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Electrical and Electronics Engineering Department, METU

Prof. Dr. M. Kemal Leblebicioğlu
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ABSTRACT

DETAILED MODELING AND CONTROL OF A 2-DOF GIMBAL SYSTEM

Poyrazoğlu, Erhan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Kemal Leblebicioğlu

January 2017, 111 pages

Gimbal systems are used in various engineering applications such as military sys-

tems. Their configurations are designed according to the types of application and

desired performance requirements. The essential aim of these systems is to compen-

sate the disturbance effects in order to stabilize LOS and positioning to the desired

point.

In this thesis, first, a detailed mathematical model of a 2-DOF gimbal system con-

taining some nonlinear dynamic effects such as friction, static and dynamic mass

unbalance is obtained by Newton-Euler approach. Next, three different controllers

that are cascade proportional-integral (PI), global and local linear quadratic integral

(LQI) have been constructed. The mathematical model and the controllers have been

implemented in MATLAB and their performances have been investigated.

In the final part of this study, in order to visualize and track a target in simulation,

a 3-D virtual environment is constructed within MATLAB/Simulink 3-D Toolbox

v



and a simple target tracking algorithm is designed to detect and track targets. All of

these operations are simulated on MATLAB/Simulink environment.

Keywords: Mathematical Model, Stabilization, Target Tracking, Gimbal, VRML
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ÖZ

İKİ EKSEN BİR GİMBAL SİSTEMİNİN DETAYLI MODELLEMESİ VE
KONTROLÜ

Poyrazoğlu, Erhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Leblebicioğlu

Ocak 2017 , 111 sayfa

Gimbal sistemleri çeşitli mühendislik uygulamalarında kullanılmaktadır. Uygulama

alanları ve performans isterleri göz önüne alınarak bu sistemlerin yapısal konfigüras-

yonları tasarlanmaktadır. Bu sistemlerin temel hedefleri bir hedefe bakarken hareket

eden bir platform üzerinde sistemin stabilize olması ve istenen konumlara yönlenme-

sidir.

Bu tezde ilk olarak sürtünme, statik ve dinamik kütle dengesizliği gibi doğrusal ol-

mayan dinamikler içeren iki eksen bir gimbal sisteminin detaylı matematiksel modeli

Newton-Euler yaklaşımı ile elde edilmiştir. Ardından üç farklı kontrol yöntemi ku-

rulmuştur. matematiksel model ve kontrolörler MATLAB’da uygulanmış ve perfor-

mansları incelenmiştir.

Son olarak benzetim ortamını görselleştirmek ve hedef takibi yapabilmek için MAT-

vii



LAB/Simulink 3-D Toolbox ile üç boyutlu sanal bir ortam kurulmuş ve basit bir hedef

takip algoritması tasarlanmıştır. Tüm benzetim çalışmaları MATLAB/Simulink orta-

mında yapılmıştır.

Anahtar Kelimeler: Matematiksel Model, Stabilizasyon, Hedef Takip, Gimbal, VRML
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Ozan Can Sarıoğlu and Hayrettin Karadağ.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ABBREVIATIONS AND SYMBOLS . . . . . . . . . . . . . . . . . xxi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 MATHEMATICAL MODELING OF THE 2-DOF GIMBAL SYSTEM 7

2.1 Reference Frames and Transformations . . . . . . . . . . . . 8

2.2 Kinematic Equations of Gimbal . . . . . . . . . . . . . . . . 12

2.2.1 Angular Velocity . . . . . . . . . . . . . . . . . . 12

xi



2.2.2 Angular Acceleration . . . . . . . . . . . . . . . . 13

2.3 Friction Model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 DC Motor Model . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Gyroscope Model . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Dynamic Equations of Gimbal . . . . . . . . . . . . . . . . 22

2.6.1 Inner Gimbal . . . . . . . . . . . . . . . . . . . . 24

2.6.2 Outer Gimbal . . . . . . . . . . . . . . . . . . . . 27

2.7 Verification of the Decoupling of the Gimbals . . . . . . . . 31

2.8 State Space Representation of Gimbal . . . . . . . . . . . . 32

2.8.1 Coupled 2-DOF Gimbal . . . . . . . . . . . . . . 33

2.8.2 Decoupled Gimbals . . . . . . . . . . . . . . . . . 41

2.8.2.1 Inner Gimbal . . . . . . . . . . . . . 41

2.8.2.2 Outer Gimbal . . . . . . . . . . . . . 43

2.8.3 Linearization . . . . . . . . . . . . . . . . . . . . 45

2.8.3.1 Finding Equilibrium Points . . . . . . 45

2.8.3.2 Clustering Trimmed Conditions . . . . 47

2.8.3.3 Obtaining LTI Subsystems . . . . . . 50

3 CONTROLLER DESIGN . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Cascade PI Control . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Inner Gimbal . . . . . . . . . . . . . . . . . . . . 57

3.1.2 Outer Gimbal . . . . . . . . . . . . . . . . . . . . 59

xii



3.2 Linear Quadratic Integral (LQI) Control . . . . . . . . . . . 62

3.2.1 Global LQI Control . . . . . . . . . . . . . . . . . 66

3.2.2 Local LQI Control . . . . . . . . . . . . . . . . . 70

3.2.2.1 Inner Gimbal . . . . . . . . . . . . . 71

3.2.2.2 Outer Gimbal . . . . . . . . . . . . . 73

3.3 Performance Comparison of Controllers . . . . . . . . . . . 76

3.3.1 Global and Local LQI Control . . . . . . . . . . . 77

3.3.2 Global LQI and Cascade PI Control . . . . . . . . 79

3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . 82

4 TARGET TRACKING AND ANIMATION . . . . . . . . . . . . . . 83

4.1 Construction of the Virtual World . . . . . . . . . . . . . . . 84

4.2 Tracking of an Object with the Discrete Kalman Filter . . . . 86

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 88

5 CONCLUSION AND FUTURE WORKS . . . . . . . . . . . . . . . 95

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

APPENDICES

A DETAILED MATHEMATICAL EXPRESSIONS . . . . . . . . . . . 103

A.1 Angular Acceleration . . . . . . . . . . . . . . . . . . . . . 103

A.2 Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . 106

xiii



B SIMULINK BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1 Friction and DC Motor Models . . . . . . . . . . . . . . . . 109

B.2 Cascade PI Control . . . . . . . . . . . . . . . . . . . . . . 110

B.3 System Simulator . . . . . . . . . . . . . . . . . . . . . . . 111

xiv



LIST OF TABLES

TABLES

Table 2.1 Parameters of Dahl friction model effect on inner and outer gimbals 17

Table 2.2 Parameters of LuGre friction model effect on inner and outer gimbals 18

Table 2.3 Parameters of the motor models for the inner and outer gimbals . . . 21

Table 2.4 Values of parameters of the outer and inner gimbals . . . . . . . . . 23

Table 2.5 Boundaries of the state variables of the coupled 2-DOF gimbal . . . 34

Table 2.6 Boundaries of the disturbance, sensor noise and control input vari-

ables of the coupled 2-DOF gimbal . . . . . . . . . . . . . . . . . . . . . 35

Table 3.1 Performances of the rate PI controllers of the inner gimbal for dif-

ferent Kp values (Ki = 50) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 3.2 Performances of the rate PI controller of the inner gimbal for differ-

ent Ki values (Kp = 750) . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3.3 Performances of the position PI controller of the inner gimbal for

different Kp values (Ki = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3.4 Performances of the position PI controller of the inner gimbal for

different Ki values (Kp = 8) . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3.5 Position performances of the inner gimbal with cascade PI control

for different position commands . . . . . . . . . . . . . . . . . . . . . . . 59

xv



Table 3.6 Performances of the rate PI controller of the outer gimbal for differ-

ent Kp values (Ki = 150) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3.7 Performances of the rate PI controller of the outer gimbal for differ-

ent Ki values (Kp = 300) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3.8 Performances of the position PI controller of the outer gimbal for

different Kp values (Ki = 0.05) . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3.9 Performances of the position PI controller of the outer gimbal for

different Ki values (Kp = 5) . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3.10 Position performances of the outer gimbal with cascade PI control

for different position commands . . . . . . . . . . . . . . . . . . . . . . . 61

Table 3.11 Position performances of the gimbals with global LQI control for

different position commands . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 3.12 Position performances of the coupled nonlinear inner gimbal with

local LQI control for different position commands . . . . . . . . . . . . . 73

Table 3.13 Position performances of the coupled nonlinear outer gimbal with

local LQI control for different position commands . . . . . . . . . . . . . 75

Table 3.14 Performance comparison of global and local LQI control with re-

spect to ISE, IAE and ITAE measures . . . . . . . . . . . . . . . . . . . . 79

Table 3.15 Performance comparison of global LQI and cascade PI control with

respect to ISE, IAE and ITAE measures . . . . . . . . . . . . . . . . . . . 81

xvi



LIST OF FIGURES

FIGURES

Figure 1.1 CAD drawing of a stabilized 2-DOF gimbal system developing by

ASELSAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1 Rotational directions of a 2-DOF gimbal . . . . . . . . . . . . . . 9

Figure 2.2 Reference frames and their rotational relations . . . . . . . . . . . 9

Figure 2.3 Combination of Coulomb, viscous and static friction [2] . . . . . . 16

Figure 2.4 Combination of Coulomb, viscous, static friction and Stribeck ef-

fect [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.5 Physical explanation of the LuGre friction model [42] . . . . . . . 18

Figure 2.6 Hysteresis curves of the LuGre friction models . . . . . . . . . . . 19

Figure 2.7 Chirp responses of the Dahl and LuGre friction models . . . . . . . 19

Figure 2.8 Torque ripple effect [35] . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.9 White noise of the gyroscope used . . . . . . . . . . . . . . . . . . 22

Figure 2.10 Block diagram of the inner gimbal . . . . . . . . . . . . . . . . . . 26

Figure 2.11 Block diagram of the outer gimbal . . . . . . . . . . . . . . . . . . 30

Figure 2.12 Position outputs of coupled and decoupled gimbals . . . . . . . . . 31

Figure 2.13 Velocity outputs of coupled and decoupled gimbals . . . . . . . . . 32

Figure 2.14 Determinants of SG matrix . . . . . . . . . . . . . . . . . . . . . . 39

xvii



Figure 2.15 Elements of 3rd row of SG matrix . . . . . . . . . . . . . . . . . . 40
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CHAPTER 1

INTRODUCTION

1.1 Background

Inertial stabilization platforms (ISPs) are used in lots of various engineering appli-

cations such as weapon systems, telescopes and cameras. Their configurations are

designed according to the types of application and desired performance requirements

[20]. The essential aim of these systems is to compensate the maneuvers, platform

motions, vibrations and nonlinearity based disturbances such as friction, static mass

unbalance, dynamic mass unbalance and torque ripple in order to stabilize, or hold

steady, a pointing vector, namely line-of-sight (LOS), in an inertial space by means of

electro-optic sensors such as inertial measurement units (IMUs), encoders and cam-

eras [25]. All of these disturbances cause decreasing the pointing accuracy of the

ISPs [27].

This thesis consists of three main parts which are modeling, control and animation of

an inertially stabilized 2-DOF gimbal system being developed by ASELSAN. Con-

figuration of this system has two gimbals which are mounted on each other with

orthogonal pivot axes: The inner gimbal contains two cameras, one laser designator,

one IMU, one brushed DC motor to drive the inner gimbal and one encoder mounted

on motor. The outer gimbal has only one brushed DC motor and one encoder.

When the gimbal is yet to be constructed, simulation studies gain more importance

for control system designers. There are lots of applications and softwares to simulate

the dynamic characteristics of control systems [15], [40], [44]. Mathematical mod-
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eling of the gimbal takes the most importance for this study because this system is

still in preliminary design phase. If we construct a detailed system model, designers

can observe the performances of control algorithms even if the physical system is not

present. Moreover, simulation studies are faster, desired data can be acquired easily

and system scenarios can be simulated any number of times. Mathematical modeling

study of our gimbal has been started with the geometrical model shown in Figure 1.1,

which is a detailed CAD drawing of the physical model to be constructed.

Figure 1.1: CAD drawing of a stabilized 2-DOF gimbal system developing by ASEL-
SAN

1.2 Literature Survey

During the modeling study of the gimbal system, gimbal frame transformations, kine-

matics and dynamics of a gimbal system have been investigated, [4], [39] and [16].

When we examine [39] and [10] which focus on modeling of a gimbal system, it has

been observed that static and dynamic mass unbalance effects are neglected in their

gimbal models and all gimbals are decoupled, which results in unsatisfactory gimbal
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models, which are used for many purposes. [1] explains static and dynamic mass un-

balance dynamics of a 2-DOF gimbal system in detail. On the purpose of observing

mass unbalance effects on a gimbal, they are included in the dynamic equations in this

thesis. Furthermore, static friction models in these studies are unable to capture most

of the friction phenomena and their success in simulation can not be guaranteed in

practice. To construct a realistic friction model for friction compensation study, [42]

compares lots of static and dynamic friction models. According to the result of this

comparison, we decided to use Dahl friction model due to a number of advantages it

provides, instead of the other static and dynamic friction models. Generally, simple

DC motor models are combined by linear electrical and mechanical components [17].

It has been decided that two nonlinear terms are to be incorporated with the motor

models; motor friction and torque ripple effects, based on the formulation provided

in [35]. A nonlinear 2-DOF gimbal is described as a multiple-input, multiple-output

(MIMO) system. In order to the resultant MIMO system via a linear compensator, a

state space representation of the gimbal is obtained, equilibrium points are computed

and these system models which are represented in state space are linearized about

equilibrium points. There are two different approaches for the state space representa-

tion of the gimbal model in this study: In the first approach, inner and outer gimbals

are coupled with each other and one gimbal model is obtained in state space. In the

second approach, inner and outer gimbals are decoupled and their state space repre-

sentations are expressed separately. These three nonlinear state space models contain

lots of equilibrium points; these points are partitioned into clusters according to their

similarities by means of K-means algorithm [33] and Calinski-Harabasz criterion [7]

to reduce the number of linear models. [36] helps formulation of the gimbal models

in state space, calculation of equilibrium points and linearization of nonlinear system

models about clustered equilibrium points.

After mathematical models are constructed, two main control methods are examined.

Firstly, [29] introduces PID control method, discusses whether the controller param-

eters in performance and some handicaps when integral and derivative terms are not

fine-tuned. In this thesis, we have constructed a cascade PI control structure whose

design procedure has been explained in detail for both inner and outer gimbals, cou-

pled with each other. Secondly, the linear quadratic regular problem is formulated
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in [36] and its benefits are discussed in [41]. However, linear tracking problem, pro-

posed in [28], is more convenient than a regulator problem. In addition, none of our

linearized subsystems have integrators present and integrator inclusions in controllers

have been investigated. In literature, [36] presents and integrator-inserted LQI con-

troller between error signals and the plant, which satisfies all the design requirements.

In order to determine LQI controller parameters, [5] offers a very successful method

to obtain the best performance control system. It is observed in this study that linear

gimbal models represented in state space have more than one LTI subsystem. Thus,

control inputs of subsystems are weighted by a gain scheduling algorithm for each

subsystem and the sum of their outputs gives the overall system response.

After modeling and designing controller of the system is completed, Virtual Reality

Modeling Language (VRML) technology [8] is used to generate a 3-D virtual world

and capture video frames in camera frame frequency (rate) on MATLAB/Simulink

environment [22]. The main aim of building a virtual reality world is to realize sys-

tem scenarios for tracking a plane by looking from a distance when platform motion

is carried out at the gimbal. To understand how to build a virtual world by using

VRML and utilize Simulink blocks for target tracking in video frame sequence, es-

pecially [32], published by MATLAB, is a very helpful document which explains all

examples and key parts of the utilization in detail. In [22], a virtual car, a static video

camera and a virtual world having obstacles are built and Horn-Schunck optical flow

method [21] is used for image processing and target tracking. In this thesis, discrete

Kalman filter [9] is used to be able to track a target in the virtual world, based on

motion estimation. [11] explains and formulates this algorithm in detail. To run the

target tracking algorithm, blob analysis has been utilized in Simulink environment,

[31].

1.3 Outline of Thesis

This thesis is organized as follows:

Chapter 2 presents detailed mathematical modeling of the 2-DOF gimbal system for
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the purpose of constructing a model as realistic as possible. In the modeling process

of the gimbal system, first, reference frames are described, transformation matrices

and their first order derivatives are computed. Second, kinematic equations are incor-

porated. Third, the most realistic friction and actuator models are provided. Then,

dynamic equations with friction models and mass unbalance effects are formulated.

Lastly, both coupled and decoupled 2-DOF gimbal models are represented in a state

space and their LTI models are obtained by Jacobian linearization technique.

Chapter 3 focuses on the two main control strategies implemented in nonlinear gim-

bal models on MATLAB/Simulink environment and their performances are compared

in consideration of desired criteria. One of them is cascade PI control which is com-

posed of rate and position controllers utilizing stabilization and pointing of the sys-

tem, respectively. The other is linear quadratic integral control which is designed

with LTI subsystems of both coupled 2-DOF gimbal and decoupled gimbals. Also

gain scheduling is implemented into LQI control to weight the control signal of each

LTI subsystems of coupled and decoupled gimbals.

In Chapter 4, a 3-D simulation environment is designed by means of the virtual reality

modeling language (VRML) on MATLAB/Simulink. In addition, a tracker algorithm

combined by discrete Kalman filter and image processing techniques is used to es-

timate motion of the target via video outputs of the constructed virtual world and it

produces inner and outer position commands for the nonlinear gimbal system model

with PI control method.

Finally in Chapter 5, the summary of the thesis and some suggestions for future stud-

ies have been presented.
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CHAPTER 2

MATHEMATICAL MODELING OF THE 2-DOF GIMBAL

SYSTEM

Detailed mathematical model of the 2-DOF gimbal system is examined in order to

construct a realistic simulation environment in this chapter. Gimbal model has some

nonlinearities such as friction, torque ripple, motor friction torque, static and dy-

namic mass unbalances. The main advantage of obtaining a realistic system model is

the possibility of applying control methods in the lack of the physical system.

In the modeling study of the gimbal system, first, reference frames and transformation

matrices are described. Second, kinematic equations are formulated. Then, friction

effects between the gimbals, brushed DC actuators and sensor noises of the gyro-

scopes are modeled. After that, dynamic equations containing the friction and mass

unbalance effects are formulated for the inner and outer gimbals. In addition, two

decoupling methods for the gimbal platform are proposed and outputs of the coupled

2-DOF and decoupled gimbals are compared.

Nonlinear gimbal systems can be described as multiple-input, multiple-output (MIMO)

systems. In the modeling study, we have also obtained nonlinear state space models

of the coupled and decoupled gimbals. After that, their equilibrium points are found

and they are clustered. Last, all nonlinear state space models are linearized about the

cluster centers.
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2.1 Reference Frames and Transformations

The mathematical model of the 2-DOF gimbal platform includes the outer gimbal,

inner gimbal and gimbal base. Angular motions of the outer and inner gimbals are

yaw (η) and pitch (ε) directions on their own reference frames, respectively. More-

over the gimbal base motion referring to the disturbances, caused by the sea waves,

is a yaw-pitch-roll sequence. Angular displacements of the base motions in yaw (ψ),

pitch (θ) and roll (φ) directions are called Euler angles. It is assumed that all refer-

ence frames are orthogonal and their origins are overlapped (in Figure 2.1). Frame

transformations used to analyze the motion are summed up below:

(e): Reference frame fixed to the earth (inertial) frame

(m), (n): Reference frames defining platform base motion between

the earth and gimbal base

(B): Reference frame fixed to the gimbal base

(O): Reference frame fixed to the outer gimbal

(I): Reference frame fixed to the inner gimbal

and the unit direction vectors about the x, y and z axes are:

ux =


1

0

0

 ,uy =


0

1

0

 ,uz =


0

0

1

 (2.1)

Moreover, rotational relations of the reference frames between the earth and inner

gimbal are given in Figure 2.2. These transformations are highly important for com-

puting kinematic and dynamic equations of the system.
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Figure 2.1: Rotational directions of a 2-DOF gimbal

Figure 2.2: Reference frames and their rotational relations

In [4], theory of the transformation matrices between reference frames and compu-

tation of their first order derivatives with respect to time are examined in detail. A

transformation matrix is expressed by Tab which is used to project a vector from the

reference frame (a) to the reference frame (b). Transformation matrices between ref-

erence frames in a sequence are expressed as follows:

Tem(ψ) = TT
me(ψ) =


cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1

 (2.2)
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Tmn(θ) = TT
nm(θ) =


cos (θ) 0 sin (θ)

0 1 0

− sin (θ) 0 cos (θ)

 (2.3)

TnB(φ) = TT
Bn(φ) =


1 0 0

0 cos (φ) − sin (φ)

0 sin (φ) cos (φ)

 (2.4)

TBO(η) = TT
OB(η) =


cos (η) − sin (η) 0

sin (η) cos (η) 0

0 0 1

 (2.5)

TOI(ε) = TT
IO(ε) =


cos (ε) 0 sin (ε)

0 1 0

− sin (ε) 0 cos (ε)

 (2.6)

One property of the transformation matrices is that product of the transformation

matrices and their transpose are equal to the identity matrix due to the orthogonality

of frames. Therefore the first order derivatives of the transformation matrices with

respect to time can be formulated by:

dTT

dt
T + TT dT

dt
= 0

and TT dT
dt

term is a skew-symmetric matrix expressed by MΩ.

MΩ =


0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 (2.7)

The matrix MΩ is related with the angular velocity vector Ω =
[
Ωx Ωy Ωz

]T
.

Hence the derivative of a transformation matrix is represented as:

dT
dt

= MΩ · T (2.8)

Consequently, the first order derivatives of all transformation matrices are written
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(based on Eqs. 2.7 and 2.8) as:

ṪIO = MΩIOTIO =


0 −ΩIOz ΩIOy

ΩIOz 0 −ΩIOx

−ΩIOy ΩIOx 0




cos (ε) 0 − sin (ε)

0 1 0

sin (ε) 0 cos (ε)



=


ΩIOy sin (ε) −ΩIOz ΩIOy cos (ε)

ΩIOz cos (ε)− ΩIOx sin (ε) 0 −ΩIOz sin (ε)− ΩIOx cos (ε)

ΩIOy cos (ε) ΩIOx ΩIOy sin (ε)


(2.9)

ṪOB = MΩOBTOB =


0 −ΩOBz ΩOBy

ΩOBz 0 −ΩOBx

−ΩOBy ΩOBx 0




cos (η) sin (η) 0

− sin (η) cos (η) 0

0 0 1



=


ΩOBz sin (η) −ΩOBz cos (η) ΩOBy

ΩOBz cos (η) ΩOBz sin (η) −ΩOBx

−ΩOBy cos (η)− ΩOBx sin (η) −ΩOBy sin (η) + ΩOBx cos (η) 0


(2.10)

ṪBn = MΩBnTBn =


0 −ΩBnz ΩBny

ΩBnz 0 −ΩBnx

−ΩBny ΩBnx 0




1 0 0

0 cos (φ) sin (φ)

0 − sin (φ) cos (φ)



=


0 −ΩBnz cos (φ)− ΩBny sin (φ) −ΩBnz sin (φ) + ΩBny cos (φ)

ΩBnz ΩBnx sin (φ) −ΩBnx cos (φ)

−ΩBny ΩBnx cos (φ) ΩBnx sin (φ)


(2.11)

Ṫnm = MΩnmTnm =


0 −Ωnmz Ωnmy

Ωnmz 0 −Ωnmx

−Ωnmy Ωnmx 0




cos (θ) 0 − sin (θ)

0 1 0

sin (θ) 0 cos (θ)



=


Ωnmy sin (θ) −Ωnmz Ωnmy cos (θ)

Ωnmz cos (θ)− Ωnmx sin (θ) 0 −Ωnmz sin (θ)− Ωnmx cos (θ)

Ωnmy cos (θ) Ωnmx Ωnmy sin (θ)


(2.12)
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2.2 Kinematic Equations of Gimbal

Kinematics of the gimbal represent the angular velocity and acceleration terms. There

are twelve kinematics of the 2-DOF gimbal relative to the earth frame. Transforma-

tions between the reference frames are related in kinematics. In order to project the

inner and outer gimbal kinematics into the earth frame, first, they are transformed to

the reference frame of the gimbal base. Then these are rotated by an amount of φ, θ

and ψ Euler angles about the x, y and z axes, respectively [6].

2.2.1 Angular Velocity

Firstly, angular velocity vector of the outer gimbal ΩOe =
[
ΩOex ΩOey ΩOez

]T
relative to the earth frame (e) and represented in the outer gimbal frame (O) is:

ΩOe = ΩOB + ΩBn + Ωnm + Ωme

and

ΩOe = η̇uz + φ̇TOBux + θ̇TOBTBnuy + ψ̇TOBTBnTnmuz

=


0

0

η̇

+ TOB


φ̇

0

0

+ TOBTBn


0

θ̇

0

+ TOBTBnTnm


0

0

ψ̇


where η is the angular position of the outer gimbal about the z axis. By substituting

transformation matrices into ΩOe, components of this velocity expression about the

x, y and z axes are:

ΩOex = φ̇ cosφ+ θ̇ cosφ sin η + ψ̇(cos θ sin η sinφ− cos η sin θ) (2.13)

ΩOey = −φ̇ sinφ+ θ̇ cosφ cos η + ψ̇(sin η sin θ + cos η cos θ sinφ) (2.14)

ΩOez = η̇ + ΩdistOz
(2.15)

where ΩdistOz
is disturbance velocity effect about the z axis of the outer gimbal.

ΩdistOz
= −θ̇ sinφ+ ψ̇ cosφ cos θ
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Secondly, angular velocity of the inner gimbal ΩIe =
[
ΩIex ΩIey ΩIez

]T
relative

to the earth frame and represented in the inner gimbal frame (I) is:

ΩIe = ε̇uy + TIOΩOe

=


0

ε̇

0

+ TIO


0

0

η̇

+ TIOTOB


φ̇

0

0

+ TIOTOBTBn


0

θ̇

0

+ TIOTOBTBnTnm


0

0

ψ̇


(2.16)

where ε is the angular position of the inner gimbal. When transformation matrices

substituted into Eq. 2.16, components of ΩIe about the x, y and z axes are written as

follows:

ΩIex = φ̇ cos ε cos η − ψ̇(sin ε cosφ− cos ε sin η sinφ) + θ̇(sin ε sinφ+ cos ε sin η cosφ)

− η̇ sin ε

(2.17)

ΩIey = ε̇+ ΩdistIy
(2.18)

where ΩdistIy
is the disturbance velocity about the y axis of the inner gimbal.

ΩdistIy
= −φ̇ sin η + θ̇ cos η cosφ+ ψ̇ cos η sinφ

ΩIez = φ̇ sin ε cos η + ψ̇(cos ε cosφ+ sin ε sin η sinφ)− θ̇(cos ε sinφ− sin ε sin η cosφ)

+ η̇ cos ε

(2.19)

2.2.2 Angular Acceleration

Angular acceleration of the 2-DOF gimbal is obtained by the first order derivative of

angular velocity of the same gimbal reference frame with respect to time. Angular

acceleration of the outer gimbal relative to the earth frame (e) described by αOe =
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[
αOex αOey αOez

]T
can be calculated by:

αOe = η̈uz

+ φ̈TOBux

+ θ̈(TOBTBn)uy

+ ψ̈(TOBTBnTnm)uz

+ φ̇ṪOBux

+ θ̇(ṪOBTBn + TOBṪBn)uy

+ ψ̇(ṪOBTBnTnm + TOBṪBnTnm + TOBTBnṪnm)uz

(2.20)

where the first order derivatives of the transformation matrices are:

ṪOB = MΩOBTOB = η̇


sin η − cos η 0

cos η sin η 0

0 0 0



ṪBn = MΩBnTBn = φ̇


0 sin2 φ −cosφ sinφ

0 cosφ sinφ − cos2 φ

sinφ cos2 φ cosφ sinφ



Ṫnm = MΩnmTnm

= θ̇


cos η cosφ sin θ sinφ cos η cosφ cos θ

− cos θ sinφ− cosφ sin η sin θ 0 sinφ sin θ − cosφ cos θ sin η

− cos η cosφ cos θ cosφ sin η cos η cosφ sin θ



and angular acceleration of the inner gimbal αIe =
[
αIex αIey αIez

]T
relative to
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the earth frame (e) and represented in the inner gimbal reference frame (I) is:

αIe = ε̈uy

+ η̈TIOuz

+ η̇ṪIOuz

+ φ̈(TIOTOB)ux

+ θ̈(TIOTOBTBn)uy

+ ψ̈(TIOTOBTBnTnm)uz

+ φ̇(ṪIOTOB + TIOṪOB)ux

+ θ̇(ṪIOTOBTBn + TIOṪOBTBn + TIOTOBṪBn)uy

+ ψ̇(ṪIOTOBTBnTnm + TIOṪOBTBnTnm + TIOTOBṪBnTnm + TIOTOBTBnṪnm)uz

(2.21)

where

ṪIO = MΩIOTIO = ε̇


sin ε 0 cos ε

0 0 0

− cos ε 0 sin ε


By substituting transformation matrices into Eq. 2.20 and Eq. 2.21, components of

αOe and αIe about the x, y and z axes are given in Eqs. A.1 - A.6.

2.3 Friction Model

Friction term can be described as the resistance to the motion between two surfaces

sliding against each other. It is a natural phenomenon which is quite hard to model

and it is not yet completely understood [14]. The main goal of modeling of the fric-

tion is to observe uncertainty of the mechanical systems. There are two main types of

friction models which are static and dynamic in simulation studies.

The classic friction models can be accepted the most basic friction models, includ-

ing Coulomb, viscous, stiction, Stribeck effect and their all possible combinations.

These types of frictions depend statically on the applied load and relative velocity

[42]. Hence classical models are described by static maps between velocity and fric-

tion torque [14].

15



Figure 2.3: Combination of Coulomb, viscous and static friction [2]

The Stribeck effect [2] is expressed as nonlinear continuous transition from the static

friction to the dynamic friction for lubricated and dry surfaces. The Stribeck veloc-

ity vs can be defined as the velocity where dip point of the Stribeck curve, shown in

Figure 2.4. Stribeck effect is formulated by:

s(v) = (TC + (TS − TC)e−(v/vs)δ)sgn(v) (2.22)

where TC is Coulomb friction torque, TS is stiction torque, v is relative velocity, vs is

the Stribeck velocity and δ is the Stribeck shape factor.

Figure 2.4: Combination of Coulomb, viscous, static friction and Stribeck effect [2]

The main limitations of the classical friction models are zero crossing of velocity and

non-uniqueness of the solution between −TS and +TS at zero velocity [3]. To solve

these problems, Karnopp friction model which is capable of detecting zero velocity

with high accuracy is proposed in [24]. Although Karnopp model is efficient in simu-
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lation studies, it is strongly coupled with the rest of system and external torque which

is one of the friction input terms which can not be described explicitly. Therefore, the

success in simulation may fail in practical applications [42]. When all problems and

limited capabilities of static models are taken into account, these models are not able

to satisfy the friction phenomenon accurately. On the other hand, dynamic models

can solve all problems of static models and capture some friction phenomena. Con-

sequently, the dynamic models are preferred instead of static models.

The Dahl friction model [12], which is the simplest dynamic model, is used to sim-

ulate servo systems with ball bearing friction [37]. This model depends on Coulomb

friction, sign of velocity and angular displacement. It captures hysteresis effects and

solves all problems of static friction models. In addition, the Dahl model is very suc-

cessful in both simulation and practical applications [14]. On the other hand, the Dahl

neither captures the Stribeck effect, depending on angular velocity, nor the stick-slip

motion. Description of the Dahl model in time domain is formulated by:

Tfr = σ0z (2.23)

dz

dt
= v − σ0|v|

TC
z (2.24)

where Tfr is friction torque, TC is Coulomb friction, v is relative angular velocity and

σ0 is stiffness.

Table2.1: Parameters of Dahl friction model effect on inner and outer gimbals

Parameters Units Symbol TfrBO values TfrIO values
Coulomb friction torque N.m TC 18.1 2.7
Stiffness coefficient N.m/rad σ0 80 90

The LuGre friction model includes all advantages of the Dahl model. In addition, this

model can capture the Stribeck effect, stick-slip motion, friction lag in sliding regime,

hysteresis curve in pre-sliding and it can estimate the break-away force at transition

from pre-sliding to sliding regime [42]. The LuGre friction model is based on repre-

sentation of the elastic bristles visualized between two rigid bodies [18]. Modeling

of LuGre is built on the average deflection of the bristles. When a tangential force

is applied, the bristles will deflect like springs. If deflection is sufficiently large the
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bristles start to slip [14], [37].

Figure 2.5: Physical explanation of the LuGre friction model [42]

LuGre friction model is in the following form:

dz

dt
= v − |v|

g(v)
z (2.25)

Tfr = σ0z + σ1
dz

dt
+ σ2v (2.26)

where z is average deflection of the bristles, v is relative velocity between two sur-

faces, σ0 is stiffness coefficient, σ1 is damping coefficient, σ2 is viscous damping

coefficient and g(v) function is used to obtain Stribeck effect formulated by:

σ0g(v) = TC + (TS − TC)e−(v/vs)δ (2.27)

where TC is the Coulomb friction torque, TS is the stiction torque, vs is the Stribeck

velocity and δ is the Stribeck shape factor. Values of parameters of LuGre friction

models on inner and outer gimbals are given in Table 2.2. With these values of pa-

rameters, hysteresis curves of frictions between gimbals are shown below.

Table2.2: Parameters of LuGre friction model effect on inner and outer gimbals

Parameters Units Symbol TfrBO values TfrIO values
Coulomb friction torque N.m TC 18.1 2.7
Static friction torque N.m TS 22.6 3.4
Stribeck velocity rad/sec vs 0.001 0.001
Stribeck shape factor - δ 2 2
Stiffness coefficient N.m/rad σ0 80 90
Damping coefficient N.m/rad σ1 8.9 9.48
Viscous damping coefficient N.m sec/rad σ2 0 0
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Figure 2.6: Hysteresis curves of the LuGre friction models

In order to decide the most convenient dynamic friction model for simulation studies,

outputs of Dahl and LuGre are examined for different angular velocity inputs.

Figure 2.7: Chirp responses of the Dahl and LuGre friction models

In [42], LuGre friction model is chosen for friction compensation instead of the other

static and dynamic models. It can capture many friction phenomena and the number

19



of LuGre parameters is less than Leuven and GMS models for identification. In me-

chanical design of our system, ball bearings are used on the purpose of decreasing

friction effects between weighty gimbals. Although LuGre has many advantages on

obtaining a realistic friction model, Dahl model is more suitable to use in this study.

2.4 DC Motor Model

Actuators of the inner and outer gimbals are chosen as brushed DC motors from

KOLLMORGEN Company. Mathematical model of the DC motor, constructed by

electrical and mechanical parts, is strengthened in a lot of scientific paper [17]. Elec-

trical part parameters are inductance Lm, motor resistance Rm and back EMF con-

stantKe. On the other hand, mechanical part parameters of the brushed DC motor are

rotor moment of inertia Im, motor friction torque Tfrm , torque ripple Tr and torque

constant Km.

Mathematical model of the DC actuator contains both linear and nonlinear effects.

In [1], simplest linear DC motor model is used for the mathematical model of the

gimbal. In this study, Coulomb motor friction torque and torque ripple effect, caused

by lots of reasons such as coupling of magnetic field, cogging torque and mechanical

unbalances of motor, are implemented into the linear motor model. Torque ripple

causes acoustic noise, mechanical vibrations and inaccuracy for position and speed

control [43]. As shown in Figure 2.8, characteristic of the torque ripple is a sine wave

function of the ripple frequency and angular displacement. Value of the torque ripple

can be described as the percent change from the peak value to the average value of

motor torque. Besides, ripple frequency refers to the number of ripple cycles in one

revolution of the motor. Indeed, number of ripple cycles in one revolution is equal to

the number of commutator bars [35].
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Figure 2.8: Torque ripple effect [35]

In Simulink model of the actuator, given in Figure B.3, relative angular velocity

comes from the first order derivative of angular displacement measured by encoder.

In addition, torque ripple depend on angular displacement. Last, saturation block en-

sures the operation of the motor in torque limits.

Table2.3: Parameters of the motor models for the inner and outer gimbals

Parameters Units Symbols Inner gimbal Outer gimbal
Resistance ohms Rm 0.83 1.2
Inductance mH Lm 0.91 4
Rotor moment of inertia kg.m2 Im 0.149 0.0168
Torque constant N.m/amp Km 5.11 1.5
Back EMF constant V per rad/s Kb 5.11 1.5
Peak torque N.m Tp 203 35.3
Motor friction torque N.m Tfrm 2.71 0.54
Torque ripple, Ave. to peak percent Tr 4 4
Ripple cycles per rev. cycles/rev - 181 91

2.5 Gyroscope Model

Stabilization studies focuses on handling disturbances applied to the system. Fiber

optic inertial measurement units (IMUs) which contain three gyroscopes measuring

angular velocities about x, y and z axes of gimbals relative to the earth reference frame
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have main role in stabilization. However, there are some problems of gyroscopes

which can be handled by means of sensor fusion algorithms such as bias, angular

random walk, scale factor and misalignment. In this study, angular random walk of

used gyroscope is lower than 0.013◦/
√
hr and its bandwidth frequency at higher that

440 Hz. White noise characteristic of the gyroscopes is shown in Figure 2.9.

Figure 2.9: White noise of the gyroscope used

2.6 Dynamic Equations of Gimbal

There are lots of formulation in order to construct mathematical models of gimbal

platforms but none of these are capable of capturing most of the dynamics [39]. In

this study, dynamic equations of the 2-DOF gimbal system is written by the Newton-

Euler equations about inner and outer gimbal motion axes. Linear forces applied to

the center of rotational axes of the inner and outer gimbals can not create any net

torque on either of the gimbals. Hence only Euler’s equations, representing rotational

motions, are examined to obtain a mathematical model of this system [10]. This sec-

tion especially focuses on capturing nonlinearities and disturbances of the system.

After that, block diagram of the equation of motion and values of parameters for both

gimbals are given to be used in controller design phase.

Frictions and mass unbalances of the inner and outer gimbals are the essential dis-
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turbance sources on the system. Especially, it can be said that friction is the more

dominant effect against mass unbalance. There are two types of mass unbalances of

the gimbals. One of them is the dynamic mass unbalance caused by the asymmet-

ric mass distribution, called product of inertia (POI) [38]. Inertia matrices (tensors)

demonstrate the dynamic unbalance states of the gimbals. If the gimbal has symmet-

rical mass distribution with respect to the its frame axis, dynamic mass unbalance

will be nonexistent and inertia tensor of the gimbal becomes a diagonal matrix. The

other disturbance source is the static mass unbalance caused by the offset between

the intersection (pivot) point of the rotation axes and the center of gravity (CG) of

gimbals. The gravitational and base motion acceleration act on the CG of gimbals

and disturbance torques about the pivot point occur [1].

Table2.4: Values of parameters of the outer and inner gimbals

Gimbal Parameters Units Symbols Values

Outer

Inertia matrix elements kg.m2

IOxx 18.667
IOyy 25.025
IOzz 9.9024

IOyz = IOzy 0.0006029
IOxy = IOyx 0
IOxz = IOzx -4.7643

Distance between pivot point and CG of gimbal m

rPGOx
-0.0957

rPGOy
-0.0000245

rPGOz
-0.3318

Mass of outer gimbal kg mO 93.48

Inner

Inertia matrix elements kg.m2

IIxx 14.508
IIyy 2.8813
IIzz 14.409

IIyz = IIzy 0.3639
IIxy = IIyx 0.067255
IIxz = IIzx 0.051688

Distance between pivot point and CG of gimbal m

rPGIx
-0.003269

rPGIy
0.3477

rPGIz
-0.008242

Mass of inner gimbal kg mI 82.07

In this thesis, values of parameters of the system are obtained by CAD drawings. It

is an important point about the determination of values of these parameters that both

gimbals have to be decoupled in CAD drawings.
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2.6.1 Inner Gimbal

Newton’s equation which yields translational motion for the inner gimbal is:

FOI = mI(ACGI − g) (2.28)

where mI is the inner gimbal mass, ACGI is the linear acceleration of the CG of the

inner gimbal, FOI is the linear force applied from the outer gimbal to the CG of the

inner gimbal and g is the gravity vector.

Angular momentum of the inner gimbal about the pivot point P relative to the in-

ner gimbal frameHI,P is:

HI,P = IIP ·ΩIe (2.29)

where IIP and ΩIe express the inertia tensor of the decoupled inner gimbal calculated

about the pivot point and angular velocity vector of the inner gimbal relative to the

earth frame, respectively. Total moment applied to the inner gimbal is formulated

by the first order derivative of inner gimbal angular momentum with respect to time.

With some calculations in [4], Euler’s equation of the inner gimbal about the pivot

point is formulated by:

IIP ·αIe + ΩIe × IIP ·ΩIe = MOI +DI
staticUnb (2.30)

where

IIP : Inertia tensor of the decoupled inner gimbal about the pivot point

αIe: Angular acceleration of the inner gimbal frame relative to the earth

frame

ΩIe: Angular velocity of the inner gimbal frame relative to the earth

frame

MOI : Moment applied from the outer gimbal on the inner gimbal

DI
staticUnb: Disturbance moment caused by static mass unbalance on the inner

gimbal

24



To calculate disturbance torque caused by static mass unbalance on gimbals, the grav-

itational effect and the gimbal base motion acceleration should be transformed into

the reference frames of the gimbals. However, the base motion acceleration is ne-

glected in these equations. The gravity vector relative to the earth reference frame is

ge = −guz which is projected into the inner gimbal reference frame.

gI = −gTIO(uz)
e
Oe = −g(TIOTOBTBnTnmTme)uz

Thus

gI = −g


− cos η sin θ cos ε+ sin ηz sinφ cos θ cos ε− cosφ cos θ sin ε

sin η sin θ + cos η sinφ cos θ

− cos η sin θ sin ε+ sin η sinφ cos θ sin ε+ cosφ cos θ cos ε

 (2.31)

Equation of the static mass unbalance torque of the inner gimbal is:

DI
staticUnb = rPGI × (mI{g}I) (2.32)

where mI is the mass of inner gimbal. Position vector from the pivot point to the CG

of the inner gimbal is:

rPGI =
[
rPGIx

rPGIy
rPGIz

]T
(2.33)

Besides, the moment term transfered into the inner gimbal can be expressed by:

MOI =


MOIx

TmI
+ TfrOI

MOIz

 (2.34)

where TmI
is the motor torque transmitted into the inner gimbal and TfrOI is the

friction torque between the inner and outer gimbals. TmI
+ TfrOI is transfered into

the inner gimbal along the y axis so that components of the moment, which is applied

from the outer gimbal on the inner gimbal, about the x and z axes are neglected.

Inertia tensor of the inner gimbal is:

IIP =


IIxx IIxy IIxz

IIyx IIyy IIyz

IIzx IIzy IIzz

 (2.35)
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If Euler’s equation of the inner gimbal is rewritten with above terms


IIxx IIxy IIxz

IIyx IIyy IIyz

IIzx IIzy IIzz



αIex

αIey

αIez

+


ΩIex

ΩIey

ΩIez

×

IIxx IIxy IIxz

IIyx IIyy IIyz

IIzx IIzy IIzz




ΩIex

ΩIey

ΩIez



=


0

TmI
+ TfrOI

0

+


rPGIx

rPGIy

rPGIz

×−(mIg)


cos(ε) sin(θ) + cos(θ) sin(ε)

0

sin(ε) sin(θ)− cos(ε) cos(θ)


(2.36)

This equation can be expanded into three equations of the inner gimbal with respect to

the angular accelerations αIex , αIey , αIez and the angular velocities ΩIex , ΩIey , ΩIez .

These scalar equations are given in Eq. A.7 - A.9, explicitly. If dynamic equation of

the inner gimbal about the y axis, given by Eq. A.8, is rewritten:

IIyyαIey +DI
dynamicUnby = TmI

+ TfrOI +DI
staticUnby (2.37)

where disturbance torques caused by the dynamic and static mass unbalance are:

DI
dynamicUnby = IIxyαIex + IIyzαIez + ΩIez(I

I
xxΩIex + IIxyΩIey + IIxzΩIez)

− ΩIex(I
I
xzΩIex + IIyzΩIey + IIzzΩIez)

DI
staticUnby = gmI(rPGIx

(cos ε cos θ − sin ε sin θ) + rPGIz
(cos ε sin θ + cos θ sin ε))

Block diagram of the inner gimbal model is shown in Figure 2.10.

Figure 2.10: Block diagram of the inner gimbal

Angular velocity ΩIey and angular position ε are measured by the gyroscope and
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encoder sensors, respectively. Moreover, angular velocity term ΩdistIey
represents the

platform motion affect on the inner gimbal. Relative velocity ε̇ can be defined as

changing rate of the angular displacement [39]. Total inertia of the inner gimbal is

computed by the sum of motor inertia ImI
and inner gimbal inertia IIyy along the y

axis. Then, only the friction model is required to determine the relative velocity of the

inner gimbal ε̇whereas mass unbalance block gets platform motion, angular positions

of the inner ε and outer η gimbals. Last, motor model requires angular position and

relative velocity of the inner gimbal.

2.6.2 Outer Gimbal

Newton’s equations of the outer gimbal is:

FIO = −FOI (2.38)

FBO + FIO = (mO +mI)(AGO − g) (2.39)

where mO is the outer gimbal mass,AGO is linear acceleration of the CG of the outer

gimbal, FBO is linear force applied from the gimbal base to the CG of the outer gim-

bal, FIO is linear force applied from the inner gimbal to the CG of the outer gimbal.

The angular momentum of the outer gimbal about the pivot point P relative to the

outer gimbal frameHO,P is formulated by:

HO,P = IOP ·ΩOe + TIO · IIP ·ΩIe (2.40)

where IOP is the inertia tensor of the decoupled outer gimbal and ΩOe is angular ve-

locity vector of the outer gimbal relative to the earth frame. Euler’s equation of the

outer gimbal about the pivot point is:

IOP ·αOe + ṪIO · IIP ·ΩIe + TIO · IIP ·αIe + ΩOe × (IOP ·ΩOe + TIO · IIP ·ΩIe)

= MBO +MIO +DO
staticUnb

(2.41)

where

IIP : Inertia tensor of the decoupled inner gimbal about pivot point
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IOP : Inertia tensor of the decoupled outer gimbal about pivot point

αIe: Angular acceleration of the inner gimbal frame relative to the earth

frame

αOe: Angular acceleration of the outer gimbal frame relative to the earth

frame

ΩIe: Angular velocity of the inner gimbal frame relative to the earth frame

ΩOe: Angular velocity of the outer gimbal frame relative to the earth frame

MBO: Moment applied from the gimbal base to the outer gimbal

MIO: Moment applied from the inner gimbal to the outer gimbal

DO
staticUnb: Disturbance torque caused by static mass unbalance on the outer gim-

bal

Equation of the static mass unbalance torque on the outer gimbal is:

DO
staticUnb = rPGO × ((mO +mI){g}O) (2.42)

where mI and mO are the mass of inner and outer gimbals, respectively. Position

vector from the pivot point to the CG of the outer gimbal is expressed by rPGO :

rPGO =
[
rPGOx

rPGOy
rPGOz

]T
(2.43)

and the gravity vector {g}O projected into the outer gimbal is:

{g}O = −g(uz)
e
Oe = −g(TOBTBnTnmTme)uz

Furthermore

gO = −g


− cos η sin θ + sin η sinφ cos θ

sin η sin θ + cos η sinφ cos θ

cosφ cos θ

 (2.44)

The moment terms transfered into the outer gimbal can be written as:

MIO =


MIOx

MIOy

TfrIO

 , MBO =


MBOx

MBOy

TmO
+ TfrBO

 (2.45)
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where TfrBO is the friction torque between the gimbal base and the outer gimbal,

TfrIO is friction torque between the inner and outer gimbals and TmO
is motor torque

applied to the outer gimbal. Rotations of the joints between the gimbal base and outer

gimbal are overlapped along the same z axis. Thus TmO
+TfrBO is transfered into the

outer gimbal directly whereas TfrIO is the friction torque transfered indirectly.

Inertia tensor of outer gimbal is defined by:

IOP =


IOxx IOxy IOxz

IOyx IOyy IOyz

IOzx IOzy IOzz

 (2.46)

When we rewrite Euler’s equation of outer gimbal and substitute above terms into this

equation with assuming MIOx = MIOy = 0 and MBOx = MBOy = 0,
IOxx IOxy IOxz

IOyx IOyy IOyz

IOzx IOzy IOzz



αOex

αOey

αOez

+


sin ε 0 cosε

0 0 0

− cos ε 0 sin ε



IIxx IIxy IIxz

IIyx IIyy IIyz

IIzx IIzy IIzz




ΩIex

ΩIey

ΩIez



+


cos ε 0 sin ε

0 1 0

− sin ε 0 cos ε



IIxx IIxy IIxz

IIyx IIyy IIyz

IIzx IIzy IIzz



αIex

αIey

αIez



+


ΩOex

ΩOey

ΩOez

×


IOxx IOxy IOxz

IOyx IOyy IOyz

IOzx IOzy IOzz




ΩOex

ΩOey

ΩOez

+


cos ε 0 sin ε

0 1 0

− sin ε 0 cos ε



IIxx IIxy IIxz

IIyx IIyy IIyz

IIzx IIzy IIzz




ΩIex

ΩIey

ΩIez




=


0

0

TmO
+ TfrBO

+


0

0

TfrIO



+


rPGOx

rPGOy

rPGOz

×−g(mO +mI)


− cos η sin θ + sin η sinφ cos θ

sin η sin θ + cos η sinφ cos θ

cosφ cos θ


(2.47)

This matrix is decomposed into three scalar equations of outer gimbal with respect

to angular accelerations αOex , αOey , αOez and angular velocities ΩOex , ΩOey , ΩOez .

These equations are written in Eq. A.10 - A.12, explicitly. The equation of motion
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for the outer gimbal on the z axis is given in Eq. A.12. If we write again this equation

IOzzαOez +DO
dynamicUnbz = TmO

+ TfrBO + TfrIO +DO
staticUnbz (2.48)

where dynamic and static mass unbalance terms are:

DO
dynamicUnbz = IOxzαOex + IOyzαOey

+ αIex(I
I
xz cos ε+ IIxx sin ε) + αIey(I

I
yz cos ε+ IIxz sin ε)

+ αIez(I
I
zz cos ε+ IIxz sin ε)

+ ΩOex(ΩOex(I
I
xy + IOxy) + ΩOey(I

I
yy + IOyy) + ΩOez(I

I
yz + IOyz))

− ΩOey(ΩOex(I
O
xx + IIxx cos ε− IIxz sin ε) + ΩOey(I

O
xy + IIxy cos ε− IIyz sin ε)

+ ΩOez(I
O
xz + IIxz cos ε− IIzz sin ε))

− ΩIex ε̇(I
I
xx cos ε− IIxz sin ε)− ΩIey ε̇(I

I
xy cos ε− IIyz sin ε)

− ΩIez ε̇(I
I
xz cos ε− IIzz sin ε)

DO
staticUnbz = g(mO +mI)((− cos η sin θ + sin η sinφ cos θ)rPGOy

− (sin η sin θ + cos η sinφ cos θ)rPGOx
)

Block diagram of outer gimbal is shown in Figure 2.11. The angular velocity ΩOez

and η are measured by gyroscope and encoder sensors, respectively.

Figure 2.11: Block diagram of the outer gimbal

Angular velocity ΩdistOez
expresses platform motion disturbance on the outer gimbal

and η̇ is relative velocity of outer gimbal. Total inertia of the outer gimbal is computed

by the sum of motor inertia ImO
and outer gimbal inertia IOzz along the z axis. Fur-

ther, motor model requires angular position and relative velocity of the outer gimbal.

Moreover, inputs of the friction models are relative velocities of the gimbals whereas
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inputs of the mass unbalance block are platform motion and angular positions of both

inner and outer gimbals.

2.7 Verification of the Decoupling of the Gimbals

The stabilized gimbal system has the inner and outer gimbals controlled separately.

However, if two separate controllers are implemented to control the two gimbals,

these one has to verify that decoupling is realistic [39].

There are two methods in order to decouple mechanically coupled two gimbals. In

the first proposed method, if dynamic equations of the gimbal includes the inertia and

mass terms of the other gimbal, these expressions have to be neglected. In addition

to the ignored terms of the first method, each gimbal is fixed to the other and angular

position of the other gimbal is set to zero in the second method. When motor torques

as chirp signals are applied to inner and outer gimbals, angular position and velocity

outputs of the systems are shown below.

Figure 2.12: Position outputs of coupled and decoupled gimbals

These figures shows that decoupling approaches are unable to respond with the same
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Figure 2.13: Velocity outputs of coupled and decoupled gimbals

coupled 2-DOF gimbal. Even though outputs of the coupled and decoupled inner

gimbal with the first decoupling approach are about same, they are much different in

all the other cases. In this study, the first approach is used to obtain state space mod-

els of the decoupled gimbals. After that local LQI controllers, discussed in the next

chapter, are designed for these decoupled models and linear quadratic controllers for

models of the coupled and decoupled gimbals are compared.

2.8 State Space Representation of Gimbal

The nonlinear 2-DOF gimbal is described as a multiple-input, multiple-output sys-

tem. Different from the conventional control theory, modern control theory allows

to construct MIMO system model and helps to implement different control strategies

such as H∞ and linear quadratic regulator in state space [36]. In this section, state

space representations of the coupled 2-DOF gimbal, decoupled inner and decoupled

outer gimbals are examined in order to determine which approach is more convenient

in control studies. State and output equations of the gimbals are written from kine-

matics and dynamics of the system. In addition, platform motion and sensor noise are
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also defined in state space. None of system model represented in state space contains

mathematical model of the motors.

State variables describe the behavior of the system. Friction state z which is used

in the Dahl model, relative angular position and relative angular velocity terms of the

inner and outer gimbals are chosen as state variables. Output variables have to be

selected as measurable quantities whereas state variables do not have any necessity

on being measurable [36]. Hence angular position and velocity responses, measured

by encoders and gyroscopes of IMU, for inner and outer gimbals are chosen as the

output variables. Motor torques refers to the control input variables, platform motion

kinematics and sensor noise are used to define external effects carried out to the sys-

tem.

The nonlinear state space representation of the system is in the following form:

ẋ = f(x,u,w) (2.49)

y = h(x,w,n) (2.50)

where x is the state vector, u is the control input vector, w is the disturbance vector

referring to platform motion which is carried out to the gimbal base, f(x,u,w) is the

state equation consisting of dynamic and kinematic equations of the system, ẋ is the

first order derivative of the state vector, y is the output vector,n is the gyroscope noise

vector and h(x,w,n) is the output equation which defines the system responses.

2.8.1 Coupled 2-DOF Gimbal

The nonlinear state space representation of the coupled 2-DOF gimbal is:

ẋG = fG(xG,uG,wG) (2.51)

yG = hG(xG,wG,nG) (2.52)

There are six states, two control inputs, eight disturbances, two gyroscope noises and

four outputs for the coupled gimbal. State vector consists of two angular positions (η,

ε), two friction states (zOB, zIO), relative angular velocity between the outer gimbal
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and the platform base about the z axis ΩOBz and relative angular velocity between

inner and outer gimbals about the y axis ΩIOy . Nonetheless control input vector

contains two motor torques (TmO
, TmI

) and disturbance vector involves two Euler

angles (θ, φ), the first order derivatives (ψ̇, θ̇, φ̇) and the second order derivatives

(ψ̈, θ̈, φ̈) of the Euler angles. Noise vector has only gyroscope noise states affecting

on angular velocity responses. Output vector has two measurable relative angular

positions (η, ε) for tracking and two measurable angular velocities relative to the

earth reference frame (ΩOez + nz, ΩIey + ny) for stabilization.

xG =
[
η ε ΩOBz ΩIOy zOB zIO

]T
uG =

[
TmO

TmI

]T
wG =

[
θ φ ψ̇ θ̇ φ̇ ψ̈ θ̈ φ̈

]T
yG =

[
η ε (ΩOez + nz) (ΩIey + ny)

]T
nG =

[
0 0 nz ny

]T
The limits of the state, control input, disturbance and sensor noise variable of the

coupled 2-DOF gimbal are given in Table 2.5 and Table 2.6. Boundaries of η and

ε angular position come from the mechanical limits of the outer and inner gimbal,

respectively. Angular velocity limits are determined from the maximum acceleration

in a second in the case of disturbances are neglected. Further, boundaries of TmO
and

TmI
inputs refers to the peak torque values of the outer and inner gimbal motors. On

the other hand, limiting ranges of disturbance and friction state variables are chosen

arbitrarily.

Table2.5: Boundaries of the state variables of the coupled 2-DOF gimbal

States Units Lower Upper
xG1

rad −π π

xG2
rad −π9

4π
9

xG3 rad/sec −20 20

xG4 rad/sec −12 12

xG5 - −10 10

xG6
- −10 10
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Table2.6: Boundaries of the disturbance, sensor noise and control input variables of
the coupled 2-DOF gimbal

Inputs Units Lower Upper
uG1 N.m −203 203

uG2 N.m −35.3 35.3

wG1
rad − π

20
π
20

wG2
rad −π8

π
8

wG3
rad/sec − π

180
π

180

wG4
rad/sec − π

60
π
60

wG5 rad/sec − π
18

π
18

wG6 rad/sec2 − π
180

π
180

wG7 rad/sec2 − π
60

π
60

wG8
rad/sec2 − π

18
π
18

nG3
rad/sec -0.000001 0.000001

nG4
rad/sec -0.000001 0.000001

In order to obtain state equations, first, we rewrite the first order derivatives of relative

angular positions for both gimbals.

η̇ = ΩOBz

ε̇ = ΩIOy

Hence η̇ and ε̇ are written in terms of state variables as follows:

ẋG1 = xG3 (2.53)

ẋG2 = xG4 (2.54)

Secondly, the first order derivatives of Ω̇OBz and Ω̇IOy are:

Ω̇OBz = η̈

Ω̇IOy = ε̈

To obtain Ω̇OBz , Eq. A.3 is written again:

Ω̇OBz = αOez − αdistOz

where αOez is the angular acceleration of outer gimbal relative to the earth reference

frame about the z axis and αdistOz
is disturbance angular acceleration. By using Euler
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equation of the outer gimbal about the z axis, given in Eq. 2.48, and friction torque

equation, given in Eq. 2.23, Ω̇OBz can be written as follows:

Ω̇OBz = − 1

IOzz
DO

dynamicUnbz+
1

IOzz
TmO

+
1

IOzz
TfrBO+

1

IOzz
TfrIO+

1

IOzz
DO

staticUnbz−αdistOz

This equation is written in terms of state and input variables with values of system

parameters, given in Table 2.4, and friction parameters, given in Table 2.2, as follows:

ẋG3 = −0.1DO
dynamicUnbz + 0.1uG1 + 0.1TfrBO + 0.1TfrIO + 0.1DO

staticUnbz − αdistOz

(2.55)

where the dynamic mass unbalance is:

DO
dynamicUnbz = + ẋG3(14.41 cos2 xG2 − 14.51 sin2 xG2)

+ ẋG4(0.364 cosxG2 + 0.052 sinxG2)

+ D̂O
dynamicUnbz

with

D̂O
dynamicUnbz =− 4.76αOex + 0.0006αOey

+ αdistIx
(0.052 cosxG2 + 14.51 sinxG2)

+ αdistIy
(0.364 cosxG2 + 0.052 sinxG2)

+ αdistIz
(14.41 cosxG2 + 0.052 sinxG2)

+ 0.07Ω2
Oex − Ω2

Oey(0.07 cosxG2 − 0.36 sinxG2)

+ 0.3606ΩOex(xG3 + ΩdistOz
)

− ΩOeyΩOex(−9.235 + 14.41 cosxG2 − 0.052 sinxG2)

− ΩOey(xG3 + ΩdistOz
)(−4.76 + 0.052 cosxG2 − 14.41 sinxG2)

− ΩIexxG4(14.51 cosxG2 − 0.052 sinxG2)

− (xG4 + ΩdistIy
)xG4(0.07 cosxG2 − 0.37 sinxG2)

− ΩIezxG4(0.052 cosxG2 − 14.41 sinxG2),

the static mass unbalance is:

DO
staticUnbz =− 0.043(− cosxG1 sinwG1 + sinxG1 sinwG2 coswG1)

+ 164.8(sinxG1 sinwG1 + cosxG1 sinwG2 coswG1),

the friction torque between the outer gimbal and gimbal base is:

TfrBO = 80xG5
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and the friction torque between the inner and outer gimbals is:

TfrIO = 90xG6

Then Ω̇IOy may be written from Eq. A.5 as:

Ω̇IOy = αIey − αdistIy

where αIey is the angular acceleration of inner gimbal about the y axis relative to the

earth frame and αdistIy
is the disturbance angular acceleration about the y axis. Ω̇IOy

is written from Euler equation for the inner gimbal, given in Eq. 2.37, and the friction

torque equation, given in Eq. 2.23.

Ω̇IOy = − 1

IIyy
DI

dynamicUnby +
1

IIyy
TfrOI +

1

IIyy
TmI

+
1

IIyy
DI

staticUnby − αdistIy

This equation is rewritten in terms of state and input variables with values of inner

gimbal parameters in Table 2.4 and friction parameters in Table 2.1.

ẋG4 = −0.35DI
dynamicUnby + 0.35TfrOI + 0.35uG2 + 0.35DI

staticUnby −αdistIy
(2.56)

where dynamic mass unbalance is:

DI
dynamicUnby = −0.067ẋG3 sinxG2 + 0.364ẋG3 cosxG2 + D̂I

dynamicUnby

with

D̂I
dynamicUnby = + 0.067αdistIx

+ 0.364αdistIz

+ ΩIez(14.51ΩIex + 0.067(xG4 + ΩdistIy
) + 0.052ΩIez)

− ΩIex(0.052ΩIex + 0.364(xG4 + ΩdistIy
) + 14.41ΩIez),

The static mass unbalance is:

DI
staticUnby =− 2.66(cosxG2 coswG1 − sinxG2 sinwG1)

− 6.44(cosxG2 sinwG1 + coswG1 sinxG2)

and friction torque between the inner and outer gimbals is:

TfrOI = 90xG6

Lastly, the first order derivatives of friction states from Eq. 2.24 are:

żBO = ΩBOz − σ0BO

|ΩBOz |
TCBO

zBO
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żIO = ΩIOy − σ0IO

|ΩIOy |
TCIO

zIO

With values of friction parameters in Table 2.1, these equations can be described in

terms of state variables:

ẋG5 = xG3 − 4.42 · |xG3| · xG5 (2.57)

ẋG6 = xG4 − 33.3 · |xG4| · xG6 (2.58)

The first order derivatives of all states have to be on the left side of the state equations.

Eq. 2.55 and Eq. 2.56 contain both ẋG3 and ẋG4 terms on the right side of the state

equation. Thus Eq. 2.55 and Eq. 2.56 are rewritten after ẋG3 and ẋG4 are substituted

on the left side.

ẋG3(1 + 1.441 cos2 xG2 − 1.451 sin2 xG2) + ẋG4(0.0364 cosxG2 + 0.0052 sinxG2)

= −0.1D̂O
dynamicUnbz + 0.1uG1 + 0.1TfrBO + 0.1TfrIO + 0.1DO

staticUnbz − αdistOz

(2.59)

ẋG4 + ẋG3(−0.02345 sinxG2 + 0.1274 cosxG2)

= −0.35D̂I
dynamicUnby + 0.35TfrOI + 0.35uG2 + 0.35DI

staticUnby − αdistIy

(2.60)

State equation is rewritten in form SGẋG = f̂G(xG,uG,wG) where SG matrix is

defined to collect all the first order derivatives of states on the left

SG =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 sg1 sg2 0 0

0 0 sg3 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


with

sg1 = 1 + 1.441 cos2 xG2 − 1.451 sin2 xG2

sg2 = 0.0364 cosxG2 + 0.0052 sinxG2

sg3 = −0.02345 sinxG2 + 0.1274 cosxG2
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and f̂G(xG,uG,wG) vector contains kinematic and dynamic equations without the

first order derivatives of state variables.

xG3

xG4

−0.1D̂O
dynamicUnbz

+ 0.1uG1 + 0.1TfrBO + 0.1TfrIO + 0.1DO
staticUnbz

− αdistOz

−0.35D̂I
dynamicUnby

+ 0.35uG2 + 0.35TfrOI + 0.35DI
staticUnby

− αdistIy

xG3 − 4.42 · |xG3 | · xG5

xG4 − 33.3 · |xG4| · xG6


Some elements of SG matrix depend on the inner gimbal position. It can be said

that SG matrix has to be invertible in mechanical limits of inner gimbal. As shown

in Figure 2.14, all determinants of SG matrix are nonzero except xG2 ≈ 66.5 de-

gree. Besides diagonal terms of SG matrix are dominant in comparison with the other

elements except diagonal term of 3rd row of SG if xG2 > 66.5 degree.

Figure 2.14: Determinants of SG matrix
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Figure 2.15: Elements of 3rd row of SG matrix

To be able to definite this system model for all inner gimbal positions, we describe a

new matrix ŜG:

ŜG =

SG : xG2 ε [−20.0, 66.0)
⋃

(67.0, 80.0]

SG + τG · I1 : xG2 ε [66.0, 67.0]

where τG is a positive constant and I1 is an identity matrix. As we can see in Fig-

ure 2.16, if τG is selected 0.01 for inner gimbal angular positions between 66.0

and 67.0 degree, ŜG matrix will be nonsingular in the mechanical limits of the in-

ner gimbal. As a result, new state equation of the coupled system becomes ẋG =

Ŝ−1
G f̂G(xG,uG,wG).

Output variables of the coupled gimbal have to be measurable in order to satisfy

observability. Angular position outputs η and ε are measured by encoder sensors.

Moreover, velocity outputs, which are measured by gyroscopes, are written as the

sum of the angular velocities of gimbals relative to the earth reference frame and

sensor noises.
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Figure 2.16: Determinants of ŜG matrix

Output equation of the coupled gimbal hG(xG,wG,nG) is formulated by:
xG1

xG2

xG3 − wG4 sinwG2 + wG3 coswG2 coswG1 + nz

xG4 − wG5 sinxG1 + wG4 cosxG1 coswG2 + wG3 cosxG1 sinwG2 + ny

 (2.61)

2.8.2 Decoupled Gimbals

2.8.2.1 Inner Gimbal

The nonlinear state space representation of the decoupled inner gimbal is:

ẋI = fI(xI , uI ,wI) (2.62)

yI = hI(xI ,wI ,nI) (2.63)

There are three state, one control input, eight disturbance, two outputs and one gyro-

scope noise variables for decoupled inner gimbal. State variables are angular position
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ε, angular velocity ΩIOy and friction state zIO. Control input reflects the inner mo-

tor torque TmI
and disturbance vectors of the coupled 2-DOF and decoupled inner

gimbals are the same. Measurable output variables are angular position ε and angular

velocity which is the sum of ΩIey and sensor noise ny.

xI =
[
ε ΩIOy zIO

]T
uI = TmI

wI = wG =
[
θ φ ψ̇ θ̇ φ̇ ψ̈ θ̈ φ̈

]T
yI =

[
ε (ΩIey + ny)

]T
nI =

[
0 ny

]T

State equation of the decoupled inner gimbal may be written from Eq. 2.54, 2.56

and 2.58. Inner gimbal state variables xI1 , xI2 , xI3 and control input variable uI are

substituted into xG2 , xG4 , xG6 and uG2 , respectively. Disturbance vectors of the de-

coupled inner and coupled 2-DOF gimbals are the same. In order to decouple inner

gimbal from outer gimbal, the mass and inertial terms of the outer gimbal have to be

neglected.

The first order derivative of state variables are given below. Firstly, ẋI1 is:

ẋI1 = xI2 (2.64)

Secondly, ẋI2 is:

ẋI2 = −0.35DI
dynamicUnby + 0.35TfrOI + 0.35uI + 0.35DI

staticUnby − αdistIy
(2.65)

where dynamic mass unbalance is:

DI
dynamicUnby = + 0.067αdistIx

+ 0.364αdistIz

+ ΩIez(14.51ΩIex + 0.067(xI2 + ΩdistIy
) + 0.052ΩIez)

− ΩIex(0.052ΩIex + 0.364(xI2 + ΩdistIy
) + 14.41ΩIez),
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the static mass unbalance is:

DI
staticUnby =− 2.66(cosxI1 coswI1 − sinxI1 sinwI1)

− 6.44(cosxI1 sinwI1 + coswI1 sinxI1)

and friction torque between inner and outer gimbals is:

TfrOI = 90xI3

Lastly, ẋI3 is:

ẋI3 = xI2 − 33.3 · |xI2| · xI3 (2.66)

As a result, state equation of decoupled inner gimbal fI(xI , uI ,wI) is:
xI2

−0.35DI
dynamicUnby

+ 0.35TfrOI + 0.35uI + 0.35DI
staticUnby

− αdistIy

xI2 − 33.3 · |xI2| · xI3


and output equation of decoupled inner gimbal hI(xI ,wI ,nI) is: xI1

xI2 − wG5 sin η + wG4 cos η coswG2 + wG3 cos η sinwG2 + ny

 (2.67)

where η representing angular position of outer gimbal.

2.8.2.2 Outer Gimbal

The nonlinear state space representation of the decoupled outer gimbal is:

ẋO = fO(xO, uO,wO) (2.68)

yO = hO(xO,wO,nO) (2.69)

There are three state, one control input, eight disturbance, two output and one gyro-

scope noise variables for outer gimbal. State variables are angular position η, angular

velocity ΩOBz and friction state zOB. Control input is the outer motor torque TmO
and

disturbance vectors of coupled 2-DOF and decoupled outer gimbals are the same..
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Measurable output variables are angular position η and angular velocity which is the

sum of ΩOez and sensor noise nz.

xO =
[
η ΩOBz zOB

]T
uO = TmO

wO = wG =
[
θ φ ψ̇ θ̇ φ̇ ψ̈ θ̈ φ̈

]T
yO =

[
η (ΩOez + nz)

]T
nO =

[
0 nz

]T
State equation of decoupled outer gimbal may be written from Eq. 2.53, 2.55 and

2.57. Outer gimbal state variables xO1 , xO2 , xO3 and control input variable uO are

substituted into xG1 , xG3 , xG5 and uG1 , respectively. Disturbance vectors of decou-

pled outer and coupled 2-DOF gimbals are the same.

The first order derivative of state variables are given below. Firstly, ẋO1 is:

ẋO1 = xO2 (2.70)

Secondly, ẋO2 is:

ẋO2 = −0.1DO
dynamicUnbz + 0.1uO + 0.1TfrBO + 0.1TfrIO + 0.1DO

staticUnbz − αdistOz

(2.71)

where dynamic mass unbalance is:

DO
dynamicUnbz =− 4.76αOex + 0.0006αOey

+ ΩOex(ΩOey25.025 + 0.0006(xO2 + ΩdistOz
))

− ΩOey(ΩOex18.667− 4.764(xO2 + ΩdistOz
)),

the static mass unbalance is:

DO
staticUnbz =− 0.023(− cosxO1 sinwO1 + sinxO1 sinwO2 coswO1)

+ 87.8(sinxO1 sinwO1 + cosxO1 sinwO2 coswO1),

The friction torque between outer gimbal and gimbal base is:

TfrBO = 80xO3
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and friction torque between inner and outer gimbals is:

TfrIO = 90zIO

Lastly, ẋO3 is:

ẋO3 = xO2 − 4.42 · |xO2| · xO3 (2.72)

In Eq. 2.71, the mass of inner gimbal mI in static mass unbalance expression and

all elements of inertia tensor for inner gimbal in dynamic unbalance expression are

chosen as zero in order to decouple outer gimbal from inner gimbal. Consequently,

state equation of the decoupled outer gimbal fO(xO, uO,wO) is:


xO2

−0.1DO
dynamicUnbz

+ 0.1uO + 0.1TfrBO + 0.1TfrIO + 0.1DO
staticUnbz

− αdistOz

xO2 − 4.42 · |xO2| · xO3


and output equation of the decoupled outer gimbal hO(xO,wO,nO) is: xO1

xO2 − wG4 sinwG2 + wG3 coswG2 coswG1 + nz

 (2.73)

2.8.3 Linearization

2.8.3.1 Finding Equilibrium Points

Equilibrium points of the nonlinear system which are the real roots of Eq. 2.49 can

be computed by:

ẋ = f(xe,ue,we) = 0 (2.74)

where xe is equilibrium states, ue is control inputs ue and we is disturbances (plat-

form motions). Equilibrium points can be described as points where values of states

and inputs of the system are the same for all time [26]. An equilibrium point set

(trimmed condition), expressed by Γ, merges equilibrium state and input variables of

the system. As mentioned in previous section, firstly, there are six state equations, six

unknown states and eight unknown inputs of the coupled 2-DOF gimbal. Secondly,
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decoupled inner gimbal contains three state equations, three unknown states of inner

gimbal, two unknown states of outer gimbal and eight unknown inputs. Lastly, de-

coupled outer gimbal has three state equations, three unknown states of outer gimbal,

three unknown states of inner gimbal and eight unknown inputs. Trimmed condition

of coupled 2-DOF gimbal ΓG, trimmed condition of decoupled inner gimbal ΓI and

trimmed condition of decoupled outer gimbal ΓO can be described as follows:

ΓG = [ xG1e
... xG6e

uG1e
uG2e

wG1e
... wG8e

]T

ΓI = [ xI1e xI2e xI3e uIe wI1e ... wI8e
]T

ΓO = [ xO1e
xO2e

xO3e
uOe wO1e

... wO8e
]T

The number of state equations has to be greater than or equal to the number of un-

known variables to be capable of computing equilibrium points. Hence equilibrium

states of the gimbals are determined as unknowns and they are calculated for different

values of the equilibrium inputs in boundaries. In this computation, each disturbance

variable only get its lower boundary, zero and upper boundary. In finding equilibrium

points of the coupled system, angular position of the inner gimbal xG2e
and angular

position of the outer gimbal xG1e
are split into 11 different values within mechanical

limits.
xG1e

= −π :
π

11
: π

xG2e
= −π

9
:

5π/18

11
:

4π

9

After we computed equilibrium points of the coupled gimbal, these points were as-

signed to the equilibrium points of decoupled gimbals. Equilibrium points of the

decoupled inner gimbal can be described by:

ΓI = [ xG2e
xG4e

xG6e
uG2e

wG1e
... wG8e

]T

and equilibrium points of the decoupled outer gimbal is:

ΓO = [ xG1e
xG3e

xG5e
uG1e

wG1e
... wG8e

]T

Dynamic and kinematic equations of the decoupled gimbals still include unknown
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state variables. Dynamic equation of the decoupled inner gimbal, given in Eq. 2.65,

contains angular position η, relative angular velocity η̇ of the outer gimbal. Values

of these two unknown variables are chosen the equilibrium points xG1e
and xG3e

,

respectively. Similar to the inner gimbal, Eq. 2.71 includes ε, ε̇ and zIO which come

from equilibrium points xG2e
, xG4e

and xG6e
, respectively. In conclusion, the numbers

of trimmed conditions of coupled 2-DOF gimbal, decoupled inner and decoupled

outer gimbal are 38 × 11 × 11 = 793881, 38 × 11 = 72171 and 38 × 11 = 72171,

respectively.

2.8.3.2 Clustering Trimmed Conditions

Linearization of the system and designing linear controller are computationally ex-

pensive for entire trimmed conditions. Hence equilibrium points are partitioned into

clusters to reduce the number of linear models. The purpose of cluster analysis is to

collect similar observations, equilibrium point sets, into the clusters and isolate from

dissimilar ones in some sense. Clustering analysis can be separated into two parts,

one of which is the clustering evaluation to determine the optimal number of clusters

by means of different criteria such as Davies-Bouldin [13] and Calinski-Harabasz [7],

and the other is clustering observations with respect to the optimal number of cluster

result of evaluation analysis. In this thesis, K-means clustering algorithm [34] [30],

with squared Euclidean distances, along with Calinski-Harabasz clustering evaluation

criterion is used in order to find the sufficient number of linearized models.

The Calinski-Harabasz criterion, also named as the variance ratio criterion (VRC),

calculates an index value for each number of cluster. The Calinski-Harabasz index

value CHk can be formulated by:

CHk =
n− k
k − 1

· SSB(k)

SSW (k)
(2.75)

where n is the number of trimmed conditions, k is the number of clusters, SSB(k)

term is the overall between-cluster variance and SSW (k) term is the overall within-

cluster variance. SSB(k) and SSW (k) variance terms are:

SSB(k) =
k∑

i=1

ni||mi −m||2 (2.76)
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SSW (k) =
k∑

i=1

∑
x∈ci

||x−mi||2 (2.77)

where ni is the equilibrium point i, mi is the centroid of cluster i, m is the overall

mean of equilibrium points i and x is an equilibrium point.

It can be said that clusters are partitioned successfully if V RCB(k) variance value

is large and V RCW (k) is small so that success of partition of trimmed conditions

depends on how large the Calinski-Harabasz index value is. The optimal number of

clusters is determined by the highest Calinski-Harabasz value. Clustering evaluation

analysis for equilibrium points of all gimbal models indicates that the optimal num-

ber of clusters is two for coupled 2-DOF and decoupled inner gimbal. On the other

hand, the optimal number of clusters is three for decoupled outer gimbal, as shown in

Figures 2.17 - 2.19.

Figure 2.17: Clustering evaluation for coupled gimbal equilibrium points
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Figure 2.18: Clustering evaluation for decoupled inner gimbal equilibrium points

Figure 2.19: Clustering evaluation for decoupled outer gimbal equilibrium points

The K-means clustering is an iterative algorithm that partitions all observations into

exactly one of the K groups, or clusters, which is determined by centroids [33]. Ob-

servations are assigned into clusters by minimizing of a cost function given by Eq.

2.78.

J =
n∑

j=1

k∑
i=1

uijd(xj, ci) (2.78)
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In this equation, n is the number of observations, K is the number of clusters, uij ,

giving the membership of xj observation to ith cluster, is an element of K × n par-

tition matrix, xj is the observation, ci is the centroid of ith cluster and d(xj, ci) =

(xj − ci)(xj − ci)T is squared Euclidean distance between the observation xj and the

centroid ci.

In clustering analysis of the equilibrium points of the system models, algorithm gives

cluster centroid points and assigns all equilibrium points into a cluster. After that, dis-

tances of each equilibrium point to the centroid in the cluster are calculated and the

one equilibrium point set which is closest to centroid is selected in order to linearize

the system.

2.8.3.3 Obtaining LTI Subsystems

State space representation of a linear time invariant (LTI) system is:

ẋ = Ax+Bu+Gw (2.79)

y = Cx+ Pw + n (2.80)

where x is state vector, u is control input vector, w is disturbance input vector, y is

output vector, n is noise vector, A is state matrix, B is control input matrix, G is

disturbance state matrix, C is output matrix and P is disturbance output matrix.

Figure 2.20: Block diagram of the LTI system
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State equation (Eq. 2.49) may be written as a Taylor series about equilibrium points.

ẋ = f(x,u,w) = + f(xe,ue,we)

+
∂f

∂x
δx +

∂f

∂u
δu +

∂f

∂w
δw

+
1

2!

∂2f

∂x2
δ2
x +

1

2!

∂2f

∂u2
δ2
u +

1

2!

∂2f

∂w2
δ2
w + ...

where deviation variables are

δx = x− xe

δu = u− ue

δw = w −we

In this equation, ẋe = f(xe,ue,we) = 0 and the higher-order derivative terms are

neglected because these derivatives are multiplied by very small variations raised to,

at least second power. State equation of the LTI system can be written by Jacobian

linearization method as follows:

δ̇x = Aδx +Bδu +Gδw

where state matrixA, control input matrixB and disturbance state matrixG are:

A =
∂f

∂x

∣∣∣∣
xe,ue,we

=


∂f1
∂x1

... ∂f1
∂xn

... ... ...

∂fn
∂x1

... ∂fn
∂xn


xe,ue,we

B =
∂f

∂u

∣∣∣∣
xe,ue,we

=


∂f1
∂u1

... ∂f1
∂um

... ... ...

∂fn
∂u1

... ∂fn
∂um


xe,ue,we

G =
∂f

∂w

∣∣∣∣
xe,ue,we

=


∂f1
∂w1

... ∂f1
∂wk

... ... ...

∂fn
∂w1

... ∂fn
∂wk


xe,ue,we

where n is the number of state variables, m is the number of control input variables

and k is the number of disturbance input variables.
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Taylor series expression of the output equation, given in Eq. 2.50, about the equi-

librium points is:

y = h(x,w,n) = + h(xe,we,ne)

+
∂h

∂x
δx +

∂h

∂w
δw +

∂h

∂n
δn

+
1

2!

∂2h

∂x2
δ2
x +

1

2!

∂2h

∂w2
δ2
w +

1

2!

∂2h

∂n2
δ2
n + ...

Output equation about equilibrium points is h(xe,we,ne) = ye and the higher-order

derivative terms are neglected. Furthermore, output equation is linearized as Jacobian

method as follows:

δy = Cδx + Pδw + δn

where δy = y−ye and δn = n−ne express the output and noise deviation variables,

respectively. Output matrix C and disturbance output matrix P are:

C =
∂h

∂x

∣∣∣∣
xe,we,ne

=


∂h1

∂x1
... ∂h1

∂xn

... ... ...
∂hp
∂x1

... ∂hp
∂xn


xe,we,ne

P =
∂h

∂w

∣∣∣∣
xe,we,ne

=


∂h1

∂w1
... ∂h1

∂wk

... ... ...
∂hp
∂w1

... ∂hp
∂wk


xe,we,ne

where n is the number of state variables, p is the number of output variables and k is

the number of disturbance input variables.

According to the clustering analysis explained in previous section, both coupled and

decoupled inner gimbals have two LTI subsystems, on the other hand, decoupled

outer gimbal has three LTI subsystems. Firstly, state space representation of a linear

time invariant subsystem of the coupled gimbal is:

ẋG = AGxG +BGuG +GGwG (2.81)

yG = CGxG + PGwG + nG (2.82)

where xG is 6×1 state vector, uG is 2×1 control input vector,wG is 8×1 disturbance

vector, yG is 4 × 1 measured output vector, nG is 4 × 1 sensor noise vector, AG is
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6× 6 constant state matrix, BG is 6× 2 constant input matrix, GG is 6× 8 constant

disturbance state matrix,CG is 4× 6 constant output matrix and PG is 4× 8 constant

disturbance output matrix.

Secondly, state space representation of a linear time invariant subsystem of the de-

coupled inner gimbal is:

ẋI = AIxI +BIuI +GIwI (2.83)

yI = CIxI + PIwI + nI (2.84)

where xI is 3 × 1 state vector, uI is a scalar control input, wI is 8 × 1 disturbance

vector, yI is 2 × 1 measured output vector, nI is 2 × 1 sensor noise vector, AI is

3 × 3 constant state matrix, BI is 3 × 1 constant input matrix, GI is 3 × 8 constant

disturbance state matrix, CI is 2× 3 constant output matrix and PI is 2× 8 constant

disturbance output matrix.

Lastly, state space representation of a linear time invariant subsystem of the decoupled

outer gimbal is:

ẋO = AOxO +BOuO +GOwO (2.85)

yO = COxO + POwO + nO (2.86)

where xO is 3 × 1 state vector, uO is a scalar control input, wO is 8 × 1 disturbance

vector, yO is 2 × 1 measured output vector, nO is 2 × 1 sensor noise vector, AO is

3× 3 constant state matrix, BO is 3× 1 constant input matrix, GO is 3× 8 constant

disturbance state matrix,CO is 2× 3 constant output matrix and PO is 2× 8 constant

disturbance output matrix.

Controllability has a great importance for the control systems in state space. Con-

trollability matrix of the LTI system is defined as
[
B AB A2B ... An−1B

]
.

The LTI system, given by Eq. 2.79, may be called completely state controllable if and

only if rank of the controllability matrix is equal to n which is the number of state

variables. Analysis of controllability of LTI subsystems of the coupled and decoupled

gimbals results that all linear subsystems of the gimbals are full state controllable.
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Even though all LTI subsystems of the gimbals are controllable, it does not guarantee

the controllability of gimbal models. A partially controllable linear system can be

called a stabilizable if its all uncontrollable subsystems are stable or its all unstable

subsystems are controllable [36]. Thus, first, we analyzed the controllability and sta-

bility of all LTI subsystems of the coupled and decoupled gimbals. Result of the these

analyses is that all subsystems of the gimbals are controllable and unstable. Further-

more, it is verified that linear state space models of all gimbals are stabilizable.
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CHAPTER 3

CONTROLLER DESIGN

The design procedures of the two control methods, cascade PI and linear quadratic in-

tegral (LQI), of the 2-DOF gimbal system are introduced in this chapter. After that, all

controllers are compared between each other and the best performed control method

will be used for target tracking and stabilization. All of these studies are made on the

MATLAB/Simulink platform.

During controller design study, parameters of the cascade PI controller are tuned with

the nonlinear system, which includes friction, static and dynamic mass unbalance,

directly. In contrast, the linear quadratic controllers are designed for the linearized

state space models of both coupled and decoupled gimbals and these controllers are

implemented in the nonlinear system model.

Global linear quadratic integral (LQI) control is used to yield the stabilization and

tracking control problems of the coupled 2-DOF gimbal. Diversely, decoupled inner

and outer gimbals have two separate linear quadratic controllers, called local LQI.

Structure of the LQI controllers for the decoupled gimbals has some difference from

the global LQI controller. Global LQI controller produces two control signals (mo-

tor torques). On the other hand, decoupled gimbals are controlled by own local LQI

compensators.

Angular position references of the inner and outer gimbals are applied as step func-

tions within the first order pre-filters for tracking with less control effort and lower

position overshoot. On the other hand, when we implemented pre-filters of rate com-
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mands, it has been observed that pre-filters of rate loops have no contribution to the

performance. Controller parameters and cut-off frequency of the pre-filters are tuned

with respect to the aim of achieving the desired conditions which are less than or

equal to 2 seconds settling time, 10% maximum overshoot and 2% settling limit for

position step responses.

3.1 Cascade PI Control

It can be said that the most used control strategy in the industrial applications is

proportional integral derivative (PID) control. In many implementations of PID con-

trollers, derivative term is generally set to zero due to raise of the high frequency

sensor noise. In this study, we use only the proportional and integral terms of this

controller. Integral term of the controller overcomes the steady state error for step

responses. In addition, proportional term is used to adjust the system response time

[29].

Figure 3.1: Block diagram of cascade PI control

Cascade PI control consists of one PI controller for position loop to track the tar-

get and one PI controller for rate loop to eliminate disturbances. Block diagram of
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cascade PI control for the coupled 2-DOF gimbal is given in Figure 3.1. In this sec-

tion, the continuous time position and rate PI controllers are tuned for both gimbals.

Transfer function of the continuous time PI controller is:

CPI(s) = Kp +
Ki

s
(3.1)

whereKp andKi express the proportional and integral gain of controller, respectively.

First step of design procedure is that only PI controllers of the rate loops are tuned

for different Kp and Ki values and the best performed controllers are chosen. After

we designed the rate controllers of the system, position controllers are tuned with

respect to the desired conditions. Lastly, pre-filters are designed for different cut-off

frequency values to decrease overshoot and control effort for tracking.

3.1.1 Inner Gimbal

In cascade PI control design of the inner gimbal for different Kp and Ki values, per-

formances of the rate controllers (Table 3.1, 3.2) and performances of position con-

trollers (Table 3.3, 3.4) are given below. According to these results, when parameters

of rate controller are selected as Kp = 750 and Ki = 50 and parameters of position

controller are chosen Kp = 8 and Ki = 0.1, position step response has 1.7% over-

shoot, 1.0 seconds settling time and less than 1% steady state error.

Table3.1: Performances of the rate PI controllers of the inner gimbal for different Kp

values (Ki = 50)

Kp Values Overshoot(%) Settling Time(sec) Steady State Error(%)
375 1.7 0.24 <1
500 1.3 0.23 <1
625 1.1 0.23 <1
750 1.0 0.23 <1
1000 1.6 0.23 <1
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Table3.2: Performances of the rate PI controller of the inner gimbal for different Ki

values (Kp = 750)

Ki Values Overshoot(%) Settling Time(sec) Steady State Error(%)
50 1.0 0.23 <1

100 1.4 0.23 <1
150 1.7 0.23 <1
200 2.1 0.23 <1
250 2.5 0.23 <1

Table3.3: Performances of the position PI controller of the inner gimbal for different
Kp values (Ki = 0.1)

Kp Values Overshoot(%) Settling Time(sec) Steady State Error(%)
7 1.9 1.2 <1
8 1.7 1.0 <1
9 8.2 1.0 <1

10 15.4 1.1 <1

Table3.4: Performances of the position PI controller of the inner gimbal for different
Ki values (Kp = 8)

Ki Values Overshoot(%) Settling Time(sec) Steady State Error(%)
0.1 1.7 1.0 <1
1 3.0 2.1 <1
3 7.7 2.5 <1
5 13.2 2.4 <1

Position performances of the inner gimbal with cascade PI control for different po-

sition references and cutoff frequency values of the pre-filters are given below. It is

clearly seen that, this control method only satisfies all desired conditions if cut-off

frequency of pre-filter is selected 1 Hz. As a result, when we implement the best per-

formed controllers and pre-filter into the inner gimbal model, system responses and

motor torque of the inner gimbal with cascade PI control is shown in Figure 3.2.
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Table3.5: Position performances of the inner gimbal with cascade PI control for dif-
ferent position commands

Reference Pre-filter cutoff frequency Overshoot(%) Settling time(sec)
0.5 rad

1 Hz
4.0 2.1

1.0 rad 1.7 1.0
0.5 rad

2 Hz
3.3 2.8

1.0 rad 25.1 1.2
0.5 rad

10 Hz
3.4 2.9

1.0 rad 28.3 1.3

Figure 3.2: System responses and motor torque of the inner gimbal with cascade PI
control

3.1.2 Outer Gimbal

In cascade PI control design of the outer gimbal for different Kp and Ki values, per-

formances of the rate controllers (Table 3.6, 3.7) and performances of position con-

trollers (Table 3.8, 3.9) are given below. If parameters of rate controller are selected

as Kp = 300 and Ki = 150 and parameters of position controller are chosen Kp = 5

and Ki = 0.05, position step response has 1.8% overshoot, 1.1 seconds settling time

and less than 1% steady state error.
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Table3.6: Performances of the rate PI controller of the outer gimbal for different Kp

values (Ki = 150)

Kp Values Overshoot(%) Settling Time(sec) Steady State Error(%)
75 4.4 1.36 <1

150 1.1 0.38 <1
225 0.6 0.33 <1
300 0.5 0.32 <1
375 22.4 3.8 <1
450 26.6 >4 <1

Table3.7: Performances of the rate PI controller of the outer gimbal for different Ki

values (Kp = 300)

Ki Values Overshoot(%) Settling Time(sec) Steady State Error(%)
30 1.9 >4 <1
75 0.7 0.35 <1
150 0.5 0.32 <1
225 1.3 0.31 <1
300 2.8 0.57 <1

Table3.8: Performances of the position PI controller of the outer gimbal for different
Kp values (Ki = 0.05)

Kp Values Overshoot(%) Settling Time(sec) Steady State Error(%)
2 1.9 2.0 <1
3 2.0 1.5 <1
4 1.9 1.2 <1
5 1.8 1.1 <1

Table3.9: Performances of the position PI controller of the outer gimbal for different
Ki values (Kp = 5)

Ki Values Overshoot(%) Settling Time(sec) Steady State Error(%)
0.05 1.8 1.1 <1
0.1 2.5 1.2 <1
0.5 4.8 >4 <1
1.0 8.3 >4 <1

Position performances of the outer gimbal with cascade PI control for different posi-

tion commands are given Table 3.10. Thus, all desired conditions are satisfied with

the pre-filters whose cut-off frequency is 1 Hz for lower than 1.5 rad position ref-

erence. When we implement the best performed controllers and the pre-filter in the

outer gimbal, system responses and motor torque of the outer gimbal with cascade PI

control is shown in Figure 3.3.
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Table3.10: Position performances of the outer gimbal with cascade PI control for
different position commands

Reference Pre-filter cutoff frequency Overshoot(%) Settling time(sec)
0.5 rad

1 Hz

1.3 1.6
1.0 rad 1.8 1.1
1.5 rad 11.6 2.4
2.0 rad 16.8 2.9
2.5 rad 22.6 >3.0
3.0 rad 30.3 2.6
0.5 rad

2 Hz

2.1 1.0
1.0 rad 18.6 2.9
1.5 rad 24.3 >3
2.0 rad 28.7 >3
2.5 rad 35.0 >3
3.0 rad 41.7 >3
0.5 rad

10 Hz

4.2 >3
1.0 rad 21.4 >3
1.5 rad 28.4 >3
2.0 rad 32.6 >3
2.5 rad 38.2 >3
3.0 rad 46.1 >3

Figure 3.3: System responses and motor torque of the outer gimbal with cascade PI
control
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3.2 Linear Quadratic Integral (LQI) Control

The main benefits of the LQ controllers are that stability and robustness of system

are guaranteed [41]. Aim of this problem is computing the state feedback gain matrix

K of the optimal control vector u assumed as unconstrained in order to minimize

the quadratic cost function J . In the design procedure of the LQ, it is required that

system model has to be completely state controllable for the existence of u [36].

Block diagram of a linear quadratic (LQ) system is given below.

Figure 3.4: Block diagram of linear quadratic system

The optimal control law of linear quadratic problem is:

u = −K(x− xr) (3.2)

and the quadratic cost function is:

J =

∫ ∞
0

((x− xr)
TQ(x− xr) + uTRu)dt (3.3)

whereQ andR are real symmetric or positive definite/semidefinite Hermitian matri-

ces. Both Q and R are selected before the design procedure. On the right side of the

quadratic cost function, the term ∫ ∞
0

(uTRu)dt

is the energy of control signal and the term∫ ∞
0

((x− xr)
TQ(x− xr))dt

is the energy of states. During the LQ controller design, there is a trade-off between

minimization of these energy terms. If we would like to decrease the energy of control

signal, the energy of states will be increased, or, conversely, large states are obtained
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by small control signals [19].

Now, we defines anN matrix which is a real symmetric or positive definite/semidefinite

Hermitian matrix. N matrix can be obtained by the reduced-matrix Riccati equation.

ATN +NA−NBR−BTN +Q = 0.

Thus the optimal feedback gain matrix is:

K = R−BTN (3.4)

It is examined that integrator effect exists in none of the linearized subsystems of the

gimbals represented in state space. Hence integrators are inserted in the feed-forward

path between the error signal (ξ̇), which is difference between reference and mea-

sured output signals, and the plant [36]. This configuration is called linear quadratic

integrator (LQI) control which calculates the gain matrix K̂ for the tracking [28].

Figure 3.5: Block diagram of LQI control system with merged gain matrix K̂

In this problem, a new state vector arises by combining of state variables of the system

x and integrator output of the error signal ξ. As seen in Figure 3.6, K̂ gain matrix is

obtained by merging of state feedback gain matrixK and error gain matrixKξ.

K̂ =
[
K −Kξ

]
k×(n+m)

In the design procedure, references are chosen as step functions. Hence r(t) =

r(∞) = r for t > 0 and the system is assumed asymptotically stable. As shown

in Figure 3.6, error vector between references and outputs is:

ξ̇ = r − y = r −Cx− Pw − n (3.5)
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Figure 3.6: Block diagram of the LQI control system with separated gain matrix K̂

Thus the state error equation may be described as follows:ẋe(t)

ξ̇e(t)

 =

 A 0

−C 0

xe(t)

ξe(t)

+

B
0

ue(t) +

 G
−P

we(t) +

 0

−I1

ne(t)

where ẋe(t) and ξ̇e(t) are state error vectors, ue(t) is control input error vector,we(t)

is disturbance error vector, ne(t) is noise error vector and I1 is the identity matrix.

ẋe(t) and ξ̇e(t) vectors are combined into ze(t) vector. New definition of state equa-

tions with respect to state and input error vectors is:

że(t) = Âze(t) + B̂ue(t) + V̂ we(t) + Êne(t) (3.6)

where state and input matrices are:

Â =

 A 0

−C 0


(n+m)×(n+m)

, B̂ =

B
0


(n+m)×k

V̂ =

 G
−P


(n+m)×j

, Ê =

 0

−I1


(n+m)×l

where n is the number of state variables of system andm is the number of error signal,

k is the number of control input variables, j is the number of disturbance variables, l

is the number of noise variables. From Eq. 3.4, optimal feedback gain matrix K̂ is:

K̂ = R̂−B̂TN̂ (3.7)

where N̂ matrix is found by the reduced-matrix Riccati equation

ÂTN̂ + N̂Â− N̂B̂R̂−B̂TN̂ + Q̂ = 0.
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Consequently, the optimal control law of LQ tracking problem can be formulated by:

ue =− K̂ze(t) = −
[
K −Kξ

]xe

ξe


−Kxe(t) +Kξξe

(3.8)

Determination of Q̂ and R̂ matrices by Bryson’s rule [5] is a very successful method

in order to minimize the quadratic cost function. According to this signal normaliza-

tion method, Q̂ and R̂ matrices are:

Q̂ =



1

(ze1)
2
max

1

(ze2)
2
max

. . .
1

(ze(n+m)
)2
max


(n+m)×(n+m)

(3.9)

R̂ = ρ


1

(ue1)
2
max

. . .
1

(uek)
2
max


k×k

(3.10)

where diagonal terms Q̂ii = (zei)max, R̂jj = (uej)max and ρ express the maximum

value of the state signal, input signal and a positive constant, respectively. The desired

maximum values of position and velocity error states are determined in consideration

of the system performance criteria. During controller design of the gimbal system, ρ

is chosen very small in order to obtain large control inputs.

After we computed the feedback gain matrices for each linearized subsystems of the

coupled and decoupled gimbals, gain scheduling method is used for nonlinear system

model in order to weight control signals of LQI controllers. Total control input of the

nonlinear gimbal system is:

u(t) =
k∑

i=1

wui(t)ui(t) (3.11)

where k is the number of subsystems, ui is the control signal of the subsystem i and

wui is the weight constant of the control signal of the subsystem i. Weight constant

65



of the subsystem may be computed by:

wui(t) =


1 : di < ε

1
di(t)

k∑
j=1

1
dj(t)

: di ≥ ε (3.12)

where di is the Euclidean distance between the instant values of state variables and

equilibrium points of the subsystem i and ε is a very small positive number. It can be

seen that the sum of all weight constants are equal to 1. In case of di < ε, wui = 1

and weight constants of the other subsystems reach zero.

3.2.1 Global LQI Control

Mathematical model of the coupled 2-DOF gimbal contains kinematics and dynam-

ics of both inner and outer gimbals. Coupled gimbal model has four inputs and four

outputs: two input-outputs of them are related to the angular positions of each gim-

bal, and the other two input-outputs represents the angular velocity. In this way, to

yield tracking and stabilization control problem of this MIMO system model, a lin-

ear quadratic controller, called global LQI, is designed. In global LQI control, two

control signals (motor torques) are applied to coupled inner and outer gimbal. Block

diagram of coupled 2-DOF gimbal with global LQI controller is shown in Figure 3.7.

Figure 3.7: Linear quadratic integral control structure of a LTI subsystem of the cou-
pled 2-DOF gimbal

State space representation of a LTI subsystem of the coupled gimbal, given by Eq
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2.81 and 2.82, is:

ẋG = AGxG +BGuG +GGwG

yG = CGxG + PGwG + nG

and according to the control structure, shown in Figure 3.7, error vector between

references and outputs ξ̇G is:

ξ̇G = rG − yG = rG −CGxG − PGwG − nG (3.13)

where ξG is integral of error vector and rG is reference vector. Output vector of

integrator can be separated into four scalar variables ξG =
[
ξG1 ξG2 ξG3 ξG4

]T
and new state vector is zG =

 xG

ξG


10×1

. By using the new state vector, state

equation of the coupled gimbal can be described by:

żG = ÂGzG + B̂GuG + V̂GwG + ÊGnG (3.14)

where state and input matrices are:

ÂG =

 AG 0

−CG 0


10×10

, B̂G =

BG

0


10×2

, V̂G =

 GG

−PG


10×8

, ÊG =

 0

−I1


10×4

Optimal control gain matrix of a LTI subsystem of the coupled gimbal K̂G can be

described by:

K̂G =
[
KG −KξG

]
2×10

where state feedback gain matrixKG is:

KG =
[
kG1 kG2 kG3 kG4 kG5 kG6

]
and gain matrixKξG is:

KξG =
[
kG1 kG2 kG3 kG4

]
Consequently, control input vector of the coupled gimbal can be written as:

uG =− K̂GzG

−KGxG + kG1ξG1 + kG2ξG2 + kG3ξG3 + kG4ξG4

(3.15)
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Controller design matrices Q̂G and R̂G are defined by Eq. 3.9 and Eq. 3.10, respec-

tively. The maximum values of the system state and control input variables are given

in Tables 2.5, 2.6.

Q̂G =



1

(zGe1 )2
max

1

(zGe2 )2
max

. . .
1

(zGe10 )2
max


10×10

R̂G = ρG


1

(uGe1 )2
max

1

(uGe2 )2
max


2×2

Maximum values of the position error states zGe7max
and zGe8max

are selected 10%

of zGe1max
and zGe2max

. In addition, maximum values of the velocity error states

zGe9max
and zGe10max

are the same with zGe3max
and zGe4max

. Lastly, ρG is tuned

manually in order to get the best performance.

From Eq. 3.11, the sum of the control inputs of all subsystems is:

uG = wu1uG1 + wu2uG2

Angular position commands are applied as step function references within the pre-

filters which are at first order low-pass filters. On the other hand, angular velocity

commands are zero to stabilize the system. When we implemented global LQI con-

trol in the nonlinear gimbal system, performances of the global LQI controller for

different position commands are given in Table 3.11. It can be seen that global LQI

controller satisfies the desired tracking performances for the outer gimbal when cut-

off frequency of the pre-filter is 1 Hz. Likewise if the cut-off frequency of the pre-

filter is increased for the outer gimbal, global LQI controller is unable to control the

system for position commands higher than 2.0 rad. Moreover, inner gimbal has the

best system performances by means of 10 Hz cut-off frequency of the pre-filter. Sys-

tem responses and motor torques of the nonlinear coupled 2-DOF gimbal with global

LQI control are shown in Figure 3.8 and 3.9.
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Figure 3.8: System responses and motor torque of the outer gimbal with global LQI
control

Figure 3.9: System responses and motor torque of the inner gimbal with global LQI
control
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Table3.11: Position performances of the gimbals with global LQI control for different
position commands

Gimbal Reference Pre-filter cutoff frequency Overshoot(%) Settling time(sec)

Outer gimbal

0.5 rad

1 Hz

0.0 1.3
1.0 rad 0.0 1.3
1.5 rad 0.0 1.3
2.0 rad 0.0 1.3
2.5 rad 0.0 1.3
3.0 rad 9.6 1.9
0.5 rad

2 Hz

0.0 1.2
1.0 rad 0.0 1.2
1.5 rad 0.0 1.2
2.0 rad 25.9 1.9
2.5 rad Unstable Unstable
3.0 rad Unstable Unstable
0.5 rad

10 Hz

0.0 1.1
1.0 rad 0.0 1.1
1.5 rad 0.0 1.1
2.0 rad 23.5 1.3
2.5 rad Unstable Unstable
3.0 rad Unstable Unstable

Inner gimbal

0.5 rad
1 Hz

0.0 1.7
1.0 rad 0.0 1.7
0.5 rad

2 Hz
0.0 1.6

1.0 rad 0.0 1.6
0.5 rad

10 Hz
0.0 1.5

1.0 rad 0.0 1.5

3.2.2 Local LQI Control

In control of the decoupled inner and outer gimbals, local linear quadratic integral

(LQI) method is implemented. Different from global LQI control, there are two sep-

arate compensators to control decoupled inner and outer gimbal models having two

inputs and two outputs. Control structures of the decoupled gimbals with local LQI

controllers, gain-scheduling algorithm and LTI subsystems of the gimbals are exam-

ined in this section. Then quadratic controller matrices and cut-off frequencies of

the pre-filters are tuned to satisfy system performance requirements. Similar to the

global LQI control method, angular position commands are applied as step function

references within the pre-filters and angular velocity commands are zero.
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3.2.2.1 Inner Gimbal

Linear quadratic integral control structure of a LTI subsystem of the decoupled inner

gimbal is given in Figure 3.10.

Figure 3.10: Block diagram of a decoupled inner gimbal control subsystem model

State space representation of linearized decoupled inner gimbal, given by Eq 2.83 and

2.84, is:

ẋI = AIxI +BIuI +GIwI

yI = CIxI + PIwI + nI

Error vector between references and outputs ξ̇I is:

ξ̇I = rI − yI = rI −CIxI − PIwI − nI (3.16)

where ξI is integral of error vector and rI is reference vector. Output vector of in-

tegrator can be separated into two scalar variables ξI =
[
ξI1 ξI2

]T
and new state

vector is: zI =

 xI

ξI


5×1

. Hence new state equation of inner gimbal is:

żI = ÂIzI + B̂IuI + V̂IwI + ÊInI (3.17)

where state and input matrices are:

ÂI =

 AI 0

−CI 0


5×5

, B̂I =

BI

0


5×1

, V̂I =

 GI

−PI


5×8

, ÊG =

 0

−I1


5×2
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Optimal control gain matrix of decoupled LTI inner gimbal system K̂I is:

K̂I =
[
KI −KξI

]
1×5

where state feedback gain matrix is KI =
[
kI1 kI2 kI3

]
and error gain matrix is

KξI =
[
kI1 kI2

]
. Thus control input scalar of inner gimbal is:

uI =− K̂IzI

−KIxI + kI1ξI1 + kI2ξI2

(3.18)

Terms of inner gimbal local LQI controller, Q̂I and R̂I , are:

Q̂I =



1

(zIe1 )2
max

1

(zIe2 )2
max

. . .
1

(zIe5 )2
max


5×5

R̂I = ρI
1

(uI)2
max

where parameter values of decoupled inner gimbal and coupled gimbal are the same.

By means of gain scheduling, sum of control inputs of all inner subsystems is:

uI = wu1uI1 + wu2uI2

System performances of the coupled inner gimbal with local LQI controller for dif-

ferent position commands are given in Table 3.12. Results of this analysis show that

coupled inner gimbal has the best performance with local LQI control if cut-off fre-

quency of the pre-filter is chosen as 2 Hz. Motor torque, angular position and velocity

responses of the coupled nonlinear inner gimbal with local LQI control is shown in

Figure 3.11.
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Table3.12: Position performances of the coupled nonlinear inner gimbal with local
LQI control for different position commands

Reference Pre-filter cutoff frequency Overshoot(%) Settling time(sec)
0.5 rad

1 Hz
0.0 2.0

1.0 rad 0.0 2.0
0.5 rad

2 Hz
0.0 1.8

1.0 rad 0.0 1.8
0.5 rad

10 Hz
0.0 1.8

1.0 rad 2.9 2.2

Figure 3.11: System responses and motor torque of the coupled nonlinear inner gim-
bal with local LQI control

3.2.2.2 Outer Gimbal

Linear quadratic integral control structure of a LTI subsystem of the decoupled outer

gimbal is given in Figure 3.12. State space representation of linearized outer gimbal,

given by Eq 2.85 and 2.86, is:

ẋO = AOxO +BOuO +GOwO

yO = COxO + POwO + nO
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Figure 3.12: Block diagram of a decoupled outer gimbal control subsystem model

Error vector between references and outputs ξ̇O is:

ξ̇O = rO − yO = rO −COxO − POwO − nO (3.19)

where ξO is integral of error vector and rO is reference vector. Output vector of

integrator is ξO =
[
ξO1 ξO2

]T
and new state vector is zO =

 xO

ξO


5×1

. New state

equation of the decoupled outer gimbal can be described by:

żO = ÂOzO + B̂OuO + V̂OwO + +ÊOnO (3.20)

where state and input matrices are:

ÂO =

 AO 0

−CO 0


5×5

, B̂O =

BO

0


5×1

, V̂O =

 GO

−PO


5×8

, ÊO =

 0

−I1


5×2

and optimal control gain matrix of a LTI subsystems of the decoupled outer gimbal

is:

K̂O =
[
kO1 kO2 kO3 −kO1 −kO2

]
1×5

Thus control input scalar of the outer gimbal is:

uO =− K̂OzO

−KOxO + kO1ξO1 + kO2ξO2

(3.21)

Controller matrices of the local LQI controller for the decoupled outer gimbal, Q̂O

74



and R̂O, are given below. Values of parameters of the decoupled outer and coupled

gimbals are the same.

Q̂O =



1

(zOe1 )2
max

1

(zOe2 )2
max

. . .
1

(zOe5 )2
max


5×5

R̂O = ρO
1

(uO)2
max

Decoupled outer gimbal model consists of three subsystems. By means of gain

scheduling, sum of control inputs of all outer subsystems is:

uO = wu1uO1 + wu2uO2 + wu3uO3

System performances of the coupled nonlinear outer gimbal with local LQI controller

for different position commands are given in Table 3.13.

Table3.13: Position performances of the coupled nonlinear outer gimbal with local
LQI control for different position commands

Reference Pre-filter cutoff frequency Overshoot(%) Settling time(sec)
0.5 rad

1 Hz

0.0 2.0
1.0 rad 0.0 2.0
1.5 rad 0.0 2.0
2.0 rad 1.1 2.8
2.5 rad Unstable Unstable
3.0 rad Unstable Unstable
0.5 rad

2 Hz

0.0 1.9
1.0 rad 2.1 1.9
1.5 rad Unstable Unstable
2.0 rad Unstable Unstable
2.5 rad Unstable Unstable
3.0 rad Unstable Unstable
0.5 rad

10 Hz

0.0 1.8
1.0 rad 11.8 1.8
1.5 rad Unstable Unstable
2.0 rad Unstable Unstable
2.5 rad Unstable Unstable
3.0 rad Unstable Unstable
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We can say that the coupled outer gimbal goes to instability when position command

is higher than 2.0 rad for all pre-filters. This controller satisfies the most desired

performance conditions for the coupled outer gimbal if cut-off frequency of the pre-

filter is 1 Hz. Motor torque and system responses of the coupled nonlinear outer

gimbal with local LQI control are shown in Figure 3.13.

Figure 3.13: System responses and motor torque of the coupled nonlinear outer gim-
bal with local LQI control

3.3 Performance Comparison of Controllers

Before construction study of the virtual world, we have to choose the best performed

control method for nonlinear 2-DOF gimbal in order to stabilize the system and track

the target. During controller design study, parameters of the cascade PI controller

are tuned with the nonlinear system directly. On the other hand, LQI controllers are

implemented in the nonlinear system after their gain matrices are computed for the

linear gimbal models. In this section, we have examined performances of all control

methods for nonlinear 2-DOF gimbal model.
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First performance comparison of the controllers is about their tracking and stabi-

lization performances when different position commands are applied to the nonlinear

2-DOF gimbal model. Second comparison is about some performance measures re-

lated to the position and rate error signals such as the integrated square error (ISE), the

integrated absolute value of the error (IAE) and the integrated time-weighted absolute

error (ITAE). These performance measures are formulated by:

ISE =

∫ ∞
0

e(t)2dt (3.22)

IAE =

∫ ∞
0

|e(t)|dt (3.23)

ITAE =

∫ ∞
0

t|e(t)|dt (3.24)

where e(t) represents error signal. In this analysis, a controller having the lowest

measure value of a criterion has the best performance in regard to the criterion.

3.3.1 Global and Local LQI Control

As it is explained in the previous sections, both global and local LQI controllers are

designed for the linear subsystems of coupled and decoupled gimbals. Although local

LQI controllers are designed for decoupled linear inner and outer gimbal subsystems,

these models are actually coupled in the linearization procedure.

Position performances of inner gimbal with global and local LQI control methods

are given in Table 3.11, 3.12. Analysis of results show that both controllers guaran-

tee the stability of the system and satisfy the desired conditions. In addition, we can

say that global LQI controller with 10 Hz cut-off frequency of the pre-filter has the

best performance. On the purpose of examining the system behaviors in more detail,

system responses and motor torque of the system are simulated for both controllers

in Figure 3.14. As a result, target tracking and elimination of disturbances abilities

of the global LQI position response is better than local LQI controller. Moreover,

although continuous motor torques of both controllers are about the same, local LQI

frequently reaches the peak motor torque values.
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Figure 3.14: System responses and motor torques of inner gimbal with global and
local LQI control methods

For the outer gimbal control, performance results of global and local LQI controllers

are given in Table 3.11, 3.13, respectively. These tables shows that global LQI con-

troller with 1 Hz cut-off frequency of the pre-filter is only successful method in all

desired conditions. Likewise the best performed local LQI controller with 1 Hz cut-

off frequency of the pre-filter is unstable when position command higher than 2.0

radians is applied to the outer gimbal. Figure 3.15 shows that global LQI has no

overshoot and less settling time than local LQI controller. Further, global LQI elim-

inates disturbances faster than local LQI. Lastly, continuous motor torque values of

both controllers are about the same even though local LQI frequently reaches the peak

motor torques.

In addition to these examinations, comparison of global and local LQI controllers

with respect to ISE, IAE and ITAE performance measures is given above. Table 3.14

shows that all of performance measures of the global LQI controller are lower than

local LQI’s. In conclusion, success of the global LQI controller in not only tracking

and stabilization control problems but also performance measures is higher than local

LQI controllers for both gimbals.
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Figure 3.15: System responses and motor torques of outer gimbal with global and
local LQI control methods

Table3.14: Performance comparison of global and local LQI control with respect to
ISE, IAE and ITAE measures

Gimbal Controller Command ISE IAE ITAE

Outer gimbal
Global LQI

Position 0.188 0.413 0.188
Rate 1.03 1.03 0.62

Local LQI
Position 0.290 0.536 0.299

Rate 3.99 2.34 2.02

Inner gimbal
Global LQI

Position 0.261 0.454 0.180
Rate 1.27 0.81 0.27

Local LQI
Position 0.272 0.538 0.346

Rate 3.02 2.21 2.16

3.3.2 Global LQI and Cascade PI Control

According to the performance results of the inner gimbal with cascade PI, given in

Table 3.5, and global LQI, given in Table 3.11, global LQI control has no overshoot

and its settling time is less than 1.8 seconds whereas cascade PI satisfies the desired

conditions only if cut-off frequency of the pre-filter is 1 Hz. In Figure 3.16, sys-

tem responses and motor torques of the inner gimbal with both controllers are shown.

When global LQI controller with 10 Hz cut-off frequency of the pre-filter and cascade
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PI controller with 1 Hz cut-off frequency of the pre-filter are compared, cascade PI

has overshoot for position commands higher than 0.5 rad although settling time and

rise time of the cascade PI are lower than global LQI. Furthermore angular velocities

of these methods reach to the zero velocity about the same time.

Figure 3.16: System responses and motor torques of inner gimbal with global LQI
and cascade PI control methods

Position performances of outer gimbal with cascade PI and global LQI control meth-

ods are given in Table 3.10, 3.11, respectively. It is clearly seen that, global LQI

controller with 1 Hz cut-ff frequency of the pre-filter is only compensator satisfying

the desired conditions for all position commands. When we applied position com-

mands higher than 1.0 rad to the outer gimbal with cascade PI, position outputs of

gimbal have overshoot higher than %10 and their settling times rise. Position out-

puts, velocity outputs and motor torques of the outer gimbal with both controllers are

shown in Figure 3.14.
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Figure 3.17: System responses and motor torques of the outer gimbal with global LQI
and cascade PI control methods

Table3.15: Performance comparison of global LQI and cascade PI control with re-
spect to ISE, IAE and ITAE measures

Gimbal Controller Command ISE IAE ITAE

Outer gimbal
Global LQI

Position 0.773 0.824 0.369
Rate 4.29 2.03 1.19

Cascade PI
Position 1.02 1.05 0.67

Rate 18.8 4.54 2.83

Inner gimbal
Global LQI

Position 0.259 0.454 0.182
Rate 1.29 0.957 0.518

Cascade PI
Position 0.08 0.26 0.16

Rate 1.88 1.08 0.627

Comparison of the global LQI and cascade PI controllers with respect to the perfor-

mance criteria is given in Table 3.15. Outer gimbal position, outer gimbal velocity

and inner gimbal velocity performances of the global LQI controller is better than

cascade PI controller. In spite of that cascade PI is seen more successful than global

LQI for the inner gimbal.
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3.3.3 Conclusion

In this chapter, cascade PI and linear quadratic integral control methods are compared

between each other. Decoupling of the inner and outer gimbals is examined in Sec-

tion 2.7. Result of this examination shows that our decoupling approaches are unable

to respond with the same coupled 2-DOF gimbal. Although we can not obtain real-

istic decoupled models via these approaches, designed local LQI controllers satisfies

the desired conditions for some position commands. When we compared global and

local LQI controllers, it is clearly seen that stabilization and tracking performances

of the global LQI is more successful than local LQI’s. If global LQI control method

is implemented in the nonlinear system model the 2-DOF gimbal with 10 Hz cut-off

frequency of the prefilter for inner gimbal and 1 Hz cut-off frequency of the pre-filter

for outer gimbal, outputs of both gimbals satisfy the desired conditions for all posi-

tion commands.

When we compare cascade PI and global LQI control methods, both approaches are

very successful and compatible in order to use in system simulator. Global LQI con-

trol has the lowest overshoot and settling time for step position commands and it

reaches to zero velocity in a short time. Further, global LQI is the most successful

controller with respect to the performance measures except position response of the

inner gimbal. Even though global LQI controller overcomes target tracking and sta-

bilization requirements, it has slow rise time so this control method is unable to give

quick responses against instant changes of the position commands. Unlike global

LQI, cascade PI controllers have the fastest position responses and their rise times

are rather short. In addition, cascade PI controllers can handle disturbances in a short

time and position performance of them are in desired conditions for lower position

commands. In flight scenarios of the target for this study, position commands are

lower than 0.5 rad and rise time, settling time and elimination of disturbances contain

more importance. As a result, cascade PI control with pre-filters providing the best

performance is preferred to be implemented in control system for system simulator

although the other controllers are very successful.
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CHAPTER 4

TARGET TRACKING AND ANIMATION

The main aim of building a virtual reality world is realization of the system scenarios

when a plane is tracked by the gimbal looking from a distance and platform motion is

carried out in the gimbal base. Structure of simulation framework is shown in Figure

4.1.

Figure 4.1: Structure of simulation framework

Video output of the VRML sink produces images in sequence and each image is used

by target tracking algorithm with the discrete Kalman filter [9]. Tracking algorithm

computes angular position commands for the gimbal and later position responses of

the system is converted to the orientation of camera view in the VRML coordinate

system. Simulink blocks of control system, tracker algorithm, VRML sinks and the

other functions are shown in Figure B.6.
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4.1 Construction of the Virtual World

Virtual Reality Modeling Language (VRML) is a file format, which is saved with .wrl

file extension, for visualizing interactive 3-D virtual worlds. On the purpose of creat-

ing and modifying the virtual worlds, VREALM Builder [32] produced by MATLAB

is used in this study. The objects in a virtual world can be created by MPEG im-

ages, MIDI data, 3-D aggregates and their interactions [45]. Libraries of VREALM

Builder give lots of options for inserting navigation screens, backgrounds and various

objects. In order to simulate the sky and ground in the virtual worlds, at background

objects defining a color backdrop can be implemented. In addition, some features

of the objects such as scale, translational position and orientation can be modified

both statically and dynamically. In this study, scale and orientation of all objects are

described as static. On the other hand, translational position of the plane is changed

dynamically in order to move the target.

Figure 4.2: VRealm Builder

VRML coordinate system on MATLAB/Simulink (Figure 4.3) and the earth coordi-

nate system are identical. Objects are placed farther or nearer from the point of view

on the z axis and altitude of objects are pointed on the y axis. In addition, rotation

angles are described by the right hand rule. Units of all translation distances and an-
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gular measurements are in meters and radians, respectively [32].

Figure 4.3: VRML coordinate system on MATLAB/Simulink [32]

Viewpoints are used to display the objects from different position and orientation.

There are two types of viewpoint options: Static viewpoint is independent from the

objects and its position and orientation remains the same during simulation whereas

dynamic viewpoint can move at both, tranlationally and rotationally [32]. In this

study, camera view must be the dynamic viewpoint on the purpose of orienting the

gimbal to the target.

Target detection is an image processing study that requires an image sequence to

compute target velocity between video frames. Video outputs of the VR sink blocks

are able to produce images in sequence from the our virtual world having 1080-by-

800 pixel resolution and 50 Hz frame rate. In VR sink block, translational position

of the plane and orientation of the camera view are described dynamically, diversely,

position of the camera is fixed.

Initial distance between the virtual world and the camera view, camera orientation

and field of view (FOV) can be determined by viewpoints. The gimbal is located

away at constant 5000 meters from the plane along the +z axis and initial position of

the center of the camera view is (0, 0) on the horizontal and vertical axes. The plane

flies along the horizontal and vertical axes of the virtual world and initial position of

the plane is (x, y, z) = (-2000, 1500, 0) in meters. The other objects such as apart-

ments, houses, markets etc. are located arbitrarily. Appearance of the virtual world

from the camera is shown in Figure 4.4.
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Figure 4.4: Appearance of the virtual world from the camera

4.2 Tracking of an Object with the Discrete Kalman Filter

Target tracking technology is very important for engineering applications of computer

vision such as military guidance, navigation and surveillance. It focuses on follow-

ing the target, also called tracking, in an image sequence [23]. A tracking algorithm

with the discrete Kalman filter was designed with the intend of computing position

and velocity of the plane. Input of the algorithm is a sequence of images which are

produced by the virtual reality sink block. After that, the target is segmented from

the image by applying image processing methods and then position of the target is

computed in the image [11]. Hence the state of the system, expressed by xk, is taken

as the horizontal and vertical components of position and velocity of the target at the

instant k. Lastly, position of the target in pixel is projected onto the virtual world with

respect to the translational position in meters.

The Kalman filter which looks for the target in a search window, centered in the

predicted value of the filter, is a very efficient method for tracking [11]. In this study,

it uses the measurement which is the real position of the target and estimates the ve-

locity and position of the target. Besides, the constant velocity model is used for the
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motion model of the Kalman filter. The state and the output equations are formulated

by:

xk+1 = Axk +wk (4.1)

yk = Cxk + vk (4.2)

where xk is the state vector,A is the state matrix,wk ∼ N(0,Q) is the process noise,

yk is the measurement vector,C is the measurement matrix and vk ∼ N(0,R) is the

measurement noise. When a constant velocity model is implemented, the system

matrices given in Eq. 4.1 and Eq. 4.2 are:

A =


1 0 0.02 0

0 1 0 0.02

0 0 1 0

0 0 0 1

 , C =

1 0 0 0

0 1 0 0

 (4.3)

Kalman filter starts with initial covariance and state values. It predicts the state and

covariance based on the equations given in 4.4 and 4.5.

xk+1|k = Akxk|k (4.4)

Pk+1|k = AkPk|kAk
T +Qk (4.5)

In our cases, the initial state estimation error covariance matrix is:
100 0 0 0

0 100 0 0

0 0 10000 0

0 0 0 10000


and the process covariance matrix is:

Q =


25 0 0 0

0 25 0 0

0 0 10 0

0 0 0 10



87



Then, Kalman filter uses the measurement to update the filter based on the equations

given in 4.6 and 4.7 [9].

xk|k = xk|k−1 +Kk(yk −Cxk|k−1) (4.6)

Pk|k = Pk|k−1 −KkCPk|k−1 (4.7)

where the gain matrix is:

Kk = Pk|k−1C
T (CPk|k−1C

T +Rk)−1

and the measurement noise covariance is:

R =

25 0

0 25



4.3 Simulation Results

There are two VR sink blocks using the same .wrl file in simulation: One of them is

used to produce the images in sequence on the purpose of detection and estimation of

the moving target via target tracking algorithm. Besides the camera can be oriented

to the target by means of the other VR sink block. As explained in Section 4.1,

location of the camera is (0, 0, 5000) and initial location of plane is (-2000, 1500, 0)

in the direction of x, y and z axes, respectively. When we implemented the tracking

algorithm in the system simulator, the flight of the target and trajectory of the outputs

of the algorithm are shown in the Figure 4.5. Position of the plane and estimation of

the tracker algorithm are simulated in Figure 4.6. It is clearly seen that the tracking

algorithm captures the object in the image and estimates position and velocity of the

target successfully.
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Figure 4.5: Trajectories of the outputs of the tracker algorithm

Figure 4.6: Position of the moving plane and estimation of the target tracking algo-
rithm

Output of the tracker algorithm expresses the estimated translational position of the

plane. In order to compute angular position references of the gimbal, these locational
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data must be projected onto the angular displacements. Projection of LOS onto the

virtual world is shown in figure 4.7.

Figure 4.7: Projection of LOS onto the virtual world

From Figure 4.7, angular position references of outer and inner gimbals, expressed

by ηref and εref , respectively, can be formulated by:

ηref = tan

(
xEst.P laneLoc

zEst.P laneLoc

)
= tan

(xEst.P laneLoc

5000

)
εref = tan

(
yEst.P laneLoc

zEst.P laneLoc

)
= tan

(yEst.P laneLoc

5000

)

According to the performance comparison of cascade PI, global and local linear

quadratic control methods in Section 3.3, cascade PI control has the best stabiliza-

tion and positioning performance for the flight scenario of the target. Hence cascade

PI is implemented in the visual tracking simulator. When angular tracker position

commands are applied to the nonlinear gimbal model containing platform motions

and sensor noise, system responses and motor torques of both outer and inner gim-

bals are shown in Figure 4.8 and 4.9, respectively.
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Figure 4.8: System responses and motor torque of outer gimbal when the system
tracks a target in a virtual world

Figure 4.9: System responses and motor torque of inner gimbal when the system
tracks a target in a virtual world
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After tracker commands ηref and εref are computed and applied to the coupled 2-

DOF gimbal model, angular position responses of outer (η) and inner (ε) gimbals are

converted to the translational positions in the virtual world in order to view the target

in the center of camera screen. Conversion of angular position responses of gimbals

to the translational positions are computed by:

xLOS = zLOS tan−(η) = 5000 tan−(η)

yLOS = zLOS tan−(ε) = 5000 tan−(ε)

It must be stated that the center of the camera view is oriented by the translational

projection of the outputs of the gimbal system onto the virtual world, or namely LOS,

if the positions of the LOS is applied to the VR sink block. Virtual camera view of a

2-DOF gimbal tracking a plane is shown in Figure 4.10.

Figure 4.10: Virtual camera view of a 2-DOF gimbal system tracking a plane

In this figure, red point with a 80-by-80 pixel black square expresses the center of the
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camera view and 60-by-60 pixel green square refers to the track gate. As a conclusion,

we have constructed a realistic system simulator having a detailed system model,

control method rejecting disturbances and pointing to the target, tracker algorithm

detecting and estimating position and velocity of the target and a virtual reality world

to observe flight scenarios.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

This chapter is organized in a summary of the main results of this thesis and some

recommendations for future studies have been suggested.

5.1 Summary

Simulation environment gives lots of opportunities for control system designers. For

instance, system scenarios can be replicated multiple times, since computational times

of simulations are very short and obtaining desired data using encoders and gyro-

scopes is very easy. This study focuses mainly on the detailed mathematical modeling

of a 2-DOF gimbal on the purpose of obtaining a mathematical model as realistic as

possible. The other purpose is to design different controllers and compare their per-

formances. Finally, the best controller have been tested for its tracking performance

in a virtual world. Parameters of the system model are obtained by a CAD analysis,

because the physical system is yet to be constructed. It is to be noted that certain

assumptions have been made in modeling, controller design and visualization of the

virtual world.

Chapter 2 focuses on the detailed mathematical model of the gimbal system on the

purpose of observing disturbance effects and obtaining a realistic system model by

using Newton-Euler approach. Nonlinear effects of this system are friction between

inner and outer gimbals, friction between outer gimbal and gimbal base, static and dy-

namic mass unbalances of inner and outer gimbals, motor friction and torque ripple.
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Before dynamic equations and nonlinearities are formulated, first, reference frames

and transformation matrices of this system are described. By means of transformation

matrices between each reference frame, angular velocity and acceleration variables of

frames are expressed. Then Dahl friction model is determined to be the most conve-

nient model. In modeling of a DC brushed actuator, ripple torque and Coulomb fric-

tion torque are added to the basic motor model having electrical and mechanical parts.

After kinematic equations are obtained, motor and friction models are expressed, dy-

namic equations of gimbal are written and system model is constructed. Apart from

this conventional approach, modern control theory allows to construct a MIMO sys-

tem model in state space. Therefore coupled 2-DOF gimbal, decoupled inner and

decoupled outer gimbals are represented in state space to determine which approach

is more convenient in control studies. Platform motions, sensor noise, kinematic and

dynamic equations are defined in state space except motor models. After nonlinear

models of gimbal are written in state space, linearization has been performed around

too-many equilibrium points, which are clustered according to their similarities by

means of the K-means algorithm and Calinski-Harabatz criterion. As a result, there

are two LTI subsystems of both coupled 2-DOF and decoupled inner gimbal and three

LTI subsystems of the decoupled outer gimbal.

Cascade PI control, which is a conventional technique, and linear quadratic integral

(LQI), which is a relatively new technique, for the gimbal system are examined in

Chapter 3. Both control methods are implemented in the nonlinear system models

and their system performances are compared for different position commands. In

state space, there are some differences between controls of the coupled and decou-

pled gimbals which are global and local LQI. Global LQI control yields the stabiliza-

tion and tracking control problems of coupled system model by using one controller

whereas two local LQI controllers have been designed for decoupled inner and outer

gimbals, separately. Hence global LQI control applies two control signals (motor

torques) to the coupled gimbal and each local LQI control carries out one control

signal to drive its own gimbal. In the design procedure of cascade PI controllers of

coupled gimbals, firstly rate controller parameters of both gimbals are tuned. Then

position controllers and pre-filters are designed together to obtain the best performed

control system. In LQI design, controller matrices Q̂ and R̂ are determined by us-
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ing Bryson’s rule allowing to weight state variables and optimal gain matrices K̂ are

computed for all LTI subsystems of the coupled and decoupled gimbals. Next, control

signals are weighted by a gain scheduling algorithm for each subsystem and sum of

their outputs gives the overall system controller outputs. Last step of LQI design is

determining the cut-off frequency of the pre-filter to satisfy the desired performance.

In system simulator study, position commands are lower than 0.5 rad and rise time,

settling time and elimination of disturbances contain more importance. For these

position commands, all control methods have success in stabilization and tracking

problems. Global LQI controller is the most successful controller for higher position

commands. However, cascade PI control has the fast positioning and elimination per-

formances for disturbances for lower position commands. Even though all control

strategies are very successful for lower position commands, cascade PI control with

pre-filters providing the best performance is preferred to implement in control system

for system simulator.

Chapter 4 explains building of a virtual reality world to observe system scenarios

when a plane is tracked by a gimbal looking from a constant distance and platform

motion is carried out at the gimbal base. In the construction of this simulation envi-

ronment, Simulink 3-D toolbox is used not only to create a virtual reality world by

means of VREALM Builder, but also to implement the gimbal model, tracker and

control algorithms. VR sink blocks can produce video frames and rotates the screen

to the desired location. Hence two VR sink blocks are used in this study: One of them

creates images in sequence for the tracker algorithm with the discrete Kalman filter

to detect and estimate the target velocity, the other is used to move camera view of

the gimbal to the target by means of position commands produced by the tracker al-

gorithm. In conclusion, it has been obtained a realistic simulation environment which

consists of a system model containing dynamics in detail, control method rejecting

disturbances and pointing to a target, a tracker algorithm detecting location and flight

of the target and a virtual reality world to observe system scenarios.
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5.2 Future Works

This thesis study provides the requirements of system simulation; however there are

still many theoretical and practical matters have been left untouched or not sufficiently

discussed yet. In this section, some recommendations are given so as to obtain more

realistic system simulator and compare their performances with control and tracker

methods mentioned in previous sections.

Theoretical future works can improve system performance to eliminate disturbances

or react faster to the reference signals as well as they may improve robustness, track-

ing and stabilization abilities. Firstly, some disturbance rejection algorithms can be

implemented with the system model such as friction compensation and disturbance

observer. Secondly, there are lots of reference-signals-shaping methods which may

achieve faster and more robust system responses. In addition, linear controllers have

been designed in this study; instead, different nonlinear controllers may be designed

such as sliding mode control, and their performances can be compared with LQI and

cascade PI control. Lastly, even though our tracker algorithm can be work success-

fully, it can not be guaranteed for every flight scenarios so that a new tracker algorithm

can be designed for different cases.

In the simulation study, there are some assumptions for system model parameters

so controllers are designed for this system models. All of system parameters may be

identified via some optimization algorithms when physical system is completed. Af-

ter system parameters are identified, they are implemented to the system model and

controller can be designed again, theoretical and physical system performances can

be compared between each other to check how realistic system simulator is. If there

are differences between behaviors of physical and modeled systems, modeling study

can be improved to implement the other unknown dynamics on the purpose of taking

advantages of simulation studies.
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APPENDIX A

DETAILED MATHEMATICAL EXPRESSIONS

A.1 Angular Acceleration

Component of αOe about the x axis is:

αOex = + φ̈ cos η + θ̈ cosφ sin η − ψ̈(cos η sin θ + cos θ sin η sinφ)

+ η̇(φ̇ sin η − ψ̇(sin η sin θ + cos η cos θ sinφ)− θ̇ cos η cosφ)

+ ψ̇θ̇((cos2 η − cosφ sin2 η) cos θ + (1 + cos η) sin η sinφ sin θ) cosφ

+ φ̇(θ̇(sinφ cos η + cosφ sin η) sinφ− ψ̇(cosφ sin η + cos η sinφ) cosφ cos θ)

(A.1)

, component of αOe about the y axis is:

αOey = + θ̈ cos η cosφ− φ̈ sin η + ψ̈(sin η sin θ + cos η cos θ sinφ)

+ η̇(φ̇ cos η + θ̇ cosφ sin η + ψ̇(cos θ sin η sinφ− cos η sin θ))

+ φ̇θ̇(cos η cosφ sinφ− sin η − cos2 φ sin η)

+ φ̇ψ̇(sin η sinφ− cos η cosφ) cos θ cosφ

+ ψ̇θ̇(sinφ sin θ(1 + cos η)− cos θ sin η(1 + sin η)) cos η cosφ

(A.2)

and component of αOe about the z axis is:

αOez = η̈ + αdistOz
(A.3)

where αdistOz
is disturbance acceleration effect on the z axis of outer gimbal
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αdistOz
=− θ̈ sinφ+ ψ̈ cosφ cos θ

+ ψ̇θ̇(cosφ cos θ sin η sinφ− sin2 φ sin θ + cos η cos2 φ sin θ)

+ φ̇(ψ̇(cosφ cos θ sinφ− sinφ sin θ) + θ̇ cos2 φ)

In addition, component of αIe about the x axis is:

αIex = −η̈ sin ε+ αdistIx
(A.4)

where αdistIx
representing the disturbance acceleration effect on the x axis of inner

gimbal is:

αdistIx
= + φ̈ cos ε cos η + θ̈(sin ε sinφ+ cos ε cosφ sin η)

− ψ̈(cos ε cos η sin θ − cosφ cos θ sin ε+ cos ε cos θ sin η sinφ)

+ η̇ε̇ cos ε− φ̇θ̇ cos2 φ sin ε+ φ̇θ̇ cos ε cos η + η̇φ̇ cos ε sin η + ε̇φ̇ cos η sin ε

− ε̇θ̇ cos ε sinφ+ ψ̇θ̇ sin ε sin2 φ sin θ − η̇θ̇ cos ε cos η cosφ+ ε̇ψ̇ cos ε cosφ cos θ

+ ε̇θ̇ cosφ sin ε sin η − η̇ψ̇ cos ε sin η sin θ − ε̇ψ̇ cos η sin ε sin θ + φ̇ψ̇ sin ε sinφ sin θ

− φ̇θ̇ cos ε cos η cosφ2 − ψ̇θ̇ cos ε cos2 φ cos θ sin2 η − η̇ψ̇ cos ε cos η cos θ sinφ

+ φ̇θ̇ cos ε cosφ sin η sinφ− φ̇ψ̇ cosφ cos θ sin ε sinφ+ ε̇ψ̇ cos θ sin ε sin η sinφ

+ ψ̇θ̇ cos ε cos2 η cosφ cos θ − φ̇ψ̇ cos ε cos2 φ cos θ sin η − ψ̇θ̇ cos η cos2 φ sin ε sin θ

+ ψ̇θ̇(cos ε sin θ − cos θ sin ε+ cos ε cos η sin θ) cosφ sinφ sin η

− φ̇ψ̇ cos ε cos η cosφ cos θ sinφ

, component of αIe about the y axis is:

αIey = ε̈+ αdistIy
(A.5)

where αdistIy
representing the disturbance acceleration effect on the y axis of inner

gimbal is:
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αdistIy
=− φ̈ sin η + ψ̈(cos η cos θ sinφ+ sin η sin θ) + θ̈ cos η cosφ

− φ̇θ̇ sin η + η̇φ̇ cos η + φ̇θ̇ cos2 φ sin η + ψ̇θ̇ cos2 η cosφ sinφ sin θ

+ η̇θ̇ cosφ sin η − η̇ψ̇ cos η sin θ + φ̇θ̇ cos η cosφ sinφ

+ η̇ψ̇ cos θ sin η sinφ− φ̇ψ̇ cos η cos2 φ cos θ − ψ̇θ̇ cos η cosφ cos θ sin η

+ φ̇ψ̇ cosφ cos θ sin η sinφ+ ψ̇θ̇ cos η cosφ sinφ sin θ

− ψ̇θ̇ cos η cos2 φ cos θ sin η

and component of αIe about the z axis is:

αIez = η̈ cos ε+ αdistIz
(A.6)

where αdistIz
representing the disturbance acceleration effect on the z axis of inner

gimbal is:

αdistIz
=φ̈ cos η sin ε+ θ̈(cosφ sin ε sin η − cos ε sinφ)

+ ψ̈(cos ε cosφ cos θ − cos η sin ε sin θ + cos θ sin ε sin η sinφ)

+ η̇(ε̇+ φ̇ sin η − ψ̇ sin η sin θ − ψ̇ cos η cos θ sinφ− θ̇ cos η cosφ) sin ε

+ ε̇ψ̇(cos ε cos η sin θ + cosφ cos θ sin ε− cos ε cos θ sin η sinφ)

− ε̇φ̇ cos ε cos η − ε̇θ̇(sin ε sinφ+ cos ε cosφ sin η)

+ φ̇θ̇(cosφ sin ε sin η sinφ+ cos ε cos2 φ+ cos η sin ε− cos η cos2 φ sin ε)

+ ψ̇θ̇(cos ε cos η cos2 φ sin θ + cos2 η cosφ cos θ sin ε− cos ε sinφ2 sin θ

− cos2 φ cos θ sin ε sin2 η + cos ε cosφ cos θ sin η sinφ

+ cosφ sin ε sin η sinφ sin θ + cos η cosφ sin ε sin η sinφ sin θ)

+ φ̇ψ̇(cos ε cosφ cos θ sinφ− cos ε sinφ sin θ − cos2 φ cos θ sin ε sin η

− cos η cosφ cos θ sin ε sinφ)
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A.2 Dynamic Equations

Firstly, dynamic equations of outer gimbal can be written as three scalar equations

by Eq. 2.36. Dynamic equations of inner gimbal on x, y and z axes with respect to

angular velocity and acceleration terms are given below, respectively.

IIxxαIex + IIxyαIey + IIxzαIez − ΩIez(I
I
xyΩIex + IIyyΩIey + IIyzΩIez)

+ ΩIey(I
I
xzΩIex + IIyzΩIey + IIzzΩIez)

= −gmIrPGIy
(cos(ε) cos(θ)− sin(ε) sin(θ))

(A.7)

IIxyαIex + IIyyαIey + IIyzαIez + ΩIez(I
I
xxΩIex + IIxyΩIey + IIxzΩIez)

− ΩIex(I
I
xzΩIex + IIyzΩIey + IIzzΩIez)

= TmI
+ TfrOI + gmIrPGIx

(cos(ε) cos(θ)− sin(ε) sin(θ))

+ gmIrPGIz
(cos(ε) sin(θ) + cos(θ) sin(ε))

(A.8)

IIxzαIex + IIyzαIey + IIzzαIez − ΩIey(I
I
xxΩIex + IIxyΩIey + IIxzΩIez)

+ ΩIex(I
I
xyΩIex + IIyyΩIey + IIyzΩIez)

= −gmIrPGIy
(cos(ε) sin(θ) + sin(ε) cos(θ))

(A.9)

Secondly, in order to obtain dynamic equations of the outer gimbal, Eq. 2.47 is de-

scribed as three scalar equations. Dynamic equations of the outer gimbal on x, y and

z axes with respect to angular velocity and acceleration terms are given below, re-

spectively.

IOxxαOex + IOxyαOey + IOxzαOez

+ αIex(I
I
xx cos ε− IIxz sin ε) + αIey(I

I
xy cos ε− IIyz sin ε) + αIez(I

I
xz cos ε− IIzz sin ε)

− ΩOez(I
I
xyΩOex + IOxyΩOex + IIyyΩOey + IOyyΩOey + IIyzΩOez + IOyzΩOez)

+ ΩOey(I
O
xzΩOex + IOyzΩOey + IOzzΩOez + ΩOex(I

I
xz cos ε+ IIxx sin ε)

+ ΩOey(I
I
yz cos ε+ IIxy sin ε) + ΩOez(I

I
zz cos ε+ IIxz sin ε))

+ ΩIex ε̇(I
I
xz cos ε+ IIxx sin ε) + ΩIey ε̇(I

I
yz cos ε+ IIxy sin ε)

+ ΩIez ε̇(I
I
zz cos ε+ IIxz sin ε)

= g(m0 +m1)((sin η sin θ + cos η sinφ cos θ)rPGOz
− (cosφ cos θ)rPGOy

)

(A.10)
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IIxyαIex + IOxyαOex + IIyyαIey + IOyyαOey + IIyzαIez + IOyzαOez

+ ΩOez(I
O
xxΩOex + IOxyΩOey + IOxzΩOez + ΩOex(I

I
xx cos ε− IIxz sin ε)

+ ΩOey(I
I
xy cos ε− IIyz sin ε) + ΩOez(I

I
xz cos ε− IIzz sin ε))

− ΩOex(I
O
xzΩOex + IOyzΩOey + IOzzΩOez + ΩOex(I

I
xz cos ε+ IIxx sin ε)

+ ΩOey(I
I
yz cos ε+ IIxy sin ε) + ΩOez(I

I
zz cos ε+ IIxz sin ε))

= g(mO +mI)(cosφ cos θrPGOx
− (− cos η sin θ + sin η sinφ cos θ)rPGOz

)

(A.11)
IOxzαOex + IOyzαOey + IOzzαOez + αIex(I

I
xz cos ε+ IIxx sin ε) + αIey(I

I
yz cos ε+ IIxz sin ε)

+ αIez(I
I
zz cos ε+ IIxz sin ε)

+ ΩOex(I
I
xyΩOex + IOxyΩOex + IIyyΩOey + IOyyΩOey + IIyzΩOez + IOyzΩOez)

− ΩOey(I
O
xxΩOex + IOxyΩOey + IOxzΩOez + ΩOex(I

I
xx cos ε− IIxz sin ε)

+ ΩOey(I
I
xy cos ε− IIyz sin ε) + ΩOez(I

I
xz cos ε− IIzz sin ε))− ΩIex ε̇(I

I
xx cos ε− IIxz sin ε)

− ΩIey ε̇(I
I
xy cos ε− IIyz sin ε)− ΩIez ε̇(I

I
xz cos ε− IIzz sin ε)

= TmO
+ TfrBO + TfrIO + g(mO +mI)((− cos η sin θ + sin η sinφ cos θ)rPGOy

− (sin η sin θ + cos η sinφ cos θ)rPGOx
)

(A.12)
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APPENDIX B

SIMULINK BLOCKS

B.1 Friction and DC Motor Models

Figure B.1: Simulink block of LuGre friction model

Figure B.2: Simulink block of Dahl friction model
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Figure B.3: Simulink block of a brushed DC motor model

B.2 Cascade PI Control

Figure B.4: Simulink block of cascade PI control

Figure B.5: Simulink block of outer gimbal cascade PI control rate loop
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B.3 System Simulator

Figure B.6: Simulink model of the system simulator
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