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ABSTRACT

NOTABLE DECREASE IN TRANSCRIPTOME CONSERVATION DURING
MAMMALIAN AGING

Turan, Zeliha Gözde
M.S., Department of Biology

Supervisor : Assoc. Prof. Dr. Mehmet Somel

September 2016, 88 pages

Aging is a complex process that causes decline in organisms’ reproductive capa-
city and chance of survival. Even though aging tends to reduce fitness, it is not
eliminated by natural selection and is observed in many multicellular species, and
this leads to an evolutionary paradox. The mutation accumulation theory states that
due to the declining force of natural selection with age, old-age-expressed deleter-
ious mutations will not be effectively eliminated, and can contribute to the aging
phenotype. A limited number of empirical studies showed effects consistent with
the mutation accumulation theory with controversial results, but this theory has not
been tested using transcriptomic data. One prediction of mutation accumulation
theory would be that genes highly expressed later in life would be less conserved
than those expressed early. In this study, I performed a meta-analysis of 35 mi-
croarray gene-expression datasets including 8 tissues from 4 mammalian species,
and studied the protein sequence conservation of genes expressed at different levels
during adulthood. Age-related decrease in transcriptome conservation was detec-
ted in brain, liver, and lung, with the contribution of both genes having increased
expression with age and low conservation, and genes having decreased expression
with age and high conservation. Meanwhile, no such trend was observed in muscle
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tissues. To find functional groups associated with decrease in transcriptome con-
servation with age, I then performed Gene Ontology (GO) analysis. GO analysis
revealed that genes showing increased expression and low conservation tend to
be associated with apoptosis across different tissues. These results may indicate
that genes highly expressed at old age and with low sequence conservation may
contribute to the senescence phenotype in different mammalian species, consistent
with the mutation accumulation theory.

Keywords: aging, evolution, gene expression, mutation accumulation theory, meta-
analysis, protein sequence conservation, dN/dS
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ÖZ

MEMELİ YAŞLANMASI ESNASINDA TRANSKRİPTOM KORUNMASINDA
MEYDANA GELEN ÖNEMLİ AZALIŞ

Turan, Zeliha Gözde
Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi : Doç. Dr. Mehmet Somel

Eylül 2016, 88 sayfa

Yaşlanma, canlının üreme kapasitesinin ve hayatta kalma şansının azalmasına se-
bep olan oldukça kompleks bir süreçtir. Uyum başarısını azaltma eğiliminde olma-
sına rağmen, doğal seçilim tarafından elenmemesi ve çok hücreli türlerin çoğunda
gözlenmesi evrimsel bir paradoksa sebep olmaktadır. Mutasyon birikimi teorisi,
yaşla birlikte doğal seçilimin gücünün zayıflaması nedeniyle, ileri yaşa etkisini gös-
teren zararlı mutasyonların efektif olarak elenemeyeceğini ve yaşlanma fenotipine
katkı sağlayabileceğini ileri sürmektedir. Sınırlı sayıda ampirik çalışma mutasyon
birikimi teorisi ile uyumlu olan etkileri tartışmalı sonuçlar ile göstermiştir, ancak bu
teori transkriptom verisi kullanılarak test edilmemiştir. Mutasyon birikimi teorisi-
nin bir öngörüsü yaşamın ileri döneminde yüksek seviyede anlatılan genlerin erken
dönemde anlatılanlara göre daha düşük seviyede korunmuş olabileceğidir. Bu ça-
lışmada, 8 doku ve 4 memeli türünü kapsayan 35 mikrodizin gen anlatımı verisinin
meta-analizini gerçekleştirdim, ve erişkinlik boyunca farklı seviyelerde anlatılan
genlerin protein sekans korunmasını çalıştım. Transkriptom korunma seviyesinde
yaşa bağlı azalış, hem yaşla beraber artan gen anlatımı ve düşük korunmaya sahip
genler hemde yaşla beraber azalan gen anlatımı ve yüksek korunmaya sahip genle-
rin katkısıyla beyin, akciğer ve karaciğerde tespit edilmiştir. Öte yandan, böyle bir
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eğilim kas dokusunda gözlemlenmemiştir. Daha sonra, transkriptom korunma sevi-
yesinde yaşa bağlı azalışa sebep olan fonksiyonel grupları bulmak için Gen Onto-
loji (GO) analizi gerçekleştirdim. GO analizi artan gen anlatımı ve düşük korunma
gösteren genlerin apoptoz ile bağlantılı olma eğiliminde olduğunu farklı dokularda
göstermiştir. Bu sonuç ileri yaşta yüksek seviyede anlatılan ve düşük sekans ko-
runmasına sahip genlerin mutasyon birikimi teorisi ile uyumlu olarak, yaşlanma
fenotipine katkı sağlayabileceğine birden fazla memeli türünde işaret etmektedir.

Anahtar Kelimeler: yaşlanma, evrim, gen anlatımı, mutasyon birikimi teorisi, meta-
analiz, protein-dizi korunması, dN/dS
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CHAPTER 1

INTRODUCTION

1.1 Aging

Aging can be defined as changes that take place in the cells, tissues, and organs with
increasing age. Many of these changes are thought to represent either stochastic
events or responses to such events. Senescence is defined as the deleterious parts
of those changes, which eventually lead to functional impairment. Nearly all the al-
terations that accumulate with age are harmful to an organism’s viability and repro-
duction, therefore aging is usually used interchangeably with senescence (Longo,
Mitteldorf & Skulachev, 2005).

Aging is also accompanied by a wide range of age-related diseases, such as cancer,
neurodegenerative and cardiovascular disorders (López-Otín, 2013).Understanding
the cause and effect relationship between aging and age-related pathologies, and
finding treatment is both demanding and time consuming. Therefore, according to
one argument, the primary aim of the aging studies should be to find the underlying
driving force of this complex phenotype, which may eventually allow developing
approaches that delay the entire aging process, and thus also delay age-related dis-
orders (de Magalhães, 2003).

At the cellular and molecular level, diverse pathways and mechanisms can con-
tribute to aging either directly or indirectly. Each of them has a different role in
determining the aging phenotype. A recent study categorized cellular and mo-
lecular hallmarks of aging into nine groups, described below, and summarized in
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Figure 1.1.

Figure 1.1: The figure illustrates the nine hallmarks described in (López-Otín,
2013).

1. Genomic Instability: Accumulation of DNA damage throughout the species
lifespan is one of the leading cause of aging (Moskalev et al., 2013). Both
nuclear DNA and mitochondrial DNA (mtDNA) are prone to extrinsic and
intrinsic damaging agents (Hoeijmakers, 2009). These agents can cause gen-
omic instability in different ways, including point mutations, telomere short-
ening, and chromosomal abnormalities. Failure to properly overcome such
damage in essential genes may result in disruption of homeostasis (Jones &
Rando, 2011). Also, DNA repair mechanism has an important role in both
mitotic and postmitotic tissues. For example, one study showed that genes
having role in DNA repair mechanism showing increased expression with
age in brain (Lu et al., 2004). In addition, numerous studies have reported
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that there is a relationship between efficiency of DNA repair mechanism and
longevity (Promislow, 1994).

2. Telomere Attrition: Most somatic cells lack the telomerase enzyme, a con-
dition that causes progressive loss of telomere length with each cell division.
A critically short telomere length triggers the activation of DNA repair mech-
anism that results in cellular senescence or apoptosis. Also, several studies
showed that dysfunctional telomerase are associated with accelerated aging
phenotypes (Blasco, 2007).

3. Epigenetic Alterations: Aging is accompanied by epigenetic alterations,
including histone post-translational modifications, changes in DNA methyla-
tion, and modification of chromatin architecture (Talens et al., 2012). Several
studies in animal models have demonstrated that increased activity of SIRT6,
which plays a role in epigenetic regulation, results in prolonged longevity. In
addition, causal links between perturbation of epigenetic systems and pro-
geroid syndromes were also found in model organisms (Kanfi et al., 2012;
Mostoslavsky et al., 2006).

4. Loss Of Proteostasis: Maintenance of protein homeostasis (proteostasis) is
crucial to preserving cell function. Chaperones and proteasomes have an im-
portant role in securing protein turnover. Chaperones isolate unfolded/ mis-
folded proteins, and if possible repair them, while proteasomes identify and
degrade damaged proteins (Koga, Kaushik & Cuervo, 2011). Impairment in
protein homeostasis with increasing age results in accumulation of damaged
proteins, and also contributes to age-related disorders such as Alzheimer’s
disease and cataracts (Powers, Morimoto, Dillin, Kelly & Balch, 2009).

5. Deregulated Nutrient Sensing: The rate of aging is controlled by manip-
ulations of anabolic and nutrient signaling pathways. Decreased activity of
the nutrient signaling pathways is associated with prolonged longevity, and
can be achieved by caloric restriction (CR) or drugs that mimic the effect of
CR. In contrast to this, increased activity of anabolic signaling pathways can
accelerate the aging rate (Fontana, Partridge & Longo, 2010; Harrison et al.,
2009).

6. Mitochondrial Dysfunction: Progressive accumulation of mutations within
the mtDNA leads to mitochondrial dysfunction and subsequent decline in
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energy production. Several studies have demonstrated that mitochondrial
deficiency can accelerate aging in mammals (Kujoth et al., 2005; Trifunovic
et al., 2004; Vermulst et al., 2008). However, little is known about the effects
of improved mitochondrial function on lifespan extension.

7. Cellular Senescence: Cellular senescence can be defined as permanent cell
cycle arrest. Increased number of senescent cells during aging can contribute
to age-related dysfunction. This is because, senescent cells lose their regen-
erative capacity, and raised number of those cells with age can impair tissue
structure and renewal in old species (Campisi & d’Adda di Fagagna, 2007).
However, senescence has also an important role in protecting against tumor
formation, especially in cells with high proliferative capacity. Several stud-
ies showed that both removal of senescent cells and also increased activity of
the senescence-inducing tumor suppressor mechanisms can ameliorate age-
related deterioration (Baker et al., 2011; Matheu et al., 2009, 2007). These
studies provide a link between aging and cellular senescence.

8. Stem Cell Exhaustion: Decreased regenerative capacity of stem cells with
aging is one of the leading factors that hampers tissue renewal (Sharpless &
DePinho, 2007). The end result could be decline in physiological integrity.
One recent study showed that rejuvenation of stem cells may improve the
aging phenotype at the organismal level (Rando & Chang, 2012).

9. Altered Intercellular Communication: Changes in intercellular commu-
nication can be observed at different systems including endocrine and neur-
oendocrine systems. One important age-related change in intercellular com-
munication is low level of chronic inflammation, also called “inflamma-
ging”. Several factors, such as defects in autophagy, can cause inflamma-
ging (Salminen, Kaarniranta & Kauppinen, 2012). Furthermore, age-related
deterioration in one organ can affect other organs, and harmful signaling in
inter-organ communication can also contribute to the aging phenotype.

1.2 Theories of Aging

More than 300 theories have been postulated to date to explain aging (Medvedev,
1990). Besides evolutionary theories of aging, there are an incredibly high num-
ber of mechanistic ones. This is probably because of the complexity of the aging
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phenotype, which leads to many ideas that each describe different hallmarks as the
primary causes of aging. Although most ideas lack direct experimental support,
they are called as “theory” instead of “hypothesis” (Kirkwood, 2005). I will also
use the term “theory” throughout my thesis to be consistent with the aging literat-
ure.

1.2.1 Mechanistic Theories

Mechanistic theories try to explain the proximal molecular or physiological mech-
anisms driving aging. Most are based on the idea that aging occurs due to harmful
byproducts of the cells. One of the prominent mechanistic theories of aging is
the “free radical theory”, which was proposed in the middle of the 20th century
(Harman, 1955). According to this theory, reactive oxygen species cause damage
in cellular molecules, and such damaged molecules accumulate throughout the or-
ganisms’ lifespan. This is especially deleterious for postmitotic cells, which have
low protein turnover rate (Kirkwood, 2005).

One of the other mechanistic theories of aging is the “telomere theory,” which
suggests that telomere shortening triggers persistent activation of the p53 pathway,
which in turn halts cellular proliferation and induces cell death. This is detrimental
for maintenance of cells with high proliferative capacity, such as blood cells (Kelly,
2011; Lee et al., 1998).

There are many other mechanistic theories that answer the question of “how aging
occurs?”. However, no single mechanistic theory can explain all the changes that
contribute to aging phenotype.

1.2.2 Evolutionary Theories

Natural selection shapes organisms’ genomes to increase the probability of repro-
duction and survival, which are the two main components of Darwinian fitness
(Demetrius & Ziehe, 2007). It might be expected that aging –one of the causes of
impairment in fitness related traits- is strongly selected against by natural selection.
However, aging is a common phenomenon across many multicellular organisms,
despite some exceptions (Jones et al., 2014), and this leads to the question of “why
aging occurs despite its disadvantages?” (Kirkwood, 2005).
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Adaptive and non-adaptive theories answer the question of "why aging happens"
taking into account different aspects of the evolutionary process. Adaptive or pro-
grammed aging theories suggest that aging is a genetically controlled mechanism
as in development and morphogenesis (Austad, 2004). In contrast to the adaptive
theories, non-adaptive ones propose that aging is caused by the indirect effects of
stochastic evolutionary processes.

Non-adaptive Theories

The declining force of natural selection is the key concept for an evolutionary basis
of non-adaptive theories of aging, including three main theories: Mutation accu-
mulation (MA) and antagonistic pleiotropy (AP), which are classified as evolution-
ary genetic theories, and disposable soma, which involves physiology (Kirkwood,
2005).

Mutation Accumulation Theory

The mutation accumulation (MA) theory, first developed by J.B.S. Haldane (Rose,
1991) and Peter Medawar (Medawar, 1952), is among the keystones of such theor-
ies, attempting to explain aging in evolutionary context.

The idea is as follows: First, due to extrinsic mortality such as cold, diseases,
and, predators, after a certain period, only a small fraction of a population could
survive under a specific environment. Because in a small population the effect of
natural selection is weak compared to genetic drift, individuals at advanced age are
also under weak negative selection (Figure 1.2). Second, due to declining force
of natural selection, deleterious mutations that express their harmful effects at later
ages cannot be efficiently eliminated. For example, if certain deleterious mutation
expresses its harmful effect before reproduction, it has a chance to affect fitness-
related traits, such as reproduction or survival ability, and thus will be eliminated
by natural selection before passing into next generation. However, if there exist
germ-line mutations that exhibit harmful effects only at old age, negative selection
against these will be inefficient. In other words, those mutations will already have
passed into the next generation by the time their harmful effects become apparent.
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Such old-age-expressed harmful mutations can then fix in a population, and con-
tribute to senescent phenotypes (Kirkwood & Austad, 2000).

Figure 1.2: Intensity of natural selection on survival (Flatt & Schmidt, 2009).

Evolutionary genetic theories of aging, MA and AP, are based on the idea that aging
is a genetically inherited and variable trait which results from germ-line mutations
(i.e. alleles) that exhibit neutral and positive effects in early period of lifespan, re-
spectively, but have deleterious effects at later ages.

Some predictions of MA are as follows: Genetic variance in fitness-related traits,
such as reproductive success or survival, and inbreeding depression will increase
with age (Flatt & Schmidt, 2009). This is because, mutations which are initially
neutral and exhibit their deleterious effect after reproduction will not be effectively
eliminated by natural selection, and will be reflected in phenotypic variation. They
will be variable within the population because they become common due to genetic
drift.

Consistent with MA, increase in genetic variation in fitness with age was shown
in both laboratory populations of D. melanogaster (Hughes, Alipaz, Drnevich &
Reynolds, 2002), and wild populations of soay sheep (Ovis aries) and red deer
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(Cervus elaphus) (Wilson et al., 2007). A 2007 study, also found that rate of aging
is influenced by the genetic differences among individuals within a populations of
soay sheep and red deer. In addition, genetic variation changes during aging was
studied in natural population of snails (Physa acuta). This study showed that inter-
breeding between wild populations increase the chance of survival with age (Esco-
bar, Jarne, Charmantier & David, 2008), which implies that deleterious recessive
alleles that contribute to aging have fixed in different populations by genetic drift.

Antagonistic Pleiotropy

If some alleles have positive effect on fitness early in life, they would be selected
even though they may express a deleterious effect at later ages (Figure 1.3). Due
to the declining force of negative selection, those with harmful effects will not
be eliminated efficiently by natural selection, and they may thus contribute the
aging phenotype. Williams, who first proposed the antagonistic pleiotropy theory,
acknowledged that it is hard to demonstrate pleiotropic genes that have an opposite
effect on fitness at different ages (Williams, 1957). Thus, he exemplified this theory
with a hypothetical mutation which has a positive effect on bone calcification early
in life, but causes arterial calcification at later ages (Kirkwood, 2005; Williams,
1957).

Figure 1.3: Pleiotropic genes that benefit organisms early in life will be favoured by
selection even if they have bad effects at later ages (pleiotropy theory) (Kirkwood
& Austad, 2000).
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Several studies later proposed different candidates for AP genes. It was suggested
that p53 fulfills the criteria of being a pletropic gene. p53 is a tumor suppressor
which prevents cancer formation by controlling several mechanisms such as apop-
tosis and cell cycle arrest. Enhanced cancer protection is beneficial early in life,
but may result in increase number of senescent cells, and so promotes tissue aging
at later ages (Campisi, 2005; Leroi et al., 2005).

On the other hand, AP is not compatible with the observation that life-extending
mutations do not cause impairment in growth or fertility. AP proposed that late
life benefit of extended lifespan would be paid by early life cost of fitness-related
traits, such as impairment in growth or fertility. However, worm daf-2 mutants,
and yeast RAS2 lived more than twice as long as normal wild-type, and they did
not have impaired reproduction or growth (Kenyon et al., 1993; Longo & Finch,
2003). One possible explanation is that impairment in fitness-related traits as in re-
production are hard to detect (Austad, 2004). Consistent with this explanation, for
instance, worm age-1 mutants live longer than controls, without having impairment
in fertility in the laboratory, but mutant animals could not tolerate changes in food
availability, a condition the species must frequently encounter in nature (Walker,
McColl, Jenkins, Harris & Lithgow, 2000).

Disposable Soma

The disposable soma theory was first proposed by August Weismann in the 19th

century and then developed by Thomas Kirkwood in the late 20th century. This
theory suggests that an organism has limited energy sources, and this energy is
allocated between somatic maintenance and reproduction. However, investment in
somatic maintenance is a costly process, and it is only necessary for keeping the or-
ganism in sound condition to find a chance to reproduce (Figure 1.4). Insufficient
investment in somatic maintenance, such as in DNA repair, leads to increase in cel-
lular damage, and causes aging (Kirkwood, 2005). For instance, in nature, most of
the mice die from cold in their first year. Thus, energy investment in thermogenesis
or reproduction would be more advantageous than in repair mechanisms (Berry &
Bronson, 1992).
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Figure 1.4: Selection pressure to invest metabolic resources in somatic maintenance
and repair is limited; all that is required is to keep the organism in sound condition
for as long as it might survive in the wild. This is the basis of disposable-soma
theory (Kirkwood & Austad, 2000).

Efficiency of genes that regulate repair mechanisms can determine the rate of aging.
If there is high investment in those genes, damage accumulates slowly, and may
lead to longer lifespan. For example, long-lived rodent species Peromyscus leu-

copus expresses a high amount of antioxidant enzymes. Thus, this species produces
low level of reactive oxygen species, and this leads to less oxidatively damaged pro-
teins, than its short-lived relatives such as Mus musculus (Sohal, Ku & Agarwal,
1993).

Consistent with the disposable soma theory, increased longevity results in reduced
fecundity in some model organisms (Longo, 2003). Furthermore, removal of the
germ-line in C. elegans causes prolonged longevity (Arantes-Oliveira, Apfeld, Dil-
lin & Kenyon, 2002; Hsin & Kenyon, 1999). This means there is a trade-off
between extended lifespan and reproduction.

Reassessment of the disposable soma with advanced molecular techniques also
provided more insight into one of its assumptions. For example, Weismann sug-
gested that in organisms having a distinction between germ-line and somatic cells,
the main role of the soma is to support and secure the germ-line. In line with
this idea, Kirkwood proposed that immortal germ-line may require more energy
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than soma. However, one of the recent study showed that the relationship between
soma and germ-line is not unidirectional (Douglas & Dillin, 2014; Ermolaeva et
al., 2013). In this study, when genotoxic stress was applied to germ-line cells in C.

elegans, germ-line sent signals to the soma. Once the soma received the signal, it
increased the protein turnover rate, and became more resistant to stress.

Adaptive Theories

In addition to non-adaptive theories, a number of ideas have been proposed sug-
gesting that aging has evolved as an adaptation. August Weismann himself pro-
posed the basic programmed theory at the beginning of the 19th century (Weis-
mann, 1889), and it was later revised by others (Longo et al., 2005; Skulachev,
1997). According to this theory, aging is a genetically programmed death mechan-
ism that benefits the species for several reasons. First, it limits the population size
by eliminating old individuals. Second, reproductively exhausted individuals sacri-
fice themselves to secure the turnover of next generations. Finally, aging is directly
regulated/controlled by genes which are favored by natural selection. However, ar-
guments for the programmed theory include misconceptions about evolution, as I
will discuss below:

1. “Aging limits the population size” : The adaptive or programmed theory
of aging supports the idea that aging serves as a death mechanism which
limits population size by eliminating old individuals. However, in the wild,
a relatively low number of individuals can reach “old age” due to extrinsic
mortality, such as cold, predation and diseases that affect every individual
irrespective of age (Medawar, 1952). Physiologically deteriorated old indi-
viduals are hence rarely seen in nature. Thus, these evidences may indicate
that aging (i.e. intrinsic mortality) in nature is not a fundamental force limit-
ing population size.

2. “Aging secures the turnover of generations : The idea here is that elimin-
ation of old individuals increases the turnover rate of generations, so species
can more easily adapt to the changing environment. Moreover, there would
be more resources, such as space and food for their younger kin. However,
today it is generally accepted that selection acts on the individual level rather
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than the group level (Kirkwood & Melov, 2011), except in some cases (see
below). Thus, old individuals sacrificing themselves for the benefit of the
group will decrease the probability of any “old-age sacrifice alleles” being
passed to the next generation, and such alleles will thus be eliminated.

But there can be exceptions. One theoretical study showed that the possibility
of evolution of programmed aging is determined by the range of the popula-
tion. If the population is spatially distributed, evolution can favor the aging
gene that eliminates even reproductively active individuals (Travis, 2004).
Thus, in some situations, selection at the group level can be (at least theoret-
ically) more important than the individual level.

The perhaps most striking example of programmed aging is the sudden death
of Pacific salmon. Pacific salmon is a semelparous species, i.e. it usually re-
produces only once in its life cycle. After reproduction, the cortisol level
increases in the circulating system, and this leads to organ failure degener-
ating multiple tissues (McQuillan, Lokman & Young, 2003). According to
the programmed theory, the death of the organism has a genetic basis as in
development, and may help the offspring. However, this is not necessarily
true. Semelparity has evolved in environments that give organisms relatively
small chance of reproducing again. Thus, all resources have been allocated
to optimize growth and one-time reproduction, and after reproduction, there
is no sufficient resource left to maintain homeostasis. This is because, in-
vestment in post-reproductive survival has no value (Kirkwood & Cremer,
1982). Thus, the reason for the sudden death of an organism can be seen
as the abrupt decline in force of natural selection after reproductive period.
The link between reproduction and rapid senescence can be seen in mul-
tiple examples. For instance, removal of the gonads increases the lifespan of
Pacific salmon (Robertson, 1961). Similar cases can be observed in semel-
parous plant species. Soybean plants (Glycine max) die after the riping of
their seeds. When the seeds are removed, extension of the lifespan is ob-
served (Leopold, Niedergang-Kamien & Janick, 1959). Thus, these extreme
examples can be readily explained by the disposable soma theory (Kirkwood,
2005).
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3. “Aging is directly regulated/controlled by genes” : Manipulations in ge-
netic pathways and genes extend lifespan in diverse organisms from yeast to
mice (Kenyon, 2010). High similarities between those pathways that regu-
late/extend lifespan among species is one of the main arguments for existence
of programmed aging (Longo et al., 2005). In addition, several single-gene
mutations have been identified resulting in significant increase in C.elegans

lifespan. If certain mutations in certain genes greatly extend the species’
lifespan, those genes may be programming aging. However, interpreting
these results as evidence for programmed aging may erroneous. First, if only
certain genes directly drive the aging process, it would be expected to be
able to slow the aging rate or postpone entire aging easily. Thus, complexity
of aging phenotype may be explained better by the contribution of multiple
genes.

In addition, single gene manipulations have been conducted in laboratory
animals, and there is little known about the survival ability of those animals
under severe circumstances (Austad, 2004). For example age-1 is a gene in
C. elegans that can cause life extension when mutated, but without causing
impairment in fertility, a frequently seen side effect of life-extending inter-
ventions. However, it was found that mutant animals could not tolerate chan-
ging in food availability as in nature (Walker et al., 2000). So, it is important
to carefully examine the possible side-effects of life-extending interventions,
before reaching general conclusions and/or applying these to humans.

Overall, arguments supporting programmed aging, including exceptional situations,
appear insufficient to explain existence of such programs. Therefore, most biolo-
gists today consider aging as caused by non-adaptive evolutionary processes.

1.3 Research Objectives

As discussed earlier, the role of the MA process in aging was previously tested by
studying changes in phenotypic (fitness) variation with age and testing for one pre-
diction of MA: higher variance during aging. But the theory awaits testing by new
approaches. One such approach could be using transcriptome data. Transcriptome
studies of aging have usually focused on identifying functional groups affected by
senescence and/or underlying senescence, but such data is not traditionally em-
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ployed for testing evolutionary theories.

In previous work, a group of researchers had used pre-frontal cortex transcriptome
age-series from humans and tested whether protein sequence conservation varies
among genes highly expressed at different ages (Somel et al., 2010). This analysis
showed that highly expressed genes in young adults are more highly conserved
than those in old individuals. This is consistent with MA theory, which postulates
that genes that are relevant for old age should be under less purifying selection,
and therefore appear evolutionarily less conserved. However, this work involved
limited sample sizes, and only one brain region, and one species.

Here I study the prevalence of MA effects on the aging transcriptome, by con-
ducting a meta-analysis of mammalian aging datasets, including 8 different tissue
types and 4 mammalian species (n = 35 total datasets, n = 768 total individuals). I
test the hypothesis that MA will be reflected in age-related decrease in conservation
of the transcriptome with age (ADICT), in other words, I expect to observe lower
evolutionary conservation in protein coding sequence among genes expressed at
higher levels in old adults, relative to young adults. This would happen due to
slightly harmful mutations fixing in genes more relevant for old adults than for
young adults.
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CHAPTER 2

MATERIAL AND METHODS

2.1 Datasets Information

To assess the relationship between gene sequence conservation and gene expression
changes during aging, I collected 35 published age-series microarray datasets from
different brain regions (from humans, macaques, rats, and mice), muscle (from
humans, rats, and mice), aorta (from macaques and rats), skin (from humans and
mice), and kidney, liver, lung, and spleen from mice.

Across all analyzed datasets, human ages range from 16 to 106 years, macaques
ages range from 4 to 28 years, rats ages range from 3 to 30 months, and mice ages
range from 8 to 130 weeks.

I limited the study to studies with sample sizes above 10 to ensure sufficient power.
I also used only microarray experiment data, as these are most abundant in public
repositories and can be readily processed and compared.

The analyzed datasets includes 13 different Affymetrix platforms. Information
about the all analyzed datasets is presented in Table 2.1.
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Table 2.1: Information about the all analyzed datasets.

Species & Tissue Age Range # of Samples Platform
Hs_Brain_BA22 25 - 94 yrs 19 HG-U133_Plus_2

Hs_Brain_EC 20 - 97 yrs 35 HG-U133_Plus_2
Hs_Brain_PCG 20 - 99 yrs 39 HG-U133_Plus_2
Hs_Brain_HC 20 - 99 yrs 41 HG-U133_Plus_2
Hs_Brain_SG 20 - 99 yrs 44 HG-U133_Plus_2
Hs_Brain_FC 26 - 106 yrs 29 HG_U95Av2

Hs_Brain_BA10 25 - 94 yrs 23 HG-U133_Plus_2
Hs_Brain_PFC 17 - 98 yrs 12 HuGene-1_0-st
Rm_Brain_PFC 4 - 28 yrs 11 HuGene-1_0-st
Hs_Brain_CB 23 - 98 yrs 11 HuGene-1_0-st
Rm_Brain_CB 4 - 28 yrs 9 HuGene-1_0-st
Rn_Brain_HC 7 - 22 mo 14 Rat230_2

Rn_Muscle_EOMs 6 - 30 mo 12 RG_U34A
Rn_Muscle_EDL 6 - 30 mo 11 RG_U34A

Rn_Aorta_T 3 - 28 mo 16 RG_U34A
Rm_Aorta 6.6 - 21.2 yrs 24 HG-U133A_2

Hs_Muscle_BB 19 - 76 yrs 19 HG-U133_Plus_2
Hs_Muscle_VL1 21 - 75 yrs 15 HG-U133A&B
Hs_Muscle_VL2 20 - 71 yrs 15 HG-U133A&B
Hs_Muscle_Other 16 - 89 yrs 15 HG-U133_Plus_2
Hs_Muscle_RA 16 - 89 yrs 62 HG-U133_Plus_2

Hs_Skin 19 - 86 yrs 98 HuEx-1_0-st
Mm_Muscle_PC 2 - 24 mo 14 Mouse430_2
Mm_Brain_HC 2 - 15 mo 22 MG_U74Av2
Mm_Lung_1 2 - 26 mo 9 Mouse430_2

Mm_Brain_NC 5 - 30 mo 10 Mouse430_2
Mm_Liver_1 8 - 130 wks 13 Mouse430_2

Mm_Skin 5 - 30 mo 20 Mouse430_2
Mm_Muscle_Gastro 5 - 25 mo 10 MOE430A

Mm_Brain_WB 13 - 130 wks 14 Mouse430_2
Mm_Kidney 13 - 130 wks 18 Mouse430_2
Mm_Liver_2 13 - 130 wks 15 Mouse430_2
Mm_Lung_2 13 - 130 wks 18 Mouse430_2
Mm_Spleen 13 - 130 wks 16 Mouse430_2
Mm_Liver_3 6 - 24 mo 15 Mouse430_2
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2.2 Normalization

Affymetrix .CEL files from 27 datasets were downloaded from NCBI GEO (www
.ncbi.nlm.nih.gov/geo/) (Edgar, Domrachev & Lash, 2002) and EBI Array Express
(www.ebi.ac.uk/arrayexpress/) (Kolesnikov et al., 2014). These raw datasets were
processed using the Bioconductor “affy” package “expresso” function. The selec-
ted options for the “expresso” function were: “rma” for background correction,
"quantiles" for normalization, and “medianpolish” for summarization.

Some studies did not provide the raw data so preprocessed values were used. Pre-
processed series matrix files (for n = 8 datasets) were downloaded from NCBI GEO
and transformed using log2 transformation on the gene expression levels. One of
the preprocessed dataset (GSE18876) is normally distributed, so I did not apply
any normalization procedure. Normalization methods for the analyzed datasets is
presented in Table 2.2.

2.3 Probeset Conversion

Affymetrix probe set IDs were converted to Ensembl gene IDs using the Biocon-
ductor "biomaRt" package (Durinck et al., 2005) “useMart” function to select the
dataset for the species of interest, and the “getBM” function to retrieve the Ensembl
gene IDs corresponding to Affymetrix probe set IDs. I then followed 2 steps: (a)
if one probe set corresponds to more than one Ensembl gene, I remove them; (b)
if more than one probe set corresponds to one Ensembl gene, I take the probe set
which has a maximum expression value across samples. This is because, that probe
set may contain more exons than others, and in that case I consider that probe set
the best representative of the gene.

2.4 Outlier Individuals

I next determined whether the datasets include outlier individuals (Table 2.2) using
principal component analysis (PCA) in each dataset. Principal component analysis
(PCA) was conducted using "prcomp" function “scale=T” parameter which is im-
plemented in the “stats” package in R. If samples in the datasets are clustered to-
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gether, and there is a distance between a particular sample and the rest, that sample
was determined as an outlier. When an outlier was detected, I repeated the prepro-
cessing procedure described above after discarding the outlier sample.

Table 2.2: Normalization methods and outlier information about the analyzed data-
sets. Method 1, including RMA, log2 transformation and quantile normalization,
was applied to the raw datasets; Method 2, including only log2 transformation, was
applied to the preprocessed datasets.

GEO/Array Acc Norm. Methods Outliers
GSE21935 Method 1 -
GSE11882 (EC) Method 1 GSM300192, GSM300196,

GSM300228, GSM300300
GSE11882 (PCG) Method 1 GSM300198, GSM300212,

GSM300287, GSM300326
GSE11882 (HC) Method 1 GSM300255, GSM300301
GSE11882 (SG) Method 1 GSM300213, GSM300250,

GSM300288, GSM318840
GSE1572 Method 1 X48F.CEL
GSE17612 Method 1 -
GSE22521 (Hs) Method 1 -
GSE22521 (Rm) Method 1 -
GSE22569 (Hs) Method 1 -
GSE22569 (Rm) Method 1 GSM560170
GSE20219 Method 1 GSM506979
GSE3309 (EOMs) Method 2 -
GSE3309 (EDL) Method 2 GSM74440
GSE7281 Method 1 -
GSE6599 Method 1 -
GSE38718 Method 1 GSM948631, GSM948637,

GSM948640
GSE362 Method 2 -
GSE674 Method 2 -
GSE5086 (Other) Method 2 GSM114704, GSM114706,

GSM114719, GSM114720
GSE5086 (RA) Method 2 -
GSE18876 No prepro. -
GSE50821 Method 1 -
GSE5078 Method 2 GSM114424
GSE6591 Method 1 -
GSE8150 Method 1 -
E-MEXP-839 Method 1 X33.CEL
GSE35322 Method 1 -
GSE6323 Method 1 -
GSE34378 (Brain) Method 1 GSM847851, GSM847853,

GSM847857, GSM847865
GSE34378 (Kidney) Method 1 -
GSE34378 (Liver) Method 1 GSM847798, GSM847810,

GSM847812
GSE34378 (Lung) Method 1 -
GSE34378 (Spleen) Method 1 GSM847828, GSM847830
GSE21716 Method 1 GSM541754
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2.5 Age test

Genes showing age-related changes in expression levels was identified using the
Spearman correlation test, and p-values were corrected for multiple testing using
the “p.adjust” function with the “Benjamini-Hochberg (BH)” method in R, yield-
ing q-values, a measure of false discovery rate. I used a q-value cutoff q < 0.10,
which is a commonly used threshold (Hartmann et al., 2009). To avoid statistical
power reduction due to type II error in datasets with low number of age-related
genes (n< 50), those datasets were discarded from the analyses. The number of the
age-related and all detected genes is presented in Table 2.3.

To overcome the problems related to conducting meta-analysis -each dataset dis-
playing unique and possibly non-normal distributions, outliers having large effects
on analyses, etc.- nonparametric Spearman correlation test was preferred. Vari-
ables, i.e. gene expression level and age, are converted to ranks in the Spearman
correlation test, so that the test is not affected by outliers or the exact shape of the
data distribution, unlike parametric tests.

2.6 Direction of the age-related changes in expression level

To find direction of gene-expression changes with age, I first chose genes showing
age-related changes (method= “BH”, q − value < 0.10). I then separated these
genes into 2 categories using Spearman correlation coefficient (rho): (a) genes
showing age-related increase: q < 10 and rho > 0.1; (b) genes showing age-
related decrease: q < 0.10 and rho < −0.1. Categorizing genes depending only
on the q-value would be affected by the sample size (power) of each dataset, so
using the correlation coefficient (rho) as cutoff I aimed to avoid such possible bias.
Genes having q − value > 0.10 were selected as having no change in expression
level with age. Genes with q < 0.10 and |rho| < 0.1 were discarded from the
analysis.
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Table 2.3: The number of age-related and all detected genes calculated for the 35
datasets.

Species & Tissue # of age-related genes # of all genes
Hs_Brain_BA22 28 21323

Hs_Brain_EC 488 21323

Hs_Brain_PCG 5026 21323

Hs_Brain_HC 2144 21323

Hs_Brain_SG 7799 21323

Hs_Brain_FC 720 8258

Hs_Brain_BA10 2354 21323

Hs_Brain_PFC 213 1200

Rm_Brain_PFC 4 12002

Hs_Brain_CB 4 12467

Rm_Brain_CB 0 12467

Rn_Brain_HC 216 11555

Rn_Muscle_EOMs 1 3906

Rn_Muscle_EDL 0 3906

Rn_Aorta_T 347 3905

Rm_Aorta 24 12187

Hs_Muscle_BB 3879 21323

Hs_Muscle_VL1 5 18517

Hs_Muscle_VL2 1 18517

Hs_Muscle_Other 37 21323

Hs_Muscle_RA 6 21323

Hs_Skin 91 14356

Mm_Muscle_PC 616 1829

Mm_Brain_HC 48 7775

Mm_Lung_1 318 18299

Mm_Brain_NC 7152 18299

Mm_Liver_1 449 18369

Mm_Skin 2201 18299

Mm_Muscle_Gastro 1046 12330

Mm_Brain_WB 244 18299

Mm_Kidney 657 18299

Mm_Liver_2 956 18299

Mm_Lung_2 403 18299

Mm_Spleen 383 18299

Mm_Liver_3 850 18299
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2.7 Conservation ratio

I used different types of metrics to determine the negative selection pressure on
the protein coding sequence. First, I calculated conservation in protein coding re-
gions between pairs of species with different evolutionary distance between them,
using dN (nonsynonymous substitution) and dS (synonymous substitution) stat-
istics downloaded from Ensembl Biomart (v.83). Here I used “one-to-one ortho-
logs” between human-mouse, human-elephant, and human-cow, in order to identify
whether evolutionary distance between species affect the conservation in protein
coding sequence. Note that dN/dS ratios can measure both the strength of negative
and of positive selection.

To exclude the genes possibly under positive selection, I repeated the analysis only
using genes with dN/dS < 1. In addition to this, GO categories and subcategories
related to immune system genes (“GO:0008150”) were selected using the R “get”
function. I then repeated the analysis after discarding these genes.

Second, I used ω0, which is the protein sequence conservation statistic calculated
for each Ensembl gene, and downloaded from the Selectome database (Moretti
et al., 2014). The statistic is based on coding sequence alignments across mam-
malian species and is estimated for the Homininae branch for human and Murinae
branch for mouse, using the branch-site model (Nielsen et al., 2005). The branch-
site model is one of the methods to estimate different dN/dS among branches and
among sites. A branch of interest is called the "foreground branch". Other branches
in the phylogenetic tree are called “background” branches, which have the same
distribution of dN/dS value among sites. On the other hand, different values can
apply to the foreground branches. The branch-site model thus estimates selective
pressure -positive or negative selection- on a protein coding gene sequence, and I
used here dN/dS ratio calculated for the sites determined to be under negative se-
lection. Thus, ω0 is expected to be a measure of the strength of negative selection
on a gene.

This measure of ω0 can vary among genes due to multiple factors that are not the fo-
cus of this study. To disentangle the effects of such factors from ω0, I used inform-
ation on GC content, CDS length, intron length, intron number, mean expression,
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median expression, maximum expression, tissue specificity, network connectivity,
phyletic age, number of paralogs, which were directly obtained from the Supple-
mental Material of Kryuchkova-Mostacci & Robinson-Rechavi, 2015. To remove
the effect of these variables from ω0, I used residuals from a multiple regression
model where ω0 is the response variable. Here I used the “lm” and “residuals”
functions and in the R “stats” package. I call the resulting protein conservation
statistic, which are the residual from this model, as ω0*.

The ω0* statistic was calculated separately for human and for mouse ω0 values.
I used the human ω0* data in analyses involving primate transcriptome datasets,
and the mouse ω0* data in analyses involving rodent transcriptome datasets.

2.8 Bootstrapping

Bootstrapping is a nonparametric method to calculate confidence interval and stand-
ard errors. Bootstrapping was performed with the “sample” function with “replace-
ment=TRUE” option in R. I used separately bootstrapping to calculate 95% con-
fidence intervals for the mean ω0* among genes showing (a) age-related increase
in expression level, (b) age-related decrease in expression level, and (c) no age-
related change in expression level. For each case I resampled genes for 1000 times,
and calculated the mean. To visually compare the ω0* among datasets, I then sub-
tracted the median for genes showing no age-related change, from genes showing
age-related increase or age-related decrease. The upper and lower 2.5% quantiles
were plotted in Figure 3.3.

2.9 Consistency among datasets

To determine consistency in gene expression level distributions, I first chose com-
mon genes (n = 1119) detected among all 35 datasets. The aim of the consistency
analyses is to check whether the same type of biological samples (tissues and spe-
cies) exhibit similar expression patterns and cluster together. If not, this can indic-
ate artifacts in the experimental data.

For this, all rodent genes were mapped to human genes using “one-to-one ortho-
logs” as defined by Ensembl (v.83). I then merged datasets and calculated the
youngest 5 individuals’ mean gene expression level. After reprocessing the merge
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file using “quantile” normalization, I plotted the PCA using "prcomp" function
“scale=T” parameter (Figure 2.1).

Figure 2.1: Mean gene expression level of the youngest 5 individual from each of
the datasets.

2.10 Gene Ontology Analysis

I developed a statistic, z, which can capture the relative expression level and relat-
ive conservation of a gene simultaneously:

z = x2 – y2,

where x stands for the rank of a gene’s expression level across all detected genes
in a dataset, and y stands for the rank of ω0*. When z is high, this indicates genes
having relatively high expression and low conservation, and when z is low this in-
dicates genes having relatively low expression and high conservation. After sorting
z values, the first 10% of genes were selected as increasing expression and low
conservation (IELC) and last 10% were selected as decreasing expression and high
conservation (DEHC).

To find functional groups driving the ADICT pattern in tissues, I conducted Gene
Ontology (GO) analyses for 3 GO domains - Biological Process (BP), Cellular
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Component (CC), and Molecular Function (MF) - performing Fisher’s exact test us-
ing the “fisher.test” function in the R “stats” package (GO data provided by Handan
Melike Dönertaş). The GO groups having higher than 1.5 odds ratio were selec-
ted as the enriched groups. Here, 1.5 is a random threshold, and the significance
of the enrichment (how many GO groups have odds ratio > 1.5) was calculated
using permutations. Specifically, I randomized ages of individuals in each dataset
by conducting 1000 permutations, calculated expression correlations with age, and
repeated the GO analysis using these correlation values.
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CHAPTER 3

RESULTS

3.1 Age-related decrease in conservation of the transcriptome (ADICT)

To test the ADICT hypothesis, I first studied the correlation between protein se-
quence conservation and gene expression levels for each individual in the ana-
lysis. In each dataset, I used two non-exclusive gene sets: (a) genes showing
significant age-related change in expression levels (at Spearman correlation test
q − value < 0.10), and (b) all expressed genes. I conducted analyses using all
expressed genes in order to avoid statistical power reduction due to type II error in
datasets with low sample sizes, and further to determine the overall trend across the
transcriptome (Table 2.3). Note that in 12 of 35 datasets, I could not identify a set
of significant age-related gene set at q < 0.10 (see Section 2.5).

To measure conservation, I used protein sequence conservation data (ω0) from
the Selectome database (Moretti et al., 2014), based on coding sequence align-
ments across mammalian species and estimated for the human branch or the mouse
branch using the branch-site model (Zhang, Nielsen & Yang, 2005) (see Section
2.7). This is the dN/dS ratio calculated for the sites determined to be under puri-
fying selection, and thus is expected to be a direct measure of the strength of puri-
fying selection on a gene. I further calculated a corrected protein conservation
statistic (ω0*) for each gene, disentangling conservation measurements from the
effects GC content, CDS length, intron length, intron number, mean expression,
median expression, maximum expression, tissue specificity, network connectivity,
phyletic age, and number of paralogs, using a multiple regression model following
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(Kryuchkova-Mostacci & Robinson-Rechavi, 2015).

I then calculated the Spearman correlation coefficient between gene expression
level and ω0* per individual in each dataset (Figure 3.1a & Figure 3.1b). A pos-
itive correlation indicates that genes more highly expressed in an individual’s tran-
scriptome tend to be more conserved in their protein sequence. Although a positive
correlation between expression and sequence conservation is generally expected
(Pál, Papp & Lercher, 2006), the level may vary among individual transcriptomes.
Hence I asked whether the expression - ω0* correlation is dependent on individual
age, again using the Spearman correlation test. Figure 3.1c provides an example
of such a correlation in one brain aging dataset (Lu et al., 2004), and Figure 3.2
shows the results across all datasets.

(a) (c)(b)

Figure 3.1: Relationship between gene expression level and protein conservation.
Examples of gene expression level – protein conservation statistic (ω0*) correla-
tions (a) for a 29 year-old human, and (b) for a 106-year old human, in the cerebral
frontal cortex (Lu et al., 2004). The analysis includes only age-related genes detec-
ted in this dataset (q < 0.10). Each point represents a gene (n = 345). The x-axis
shows the conservation statistic, ω0*. The y-axis shows gene expression level. The
expression-conservation (ω0*) Spearman correlation coefficients are indicated in
the inset. (c) Age-dependent change in expression-conservation (ω0*) correlation
in the human frontal cortex, based on age-related genes in the same dataset as pan-
els (a) and (b). The y-axis shows expression-conservation Spearman correlation
coefficient calculated for each individual in this dataset (n = 29). The x-axis shows
the age of an individual. The Spearman correlation coefficient between age and
expression-conservation correlation is indicated in the inset.

In the brain, I found negative correlation between ω0* and age among all significant
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results (Spearman correlation test, p < 0.05) involving age-related genes. Specific-
ally, among the 10 brain datasets where I had identified a significant age-related
gene set, 9 showed significant expression-conservation correlation with age, and
all were negative. Repeating this analysis with all expressed genes, 11 out of 15
datasets showed significant correlation, and all were again negative, indicating a
general trend of ADICT in the brain.

In contrast to the brain, across the multiple datasets of various muscle types (n
= 11), I found no common ADICT pattern. In mouse gastrocnemius muscle and
rat thoracic aorta I even observed the opposite of what I had hypothesized: a sig-
nificant age-related increase in transcriptome conservation. I also note that in 8/11
muscle datasets, I did not detect significant age-related expression change (i.e. n <

50 at q < 0.10; Appendix B).

Finally, in different datasets for mouse liver (n = 3) and lung (n = 2) I found the
same significant ADICT trend, as in brain, whereas skin datasets (n = 2) showed
no significant trend. Thus, in brain and possibly in some other tissues, such as liver
and lung, I find a consistent ADICT trend, whereas in other tissues, such as muscle,
ADICT may not exist.
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To determine the robustness of ADICT with respect to the protein-coding sequence
conservation metric chosen, I repeated the analysis using ω0 values without mul-
tiple regression, as well as ω (dN/dS) values obtained from Ensembl for 3 species
pairs (see Section 2.7). I further tested whether the trend holds when I exclude
(a) putatively positively selected genes (with ω > 1 in my data), (b) immune sys-
tem genes known to be generally fast evolving (Nielsen et al., 2005), and (c) genes
showing age-related expression down-regulation in a dataset (expression-age rho
< -0.1). ADICT was consistently detected across datasets the same brain, liver and
lung datasets, irrespective of the metric used and the gene sets involved (Appendix
A-H).

3.2 Distinct processes contribute to ADICT

I next studied two non-exclusive scenarios that could lead to ADICT: (a) genes
showing age-related increase in expression levels could have low ω0*, consistent
with MA, (b) genes showing age-related decrease in expression levels could have
high ω0*, relative to genes showing no change in expression. The latter could
be expected if a set of highly conserved genes (e.g. synaptic genes) show down-
regulation during postnatal lifespan, as reported earlier (Somel et al., 2010).

To test which of these scenarios underlie ADICT, I compared the mean ω0* among
(a) genes showing increase in expression with age, (b) genes showing decrease
in expression with age, with (c) genes showing no change in expression level, as
control. This analysis was repeated across the 14 datasets where I had detected sig-
nificant ADICT using age-related genes. I found results consistent with both scen-
arios (Figure 3.3): genes showing increase in expression with age had on average
lower conservation in nearly all cases (n = 13/14, 8 of these with significant with
bootstrap support >95%). The only exception was one mouse neocortex dataset.
Meanwhile, genes showing decrease in expression with age also had on average
higher conservation in most cases (n = 12/14, 6 of these significant with bootstrap
support >95%) than genes with no change. The exceptions to higher conservation
in genes showing decreased expression with age were two mouse liver datasets.
Thus, I conclude that both processes could be contributing to ADICT.
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Figure 3.3: Comparison of ω0* among gene sets showing different age-related ex-
pression level change patterns. The plots show mean ω0* for genes showing age-
related increase (left) and age-related decrease (right) in expression level, compared
to mean ω0* among genes showing no significant age-related change in expression
level. The error bars indicate 95% confidence intervals calculated by 1,000 boot-
straps (FC: Frontal cortex; BA10: Anterior prefrontal cortex; HC: Hippocampus;
PCG: Postcentral gyrus; SG: Superior frontal gyrus; PFC: Prefrontal cortex; NC:
Neocortex; WB: Whole brain; Hs: Homo sapiens; Rn: Rattus norvegicus; Mm:
Mus musculus).

3.3 Functional analysis of ADICT

To find functional groups driving the ADICT pattern in brain, lung, and liver, I
conducted Gene Ontology (GO) analysis for the 3 GO domains. Given the earlier
result, I separately analyzed (a) genes showing increased expression with age and
with low conservation (IELC), and (b) genes showing decreased expression with
age and with high conservation (DEHC). I sought for common GO categories en-
riched in IELC genes and in DEHC genes (with odds ratio > 1.5) in all 14 datasets
that showed significant ADICT. I further sought for common GO categories across
different datasets for the same type of tissue (Table 3.1, Table 3.2, Table 3.3). The
significance of the results were assessed using random permutations of individual
ages (see Section 2.10).
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Table 3.1: Biological Process

IELC IELC DEHC DEHC
Tissue # GO groups p # GO groups p

All 2 < 0.001 3 n.s.

Brain 11 n.s. 11 n.s.

Liver 238 0.028 79 n.s.

Lung 117 n.s. 213 n.s.

Table 3.2: Cellular Component

IELC IELC DEHC DEHC
Tissue # GO groups p # GO groups p

All 1 < 0.001 - -

Brain 12 0.012 15 < 0.001

Liver 18 n.s. 11 n.s.

Lung 12 n.s. 8 n.s.

Table 3.3: Molecular Function

IELC IELC DEHC DEHC
Tissue # GO groups p # GO groups p

All - - 1 n.s.

Brain - - 11 0.016

Liver - - 21 n.s.

Lung - - 37 0.001

I found 2 GO Biological Process categories, “apoptotic signaling pathway” and
“extrinsic apoptotic signaling pathway”, enriched for IELC across all 14 datasets
(permutation test p < 0.001) (Appendix I).

In the 3 mouse liver datasets, 238 GO categories (p = 0.028) were enriched for
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IELC, mainly including immune system and metabolism-related genes (Appendix
J). Figure 3.4 contains a summary of these results as provided by REVIGO (Su-
pek, Bošnjak, Škunca & Šmuc, 2011). For other tissues, or for DEHC I did not
find a common significant enrichment for Biological Process categories based on
the permutation test.
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In Cellular Component, “external side of plasma membrane” was enriched for
IELC across all 14 datasets (p < 0.001) (Appendix K).

In different datasets for primate and rodent brains (n = 9), 12 GO categories (p =

0.012) were enriched for IELC, including “vesicle”, “external membrane”, and
related categories (Figure 3.5 and Appendix L). Meanwhile, among the 9 brain
datasets, 15 GO categories (p < 0.001) were enriched for DEHC including “syn-
apse”, “transporter complex”, and related functions (Figure 3.6 and Appendix M).
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Finally I repeated the analysis with GO Molecular Function. Among the 9 brain
datasets, 11 common categories were enriched for DEHC (p = 0.016), including
“ligand-gated ion channel activity” (see the REVIGO summary in Figure 3.7 and
Appendix N).
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In 2 different datasets for mouse lung, 37 common GO categories (p = 0.001)
were also enriched for DEHC, including ”ubiquitin-protein transferase activity”
and “transcription regulatory region DNA binding” (Figure 3.8 and Appendix O).
I did not find common GO categories among all 14 datasets for IELC in Molecular
Function.
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CHAPTER 4

DISCUSSION

The MA theory predicts that mutational load increases with age due to the declining
force of negative selection, in turn caused by extrinsic mortality (Medawar, 1952).
This could mean that genes expressed at higher levels at old age are less conserved
than those expressed at younger ages. Although proposed many decades ago, there
have been few tests of the theory. To test the prediction, I analyzed transcriptome
datasets of various tissues from primates and murids. In 3 tissues in which I could
clearly determine changes in gene expression level during aging, in the brain, liver,
and lung, I found consistent ADICT patterns. I could further attribute these pat-
terns, at least partially, to lower conservation of genes with increased expression
during aging, as predicted by MA. The ADICT propensity could not be explained
by up-regulation of fast-evolving immune-related genes, or of positively selected
genes. To my knowledge, this is the first molecular-based indication for the wide-
spread presence of MA in mammals.

ADICT was not universally detected among all 35 datasets I analyzed. Notably,
no consistent trend could be detected for kidney, skin, spleen, and muscle. Dis-
crepancy among datasets, even in the same type of the tissues, could be interpreted
as false negative results due to artifacts related to experimental design, platform
differences of the analyzed datasets and heterogeneity of aging process within spe-
cies, between species and even the different types of cells in the same tissue (Bahar
et al., 2006; Kenyon, 2005; Somel, Khaitovich, Bahn, Pääbo & Lachmann, 2006).
For this reason, conducting meta-analyses is of high importance especially in aging
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research, and I could find consistent trends in multiple tissues, and especially the
brain.

Intriguingly, however, while nearly all brain datasets showed ADICT, in muscle,
I observed no consistent trend across the 11 datasets. Why do brain and muscle be-
have so differently in age-dependent change in transcriptome conservation? Brain
aging has previously been reported to differ from aging in other tissues in a mouse
experiment (Zahn et al., 2007); similarly, I find that brain datasets showed the most
divergent age-related expression trends relative to those in other tissues (Figure
2.1). This could be related to the RNA composition the of brain being mostly
dominated by neurons, which are mainly post-mitotic, and thus subject to different
aging dynamics than other tissues with high cell turnover rates (Kirkwood, 2005;
Yu & He, 2016). However, muscle cells are also post-mitotic and the tissue has low
turnover rates as in brain (Richardson, Allan & Le, 2014). In addition, liver and
lung also display a significant ADICT trend, and these are tissues which undergo
high cell turnover (Tomasetti & Vogelstein, 2015). Also, brain and skin arise from
exoderm, lung and liver from the endoderm, and muscle and kidney from meso-
derm (Pansky, 1982); this grouping clearly does not correspond to ADICT patterns
shown in Figure 3.2. Thus, the difference among tissues in ADICT propensity does
not appear to be related to their general age-related transcriptome change trends, to
their mitotic versus post-mitotic properties, or to their ontogenic origins.

Another possible explanation for the discrepancy among tissues is that a fraction
of age-dependent changes in gene expression level reflect responses to stochastic
environmental factors, rather than internal processes linked to age-related dysfunc-
tion, and this fraction differs among tissues. Thus, I may not expect to find an
MA signature in tissues where the transcriptome is highly influenced by the envir-
onment, and muscle may be such a tissue. Indeed, in 8 / 11 muscle datasets, no
age-related genes could be found at the cutoff q < 0.10, implying that convergent
expression changes across individuals in muscle are limited. Also interestingly,
recent studies have shown that muscle transcriptome profiles of older individual
could return to younger levels by exercise (Melov, Tarnopolsky, Beckman, Felkey
& Hubbard, 2007). I thus propose that ADICT propensity, and the putative MA
effect in mammalian aging, may not be visible when the transcriptome is strongly
affected by external noise. Notably tissues such as skin and liver are also affected
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by external factors, but perhaps these may not show rejuvenation potential like
muscle.

Does the ADICT signature I detect contribute to physiological decline in organis-
mal senescence? The trend I observe likely involves the age-related expression
of nearly-neutral (Ohta, 2002), i.e. very slightly harmful mutations, rather than
strongly penetrant mutations; it also involves hundreds to thousands of genes,
rather than a few genes driving senescence. Directly associating ADICT with
physiological senescence will therefore remain a challenge. Still, the functional
enrichment analysis provides a number of clues. Among genes with age-dependent
increased expression and low conservation, the main culprits of senescence under
MA, I find enrichment in two categories related to apoptosis and cell signaling
among all 14 datasets with significant ADICT signal (“apoptotic signaling path-
way” and “external side of plasma membrane”. Both categories are related to the
hallmarks of aging (López-Otín, 2013). In particular, apoptosis is crucial for elim-
inating senescent cells during healthy aging, and disruptions in apoptosis could
lead to accumulating dysfunctional cells over time (Childs, Durik, Baker & van
Deursen, 2015). Conversely, apoptosis is also thought to have role in the Alzeimer’s
disease etiology by causing loss of neurons (Currais, Hortobágyi & Soriano, 2009).
Overall, relatively weak purifying selection on apoptosis-related genes may con-
tribute to suboptimal regulation of the apoptosis process during aging, in mitotic as
well as non-mitotic tissues, and contribute to senescent phenotypes.

Previous work has noted difficulties in distinguishing MA and AP based on studies
of fitness variation changes with age (Moorad & Promislow, 2009). ADICT could
be compatible not only with MA, but also with the AP model, if low conservation
of the genes with high expression at late age is caused by their selection-driven
rapid evolution due to their effects in earlier life phases. Genes involved in im-
mune response or spermatogenesis are generally known to be fast evolving under
positive selection (Consortium, 2005; Nielsen et al., 2005). Notably, apoptosis, the
category I find enriched in high expression and low conservation genes, also shows
large overlap (42%) with the immune system GO category (only 6% with sperma-
togenesis). On the other hand, the ADICT signal is robust to removing genes with
a positive selection signal (dN/dS > 1) or immune genes. Therefore, ADICT at
least partly represents an MA-specific molecular signature in mammals.
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4.1 Limitations and Possible Improvements

1. I used kidney, liver, lung, and spleen datasets only in mice. The age-series
microarray datasets including those tissues from different mammalian spe-
cies could be added to more effectively interpret the effects of ADICT in
mammalian aging. In addition to that, I used only microarray datasets in the
analyses. Another possible improvement would be to add RNA-sequencing
datasets.

2. Female and male samples were analyzed together. Whether the ADICT sig-
nal is different between sexes is another question waiting to be answered.

3. I would like to determine the contribution of the ADICT signature to physiolo-
gical decline in organismal senescence and age-related diseases, using dif-
ferent methods. One approach would be to analyze the expression changes
of proteins having role in Huntington’s or Alzheimer’s diseases, and repeat
containing proteins which can cause protein aggregation by sticking to other
proteins that eventually contribute to impairment in function. If those genes
would be categorized into increased expression and low conservation, such a
result could be considered as indication that the ADICT pattern is contribut-
ing to both age-related neurodegenerative diseases and the aging phenotype.

4. In the data I used, different samples were taken from the same individuals,
especially in the brain datasets. I could improve the permutation tests to
include individual information.

5. Discrepancy among datasets could be assessed using different methods such
as surrogate variable analysis (SVA) (Leek & Storey, 2007), which removes
the technical noise from unknown sources after discarding the effects of age
on gene expression level.

6. Conservation of the proteins that are specific to early evolved brain regions,
i.e. thalamus, could be studied to determine whether evolutionary history of
the tissues have an effect on protein conservation.

7. ADICT was only observed using conservation of protein coding sequences,
but not using conservation of regulatory regions (Poorya Parvizi, unpublished
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results). The possible reasons for the difference between conservation of
protein coding sequences and regulatory regions need to be addressed.

8. To improve to accuracy of conservation ratio (dN/dS), different situations
can be considered. For example, synonymous mutations (dS) do not take
into account the codon bias, and each type of the non-synonymous mutations
treated as the same. Therefore, dS would not be completely neutral, and dN
would not be totally harmful across all possible changes.
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CHAPTER 5

CONCLUSION

Although recent advances in molecular techniques provide a better understanding
of the genetics of aging, its evolutionary basis remains little understood. To test
evolutionary theories of aging using new approaches is important to gain further
insights into the underlying reasons for this complex process, and also age-related
diseases.

For the aforementioned reasons, I tested one prediction of mutation accumulation
theory, that is genes expressed later in life (after initiation of adulthood) would have
lower evolutionary conservation than genes expressed early in life (at early adult-
hood). This I did by analyzing 35 microarray datasets that include a total of 768
samples from diverse mammalian species and tissues. My findings are as follows:

• Age-related decrease in conservation of the transcriptome (ADICT) was found
in different brain regions in mice, rats, macaques and humans. In addition,
mice liver and lung show similar trends as in brain. However, I did not find
any consistent ADICT trend in kidney, skin, spleen and muscle.

• Both genes showing increased expression with age and low conservation, and
genes showing decreased expression with age and high conservation, could
be contributing to the ADICT pattern.

• Among GO groups having decreased expression with age and high conser-
vation, functional categories showed enrichment across the same type of tis-
sues displaying DEHC. This may indicate highly conserved genes are tissue-
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specific, and that is the reason why I did not find any common GO categories
that were enriched in decreased expression and high conservation among dif-
ferent types of the tissues.

• The presence of genes with increased expression with age and low conser-
vation in tissues showing ADICT is compatible with the mutation accumu-
lation theory’s prediction, that genes expressed at old ages will be less con-
served. This pattern is observed in 4 different mammalian species, mice,
rats, macaques and humans, and 3 different tissues, brain, liver and lung.
This may indicate the universality of ADICT among mammals, at least in
some tissues.

• Among genes showing increased expression with age and low conservation,
two functional categories showed enrichment across all tissues displaying
ADICT: apoptosis and cell signaling. These groups may provide a link
between age-related decline and diseases.
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APPENDIX A

RESULTS FOR THE CHANGES IN EXPRESSION - ω0

CORRELATION WITH AGE

Table A.1: Results – number of genes, rho, p values - for the changes in expression
- ω0 correlation with age both all genes and age-related genes.

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 8744 −0.51 0.026 - - -
Hs_Brain_FC 3966 −0.443 0.016 345 −0.834 0

Hs_Brain_BA10 8744 −0.387 0.068 1136 −0.819 0

Hs_Brain_EC 8744 −0.35 0.039 220 −0.518 0.001

Hs_Brain_HC 8744 −0.256 0.106 950 −0.771 0

Hs_Brain_PCG 8744 −0.593 0 2345 −0.635 0

Hs_Brain_SG 8744 −0.555 0 3650 −0.658 0

Hs_Brain_PFC 6347 −0.587 0.049 103 −0.93 0

Hs_Brain_CB 6406 −0.018 0.968 - - -
Rm_Brain_PFC 6347 −0.009 0.989 - - -
Rm_Brain_CB 6406 −0.017 0.982 - - -
Rn_Brain_HC 6657 −0.372 0.19 113 −0.868 0

Mm_Brain_WB 8639 −0.189 0.517 104 −0.873 0

Mm_Brain_NC 8639 0.522 0.122 3641 0.731 0.016

Mm_Brain_HC 4009 −0.299 0.177 - - -
Mm_Skin 8639 0.017 0.942 1053 0.642 0.002

Hs_Skin 7377 0.011 0.915 39 −0.444 0

Mm_Liver_3 8639 −0.182 0.515 404 −0.772 0.001

Mm_Liver_2 8639 −0.442 0.099 496 −0.918 0

Mm_Liver_1 8632 −0.672 0.012 188 −0.746 0.003
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Mm_Lung_2 8639 −0.285 0.251 189 −0.724 0.001

Mm_Lung_1 8639 −0.738 0.023 153 −0.949 0

Mm_Kidney 8639 −0.179 0.478 253 −0.712 0.001

Mm_Spleen 8639 −0.263 0.326 180 0.746 0.001

Rn_Aorta_T 2016 0.437 0.091 192 0.776 0

Rm_Aorta 5973 −0.226 0.288 - - -
Mm_Muscle_Gastro 6394 0.522 0.122 573 0.731 0.016

Mm_Muscle_P C 8639 −0.503 0.067 280 −0.881 0

Rn_Muscle_EDL 2017 0.559 0.074 - - -
Rn_Muscle_EOMs 2017 0.118 0.714 - - -
Hs_Muscle_VL2 8307 0.345 0.208 - - -
Hs_Muscle_VL1 8307 0.349 0.203 - - -
Hs_Muscle_Other 8744 0.1 0.724 - - -
Hs_Muscle_RA 8744 0.077 0.552 - - -
Hs_Muscle_BB 8744 0.021 0.933 1582 −0.579 0.009
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APPENDIX B

RESULTS FOR THE CHANGES IN EXPRESSION - ω0*
CORRELATION WITH AGE

Table B.1: Results – number of genes, rho, p values - for the changes in expression
- ω0* correlation with age both all genes and age-related genes.

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 6221 −0.648 0.003 - - -
Hs_Brain_FC 3048 −0.508 0.005 246 −0.821 0

Hs_Brain_BA10 6221 −0.539 0.008 835 −0.827 0

Hs_Brain_EC 6221 −0.391 0.02 155 −0.051 0.772

Hs_Brain_HC 6221 −0.448 0.003 688 −0.769 0

Hs_Brain_PCG 6221 −0.558 0 1688 −0.693 0

Hs_Brain_SG 6221 −0.607 0 2633 −0.676 0

Hs_Brain_PFC 4579 −0.769 0.005 80 −0.895 0

Hs_Brain_CB 4602 −0.291 0.386 - - -
Rm_Brain_PFC 4579 −0.2 0.558 - - -
Rm_Brain_CB 4602 0.083 0.843 - - -
Rn_Brain_HC 4414 −0.443 0.113 71 −0.868 0

Mm_Brain_WB 5532 −0.454 0.103 70 −0.875 0

Mm_Brain_NC 5532 −0.661 0.037 2321 −0.801 0.005

Mm_Brain_HC 2960 −0.27 0.225 - - -
Mm_Skin 5532 −0.399 0.081 656 0.26 0.268

Hs_Skin 5437 0.015 0.882 32 −0.186 0.066

Mm_Liver_3 5532 −0.525 0.044 265 −0.901 0

Mm_Liver_2 5532 −0.564 0.029 341 −0.887 0

Mm_Liver_1 5530 −0.595 0.032 110 −0.683 0.01
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Mm_Lung_2 5532 −0.605 0.008 129 −0.593 0.01

Mm_Lung_1 5532 −0.843 0.004 100 −0.949 0

Mm_Kidney 5532 −0.43 0.075 176 −0.248 0.322

Mm_Spleen 5532 −0.328 0.214 114 0.03 0.913

Rn_Aorta_T 1479 0.582 0.018 136 0.776 0

Rm_Aorta 4559 −0.258 0.223 - - -
Mm_Muscle_Gastro 4461 0.87 0.001 400 0.87 0.001

Mm_Muscle_P C 5532 −0.776 0.001 181 −0.86 0

Rn_Muscle_EDL 1480 0.607 0.048 - - -
Rn_Muscle_EOMs 1480 −0.296 0.351 - - -
Hs_Muscle_VL2 5992 0.277 0.317 - - -
Hs_Muscle_VL1 5992 0.383 0.159 - - -
Hs_Muscle_Other 6221 0.154 0.584 - - -
Hs_Muscle_RA 6221 −0.029 0.825 - - -
Hs_Muscle_BB 6221 0.331 0.167 1140 0 1
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APPENDIX C

RESULTS FOR THE CHANGES IN EXPRESSION - ω
(“ONE-TO-ONE ORTHOLOGS” BETWEEN

HUMAN-MOUSE) CORRELATION WITH AGE

Table C.1: Results – number of genes, rho, p values - for the changes in expression
- ω (“one-to-one orthologs” between human-mouse) correlation with age both all
genes and age-related genes.

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 20219 −0.5 0.029 - - -
Hs_Brain_FC 7815 −0.482 0.008 644 −0.835 0

Hs_Brain_BA10 20219 −0.493 0.017 1963 −0.814 0

Hs_Brain_EC 20219 −0.395 0.019 388 −0.628 0

Hs_Brain_HC 20219 −0.237 0.136 1723 −0.728 0

Hs_Brain_PCG 20219 −0.613 0 3950 −0.625 0

Hs_Brain_SG 20219 −0.613 0 6117 −0.683 0

Hs_Brain_PFC 11453 −0.587 0.049 189 −0.965 0

Hs_Brain_CB 11883 −0.182 0.595 - - -
Rm_Brain_PFC 11453 −0.109 0.755 - - -
Rm_Brain_CB 11883 −0.017 0.982 - - -
Rn_Brain_HC 10747 −0.408 0.148 195 −0.868 0

Mm_Brain_WB 14172 −0.105 0.722 211 −0.944 0

Mm_Brain_NC 14172 0.592 0.071 5834 0.87 0.001

Mm_Brain_HC 6824 −0.342 0.119 - - -
Mm_Skin 14172 −0.277 0.236 1837 −0.173 0.465

Hs_Skin 13461 0.013 0.9 83 −0.511 0

Mm_Liver_3 14172 −0.317 0.25 667 −0.733 0.002
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Mm_Liver_2 14172 −0.219 0.432 804 −0.747 0.001

Mm_Liver_1 14182 −0.598 0.031 341 −0.507 0.077

Mm_Lung_2 14172 −0.348 0.157 327 −0.756 0

Mm_Lung_1 14172 −0.527 0.145 275 −0.791 0.011

Mm_Kidney 14172 −0.26 0.297 524 −0.749 0

Mm_Spleen 14171 −0.251 0.349 317 0.522 0.038

Rn_Aorta_T 3584 0.412 0.113 320 0.534 0.033

Rm_Aorta 11535 −0.242 0.254 - - -
Mm_Muscle_Gastro 10613 0.453 0.189 926 0.731 0.016

Mm_Muscle_P C 14172 −0.126 0.668 541 −0.629 0.016

Rn_Muscle_EDL 3584 0.66 0.027 - - -
Rn_Muscle_EOMs 3584 0.118 0.714 - - -
Hs_Muscle_VL2 17557 0.12 0.67 - - -
Hs_Muscle_VL1 17557 0.188 0.503 - - -
Hs_Muscle_Other 20219 0.15 0.593 - - -
Hs_Muscle_RA 20219 0.094 0.467 - - -
Hs_Muscle_BB 20219 −0.041 0.867 2747 −0.579 0.009
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APPENDIX D

RESULTS FOR THE CHANGES IN EXPRESSION - ω
(“ONE-TO-ONE ORTHOLOGS” BETWEEN

HUMAN-ELEPHANT) CORRELATION WITH AGE

Table D.1: Results – number of genes, rho, p values - for the changes in expression
- ω (“one-to-one orthologs” between human-elephant) correlation with age both all
genes and age-related genes.

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 13930 −0.574 0.01 - - -
Hs_Brain_FC 6943 −0.475 0.009 630 −0.866 0

Hs_Brain_BA10 13930 −0.377 0.076 1917 −0.836 0

Hs_Brain_EC 13930 −0.39 0.021 375 −0.633 0

Hs_Brain_HC 13930 −0.251 0.114 1670 −0.738 0

Hs_Brain_PCG 13930 −0.646 0 3844 −0.644 0

Hs_Brain_SG 13930 −0.582 0 5931 −0.68 0

Hs_Brain_PFC 9998 −0.587 0.049 188 −0.909 0

Hs_Brain_CB 10090 −0.2 0.558 - - -
Rm_Brain_PFC 9998 −0.055 0.881 - - -
Rm_Brain_CB 10090 −0.017 0.982 - - -
Rn_Brain_HC 10000 −0.443 0.113 193 −0.868 0

Mm_Brain_WB 13086 −0.16 0.584 220 −0.862 0

Mm_Brain_NC 13086 0.592 0.071 5409 0.731 0.016

Mm_Brain_HC 6299 −0.386 0.076 - - -
Mm_Skin 13086 0.017 0.942 1994 0.017 0.942

Hs_Skin 11837 0.002 0.981 79 −0.483 0

Mm_Liver_3 13086 −0.31 0.262 643 −0.514 0.05
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Mm_Liver_2 13086 −0.375 0.168 825 −0.675 0.006

Mm_Liver_1 13077 −0.646 0.017 280 0.048 0.875

Mm_Lung_2 13086 −0.43 0.075 331 −0.756 0

Mm_Lung_1 13086 −0.632 0.068 263 −0.949 0

Mm_Kidney 13086 −0.248 0.322 484 −0.655 0.003

Mm_Spleen 13086 −0.397 0.128 313 −0.069 0.801

Rn_Aorta_T 3315 0.473 0.064 307 −0.133 0.622

Rm_Aorta 9925 −0.264 0.213 - - -
Mm_Muscle_Gastro 9835 0.313 0.378 873 0.383 0.275

Mm_Muscle_P C 13086 −0.252 0.386 599 −0.776 0.001

Rn_Muscle_EDL 3315 0.588 0.057 - - -
Rn_Muscle_EOMs 3315 0 1 - - -
Hs_Muscle_VL2 13361 0.182 0.515 - - -
Hs_Muscle_VL1 13361 0.263 0.344 - - -
Hs_Muscle_Other 13930 −0.021 0.944 - - -
Hs_Muscle_RA 13930 0.094 0.469 - - -
Hs_Muscle_BB 13930 0.227 0.349 2624 −0.351 0.14
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APPENDIX E

RESULTS FOR THE CHANGES IN EXPRESSION - ω
(“ONE-TO-ONE ORTHOLOGS” BETWEEN HUMAN-COW)

CORRELATION WITH AGE

Table E.1: Results – number of genes, rho, p values - for the changes in expression
- ω (“one-to-one orthologs” between human-elephant) correlation with age both all
genes and age-related genes.

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 14168 −0.5 0.029 - - -
Hs_Brain_FC 6997 −0.483 0.008 628 −0.84 0

Hs_Brain_BA10 14168 −0.351 0.101 1920 −0.833 0

Hs_Brain_EC 14168 −0.366 0.031 376 −0.651 0

Hs_Brain_HC 14168 −0.238 0.135 1705 −0.725 0

Hs_Brain_PCG 14168 −0.602 0 3858 −0.64 0

Hs_Brain_SG 14168 −0.546 0 5951 −0.645 0

Hs_Brain_PFC 10067 −0.573 0.055 188 −0.944 0

Hs_Brain_CB 10171 −0.182 0.595 - - -
Rm_Brain_PFC 10067 −0.027 0.946 - - -
Rm_Brain_CB 10171 −0.017 0.982 - - -
Rn_Brain_HC 10068 −0.372 0.19 190 −0.868 0

Mm_Brain_WB 13255 −0.116 0.693 222 −0.931 0

Mm_Brain_NC 13255 0.661 0.037 5456 0.87 0.001

Mm_Brain_HC 6319 −0.357 0.103 - - -
Mm_Skin 13255 −0.139 0.56 2008 0.468 0.037

Hs_Skin 12017 0.015 0.881 85 −0.43 0

Mm_Liver_3 13255 −0.45 0.093 642 −0.459 0.085
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Mm_Liver_2 13255 −0.368 0.177 836 −0.647 0.009

Mm_Liver_1 13241 −0.629 0.021 288 0.048 0.875

Mm_Lung_2 13255 −0.329 0.182 332 −0.737 0

Mm_Lung_1 13255 −0.58 0.102 265 −0.896 0.001

Mm_Kidney 13255 −0.223 0.375 494 −0.705 0.001

Mm_Spleen 13256 −0.287 0.282 320 0.197 0.465

Rn_Aorta_T 3332 0.521 0.038 304 −0.121 0.655

Rm_Aorta 10012 −0.258 0.223 - - -
Mm_Muscle_Gastro 9910 0.313 0.378 879 0.661 0.037

Mm_Muscle_P C 13255 −0.189 0.518 601 −0.755 0.002

Rn_Muscle_EDL 3332 0.66 0.027 - - -
Rn_Muscle_EOMs 3332 0.089 0.784 - - -
Hs_Muscle_VL2 13566 0.247 0.375 - - -
Hs_Muscle_VL1 13566 0.331 0.228 - - -
Hs_Muscle_Other 14168 0.004 0.995 - - -
Hs_Muscle_RA 14168 0.089 0.49 - - -
Hs_Muscle_BB 14168 0.31 0.196 2689 −0.207 0.396
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APPENDIX F

RESULTS FOR THE CHANGES IN EXPRESSION - ω - WID
(“ONE-TO-ONE ORTHOLOGS” BETWEEN

HUMAN-MOUSE) CORRELATION WITH AGE

Table F.1: Results – number of genes, rho, p values - for the changes in expression -
ω (“one-to-one orthologs” between human-mouse) correlation after excluding pos-
itively selected genes from ω, immun system-related genes and gene showing age-
related decrease trend from gene-expression level (as indicated with the “WID”
suffix).

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 7424 −0.011 0.963 - - -
Hs_Brain_FC 3714 −0.128 0.509 213 −0.425 0.022

Hs_Brain_BA10 7983 −0.081 0.713 986 −0.507 0.013

Hs_Brain_EC 7228 −0.228 0.187 - − -
Hs_Brain_HC 8126 −0.029 0.858 950 −0.385 0.013

Hs_Brain_PCG 7351 −0.317 0.049 716 −0.271 0.095

Hs_Brain_SG 7042 −0.382 0.011 2282 −0.197 0.201

Hs_Brain_PFC 5803 −0.392 0.21 112 −0.629 0.032

Hs_Brain_CB 5195 −0.182 0.595 - - -
Rm_Brain_PFC 6078 −0.109 0.755 - - -
Rm_Brain_CB 5765 −0.083 0.843 - - -
Rn_Brain_HC 6426 −0.266 0.358 160 −0.797 0.001

Mm_Brain_WB 8172 0.06 0.838 102 −0.782 0.001

Mm_Brain_NC 9492 0.522 0.122 4524 0.313 0.378

Mm_Brain_HC 3950 −0.255 0.252 - - -
Mm_Skin 8247 −0.382 0.097 217 −0.711 0
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Hs_Skin 9205 −0.004 0.966 71 −0.404 0

Mm_Liver_3 8001 −0.617 0.014 511 −0.719 0.003

Mm_Liver_2 8865 −0.713 0.003 415 −0.627 0.012

Mm_Liver_1 8967 −0.584 0.036 288 −0.666 0.013

Mm_Lung_2 8677 −0.266 0.285 214 −0.498 0.035

Mm_Lung_1 7682 −0.264 0.493 88 −0.949 0

Mm_Kidney 8589 −0.392 0.108 444 −0.674 0.002

Mm_Spleen 8014 −0.567 0.022 137 −0.719 0.002

Rn_Aorta_T 2125 0.036 0.894 262 −0.158 0.56

Rm_Aorta 5239 −0.194 0.364 - - -
Mm_Muscle_Gastro 4784 0.522 0.122 435 −0.313 0.378

Mm_Muscle_P C 7355 −0.314 0.273 392 −0.524 0.054

Rn_Muscle_EDL 2283 0.337 0.311 - - -
Rn_Muscle_EOMs 2373 0.059 0.855 - - -
Hs_Muscle_VL2 7898 0.045 0.874 - - -
Hs_Muscle_VL1 7124 −0.02 0.945 - - -
Hs_Muscle_Other 7523 0.046 0.873 - - -
Hs_Muscle_RA 8645 0.032 0.806 - - -
Hs_Muscle_BB 7411 −0.207 0.396 1044 −0.062 -
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APPENDIX G

RESULTS FOR THE CHANGES IN EXPRESSION - ω - WID
(“ONE-TO-ONE ORTHOLOGS” BETWEEN

HUMAN-ELEPHANT) CORRELATION WITH AGE

Table G.1: Results – number of genes, rho, p values - for the changes in expression
- ω (“one-to-one orthologs” between human-elephant) correlation after excluding
positively selected genes from ω, immun system-related genes and gene showing
age-related decrease trend from gene-expression level (as indicated with the “WID”
suffix).

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 7299 −0.211 0.386 - - -
Hs_Brain_FC 3706 −0.235 0.22 - - -
Hs_Brain_BA10 7868 −0.103 0.639 - - -
Hs_Brain_EC 7190 −0.274 0.111 - - -
Hs_Brain_HC 8028 −0.046 0.775 940 −0.458 0.003

Hs_Brain_PCG 7212 −0.382 0.016 755 −0.658 0

Hs_Brain_SG 7020 −0.354 0.018 2349 −0.393 0.008

Hs_Brain_PFC 5722 −0.378 0.227 - - -
Hs_Brain_CB 5171 −0.2 0.558 - - -
Rm_Brain_PFC 5995 −0.055 0.881 - - -
Rm_Brain_CB 5692 0 1 - - -
Rn_Brain_HC 5217 −0.266 0.358 102 −0.393 0

Mm_Brain_WB 6463 0.165 0.573 - - -
Mm_Brain_NC 7661 0.801 0.005 - - -
Mm_Brain_HC 2969 −0.313 0.156 - - -
Mm_Skin 6732 −0.364 0.114 - - -
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Hs_Skin 8967 −0.011 0.916 69 −0.591 0.001

Mm_Liver_3 6338 −0.451 0.091 - - -
Mm_Liver_2 6957 −0.622 0.013 243 −0.622 0.035

Mm_Liver_1 6982 −0.666 0.013 - - -
Mm_Lung_2 6913 −0.21 0.403 - - -
Mm_Lung_1 6155 −0.527 0.145 - - -
Mm_Kidney 6781 0.034 0.892 254 −0.558 0.006

Mm_Spleen 6447 −0.585 0.017 - - -
Rn_Aorta_T 1609 0.255 0.341 - - -
Rm_Aorta 5223 −0.258 0.223 - - -
Mm_Muscle_Gastro 3803 0.035 0.924 332 −0.269 0.266

Mm_Muscle_P C 5950 −0.147 0.617 - - -
Rn_Muscle_EDL 1749 0.554 0.077 - - -
Rn_Muscle_EOMs 1822 −0.089 0.784 - - -
Hs_Muscle_VL2 7705 0.125 0.657 - - -
Hs_Muscle_VL1 7039 0.168 0.549 - - -
Hs_Muscle_Other 7422 −0.082 0.773 - - -
Hs_Muscle_RA 8449 0.04 0.755 - - -
Hs_Muscle_BB 7271 −0.186 0.446 - - -
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APPENDIX H

RESULTS FOR THE CHANGES IN EXPRESSION - ω - WID
(“ONE-TO-ONE ORTHOLOGS” BETWEEN HUMAN-COW)

CORRELATION WITH AGE

Table H.1: Results – number of genes, rho, p values - for the changes in expres-
sion - ω (“one-to-one orthologs” between human-cow) correlation after excluding
positively selected genes from ω, immun system-related genes and gene showing
age-related decrease trend from gene-expression level (as indicated with the “WID”
suffix).

Dataset Name # all rho p # age-rel. rho p

Hs_Brain_BA22 7499 −0.05 0.839 - - -
Hs_Brain_FC 3719 −0.144 0.456 - - -
Hs_Brain_BA10 8027 −0.019 0.93 - - -
Hs_Brain_EC 7328 −0.2 0.249 - - -
Hs_Brain_HC 8176 −0.004 0.979 956 −0.146 0.363

Hs_Brain_PCG 7421 −0.247 0.129 752 −0.58 0

Hs_Brain_SG 7173 −0.264 0.083 2348 −0.299 0.049

Hs_Brain_PFC 5770 −0.322 0.308 - - -
Hs_Brain_CB 5251 −0.073 0.839 - - -
Rm_Brain_PFC 6056 −0.055 0.881 - - -
Rm_Brain_CB 5762 −0.017 0.982 - - -
Rn_Brain_HC 5274 −0.23 0.428 100 −0.356 0

Mm_Brain_WB 6558 0.087 0.768 - - -
Mm_Brain_NC 7739 0.801 0.005 - - -
Mm_Brain_HC 2993 −0.197 0.38 - - -
Mm_Skin 6837 −0.33 0.156 - - -
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Hs_Skin 9071 0.013 0.903 72 −0.387 0.038

Mm_Liver_3 6427 −0.501 0.057 - - -
Mm_Liver_2 7073 −0.555 0.032 247 −0.734 0.009

Mm_Liver_1 7104 −0.598 0.031 - - -
Mm_Lung_2 7011 −0.141 0.577 - - -
Mm_Lung_1 6257 −0.158 0.685 - - -
Mm_Kidney 6867 −0.06 0.814 258 −0.576 0.004

Mm_Spleen 6531 −0.603 0.013 - - -
Rn_Aorta_T 1607 0.097 0.721 - - -
Rm_Aorta 5274 −0.162 0.451 - - -
Mm_Muscle_Gastro 3836 0.453 0.189 345 −0.103 0.674

Mm_Muscle_P C 5992 0.021 0.943 - - -
Rn_Muscle_EDL 1754 0.409 0.211 - - -
Rn_Muscle_EOMs 1833 0 1 - - -
Hs_Muscle_VL2 7870 0.15 0.593 - - -
Hs_Muscle_VL1 7179 0.309 0.262 - - -
Hs_Muscle_Other 7533 0.025 0.934 - - -
Hs_Muscle_RA 8623 0.038 0.767 - - -
Hs_Muscle_BB 7415 0 1 - - -
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APPENDIX I

GO BIOLOGICAL PROCESS CATEGORIES COMMON
AMONG ALL DATASETS ENRICHED FOR IELC

Table I.1: GO Biological Process categories common among all datasets (n=14)
enriched for IELC.

GO ID GO Term
GO:0097190 apoptotic signaling pathway
GO:0097191 extrinsic apoptotic signaling pathway
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APPENDIX J

GO BIOLOGICAL PROCESS CATEGORIES COMMON
AMONG LIVER DATASETS ENRICHED FOR IELC

Table J.1: GO Biological Process categories common among liver datasets (n=3)
enriched for IELC.

GO ID GO Term
GO:0000302 response to reactive oxygen species
GO:0001525 angiogenesis
GO:0001568 blood vessel development
GO:0001775 cell activation
GO:0001816 cytokine production
GO:0001817 regulation of cytokine production
GO:0001818 negative regulation of cytokine production
GO:0001819 positive regulation of cytokine production
GO:0001890 placenta development
GO:0001944 vasculature development
GO:0002218 activation of innate immune response
GO:0002221 pattern recognition receptor signaling pathway
GO:0002224 toll-like receptor signaling pathway
GO:0002237 response to molecule of bacterial origin
GO:0002250 adaptive immune response
GO:0002263 cell activation involved in immune response
GO:0002366 leukocyte activation involved in immune response
GO:0002376 immune system process
GO:0002443 leukocyte mediated immunity
GO:0002460 adaptive immune response based on somatic
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recombination of immune receptors built from
immunoglobulin superfamily domains

GO:0002520 immune system development
GO:0002521 leukocyte differentiation
GO:0002573 myeloid leukocyte differentiation
GO:0002682 regulation of immune system process
GO:0002683 negative regulation of immune system process
GO:0002684 positive regulation of immune system process
GO:0002685 regulation of leukocyte migration
GO:0002687 positive regulation of leukocyte migration
GO:0002757 immune response-activating signal transduction
GO:0002758 innate immune response-activating signal transduction
GO:0002764 immune response-regulating signaling pathway
GO:0002819 regulation of adaptive immune response
GO:0006066 alcohol metabolic process
GO:0006766 vitamin metabolic process
GO:0006873 cellular ion homeostasis
GO:0006874 cellular calcium ion homeostasis
GO:0006875 cellular metal ion homeostasis
GO:0006897 endocytosis
GO:0006898 receptor-mediated endocytosis
GO:0006909 phagocytosis
GO:0006928 movement of cell or subcellular component
GO:0006952 defense response
GO:0006954 inflammatory response
GO:0006955 immune response
GO:0006959 humoral immune response
GO:0006979 response to oxidative stress
GO:0007155 cell adhesion
GO:0007159 leukocyte cell-cell adhesion
GO:0007160 cell-matrix adhesion
GO:0007204 positive regulation of cytosolic calcium ion concentration
GO:0007249 I-kappaB kinase/NF-kappaB signaling
GO:0007259 JAK-STAT cascade
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APPENDIX K

GO CELLULAR COMPONENT CATEGORIES COMMON
AMONG ALL DATASETS ENRICHED FOR IELC

Table K.1: GO Cellular Component categories common among all datasets (n=14)
enriched for IELC.

GO ID GO Term
GO:0009897 external side of plasma membrane
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APPENDIX L

GO CELLULAR COMPONENT CATEGORIES COMMON
AMONG BRAIN DATASETS ENRICHED FOR IELC

Table L.1: GO Cellular Component categories common among brain datasets (n=9)
enriched for IELC.

GO ID GO Term
GO:0005764 lysosome
GO:0005773 vacuole
GO:0009897 external side of plasma membrane
GO:0031982 vesicle
GO:0031988 membrane-bounded vesicle
GO:0065010 extracellular membrane-bounded organelle
GO:0070062 extracellular exosome
GO:1903561 extracellular vesicle
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APPENDIX M

GO CELLULAR COMPONENT CATEGORIES COMMON
AMONG BRAIN DATASETS ENRICHED FOR DEHC

Table M.1: GO Cellular Component categories common among brain datasets
(n=9) enriched for IELC.

GO ID GO Term
GO:0030425 dendrite
GO:0034702 ion channel complex
GO:0036477 somatodendritic compartment
GO:0043005 neuron projection
GO:0043025 neuronal cell body
GO:0043235 receptor complex
GO:0045202 synapse
GO:0045211 postsynaptic membrane
GO:0097060 synaptic membrane
GO:0098794 postsynapse
GO:0098797 plasma membrane protein complex
GO:1902495 transmembrane transporter complex
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APPENDIX N

GO MOLECULAR FUNCTION CATEGORIES COMMON
AMONG BRAIN DATASETS ENRICHED FOR DEHC

Table N.1: GO Molecular Function categories common among brain datasets (n=9)
enriched for IELC.

GO ID GO Term
GO:0000981 RNA polymerase II transcription factor activity

sequence-specific DNA binding
GO:0005216 ion channel activity
GO:0005261 cation channel activity
GO:0008324 cation transmembrane transporter activity
GO:0015267 channel activity
GO:0015276 ligand-gated ion channel activity
GO:0022803 passive transmembrane transporter activity
GO:0046873 metal ion transmembrane transporter activity

85



86



APPENDIX O

GO MOLECULAR FUNCTION CATEGORIES COMMON
AMONG LUNG DATASETS ENRICHED FOR DEHC

Table O.1: GO Molecular Function categories common among lung datasets (n=2)
enriched for IELC.

GO ID GO Term
GO:0000975 regulatory region DNA binding
GO:0000976 transcription regulatory region

sequence-specific DNA binding
GO:0000977 RNA polymerase II regulatory region

sequence-specific DNA binding
GO:0000978 RNA polymerase II core promoter proximal region

sequence-specific DNA binding
GO:0000981 RNA polymerase II transcription factor activity

sequence-specific DNA binding
GO:0000982 transcription factor activity, RNA polymerase II

core promoter proximal region sequence-specific binding
GO:0000987 core promoter proximal region sequence-specific DNA binding
GO:0000988 transcription factor activity, protein binding
GO:0000989 transcription factor activity, transcription factor binding
GO:0001012 RNA polymerase II regulatory region DNA binding
GO:0001047 core promoter binding
GO:0001071 nucleic acid binding transcription factor activity
GO:0001076 transcription factor activity, RNA polymerase II

transcription factor binding
GO:0001077 transcriptional activator activity, RNA polymerase II
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core promoter proximal region sequence-specific binding
GO:0001159 core promoter proximal region DNA binding
GO:0001227 transcriptional repressor activity, RNA polymerase II

transcription regulatory region sequence-specific binding
GO:0001228 transcriptional activator activity, RNA polymerase II

transcription regulatory region sequence-specific binding
GO:0003677 DNA binding
GO:0003682 chromatin binding
GO:0003700 transcription factor activity, sequence-specific DNA binding
GO:0003713 transcription coactivator activity
GO:0004842 ubiquitin-protein transferase activity
GO:0004871 signal transducer activity
GO:0004888 transmembrane signaling receptor activity
GO:0004930 G-protein coupled receptor activity
GO:0008134 transcription factor binding
GO:0017016 Ras GTPase binding
GO:0019787 ubiquitin-like protein transferase activity
GO:0031267 small GTPase binding
GO:0038023 signaling receptor activity
GO:0043565 sequence-specific DNA binding
GO:0043566 structure-specific DNA binding
GO:0044212 transcription regulatory region DNA binding
GO:0051020 GTPase binding
GO:0061630 ubiquitin protein ligase activity
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