, kurtosis and JB statistic
values reveal. Mean of the session and daily RVs become smaller as the
sampling interval is lengthened, but there is no clear relationship between
the sampling frequency and any change in skewness, kurtosis or JB
statistic values, which deviates from the findings for MIGRS and ISCTR?.
Correlograms of all session RV series look alike for frequencies 3, 6, 15
and 30. At these frequencies total autocorrelation is significant up to 20"
lag but significance decreases and increases as the lag number converges
to 20. Meanwhile, at frequency of 10 transactions, session RV series is
autocorrelated up to 6™ lag, then significance disappears just to emerge at
lags 9 and 12. Only first three lags are significant in PACF of all session
RV series at all frequencies except 20 transactions frequency. At sampling
interval of 20 transactions, no total or partial autocorrelation is detected®.
Compared to correlogram of session series, autocorrelation structure of
daily RVs looks different. Correlograms of all daily RV series look alike
for sampling intervals of 3, 6, 15 and 30 transactions but compared to
correlograms of session series at 3, 6, 15 and 30 transaction sampling
intervals, autocorrelation structure of daily RVs looks different. Now, first
10 lags and lags 1, 2 and 6 are positive significant in ACF and PACF,
respectively. Differing from the findings for MIGRS, NETAS and ISCTR
cases, for both of session and daily RV series under raw-TTS, the lags at
which there is or there is not significant autocorrelation changes for
sampling intervals 10 and 20 transactions, compared to remaining
sampling intervals. The change in autocorrelation structure of RV series
by looking at session and daily RVs separately calls for stationarity test

2 Matlab ADF test with NO INTERCEPT reveals that taking logarithm ensures stationarity at all
frequencies under CTS with all cleaning and aggregation methods.

28 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies.
29 For MIGRS and ISCTR, a decrease in skewness, kurtosis and JB statistic was observed as we
sample less frequently.

30 Unlike the case of MIGRS.
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and accordingly, we checked for unit roots in daily series to see if summing
RV from session one and session two to reach daily RV distorts anything
in RV stationarities at different frequencies.
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Figure F.18: ARCLK - Correlograms of session and daily RV series under TTS for different sampling
intervals

e CTS: For all frequencies, the session and daily RV series are not normally
distributed as very high skewness, kurtosis and JB statistic values reveal®!,
Like the case under raw-TTS,

i. mean of the session and daily RVs become smaller as the sampling
interval is lengthened.

e However, contrary to findings for RV series under raw-TTS,
i. decrease in skewness, kurtosis and JB statistic values is observed as

we sample more and more frequently (resembles to MIGRS and
ISCTR, deviates from NETAS)

31 Like MIGRS and NETAS, unlike ISCTR.
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ii. ACFs of session and daily RVs change as the sampling frequency
changes, such that for increasing frequencies RV series exhibit
significant positive total autocorrelation at higher number of lags
with higher significances.
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Figure F.19: ARCLK - Correlograms of session and daily RV series under CTS for different sampling
intervals

iii. PACFs of session RVs differ slightly from one another depending
on the frequency. For frequency 1 min, lags 1, 2, 3 and 12 are
significant in PACF, whereas lags 1, 2, 3,and 11 and lags 1, 2, 5, 12
and 13 are significant for 5 min and 10 min frequencies, respectively.

iv. PACEFs of daily RVs differ slightly from one another depending on
the frequency. For frequency 1 min, lags 1, 2 and 6 are significant in
PACF, whereas lags 1, 2, and 16 and lags 1, 2, 3, 6 and 14 are
significant for 5 min and 10 min frequencies, respectively.

¢ Regardless of the shapes, slow decay in the ACFs calls for stationarity
tests.
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o All of these observations hold under all cleaning methods and aggregation
algorithms.

b) Stationarity-Unit root test:

e To test for stationarity and unit root, i.e. if the series move around a
constant mean or diverge as time passes, Augmented Dickey Fuller (ADF)
Test is preferred. By visual inspection of graphs, no trend is observed in
any of our RV series, therefore, ADF Test is run with an intercept and no
trend, the number of legs to be involved in the analysis is chosen by
Schwarz criterion as it is the default choice suggested by E-views.

e TTS-Raw-: In the E-views setting, where number of lags are optimized
by E-views according to Schwarz criterion, R-squared values vary in a
band of 33-45%. The null of nonstationarity is rejected at 1% significance
level for all session and daily series®.

e CTS: In the E-views setting, where number of lags are optimized by E-
views according to Schwarz criterion, R-squared values have a range of
11% to 40%. At 5% significance level, session RV series at all frequencies
under all cleaning and aggregation methods and daily RV series at 5 min
under 4.ii.b and 4.ii.a as well as daily RV series at 10 min under 4.ii.b are
found to be stationary. However, unlike ISCTR and NETAS but like
MIGRS, daily/session calculation of RV, the frequency and aggregation
method affects ADF test results. Under CTS, daily 10 min RV series is
nonstationary and stationary at 5% significance level for cleaning method
4.ii.a and 4.ii.b, respectively. Moreover, even under a cleaning method,
stationarity results might differ from one aggregation method to next,
which is obvious for 1 min RV series being not stationary under 5.i and
5.ii aggregation methods while becoming stationary under remaining
aggregation methods combined with cleaning method 4.ii.a.

32 In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we
switch to Daily series. Here, switching between Daily or session series does not affect significance level
at which we can reject null.
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1)

a)

GARAN SUMMARY AND REVIEW OF CHAPTER 4 RESULTS

UHFD Characteristics Under Different Sampling Schemes and Error
Cleaning and Data Filtering Combinations

Irreqular Temporal Spacing

GARAN
Plot of Durations Between Consecutive Transactions (Inside a Session)
Transaction Time Sampling-Raw Data
Second Half of 2012
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Figure F.20: Plot of durations between consecutive transactions (inside a session) for GARAN TTS-

b)

raw data throughout the second half of 2012.

Temporal dependence: By comparing autocorrelation and partial
autocorrelation functions of 600 seconds® absolute returns and log returns under
CTS (clean and aggregated and interpolated) as well as absolute returns, log
returns and durations in seconds from one transaction to the next under TTS (raw
versus clean and aggregated) for December of 2012, we see that there are
differences between ACF and PACF structure of absolute and log returns
between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction
sampled data by first cleaning, then aggregating and then interpolating (all
needed for CTS) to 600 second sampled data distorts ACF and PACF of return
series.

33 Since first order autocorrelation was observed in 10 min returns under all cleaning and aggregation
methods under CTS, we did not feel the urgency to check for 1 min returns under CTS. Recall that we
included 1 min returns under CTS for MIGRS just because 10 min log returns exhibited no
autocorrelation at all.
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e TTS-Raw-Durations: ACF (very very slowly decaying positive
significant up to 20 lags) and PACF (hyperbolic decay, significant up
to 11 lags) (shocks persist)

e TTS-Raw-Absolute Returns: ACF (very very slow decay, significant
upto 20 lags) and PACF (decaying positive and significant up to 15
lags) (shocks persist)

e TTS-Raw-Log returns: ACF (quick decay, first two lags negative-
positive significant) PACF( slower hyperbolic decay, first 14 lags
significant)

e TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (very very
slowly decaying positive and significant up to 20 lags) and PACF
(hyperbolic decaying positive and significant up to 18 to 20 lags)
(shocks persist)

e TTS (4.iia and b-5.-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF
(decaying positive and significant up to 20 lags ) and PACF (decaying
positive and significant up to 12-13 lags)

e TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay,
first two legs negative-positive significant) PACF(slower hyperbolic
decay, first 7-8 lags negative significant)

e CTS-Durations: Meaningless, after interpolation duration from one
entry to the next is always 1 second.

e CTS (4.ii.a and b-5.i-5.1i-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF
(first lag is positive significant), PACF(positive significant at first lag)

e CTS (4.ii.a and b-5.i-5.1i-5.iii-5.iv-5.v)-10 min Log returns: ACF (only
first lag is negative significant) and PACF (first lag is negative
significant)

Under TTS, with raw or clean and aggregated data, there is significant positive
autocorrelation up to 20 lags in absolute returns, significant up to third order
autocorrelation in log returns and very significant positive autocorrelation up to
20 lags in seconds elapsed between two transactions, thus volatility clustering is
verified. Whereas, for 10 min returns under CTS, log returns display first order
autocorrelation, which is in conformity with evidence laid out by the finance
literature in general, that very short term returns exhibit strong autocorrelation
especially on the first lag. Absolute return autocorrelation structure is changed
under CTS at 600 seconds sampling interval compared to results under TTS at 1
transaction interval. Likewise, switching to CTS and calculation returns at 600
seconds suppresses partial autocorrelation figures at several lags of both absolute
and log returns. Meanwhile, comparing data handling combinations to each
other, any combination of cleaning methods and aggregation methods (compared
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LogRetums Autocorrelation

LogReturns Partial Autocorrelation

AbsoluteReturns Autocorrelation

to other combinations) does not cause any major change in total and partial
correlation structures once we move under a sampling scheme, it being either
TTS or CTS. However, cleaning and aggregation under TTS yield different
PACEF structures in log returns compared to results produced with raw data.
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Figure F.21: ACFs and PACFs of logreturn and absolute return series of GARAN for December 2012

under TTS and CTS

Diurnal Patterns: These patterns can be sought only under CTS because of their
definitions such as number of trades per x minutes or absolute return per y
seconds. For GARAN case, there are strong W shapes which are persistent
across cleaning and aggregation methods in 10 minutes trade volumes and 10
minutes trade intensities throughout days in second half of 2012, whereas
patterns in 10 minutes absolute returns are closer to W without last spike at the
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2)

end of the day. The existence of several spikes around lunch break in 10 min
absolute returns is interesting. Likewise, 10 minutes absolute percentage returns
exhibit a shape, but although the shape is persistent across cleaning and
aggregation methods, it does not resemble to a W or L34, All in all, there are
significant diurnal patterns in returns and trading activity in the form of intensity
and volume under CTS and these patterns look exactly same when various
combinations of cleaning and aggregation methods are applied.

Average of 10 Minutes Volume Average of 10 Minutes Absolute
Percentage Returns
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Figure F.22: Diurnal patterns - GARAN cleaned and aggregated transaction data under CTS

Visual and Formal Statistical Tests of Existence and Statistical Features of
Market Microstructure Noise

VSP: Regardless of the sampling schemes or cleaning and aggregation
techniques combinations, average realized volatility of return on transaction
price explode as we increase the sampling frequency, either in seconds or in
transactions. Explosion becomes trivial for the sampling intervals that are less
than 200 seconds or 15 transactions. This observation is valid both for session
and daily figures, serving as a visual proof regarding existence of market
microstructure noise and pointing to a positive relationship between noise
increment and true price return, both under CTS and TTS even if the data set is
cleaned or aggregated. At this point, we would like to emphasize that for VSPs,
we skipped 4.ii.a-5.i-5.ii-5.iii-5.iv-5.v combinations under TTS, mainly because

34 Unlike the W or L shapes in other stocks.
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the number of cleaned points under 4.ii.a is so small, cleaning makes no real
difference comparing to no cleaning of the data set. Any possible difference
might have been observed under cleaning method 4.ii.b, which ended up deleting
more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we
additionally search for any marginal effect that cleaning method 4.ii.b has over
cleaning method 4.ii.a. However, as put forward previously, cleaning or
aggregation does not affect the result that market microstructure becomes
dominant after 15 transactions under TTS and 200 seconds under CTS and that
the shape of VSP suggest a positive correlation between noise increment and
true price return.

CTS- 4iib-5i Volatility Signature Plot of
OpentoClose
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Figure F.23: VSPs of GARAN over Daily RVs using clean and aggregated data under CTS, raw data
under TTS, and clean and aggregated data under TTS.

b)  Statistical Tests Regarding Existence and Statistical Features of the MMN
35.

o Existence of the MMN is verified statistically under both of CTS and TTS.
We calculated Zr,, , testing null hypothesis in (3.11) by comparing RVs
that are calculated over different frequency pairs composed of high-low
frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200),
(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30),
(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias
of the RV estimator is dominated by expectation of square of the noise

% Findings under this section are very much alike to those for ISBANK.
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increment. Therefore, if we reject the null hypothesis, it means that the
MMN has statistically significant impact on realized estimator of the 1V.

For each day in the sample period of 124 days and each frequency pair, we
run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis are 100% under raw-TTS, 99% under clean
and aggregated TTS and around 98% under CTS for all cleaning and
aggregation method combinations when we compare RVs calculated over
3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As
we decrease the sampling frequency at the high frequency leg, rejection
percentages of null hypothesis shrink, which is true under both of TTS and
CTS. For raw-TTS, the rejection percentages begin with 100% and
decrease gradually to 55% as high frequency leg moves toward 20
transactions when low frequency leg is 30 transactions. Cleaning and
aggregating the data does not amend the downward trend in rejection
percentages under TTS, but make it steeper. For all aggregation choices
with cleaning method 4.ii.b applied under TTS, the rejection percentages
begin with 99% and decrease gradually to levels around 25% as high
frequency leg moves toward 20 transactions. Switching to CTS as well as
moving across the grid of cleaning and aggregation combinations do not
change the results either. For CTS, the rejection percentages begin with
around 100% for 10 to 1200 seconds pair and goes down the hill to 12-
15% as high frequency legs are slowed to 900 seconds.

The following representative rejection rate graphs reveal that MMN starts
to accentuate as the sampling frequency converges to 10-15 transactions
under TTS, and 250-300 seconds under CTS. These findings are in
conformity with those supplied by VSP analysis. MMN is felt strongly
once we cross over the sampling interval thresholds of 15 transactions or
5 minutes under TTS and CTS, respectively. For higher frequencies,
rejection rates turn out to be quite high, especially after 150 seconds under
CTS and 10 transactions under TTS, rejection rates become flat in a band
of 95-100%. Moreover, visual inspection of the test statistic Zr,, , for
several frequency pairs either under TTS or CTS reveals that for the
majority of the time test statistic is positive and outside 5% st. normal
confidence interval, meaning there is positive correlation between noise
and efficient price, which is again in conformity with exploding VSPs.
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GARAN
Test Statistic Z in Equation 3.13 with upper and lower tail critical values of a standard
normal
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Figure F.24: GARAN - Plots of Z;,, ,, for each day in the sample period with upper and lower tail
critical values of standard normal under TTS and CTS.
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e Summary: Model of i.i.d MMN with constant variance might be proper
under CTS but under raw-TTS, for more than 50% of the days, null of
constant variance is rejected for triples with very high frequencies
combined with very low. This might be evidence of i.i.d assumption not
holding at frequencies lesser than 15 transactions. Sampling scheme, but
not the aggregation method, is discovered to very influential on rejection
of null hypothesis that MMN has variance independent of sampling
frequency. Meanwhile, cleaning algorithms have some suppressive effect
on rejection percentages particularly under TTS.

Awartani et al. [16] derive a test with the idea that if the MMN has constant
variance, then noise variances calculated over frequencies 1/M or 1/N
should be same independent of M or N chosen. Their null and null
hypotheses are as in (3.35) and (3.36).

Since alternative hypothesis is in harmony with the presence of
autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde
[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign
of the rejection of the null hypothesis that the MMN is a sequence of i.i.d
random variables with constant variance. To test the validity of this null
hypothesis, a test statistic compares RV differences using two frequency
pairs, where pairs are M,L and N,L. L represents a frequency at which we
can ignore the MMN safely, say 20 minutes and M and N are frequencies
at which the MMN is considered to be significant. Therefore, the test is
build on RVs calculated over frequency triples i.e. for each high frequency
pair combined with 20 minutes, we test null hypothesis that E(noise
increment square at low frequency)=E(noise increment square at high
frequency). If we reject the null hypothesis, it means that the MMN has
variance that is NOT independent of sampling frequency, therefore any
assumptions regarding i.i.d nature of MMN can be taken as invalidated.
Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30)
(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200),
(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200)
seconds under CTS.

For each day in the sample period of 124 days and each frequency triple,
we run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis clearly changes from one triple to another
and as we clean and aggregate data. Beware that under raw-TTS especially
for combinations of frequencies with highest differences between frequent
legs, rejection percentages exceed 60%, while they stagger around 15%
for 3-10-30 triple with lowest distance between first two legs. However,
once we clean and aggregate the data, rejection percentages, except for 3-
10-30 triple, are severed to levels 31% or 12% depending on the triple®.
Regarding 3-10-30 triple, rejection percentage slightly increases. For CTS

% In a sense, these findings agree with findings for MIGRS case, where rejection percentages are
highest for triples with distant constituents and TTS-raw data; however, MIGRS rejection percentages
are way below those of ISCTR or GARAN rejection percentages.
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4.ii.a (b), constant variance assumption rejection percentage varies
between 0% and 6.4%, both of which are just a fraction of rejection
percentages under TTS-raw or TTS-cleaned. Therefore, sampling scheme
is discovered to very influential on rejection of null hypothesis that MMN
has variance independent of sampling frequency. We can reject this null
under TTS confidently and conclude that i.i.d with constant variance
MMN assumption does not reflect the real life structure of MMN, whereas
under CTS, such an assumption seems to hold especially for frequencies
higher than 150 seconds. Evidence reveals that aggregation method does
not affect rejection percentages and for triples with high frequency legs
being close to very slow frequency leg, rejection percentages are
substantially damaged independent of the sampling scheme.
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3) RV Analysis

We constructed two RV time series, namely session RVs and daily RVs, for each
frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600
seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a,
4.1i.b) -aggregation method (5.1, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time
series has 124 data points, whereas session RV time series is constituted of 248
entries. Each time RV series under each sampling scheme and cleaning and
aggregation method combinations is subjected to preliminary statistics, ACF and
PACF analysis and lastly unit root is checked where autocorrelation exhibits
slow decay.

e The factors that have any effect on RV series’ normality and autocorrelation
structure turn out to be whether the RV is on a session or daily basis, whether it
is under raw-TTS or CTS and the frequency at which the RV is calculated. For
all frequencies, the session and daily RV series are not normally distributed
under raw-TTS as skewness, kurtosis and very high JB statistic values reveal.
Switching to CTS and increasing frequency and calculating RVs on a daily basis
make RV series more and more normal such that at 1 min frequency, we cannot
reject null hypothesis of daily 1 min RV sample coming from a normally
distributed population at 5 or 1% significance levels. For 5 min and 10 min
frequencies with daily calculation and all frequencies with session calculations,
under CTS, RV series are not coming from a normally distributed population.
Taking logarithm of RV series converts them to normal for all frequencies
(except session 20) under raw-TTS and for daily 5 and 10 min frequencies under
cleaning method 4.ii.a, but only for daily 10 min under cleaning method 4.ii.b
under CTS®’. All session CTS series are non-lognormal. Therefore, session-daily
choice, cleaning method, frequency and sampling scheme are found to be
effective on lognormality of RV series.

¢ Decreasing frequencies cause less number of lags being significant with lesser
significant levels, i.e. decreasing frequency again depresses autocorrelation
structure of RV series regardless of sampling scheme or session-daily
calculation, which is in line with existence of MMN. However, the suppression
effect is not too strong under raw-TTS. Unlike findings for AKBNK, ISCTR and
NETAS, calculating RVs on a session basis DOES NOT make the RV series
more autocorrelated under CTS. Still, session-daily choice alters autocorrelation
decay patterns under CTS and raw-TTS.

¢ Once we are working on a daily or session series at a particular frequency under
CTS, cleaning and aggregation methods do not alter RV series” non-
normality/normality or autocorrelation structure.

e Sampling scheme, frequency and cleaning methods affects the stationarity
results. 3. E-views ADF Test results reveal that we can reject null of unit root at

37 Unlike the case of MIGRS.
38 Unlike the findings for ISCTR, NETAS and ARCLK cases, alike to AKBNK.

222



5% significance level for RV series under raw-TTS at all frequencies®®; however,
switching to CTS and moving between cleaning methods or session or daily RV
calculation basis while increasing the frequency changes the game such that
under cleaning method 4.ii.a, regardless of aggregation method, the null
hypotheses that daily or session 1 min RV series have unit root cannot be rejected
at 5% significance level. Whereas, adopting cleaning method 4.ii.o makes
session and daily 1 min series stationary at 5% significance level orthogonal to
aggregation methods®. Likewise, if we run ADF test for fixed lag length (2) and
intercept in MATLAB, test results leads us not to reject null hypothesis of unit
root for 1 min daily RV series under CTS with cleaning method 4.ii.a, where
switching to cleaning method 4.ii.b ensures stationarity for RV series at all
frequencies, either session or daily. For raw-TTS, results of MATLAB ADF test
for 2 lags and an intercept coincide with results from E-Views ADF test, i.e., RV
series session or daily at all frequencies are stationary at 5% significance level.

a) Descriptive statistics by frequency, by sampling scheme and by cleaning and
aggregation methods:

e TTS-Raw: For all frequencies, the session and daily RV series are not
normally distributed*! as skewness, kurtosis and high JB statistic values
reveal. Mean of the session and daily RVs become smaller as the sampling
interval is lengthened, but there is no clear relationship between sampling
frequency and change in skewness, kurtosis or JB statistic values, which
deviates from the findings for MIGRS and ISCTR but is in line with
findings for AKBNK. Still, normality of the any of these series is out of
question. Correlogram of all session RV series look alike but are not
exactly same. Generally speaking, ACFs and PACFs of RVs are decaying
but not hyperbolically such that total and partial autocorrelations are strong
at even lags and weak at odd legs*? (ACF positive significant up to 13™ at
odd lags -up to 20" lag at even lags and PACF positive significant
selectively at legs, 1, 2, 4, and 8)*3. Although correlograms of all daily RVs
resemble one another, compared to correlogram of session series,
autocorrelation structure of daily RVs looks different. Now, a quick decay
with first two lags and lag 4 being positive significant in PACF is evident,
while decay in ACF is wave like with significant positive values up to lag
11-13. Unlike case of AKBNK but similar to ISBNK, the decrease in
sampling frequency does only have minimal suppression effect over the
significance levels and the number of significant lags. The change in
autocorrelation structure of RV series by looking at session and daily RVs
separately, calls for stationarity test and accordingly, we checked for unit
roots in daily series to see if summing RV from session one and session

39 Unlike the case of MIGRS.

40 Matlab ADF test with NO INTERCEPT reveals that taking logarithm erases stationarity at all
frequencies under CTS with all cleaning and aggregation methods. Unlike ISCTR.

41 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies
either Daily or session, except session-20 transactions.

42 Like ISCTR.

43 Unlike the case of MIGRS.
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two to reach daily RV distorts anything in RV stationarities at different

frequencies.
TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions
Date: 03/16/16 Time: 16:43 Date: 0316M6 Time: 16:36
Sample: 1248 Sample: 1248
Included observations: 248 Included observations: 124
Autocorrelation Partial Correlation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC Q-Stat  Prob
[y} [y 1 0201 0201 10125 0001 '/ = 1 0485 0485 29941 0.000
= = 2 0418 0393 54123 0.000 V= = 2 0440 0267 54688 0.000
g a 3 0129 -0.001 58331 0.000 = (=] 3 0362 0107 71638 0.000
= [y} 4 0388 0256 96573 0.000 L ] 8 4 0429 0225 95613 0.000
5] i 5 0122 -0.001 100.39 0.000 [y =} L 5 0331 0019 109.97 0.000
= [Rn] 6 0242 0146 13037 0.000 =3 ra 6 0385 0142 129.67 0.000
=] i 7 0159 0064 136.85 0.000 [ | =l 7 0387 0129 149.63 0.000
[l ] =] 8 02361 0149 17047 0.000 () () 8 0193 -0229 15462 0000
m [ul 9 0.064 -0.100 17153 0.000 [y [ 9 0199 -0.011 159.97 0.000
[ ] [in] 10 0349 0147 20322 0000 () tpe 10 0181 -0.020 164.48 0.000
[l i 11 0075 -0.042 20468 0000 [y} e 11 0212 0.015 170.67 0.000
[ | [m} 12 0388 0175 24413 0000 Ll g 12 0106 -0.057 172.23 0.000
m 1" 13 0082 -0026 24591 0000 = tp 13 0165 0032 176.05 0.000
) | ] 14 0390 0144 28624 0000 e g 14 0058 -0.081 176.52 0.000
i 0 15 0021 -0431 28635 0000 Nl T 15 0087 0.087 177.61 0.000
= " 16 0240 -0.036 30293 0000 e g 16 -0.011 -0115 177.63 0.000
' d 17 -0030 0112 30318 0000 R I T 17 0.049 0012 177.98 0.000
=] il 18 0244 0017 31919 0.000 e N 18 0018 0.024 178.03 0.000
an "W 19 0.003 -0027 319.20 0.000 I (=g} 19 -D.066 -0.142 178.68 0.000
= W 20 0201 0038 33018 0000 LN T 20 -0.052 0.010 179.09 0.000
TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions
Date: 0316/16 Time: 16:37 Date: 03/16/16 Time: 16:31
Sample: 1248 Sample: 1248
Included observations: 248 Included observations: 124
Autocorrelation Partial Correlation AC PAC Q-Stal  Prob Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob
/| /| 1 0305 0305 23364 0000 =3 = 1 0.524 0524 326282 0.000
= = 2 0481 0427 81587 0.000 = [ =) 2 0483 0276 66167 0.000
=} an 3 0197 -0.024 91381 0.000 /= (D 3 0.393 0.089 26.129 0.000
[ | = 4 0451 0289 143.00 0.000 [ [ | 4 0455 0227 11310 0.000
=} " 5 0185 -0.020 15170 0.000 [ | L 5 0407 0086 13487 0.000
= =] 6 0385 0132 18262 0000 = (=) 6 0452 0.160 16195 0.000
=) L 7 0180 0020 197.91 0.000 [ | =0 7 0427 0099 18628 0.000
[ s | (=] 8 0427 0194 24503 0.000 (| =l & 0.275 -0.182 19646 0.000
] i 9 0.148 -0.065 25074 0.000 = i 9 0.267 -0.016 206.18 0.000
= (] 10 0418 0170 29618 0000 @ g 10 0.210 -0.085 21222 0.000
g " 11 0145 -0.043 301.67 0.000 [} L 11 0278 0.063 22292 0.000
= a 12 0425 0147 349.14 0.000 =] g 12 0.184 -0.074 22765 0.000
=} AL 13 0181 0.029 35776 0.000 = L 13 0253 0.081 23668 0.000
[ s | =) 14 0429 0.116 40644 0.000 @ (=l 14 0.105 -0.117 238.23 0.000
s ] =l 15 0100 -0.132 409.08 0.000 L m i 15 0130 0.022 24068 0.000
= 1 16 0304 -0.037 433.82 0.000 L (=[] 16 0.009 -0.146 24067 0.000
L q 17 0.044 -0.099 43435 0.000 Iy e 17 0.054 -0.018 24100 0.000
= L 18 0319 0.058 461.83 0.000 Y ar 18 0059 0.042 24160 0.000
o LR 19 0043 -0.064 46232 0.000 K [l 19 -0.013 -0.116 24163 0.000
= 1 20 0247 -0.051 478.93 0.000 BE o 20 0.006 0.049 24163 0.000

Figure F.27: GARAN - Correlograms of session and daily RV series under TTS for different sampling
intervals

e CTS: For 1 min frequency, we cannot reject null hypothesis that the daily
RV series come from a normally distributed population at 5% significance
level, whereas rejection of such hypothesis for all remaining RV series
(daily or session) at all frequencies is evident by skewness, kurtosis and
high JB statistic values. Like the case under raw-TTS,

i. mean of the session and daily RVs become smaller as the sampling
interval is lengthened.

there is no clear relationship between sampling frequency and
change in skewness, kurtosis or JB statistic values, which deviates
from the findings for MIGRS, ARCLK and ISCTR but resembles to
findings for NETAS.
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e However, contrary to findings for RV series under RAW-TTS,

i. ACFs of session and daily RVs change as the sampling frequency
changes, such that for increasing frequencies RV series exhibit
significant positive total autocorrelation up to higher number of legs.
Apart from this common trait, the decay patterns in total correlation
of daily and session RVs are different, especially obvious at 1 min
frequency.

CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series

Date: 03/31/16 Time: 13:57 Date: 03/31/16 Time: 14.00

Sample: 1248 Sample: 1248

Included observations: 247 Included observations: 248

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

[§n] [} 1 0129 0129 41452 0042 [R=] @ 1 0175 0.175 7.6481 0.006
@ @ 2 0164 0150 10916 0004 [ | =3 2 0423 0405 52756 0.000
N i 3 -0014 -0053 10965 0012 @ R 3 0148 0041 58294 0.000
Im [l 4 0072 0057 12268 0015 | 3 g 4 0340 0.186 87.658 0.000
1 I 5 0047 0045 12831 0025 @ [Nl 5 0178 0077 95756 0.000
3 g 6 0189 0165 21868 0001 [ 3 6 0423 0273 14158 0.000
1 N 7 0.019 -0.032 22065 0.002 g 1t 7 0120 -0.048 14527 0.000
1 o 8 0039 -0013 22460 0004 [ 1 8 0272 -0004 16440 0.000
1t 1t 9 -0.046 -0.040 23003 0006 [Nl il 9 0064 -0066 16547 0.000
[ [ 10 0.100 0095 25594 0004 [} m 10 0275 0.085 185.15 0.000
M m 11 0079 0065 27223 0004 'p [N 11 0111 0017 188.39 0.000
3 (g 12 0241 0177 42371 0.000 3 g 12 0331 0130 21722 0.000
[ [Nl 13 0090 0041 44520 0.000 (Nl g 13 0.016 -0.113 217.28 0.000
g m 14 0139 0074 49608 0.000 3 1l 14 0237 0031 23219 0000
1t LIl 15 -0.047 -0.073 50182 0.000 [l [ 15 0027 -0012 23239 0.000
[N gt 16 0014 -0.049 50235 0.000 () [ 16 0242 0.053 248.06 0.000
i gt 17 -0.063 -0.085 51292 0.000 ) i 17 0022 -0070 24819 0.000
H AN 18 0.034 -0.031 51.596 0.000 3 [ 18 0280 0101 26935 0000
Lt [ 19 -0.000 0.007 51.596 0.000 i g 19 -0.046 -0.087 26993 0.000
(] o 20 0.093 0.076 53.916 0.000 g gt 20 0.145 -0.059 27568 0.000
CTS-4.ii.a-5.i-Daily 10 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series

Date: 03/31/16  Time: 14:02
Sample: 1 248
Included observations: 124

Date: 03/31/16  Time: 14:04
Sample: 1 248
Included observations: 124

Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob Autocorrelation  Partial Correlation AC PAC Q-Stat Prob
@ g 1 0201 0.201 5.1447 0.023 = | = 1 0474 0474 28496 0.000
[y H 2 0.055 0.015 55294 0.063 = [y 2 0484 0310 56125 0.000
3 3 3 0247 0243 13.393 0.004 Ly @ 3 0510 0301 89.694 0.000
L g 4 0.015-0.088 13.423 0.009 3 g1 4 0262 -0.154 98.603 0.000
[y R 5 0053 0.070 13796 0.017 | = (i 5 0330 0078 112.87 0.000
/| Ly ] 6 0307 0.250 26.249 0.000 | = @ 6 0370 0161 131.01 0.000
g o 7 0.178 0.101 30476 0.000 (] g 7 0203 -0.056 136.563 0.000
g g 8 -0.071 -0.170 31.154 0.000 Ly ] g 8 0231 -0.050 14375 0.000
[ ' 9 0037 -0.046 31339 0000 () Lt 9 0220 0011 150.35 0.000
[ e 10 0049 0028 31669 0000 (N g 10 0.077 -0079 151.16 0.000
g g 11 -0.077 -0.050 32494 0001 [l [ 11 0126 -0.010 153.35 0.000
[ e 12 0055 -0.018 32923 0001 rm et 12 0.090 -0.024 154.48 0.000
g (| 13 -0.032 -0.147 33.069 0002 it [ 13 0.002 -0.041 154.48 0.000
g e 14 -0.084 0025 34080 0002 o g 14 -0.000 -0.090 154.48 0.000
g o 15 -0.085 -0.059 35105 0.002 e (N 15 -0.023 -0.015 154.56 0.000
e H 16 -0.038 0006 35315 0004 g g 16 -0.138 -0.115 157.31 0.000
g g 17 -0.136 -0.134 38.026 0.002 g et 17 -0.101 -0.026 158.82 0.000
g g 18 -0.147 -0.075 41232 0001 iyl (i 18 -0.073 0071 159.60 0.000
Hp (i 19 -0.003 0085 41233 0002 g Ht 19 -0.129 0.021 162.05 0.000
g L 20 -0.070 0.028 41965 0.003 g g 20 -0.147 -0.115 165.28 0.000

Figure F.28: GARAN - Correlograms of session and daily RV series under CTS for different sampling

intervals

PACFs of session RVs differ slightly from one another depending
on the frequency. For frequency 1 min, lags 1,2,4 and 6 are
significant in PACF, whereas lags 2 and 1,2 and 6 are significant (on
the edge) for 5 min and 10 min frequencies, respectively.

PACEFs of daily RVs differ slightly from one another depending on
the frequency. For frequency 1 min, lags 1,2 and 3 are significant in
PACF, whereas lags 1 and 3 and lags 1, 3, and 6 are significant for
5 min and 10 min frequencies, respectively.
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e Slow decay in some of the ACFs calls for stationarity tests.

¢ All of these observations hold under all cleaning methods and aggregation
algorithms.

b)  Stationarity-Unit root test:

e To test for stationarity and unit root, i.e. if the series move around a
constant mean or diverge as time passes, Augmented Dickey Fuller
(ADF) Test is preferred. By visual inspection of graphs, no trend is
observed in any of our RV series, therefore, ADF Test is run with an
intercept and no trend, the number of legs to be involved in the analysis
is chosen by Schwarz criterion as it is the default choice suggested by
E-views.

e TTS-Raw-: Inthe E-views setting, where number of lags are optimized
by E-views according to Schwarz criterion, R-squared values vary in a
band of 29-55%. The null of nonstationarity is rejected at 1 and 5%
significance level for all session and daily series*.

e CTS: In the E-views setting, where number of lags are optimized by E-
views according to Schwarz criterion, R-squared values has a wide
range of 39% to 57%. At 1% significance level, all RV series, either
session or daily and at 5 and 10 min frequencies, are found to be
stationary. However, both of session and daily 1 min RV series under
cleaning method 4.ii.a turn out to be nonstationary at 5 % significance
level. Interestingly, 1 min session or day based series become stationary
under cleaning method 4.ii.b.

4 In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we
switch to Daily series. Here, switching between Daily or session series does not affect p-values of test
statistic (like ISCTR)
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ISCTR SUMMARY AND REVIEW OF CHAPTER 4 RESULTS

1) UHFD Characteristics Under Different Sampling Schemes and Error
Cleaning and Data Filtering Combinations

a) Irregular Temporal Spacing

ISCTR
Plot of Durations Between Consecutive Transactions (Inside a Session)
Transaction Time Sampling-Raw Data
Second Half of 2012
600 T T T T T

500 m 1

300 -1

200 1

0 LI ‘IM‘.W“J MO HL i h‘\ AR 1\ ll ‘ il \“\ ‘m “M “w‘ L ] I“‘\\\\\\‘\H\ i MH‘\ ) M\“IM. IR m“ il ‘ \m‘mim R
0 1 2 3 4 5 6

Nth Transaction During Second Half of 2012 X 10°

100

Duration
Between Consecutive Transactions In a Session

Figure F.29: Plot of durations between consecutive transactions (inside a session) for ISCTR TTS-raw
data throughout the second half of 2012.

b) Temporal dependence: By comparing autocorrelation and partial
autocorrelation functions of 600 seconds* absolute returns and log returns
under CTS(clean and aggregated and interpolated) as well as absolute returns,
log returns and durations in seconds from one transaction to the next under
TTS( raw versus clean and aggregated) for December of 2012, we see that there
are differences between ACF and PACF structure of absolute and log returns
between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction
sampled data by first cleaning, then aggregating and then interpolating (all
needed for CTS) to 600 second sampled data distorts ACF and PACF of return
series.

e TTS-Raw-Durations: ACF (very very slowly decaying positive significant
up to 20 lags) and PACF (hyperbolic decay, significant up to 20 lags)
(shocks persist)

%5 Since first order autocorrelation was observed in 10 min returns under all cleaning and aggregation
methods under CTS, we did not feel the urgency to check for 1 min returns under CTS. Recall that we
included 1 min returns under CTS for MIGRS just because 10 min log returns exhibited no
autocorrelation at all.
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e TTS-Raw-Absolute Returns: ACF (very very slow decay) and PACF
(decaying positive and significant up to 16-20 lags) (shocks persist)

e TTS-Raw-Log returns: ACF (quick decay, first three lags negative-
positive-negative significant) PACF( slower hyperbolic decay, first 14 lags
significant)

e TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (very very slowly
decaying positive and significant up to 20 lags) and PACF (hyperbolic
decaying positive and significant up to 18 to 20 lags) (shocks persist)

e TTS (4.ii.a and b-5.i-5.1i-5.1ii-5.iv-5.v)-Absolute returns: ACF (decaying
positive and significant up to 20 lags ) and PACF (decaying positive and
significant up to 18-20 lags) (shocks persist)

e TTS (4.ii.a and b-5.i-5.ii-5.1ii-5.iv-5.v)-Log returns: ACF (quick decay,
first two-three lags negative-positive-negative significant) PACF(slower
hyperbolic decay, first 10-12 lags negative significant)

e CTS-Durations: Meaningless, after interpolation duration from one entry
to the next is always 1 second.

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF
(first 2 lags are positive significant), PACF(positive significant up to 2nd

lag)

e CTS (4.ii.a and b-5.i-5.ii-5.11i-5.iv-5.v)-10 min Log returns: ACF (only
first lag is negative significant) and PACF (first two legs are negative
significant)

Under TTS, with raw or clean and aggregated data, there is significant positive
autocorrelation up to 20 lags in absolute returns, significant up to third order
autocorrelation in log returns and very significant positive autocorrelation up to
20 lags in seconds elapsed between two transactions, thus volatility clustering is
verified. Whereas, for 10 min returns under CTS, log returns display first and
second order autocorrelation, which is in conformity with evidence laid out by
the finance literature in general, that very short term returns exhibit strong
autocorrelation especially on the first lag. Absolute return autocorrelation
structure is changed under CTS at 600 seconds sampling interval compared to
results under TTS at 1 transaction interval. Likewise, switching to CTS and
calculation returns at 600 seconds suppresses partial autocorrelation figures at
several lags of both absolute and log returns. Meanwhile, comparing data
handling combinations to each other, any combination of cleaning methods and
aggregation methods (compared to other combinations) does not cause any
major change in total and partial correlation structures once we move under a
sampling scheme, it being either TTS or CTS.
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Figure F.30: ACFs and PACFs of logreturn and absolute return series of ISCTR for December 2012
under TTS and CTS



2)

a)

Diurnal Patterns: These patterns can be sought only under CTS because of their
definitions such as number of trades per x minutes or absolute return per y
seconds. For ISCTR case, there are strong W shapes which are persistent across
cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes
trade intensities throughout days in second half of 2012, whereas patterns in 10
minutes absolute returns are closer to W without last spike at the end of the day.
10 minutes absolute percentage returns strongly exhibit L shape. All in all, there
are significant diurnal patterns in returns and trading activity in the form of
intensity and volume under CTS and these patterns look exactly same when
various combinations of cleaning and aggregation methods are applied.
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Figure F.31: Diurnal patterns - ISCTR cleaned and aggregated transaction data under CTS

Visual and Formal Statistical Tests of Existence and Statistical
Features of Market Microstructure Noise

VSP: Regardless of the sampling schemes or cleaning and aggregation
techniques combinations, average realized volatility of return on transaction
price explode as we increase the sampling frequency, either in seconds or in
transactions. Explosion becomes trivial for the sampling intervals that are less
than 200 seconds or 15 transactions. This observation is valid both for session
and daily figures, serving as a visual proof regarding existence of market
microstructure noise and pointing to a positive relationship between noise
increment and true price return, both under CTS and TTS even if the data set is
cleaned or aggregated. At this point, we would like to emphasize that for VSPs,
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we skipped 4.ii.a-5.i-5.1i-5.1ii-5.iv-5.v combinations under TTS, mainly because
the number of cleaned points under 4.ii.a is so small, cleaning makes no real
difference comparing to no cleaning of the data set. Any possible difference
might have been observed under cleaning method 4.ii.b, which ended up deleting
more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we
additionally search for any marginal effect that cleaning method 4.ii.b has over
cleaning method 4.ii.a. However, as put forward previously, cleaning or
aggregation does not affect the result that market microstructure becomes
dominant after 15 transactions under TTS and 200 seconds under CTS and that
the shape of VSP suggest a positive correlation between noise increment and
true price return.
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Figure F.32: VSPs of ISCTR over Daily RVs using clean and aggregated data under CTS, raw data
under TTS, and clean and aggregated data under TTS.

b)  Statistical Tests Regarding Existence and Statistical Features of MMN :

e Existence of MMN is verified statistically under both of CTS and TTS.
We calculated Z7 ,, , testing null hypothesis in (3.11) by comparing RVs
that are calculated over different frequency pairs composed of high-low
frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200),
(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30),
(20,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias
of the RV estimator is dominated by expectation of square of the noise
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increment. Therefore, if we reject the null hypothesis, it means that the
MMN has statistically significant impact on realized estimator of the V.

For each day in the sample period of 124 days and each frequency pair, we
run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis are 100% under raw-TTS, 100% under
clean and aggregated TTS and around 98% under CTS for all cleaning and
aggregation method combinations when we compare RVs calculated over
3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As
we decrease the sampling frequency at the high frequency leg, rejection
percentages of null hypothesis shrink, which is true under both of TTS and
CTS. For raw-TTS, the rejection percentages begin with 100% and
decrease gradually to 65% as high frequency leg moves toward 20
transactions when low frequency leg is 30 transactions. Cleaning and
aggregating the data does not amend the downward trend in rejection
percentages under TTS, but make it steeper. For all aggregation choices
with cleaning method 4.ii.b applied under TTS, the rejection percentages
begin with 100% and decrease gradually to 32% as high frequency leg
moves toward 20 transactions. Switching to CTS as well as moving across
the grid of cleaning and aggregation combinations do not change the
results either. For CTS, the rejection percentages begin with around 100%
for 10 to 1200 seconds pair and goes down the hill to 12% as high
frequency legs are slowed to 900 seconds.

Following representative rejection rate graphs reveal that the MMN starts
to accentuate as the sampling frequency converges to 10-15 transactions
under TTS, and 250-300 seconds under CTS. These findings are in
conformity with those supplied by the VSP analysis. The MMN is felt
strongly once we cross over the sampling interval thresholds of 15
transactions or 5 minutes under TTS and CTS, respectively. For higher
frequencies, rejection rates turn out to be quite high, especially after 150
seconds under CTS and 10 transactions under TTS, rejection rates become
flat in a band of 95-100%. Moreover, visual inspection of the test statistic
Zr o, for several frequency pairs either under TTS or CTS reveals that for
the majority of the time, test statistic is positive and outside 5% st. normal
confidence interval, meaning that there is positive correlation between
noise and efficient price, which is again in conformity with the exploding
VSPs.
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Figure F.33: ISCTR - Plots of Zr,, ,, for each day in the sample period with upper and lower tail
critical values of standard normal under TTS and CTS.
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e Summary: Model of an i.i.d MMN with constant variance might be proper
under CTS but under raw-TTS, for more than 50% of the days, null of
constant variance is rejected for triples with very high frequencies
combined with very low. This might be evidence of i.i.d assumption not
holding at frequencies lesser 15 transactions. Sampling scheme, but not the
aggregation method, is discovered to very influential on rejection of null
hypothesis that MMN has variance independent of sampling frequency.
Meanwhile, cleaning algorithms have some suppressive effect on rejection
percentages particularly under TTS.

Awartani et al. [16] derive a test with the idea that if the MMN has constant
variance, then noise variances calculated over frequencies 1/M or 1/N
should be same independent of M or N chosen. Their null and null
hypotheses are as in (3.35) and (3.36).

Since alternative hypothesis is in harmony with the presence of
autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde
[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign
of the rejection of the null hypothesis that the MMN is a sequence of i.i.d
random variables with constant variance. To test the validity of this null
hypothesis, a test statistic compares RV differences using two frequency
pairs, where pairs are M,L and N,L. L represents a frequency at which we
can ignore the MMN safely, say 20 minutes and M and N are frequencies
at which the MMN is considered to be significant. Therefore, the test is
build on RVs calculated over frequency triples i.e. for each high frequency
pair combined with 20 minutes, we test null hypothesis that E(noise
increment square at low frequency)=E(noise increment square at high
frequency). If we reject the null hypothesis, it means that the MMN has
variance that is NOT independent of sampling frequency, therefore any
assumptions regarding i.i.d nature of MMN can be taken as invalidated.
Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30)
(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200),
(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200)
seconds under CTS.

For each day in the sample period of 124 days and each frequency triple,
we run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis clearly changes from one triple to another
and as we clean and aggregate data. Beware that under raw-TTS especially
for combinations of frequencies with highest differences between frequent
legs, rejection percentages exceed 50%, while they stagger around 15%
for 3-10-30 triple with lowest distance between first two legs. However,
once we clean and aggregate the data, rejection percentages decline to
levels 40% or 20% depending on the triple*. For CTS 4.ii.a (b), constant
variance assumption rejection percentage varies between 2% and 8%, both

% In a sense, these findings agree with findings for MIGRS case, where rejection percentages are
highest for triples with distant constituents and TTS-raw data; however, MIGRS rejection percentages
are way below those of ISCTR rejection percentages.
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of which are just a fraction of rejection percentages under TTS-raw or
TTS-cleaned. Therefore, sampling scheme is discovered to be very
influential on rejection of the null hypothesis that the MMN has variance
independent of sampling frequency. We can reject this null hypothesis
under TTS confidently and conclude that assumption of an i.i.d MMN with
constant variance does not reflect the real life structure of the MMN,
whereas under CTS, such an assumption seems to hold especially for
frequencies lower than 150 seconds. Evidence reveals that aggregation
method does not affect rejection percentages and for triples with high
frequency legs being close to very slow frequency leg, rejection
percentages are severely damaged independent of the sampling scheme.
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3) RV Analysis

We constructed two RV time series, namely session RVs and daily RVs, for each
frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600
seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a,
4.ii.b) -aggregation method (5.1, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time
series has 124 data points, whereas session RV time series is constituted of 248
entries. Each RV series under each sampling scheme and cleaning and
aggregation method combinations is subjected to preliminary statistics, ACF and
PACF analysis and lastly unit root is checked where autocorrelation exhibits
slow decay.

e The factors that have any effect on RV series’ normality and autocorrelation
structure turn out to be whether the RV is on a session or daily basis, whether it
is under raw-TTS or CTS and the frequency at which the RV is calculated.
Regarding lognormality, frequency and sampling scheme are found to be
influential. For all frequencies, the session and daily RV series are not normally
distributed under raw-TTS as very high skewness, kurtosis and JB statistic
values reveal. Switching to CTS and increasing frequency makes RV series more
and more normal such that at 1 min frequency (session or daily), we cannot reject
null hypothesis of RV sample coming from a normally distributed population at
5 or 1% significance levels. Taking logarithm of RV series converts them to
normal for all frequencies under raw-TTS and for 10 min frequency under
CTS*.

¢ Decreasing frequencies cause less number of lags being significant with lesser
significant levels under CTS, i.e. decreasing frequency again depresses
autocorrelation structure of RV series regardless of session-daily calculation,
which is in line with the existence of MMN. However, the suppression effect is
not evident under raw-TTS. Moreover, calculating RVs on a session basis makes
the RV series more autocorrelated under CTS. Regarding raw-TTS, only
daily/session calculation of RV is found to have effect on correlogram such that
daily RVs at all frequencies have some significant negative autocorrelations at
lags that are greater than 14.

e Once we are working on a daily or session series at a particular frequency under
CTS, cleaning and aggregation methods do not alter RV series’ non-
normality/normality or autocorrelation structure.

¢ Neither sampling schemes, nor frequencies or cleaning/aggregation methods or
session/daily basis choice affect the stationarity results as E-views ADF Test
results reveal that we can reject null of unit root at 5%significance level for all
RV series under TTS or CTS at all frequencies*®. On the contrary, if we run ADF
test for fixed lag length (2) and intercept in MATLAB, test results leads us not
to reject null hypothesis of unit root for 1 min and 5 min daily RV series under
CTS.

47 Unlike the case of MIGRS.
48 Unlike the case of MIGRS.
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a)  Descriptive statistics by frequency, by sampling scheme and by cleaning and
aggregation methods:

e TTS-Raw: For all frequencies, the session and daily RV series are not
normally distributed*® as very high skewness, kurtosis and JB statistic
values reveal. Mean of the session and daily RVs become smaller as the
sampling interval is lengthened, which is accompanied by a decrease in
skewness, kurtosis and JB statistic as we sample less frequently. Still,
normality of the any of these series is out of question. Correlogram of all
session RV series look alike but are not exactly same. Generally speaking,
ACFs and PACFs of RVs are decaying but not hyperbolically such that
total and partial autocorrelations are strong at even lags and weak at odd
legs (ACF positive significant up to 12" - 14" and PACF positive or
negative significant selectively at legs, 1, 2, 4, 6 and 11)*°. Although
correlograms of all daily RVs resemble one another, compared to
correlogram of session series, autocorrelation structure of daily RVs looks
different. Now, a quick decay with first two lags being positive significant
in PACF is evident, while decay in ACF starts from significant positive
values, hit 0, then become negative significant where first 7-8 legs are
positive significant, legs 8-12 are not significant and legs 13-20 are
negative significant. The change in autocorrelation structure of RV series
by looking at session and daily RVs separately, calls for stationarity test
and accordingly, we checked for unit roots in daily series to see if summing
RV from session one and session two to reach daily RV distorts anything
in RV stationarities at different frequencies.

49 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies.
%0 Unlike the case of MIGRS.
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Figure F.36: ISCTR - Correlograms of session and daily RV series under TTS for different sampling
intervals

e CTS: For 1 min frequency, we cannot reject the null hypothesis that the
session and/or daily RV series come from a normally distributed
population at 5% significance level, whereas rejection of such hypothesis
for session and/or daily RV series at 5 and 10 min frequencies is evident
by high skewness, kurtosis and JB statistic values. Like the case under
TTS,

i. mean of the session and daily RVs become smaller as the sampling
interval is lengthened.

e However, contrary to findings for RV series under RAW-TTS,

i. decrease in skewness, kurtosis and JB statistic values is observed as
we sample more and more frequently, to a point that while session
and daily 10 min RV series are not normal, JB tests on session and
daily 1 min RV series fail to reject normality at 5% significance
level.
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ACFs of session and daily RVs change as the sampling frequency
changes, such that for increasing frequencies RV series exhibit
significant positive total autocorrelation up to higher number of legs.
Apart from this common trait, the decay patterns in total correlation
of daily and session RVs are different, especially obvious at 1 min

frequency.

CTS-4.ii.a-5.i-Session 10 min RV series
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CTS-4.ii.a-5.i-Session 1 min RV series

Date: 05/03116 Time: 14.37

Sample: 1

248

Included observations: 248

Autocorrelation  Partial Correlation AC  PAC

Q-Stat

Prob

Autocorrelation

Partial Correlation

AC  PAC

Q-Stat

Prab

EEER =R R = n =

=)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1

il
|

1
1
1
q
1
1
1

=
=

i
il
|

g

=

i

ul
|
|
|
|
|
ul 12 0185 0134
|
|
|
|
|
|
|
|

12.892
30.836
45.004
54.746

57 59.796

72.155

8 72309
62 78313

79620

68 85.961

85962
94941
95 484
97.922
98.083
99.099
101.40
101.68
102.89
103.40

0.000

R B L1 [

|
|
|
a

o

0

Aggggggggguguguguguu

i

R R NN

10
11
12
13
14
15
18
17
18
19
20

0.496 0.498
0.689 0.588
0.439 0.013
0.588 0.186
0.381 -0.039
0.531 0132
0.309 -0.102
0492 0.134
0.292 -0.018
0.463 0.094
0.233 -0.116
0.385 -0.002
0.227 0.037
0.374 0.068
0.170 -0.098
0.315 -0.007
0.147 0003
0.302 0.049
0.145 0.009
0.239 -0.072

81.753
181.54
230.32
318.24
35527
42761

45213
514.62
536.78
59253
606.71

64585
659.20
896.35
704.00
730.52
736.29
760.85
766.55
782.03

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

CTS-4.ii.a-5.i-Daily 10 min RV series

Date: 05/03/18 Time: 14:37
Sample: 1248
Included observations: 124

Autocorrelation  Partial Correlation AC PAC

Q-Stat
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1
1
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1
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! 9 -0.032 -0.046
! 10 -0.040 -0.013
| 11 0057 0100
| 12 0046 0033
| 13 -0.083 -0.075
| 14 -0.105 -0.103
| 15 -0.079 -0.013
| 16 -0.074 -0.025
! 17 -0.087 -0.056
! 18 -0.002 0.087
! 19 -0.089 -0.053
! 20 -0.146 -0.073

17.982
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48653
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54.035

Figure F.37: ISCTR - Correlograms of session and daily RV series under CTS for different sampling

PACFs of session RVs differ slightly from one another depending
on the frequency. For frequency 1 min, lags 1, 2, 4 and 6 are
significant in PACF, whereas lags 1, 2 and 4 and 1, 2 and 6 are
significant (on the edge) for 5 min and 10 min frequencies,

respectively.

PACEFs of daily RVs differ slightly from one another depending on
the frequency. For frequency 1 min, lags 1 and 2 are significant in
PACF, whereas lags 1, 2 and 13 and lags 1 and 3 are significant for

CTS-4.ii.a-5.i-Daily 1 min RV series

Date: 05/03/16 Time: 14:29

Sample:

1248

Included observations: 124
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AC  PAC Q-Stat
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0.014 -0.140

-0.012 -0.022
-0.046 0.036
-0.034 0.018
-0.024 0.075
-0.087 -0.098

73287
12953
17211

206.87
23772
257.85
276.44
289.19
300.55
308.03
314.42
317.06
318.90
320.23
320.26
320.28
320.59
320.76
320.85
321.52

5 min and 10 min frequencies, respectively.

e Slow decay in some of the ACFs calls for stationarity tests.



o All of these observations hold under all cleaning methods and aggregation

algorithms.

b) Stationarity-Unit root test:

e To test for stationarity and unit root, i.e. if the series move around a

constant mean or diverge as time passes, Augmented Dickey Fuller (ADF)
Test is preferred. By visual inspection of graphs, no trend is observed in
any of our RV series, therefore, the ADF Test is run with an intercept and
no trend, the number of legs to be involved in the analysis is chosen by the
Schwarz criterion as it is the default choice suggested by E-views.

TTS-Raw-: In the E-views setting, where number of lags are optimized
by E-views according to the Schwarz criterion, R-squared values vary in a
band of 46-55%. The null hypothesis of nonstationarity is rejected at 5%
significance level for all session and daily series®.

CTS: In the E-views setting, where number of lags is optimized by E-
views according to Schwarz criterion, R-squared values has a wide range
of 11% to 54%. At 1% significance level, all RV series, either session or
daily and at all frequencies, are found to be stationary.

5L In MIGRS analysis, significance level of rejection regarding nonstationarity incereases when we
switch to Daily series. Here, switching between Daily or session series does not affect p-values of test

statistic.
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1)

a)

MIGRS SUMMARY AND REVIEW OF CHAPTER 4 RESULTS

UHFD Characteristics Under Different Sampling Schemes and Error
Cleaning and Data Filtering Combinations

Irreqular Temporal Spacing

MIGRS
Plot of Durations Between Consecutive Transactions
Transaction Time Sampling-No Cleaning
Second Half of 2012
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Figure F.38: Plot of durations between consecutive transactions (inside a session) for MIGRS TTS-

b)

raw data throughout the second half of 2012.

Temporal _dependence: By comparing autocorrelation and partial
autocorrelation functions of 60 and 600 seconds absolute returns and log returns
under CTS (clean and aggregated and interpolated) as well as absolute returns,
log returns and durations in seconds from one transaction to the next under TTS
(raw versus clean and aggregated) for December of 2012, we see that there are
differences between ACF and PACF structure of absolute and log returns
between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction
sampled data by first cleaning, then aggregating and then interpolating (all
needed for CTS) to 600 second sampled data distorts ACF and PACF of return
series.

e TTS-Raw-Durations: ACF and PACF very very slowly decaying positive
and significant up to 20 lags (shocks persist)

e TTS-Raw-Absolute Returns: ACF and PACF decaying positive and
significant up to 20 lags (shocks persist)

e TTS-Raw-Log returns: ACF (quick decay, first two lags negative
significant) PACF (slower decay, first 10 lags significant)
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e TTS(4.ii.a and b-5.i-5.ii-5.1ii-5.iv-5.v)-Durations: ACF and PACF very
very slowly decaying positive and significant up to 18 to 20 lags (shocks
persist)

e TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying
positive and significant up to 20 lags ) and PACF (decaying positive and
significant up to 8-10 lags)

e TTS (4.i.a and b-5.i-5.11-5.1ii-5.iv-5.v)-Log returns: ACF (quick decay,
first lag negative significant) PACF (slower decay, first 5 lags negative
significant)

e CTS-Durations: Meaningless, after interpolation duration from one entry
to the next is always 1 second.

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF
(positive decaying, significant up to 10th lag), PACF (quick decay,
positive significant up to 3rd lag)

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF and
PACEF (no lag is significant at all)

e CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-1 min Absolute Returns: ACF
(positive slowly decaying, significant up to 20th lag), PACF (slow decay,
positive significant up to 12 lags)

e CTS (4.ii.aand b-5.i-5.ii-5.1ii-5.iv-5.v)-1 min Log returns: ACF and PACF
quick decay, first lag negative significant)

Under TTS, with raw or clean and aggregated data, there is significant positive
autocorrelation up to 20 lags in absolute returns, significant up to third order
autocorrelation in log returns and very significant positive autocorrelation up to
20 lags in seconds elapsed between two transactions, thus volatility clustering is
verified. Whereas, for 10 min returns under CTS, log returns display no
autocorrelation at all, which is quite contrary to general consensus in the finance
literature, that very short term returns exhibit strong autocorrelation especially
on the first lag. Thus, we check for ACF and PACF of 1 min log returns and
observe negative first order autocorrelation. Absolute return autocorrelation
structure is changed under CTS at 600 seconds sampling interval compared to
results under TTS at 1 transaction interval. Likewise, switching to CTS and
calculating returns at 600 seconds suppresses partial autocorrelation figures at
several lags of both absolute and log returns. Meanwhile, comparing data
handling combinations to each other, any combination of cleaning methods and
aggregation methods (compared to other combinations) does not cause any
major change in total and partial correlation structures once we move under a
sampling scheme, it being either TTS or CTS. However, cleaning and
aggregation under TTS vyield different PACF structures in absolute and log
returns compared to results produced with raw data. Under CTS, rather than
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cleaning and aggregation methods, sampling interval matters in terms of return
autocorrelation structure.

Migrs December 2012

Transaction Time Sampling Migrs December 2012
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Figure F.39: ACFs and PACFs of logreturn and absolute return series of MIGRS for December 2012

under TTS and CTS

Diurnal Patterns: These patterns can be sought only under CTS because of their
definitions such as number of trades per x minutes or absolute return per y
seconds. For MIGRS case, there are strong W shapes which are persistent across
cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes
trade intensities throughout days in second half of 2012, whereas patterns in 10
minutes absolute returns and 10 minutes absolute percentage returns are closer
to W without last spike at the end of the day and a L shape, respectively. All in
all, there are significant diurnal patterns in returns and trading activity in the
form of intensity and volume under CTS and these patterns look exactly same
when various combinations of cleaning and aggregation methods are applied.
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2)

Average of 10 Minutes Volume Average of 10 Minutes Absolute
Returns
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Figure F.40: Diurnal patterns at MIGRS cleaned and aggregated transaction data under CTS

Visual and Formal Statistical Tests of Existence and Statistical Features of
Market Microstructure Noise

VSP: Regardless of the sampling schemes or cleaning and aggregation
techniques combinations, average realized volatility of return on transaction
price explode as we increase the sampling frequency, either in seconds or in
transactions. Explosion becomes trivial for the sampling intervals that are less
than 200 seconds or 15 transactions. This observation is valid both for session
and daily figures, serving as a visual proof regarding existence of market
microstructure noise and pointing to a positive relationship between noise
increment and true price return, both under CTS and TTS even if the data set is
cleaned or aggregated. At this point, we would like to emphasize that for VSPs,
we skipped 4.ii.a-5.i-5.ii-5.iii-5.iv-5.v combinations under TTS, mainly because
the number of cleaned points under 4.ii.a is so small, cleaning makes no real
difference comparing to no cleaning of the data set. Any possible difference
might have been observed under cleaning method 4.ii.b, which ended up deleting
more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we
additionally search for any marginal effect that cleaning method 4.ii.b has over
cleaning method 4.ii.b. However, as put forward previously, cleaning or
aggregation does not affect the result that market microstructure becomes
dominant after 15 transactions under TTS and 200 seconds under CTS and that
the shape of VSP suggest a positive correlation between the noise increment and
the true price return.
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Figure F.41: VSPs of MIGRS over Daily RVs using clean and aggregated data under CTS, raw data

b)

under TTS, and clean and aggregated data under TTS.

Statistical Tests Regarding Existence and Statistical Features of MMN :

Existence of MMN is verified statistically under both of CTS and TTS.
We calculated Z; ,, ;, testing null hypothesis in (3.11) by comparing RVs
that are calculated over different frequency pairs composed of high-low
frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200),
(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30),
(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias
of the RV estimator is dominated by expectation of square of the noise
increment. Therefore, if we reject the null hypothesis, it means that the
MMN has statistically significant impact on realized estimator of the IV.

For each day in the sample period of 124 days and each frequency pair, we
run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis are 100% under raw-TTS, 90% under clean
and aggregated TTS and around 91% under CTS for all cleaning and
aggregation method combinations when we compare RVs calculated over
3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As
we decrease the sampling frequency at the high frequency leg, rejection
percentages of null hypothesis shrink, which is true under both of TTS and
CTS. For raw-TTS, the rejection percentages begin with 100% and
decrease gradually to 26% as high frequency leg moves toward 20
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transactions when lowfrequency leg is 30 transactions. Cleaning and
aggregating the data does not amend the downward trend in rejection
percentages under TTS. For all aggregation choices with cleaning method
4.ii.b applied under TTS, the rejection percentages begin with 80-90% and
decrease gradually to 12% as high frequency leg moves toward 20
transactions. Switching to CTS as well as moving across the grid of CTS
cleaning and aggregation combinations do not change the results either.
For CTS, the rejection percentages begin with around 98% for 10 to 1200
seconds pair and goes down the slope to 19% as high frequency legs are
slowed to 900 seconds.

Following representative rejection rate graphs reveal that the MMN starts
to accentuate as the sampling frequency converges to 10-15 transactions
under TTS, and 300 seconds under CTS. These findings are in conformity
with those supplied by the VSP analysis. The MMN is felt strongly once
we cross over the sampling interval thresholds of 15 transactions or 5
minutes under TTS and CTS, respectively. For higher frequencies, the
rejection rates turn out to be quite high. Moreover, visual inspection of the
test statistic Zr , , for several frequency pairs either under TTS or CTS
reveals that for the majority of the time the test statistic is positive and
outside 5% st. normal confidence interval, meaning that there is positive
correlation between noise and efficient price, which is again in conformity
with the exploding VSPs.
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MIGRS
Test Statistic Z in Equation 3.13 with upper and lower tail critical values of a standard
normal
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Figure F.42: MIGRS - Plots of Zr,, ,, for each day in the sample period with upper and lower tail
critical values of standard normal under TTS and CTS.
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e Summary: Model of i.i.d MMN with constant variance might be proper
under CTS but under raw-TTS, for more than 10% of the days, null of
constant variance is rejected for triples with very high frequencies
combined with very low. This might be evidence of i.i.d assumption not
holding at frequencies lesser 15 transactions.

Awartani et al. [16] derive a test with the idea that if the MMN has constant
variance, then noise variances calculated over frequencies 1/M or 1/N
should be same independent of M or N chosen. Their null and null
hypotheses are as in (3.35) and (3.36).

Since alternative hypothesis is in harmony with the presence of
autocorrelation in the MMN, by reminding corollary 3 of Hansen and
Lunde [61], Awartani et al. [16] interpret the rejection of null hypothesis
as a sign of the rejection of the null hypothesis that the MMN is a sequence
of i.i.d random variables with constant variance. To test the validity of this
null hypothesis, a test statistic compares RV differences using two
frequency pairs, where pairs are M,L and N,L. L represents a frequency at
which we can ignore the MMN safely, say 20 minutes and M and N are
frequencies at which the MMN is considered to be significant. Therefore,
the test is build on RVs calculated over frequency triples i.e. for each high
frequency pair combined with 20 minutes, we test null hypothesis that
E(noise increment square at low frequency)=E(noise increment square at
high frequency). If we reject the null hypothesis, it means that the MMN
has variance that is NOT independent of sampling frequency, therefore any
assumptions regarding i.i.d nature of MMN can be taken as invalidated.
Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30)
(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200),
(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200)
seconds under CTS.

For each day in the sample period of 124 days and each frequency triple,
we run the aforementioned test at 5% significance level. Sample rejection
percentages of null hypothesis clearly changes from one triple to another
and as we clean and aggregate data. Beware that under raw-TTS especially
for combinations of frequencies with highest differences, rejection
percentages spike to 14%. However, once we clean and aggregate the data,
rejection percentages decline to levels 7% or 1-2% depending on the triple.
For CTS 4.ii.a (b), constant variance assumption rejection percentage is
14% (9%) for 60-150-1200 seconds triple, which represents the highest
distance between high pair and very low third leg. Evidence reveals that
the aggregation method does not affect the rejection percentages and for
triples with high frequency legs being close to very slow frequency leg,
the rejection percentages are severely damaged.
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3)

RV Analysis

We constructed two RV time series, namely session RVs and daily RVs, for each
frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600
seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a,
4.ii.b) -aggregation method (5., 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time
series has 124 data points, whereas session RV time series is constituted of 248
entries. Each time RV series under each sampling scheme and cleaning and
aggregation method combinations is subjected to preliminary statistics, ACF and
PACF analysis and lastly unit root is checked where autocorrelation exhibits
hyperbolic decay.

e The factors that have any effect on RV lognormality and autocorrelation
structure turn out to be whether the RV is on a session or daily basis, whether it
is under raw-TTS or CTS and the frequency at which the RV is calculated.
Normality is affected by no dimension. For all frequencies, the session and daily
RV series under raw-TTS or CTS are not normally distributed as very high
skewness, kurtosis and JB statistic values reveal. Taking logarithm does not
change the non-normality under CTS for any frequency or session/daily
calculation choice. However, for log daily RV series at 10, 20 and 30 transaction
under raw-TTS, we are not able to reject the null hypothesis of normality.

e Decreasing frequency suppresses autocorrelation significance and number of
significant lags in ACFs under CTS. The suppression effect is not very evident
under raw-TTS. Moreover, calculating RVs on a session basis, makes the RV
series more autocorrelated, which holds under both of raw-TTS and CTS.

o If we run ADF test for fixed lag length (2) and intercept in MATLAB, test
results leads us to reject the null hypothesis of unit root for all RV series, session
or daily, under CTS or raw-TTS at any frequency. However, running stationarity
test in E-views with different settings cause different conclusions to be reached.
Now, frequency/daily or session combination matters, such that none of the 10
min session RV series is stationary at even 10% significance level under any
cleaning and aggregation method combination if we let E-views optimize
number of lags to include and the structure of regression according to Schwarz
Info Criterion. However, if we choose number of lags as 2, the resulting p-values
for all of 10 min RV series decrease to levels less than 5%, with R-squared values
decreasing as well.

e Once we are working on a daily or session series at a particular frequency under
CTS, the cleaning and aggregation methods do not alter the RV series’ non-
normality or autocorrelation structure or ADF test results in E-views
significantly.
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a)  Descriptive statistics by frequency, by sampling scheme and by cleaning and

aggregation methods:

TTS-Raw: For all frequencies, the session and daily RV series are not
normally distributed® as very high skewness, kurtosis and JB statistic
values reveal. Mean of the session and daily RVs become smaller as the
sampling interval is lengthened, which is accompanied by a decrease in
skewness, kurtosis and JB statistic as we sample less frequently. Still,
normality of the any of these series is out of question. Correlogram of all
session RV series look same, RVs are autocorrelated up to 11" lag and lags
1, 3, 4 and 10 are significant in PACF. Although correlograms of all daily
RVs resemble one another, compared to correlogram of session series,
autocorrelation structure of daily RVs looks different. Now, a quick decay
in ACF and PACEF is evident, only five lags are significant in ACF and
first, second and sixth lags are significant in PACF. We checked for unit
roots in daily series to see if summing RV from session one and session
two to reach daily RV changed anything in RV stationarities at different

frequencies.
TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions
Date: 011316 Time: 18:46 Date: 011316 Time: 20:49
Sample: 1248 Sample: 1248
Included abservations: 248 Included observations: 124
Autocorrelation Partial Carrelation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC  Q-Stat Prob
Ly — Ly — | 1 0577 0577 83693 0.000 == =3 1 0545 0545 37720 0000
= g 2 0.387 0.081 121.50 0.000 == = 2 0552 0363 76741 0000
= g 3 0396 0217 161.23 0.000 = ta 3 0421 0052 99620 0000
= g 4 0.440 0192 21048 0.000 /= L 4 0415 0095 12202 0.000
= a 5 0441 0142 25008 0.000 = 1o 5 0.376 0078 14059 0.000
/= e 6 0324 -0054 286093 0.000 g ) 6 0175 -0254 14465 0000
= e 7 0274 0008 30618 0.000 [ [ 7 0088 -0185 14568 0000
= a 8 0375 0177 34250 0.000 e e 8 0018 -0047 14572 0000
= g 9 0437 0141 39194 0000 e g 9 -0.042 -0.073 14597 0.000
= (=) 10 0.235 -0.224 408.33 0.000 g t 10 -0.071 0.007 146.65 0.000
B=] ik 11 0181 0.003 414.91 0.000 o P 11 -0.067 0162 147.27 0.000
a [=q 12 0.125 -0.166 419.00 0.000 g pr 12 -0.081 0076 14819 0000
=) =l 13 0.009 -0.126 421.61 0.000 g e 13 -0.071 0022 14890 0000
T m 14 0.089 -0.050 42373 0.000 ' tpr 14 -0.077 -0.003 14975 0.000
m e 15 0.041 0008 42418 0.000 g g 15 -0.075 -0.081 150.54 0.000
Bl " 16 0013 -0.046 42423 0000 g g 16 -0.059 -0.096 151.05 0.000
e q 17 -0.017 -0111 42430 0.000 o ! 17 -0.060 -0.054 151.58 0.000
e " 18 -0.030 -0.017 42454 0.000 o e 18 -0.057 -0.026 152.05 0.000
e rp 19 -0.042 0.056 425.01 0.000 o e 19 -0.058 0.009 152,56 0.000
e e 20 -0.052 -0.003 42576 0.000 ' tp 20 -0.051 0061 152,95 0.000
TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions
Date: 01/13/16 Time: 18:53 Date: 01/13/16 Time: 20:59
Sample: 1248 Sample: 1248
Included observations: 248 Included observations: 124
Autocorrelation Partial Correlation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC Q-Stat Prob
| == V== 1 0639 0639 10242 0000 I | | == 4 0635 0635 51172 0.000
= o 2 0462 0081 15622 0.000 == i 2 0.633 0.335 10249 0.000
= a 3 0431 0177 20312 0.000 [ | g 3 0.463 -0.057 13015 0.000
= /| 4 0507 0275 26850 0.000 [ | B 4 0.428 0.030 154.00 0.000
= p 5 0504 0.114 33328 0.000 | I m 5 0.382 0.093 17319 0.000
N g 6 0333 -0.169 36177 0.000 =] = ] 6 0.194 -0.278 17818 0.000
"= o 7 0301 0.062 38502 0.000 L =l 7 0100 -0.178 179.51 0.000
fi==] i 8 0347 0084 41608 0000 N TH 8 -0.010 -0.025 17952 0.000
[i==] 15| 9 0441 0169 466.45 0.000 T e 9 -0.072 -0.065 180.23 0.000
=] = 10 0250 -0.254 48398 0.000 e iy 10 -0.092 0.035 18139 0.000
g o 11 0182 0.026 492.65 0000 g W=} 11 -0.095 0169 18265 0.000
'@ o 12 0135 -0.133 49744 0000 [l mN 12 -0.119 0.011 18462 0.000
s} il 13 0134 -0.097 50218 0000 T i 13 -0.090 0.045 18575 0.000
g " 14 0129 -0.011 50659 0.000 g o 14 -0.098 0.009 187.13 0.000
[l i 15 0012 -0.054 506.62 0.000 g g 15 -0.081 -0.101 188.07 0.000
i " 16 -0.012 -0.044 506.67 0.000 g g 16 -0.064 -0.063 18866 0.000
e g 17 -0.042 -0.078 507.13 0.000 g g 17 -0.073 -0.055 189.44 0.000
g L 18 -0.042 -0.065 507.60 0.000 i i 18 -0.066 -0.073 190.08 0.000
gt s 18 -0.058 0095 508.51 0.000 i i 19 -0.067 0.022 190.76 0.000
g1 N 20 -0.081 -0.006 510.29 0.000 g p 20 -0.063 0056 19135 0.000

Figure F.45:

MIGRS - Correlograms of session and daily RV series under TTS for different sampling
intervals

%2 Log normality is also rejected at all frequencies.
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e CTS: For all frequencies, the session and daily RV series are not normally
distributed as very high skewness, kurtosis and JB statistic values reveal.
Like the case under RAW-TTS,

i. mean of the session and daily RVs become smaller as the sampling
interval is lengthened.

ii.  ACFs of session and daily RVs change as the sampling frequency
changes, such that for increasing frequencies RV series exhibit
significant positive total autocorrelation up to higher number of legs.
Apart from this common trait, the decay patterns in total correlation
of daily and session RVs are different, especially obvious at 1 min

frequency.
CTS-4.ii.a-5.i-Session 1 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series

Date: 05/18/16 Time: 18:39 Date: 05/18/16 Time: 18:48

Sample 1248 Sample: 1248

Included observations: 248 Included observations: 124

Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob
= = 1 0543 0543 74145 0000 L | (=3 1 0635 0635 51.203 0.000
[y @ 2 0452 0222 12547 0000 L — = 2 0589 0312 95661 0000
= (il 3 0384 0077 15002 0000 | = (NN 3 0448 -0015 12153 0.000
= = 4 0487 0288 21444 0000 [ | (N 4 0415 0.075 144.08 0.000
= m 5 0408 0067 25688 0000 =3 (il 5 0397 0115 16476 0.000
[y [y 6 0337 -0022 28592 0000 A = 6 0198 -0282 16097 0000
g g 7 0219 -0.096 29822 0.000 L g 7 0133 -0098 17232 0000
= g 8 0359 0217 32147 0.000 (BN g 8 0017 -0.059 17236 0.000
= 1 9 0349 0080 353.02 0.000 [N [N 9 -0013 -0041 17238 0000
= gt 10 0281 -0073 38357 0000 g g 10 -0.104 -0.108 173.85 0.000
g g 11 0143 -0108 38890 0000 g @ 11 -0.091 0.143 175.00 0.000
[} (Nl 12 0191 0041 39847 0000 oo N 12 -0.133 -0.002 177.45 0.000
' =1 13 0080 -0222 40015 0000 g g 13 -0.099 0063 178.82 0.000
A ‘o 14 0170 0091 407.77 0.000 o [ 14 -0.141 -0.068 18163 0.000
H g 15 0010 -0.104 40780 0000 [=H] B 15 .0.133 0.002 18416 0.000
e H 16 0.041-0.003 408.24 0.000 i N 16 -0104 -0018 18573 0000
i a 17 -0.035 -0.112 408.56 0.000 g1 i 17 -0.115 -0.050 18767 0.000
H o 180024 0023 40871 0.000 g1 i 18 -0.110 -0.091 189.44 0.000
i L 19 -0.084 -0.084 41061 0.000 I=h B 19 -0401 0.060 190.97 0.000
h [l 20 -0.014 0077 41068 0.000 g i 20 0090 0030 19218 0.000
CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Daily 10 min RV series

Date: 0113/16 Time: 2136 Date: 0171316 Time: 21:48

Sample: 1248 Sample: 1248

Included observations: 248 Included abservations: 124

Autocorrelation Partial Correlation AC  PAC Q-Stat Prob Autocarrelation Partial Correlation AC PAC Q-Stat Prob

[ [ | 1 0.506 0.506 64.376 0.000 Ly | [ | 1 0471 0471 28130 0.000
1= o 2 0.223 -0.046 76867 0.000 L | [ul 2 0337 0147 42704 0.000
= ) 3 0.288 0.260 97.809 0.000 3 [l 3 0277 0.095 52590 0.000
(] =i} 4 0165 -0.117 10476 0.000 Ly ) [y =} 4 0368 0238 70.248 0.000
=3 | 5 0222 0254 11728 0000 == [y ) 5 0455 0260 97451 0.000
[} g 6 0205 -0.082 12810 0000 g o ) 6 0073 -0.393 98157 0.000
g a 7 0141 0118 13323 0000 e g 7 0.040 -0.060 98372 0.000
= = 8 0.333 0241 16195 0.000 e g 8 -0.023 -0.109 93.441 0.000
= =} 9 0.427 0204 20915 0.000 [ g 9 -0.001 -0.134 98.441 0.000
'3 o 10 0.239 -0.117 22402 0.000 v N 10 -0.006 0.007 98.446 0.000
g [} 11 0121 -0.068 22784 0000 o (] 11 -0071 0202 99148 0.000
m =i} 12 0.058 -0116 22873 0.000 o (NN 12 -0.064 -0.008 99.723 0.000
m N 13 0053 0024 22947 0000 m [N 13 -0.081 0.041 10064 0.000
g g 14 0.036 -0.152 229.82 0.000 o e 14 -0081 -0.019 10158 0.000
e Bl 15 -0.009 0.014 229.84 0.000 [ N 15 -0.045 -0.033 10186 0.000
e g 16 -0.015 -0.117 229.90 0.000 [N N 16 -0.016 -0.031 101.90 0.000
" o 17 -0.036 -0.143 23026 0.000 i i 47 -0.020 0.006 101.35 0.000
il i 18 0035 0022 23058 0000 e o 18 -0.037 -0.031 10218 0.000
' T 19 0043 0019 23107 0000 e N 19 -0022 0046 10223 0.000
i ' 20 -0.020 0.085 23118 0000 an RN 20 -0.002 -0.012 10223 0.000

Figure F.46: MIGRS - Correlograms of session and daily RV series under CTS for different sampling
intervals

e However, contrary to findings for RV series under RAW-TTS,

i. decrease in skewness, kurtosis and JB statistic values is observed as
we sample more and more frequently,
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ii. PACFs of session RVs differ slightly from one another depending
on the frequency. For frequency 1 min legs 1, 2, 4 and 13 are
significant in PACF, whereas legs 1, 3, 5 and 8 and legs 1, 3, 5, 8,
and 9 are significant for 5 min and 10 min frequencies, respectively.

iii. PACFs of daily RVs differ slightly from one another depending on
the frequency. For frequency 1 min, legs 1, 2 and 6 are significant in
PACF, whereas legs 1 and 6 and legs 1, 4, 5 and 6 are significant for
5 min and 10 min frequencies, respectively.

Correlograms of all session and daily RV series under all cleaning and
aggregation combinations remind that of an AR (1) process.

Slow decay in the ACFs calls for stationarity tests. First, second and sixth
legs are significant in PACF.

All of these observations hold under all cleaning methods and aggregation
algorithms.

b)  Stationarity-Unit root test:

To test for stationarity and unit root, i.e. if the series move around a
constant mean or explode as time passes, Augmented Dickey Fuller (ADF)
Test is preferred. By visual inspection of graphs, no trend is observed in
any of our RV series, therefore, ADF Test is run with an intercept and no
trend, the number of lags to be involved in the analysis is chosen by
Schwarz criterion as it is the default choice suggested by E-views.

TTS-Raw-: In the E-views setting, where the number of lags is optimized
by E-views according to the Schwarz criterion, R-squared values vary
around 30-35%. The null hypothesis of nonstationarity is rejected at 10%
significance level for all session series in contrast to p-values of test
statistic being around or less than 1% in unit root hypothesis testing in all
daily series. Only session RV series calculated at 3 transactions, 20
transactions and 30 transactions are found to be stationary at 5%
significance level. Taking logarithm helps with significance levels®.

P-values of ADF Test —Log RV series

Frequency
Sess. Based / Daily 3tr 6tr 10tr 15tr 20tr 30tr
Sess. Based 0.05! 0.02i 0.03 0.00t 0.00! 0.00!
Daily 0.04i 0.03. 0.01 0.01 0.00 0.01.

%3 E-views ADF test with INTERCEPT, lags chosen automatically by E-views according to Schwarc

info criterion.
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e CTS: In the E-views setting, where number of lags are optimized by E-
views according to Schwarz criterion, R-squared values have a range of
23% to 47%. At 5% significance level, all RV series, either session or daily
and at all frequencies, are found to be stationary except 10 min session
row. None of the 10 min session RV series is stationary under any cleaning
and aggregation method combination if we let E-views optimize number
of lags to include and the structure of regression according to Schwarz Info
Criterion. However, if we choose number of lags as 2, the resulting p-
values for all of 10 min RV series decrease to levels less than 1%, with R-
squared values shrinking as well.
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NETAS SUMMARY AND REVIEW OF CHAPTER 4 RESULTS

1) UHFD Characteristics Under Different Sampling Schemes and Error
Cleaning and Data Filtering Combinations

a) Irregular Temporal Spacing

NETAS
Plot of Durations Between Consecutive Transactions (Inside a Session)
Transaction Time Sampling-Raw Data
Second Half of 2012
600 T T T T T T T T T

500 | -

400 !

300 |

200 |

100 |1

Time Elapsed Between Two Consecutive Transactions (Seconds)

L il “m\.h AL A ”\“.H\u\u]\u‘ il Mm““\Mmh“ \‘\\I‘ m‘“‘h u\um‘\‘\‘ I h“\. Ll \\L\. ‘\ ““\L.\H T A A .“‘HL L e "N‘H
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Nth Transaction In Second Half of 2012 X 105

Figure F.47: Plot of durations between consecutive transactions (inside a session) for NETAS TTS-
raw data throughout the second half of 2012.

b) Temporal dependence: By comparing autocorrelation and partial
autocorrelation functions of 60 and 600 seconds® absolute returns and log
returns under CTS (clean and aggregated and interpolated) as well as absolute
returns, log returns and durations in seconds from one transaction to the next
under TTS (raw versus clean and aggregated) for December of 2012, we see that
there are differences between ACF and PACF structure of absolute and log
returns between 10 min CTS and 1 transaction TTS, i.e.: transforming 1
transaction sampled data by first cleaning, then aggregating and then
interpolating (all needed for CTS) to 600 second sampled data distorts ACF and
PACEF of return series.

e TTS-Raw-Durations: ACF (very very slowly decaying positive significant
up to 20 lags) and PACF (hyperbolic decay, positive significant up to 20
lags) (shocks persist)

54 Recall that we also included 1 min returns under CTS for MIGRS just because 10 min log returns
exhibited no autocorrelation at all.
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TTS-Raw-Absolute Returns: ACF (slow hyperbolic decay, positive
significant up to 20 lags) and PACF (decaying positive and significant up
to 20 lags) (shocks persist)

TTS-Raw-Log returns: ACF (quick decay, first two-three lags negative
significant) PACF( slower hyperbolic decay, first 12-14 lags negative
significant)

TTS(4.ii.a and b-5.i-5.1i-5.11i-5.iv-5.v)-Durations: ACF (very very slowly
decaying positive and significant up to 20 lags) and PACF (hyperbolic
decay, positive and significant up to 18 to 20 lags) (shocks persist)

TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying
positive and significant up to 20 lags ) and PACF (decaying positive and
significant up to 18-20 lags) (shocks persist)

TTS(4.ii.a and b-5.i-5.ii-5.1ii-5.iv-5.v)-Log returns: ACF (quick decay,
first lag negative significant, second lag positive and slightly significant)
PACF(slower hyperbolic decay, first 8 lags negative significant)

CTS-Durations: Meaningless, after interpolation duration from one entry
to the next is always 1 second.

CTS (4.ia and b-5.i-5.ii-5.11i-5.iv-5.v)-10 min Absolute Returns:
ACF(wave pattern in decaying positive significance up to 11" lag, while
lags 18, 19 and 20 become positive significant again), PACF (decaying,
lags 1, 2, 4 and 7 are positive significant)

CTS (4.ii.a and b-5.1-5.ii-5.11i-5.iv-5.v)-10 min Log returns: ACF (lags 1,
6 and 11 are negative significant, significances are on the edge), PACF
(lags 1, 6 and 11 are negative significant)

CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-1 min Absolute Returns: ACF
(wave pattern in decaying positive significance up to 20th lag), PACF
(slow decay, positive significant up to 12 lags)

CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-1 min Log returns: ACF (first lag
negative significant) and PACF (quick decay, first 5 lags negative
significant)

Under TTS, with raw or clean and aggregated data, there is significant positive
autocorrelation up to 20 lags in absolute returns, significant up to third order
autocorrelation in log returns and very significant positive autocorrelation up to
20 lags in seconds elapsed between two transactions, thus volatility clustering is
verified. Whereas, for 10 min returns under CTS, log returns display irregular
and hard to comment autocorrelations at lags 1, 6 and 11 with significance levels
very close to critical values. Thus, we check for ACF and PACF of 1 min log
returns and observe negative first order autocorrelation. Absolute return
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LogRetums Autocorrelation LogReturns Autocorrelation

LogReturns Autocorrelation

autocorrelation structure is changed under CTS at 600 seconds sampling interval
compared to results under TTS at 1 transaction interval. Likewise, switching to
CTS and calculating returns at 600 seconds suppresses partial autocorrelation
figures at several lags of both absolute and log returns. Meanwhile, comparing
data handling combinations to each other, any combination of cleaning methods
and aggregation methods (compared to other combinations) does not cause any
major change in total and partial correlation structures once we move under a
sampling scheme, it being either TTS or CTS. However, cleaning and
aggregation under TTS yield different PACF structures in log returns compared
to results produced with raw data. Under CTS, rather than cleaning and
aggregation methods, sampling interval matters in terms of return
autocorrelation structure. Supporting MIGRS case, working at different
frequencies under CTS distorts autocorrelation structure of absolute returns and
logreturns same way, returns become less autocorrelated as we sample lesser
number of prices.

Netas December2012 TTS-1Transaction LogReturns Autocorrelation Netas December2012 TTS-1Transaction LogReturns Partial Autocorrelation
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NETAS December2012 CTS-1Min 4iia 5i AbsoluteReturns Autocorrelation NETAS December2012 CTS-1Min 4iia 5i AbsoluteReturns Partial Autocorrelation
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Figure F.48: ACFs and PACFs of logreturn and absolute return series of NETAS for December 2012
under TTS and CTS

c) Diurnal Patterns: These patterns can be sought only under CTS because of their
definitions such as number of trades per x minutes or absolute return per y
seconds. For NETAS case, there are strong W shapes which are persistent across
cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes
trade intensities throughout days in second half of 2012, whereas patterns in 10
minutes absolute returns and 10 minutes absolute percentage returns are closer
to W without last spike at the end of the day®®. All in all, there are significant
diurnal patterns in returns and trading activity in the form of intensity and
volume under CTS and these patterns look exactly same when various
combinations of cleaning and aggregation methods are applied.

%5 Unlike the L shape in MIGROS and ISCTR for 10 min absolute percentage returns.
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Percentage Returns
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Figure F.49: Diurnal patterns - NETAS cleaned and aggregated transaction data under CTS

2)  Visual and Formal Statistical Tests of Existence and Statistical Features of
Market Microstructure Noise

a)  VSP: In line with the findings for MIGRS and ISCTR, sampling schemes or
cleaning and aggregation techniques do not alter the fact that inflating sampling
frequency, either in seconds or in transactions, causes average realized volatility
of return on transaction price to boom. Specifically, 6 month VSPs explode as
the sampling frequency increases under raw-TTS as well as under CTS.

CTS-4iib-5i
Volatility Signature Plot of
OpentoClose

TTS-Raw
Volatility Signature Plot of
OpentoClose
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0,0000 e e 0,0000 %o o o o
0 500 1000 1500 0 20 4 60 80

Figure F.50: VSPs of NETAS over Daily RVs using clean and aggregated data under CTS and raw
data under TTS.
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Explosion becomes trivial for the sampling intervals that are less than 200
seconds or 15 transactions. This observation is valid both for session and daily
figures, serving as a visual proof regarding the existence of MMN and pointing
to a positive relationship between noise increment and true price return, both
under CTS and raw-TTS.

However, for clean and aggregated TTS, and only for first session RVs in June,
rising sampling frequencies first deflate then inflate average RVs, leading to a
swing in the shape of VSP. This extraordinary pattern causes 6 month averages
to exhibit a swing as well for all cleaned and aggregated average RV series under
TTS. To be more precise, please consider the following VSPs. The plot on the
left is 6 month average of session 1 RVs against sampling frequencies, whereas
the same plot is reproduced for 5 months, with June exluded on the right, where
both VSPs are drawn under clean and aggregated TTS.

TTS-4iib-5i Volatility Signature Plot TTS- 4iib-5i Volatility Signature Plot
of Session 1 of Session 1
6 Month Averages June Excluded-5 Month Averages
0,0002 ° 0,0001
0,0002 0,0001 @
0,0001
0,0001 @ 0,0001 o
0,0000
0,0001 [ ‘
' \.QOO o ® 0,0000 \...
0,0000 0,0000 © 00
0 20 40 60 80 0 20 40 60 80

Figure F.51: VSPs of NETAS over Session RVs using clean and aggregated data under CTS and raw
data under TTS.

As it is clear from the plots above, data coming from June is responsible for
unexpected movement in the VSP of session 1 RV averages. Examination of
disclosures of material information throughout June, 2012 by NETAS if there is
anything pushing VSPs in a different direction reveals that

i) NETAS applied to Capital Markets Board (CMB) in April, 2012 for new
shares to be registered to increase registered capital by 800%, source of
the capital raise being internal, i.e., a stock split of 8-for-1 was on the way
when June 2012 came.

ii) There had been tremendous extraordinary price movements in NETAS
stock before June.

iii) CMB decided to register the free shares on the 19" of June, but at the same
time, directed Borsa Istanbul to hold NETAS stock trade until the capital
increase was completed. Therefore, on the 20" of June, a trade halt in
NETAS stock was active. It ended on the 21° of June.
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b)

iv)Even so, the extraordinary price movements in NETAS market dominated
the return series for June, 2012.

v) Sampling scheme is not the cause of the swing in VSP, but it is the tool
that helps us detect such irregularities in direction of the average RVs as
the sampling frequencies change.

This piece of information supports our finding that in general, (when there is no
unexpected information specific to the stock), sampling scheme, or cleaning or
aggregation do not affect the result that market microstructure becomes
dominant after 15 transactions under TTS and 200 seconds under CTS and that
the shape of VVSPs suggest a positive correlation between noise increment and
true price return.

Statistical Tests Regarding Existence and Statistical Features of MMN :

o Existence of MMN is verified statistically under both of CTS and TTS.
We calculated Z; ,, ; testing null hypothesis in (3.11) by comparing RVs
that are calculated over different frequency pairs composed of high-low
frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200),
(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30),
(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias
of the RV estimator is dominated by expectation of square of the noise
increment. Therefore, if we reject the null hypothesis, it means that the
MMN has statistically significant impact on realized estimator of the IV.

For each day in the sample period of 123 days (recall that on 20", the
trading halt lasted for whole day) and each frequency pair, we run the
aforementioned test at 5% significance level. Sample rejection percentages
of null hypothesis are 99% under raw-TTS, 97% under clean and
aggregated TTS and around 86% under CTS for all cleaning and
aggregation method combinations when we compare RVs calculated over
3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As
we decrease the sampling frequency at the high frequency leg, rejection
percentages of null hypothesis shrink, which is true under both of TTS and
CTS. For raw-TTS, the rejection percentages begin with 99% and decrease
gradually to 46% as high frequency leg moves toward 20 transactions
when low frequency leg is 30 transactions. Cleaning and aggregating the
data does not amend the downward trend in rejection percentages under
TTS, but make it steeper. For all aggregation choices with cleaning method
4.ii.b applied under TTS, the rejection percentages begin with 98% and
decrease gradually to 20-22% as high frequency leg moves toward 20
transactions. Switching to CTS as well as moving across the grid of
cleaning and aggregation combinations do not change the results either.
For CTS, the rejection percentages begin with around 93% for 10 to 1200
seconds pair and goes down the hill to 17% as high frequency legs are
slowed to 900 seconds.
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Following representative rejection rate graphs reveal that the MMN starts
to accentuate as the sampling frequency converges to 10-15 transactions
under TTS, and 250-300 seconds under CTS. These findings are in
conformity with those supplied by the VSP analysis. The MMN is felt
strongly once we cross over the sampling interval thresholds of 15
transactions or 5 minutes under TTS and CTS, respectively. For higher
frequencies, rejection rates turn out to be quite high, especially after 150
seconds under CTS and 10 transactions under TTS, rejection rates become
flat in a band of 95-100%. Moreover, the visual inspection of the test
statistic Zr , , for several frequency pairs either under TTS or CTS reveals
that for the majority of the time the test statistic is positive and outside 5%
st. normal confidence interval, meaning that there is positive correlation
between the noise and the efficient price, which is again in conformity with
the exploding VSPs.
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Figure F.52: NETAS - Plots of Z,, ,, for each day in the sample period with upper and lower tail
critical values of standard normal under TTS and CTS.
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e Summary: Model of an i.i.d MMN with constant variance might be proper
under CTS but under raw-TTS, for more than 50% of the days, the null
hypothesis of constant variance is rejected for triples with very high
frequencies combined with very low. This might be evidence of i.i.d
assumption not holding at frequencies lesser than 15 transactions. The
sampling scheme, but not the aggregation method, is discovered to very
influential on rejection of the null hypothesis that the MMN has variance
independent of the sampling frequency. Meanwhile, the cleaning
algorithms have some suppressive effect on rejection percentages
particularly under TTS®.

Awartani et al. [16] derive a test with the idea that if the MMN has constant
variance, then noise variances calculated over frequencies 1/M or 1/N
should be same independent of M or N chosen. Their null and null
hypotheses are as in (3.35) and (3.36).

Since alternative hypothesis is in harmony with the presence of
autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde
[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign
of the rejection of the null hypothesis that the MMN is a sequence of i.i.d
random variables with constant variance. To test the validity of this null
hypothesis, a test statistic compares RV differences using two frequency
pairs, where pairs are M,L and N,L. L represents a frequency at which we
can ignore the MMN safely, say 20 minutes and M and N are frequencies
at which the MMN is considered to be significant. Therefore, the test is
build on RVs calculated over frequency triples i.e. for each high frequency
pair combined with 20 minutes, we test null hypothesis that E(noise
increment square at low frequency)=E(noise increment square at high
frequency). If we reject the null hypothesis, it means that the MMN has
variance that is NOT independent of sampling frequency, therefore any
assumptions regarding i.i.d nature of MMN can be taken as invalidated.
Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30)
(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200),
(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200)
seconds under CTS.

For each day in the sample period of 123 days and each frequency triple,
we run the aforementioned test at 5% significance level. Sample rejection
percentages of the null hypothesis clearly change from one triple to another
and as we clean and aggregate data. Beware that under raw-TTS especially
for combinations of frequencies with highest differences between frequent
legs, rejection percentages exceed 50%, while they stagger around 16%
for 3-10-30 triple with lowest distance between first two legs. However,
once we clean and aggregate the data, the rejection percentages range

56 Same conclusions were made for ISCTR case as well.
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decline to levels 12-40% depending on the triple%”. For CTS 4.ii.a and
4.ii.b, rejection percentages vary between at most 10% and at least 3%,
both of which are just a fraction of rejection percentages under TTS-raw
or TTS-cleaned. Therefore, sampling scheme is discovered to be very
influential on the rejection of the null hypothesis that the MMN has
variance independent of sampling frequency. We can reject this null
hypothesis under TTS confidently and conclude that the assumption of an
i.i.d MMN with constant variance does not reflect the real life structure of
the MMN, whereas under CTS, such an assumption seems to hold
especially for frequencies higher than 150 seconds. Evidence reveals that
the aggregation method does not affect the rejection percentages and for
triples with high frequency legs being close to very slow frequency leg,
the rejection percentages are severely damaged independent of the
sampling scheme.

5 In a sense, these findings agree with findings for MIGRS and ISCTR cases, where rejection
percentages are highest for triples with distant constituents and TTS-raw data; however, MIGRS
rejection percentages are way below those of ISCTR’s or NETAS’ rejection percentages.
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3) RV Analysis

We constructed two RV time series, namely session RVs and daily RVs, for each
frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600
seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a,
4.ii.b) -aggregation method (5.1, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time
series has 123 data points, whereas session RV time series is constituted of 246
entries. Each RV series under each sampling scheme and cleaning and
aggregation method combinations is subjected to preliminary statistics, ACF and
PACF analysis and lastly unit root is checked where autocorrelation exhibits
slow decay.

e The factors that have any effect on RV series’ lognormality and autocorrelation
structure turn out to be whether the RV is on a session or daily basis, whether it
is under raw-TTS or CTS and the frequency at which the RV is calculated.
Normality is not affected by any of these factors. All of RV series, either under
raw-TTS or CTS, either raw or cleaned and aggregated, either on a session or
daily basis, are not normally distributed as JB statistics and high kurtosis-
skewness values suggest. Taking logarithm makes RV series at all frequencies
normal under raw-TTS, while such a transformation only works in terms of
normality for 5 min RV session and daily series under CTS®,

e Decreasing frequencies cause lesser number of lags being significant with
lesser significant levels, i.e. decreasing frequency again depresses
autocorrelation structure of RV series under CTS but not under TTS regardless
of session-daily calculation. Supression effect of decreasing frequency is in line
with existence of MMN under CTS. In fact, ACFs of session and daily RVs
change as the sampling frequency changes, such that for increasing frequencies
RV series exhibit significant positive total autocorrelation up to higher number
of lags under CTS. Calculating RVs on a session basis, makes the RV series
more autocorrelated, which holds under both of raw-TTS and CTS.

¢ Once we are working on a daily or session series at a particular frequency under
CTS, cleaning and aggregation methods do not alter RV series’ non-normality
or autocorrelation structure.

¢ Neither sampling schemes, nor frequencies or cleaning/aggregation methods or
session/daily basis choice affects the stationarity results, E-views ADF test
results reveal that we can reject null of unit root at 1% significance level for all
RV series under raw-TTS or CTS at all frequencies®®. MATLAB ADF test with
fixed two lags and an intercept supports results in E-views that all RV series at
hand are stationary for all frequencies, cleaning and aggregation methods,
daily/session calculations and sampling schemes.

58 Unlike the case of MIGRS
59 Unlike the case of MIGRS.
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a)  Descriptive statistics by frequency, by sampling scheme and by cleaning and
aggregation methods:

e TTS-Raw: For all frequencies, the session and daily RV series are not
normally distributed® as very high skewness, kurtosis and JB statistic
values reveal. Mean of the session and daily RVs become smaller as the
sampling interval is lengthened, but there is no clear relationship between
sampling frequency and change in skewness, kurtosis or JB statistic
values, which deviates from the findings for MIGRS and ISCTR®.
Correlogram of all session RV series look very much alike. Total
autocorrelation is significant up to 20" lag but significance decreases and
increases as the lag number converges to 20. Only first two lags and lag 14
are significant in PACF®2. Although correlograms of all daily RVs
resemble one another, compared to correlogram of session series,
autocorrelation structure of daily RVs looks different. Now, first 10 lags
and first lag are positive significant in ACF and PACF, respectively. The
change in autocorrelation structure of RV series by looking at session and
daily RVs separately, calls for stationarity test and accordingly, we
checked for unit roots in daily series to see if summing RV from session
one and session two to reach daily RV distorts anything in RV
stationarities at different frequencies.

%0 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies.
51 For MIGRS and ISCTR, a decrease in skewness, kurtosis and JB statistic was observed as we
sample less frequently.

62 Unlike the case of MIGRS.
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TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions

Date: 04/13/18  Time: 16:57 Date: 04/13/16 Time: 17:03
Sample: 1248 Sample: 1 2.
Included observations: 246 Included observations: 123
Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob
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TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions
Date: 04/13/16 Time: 17:02 Date: 04/13/18 Time: 17:08
Sample: 1248 Sample: 1 248
Included observations: 244 Included observations: 123
Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob
[ | [ | 1 0438 0438 47342 0000 | = = 1 0424 0424 22607 0.000
= 1= 2 0417 0278 90.399 0.000 (=] (sl 2 0275 0116 32194 0000
(R} [ 3 0253 -0001 10530 0000 [y | A 3 0305 0189 44097 0.000
(g} [Nl 4 0235 0053 12012 0000 g NN 4 0174 -0.033 48.013 0.000
=] ' 5 0209 0070 13105 0000 e K 5 0140 0028 50564 0.000
@ i 6 0237 0102 14526 0000 g el 6 0209 0116 56.301 0.000
=] 1 7 0206 0034 15601 0000 = '8 70305 0212 68.645 0.000
=] i 8 0162 -0023 18272 0.000 = hp 8 0247 0041 76777 0.000
g i 9 0136 0001 16746 0.000 g e 9 0174 -0035 80876 0.000
s ' 10 0153 0061 17346 0000 [l g 10 0109 -0089 82490 0000
' i 11 0098 -0034 17592 0000 t g 110005 -0.125 82.494 0.000
= | 12 0200 0128 18625 0000 t N 12 -0.009 -0.017 82.505 0.000
5] T 12 0156 0024 19256 0000 th LN 13 -0.030 -0.084 82631 0.000
= @ 14 0289 0180 21440 0000 e LN 14 -0.044 -0.088 82.905 0.000
| I 5 0152 - 5 N N 15 0,003 -0.009 82.905 0.000
= "B |12 0270 Diz zaess oooo o |18 0000 0005 g2é0s 000
5] i 17 0156 -0029 24629 0000 R N 17 -0.064 -0.047 83.492 0.000
5] I 18 0164 -0025 25344 0000 R [ 18 -0.056 0.030 83.854 0.000
o i 19 0103 -0052 25625 0000 g e 19.-0.089 -0.025 85134 0.000
b i 20 0108 -0013 25036 0000 'a L 20 0105 0.010 86.766 0.000

Figure F.55: NETAS - Correlograms of session and daily RV series under TTS for different sampling
intervals

e CTS: For all frequencies, the session and daily RV series are not normally
distributed as very high skewness, kurtosis and JB statistic values reveal®,
Like the case under RAW-TTS,

i. mean of the session and daily RVs become smaller as the sampling
interval is lengthened.

ii. there is no clear relationship between sampling frequency and
change in skewness, kurtosis or JB statistic values, which deviates
from the findings for MIGRS and ISCTR.

e However, contrary to findings for RV series under RAW-TTS,

i. ACFs of session and daily RVs change as the sampling frequency
changes, such that for increasing frequencies RV series exhibit
significant positive total autocorrelation up to higher number of lags
with higher significances. Apart from this common trait, the decay

83 Like MIGRS, unlike ISCTR.
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patterns in total correlation of daily and session RVs are different,
especially obvious at 1 min frequency.

CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series
Date: 04/13/18 Time: 1415 Date: 04/13/16 Time: 14:19
Sample: 1248 Sample: 1248
Included observations: 246 Included observations: 246
Autocorrelation  Partial Correlation AC PAC Q-Stat Prob Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob
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Included observations: 123 Included observations: 122
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Figure F.56: NETAS - Correlograms of session and daily RV series under CTS for different sampling
intervals

PACFs of session RVs differ slightly from one another depending
on the frequency. For frequency 1 min, lags 1, 2, 4 and 12 are
significant in PACF, whereas lags 1, 2, 5 and 14 and lags 1,2, and 5
are significant for 5 min and 10 min frequencies, respectively.

iii. PACFs of daily RVs differ slightly from one another depending on
the frequency. For frequency 1 min, lags 1, 2 and 10 are significant
in PACF, whereas lags 1, 2, 3 and 7 are significant for both of 5 min
and 10 min frequencies.

e Slow decay in some of the ACFs calls for stationarity tests.

o All of these observations hold under all cleaning methods and aggregation
algorithms.
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b) Stationarity-Unit root test:

e To test for stationarity and unit root, i.e. if the series move around a
constant mean or diverge as time passes, Augmented Dickey Fuller (ADF)
Test is preferred. By visual inspection of the graphs, no trend is observed
in any of our RV series, therefore, ADF Test is run with an intercept and
no trend, the number of legs to be involved in the analysis is chosen by the
Schwarz criterion as it is the default choice suggested by E-views.

e RAW-TTS-Raw-: In the E-views setting, where the number of lags is
optimized by E-views according to the Schwarz criterion, R-squared
values vary in a band of 28-34%. The null hypothesis of nonstationarity is
rejected at 1% significance level for all session and daily series®.

e CTS: In the E-views setting, where number of lags are optimized by E-
views according to the Schwarz criterion, R-squared values have a range
of 25% to 49%. At 1% significance level, all RV series, either session or
daily and at all frequencies, are found to be stationary.

% In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we
switch to Daily series. Here, switching between Daily or session series does not affect significance level
at which we can reject null.
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