UTILIZING QUERY PERFORMANCE PREDICTORS FOR EARLY
TERMINATION IN META-SEARCH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE SENER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

AUGUST 2016

Approval of the thesis:

UTILIZING QUERY PERFORMANCE PREDICTORS FOR EARLY
TERMINATION IN META-SEARCH

submitted by EMRE SENER in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Giilbin Dural Unver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ismail Sengdr Altingdvde
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ismail Hakki Toroslu
Computer Engineering Department, METU

Assoc. Prof. Dr. Ismail Sengor Altingdvde
Computer Engineering Department, METU

Assoc. Prof. Dr. Pmar Karagoz
Computer Engineering Department, METU

Assist. Prof. Dr. Selim Temizer
Computer Engineering Department, METU

Assist. Prof. Dr. Engin Demir
Computer Engineering Department, UTAA

Date: 22.08.2016

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, | have fully cited and referenced

all material and results that are not original to this work.

Name, Last name: Emre SENER

Signature:

ABSTRACT

UTILIZING QUERY PERFORMANCE PREDICTORS FOR EARLY
TERMINATION IN META-SEARCH

Sener, Emre

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ismail Sengér Altingdvde

August 2016, 153 pages

In the context of web, a meta-search engine is a system that forwards an incoming
user query to all the component search engines (aka, resources); and then merges the
retrieved results. Given that hundreds of such resources may exist, it is mandatory for
a meta-search engine to avoid forwarding a query to all available resources, but
rather focus on a subset of them. In this thesis, we first introduce a novel incremental
query forwarding strategy for meta-search. More specifically, given a ranked list of
N search engines, our strategy operates in rounds, such that in each round, we
retrieve the results of the next k “unvisited” resources in the list (where k<N), asses
the quality of the intermediate merged list, and stop if any further quality
improvement seems unlikely. As our second contribution, we introduce a novel
incremental query result merging strategy. In this strategy, we forward query to all
search engines but we assess the quality of intermediate merged lists as early as we
retrieve the results from an engine and stop if any further quality improvements are
not likely. In order to assess the result quality, we utilize post-retrieval query
performance prediction (QPP) techniques. Our experiments using the standard

FedWeb 2013 dataset reveal that the proposed strategies can reduce the response

time and/or network bandwidth usage, while the quality of the result is comparable
to, or sometimes, even better than the baseline strategy.

Keywords: Meta-search Engines, Query Performance Prediction, Evaluation

Vi

0z

META-ARAMA ICIN SORGU PERFORMANS TAHMINI
YONTEMLERIYLE ERKEN SONUC OLUSTURMA

Sener, Emre

Yiiksek Lisans, Bilgisayar Miihendisligi Bolimii

Tez Yoneticisi: Dog. Dr. Ismail Sengdr Altingdvde

Agustos 2016, 153 sayfa

Meta-arama motorlar1 diger kaynaklardan gelen sorgu sonuclarini kullanarak sonug
listesi olustururlar. Bu tez ile meta-arama motorlarindaki sorgu maliyetini diisiirmeyi
hedeflemekteyiz. Bu amagla, ilk olarak secilen arama kaynaklarinin hepsine birden
sorgunun yonlendirilmesi yerine, artirnmli olarak daha kii¢iik k elemanl: alt kiimelere
sorgunun yonlendirilmesini 6neriyoruz. Artirnmli olarak yonlendirilen alt kiimedeki
kaynaklardan gelen sonuglara sorgu performans tahmini adimini ekleyerek, sorgu
performans tahmini degerine gore cevap kalitesini artirmayacagina karar verdigimiz
durumlarda kalan kaynaklara sorgunun goénderilmemesi ile sorgu maliyetinin
azaltilmasin1 hedefliyoruz. Onerdigimiz ikinci yontemde ise, sorgu segilen
kaynaklarin hepsine birden yonlendiriliyor ancak, herhangi bir kaynaktan sonug gelir
gelmez ara listeleri birlestirip, sorgu performans tahmini ile daha sonraki
kaynaklardan gelecek cevaplarin sonug kalitesini artirmayacagina karar verdigimiz
durumlarda, bu ara listeyi kullaniciya donerek sorgu zamanimi azaltmayi
hedefliyoruz. Yontemlerimizi FedWeb 2013 verisi Ustiinde test ettik ve deney
sonuglarindan artirimli sorgu isleme yontemlerimizin tim secilen kaynaklara tek
seferde gondermeye goOre sorgu maliyetini ve/veya ag kaynaklari kullanimini

diistirdiigiinii gorduk.

vii

Anahtar Kelimeler: Meta-arama Motorlar1, Sorgu Performans Olgiimii, Performans

Degerlendirmesi

viii

To My Precious Wife

ACKNOWLEDGEMENTS

I would like to enounce my deep gratitude to my supervisor Assoc. Prof Dr. Ismail
Sengor Altingdvde for his valuable supervision, advice, useful critics and discussions

throughout this study.
I am also grateful to my thesis committee members for their criticism and advices.

This research project is jointly supported by Ministry of Science, Industry and
Technology of Turkey and Huawei Telekomunikasyon Ltd. Co. under SAN-TEZ
funding program with the project number 0441.STZ.2013-2.

TABLE OF CONTENTS

A B ST RA CT .. e e a e e nreeanes v
OZ e bbbt vii
ACKNOWLEDGEMENTSottt X
TABLE OF CONTENTS ...ttt XI
LIST OF TABLES ...t XV
LIST OF FIGURESooiiii ittt XXXI
LIST OF ABBREVATIONS ...ttt XXXIi
CHAPTERS .ot e e s e et e e snt e e e snt e e e nneeeennneeaneeeas 1
1. INTRODUCTION ..ottt se e sseeesnee e 1
2. RELATED WORK ...ttt nee e snee e 5

3. UTILIZING QUERY PERFORMANCE PREDICTORS FOR EARLY
TERMINATION IN META-SEARCH ...t 11

3.1. QPP Based Adaptive Incremental Query Forwarding in Meta-Search....... 11
3.2. QPP Based Adaptive Incremental Query Result Merging in Meta-Search. 13

3.3, RESOUICE SO BCTION ..ttt e e e e e e e e e et e e e e e e e e e e e nennnns 15

Xi

331 TWR-IRF s 16

3.3.2. UISP e 16
3.3.3. OFACIE .. e 16
3.3.4. FedWeb2013 BaSElNE.......cccueviieieiieriesie s 17
3.3.5. REDDE ... 17
336, RANK-S .o s 18
337, AUAPLIVE-K ... 18
3.4, RESUILMEIGING ..covieieiie et 18
341, Oracle MEergiNg......cccooiiiiiiieieieese et 19
3.2, ISR . 19
3.3, RRF e 19
344, COMBSUM. ..o 20
3.5. Query Performance Prediction (QPP)cccocoiiiiiiiiiiee e 21
3.5. 10 SUM QPP e 21
3.5.2. NDCG QPP ... 21
3.6, Learning t0 StOP ...cveeiveeiiieiie et 22
3.6.1. Adhoc Stopping POIICIESceeiiiiiiiieicrce s 23

Xii

3.6.2. Machine Learning Modelcooeiiieiieii e 24

3.6.2.1. QPP RALIO .oveiviiieiiieiieieie et 25
3.6.2.2. QPP DiffereNCe.....ccieiiiiiiiiee et 25

4. EXPERIMENTS AND RESULTSoiiiiiieee et 27
410 DAA S ... 27
4.2, EXPErIMENT SELUP .o.veiviitiiiiiiieieiei et 29

4.2.1. QPP Based Adaptive Incremental Query Forwarding In Meta-Search
ENGINES. .. 30

4.2.2. QPP Based Adaptive Incremental Query Result Merging In Meta-Search

ENGINES .. 31
4.3, RESUILS . 31
4.3.1. QPP Based Adaptive Incremental Query Forwarding Approach............ 32
4.3.1.1. Fix Cut-Off COMPAriSONccveiieiiriiriisiiiieieieie s 32
4.3.1.1.1. Evaluation Results for Optimizing NDCG@20c.c........ 32
4.3.1.1.2. Evaluation Results for Optimizing P@20ccccceveeveenennenn 56
4.3.1.2. Adaptive RS COMPAriSONcoeririeriiiiiieieienie et 79
4.3.1.2.1. Evaluation Results for Optimizing NDCG@20cccueneee. 79
4.3.1.2.2. Evaluation Results for Optimizing P@20c..ccoevvvevivennnnnn 97

Xiii

4.3.1.3. Summary of FINAINGS........ccoiviiiiiiee e 114

4.3.2. QPP Based Adaptive Incremental Result Merging Approach 116
4.3.2.1. Fix Cut-Off COMPAriSONccverviiiriiiieiieieese e 116
4.3.2.1.1. Evaluation Results for Optimizing NDCG@?20...................... 116
4.3.2.1.2. Evaluation Results for Optimizing P@20............ccccceevvrvennenn 121

4.3.2.2. Adaptive RS COMPAriSONccceevrveiiiiieiieie et 125
4.3.2.2.1. Evaluation Results for Optimizing NDCG@?20...................... 125
4.3.2.2.2. Evaluation Results for Optimizing P@20..............ccccvrvrnennne. 128

4.3.2.3. Summary of FINAINGS.......cccoviiiiieieie e 131

5. CONCLUSION AND FUTURE WORKooiiiiieiieieee e 135
6. REFERENCES ... e 137
APPENDICES. ... oottt ettt nne e nree s 145
A. FEDWEB 2013 DATASET INFORMATION......cccoiiiiiiiieneeee e 145
B. RESOURCE SELECTION PARAMETER ANALYSISccccovvieiinne. 151

Xiv

LIST OF TABLES

Table 3.1 Incremental Query Forwarding Algorithmcccccooviviiicciccee, 13
Table 3.2 Incremental Query Result Merging Algorithm ..., 15
Table 3.3 Parameter ValUEScooiiiiiiiiiee e 24
Table 4.1 FedWeb 2013 Data SIZ€........cccceoveiiiiieinieiieieee et 27
Table 4.2 Snippet XMl EXaMPIEccooiviiiieceece e 28
Table 4.3 Relevance Judgment File FOrmat............ccocooviiiiniiiiiceseeeeee, 29
Table 4.4 TWF-IRF RS Algorithm NDCG QPPcccooiiiiiiiieiee e, 33
Table 4.5 TWF-IRF RS Algorithm NDCG QPP Stop Policy PLL Cost 33

Table 4.6 TWF-IRF RS Algorithm NDCG QPP Stop Policy Network/Resource
L0 L7 1o [00 1] SRR 34

Table 4.7 TWF-IRF RS Algorithm NDCG QPP ML Ratio PLL Costccco..... 34

Table 4.8 TWF-IRF RS Algorithm NDCG QPP ML Ratio Network/Resource Usage

XV

Table 4.10 TWF-IRF RS Algorithm NDCG QPP ML Difference Network/Resource

O LSr: T [G0 L] AU PT PRI 35
Table 4.11 TWF-IRF RS Algorithm SUM QPPcccoviiieieieiecese e 36
Table 4.12 TWF-IRF RS Algorithm SUM QPP Stop Policy PLL Cost.................... 36

Table 4.13 TWF-IRF RS Algorithm SUM QPP Stop Policy Network/Resource
(O L7 1o [O 0] PP PPRPRP 36

Table 4.14 TWF-IRF RS Algorithm SUM QPP ML Ratio PLL CoSt.........c.ccoveunnee. 37

Table 4.15 TWF-IRF RS Algorithm SUM QPP ML Ratio Network/Resource Usage

Table 4.16 TWF-IRF RS Algorithm SUM QPP ML Difference PLL Cost............... 38

Table 4.17 TWF-IRF RS Algorithm SUM QPP ML Difference Network/Resource

O LSr: T [@0 L] PRSPPI 38
Table 4.18 UISP RS Algorithm NDCG QPPccccoiiiiiiiiiieienese e 39
Table 4.19 UISP RS Algorithm NDCG QPP Stop Policy PLL Cost............cccveeneee. 39

Table 4.20 UISP RS Algorithm NDCG QPP Stop Policy Network/Resource Cost..39

Table 4.21 UISP RS Algorithm NDCG QPP ML Ratio PLL CoSt........c.cccevvrrreennene. 40

Table 4.22 UISP RS Algorithm NDCG QPP ML Ratio Network/Resource Usage

XVi

Table 4.23 UISP RS Algorithm NDCG QPP ML Difference PLL Cost................... 41

Table 4.24 UISP RS Algorithm NDCG QPP ML Difference Network/Resource

USAQE COSE ..ttt 41
Table 4.25 UISP RS Algorithm SUM QPPccoocoiiiiiiiiiiieieees e 42
Table 4.26 UISP RS Algorithm SUM QPP Stop Policy PLL Costc.cccceevinenen. 42

Table 4.27 UISP RS Algorithm SUM QPP Stop Policy Network/Resource Usage

Table 4.28 UISP RS Algorithm SUM QPP ML Ratio PLL COSt........cccccoevvevviinnnn. 43

Table 4.29 UISP RS Algorithm SUM QPP ML Ratio Network/Resource Usage Cost

Table 4.30 UISP RS Algorithm SUM QPP ML Difference PLL Cost...........c..c....... 44

Table 4.31 UISP RS Algorithm SUM QPP ML Difference Network/Resource Usage

O 0] SRS PR ST 44
Table 4.32 Oracle RS Algorithm NDCG QPP.......ccccovoiiiiieeeeceseeee e 45
Table 4.33 Oracle RS Algorithm NDCG QPP Stop Policy PLL Cost..........ccccueee... 45

Table 4.34 Oracle RS Algorithm NDCG QPP Stop Policy Network/Resource Usage

Xvii

Table 4.36 Oracle RS Algorithm NDCG QPP ML Ratio Network/Resource Usage

Table 4.37 Oracle RS Algorithm NDCG QPP ML Difference PLL Cost 47

Table 4.38 Oracle RS Algorithm NDCG QPP ML Difference Network/Resource

USAQE COST.... ittt 47
Table 4.39 Oracle RS Algorithm SUM QPP........ccccccviiiiieiiceceee e 48
Table 4.40 Oracle RS Algorithm SUM QPP Stop Policy PLL Cost............cccvvneee. 48

Table 4.41 Oracle RS Algorithm SUM QPP Stop Policy Network/Resource Usage

Table 4.42 Oracle RS Algorithm SUM QPP ML Ratio PLL COStcccccvevvrieennenn. 49

Table 4.43 Oracle RS Algorithm SUM QPP ML Ratio Network/Resource Usage

Table 4.44 Oracle RS Algorithm SUM QPP ML Difference PLL Cost.................... 50

Table 4.45 Oracle RS Algorithm SUM QPP ML Difference Network/Resource

USAQE COST.... ettt ettt nne s 50
Table 4.46 Baseline RS Algorithm NDCG QPPccccooveiiiieieee e, 51
Table 4.47 Baseline RS Algorithm NDCG QPP Stop Policy PLL Cost.................... 51

Table 4.48 Baseline RS Algorithm NDCG QPP Stop Policy Network/Resource
(0 L7 1o o 00 1] ST TR 51

Xviii

Table 4.49 Baseline RS Algorithm NDCG QPP ML Ratio PLL Costc.......... 52

Table 4.50 Baseline RS Algorithm NDCG QPP ML Ratio Network/Resource Usage

Table 4.51 Baseline RS Algorithm NDCG QPP ML Difference PLL Cost.............. 53

Table 4.52 Baseline RS Algorithm NDCG QPP ML Difference Network/Resource

L0 7 10 [00] TP PR PR 53
Table 4.53 Baseline RS Algorithm SUM QPP ... 54
Table 4.54 Baseline RS Algorithm SUM QPP Stop Policy PLL Costcc........ 54

Table 4.55 Baseline RS Algorithm SUM QPP Stop Policy Network/Resource Usage

Table 4.56 Baseline RS Algorithm SUM QPP ML Ratio PLL Cost..........ccccceevenen. 55

Table 4.57 Baseline RS Algorithm SUM QPP ML Ratio Network/Resource Usage

Table 4.58 Baseline RS Algorithm SUM QPP ML Difference PLL Cost................. 56

Table 4.59 Baseline RS Algorithm SUM QPP ML Difference Network/Resource

L0 7 1o [00 1] SRR 56
Table 4.60 TWF-IRF Algorithm NDCG QPPccocviiiiiiiiieeeese e 57
Table 4.61 NDCG QPP Stop Policy PLL COSE.......cocviiiiiiniiieie e 57

XiX

Table 4.62 NDCG QPP Stop Policy Network/Resource Usage CoStccceveeneee. 57

Table 4.63 NDCG QPP ML Ratio PLL COSE......cccooiiiiiiiinieieie e 58
Table 4.64 NDCG QPP ML Ratio Network/Resource Usage CoStccccevevvvenenn. 58
Table 4.65 NDCG QPP ML Difference PLL COSt.......cccccevviiiininieiie e 59
Table 4.66 NDCG QPP ML Difference Network/Resource Usage Cost................... 59
Table 4.67 TWF-IRF algorithm SUM QPPcccooiiiiiiine e 59
Table 4.68 SUM QPP Stop Policy PLL COSt......ccccoviiiiicicicceee e 60
Table 4.69 SUM QPP Stop Policy Network/Resource Usage COSt...........ccccvvrveenene. 60
Table 4.70 SUM QPP ML Ratio PLL COSt.......cccciviiiiieiieie e 61
Table 4.71 SUM QPP ML Ratio Network/Resource Usage CoSt..........cccccveveireennenn. 61
Table 4.72 SUM QPP ML Difference PLL COStc.ccoveiviiiiiiiieecieceece e 61
Table 4.73 SUM QPP ML Difference Network/Resource Usage CoStcco..... 62
Table 4.74 UISP algorithm NDCG QPPcccooiiiiiiiiiiiiieee e 62
Table 4.75 NDCG QPP Stop Policy PLL COStcccccceeiieicieceee e 63
Table 4.76 NDCG QPP Stop Policy Network/Resource Usage CoSt...........cccceveenee. 63
Table 4.77 NDCG QPP ML Ratio PLL COSt......cccveiieiieiieie e 63

XX

Table 4.78 NDCG QPP ML Ratio Network/Resource Usage COSt........cccccevverernnene 64

Table 4.79 NDCG QPP ML Difference PLL COStcccvcvvviiiieiiecirec e, 64
Table 4.80 NDCG QPP ML Difference Network/Resource Usage Cost................... 64
Table 4.81 UISP algorithm SUM QPP ..ot 65
Table 4.82 SUM QPP Stop Policy PLL COSt........ccooiiiiiiiiiieiceesese e 65
Table 4.83 SUM QPP Stop Policy Network/Resource Usage COSt............ccccuvenenen. 66
Table 4.84 SUM QPP ML Ratio PLL COSEccooiiiiiiiiinieisieiee e 66
Table 4.85 SUM QPP ML Ratio Network/Resource Usage COSt...........c.cceevrvenrennen. 66
Table 4.86 SUM QPP ML Difference PLL COSt.......cccccvevvviieiiiiesieseeieseenie e 67
Table 4.87 SUM QPP ML Difference Network/Resource Usage Cost 67
Table 4.88 Oracle RS algorithm NDCG QPP ... 68
Table 4.89 NDCG QPP Stop Policy PLL COSE........cccoiiiiiiiiiiieieiese e 68
Table 4.90 NDCG QPP Stop Policy Network/Resource Usage COSt.........cccccevvenen. 68
Table 4.91 NDCG QPP ML Ratio PLL COSt.....ccoiiiiiiiiiiieiieieiee e 69
Table 4.92 NDCG QPP ML Ratio Network/Resource Usage CoSt...........cccceveennene. 69
Table 4.93 NDCG QPP ML Difference PLL COStccccvviiiiieiieiieece e, 69

XXi

Table 4.94 NDCG QPP ML Difference Network/Resource Usage Cost................... 70

Table 4.95 Oracle algorithm SUM QPP..........ccccoiiiiiiieiice e 70
Table 4.96 SUM QPP Stop Policy PLL COSt......ccccvvviieiieicceeceece e 71
Table 4.97 SUM QPP Stop Policy Network/Resource Usage COSt...........ccevvrveenene. 71
Table 4.98 SUM QPP ML Ratio PLL COSt.......cccoiiiiiiieiieie e 71
Table 4.99 SUM QPP ML Ratio Network/Resource Usage COSt..........cccccveveiveennenn. 72
Table 4.100 SUM QPP ML Difference PLL COSt.......cccccevvveiieiiiieirie e 72
Table 4.101 SUM QPP ML Difference Network/Resource Usage Cost 72
Table 4.102 Baseline RS algorithm NDCG QPPccccoiiiiiiiinecneeseeeee 73
Table 4.103 NDCG QPP Stop Policy PLL COSt........ccccovveiiiieceec e 73
Table 4.104 NDCG QPP Stop Policy Network/Resource Usage Cost....................... 74
Table 4.105 NDCG QPP ML Ratio PLL COSt.....ccccovviieiieieiieseee e 74
Table 4.106 NDCG QPP ML Ratio Network/Resource Usage COSt..........c.cceevevennnn 74
Table 4.107 NDCG QPP ML Difference PLL COSt......c..ccccveveeeiieeiieiieecee e 75
Table 4.108 NDCG QPP ML Difference Network/Resource Usage Cost................. 75
Table 4.109 Baseline algorithm SUM QPPcccociiiiiiiiiiiiieiesc e 76

xXxii

Table 4.110 SUM QPP Stop Policy PLL COSt......cccciiiiiiieiieieiie e 76

Table 4.111 SUM QPP Stop Policy Network/Resource Usage CoSt..........ccccvevennen. 76
Table 4.112 SUM QPP ML Ratio PLL COStccoiiiiiriiniiiiniicieie e 77
Table 4.113 SUM QPP ML Ratio Network/Resource Usage COSt...........cc.cceveeennen. 77
Table 4.114 SUM QPP ML Difference PLL COSt.......cccooeviieiiiiiiieneeie e 78
Table 4.115 SUM QPP ML Difference Network/Resource Usage Cost................... 78
Table 4.116 ReDDE RS algorithm NDCG QPP.......cccccoviviiiiiiece e 80
Table 4.117 NDCG QPP Stop POliCY PLL COSt........ccocoiiiiiieieieiesc e 80
Table 4.118 NDCG QPP Stop Policy Network/Resource Usage Cost...........ccceene... 80
Table 4.119 NDCG QPP ML Ratio PLL COSt.......cccocviiiiiiniiiene e 81
Table 4.120 NDCG QPP ML Ratio Network/Resource Usage Cost............cccccuvenee. 81
Table 4.121 NDCG QPP ML Difference PLL COStccccoivvevviiesieie e 82
Table 4.122 NDCG QPP ML Difference Network/Resource Usage Cost................. 82
Table 4.123 ReDDE algorithm SUM QPPcccocoiiiiiiieieece e 83
Table 4.124 SUM QPP Stop Policy PLL COSt........ccccoveiiiiii e 83
Table 4.125 SUM QPP Stop Policy Network/Resource Usage CoSt..........ccccvvvenen. 83

XXiii

Table 4.126 SUM QPP ML Ratio PLL COSt.......cccoceiiiieiiieecee e 84

Table 4.127 SUM QPP ML Ratio Network/Resource Usage CoSt............ccccvervvenenn. 84
Table 4.128 SUM QPP ML Difference PLL COSt.......ccccevvveveiiiieciieceesree e 85
Table 4.129 SUM QPP ML Difference Network/Resource Usage Cost 85
Table 4.130 Rank-S RS algorithm NDCG QPP......cccooviiieiiieceee e 86
Table 4.131 NDCG QPP Stop Policy PLL COSt........ccccovveiiiieiece e, 86
Table 4.132 NDCG QPP Stop Policy Network/Resource Usage Cost....................... 86
Table 4.133 NDCG QPP ML Ratio PLL COSt.....ccccoviieiieiecieseeie e 87
Table 4.134 NDCG QPP ML Ratio Network/Resource Usage COSt...........cevvevennen 87
Table 4.135 NDCG QPP ML Difference PLL COSt......c..ccocveveeiiveeiieiieecee e 88
Table 4.136 NDCG QPP ML Difference Network/Resource Usage Cost................. 88
Table 4.137 Rank-S algorithm SUM QPP ... 89
Table 4.138 SUM QPP Stop PoliCy PLL COSE.......cccooiiiiiiieieieiese e 89
Table 4.139 SUM QPP Stop Policy Network/Resource Usage Cost............cccvene.n. 89
Table 4.140 SUM QPP ML Ratio PLL COSt......ccccuiiiiiiiiieiiiieeec e 90
Table 4.141 SUM QPP ML Ratio Network/Resource Usage COSt............ccovrvrennnn 90

XXiV

Table 4.142 SUM QPP ML Difference PLL COSt.......cccoceeviiieiiiiiiiieecciee e, 91

Table 4.143 SUM QPP ML Difference Network/Resource Usage Cost 91
Table 4.144 Adaptive-k RS algorithm NDCG QPPcccccoeviiiiviciecc e 92
Table 4.145 NDCG QPP Stop PoliCY PLL COSt........ccccoiiiiiieieieienc e 92
Table 4.146 NDCG QPP Stop Policy Network/Resource Usage Cost...........ccceenee. 92
Table 4.147 NDCG QPP ML Ratio PLL COSt.......cccccoiiiiiinieieie e 93
Table 4.148 NDCG QPP ML Ratio Network/Resource Usage CoSt..........c.cccccvenen. 93
Table 4.149 NDCG QPP ML Difference PLL COStcccccovevieiiiiiiic e 94
Table 4.150 NDCG QPP ML Difference Network/Resource Usage Cost................. 94
Table 4.151 Adaptive-k algorithm SUM QPPcccoi i 95
Table 4.152 SUM QPP Stop Policy PLL COSt.......cccccveiieieiieie e 95
Table 4.153 SUM QPP Stop Policy Network/Resource Usage COSt..........ccccvveenen. 95
Table 4.154 SUM QPP ML Ratio PLL COStcccoeiieiieieieee e 96
Table 4.155 SUM QPP ML Ratio Network/Resource Usage CoSt...........ccceevenennen. 96
Table 4.156 SUM QPP ML Difference PLL COSt........ccoceevviiiiieiiiieeccee e, 97
Table 4.157 SUM QPP ML Difference Network/Resource Usage Cost 97

XXV

Table 4.158 ReDDE RS algorithm NDCG QPPc.cooiiiiiiiiieee e 98

Table 4.159 NDCG QPP Stop Policy PLL COSt.........cccovveiiiieieee e 98
Table 4.160 NDCG QPP Stop Policy Network/Resource Usage Cost 99
Table 4.161 NDCG QPP ML Ratio PLL COSt.....ccccoviieiieieiieseeie e 99
Table 4.162 NDCG QPP ML Ratio Network/Resource Usage COSt............ceeveuvennen 99
Table 4.163 NDCG QPP ML Difference PLL COSt......c..ccocevvveeviiiiieccie e, 100
Table 4.164 NDCG QPP ML Difference Network/Resource Usage Cost............... 100
Table 4.165 ReDDE algorithm SUM QPP..........ccccooiiiiiiiiieic e, 101
Table 4.166 SUM QPP Stop Policy PLL COSt.......ccccooviiiiiieieieneese e, 101
Table 4.167 SUM QPP Stop Policy Network/Resource Usage CoSt...........ccccuvene.. 101
Table 4.168 SUM QPP ML Ratio PLL COSt.......c.cccciiiiinieieieie e 102
Table 4.169 SUM QPP ML Ratio Network/Resource Usage COSt............cccceeueneen. 102
Table 4.170 SUM QPP ML Difference PLL COStccccovveeiiiiiiieresie e 103
Table 4.171 SUM QPP ML Difference Network/Resource Usage Cost 103
Table 4.172 Rank-S RS algorithm NDCG QPP........cccccoveiieiiiieiiecec e 104
Table 4.173 NDCG QPP Stop POlCY PLL COSt......ccccuviiiiieieieniese e, 104

XXVi

Table 4.174 NDCG QPP Stop Policy Network/Resource Usage Cost.................... 104

Table 4.175 NDCG QPP ML Ratio PLL COSt........ccocvniiiiiiiieiee s 105
Table 4.176 NDCG QPP ML Ratio Network/Resource Usage Cost.............c......... 105
Table 4.177 NDCG QPP ML Difference PLL COStcccccoevviiiieniie e 106
Table 4.178 NDCG QPP ML Difference Network/Resource Usage Cost............... 106
Table 4.179 Rank-S algorithm SUM QPP ... 106
Table 4.180 SUM QPP Stop Policy PLL COSt.......ccccccevviviiiececce e, 107
Table 4.181 SUM QPP Stop Policy Network/Resource Usage CoSt..........c.cceen.... 107
Table 4.182 SUM QPP ML Ratio PLL COStcccooviiiiieieeieseee e 108
Table 4.183 SUM QPP ML Ratio Network/Resource Usage CoSt............ccceveneen. 108
Table 4.184 SUM QPP ML Difference PLL COSt......c.ccccovevvveeiieeiiececcree e 108
Table 4.185 SUM QPP ML Difference Network/Resource Usage Cost 109
Table 4.186 Adaptive-k RS algorithm NDCG QPPcccooviieiiiie e 109
Table 4.187 NDCG QPP Stop Policy PLL COSt........cccccveviiieieeiece e, 110
Table 4.188 NDCG QPP Stop Policy Network/Resource Usage Cost................... 110
Table 4.189 NDCG QPP ML Ratio PLL COSt......ccccoeiierieieiiese e 110

XXVil

Table 4.190 NDCG QPP ML Ratio Network/Resource Usage CoStccccvenee. 111

Table 4.191 NDCG QPP ML Difference PLL COSt.........ccoevvveeviiiiieciie e, 111
Table 4.192 NDCG QPP ML Difference Network/Resource Usage Cost............... 111
Table 4.193 Adaptive-k algorithm SUM QPP ..., 112
Table 4.194 SUM QPP Stop Policy PLL COSt.......ccccoiviiiieieieieneese e 112
Table 4.195 SUM QPP Stop Policy Network/Resource Usage Cost...........ccccuvene.. 113
Table 4.196 SUM QPP ML Ratio PLL COSt.......c.ccccviiiininieieie e 113
Table 4.197 SUM QPP ML Ratio Network/Resource Usage COSt............cccceeurneen. 113
Table 4.198 SUM QPP ML Difference PLL COStccccovvveriiieiiereiie e 114
Table 4.199 SUM QPP ML Difference Network/Resource Usage Cost 114
Table 4.200 TWF-IRF Resource Selection NDCG QPP Results.........c.cccoeeevveenneene. 117
Table 4.201 TWF-IRF Resource Selection SUM QPP Resultscccccoceevvniennens 118
Table 4.202 UiSP Resource Selection NDCG QPP Resultsccccocvevviieiviinnnnn 118
Table 4.203 UiSP Resource Selection SUM QPP Results.........ccccccvevieiiveecrieenene, 119
Table 4.204 Oracle Resource Selection NDCG QPP ResSUlts..........ccooveeeviveeineennne, 119
Table 4.205 Oracle Resource Selection SUM QPP ReSUItS.........cccoovveiveiiveieiinnnnnn 120

XXViil

Table 4.206 Baseline Resource Selection NDCG QPP Results..........cccccveveveiinenee. 120

Table 4.207 Baseline Resource Selection SUM QPP Resultsccceeveeeveeinnenee. 121
Table 4.208 TWF-IRF Resource Selection NDCG QPP Resultsccccceeveevvnennee. 121
Table 4.209 TWF-IRF Resource Selection SUM QPP Results...........ccccceeveiivenee. 122
Table 4.210 UiSP Resource Selection NDCG QPP Results.........cccccevovevviiriennnnne, 122
Table 4.211 UiSP Resource Selection SUM QPP Results........c..ccoceeevveeveiireeinneenne. 123
Table 4.212 Oracle Resource Selection NDCG QPP ResuUlts..........cccceeeveicveeinnenee. 123
Table 4.213 Oracle Resource Selection SUM QPP ReSUILScccoeveveeriviiriieennnnn, 124
Table 4.214 Baseline Resource Selection NDCG QPP ResSults...........cccccveveiieennene. 124
Table 4.215 Baseline Resource Selection SUM QPP Resultscccoevveeeveeinienee. 125
Table 4.216 ReDDE Resource Selection NDCG QPP Results..........ccccevveeeveeiviennee. 126
Table 4.217 ReDDE Resource Selection SUM QPP Resultscccccevveierieennenn. 126
Table 4.218 Rank-S Resource Selection NDCG QPP ReSUltScccccevvevrrieennnne. 127
Table 4.219 Rank-S Resource Selection SUM QPP Results............cccceeveeeveeinnenee. 127
Table 4.220 Adaptive-k Resource Selection NDCG QPP Resultsc.ccoeevvnee. 128
Table 4.221 Adaptive-k Resource Selection SUM QPP Results.........c.cccccovvieennen. 128

XXiX

Table 4.222 ReDDE Resource Selection NDCG QPP Results...........ccccccveviennnne, 129

Table 4.223 ReDDE Resource Selection SUM QPP ResuUlts..........cccccvvviiveeivieenene, 129
Table 4.224 Rank-S Resource Selection NDCG QPP Results...........ccceeeveeivveenene, 130
Table 4.225 Rank-S Resource Selection SUM QPP ReSUltScccccevveveeieninnnnns 130
Table 4.226 Adaptive-k Resource Selection NDCG QPP Results..........c.cccccvvvennenn 131
Table 4.227 Adaptive-k Resource Selection SUM QPP ResuUltSc.ccceevveeienenn 131

Table 4.228 NDCG@20 Score Comparison of Our Methods for RRF Merging

NDCG-QPP ...ttt ettt b ettt bbbt 133
Table A.1 FedWeb 2013 Data Engine LinkSccccccveveieeieiie i 145
Table A.2 Queries with Relevance Judgment Data............cccceoereneneninininieieen, 150

XXX

LIST OF FIGURES

FIGURES

Figure 2.1 Meta-search Engine ArchiteCtUrecccovvevviieiieeie e 6
Figure 2.2 Activity Diagram of Meta-search ENginNescccceevevveiveieciieiieseeieenn, 6
Figure 3.1 Activity Diagram of Incremental Query Forwardingccocceevvvenne 12
Figure 3.2 Activity Diagram of Incremental Query Result Merging...........c.ccccoeuvee. 14
Figure B.1 ReDDE NDCG@20 score for different L thresholds.ccccuen.ne. 151
Figure B.2 ReDDE P@20 score for different L thresholdsccccoeevvvveivennnne. 152

Figure B.3 ReDDE average number of selected engines for different L thresholds 152

Figure B.4 Rank-S average NDCG@20 for different B values..........c.ccccccvevvennnne. 152

Figure B.5 Rank-S average P@20 for different B values............ccccceeeveviiicineneane 153

Figure B.6 Rank-S average number of selected engines for different B values 153

XXXi

QBS
FedWeb
SRS
Cvv
ReDDE
UuM
Rank-S
SHIRE
CSUMG
CSUML
RRF
ISR

SP

LIST OF ABBREVATIONS

Query-based Sampling

Federated Web Search

Sample and Resample

Cue-validty Variance

Relevant Document Distribution Estimation
Unified Utility Maximization Framework
Rank SHIRE

Sampling Based Hierarchical Relevance Estimation
CombSUM with Global IDF

CombSUM with Local IDF

Reciprocal Rank Fusion

Inverse Square Rank

Stopping Policy

XXXii

CHAPTER 1

INTRODUCTION

Keyword-based search is the most popular way of finding information on the
internet. In 2014, Google alone has received two trillion queries which makes about
six billion queries per day. When initial search engines emerged, the information
need of the internet searchers was textual information and the results of these engines
were mainly textual web pages. Along with the technology improvement and cheap
hardware, the textual internet sites on the web are augmented with visual data such as
images and videos. Nowadays, many commercial search engine companies such as
Google, Bing, Yahoo and Yandex provide search interfaces for both textual and
visual data on any digital device that has access to internet such as computers, cell
phones, tablets and televisions. The most popular commercial search engines return
different results for the same search query as the indexed content and coverage of the
web search engines are quite diverse. The overlap of search indexes between Google
and Yahoo is found to be less than 45% [1]. The diversity of search results of most
used commercial search engines shows that the search result for a specific query
might be still improved by using federated search techniques. In the context of web
search, federated search systems, so-called meta-search engines, forward the query to

other web search engines (web resources) and merge the retrieved results.

There are three challenges for a meta-search engine to form the final results. The
challenges are the resource representation, resource selection and result merging. The
resources are typically represented using the sample index downloaded from
resources. Related work section reviews other resource representation solutions in
the literature. Meta-search engines use the web resources that focus on special area
and content, in addition to search engines that index general web content. Selecting

appropriate web resources relevant to a query is important to increase the

performance of the results. Once a meta-search engine selects which resources to
query, the query is sent to each of them and results are retrieved. Meta-search
engines usually retrieve the result snippets rather than the real result documents,
which makes the result merging step challenging because the information about a
result page on snippets is much less compared to the information on the actual result
page [2]. Other than the effectiveness issues, a meta-search engine encounters
response time and network usage challenges. For a meta-search engine, the time for
answering a query depends on response time of other web resources; and furthermore
it takes more network transfer time (and bandwidth) to forward the query and
retrieve the results compared to search engines that have a centralized index.

In this thesis, firstly we present a novel incremental query forwarding approach with
query performance prediction at each iteration rather than forwarding the query to all
selected web resources at once. By incremental query forwarding, we aim to reduce
the query response time as well as the network bandwidth usage of a meta-search
engine by stopping the query forwarding to more web resources if the query
performance prediction on intermediate merge lists indicates that further results are
not likely to increase the result quality. Secondly we introduce an incremental query
result merging approach for meta-search engines. In this approach, similar to general
meta-search engines, we forward query to all selected resources but terminate earlier
than waiting the response of the all resources if query performance predictors applied
on intermediate merge lists indicates that further resources will not bring any more
quality improvements. In order to show that our proposed approaches reduce the
query response time and/or network bandwidth usage, we evaluated the strategies
using the Federated Web (FedWeb) Search Track 2013 Dataset [30] with various
resource selection, result merging and query performance prediction methods from
the literature. Our results reveal that the proposed strategies can reduce the query
processing cost and/or bandwidth usage in comparison to the baseline strategy (i.e.,
forwarding the query to all the resources and waiting them all), while the quality of

the result is comparable to, or sometimes, even better than that of the baseline.

The rest of this thesis is organized as follows. Chapter 2 reviews the related work on
federated search engines. Chapter 3 presents the details of our incremental query
forwarding and result merging approaches, as well as describing our meta-search
engine architecture and components adopted from the literature. In Chapter 4, we
describe the dataset and experimental setup, and report the results of the experiments.
Finally, Chapter 5 concludes the thesis and suggests possible research directions for

future work.

CHAPTER 2

RELATED WORK

Meta-search engines provide single search interface for users. The query received
from users are forwarded to a set of available search engines and results of different
search engines are merged into a single final list. The software architecture of a
meta-search engine has been published on many previous works [3] [4] [5] [6] [7] [8]
[9] [10]. Compared to general purpose web search engines, meta-search engines do
not have an inverted index of vocabulary terms. Instead, a meta-search engine
contains a broker which forwards the query to other web search engines in parallel
and waits for the results from other search engines. When it receives the query results
from other search engines, it merges the results and prepares a single final list and
returns the final list to its users. Data flow in meta-search engines is shown in Figure
2.1. Broker receives the query from user and then it typically uses a sample index of
web search engines to select relevant search engines. Broker forwards the query to
selected web resources and gathers search results. Finally, the retrieved query result
lists are merged into single result list and returned to the user. Activity diagram of
the general meta-search engines is given in Figure 2.2. Meta-search engines
encounter with three information retrieval problems, which are resource

representation, resource selection and result merging [3].

User

+
Query Merged Query Results
Meta-search Query
Engine Broker Sample
Resource Index
Y Statistics
Query sults
Results Results
sults
Query Re Query
Query
Search Search Search ce s Search
Engine 1 Engine 2 Engine 3 Enginen
Figure 2.1 Meta-search Engine Architecture
Select N Retrieve
resources resultsof N
resources

Return merged
results

Merge
results of all
retrieved
resources

Figure 2.2 Activity Diagram of Meta-search Engines

Meta-search broker needs to select available web search engines. Selecting

appropriate search engines for the query requires meta-search engine to have

knowledge on available search engines. In cooperative federated search environment,

the search engines might provide the collection statistics to the meta-search engine.

Federated search performance on a cooperative search environment has been studied
in detail in previous works [11] [12] [13][14][15]. For meta-search engine case, it is
uncooperative search environment as the component search engines do not provide
information on their internal structure and statistic information on their central index.
In uncooperative search environments, meta-search engines obtain approximate term
statistics by gathering sample data of the component web resources. Callan and
Connell proposed QBS (query-based sampling) method to download sample
documents from such web resources [16]. QBS method starts with an initial single
term query which would return many documents. Other queries are formed from
words of the returned documents and querying is performed until enough number of
documents are downloaded to form a sample data collection of the web resource.
Shokouhi et al. showed that gathering more documents can increase the performance
of resource selection for large collections and using the rate of unseen document
terms, the authors chose the sample document size by adaptive selection [17]. Baillie
et al. used the decrement of the number of unseen vocabulary terms as the condition
for termination of query sampling [18]. The query sampling method usually misses
the documents that have infrequent terms thus the sample document collection lacks
the statistic for infrequent vocabulary terms. Using the idea of that the web resources
within similar content category share similar vocabulary statistic, Ipeirotis and
Gravano proposed the shrinkage method to improve the sample data with statics of
other web resources in similar category [19]. For better resource selection and result
merging, estimating the size of web resources is needed in addition to the term
frequency information on sample document collections. To estimate collection size
for federated search, Liu et al. proposed using a variant of capture history method
which was commonly used method in ecology to estimate population of species in an
area [20]. Capture-recapture method is based on the number of common documents
on two different sample document sets which are sampled from the web resources.
Alternative to variations of capture-recapture method, if web resources share term
frequencies for query, sample-resample (SRS) method estimates web resource size
by comparing document-term frequencies of sampled documents with the document-

term frequencies of web resource [21]. The statistics on sample document collection

and estimated size of web resources can be used as resource representation for

resource selection and result merging steps of federated search engines.

Meta-search engines typically process the sample data and prepare the statistics for
resource representation offline. On the runtime environment of a meta-search engine,
the first step is the resource selection according to the query. Using the statistics on
sample data collection of web resources, meta-search engines compute the relevance
between the web resources and search query and Rank-S the web resources
according to relevance. Usually, only a subset of web resources are selected and
query is only forwarded to these selected resources in order to decrease the network
bandwidth usage [3]. In cooperative environments where web resources share their
collection size and term frequencies , GIOSS algorithm is proposed for collection
selection by estimating the number of documents related to the query using
collection size and term frequency information [22]. For uncooperative
environments, CORI resource selection algorithm Rank-S resources using Bayesian
inference network and terms normalized by OKAPI term frequency normalization
[23]. Document-surrogate methods performs better on uncooperative environments
compared to lexicon based methods (such as GIOSS and CORI) that represent
resources as a single bag of words and computes similarity between the query and
the resulting big document model. Document-surrogate resource selection methods
additionally use the ranking of sample documents in sample document collection.
The relevant document distribution estimation (ReDDE) collection selection method
estimates the distribution of relevant documents on all web resources and Rank-S the
resources accordingly [24]. UUM, CRSC and SUSHI methods are proposed as
variants of ReDDE algorithm [25] [26] [27]. Alternative to document-surrogate
methods, the classification and clustering of web resources according to query can be
used to select resources. Arguello et al. proposed classification based method for

resource selection [28].

Meta-search engines receive query results as snippets and they need to merge them
into a final list in relevance order. Result merging is the final step on general meta-

search architectural design. In order to rank the results from different resources,

meta-search engine may assign scores to results. Such scores across different
resources should be normalized to be comparable with each other. CORI result
merging method uses the CORI collection selection scores in normalization of
document scores [23]. Fox and Shaw proposed CombSUM, CombMax and
CombMin methods to merge documents from different collections [31]. Document
scores should be normalized in order to use one of these combination methods.
MinMax, SUM and Virtual normalization techniques can be used to normalize
document scores [33] [34]. Result merging algorithms implemented for this thesis

are described in more detail in Chapter 3.

The closest work to ours in the literature is by Dreilenger et al. that proposes an
incremental query forwarding approach to reduce query processing load of their
meta-search engine, SavvySearch [48]. In their approach, the most relevant subset of
web search engines is queried and the result page is formed by the merged results of
them. The result page also contains search plan section where the rest of the engine
subsets are listed. The decision on forwarding query to subsequent subset of web
search engines is taken by the user instead of meta-search engine itself. One of the
subsets in search plan list is selected by the user and user query is forwarded to
selected subset and previous subsets of selected search plan, thus user also decides
incremental step. In our approach, we automatically decide whether to continue using
QPP scores of intermediate merge list with ad-hoc stop policies and ML models.

Query performance prediction can be done both before and after retrieving search
results. In this thesis, we focus on query performance prediction after retrieving
results. Cronen-Townsend and Croft propose clarity method to measure the
coherence between query and collection [35]. More distinction of the terms in the
retrieved document with the terms in the collection is accepted as better results.
Clarity measures the KL divergence between the language model of retrieved
documents and language model of collection. Variation of clarity method has been
published as Divergence From Randomness by Amati et al. [36]. Alternatively,

distribution of scores of retrieved documents can be used to predict query

performance [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]. Raiber and Kurland
used Markov Random Fields for learning to rank queries [47].

10

CHAPTER 3

UTILIZING QUERY PERFORMANCE PREDICTORS FOR EARLY

TERMINATION IN META-SEARCH

A meta-search engine forwards the user query to the other search engines and gathers
results from them. The processing time to gather these results and network
bandwidth usage are main costs of meta-search engines. The limit of the access count
on web resources is another cost and reaching the usage limit might make the web
resource unavailable for following queries. Typically, when the final merged results
are prepared, none of the results of some engines appear on the final list, so the time
and bandwidth usage for forwarding query to those engines are wasted. Decreasing
the number of search engines that the query is forwarded may decrease the response

time and the network bandwidth spent.

3.1. QPP Based Adaptive Incremental Query Forwarding in Meta-Search

In a typical meta-search engine, a subset of N web resources that are decided to be
more relevant to query are selected and the query is forwarded to all of the selected
resources at once. We propose incremental query forwarding to reduce the meta-
search engine costs. Query is forwarded to k number of resources which is a smaller
subset of selected resources. The results of k number of resources are retrieved and
merged into a single intermediate list. The query performance prediction method is
applied on this merged list and if predicted performance of the query results shows
that receiving more results from rest of the resources would not increase the quality
of the final list, the query forwarding is terminated; otherwise the query is forwarded
to the next k resources. Activity diagram of incremental query forwarding approach
is shown in Figure 3.1 and we provide pseudocode for our approach in Table 3.1.

11

In the pseudocode of the algorithm rankResources() and mergeResults() methods
can be implemented using the state-of-art methods described in Chapter 2. In
Sections 3.3 and 3.4 we describe resource selection and result merging methods we
employ in this thesis. The novelty of our approach is automatically deciding whether
to stop or access more resources using current merged list of retrieved results. In
order to decide stopping, we use the query performance prediction methods in
StopCond() method. In Section 3.5, we describe SUM based and NDCG based query
performance prediction methods that we implemented in this thesis. In Section 3.6,
we present the stopping policies constructed in adhoc manner and using machine
learning based on the QPPs. In the pseudocode, it can be seen that if StopCond()
method returns true, than retrieveResultsInParallel() method is not called for the

remaining resources, thus we do not forward query to the rest of the resources.

SelectN
resources

N
Forward query

to k resources
J

—
Retrieve

results of k

r r
esources

Merge
results of all
retrieved
resources

Query
Performance
Prediction

Return merged
results

Figure 3.1 Activity Diagram of Incremental Query Forwarding

12

Table 3.1 Incremental Query Forwarding Algorithm

1

2
3
4

(6]

O© 0 N O

10
11
12
13
14
15
16
17
18

Algorithm Incremental Query Forwarding
Input: q: query, k: step size
Output: m: merged result

start=1;
end = k;
stop < false
R[] € rankResources(q) // R[]: a ranked list of resources in descending order of
relevance to the query
r[] €emptyArray(|R|) // Empty array of result lists
while (end <= |R| and not stop)
I/ retrieve results from k resources
r[start .. end] < retrieveResultsInParallel(R, start, end)
/I merge & check for stopping condition
prev < emptyArray(end) // Empty array of size end
for (i=1; i<=end; i++)
| m < mergeResults(r, 1, i);
| prev[i] =m;
| if StopCond(qg, m, prev)
| | stop €< true;
| | break;
start <end +1;
end € end +k;
return m;

3.2. QPP Based Adaptive Incremental Query Result Merging in Meta-

In this approach similar to typical meta-search engine, we forward query to all
resources at once. Meta-search engines generally wait for the results from all selected
resources, and merges the results after receiving all results. In our approach, as early
as we retrieve results from a resource, we calculate query performance prediction
(QPP) value and decide whether to return the current merged list to the user before
waiting the rest of the resources. In this approach, we aim to reduce the query

response time compared to waiting all resources while preserving the result quality

Search

13

of the final merged list. Activiy diagram of incremental result merging is given in

Figure 3.2.

In the Table 3.2, the pseudocode of the incremental query result merging algorithm is
given. The method forwardQueryToResources() forwards the query to selected
resources and returns a handle to check whether a resource responsed. In the while
loop getNextAvailableResultList() method blocks until next resource responses and
returns the result list of the earliest responded resource. The previous result lists and
last result list are merged and StopCond() is checked. If StopCond() method returns
true indicating that further results will not improve the query result quality, the

merged list is returned, thus we do not wait for other resources to respond.

Forward query
Select N

to N resources
resources .

in parallel

A 4

Wait for
next
resource

Merge
results of
retrieved
resources

Query
Performance
Prediction

Return merged
results

Figure 3.2 Activity Diagram of Incremental Query Result Merging

14

Table 3.2 Incremental Query Result Merging Algorithm

N

© 00 N O

10
11
12
13
14
15
16
17
18

Algorithm Incremental Result Merging
Input: q: query
Output: m: merged result

stop < false

counter=1;
R[] € rankResources(q) // R[]: a ranked list of resources in descending order of
relevance to the query

ResponseHandle = forwardQueryToResources(R) //Query is forwarded to all
resources in parallel.
while (counter <= |R| and not stop)
//Get next downloaded result list. Block until a resource responses.
r[counter] = getNextAvailableResultList(ResponseHandle);
/I merge & check for stopping condition
prev € emptyArray(end) // Empty array of size end
for (i=1; i<=counter; i++)
| m < mergeResults(r, 1, i);
| prev[i] =m;
| if StopCond(q, m, prev)
| | stop €< true;
| | break;
counter € counter + 1;
return m;

3.3. Resource Selection

The number of resources which will be accessed is restricted by the predefined
number N for meta-search scenario, thus resource selection is an important step to
reduce the meta-search engine costs. Resource selection includes resource ranking
problem where resources are ranked according to relevance. Recently, in addition to
resource ranking the cut-off prediction problem is explored in the literature. Cut-off

prediction problem focuses on finding the exact number of resources that needs to be

15

accessed for a specific query. Our approach is orthogonal to cut-off prediction, but
can be integrated with cut-off-prediction methods by incrementally accessing
resources up to the predicted number. In this thesis we implemented 7 different
resource selection algorithms from the literature to evaluate the performance of our

proposed method. We briefly review these methods as follows:

3.3.1. TWF-IRF

TWEF-IRF algorithm is the best performing algorithm in FedWeb2013 resource
selection task. TWF score of a term is calculated as the sum of TF-IDF values in the
sample documents for each resource, thus each engine gets different TWF score for
single term [54]. IRF score is a variant of global IDF using a central sample index.
The sum of TWFXIRF scores of query terms are calculated for each resource and the

resources are ranked accordingly [54].

3.3.2. UISP

UiSP is the resource selection run submitted to FedWeb 2013 resource selection task
by University of Stavenger. It uses central sample index to rank the sample
documents and the relevance estimates of the sample documents are aggregated on
resource level [30][55].

3.3.3. Oracle

For each query we calculated the average relevance score of the resources using the
relevance judgement data. The resources are ranked according to the average
relevance score in descending order. Obviously, the ranking of this algorithm is the

ground truth for resource selection task.

16

3.3.4. FedWeb2013 Baseline

FedWeb 2013 Track provides baseline resource selection results to be used in result
merging task [30]. The organizers manually evaluated top 3 snippets from each
resource for each query and ranked resources according to partial evidence. We used
the resource ranking data provided by the organizers.

3.3.5. ReDDE

Relevant Document Distribution Estimation uses a global index on sample data to
rank the sample documents [24]. We calculated BM25 score using global IDF to
rank sample documents. In the original ReDDE, the score contribution of a document
d from a parent resource R is supposed to be Size(R) / SampleSize(R) values over the
sample ranking obtained for the query. Thus, for a given L value, different queries
may yield different number of resources and it is possible to use either all of these
resources, or again select top-N among them. In this thesis, we report the
experiments with the former, adaptive, strategy using a wide range of L values,
namely, from 100 to 1 billion documents on a log scale. In [24], it is recommended to
set K as the 0.3% of the sum of the collection sizes at each resource. In our setup,
since the actual collection size is in the order of billions for certain resources (like
Bing, Google, or YouTube), the sum of these yield a value of several billions, and
hence, we experiment with a wide range of values, from 100 to 100 billion on a log
scale. We see that the performance stabilizes after L = 10M and in this case ReDDE
selects around 35 resources on the average for the dataset used in this thesis. (see
Appendix B for the details of the threshold selection). The resources that do not bring
any sample documents within the threshold are eliminated directly, which makes this

algorithm an adaptive cut-off predictor according to the query.

17

3.3.6. Rank-S

Rank-S algorithm runs on the central sample index and computes vote of sample
document d for its parent resource as vote(d) = score(d)*B P where B is the base of
the exponential decay function and p is the rank position of the document [51]. The
cut-off is determined as the rank position of d where the vote(d) gets less than 0.0001
as described in [51]. We trained B value between [1.1 , 50] range and determined 1.1
as the best performing B value to be used in our experiments (see Appendix B for the
detailed experiments). Score of the resource is calculated as sum of the votes of the
sample document related to query on that resource. The resources that have no voted

document are eliminated.

3.3.7. Adaptive-k

Adaptive-k algorithm is a variant of ReDDE algorithm which restricts the sample
documents to contain all query terms [52]. The threshold L used in ReDDE is not
used any more since the documents are restricted to contain all query terms. The
score of the resources are calculated as in the ReDDE.top algorithm [52][53]. The

resources that do not contain a document with all query terms are eliminated.

3.4. Result Merging

The result merging step is crucial for our incremental query forwarding approach as
result merging is performed again for any retrieved resource in addition to
subsequent subset of retrieved resources. The result merging problem is widely
explored in the literature and we briefly described the result merging methods used in

meta-search setup in Chapter 2.

18

In this thesis, we implemented result merging methods from both rank-based and
score-based categories. For rank-based category we implemented ISR [56] and RRF
[29] algorithms which are reported to perform well on FedWeb 2013 dataset. For
score-based category we implemented CombSUM algorithm [29][30][32]. We
briefly review these methods as follows:

3.4.1. Oracle Merging

Using the relevance judgment data, the retrieved documents are sorted according to
their relevance score in descending order. This algorithm is implemented to show the
best possible performance for the result merging.

34.2. ISR

Inverse Square Rank (ISR) algorithm uses the rank of duplicated documents to
calculate a score for merging. Duplicates are basically detected by having same page

URL. The rank score is calculated as follows:

ISR(d) = N(d) * 3N D __2

e=1 R(e,d)? (3.1)

Where N(d) is the number of times a document appears on a results list (document
frequency or number of duplicates for a document), and R(e,d) is the rank of
document d on engine e [56]. The results are merged into final list in descending
order of the calculated rank score ISR(d).

3.4.3. RRF
Similar to ISR algorithm, Reciprocal Rank Fusion (RRF) algorithm uses only the

rank of the duplicated documents. The rank score is calculated as follows:

19

RRF(d) = V@ __2

e=1 k+R(e,d) (32)

Where N(d) is the number of times a document appears on a results list (document
frequency or number of duplicates for a document), and R(e,d) is the rank of
document d on engine e [29]. The results are merged into final list in descending

order of the calculated rank score RRF(d).
3.4.4. CombSUM

We implemented well-known CombSUM algorithm that computes the document
score of the results of retrieved resources and sums the document scores for the same

document[31]. The CombSUM score is computed as:

CombSUM(d) = Zgg) score(e, d) (3.3)

Where score(e,d) is the document score calculated for engine e