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Signature :

v



vi



ABSTRACT

HYDRO INFLOW FORECASTING AND VIRTUAL POWER PLANT PRICING IN
THE TURKISH ELECTRICITY MARKET

Çabuk, Sezer

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Sevtap Kestel

Co-Supervisor : Dr. Erkan Kalaycı

2016, 70 pages

Hydro inflow forecasting with most accurate quantitative models is a very crucial sub-
ject for effective hydro optimization, virtual power plant pricing, volume risk manage-
ment and weather derivatives pricing in the Turkish electricity market. Predicting in-
crease or decrease in hydro inflow, seasonal characteristics of hydrological years such
as wet, dry or normal, allow the decision-makers to economically use water for optimal
periods, quantify of volume risk and determine effective portfolio management strate-
gies. In this study, we focus on defining and pricing a hydroelectricity power plant as
a Virtual Power Plant (VPP). For pricing of this non-standard option, we worked on
inflow and price scenarios and optimization model with the possible real world con-
straints. For the hydro inflow forecasting that will be used in optimization model, we
applied Seasonal Autoregressive Integrated Moving Average model with Exogenous
Variable (SARIMAX), whereas lagged indexed precipitation data, having the highest
correlation with historical inflow data, is included as exogenous variable. In addition
to point forecast of hydro inflow, we generated various inflow scenarios by using the
distribution of model fit residuals as a stochastic processes for defined VPP. Moreover,
we worked on hydro optimization problem where objective function is maximizing
the expected value of generation by tracing to generated inflow and price scenarios.
Price scenarios are simulated by using the hourly shape of historical Day Ahead Mar-
ket (DAM) prices. As a result, we could analyze the optimization outputs according
to different price and inflow levels. For defined VPP, Volume at Risk measure is ex-
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pressed to explain the meaning of risky volume for the valuation of VPP. Furthermore,
in the last section of the study, by the help of the flexibility of optimization model, by
using different constraints, we worked on the constructions, solutions and evaluations
of different optimization cases as a significant contribution in academic literature and
common practice in current electricity markets.

Keywords : Hydro Inflow Forecasting, Hydro Optimization, Virtual Power Plant Pric-
ing, Energy and Commodity Market, Valuation and Decision in Electricity Market,
Volume at Risk
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ÖZ

HİDROELEKTRİK SANTRALLER İÇİN AKIM TAHMİNİ VE TÜRKİYE
ELEKTRİK PİYASASINDA SANAL HİDROELEKTRİK SANTRAL

FİYATLAMASI

Çabuk, Sezer

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Sevtap Kestel

Ortak Tez Yöneticisi : Dr. Erkan Kalaycı

2016, 70 sayfa

Türkiye elektrik piyasasında, hidroelektrik santrallerine gelen akım tahmininin kesinli-
ği yüksek olacak şekilde yapılması, hidro optimizasyonu, sanal hidroelektrik santral-
lerinin fiyatlanması, hacim risklerinin yönetimi ve iklim türev araçlarının fiyatlanması
için çok önemlidir. Hidroelektrik santrallere gelen akımdaki artış ve azalışı ve hidrolo-
jik döngüde mevsimsel karakteristiğin doğru tahmini sayesinde, portföy yönetimi daha
etkin bir şekilde yapılabilır. Bu çalışmada sanal bir hidroelektrik santralinin kısıtları
ile tarif edilmesi ve fiyatlanması üzerinde durulmuştur. Bu standart olmayan ürünün
fiyatlanması için de, akım ve fiyat senaryoları, ayrıca gerçeğe yakın kısıtlarıyla opti-
mizasyon modeli üzerinde çalışılmıştır. Optimizasyon modelinde kullanılacak akım
tahmini için Mevsimsel ARIMA (SARIMAX) Modeline başvurulmuştur. Modelde
gecikmeli ve endeksli yağış datası, akım datası ile en yüksek korelasyona sahip ola-
cak şekilde oluşturulmuş ve harici etkileyen olarak kullanılmıştır. Akım tahminine ek
olarak, model hatalarının dağılımı ve olasılıklı süreçler kullanılarak çeşitli akım serileri
oluşturulmuştur. Ayrıca farklı akım ve fiyat serilerini içeren hidro optimizasyon mo-
deli, amaç fonksiyonu üretimin beklenen değerini maksimize edecek şekilde kurulmuş
ve sanal hidroelektrik santralinin fiyatlanmasında kullanılmıştır. Fiyat senaryoları,
geçmiş market fiyatlarının saatlik karakteri kullanılarak simüle edilmiştir. Böylece be-
lirlenen farklı akım ve fiyat seviyeleri için optimizasyon çıktıları elde edilmiştir. Ayrıca
belirlenen sanal santral için Riske Maruz Hacim kavramı ile sanal santral değerlemesin-
de riskli hacim ifade edilmiştir. Son olarak da kurulan optimizasyon modelinin de
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esnekliği yardımıyla, farklı kısıtlar kullanılarak farklı optimizasyon problemlerinin
kurulması, çözülmesi ve değerlendirilmesi üzerinde çalışılmış ve bu sayede hem li-
teratüre hem de elektrik piyasası çalışmalarına katkı sağlanması hedeflenmiştir.

Anahtar Kelimeler : Hidro Akım Tahmini, Hidro Optimizasyonu, Sanal Hidroelektrik
Santrallerinin Fiyatlanması, Enerji ve Emtia Piyasası, Elektrik Piyasasında Değerleme
ve Karar Verme, Riske Maruz Hacim
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CHAPTER 1

INTRODUCTION

Turkish electricity market has been growing rapidly in terms of both demand side
and correspondingly supply side by regarding social and economical development in
Turkey. Among the reasons for electricity demand side growth, Gross Domestic Prod-
uct (GDP), Industrial Production Index (IPI), employment, labor force, export-import
volumes can be indicated as main ones. On the other hand, to meet this energy demand
having increasing trend, various energy sources have been used in Turkey. The com-
monly used supply sources for electricity are natural gas and LNG, hydro, import and
hard coal, lignite and wind. Moreover, in Turkey, investments for renewable energy
sources, i.e., solar, wind, geothermal, hydro, biomass etc., have also been on the rise
in recent years. Natural gas and LNG is the biggest energy source in Turkey, but it is
imported from foreign countries such as Russia, Iran, Azerbaijan, Algeria and Nigeria.
Therefore, hydraulic capacity can be said as the biggest territorial source in Turkish
electricity portfolio.

Hydroelectricity power plants (HEPPs) are separated into two main groups which are
Run-of-River (RoR) HEPPs and HEPPs with Reservoirs in Turkey. RoR HEPPs are
must-run, this means that these power plants are operated if it has inflow being higher
than minimum turbining level. The difference between RoRs and reservoirs is that
reservoirs can store water and dispatch it whenever the power plant operator wants.
Therefore, depending on the time and amount of inflow is minor for reservoirs’ elec-
tricity generation. However, RoRs are in need of inflow to generate electricity and this
implies that seasonality, drought and wetness affect a RoR’s generation severely.

In general scheme of trading side, since inflow affects electricity generation in both
reservoirs and RoRs, we can say that there is an obvious relation, i.e. negative correla-
tion, between inflow and system price. In similar way, when we consider for generation
side, for hydroelectricity producers, the aim is maximizing revenue by the optimization
of available source. This means that dispatch of a hydro electricity power plant should
be scheduled by regarding the producing energy at the relatively high priced hours [5].
However, inflow and price are uncertain and stochastic drivers in that problem. There-
fore, to optimize the hydro portfolio and have optimal scheduling, inflow and price are
needed to be predictable [23].

The water has an opportunity cost, since the water streams to the reservoirs at no cost
and the variable cost of hydro production is very low, but the amount of water available
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is limited and uncertain. Marginal cost of water (water value) depends on reservoir
volume, production capacity of the system, supply capacity and demand expectations,
expected spot market prices and predicted inflow amount to the reservoir [30].

Literature has many works about hydro inflow forecasting by using different methods
from various model families. Artificial Neural Network (ANN) and Fuzzy logic have
many applications in hydrology: Dawson and Wilby (1998) [11], Abrahart and See
(2000) [1], Khadr and Schlenkhoff (2014) [20]. Moreover, Thomas - Fiering Model,
firstly published by Thomas and Fiering (1962), is also applied for many case stud-
ies in literature. In Chapter 3, to predict monthly inflow to defined Virtual Dam,
Seasonal Autoregressive Integrated Moving Average Model with exogenous variable
(SARIMAX) is constructed. Actually, seasonal time series models are very common
in power markets. Especially, hydrological time series can be modelled by statistical
models with regarding the relation between observations. These models are gener-
ally successful to capture the hydrological cycles and seasonality for hydro inflow
forecasting. Seasonal Arima (SARIMA) Model also belongs to family of probabilis-
tic concepts and mathematical statistics [34]. According to Chow (1964), there is a
dependence between successive observations of hydrological data [9]. In the study
of Çevik (2002), monthly inflow data of Yeşilırmak River was modelled by Seasonal
ARIMA (SARIMA) model and obtained forecasts by means of this method [8]. In this
study, as a contribution, indexed and lagged precipitation data was used as an exoge-
nous variable obtained regarding the highest correlation with historical inflow series
in an addition to the constructed univariate seasonal model. On the other hand, we
applied Monte Carlo Simulation technique by using the parameters of model residu-
als’ distribution and addendum of point forecast and these simulations, we generated
inflow scenarios for the defined Virtual Hydro Power Plant. For time series analysis
and forecasting, R Programming (https://cran.r-project.org/) was used.

In Chapter 4, we study on hourly Day-Ahead-Market (DAM) prices. In electricity
markets, especially in wholesale and retail sides, pricing electricity is very important,
but difficult issue, as well. To supply the electricity demand, generation mix is formed
by regarding the marginal costs of the different fuel-typed power plants for each hour.
Generation mix influences electricity prices and pricesetter is at where the demand is
supplied. For electricity producers and traders, forecasting the value of electricity is
very essential to make profit. Electricity price simulations is one of the hot topics in the
energy markests. Burger et al. (2004)[7] worked on the Spot Market Price Simulation
(SMaPS) Model for Germany market price. Moreover, ARMA - GARCH and mean
reverting models were applied by Haario and Kauranne (2010) [19]. For monthly price
levels, we used historical electricity prices and for hourly shape modeling, we applied
the similar technique as inflow scenarios for stochastic behavior of electricity prices
with the purification of seasonality and 24 hour periodicity by using SARIMA model
constructed by for each month separately [7].

When we consider Virtual Power Plant (VPP) concept in hydro power business, as
an addition to physical asset of a hydroelectricity power plant, this virtual HEPP can
be represented as a non-standard product or an option. According to Zurborg (2010),
physical constraints and execution decisions belong to the physical part, when bidding
decisions and settlement are included in financial part of VPP concept [37]. Despite
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the fact that physical constraints can be included in VPP concept, VPP distinguishes
the technical operation from economic dispatch. Therefore, Virtual Power Plant can
be used for balancing or hedging portfolio by power traders. VPP option buyers get
a right to use capacity within the scope of defined contractual constraints, such as
marginal cost, operating hours, amount of capacity etc., without the operational risk
[6]. This concept is a brand new concept in Turkish electricity market and VPPs are
traded by electricity producers and power traders by means of bilateral agreements or
auctions mainly. In Chapter 4, by using the generated inflow and price scenarios, we
constructed an optimization model that helps to calculate fair value of defined VPP for
given time horizon by using Xpress Optimization Programming - XPress 7.7 - 64 Bit
(http://www.fico.com/en/products/fico-xpress-optimization-suite).

In Chapter 5, various optimization cases are obtained by means of the flexibility of
constructed optimization model. In this model, reservoir levels (initial, end, minimum,
maximum etc.) are assigned as parameters and could be changed. These changes are
categorized in cases and studied 4 different situations, namely Case 1 - 4.

This study aims to establish a complete work including the importance of hyraulic
capacity of Turkish electricity market, hydro inflow forecasting, optimization, pric-
ing and risk management for a virtual power plant. Hydroelectric power comprises of
run-of-river hydro power plants and dammed hydro power plants in Turkey and these
cover 35% of total installed capacity as of the end of 2015. Therefore, forecasting
inflow with high accuracy is very essential for effective hydro optimization, weather
derivatives, virtual power plant pricing and volume risk management.

The main objectives of this study can be listed as follows by summarizing;

• To forecast hydro inflow and generate inflow scenarios for a defined Virtual Power
Plant (VPP),

• To simulate electricity prices by using historical hourly shapes,

• To optimize hydraulic capacity of VPP by regarding inflow and price scenarios,

• To calculate the value of VPP as an financial contract,

• To generate various optimization cases by use of the constraints of optimization
model,

• To contribute to the literature of hydro inflow modeling, VPP pricing and volume
risk management by considering power traders and producers.
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CHAPTER 2

Turkish Electricity Market

Turkish energy sector consists of the electricity, natural gas, petroleum and LPG mar-
kets. These markets are regulated by Energy Market Regulatory Authority (EMRA).
Although, state-owned authority dominates these markets, privatized portion in the
markets is increasing year by year. In this chapter, we explain Turkish electricity mar-
ket in detail.

2.1 History of the Turkish Electricity Market

In 1902, first electricity generation in Turkey occurred by 2 kW-hydroelectricity power
plant in Tarsus and first remarkable electricity production was in İstanbul by means
of Silahtarağa Thermal Power Plant in 1913. Until 1970, there were some impor-
tant initiatives such as constructing power plants with miscellaneous dimensions, i.e.,
Çatalağzı and Tunçbilek thermal power plants, Sarıyar, Kemer, Hirfanlı, Demirköprü
HEPPs, and establishing govermental institutions ”Electric Power Resources Survey
and Development Administration (EİE)” and ”The Ministry of Energy and Natural Re-
sources of Turkey (MENR)” to regulate and control electricity market and production
[26].

In 1970, ”Turkish Electricity Administration Commission (TEK)”, which had caused
monopolistic electricity market in Turkey, was established. Generation, transmission
and distribution of electricity had been managed by TEK for 23 years. After that,
between 1994 and 2003, generation and transmission of electricity was carried out by
”Turkish Electricity Joint Stock Company (TEAŞ)” and distribution has separated and
administrated by ”Turkish Electricity Distribution Joint Stock Company (TEDAŞ)”.
By the way, in 1987, Karakaya Dam - 1,800 MW and in 1994, Atatürk Dam - 2,400
MW which has still the largest installed capacity in Turkey, were constructed. Hence,
the hydroelectricity portfolio started to develop substantially. However, after 1993,
because of the increase in the number of natural gas power plants, thermal capacity
started to rise.

Furthermore, in 1984, to incite the private sector for building and operating the elec-
tricity generation, ”Built Operate and Transfer (BOT) Model” was introduced. In this
model, electricity is produced by private investors and sold to the national grid, the
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state-owned electricity authority, or even to private end users [27].

In 2004, TEAŞ was divided into three subgroups; ”Turkish Electricity Generation Joint
Stock Corporation (EÜAŞ)”, ”Turkish Electricity Transmission Joint Stock Corpora-
tion (TEİAŞ)” and ”Turkish Electricity Trading Joint Stock Corporation (TETAŞ)”.
Moreover, TEDAŞ was separated into 21 distribution regions and as of 2013, share
transfer agreements were completed for privatization of them [32]. On the other hand,
in the generation side, privatization is proceeded, especially for thermal portfolio of
EÜAŞ, summarized in Figure 2.1.

Figure 2.1: History of Electricity Market in Turkey

By regarding recently published ”Balancing and Settlement Regulation” by Energy
Market Regulatory Authority (EMRA) (Law no. 6446), Turkish Electricity market
can be divided into four sub-market which are derivative market, day-ahead market
(DAM), intraday market and balancing power market (BPM) that will be explained in
next subsections in detail.

Derivative market is mid- and long-term market (weeks/ months/ years) in which op-
timization of production and meeting supply needs are essentials. This new market,
called Futures and Options Market (VIOP), is operated by Borsa İstanbul (BIST) and
regulated by EMRA, Capital Markets Board (CMB) and Competition Authority (CA).

Day-ahead market, which has short-term (D+1) time horizon, has been existing since
2011 and balance between generation and consumption is required. It is operated
by EPİAŞ and regulated by EMRA and CA. EPİAŞ is established in 2015 and its
shareholder structure has been consisting of 3 groups which are Type A, Type B and
Type C. 30% share is Type A and belongs to TEİAŞ, 30% share is Type B and belongs
to BIST and lastly, 40% share is Type C and is allocated to market participants and can
be transferred among the companies.
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The second new development in Turkish electricity market is intraday market (very
short-term/ hours) as of June 2015. Its market operator and regulators are same as
day-ahead market.

Finally, current balancing power market is operated by TEİAŞ for the security of sys-
tem. This is real-time market and regulated by EMRA and CA [14].

According to Installed Capacity 2015 Report of TEİAŞ [33], Turkish electricity gen-
eration portfolio, regarding companies, comprises of ’Independent Power Producers
(IPPs)’, ’State-owned Power Plants (EÜAŞ and power plants under EÜAŞ control)’,
’Build Operate and Transfer (BOT) Power Plants’, ’Build Operate (BO) Power Plants’,
’The Autoproducers’, ’The Transferring of Operating Rights (TOR) Power Plants’ and
’Unlicensed Power Plants’ displayed in Figure 2.2. As seen in the Figure 2.2, the
biggest share belongs to IPPs (59%) and increase in that share is expected in next
years for the liberalization of the market.

Figure 2.2: Installed Capacity by Companies in Turkey

2.1.1 The Physical Market

Since electricity is a non-storable commodity, for balancing the system, secure physical
delivery is very crucial. In Turkey, system operator is National Load Dispatch Center,
as a subsidiary of TEİAŞ and also manages ancillary services [14]. To understand
the physical market operations better, we will consider electricity market in five parts
which are bilateral agreements and contracts on physical delivery, day-ahead market
(DAM), balancing power market (BPM), intraday market, settlement and reporting.

Until the new regulation, Market Financial Settlement Center (PMUM) had been re-
sponsible for financial contracts and settlement. By means of the establishment of
EPİAŞ, all financial and settlement issues have been under EPİAŞ’s responsibility. For
day-ahead (D+1) operations, bilateral agreements, bid and offers, options, forwards
and contracts for physical electricity delivery are logged into the system of EPİAŞ at
the day before (D) from 09:30 until 11:30. After offer verification, market clearing and
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evaluation of objections, final notification of Market Exchange Price (TL/MWh) and
transaction volume are issued by EPİAŞ at the one day before at 14:00 [35]. MEP is
determined by the intersection of sales and purchase offers for each hour of day-ahead.
Merit Order Curve, that is a step-wise function, is occured for each hour via ranking
available sources of energy to supply the demand with the object of maximizing so-
cial welfare. Figure 2.3 is presented to explain the construction of Merit Order Curve
generically. According to offers of market participants, supply curve is occured and
where the demand intersects the supply curve, MEP is determined.

Figure 2.3: Market Exchange Price

Balancing power market (BPM) is real time market in that physical delivery is realized
and according to imbalance direction in the system (loading or deloading), System
Marginal Price (SMP) is determined as shown in Figure 2.4. By comparing the supply
and demand amount, loading and de-loading instructions are delivered to market par-
ticipants for the balance of system and according to the direction, SMP is determined
in this real time market.

Figure 2.4: System Marginal Price
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Intraday market, that has come newly, has real-time operation as well as balancing
power market, but also it provides trading opportunities to market participants. Last
issue for physical market is the settlement and reporting of DAM activities, BPM ac-
tivities and imbalances. Settlement of day-ahead market is daily basis, while balancing
power market, energy imbalance, ancillary services are settled and reported monthly.

2.1.2 The Financial Market

In financial market, there is no physical electricity delivery and it includes futures
and forward contracts as distinct from physical market, even though its short history,
financial electricity market is developing rapidly in Turkey [12].

According to Seim [30], the financial market in energy sector is generally used for
making profit from volatility in market price, managing risk, hedging price and con-
tributing to liquidity of the market.

In Over-The-Counter (OTC) market, in addition to physical deals, financial contracts
are also traded, where dealers are market makers and quote bid and ask prices them-
selves. As of March 2015, traded volumes in the OTC market are shown in Figure
2.5. Liquidity in OTC market changes month by month and does not have an obvious
character.

Figure 2.5: OTC Traded Volume

Another platform for financial power contracts in Turkish electricity market is Borsa
İstanbul Futures and Options Market (VIOP) where baseload electricity is traded and
regulated by Borsa İstanbul (BIST) in the current situation. By comparing these finan-
cial enviroments, VIOP is more transparent and developing market. As seen in Figure
2.6, there has been a sharply increasing trend in VIOP traded volume of baseload
electricity future contracts. While liquidity in VIOP is increasing because of the trans-
parency and accessibility, traded volume in OTC market decreases, e.g. decrease by
approximately half of traded volume is observed for April year over year.
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Other contracts traded in VIOP are listed in two main groups; Future Contracts that are
single stock future contracts, equity index future contracts, currency future contracts,
precious metals (gold) future contracts, commodity future contracts and foreign indices
future contracts and Option Contracts that are single stock option contracts, equity
index contracts and USD/TRY option contracts.

Figure 2.6: VIOP Traded Volume

2.2 Hydro Power in Turkey

In Turkey, hydraulic capacity is the second biggest source for electricity production.
The three largest Turkish dams are; 2,405 MW Atatürk Dam with estimated mean
annual generation of 6.98 TWh, 1,800 MW Karakaya Dam with approximately 6.68
TWh/year and 1,330 MW Keban Dam with 5.78 TWh annually electricity generation.
These dams, that are state run power plants, owned by EUAS and locate at Fırat River
basin.

Hyraulic installed capacity - both Run-of-River and Reservoir capacity - comprises
35% of Turkish electricity production portfolio as Figure 2.7 shows, and this equals
to approximately 66.6 TWh annual generation in 2015 [33]. Moreover, in Figure 2.8,
annual hydro generation is demonstrated with capacity factors that are calculated by
dividing annual generation by the annual hydro installed capacity.

Moreover, hydraulic is one of the energy sources that is supported by government. Ac-
cording to Renewable Energy Law (Law No: 6094, 2010), feed in tariffs and incentives
for electricity generation via utilization of renewable sources as in Table 2.1, such that
power plants commissioned during the period 2005 - 2015 will be able to benefit from
guaranteed prices for a period of 10 years.
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Figure 2.7: Installed Capacity by Fuel Types in Turkey

Table 2.1: Feed in Tariff for Renewable Energy Source Utilization
Type Feed in Tariff (US¢/ kWh)
Hydro 7.3
Wind 7.3
Geothermal 10.5
Bio-fuel (Incl. solid waste) 13.3
Solar 13.3

2.2.1 Relation between Hydro Inflow and Electricity Prices

As known, electricity prices depend on some fundamental parameters for example,
electricity demand, capacity development, climate changes, GDP growth etc. Addi-
tionally, hydraulic generation capacity plays an important role for electricity produc-
tion and there is an uncontrovertible relation between hydro generation and electricity
prices. Especially, must-run hydro power plants affect prices crucially because of tak-
ing place in the left side of Merit Order Curve. This implies that there is a negative
correlation between hydro inflow and electricity prices. When we compare the monthly
inflow to dams (Mio. m3) (TEİAŞ, 2016) and monthly electricity prices (TL/MWh)
(Market Financial Settlement Center, 2016), moves in the opposite directions can be
observed easily in the Figure 2.9. Therefore, in the market, ability to forecast hydro
inflow is one of the key factor for electricity pricing.

As seen from Table 2.2, 2014 was a dry year in that electricity generation from hyraulic
power is 20% lower than 2013 and this is an essential reason increase in electricity
prices in 2014.
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Figure 2.8: Annual Hydraulic Generation

Table 2.2: Annual Total Inflow to Dams vs. Average Electricity MEP
Date Inflow to Dams (Mio.m3) Market Exchange Price (TL/MWh)
2010 76,246 121.1
2011 65,559 125.7
2012 58,346 149.7
2013 51,794 150.0
2014 29,744 164.1
2015 58,947 137.9

2.2.2 Hydro Power Business in Turkey

In Turkey, importance of energy derivatives gets higher with the contributions of the
more educated market participants, ease in regulation, institutionalization, recognition
of derivatives, comprehension ability in risk management etc. [3].

While hydro power is significantly important in the generation portfolio of Turkey as
physical commodity, using hydro power as financial product has been developing day
by day. For instance, for electricity producers, optimizing capacity against the spot
market is a very important ability in financial area. Moreover, optimizing hydro asset
against the forward/future market and forming hedging strategies are other necessities
for producers. At the same time, liquidity of trade of hydro capacity as an option
has been increasing in Turkish electricity market. This optionality for capacity can be
considered as real option and Virtual Power Plant concept.

12



Figure 2.9: Relation between Monthly Hydro Inflow and Electricity Prices

Virtual Power Plant (VPP) is a new concept in Turkish electricity market and this can
be analyzed in two subgroups which are financial and physical parts. Financial part
of VPP consists of valuation of VPP, bilateral agreements/auctions and settlement. In
physical part, physical delivery and real-world constraints are the main subjects. When
the VPP buyer has a right to buy electricity by regarding the constraints of agreement,
VPP seller is obliged to provide electricity to counter party by generating (if production
is possible) or buying from market (if VPP seller is not a producer). Therefore, ability
to predict the value of VPP is very important and the target in this thesis is to construct
an optimization model giving the fair value of defined virtual hydro power plant with
respect to inflow and price scenarios.

2.3 The Flow of the Proposed Methodology

We represent the steps as a flow in general scheme in Figure 2.10 for better under-
standing of the target of the study. In fortcoming chapters, we explain these steps in
detail.

The organization of the thesis is as follows;

In Chapter 2, Turkish electricity market is explained in terms of history, regulation
and operation. In Chapter 3, to forecast the inflow to VHPP, SARIMAX Model is
constructed. In Chapter 4, we work on hourly Day-Ahead-Market (DAM) prices to
generate electricity price scenarios. By using the generated inflow and price scenarios,
we constructed an optimization model by using Mixed Integer Linear Programming.
In Chapter 5, various optimization cases are obtained by means of the flexibility of
constructed optimization model. In this model, by means of the change in reservoir
levels (initial, end, minimum, maximum) and operating hours, we obtain 4 different
optimization cases. In Case 1, VHPP values were obtained according to different initial
and end reservoir levels. In Case 2 and Case 3, VPP values were obtained according
to different initial, end and maximum reservoir levels. Lastly, in Case 4, operating
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hours were constrained and virtual hydro power plant was required to be dispatched
only at the peak hours (08:00-19:00/ all days in a week). Therefore, we had a chance
to analyze different VHPP values for the same inflow and price levels because of the
change in model constraints. To sum up, we obtain a flexible and reliable tool that
values defined VHPP.

Figure 2.10: The Flowchart of the Proposed Methodology
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CHAPTER 3

HYDRO INFLOW FORECASTING

An important factor in hydroelectricity power plant pricing is the hydro inflow be-
haviour during a year as mentioned earlier. For this reason, the knowledge on the
future realizations plays an important role in estimating the value of hydroelectricity
power plant. As it can be observed in Figure 3.1, the hydro flow occurences show time
and seasonal dependency. To forecast the future values, we fit a stochastic model using
time series methods. Road map is determined for hydro inflow modelling according to
the inferences from time series tests and analyses.

Figure 3.1: Hydro Inflow and Precipitation Series

Monthly average inflow data (m3/s) for the time period between October 1979 and
September 2011, obtained as a result of feasibility study of Arkun Dam and Hydro-
electricity Power Plant which is located on Çoruh River in provincial border of Erzu-
rum and Artvin, is taken as the real life data. Arkun Dam, whose construction was
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started in 2010, belongs to EnerjiSA Generation Company, has been in operation since
second quarter of 2014 and it has three 78 MW capacity main turbines and two 5.4
MW capacity environmental turbines, summing up to 244.8 MW. It has 14 km. energy
tunnel which is the longest tunnel in EnerjiSA projects and annual generation of Arkun
HEPP is approximately 780.1 GWh.

In the model, as an exogenous variable, we used Speedwell precipitation data that
consists of various stations with different weights with lag of 5 months. To get this
series, we used 52 precipitation stations over Turkey and chose 15 significant stations
with the weigths, that are given in Table 3.1, regarding to get highest correlation with
inflow series.

Table 3.1: Station Weights for Indexed Precipitation Series
City Name Station ID Weight
ALANYA TURK 17310 0.0249
ANAMUR TURK 17320 0.0656
BALIKESIR SYNOP WMO 17150 0.0571
BINGOL TURK 17203 0.0039
BODRUM TURK 17290 0.1293
CANAKKALE TURK 17112 0.0433
DALAMAN SYNOP WMO 17295 0.1939
EDIRNE TURK 17050 0.0334
FINIKE TURK 17375 0.1032
GIRESUN TURK 17034 0.0311
HOPA TURK 17042 0.0915
INEBOLU TURK 17024 0.0075
MUGLA TURK 17292 0.0232
SILIFKE TURK 17330 0.0459
SINOP TURK 17026 0.1463

3.1 Data Characteristics

Monthly average inflow of 384 observations and precipitation data obtained from 15
stations are analyzed based on certain characteristics which are required. In Table 3.2,
basic descriptive statistics can be found for both inflow and precipitation data.

Table 3.2: Descriptive Statistics
Property Arkun Inflow Series Precipitation Series
Mean 62.230 77.910
Standard Deviation 68.071 60.833
Skewness 1.7468 1.3202
Kurtosis 2.3573 1.7131
Shapiro - Wilk 0.7170 0.8737
Jarque - Bera 287.85 160.73
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According to descriptive statistics of series given in 3.2, distributions are not normal
and Pearson test [28], whose null hypothesis is that the data are sampled from normal
distribution, gives that series do not come from normal distribution.

Moreover, histograms of Arkun inflow and precipitation series in Figure 3.2 show also
that they are not normally distributed. Because of the log-normal characteristics of the
original data and to normalize distributions of series, logarithm of the data will be used
in modelling.

Figure 3.2: Histograms of Inflow and Precipitation Series

Analyzing stationarity of data is very essential for time series modelling. Stationarity
means that the probability distribution is the same for all starting values of t. If it is
not stationary, transformation of non-stationary data into stationary one is an important
step in time series approach (Box and Jenkins, 1976) [24].

For stationarity of main data, as an unit root test, Augmented Dickey Fuller Test
(Dickey and Fuller, 1979) is applied and also KPSS Test (Kwiatkowski, Phillips,
Schmidt and Schin, 1991) is used as an complement of the test for the presence of
unit root. For the time series modelling, data should be stationary and so not include a
unit-root.
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ADF (Augmented Dickey Fuller) Test [13] refers to

∆Xt = α + βt+ θXt−1 + ϕ1∆Xt−1 + ...+ ϕp−1∆Xt−p+1 + εt

where p is the lag order of autoregressive process for time series, α is constant, β is
the coefficient of the time trend and θ = 0 is the null hypothesis of the ADF test.

H0 : θ = 0 (i.e. Time series data is not stationary and it should be differenced)

H1 : θ < 0 (i.e. Time series data is stationary and there is no need to make the data
be differenced)

Table 3.3: ADF Test
Dickey-Fuller Lag order p-value

Inflow Series -13.4285 7 0.01
Precipitation Series -13.6006 7 0.01

Since p-value is smaller than 0.05, the null hypothesis of the ADF test is rejected for
both hydro inflow and precipitation series. This means that inflow and precipitation
data do not have unit root, i.e. they are stationary according to ADF test.

Similarly, KPSS test is a commonly used unit root test to check stationary in time
series (Kwiatkowski, et al., 1991) [22]. Its null hypothesis is the inverse of ADF test
as follows;

H0 : θ = 0 (i.e. Time series data is stationary and there is no need to make the data
be differenced)

H1 : θ < 0 (i.e. Time series data is not stationary and it should be differenced)

Table 3.4: KPSS Test
KPSS Level Truncation Lag Parameter p-value

Inflow Series 0.051 4 0.1
Precipitation Series 0.044 4 0.1

Since p-value is greater than 0.05, the null hypothesis of the KPSS test is accepted.
This means that both hydro inflow and precipitation data do not have a unit root, i.e.
they are stationary according to also KPSS test.

As a result of stationarity tests, at the 0.05 level of significance, we can say that Arkun
inflow and precipitation data are stationary and we do not need differencing the inflow
and precipitation data.

For the time series process {Xi,∀i ∈ τ}, the autocorrelation function (ACF) is an
important indicator of the serial correlation and is represented as
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ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
(3.1)

for all s, t ∈ τ where the autocovariance function is defined as follows (Shumway,
2011) [31]. Here,

γ(s, t) = cov(Xs, Xt) = E[(Xs − µs)(Xt − µt)] (3.2)

The ACF is used to measure the linear predictability of Xt by regarding just Xs. By
taking s = t+k, we can say that this is the ACF of lag k of the time series. A 10-years-
lag autocorrelation function in Figure 3.3 of original inflow data represents the annual
hydrological and seasonal cycle clearly. Moreover, ACF of precipitation series Figure
3.3 also shows the seasonality in data. Therefore, the ACF graph can be interpreted as
that in forecasting model, seasonality must be taken into the account.

Figure 3.3: Autocorrelation Functions of Inflow and Precipitation Series
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The partial ACF (PACF) gives the autocorrelation betweenXt andXt+k with the linear
dependence of Xt on Xt+1 through Xt+k−1 removed [4]. Figure 3.4 shows that both
inflow and precipitation series are partially autocorrelated for 12 months - 1 year.

Figure 3.4: Partial Autocorrelation Functions of Inflow and Precipitation Series

3.2 Seasonal ARIMA Model with Exogenous Variable

When seasonal component that repeats every s observations is observed in the series,
a seasonal time series model is appropriate for forecasting. Especially, monthly hydro
inflow data has seasonal component obviously regarding hydro inflow cycle, especially
from beginning of October to end of September.
To capture seasonality component, SARIMA models are incorporated.

Let xt ∼ ARIMA(p, q, d)x(P,Q,D)s, then

ARIMA(p, q, d)x(P,Q,D)s ; ΦP (Bs)φ(B)∇D
s ∇dxt = ΘQ(Bs)θ(B)ωt (3.3)
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ΦP (Bs) = 1− Φ1B
s − Φ2B

2s − ...− ΦPB
Ps

ΘQ(Bs) = 1 + Θ1B
s + Θ2B

2s + ...+ ΘQB
Qs

where ωt is the usual white noise process. The ordinary autoregressive and moving
average components are represented by polynomials φ(B) and θ(B) of orders p and q
respectively, and seasonal autoregressive and moving average components by ΦP (Bs)
and ΘQ(Bs) of orders P and Q, and ordinary and seasonal difference components by
∇d = (1−B)d and ∇D

s = (1−B)D [31].

When we use SARIMA model with exogenous variables y(k,t), the mathematical rep-
resentation becomes;

ARIMA(p, q, d)x(P,Q,D)s ; ΦP (Bs)φ(B)∇D
s ∇dzt = ΘQ(Bs)θ(B)ωt (3.4)

zt = xt − β1y(1,t) − β2y(2,t) − ...− βby(b,t), (3.5)

This model is called as SARIMAX, as it contains exogenous variable. In SARIMAX
model, zt is the auto-correlated regression residuals where xt is the observed output at
time t. y(k,t) represents the kth exogenous input variable at time t and b is the number
of exogenous input variables. The ordinary autoregressive and moving average com-
ponents are represented by polynomials φ(B) and θ(B) of orders p and q respectively.

3.3 Parameter Estimation and Inflow Scenarios

Based on the ACF - PACF properties plausible models are fitted and the best fitting
model is selected based on AIC statistics.

Table A.2 shows that ARIMA(3, 0, 0)(4, 0, 0)12 with drift is the best one.

Best fit in Figure 3.5, obtained by model ARIMA(3, 0, 0)(4, 0, 0)12 with drift, is il-
lustrated for the in-sample data. The model has σ2 = 0.07219 and log likelihood =
-55.41. AIC = 130.82, AICc = 131.41 and BIC = 170.32. In the best model, ordinary
and seasonal autoregressive parameters are found as p = 3 and P = 4 with s = 12.

After finding the best model fit for inflow whose parameters are demonstrated in Table
3.5 where exogenous is precipitation series, we analyze if the model is appropriate by
performing residual analyses. By regarding the autocorrelation function of residuals
in Figure 3.6 and applying Bartels test whose null hypothesis is that the sequence is
distributed randomly, we can say that residuals are distributed in random manner [2].
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Figure 3.5: Model Fit

Table 3.5: The Parameter Estimations of SARIMAX
Coefficient s.e. P-values

AR1 0.6811 0.0529 0.000000e+00
AR2 -0.0934 0.0628 1.371190e-01
AR3 0.1632 0.0525 1.902464e-03
SAR1 0.1233 0.0528 1.954585e-02
SAR2 0.3243 0.0491 3.841327e-11
SAR3 0.3387 0.0506 2.172418e-11
SAR4 0.1750 0.0546 1.347480e-03
Intercept 3.6600 0.6410 1.132342e-08
Exogenous 0.0137 0.0229 5.490811e-01

The residuals given in Equation (3.6),

et(h) = Yt+h − Ŷt(h) (3.6)

should be checked for efficiency reasons [34]. Several error measures listed below are
calculated and presented in Table 3.6.

Mean Error (ME):
1

n

n∑
t=1

et

Root Mean Square Error (RMSE):√√√√ 1

n

n∑
t=1

(Ŷt − Yt)2
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Mean Absolute Error (MAE):

1

n

n∑
t=1

|(Ŷt − Yt)|

Mean Absolute Percentage Error (MAPE):

1

n

n∑
t=1

|(Ŷt − Yt)|
Ŷt

× 100

Table 3.6: Training Set Error Measures
Error Measure Value
ME 0.000304
RMSE 0.2686861
MAE 0.2028392
MPE -0.508461
MAPE 5.471788

To minimize error between actual and forecasted values, seasonal time series model
applies the theoretical basis of minimum mean squared error [21].

To check if the serial correlation disappears, we apply Ljung - Box test to ensure that
residuals are independently distributed. The Q statistics given in equation 3.7,

Q = n(n+ 2)
k∑

h=1

ρ̂2h
n− h

(3.7)

where ρh is the autocorrelation at lag h, k is the number of tested lags and n is the
sample size and whose distribution is Chi-square.

Since χ2 = 8.835, df = 11, p-value = 0.6371, the null hypothesis of Ljung - Box test is
fail to be rejected by significance level of 0.05.

To check the normality of residuals, Shapiro - Wilk normality test (Shapiro and Wilk,
1965) is used. W statistics in equation 3.8 allows us to check whether the sample
follows normal distribution.

W =
(
∑n

i=1 αiyi)
2∑n

i=1(yi − ȳ)2
(3.8)

where αi are coefficients and come from a normal distribution by regarding means,
variances and covariances of the order statistics of a sample whose size is equal to n.
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Figure 3.6: Residuals of the Estimated Model

According to Shapiro - Wilk normality test, residuals are not normally distributed and
also as seen in Q-Q plots in Figure 3.8 [29]. Furthermore, Pearson test justifies non-
normality.

Residuals are accepted as t distributed as the result of analyses as shown in Figure 3.9.
By using the parameters given in Table 3.7, we estimate parameters of t ditribution
[10].

Table 3.7: Statistics of Residuals
Residuals T-Residuals Est. T-Residuals sd

Mean 0.0003039 -0.0135316 0.01346685
Standard Deviation 0.2690365 0.22650388 0.01550268
df - 6.61952827 2.49587810
loglik - -34.59595
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Figure 3.7: ACF and PACF of Squared Residuals of the Estimated Model

To check the presence of the heteroscedasticity, autocorrelation and partial autocorre-
lation functions of squared residuals, shown in Figure 3.7, are analyzed. Furthermore,
we applied Lagrange Multiplier (LM) test for autoregressive conditional heteroscedas-
ticity (ARCH) for model residuals and null hypothesis of test, which is no ARCH
effects, is accepted according to p-value test for 0.05 significance level.

By using SARIMAX model for inflow data, we obtain monthly point forecast which
is shown in Figure 3.10. On the other hand, randomness of residuals are proven and
parameters of t distributed fit are estimated to generate inflow scenarios. Based on fit-
ted model, a simulation analysis is performed the 100 inflow scenarios. It is clear that
hydrological pattern is observed in point forecast of 12-months inflow and generated
inflow simulations. Among these scenarios shown in Figure 3.11, 15 inflow scenar-
ios, that are ranked in 80% confidence interval of point forecast, have been used in
optimization model.
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Figure 3.8: Q - Q Plot to Test Normality of Residuals

Figure 3.9: Cullen and Frey Graph of Residuals
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Figure 3.10: Point Forecast by using SARIMAX Model (m3/s)

Figure 3.11: Inflow Scenarios (m3/s)

27



28



CHAPTER 4

VIRTUAL POWER PLANT (VPP) PRICING

Virtual Power Plant requires also the determination of price scenarios which constitute
the input for hydro optimization. In this section, by using the historical spot electricity
market prices, price simulations are obtained.

4.1 Data Definition

For price simulations, historical hourly Day Ahead Market (DAM) prices observed be-
tween 2011 and 2015 are used. Among 43,800 observations, 29/02/2012 and national
and religious holidays are extracted. For hourly shapes, we separate prices according
to months by using the average of five years as shown in Figure 4.2. When we analyze
the historical electricity prices, we confront some characteristics which are generally
observed in electricity prices such as seasonal patterns, periodicities and spikes [7].
Because of the Natural Gas curtailment for electricity generation in the history, that
is insufficiency in the NG supply for the NG power plants, some spikes (e.g., 2000
TL/MWh) are observed in Figure 4.1(a). To eliminate spikes, we use the distribution,
mean and standard deviation of the historical data and obtain truncated hourly prices
as seen in Figure 4.1(b). Two-sided three sigma deviations from average value of price
series are used as truncation limits and truncated price series, which has statistics in
Table 4.1, is obtained.

Table 4.1: Descriptive Statistics
Hourly Prices Truncated Hourly Prices

Minimum 0.0 0.0
1st Quarter 120.0 120.0
Median 150.0 150.0
Mean 145.5 145.1
3rd Quarter 177.0 177.0
Maximum 2000.0 292.0
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Figure 4.1: Hourly Prices vs. Truncated Hourly Prices

4.2 Price Scenarios

In this section, to generate 100 price scenarios displayed in 4.4, we generate 25 dif-
ferent price scenarios randomly for each month by regarding the monthly price dis-
tribution and for each one of these 25 scenarios, we simulated 4 hourly shape curves
by using SARIMA model for deseasonalization and elimination of the periodicity. For
these models, some important graphs are shown in detail at the end of Chapter and
SARIMA model selections for each months are found in Appendix A. For each month,
best SARIMA fit is obtained and after deseasonalization, by using the model noises,
we combined monthly simulations by adding successively and price series for 8760
hours are generated.
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Figure 4.2: Hourly Price Shapes by using the Average of 5 Years (2011-2015)

4.3 Hydro Optimization

In this part, constraints in the optimization problem is defined and expressed for VHPP
that will be priced in hourly granularity. For inflow to virtual reservoir, inflow scenarios
generated in Chapter 3.3, are utilized. Moreover, price scenarios obtained as mentioned
in previous section, will be used in optimization.

Hydro optimization problem is constructed by using volume levels of reservoir Vk,
forecasted inflow series to reservoir Ik by means of integrated inflow forecasting model,
market price simulations pk, electricity generation Gk, marginal cost for VPP Ck and
spillage of water Sk where k = 1, ..., T denoting the time period. Spillage of water
is an undesirable condition for the hydro optimization. Since it is favorable that the
spillage should converge to zero, a penalty is used as a constraint [25].

The volume levels for each k is a function of a period ahead volume, inflow, electricity
generation and spillage of water as given in Equation (4.1).
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Vk = Vk−1 + Ik −Gk − Sk

Vk−1 = Vk−2 + Ik−1 −Gk−1 − Sk−1

.

.

VT = VT−1 + IT −GT − ST . (4.1)

Therefore, the objective function is

max

T∑
i=1

E[(pi − Ci).Gi −M.Si] (4.2)

s.t 0 ≤ Gi < Gmax < Gcap,

0 ≤ Vmin ≤ Vi < Vmax, i = 1, 2, ..., T ,

where M is sufficiently large, with the Initial and End Reservoir Levels V1 and VT , re-
spectively. Maximum Level Vmax, Minimum level Vmin, Maximum generation Gmax,
Installed capacity Gcap and time horizon of the option 1, ..., T are given in any special
contract as specific constraints.

Mixed Integer Linear Programming

Mathematical Programming is applied for the solution of an optimization problem
which consists of a function of many parameters and is subject to a set of constraints.
Mixed-Integer Linear Programming (MILP) is a member of the mathematical pro-
gramming family, that restricts the decision variables to be integer during the selection
of optimal solution as a process of minimizing or maximizing a linear function. The
main steps of MILP can be summarized as identification of decision variables, defini-
tion of objective function and determination of constraints [18]. We apply MILP for
optimization problem because of the fact that, dispatch problems have mixed linear-
integer structure [15].

Hourly hydro optimization for defined VPP is constructed for a hydro year (8760
hours) by regarding the generated inflow and price scenarios under the given con-
straints by using MILP and Xpress Solver [16]. Because of the hourly bidding in the
market, model is constructed discretely and it gives the optimized generation curve by
regarding the objective function.

Generated 15 inflow I0, ..., IT and 100 price p1, ..., pT series for a time span, T =
8760 are employed in the optimization model. Price scenarios are ranged according to
increasing annual average of series where inflow scenarios are arranged by considering
the increasing annual sum. This means that, we expect the highest VPP value at the
intersection of the last price scenario and the last inflow scenario among all scenarios.
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For a hundred price and one inflow scenario, run time come out approximately 40
minutes. However, parallel runs are possible in Xpress Solver. Therefore, we obtain
1500 VPP values approximately in 2 hours.

4.4 VPP Pricing

MILP is the most flexible method to express real-world constraints in the optimiza-
tion. Moreover, this approach is suitable to calculate option delta and implement the
dynamic delta hedging for VPP [6].

The optimization outputs (Base Case) for 8760 hours according to given inflow and
price scenarios for defined VPP with the assumptions as given in Table 4.2; In Base
Case, we assume that Vmax is 70.2 GWh by regarding the maximum stored energy of
defined VPP, V0 and VT are assumed as equal to half of Vmax as given in Table 4.2.

Table 4.2: Base Case - Optimization Assumptions
Initial Uptime 1
Minimum Uptime 1
Year End 8760
Days 365
Initial Level (GWh) 35.1
End Level (GWh) 35.1
Maximum Level (GWh) 70.2

For each VPP value, Zi,p, that is obtained for inflow scenarios i = 1, ...,m and price
scenarios p = 1, ..., n, fair value of VPP is calculated as in equation (4.3)

V PP =
1

m.n

n∑
p=1

m∑
i=1

Zi,p. (4.3)

For VPP pricing as a real option, we need to consider extra concepts. Intrinsic and
extrinsic values are some of these. According to philosophers, ”Intrinsic value of
something means the value that something has “in itself,” or “for its own sake,” or “as
such,” or “in its own right.” Extrinsic value is value that is not intrinsic” [36].

Under the light of definition of intrinsic and extrinsic values of a hydro power plant,
we interpret the calculations of these values as follows: VPP value for the expected
market price curve gives the intrinsic value of VPP. Moreover, by subtracting intrinsic
value from fair value of VPP, an extrinsic value for VPP is attained.

According to each price and inflow scenario, we obtained VPP values in TL that are
given in Figure 4.5 for Base Case constraints as a surface. Moreover, to demonstrate
the sensitivity of VPP values, for the first price scenario, change in VPP values accord-
ing to inflow scenarios can be observed in Figure 4.6 and for the first inflow scenario,
change in VPP values according to price scenarios can be observed in Figure 4.7. The
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minimum VPP value is gotten at the intersection of the first price and the first inflow
scenarios. As mentioned before, price scenarios are sorted ascendingly according to
annual price average. Whereas, inflow scenarios are sorted ascendingly according to
annual total inflow amount. Therefore, we expect the minimum value at the intersec-
tion of first scenarios and the maximum value at the intersection of last scenarios. In
Figure 4.5, the inflow scenario axis shows that higher inflow level leads to higher VPP
values as expected. On the other side, when we analyze VPP values according to price
scenario axis, we conclude that monthly price scenarios are more significant than shape
scenarios for the change in value.

4.5 Volume at Risk

For a hydroelectricity power plant, we have both price and volume risks. Price move-
ments affect the value of generated electricity and this must be taken into the account
in risk management point of view [17]. We need to determine between which levels
electricity prices can oscillate and in a defined confidence interval, to which level the
value of VPP can go down.

Figure 4.3: Volume at Risk Demonstration

On the other hand, Volume at Risk concept is expressed to define risky volume that
are calculated by means of the distribution of VPP values obtained from optimization
model. By considering the distribution, in 95% confidence interval, deviation from
average value is regarded, e.g., 1.645 is the coefficient of subtracted deviation as seen
in Figure 4.3.

By using this methodology, we could calculate Volume at Risk for each optimization
case. Inspiring from the philosophy of VaR, we propose the similar measure, called
Volume at Risk (VoaR).
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Figure 4.4: Price Scenarios (TL/MWh)
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Figure 4.5: Surface of VPP Values for Base Case

Figure 4.6: VPP Values according to Inflow Scenarios

Figure 4.7: VPP Values according to Price Scenarios
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Figure 4.8: Some Important Plots of January Price and Its Modeling

Figure 4.9: Some Important Plots of February Price and Its Modeling
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Figure 4.10: Some Important Plots of March Price and Its Modeling

Figure 4.11: Some Important Plots of April Price and Its Modeling
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Figure 4.12: Some Important Plots of May Price and Its Modeling

Figure 4.13: Some Important Plots of June Price and Its Modeling
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Figure 4.14: Some Important Plots of July Price and Its Modeling

Figure 4.15: Some Important Plots of August Price and Its Modeling

40



Figure 4.16: Some Important Plots of September Price and Its Modeling

Figure 4.17: Some Important Plots of October Price and Its Modeling
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Figure 4.18: Some Important Plots of November Price and Its Modeling

Figure 4.19: Some Important Plots of December Price and Its Modeling
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CHAPTER 5

VARIOUS CASES IN HYDRO OPTIMIZATION

As the scenarios are derived and quantified for Base Case, some variations on the
parameters are selected and categorized in 4 groups to illustrate the sensitivity of the
optimization modelon VPP values. The outline of the cases are presented in Table 5.1.

Table 5.1: Parameter Values for Base and Other Cases
Base Case Case 1 Case 2 Case 3 Case 4

Initial Uptime 1 1 1 1 1
Minimum Uptime 1 1 1 1 1
Year End 8760 8760 8760 8760 8760
Days 365 365 365 365 365
Initial Level (GWh) 35.1 0 17.6 0 35.1
End Level (GWh) 35.1 0 17.6 0 35.1
Maximum Level (GWh) 70.2 70.2 35.1 35.1 70.2
Operating Hours All All All All Peak

5.1 VPP Values Under Case 1

In Case 1, we assumed that Vmax is same as Base Case, on the other hand, V0 and VT
are equal to zero as given in Table 5.1. This implies that VPP is defined as empty at the
initial time, so generation is possible by means of the inflow for initial time regardless
the price levels.

Optimization results with these assumptions are shown in Figure 5.1. In this case, the
aim is to compare the value of the defined hydro virtual power plant in case of that
initial and end reservoir levels are zero, with the Base Case results. Since for the initial
generation we need to inflow and price scenarios stay the same, we expect that VPP
values in Case 1 are lower than Base Case. Thus, Figure 5.1 also shows that VPP
values are lower than ones in Figure 4.5.

Moreover, another difference in Case 1 from Base Case, increase in inflow amount
cause sharper increases in VPP values. On the other hand, in lower price levels, VPP
values are smoother and have similar sight with Base Case, but at the higher price

43



levels, because of the generation decision (holding water for the higher priced hours or
generating electricity), transitions between price scenarios are also sharper than Base
Case. Again in this case, shape scenarios creates small differences for VPP values.

5.2 VPP Values Under Case 2

In Case 2, we assume that Vmax is the half of Base Case, and V0 and VT are equal to
the half of Vmax as given in Table 5.1.

Optimization results with these assumptions are shown in Figure 5.2. In this case,
the aim is to compare the value of the defined hydro virtual power plant in case of
that maximum reservoir level is half of the maximum reservoir level in Base Case.
Moreover, initial and end reservoir levels in Case 2 are also the half of initial and end
reservoir levels in Base Case.

In Case 2, since maximum reservoir level is lower, holding water for higher priced
hours is constrained by the half of maximum reservoir level. This means that we
expected also lower VPP values than Base Case. By comparing with Case 1, because
of the non-zero initial and end levels, smoother surface for VPP values can be seen in
Figure 5.2. However, in this case also, at the intersection of higher price and higher
inflow scenarios, VPP values are increasing progressively.

Change in constraints leads to change in intrinsic and extrinsic values of VPP, despite
the price scenarios are same as in Base Case.

5.3 VPP Values Under Case 3

In Case 3, we assume that Vmax is the half of Base Case, and V0 and VT are equal to
zero as given in Table 5.1. This implies that VPP is defined as empty at the initial time,
so generation is possible by means of the inflow for initial time regardless the price
levels.

Optimization results with these assumptions are shown in Figure 5.3. In this case,
the aim is to compare the value of the defined hydro virtual power plant in case of
that maximum reservoir level is half of the maximum reservoir level in Base Case.
Moreover, initial and end reservoir levels in Case 3 are zero.

Since for the initial generation we need to inflow and price scenarios stay the same, we
expected that VPP values in Case 3 are lower than Base Case. Thus, Figure 5.3 also
shows that VPP values are lower than ones in Figure 4.5.

Moreover, in Case 3, increase in inflow amount cause sharper increases in VPP values
as in Case 1 because of the zero initial and end reservoir levels. On the other hand,
in lower price levels, VPP values are smoother and have similar sight with Base Case,
but at the higher price levels, because of the generation decision (holding water for the
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higher priced hours or generating electricity), transions between price scenarios are
also sharper than Base Case like Case 1.

5.4 VPP Values Under Case 4

In Case 4, we assume that Vmax, V0 and VT are same as Base Case, as given in Table
5.1. In that case, we assumed that VPP could produce electricity at only peak hours
(08:00-19:00/ all days in a week).

Optimization results with these assumptions are shown in Figure 5.4. In this case, we
compare the value of the defined hydro virtual power plant in case of that operating
hours are constrained. In Case 1, Case 2 and Case 3, constraints are changed for
reservoir levels. However, at that case, we assume that VPP can produce electricity at
only peak hours (08:00-19:00/ all days in a week).

As seen in Figure 5.4, since operating hours are constrained and at the almost each
price scenario, we have similar increasing shape according to inflow scenarios. When
we analyze the hourly generation, since in the optimization model, a penalty is imposed
for spillage, operation in full capacity is observed frequently. However, not to operate
in offpeak hours leads to decrease in VPP value.

At last, as a summary, VPP values for each case are shown in Table 5.2. By using
hourly price forward curve or market expectation, intrinsic value can be calculated for
VPP. We need to note that if a stock has significantly lower intrinsic value than market
value, this means that the value of stock is overestimated. Therefore, according to trade
side, i.e option buyer or seller, intrinsic value must be taken into the account.

Table 5.2: VPP Values for Optimization Cases
Mio. TL Base Case Case 1 Case 2 Case 3 Case 4
VPP Value 138.9 125.5 130.8 125.1 120.6
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Figure 5.1: Surface of VPP Values for Case 1
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Figure 5.2: Surface of VPP Values for Case 2
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Figure 5.3: Surface of VPP Values for Case 3
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Figure 5.4: Surface of VPP Values for Case 4
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CHAPTER 6

CONCLUSION AND COMMENTS

In Turkey, electricity business is growing rapidly by means of the development in the
perception of risk management. Especially, energy derivatives become more popular
for making profit from volatility in market price, managing risk, hedging price and so
on.

In this study, aim is to establish a complete work for Virtual Power Plant (VPP) pricing.
For this purpose, we work on forecasting hydro inflow and generate inflow scenarios
for a defined VPP, simulating electricity prices by using historical hourly shapes, opti-
mizing hydraulic capacity of VPP by regarding inflow and price scenarios. Moreover,
we calculate the value of VPP as an financial contract, generate various optimization
cases by use of the constraints of optimization model and aim to make a contribution
to the literature of hydro inflow modeling, VPP pricing and volume risk management
by considering power traders and producers.

In the consideration of real option, we define a Virtual Hydro Power Plant with the
possible real-world constraints such as reservoir levels, generation constraints, costs
and so on. First of all, we work on hydro inflow forecasting model to compose inflow
series for VPP. For this purpose, we construct a seasonal time series model with precip-
itation as an exogenous variable. In addition to the point forecasts, obtained from this
hydro inflow forecasting model, we generate inflow scenarios to see the VPP values
for different inflow levels.

Secondly, to use in the scheduling and dispatching of VPP, we generate electricity price
scenarios. In this scenarios, we consider both monthly and hourly day-ahead market
prices. For monthly prices, we use historical electricity prices and for hourly shape
modeling, we model shapes according to characteristics of each month by regarding
the peak/offpeak shape.

After obtaining inflow and price scenarios, we design an hourly optimization model for
VPP that dispatchs water according to hourly price scenarios in deference to the de-
fined constraints by means of MILP. The objective function of the optimization prob-
lem is maximizing revenue that is calculated as the summation of product of price and
generation less marginal cost for the whole time period. As an output of this opti-
mization model, we obtain a VPP value for the intersection of each price and inflow
scenario. By defining generic constraints, we set up our Base Case and evaluate opti-
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mization results accordingly. Furthermore, we establish Volume at Risk concept that
is to imply risky volume levels for the defined Virtual Hydro Power Plant.

By using the flexibility of optimization model, we apply some changes in constraints
and we generate various optmization cases. These are;

In Case 1, initial and end reservoir levels of VPP are changed. The difference of Case
1 from Base Case is that initial and end reservoir levels are zero in Case 1. Therefore,
for the generation, VPP need to save the water and because of this reason, VPP values
are lower in Case 1 than Base Case.

In Case 2, we use half of initial, end and maximum reservoir levels. Hence, we con-
strain the levels for holding water and we analyze results by comparing with Base
Case.

In Case 3, maximum reservoir level of VPP is the half of one in Base Case and initial
and end levels are zero. In this case, lower VPP values than previous cases have been
expected and outputs are also in this direction.

In Case 4, instead of the change in reservoir levels, we change the operating hours. We
assume that VPP could produce electricity at only peak hours (08:00-19:00/ all days
in a week). By analyzing the hourly generation, since in the optimization model, a
penalty is applied for spillage, operation in full capacity is observed frequently and a
relatively smooth surface is obtained. However, since generation in offpeak hours is
impossible, VPP values decrease in Case 4.

This thesis presents a complete work step by step on the purpose of valuation for a
defined VPP. Ability to define and estimate the value of a VPP is very beneficial for
the developing derivative market in Turkey. As a summary, this study establishes all
details of VPP concept and contributes to risk management strategies in electricity
market. By means of this constructed flexible pricing tool that values defined VHPP,
option market making can be easier for power traders.

As further works, there are some aspects that are open to improvement. For example,
since inflow data could not have more frequent granularity, we use monthly data for
modeling. Moreover, since product-based OTC prices are not public, historical day-
ahead electricity price data is used and it is restricted by 5 year. As a result, providing
more historical price data may lead to more healty forecasting results. Therefore, we
can put more accurate forecasting into the optimization model and get more precise
results for VPP value.
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APPENDIX A

Table A.1: SARIMAX Models for Inflow Forecasting
Model Model Components AIC
ARIMA(0,0,0) with drift 793.9386
ARIMA(1,0,0)(1,0,0)[12] with drift 292.9217
ARIMA(0,0,1)(0,0,1)[12] with drift 525.7503
ARIMA(1,0,0) with drift 657.8371
ARIMA(1,0,0)(2,0,0)[12] with drift 168.2924
ARIMA(1,0,0)(2,0,1)[12] with drift ∞
ARIMA(1,0,0)(3,0,1)[12] with drift ∞
ARIMA(0,0,0)(2,0,0)[12] with drift 358.9759
ARIMA(2,0,0)(2,0,0)[12] with drift 170.7821
ARIMA(1,0,1)(2,0,0)[12] with drift 169.6911
ARIMA(2,0,1)(2,0,0)[12] with drift 170.2777
ARIMA(1,0,0)(2,0,0)[12] with zero mean ∞
ARIMA(1,0,0)(3,0,0)[12] with drift 123.6871
ARIMA(1,0,0)(4,0,1)[12] with drift 118.9908
ARIMA(0,0,0)(4,0,1)[12] with drift 321.6318
ARIMA(2,0,0)(4,0,1)[12] with drift ∞
ARIMA(1,0,1)(4,0,1)[12] with drift 118.5502
ARIMA(2,0,2)(4,0,1)[12] with drift ∞
ARIMA(1,0,1)(4,0,1)[12] with zero mean ∞
ARIMA(1,0,1)(3,0,1)[12] with drift ∞
ARIMA(1,0,1)(5,0,1)[12] with drift ∞
ARIMA(1,0,1)(4,0,0)[12] with drift 116.1907
ARIMA(0,0,1)(4,0,0)[12] with drift 181.9974
ARIMA(2,0,1)(4,0,0)[12] with drift 106.0071
ARIMA(2,0,0)(4,0,0)[12] with drift 104.772
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Table A.2: SARIMAX Models for Inflow Forecasting Cont’d
Model Model Components AIC
ARIMA(3,0,1)(4,0,0)[12] with drift 93.19252
ARIMA(3,0,1)(4,0,0)[12] with zero mean ∞
ARIMA(3,0,1)(3,0,0)[12] with drift 114.7167
ARIMA(3,0,1)(5,0,0)[12] with drift ∞
ARIMA(3,0,1)(4,0,1)[12] with drift ∞
ARIMA(3,0,1)(5,0,1)[12] with drift ∞
ARIMA(4,0,1)(4,0,0)[12] with drift ∞
ARIMA(3,0,0)(4,0,0)[12] with drift 91.0268
ARIMA(3,0,0)(4,0,0)[12] with zero mean ∞
ARIMA(3,0,0)(3,0,0)[12] with drift 112.5355
ARIMA(3,0,0)(5,0,0)[12] with drift ∞
ARIMA(3,0,0)(4,0,1)[12] with drift ∞
ARIMA(3,0,0)(5,0,1)[12] with drift ∞
ARIMA(4,0,0)(4,0,0)[12] with drift 94.09194
The Best Model ARIMA(3,0,0)(4,0,0)[12] with drift
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Table A.3: SARIMA Model for January Price
Model Model Components AIC
ARIMA(0,0,0) with drift 7327.954
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 6140.271
ARIMA(0,0,0) with zero mean 9643.21
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6594.665
ARIMA(0,0,1)(0,0,2)[24] with drift 5966.887
ARIMA(1,0,1)(0,0,2)[24] with drift 5304.599
ARIMA(1,0,0)(0,0,2)[24] with drift 5336.396
ARIMA(1,0,2)(0,0,2)[24] with drift 5260.943
ARIMA(2,0,3)(0,0,2)[24] with drift 5213.844
ARIMA(2,0,3)(0,0,2)[24] with zero mean 5310.162
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5363.005
ARIMA(1,0,3)(0,0,2)[24] with drift 5246.096
ARIMA(3,0,3)(0,0,2)[24] with drift 5205.624
ARIMA(3,0,2)(0,0,2)[24] with drift 5225.88
ARIMA(3,0,4)(0,0,2)[24] with drift 5207.033
ARIMA(2,0,2)(0,0,2)[24] with drift 5222.589
ARIMA(4,0,4)(0,0,2)[24] with drift 5214.626
ARIMA(3,0,3)(0,0,2)[24] with zero mean ∞
ARIMA(3,0,3)(1,0,2)[24] with drift ∞
ARIMA(3,0,3)(0,0,1)[24] with drift 5355.114
ARIMA(4,0,3)(0,0,2)[24] with drift 5219.585
The Best Model ARIMA(3,0,3)(0,0,2)[24] with drift
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Table A.4: SARIMA Model for February Price
Model Model Components AIC
ARIMA(0,0,0) with drift 6409.167
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 5393.453
ARIMA(0,0,0) with zero mean 8640.367
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 5770.78
ARIMA(0,0,1)(0,0,2)[24] with drift 5180.205
ARIMA(1,0,1)(0,0,2)[24] with drift 4734.023
ARIMA(1,0,0)(0,0,2)[24] with drift 4752.314
ARIMA(1,0,2)(0,0,2)[24] with drift 4717.046
ARIMA(2,0,3)(0,0,2)[24] with drift 4662.416
ARIMA(2,0,3)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 4795.762
ARIMA(1,0,3)(0,0,2)[24] with drift 4710.948
ARIMA(3,0,3)(0,0,2)[24] with drift 4666.535
ARIMA(2,0,2)(0,0,2)[24] with drift 4660.711
ARIMA(2,0,2)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,2)(1,0,2)[24] with drift ∞
ARIMA(2,0,2)(0,0,1)[24] with drift 4795.821
ARIMA(3,0,2)(0,0,2)[24] with drift 4664.49
ARIMA(2,0,1)(0,0,2)[24] with drift 4660.324
ARIMA(2,0,1)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,1)(1,0,2)[24] with drift ∞
ARIMA(2,0,1)(0,0,1)[24] with drift 4793.78
ARIMA(3,0,1)(0,0,2)[24] with drift 4662.927
ARIMA(2,0,0)(0,0,2)[24] with drift 4722.913
The Best Model ARIMA(2,0,1)(0,0,2)[24] with drift
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Table A.5: SARIMA Model for March Price
Model Model Components AIC
ARIMA(0,0,0) with drift 6928.433
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 5896.383
ARIMA(0,0,0) with zero mean 9308.433
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6281.542
ARIMA(0,0,1)(0,0,2)[24] with drift 5686.824
ARIMA(1,0,1)(0,0,2)[24] with drift 5323.894
ARIMA(1,0,0)(0,0,2)[24] with drift 5325.482
ARIMA(1,0,2)(0,0,2)[24] with drift 5309.578
ARIMA(2,0,3)(0,0,2)[24] with drift 5285.852
ARIMA(2,0,3)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5421.676
ARIMA(1,0,3)(0,0,2)[24] with drift 5304.49
ARIMA(3,0,3)(0,0,2)[24] with drift 5286.76
ARIMA(2,0,2)(0,0,2)[24] with drift 5284.907
RIMA(2,0,2)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,2)(1,0,2)[24] with drift ∞
ARIMA(2,0,2)(0,0,1)[24] with drift 5419.647
ARIMA(3,0,2)(0,0,2)[24] with drift 5282.268
ARIMA(3,0,1)(0,0,2)[24] with drift 5286.295
ARIMA(2,0,1)(0,0,2)[24] with drift 5293.32
ARIMA(4,0,3)(0,0,2)[24] with drift 5286.201
ARIMA(3,0,2)(0,0,2)[24] with zero mean 5365.975
ARIMA(3,0,2)(1,0,2)[24] with drift ∞
ARIMA(3,0,2)(0,0,1)[24] with drift 5421.741
ARIMA(4,0,2)(0,0,2)[24] with drift 5283.4
The Best Model ARIMA(3,0,2)(0,0,2)[24] with drift
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Table A.6: SARIMA Model for April Price
Model Model Components AIC
ARIMA(0,0,0) with drift 6684.763
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 5674.977
ARIMA(0,0,0) with zero mean 8982.412
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6058.461
ARIMA(0,0,1)(0,0,2)[24] with drift 5473.212
ARIMA(1,0,1)(0,0,2)[24] with drift 5163.951
ARIMA(1,0,0)(0,0,2)[24] with drift 5174.503
ARIMA(1,0,2)(0,0,2)[24] with drift 5155.986
ARIMA(2,0,3)(0,0,2)[24] with drift 5138.051
ARIMA(2,0,3)(0,0,2)[24] with zero mean 5244.084
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5256.256
ARIMA(1,0,3)(0,0,2)[24] with drift 5152.649
ARIMA(3,0,3)(0,0,2)[24] with drift 5144.571
ARIMA(2,0,2)(0,0,2)[24] with drift 5139.457
ARIMA(2,0,4)(0,0,2)[24] with drift 5151.046
ARIMA(3,0,4)(0,0,2)[24] with drift 5152.886
The Best Model ARIMA(2,0,3)(0,0,2)[24] with drift
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Table A.7: SARIMA Model for May Price
Model Model Components AIC
ARIMA(0,0,0) with drift 7064.512
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 6031.807
ARIMA(0,0,0) with zero mean 9358.763
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6420.746
ARIMA(0,0,1)(0,0,2)[24] with drift 5841.651
ARIMA(1,0,1)(0,0,2)[24] with drift 5563.952
ARIMA(1,0,0)(0,0,2)[24] with drift 5577.33
ARIMA(1,0,2)(0,0,2)[24] with drift 5559.266
ARIMA(2,0,3)(0,0,2)[24] with drift 5533.413
ARIMA(2,0,3)(0,0,2)[24] with zero mean 5656.074
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5633.306
ARIMA(1,0,3)(0,0,2)[24] with drift 5545.679
ARIMA(3,0,3)(0,0,2)[24] with drift 5535.046
ARIMA(2,0,2)(0,0,2)[24] with drift 5531.716
ARIMA(2,0,2)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,2)(1,0,2)[24] with drift ∞
ARIMA(2,0,2)(0,0,1)[24] with drift 5633.291
ARIMA(3,0,2)(0,0,2)[24] with drift 5532.616
ARIMA(2,0,1)(0,0,2)[24] with drift 5529.803
ARIMA(2,0,1)(0,0,2)[24] with zero mean 5652.327
ARIMA(2,0,1)(1,0,2)[24] with drift ∞
ARIMA(2,0,1)(0,0,1)[24] with drift 5631.514
ARIMA(3,0,1)(0,0,2)[24] with drift 5535.074
ARIMA(2,0,0)(0,0,2)[24] with drift 5561.217
The Best Model ARIMA(2,0,1)(0,0,2)[24] with drift
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Table A.8: SARIMA Model for June Price
Model Model Components AIC
ARIMA(0,0,0) with drift 6868.341
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 5826.201
ARIMA(0,0,0) with zero mean 9118.759
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6234.17
ARIMA(0,0,1)(0,0,2)[24] with drift 5668.459
ARIMA(1,0,1)(0,0,2)[24] with drift 5368.424
ARIMA(1,0,0)(0,0,2)[24] with drift 5377.981
ARIMA(1,0,2)(0,0,2)[24] with drift 5355.826
ARIMA(2,0,3)(0,0,2)[24] with drift 5355.14
ARIMA(2,0,3)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5446.536
ARIMA(1,0,3)(0,0,2)[24] with drift 5350.119
ARIMA(1,0,4)(0,0,2)[24] with drift 5349.095
ARIMA(0,0,3)(0,0,2)[24] with drift 5405.281
ARIMA(2,0,5)(0,0,2)[24] with drift 5350.046
ARIMA(1,0,4)(0,0,2)[24] with zero mean ∞
ARIMA(1,0,4)(1,0,2)[24] with drift ∞
ARIMA(1,0,4)(0,0,1)[24] with drift 5456.04
ARIMA(0,0,4)(0,0,2)[24] with drift 5365.136
ARIMA(2,0,4)(0,0,2)[24] with drift 5351.058
ARIMA(1,0,5)(0,0,2)[24] with drift 5349.862
The Best Model ARIMA(1,0,4)(0,0,2)[24] with drift
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Table A.9: SARIMA Model for July Price
Model Model Components AIC
ARIMA(0,0,0) with drift 7137.365
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 6002.292
ARIMA(0,0,0) with zero mean 9696.508
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6457.807
ARIMA(0,0,1)(0,0,2)[24] with drift 5697.53
ARIMA(1,0,1)(0,0,2)[24] with drift 5433.904
ARIMA(1,0,0)(0,0,2)[24] with drift 5452.329
ARIMA(1,0,2)(0,0,2)[24] with drift 5425.668
ARIMA(2,0,3)(0,0,2)[24] with drift 5409.962
ARIMA(2,0,3)(0,0,2)[24] with zero mean 5522.858
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5646.61
ARIMA(1,0,3)(0,0,2)[24] with drift 5425.04
ARIMA(3,0,3)(0,0,2)[24] with drift 5411.283
ARIMA(2,0,2)(0,0,2)[24] with drift 5408.618
ARIMA(2,0,2)(0,0,2)[24] with zero mean 5534.351
ARIMA(2,0,2)(1,0,2)[24] with drift ∞
ARIMA(2,0,2)(0,0,1)[24] with drift 5645.468
ARIMA(3,0,2)(0,0,2)[24] with drift 5409.214
ARIMA(2,0,1)(0,0,2)[24] with drift 5407.639
ARIMA(2,0,1)(0,0,1)[24] with drift 5649.039
ARIMA(3,0,1)(0,0,2)[24] with drift 5407.579
ARIMA(3,0,0)(0,0,2)[24] with drift 5417.503
ARIMA(2,0,0)(0,0,2)[24] with drift 5425.525
ARIMA(4,0,2)(0,0,2)[24] with drift 5399.587
ARIMA(4,0,2)(0,0,1)[24] with drift 5641.698
ARIMA(5,0,2)(0,0,2)[24] with drift 5416.528
ARIMA(4,0,1)(0,0,2)[24] with drift 5418.21
ARIMA(4,0,3)(0,0,2)[24] with drift 5401.351
ARIMA(5,0,3)(0,0,2)[24] with drift 5414.725
The Best Model ARIMA(4,0,2)(0,0,2)[24] with drift
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Table A.10: SARIMA Model for August Price
Model Model Components AIC
ARIMA(0,0,0) with drift 7206.034
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 6043.371
ARIMA(0,0,0) with zero mean 9707.627
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(1,0,1)(0,0,2)[24] with drift 5514.324
ARIMA(1,0,0)(0,0,2)[24] with drift 5548.674
ARIMA(1,0,2)(0,0,2)[24] with drift 5515.833
ARIMA(0,0,0)(0,0,2)[24] with drift 6294.305
ARIMA(2,0,2)(0,0,2)[24] with drift 5517.104
ARIMA(1,0,1)(0,0,2)[24] with zero mean 5609.588
ARIMA(1,0,1)(1,0,2)[24] with drift ∞
ARIMA(1,0,1)(0,0,1)[24] with drift 5700.895
ARIMA(2,0,1)(0,0,2)[24] with drift 5499.354
ARIMA(2,0,0)(0,0,2)[24] with drift 5512.517
ARIMA(3,0,2)(0,0,2)[24] with drift 5488.858
ARIMA(3,0,2)(0,0,1)[24] with drift 5666.983
ARIMA(4,0,2)(0,0,2)[24] with drift 5509.39
ARIMA(3,0,1)(0,0,2)[24] with drift 5511.276
ARIMA(3,0,3)(0,0,2)[24] with drift 5489.368
ARIMA(4,0,3)(0,0,2)[24] with drift 5486.298
ARIMA(4,0,3)(0,0,2)[24] with zero mean 5603.711
ARIMA(5,0,3)(0,0,2)[24] with drift 5494.051
ARIMA(4,0,4)(0,0,2)[24] with drift 5486.919
ARIMA(5,0,4)(0,0,2)[24] with drift 5483.122
ARIMA(5,0,4)(0,0,1)[24] with drift 5655.807
ARIMA(6,0,4)(0,0,2)[24] with drift 5468.479
ARIMA(6,0,3)(0,0,2)[24] with drift 5470.516
ARIMA(6,0,5)(0,0,2)[24] with drift 5470.557
ARIMA(6,0,4)(0,0,2)[24] with zero mean ∞
ARIMA(6,0,4)(1,0,2)[24] with drift ∞
ARIMA(6,0,4)(0,0,1)[24] with drift 5652.915
The Best Model ARIMA(6,0,4)(0,0,2)[24] with drift
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Table A.11: SARIMA Model for September Price
Model Model Components AIC
ARIMA(0,0,0) with drift 7120.868
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 5964.434
ARIMA(0,0,0) with zero mean 9368.432
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6405.732
ARIMA(0,0,1)(0,0,2)[24] with drift ∞
ARIMA(0,0,1)(1,0,2)[24] with drift ∞
ARIMA(1,0,1)(0,0,1)[24] with drift 5498.53
ARIMA(1,0,0)(0,0,1)[24] with drift 5533.47
ARIMA(1,0,2)(0,0,1)[24] with drift 5487.282
ARIMA(2,0,3)(0,0,1)[24] with drift 5445.108
ARIMA(2,0,3)(0,0,1)[24] with zero mean 5561.638
ARIMA(2,0,3)(1,0,1)[24] with drift ∞
ARIMA(2,0,3) with drift 5785.627
ARIMA(2,0,3)(0,0,2)[24] with drift 5231.569
ARIMA(1,0,3)(0,0,2)[24] with drift 5257.577
ARIMA(3,0,3)(0,0,2)[24] with drift 5224.674
ARIMA(3,0,2)(0,0,2)[24] with drift 5222.774
ARIMA(2,0,1)(0,0,2)[24] with drift 5228.541
ARIMA(4,0,3)(0,0,2)[24] with drift ∞
ARIMA(3,0,2)(0,0,2)[24] with zero mean 5330.951
ARIMA(3,0,2)(1,0,2)[24] with drift ∞
ARIMA(3,0,2)(0,0,1)[24] with drift 5437.956
ARIMA(2,0,2)(0,0,2)[24] with drift 5267.468
ARIMA(4,0,2)(0,0,2)[24] with drift 5228.969
ARIMA(3,0,1)(0,0,2)[24] with drift 5228.321
The Best Model ARIMA(3,0,2)(0,0,2)[24] with drift
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Table A.12: SARIMA Model for October Price
Model Model Components AIC
ARIMA(0,0,0) with drift 6843.816
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 5844.567
ARIMA(0,0,0) with zero mean 9580.126
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6257.675
ARIMA(0,0,1)(0,0,2)[24] with drift 5678.306
ARIMA(1,0,1)(0,0,2)[24] with drift 5301.372
ARIMA(1,0,0)(0,0,2)[24] with drift 5300.341
ARIMA(2,0,1)(0,0,2)[24] with drift 5302.558
ARIMA(1,0,0)(0,0,2)[24] with zero mean ∞
ARIMA(1,0,0)(1,0,2)[24] with drift ∞
ARIMA(1,0,0)(0,0,1)[24] with drift 5438.516
ARIMA(0,0,0)(0,0,2)[24] with drift 6108.917
ARIMA(2,0,0)(0,0,2)[24] with drift 5300.259
ARIMA(3,0,1)(0,0,2)[24] with drift 5249.348
ARIMA(3,0,1)(0,0,2)[24] with zero mean ∞
ARIMA(3,0,1)(1,0,2)[24] with drift ∞
ARIMA(3,0,1)(0,0,1)[24] with drift 5361.364
ARIMA(4,0,1)(0,0,2)[24] with drift 5255.851
ARIMA(3,0,0)(0,0,2)[24] with drift 5273.018
ARIMA(3,0,2)(0,0,2)[24] with drift 5250.73
ARIMA(4,0,2)(0,0,2)[24] with drift 5256.638
The Best Model ARIMA(3,0,1)(0,0,2)[24] with drift
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Table A.13: SARIMA Model for November Price
Model Model Components AIC
ARIMA(0,0,0) with drift 6867.182
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 5773.258
ARIMA(0,0,0) with zero mean 9314.657
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6227.329
ARIMA(0,0,1)(0,0,2)[24] with drift 5555.897
ARIMA(1,0,1)(0,0,2)[24] with drift 5188.484
ARIMA(1,0,0)(0,0,2)[24] with drift 5192.811
ARIMA(1,0,2)(0,0,2)[24] with drift 5176.913
ARIMA(2,0,3)(0,0,2)[24] with drift 5117.654
ARIMA(2,0,3)(0,0,2)[24] with zero mean 5242.269
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5221.17
ARIMA(1,0,3)(0,0,2)[24] with drift 5151.273
ARIMA(3,0,3)(0,0,2)[24] with drift 5125.477
ARIMA(2,0,2)(0,0,2)[24] with drift 5116.503
ARIMA(2,0,2)(0,0,2)[24] with zero mean 5245
ARIMA(2,0,2)(1,0,2)[24] with drift ∞
ARIMA(2,0,2)(0,0,1)[24] with drift 5224.773
ARIMA(3,0,2)(0,0,2)[24] with drift 5123.963
ARIMA(2,0,1)(0,0,2)[24] with drift 5119.641
The Best Model ARIMA(2,0,2)(0,0,2)[24] with drift
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Table A.14: SARIMA Model for December Price
Model Model Components AIC
ARIMA(0,0,0) with drift 7180.038
ARIMA(1,0,0)(1,0,0)[24] with drift ∞
ARIMA(0,0,1)(0,0,1)[24] with drift 6053.194
ARIMA(0,0,0) with zero mean 9740.966
ARIMA(0,0,1)(1,0,1)[24] with drift ∞
ARIMA(0,0,1) with drift 6508.307
ARIMA(0,0,1)(0,0,2)[24] with drift 5866.16
ARIMA(1,0,1)(0,0,2)[24] with drift 5468.26
ARIMA(1,0,0)(0,0,2)[24] with drift 5480.47
ARIMA(1,0,2)(0,0,2)[24] with drift 5444.503
ARIMA(2,0,3)(0,0,2)[24] with drift 5394.981
ARIMA(2,0,3)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,3)(1,0,2)[24] with drift ∞
ARIMA(2,0,3)(0,0,1)[24] with drift 5491.404
ARIMA(1,0,3)(0,0,2)[24] with drift 5426.154
ARIMA(3,0,3)(0,0,2)[24] with drift 5402.865
ARIMA(2,0,2)(0,0,2)[24] with drift 5397.295
ARIMA(2,0,4)(0,0,2)[24] with drift 5392.938
ARIMA(3,0,5)(0,0,2)[24] with drift 5398.86
ARIMA(2,0,4)(0,0,2)[24] with zero mean ∞
ARIMA(2,0,4)(1,0,2)[24] with drift ∞
ARIMA(2,0,4)(0,0,1)[24] with drift 5485.864
ARIMA(1,0,4)(0,0,2)[24] with drift 5418.495
ARIMA(3,0,4)(0,0,2)[24] with drift 5401.508
ARIMA(2,0,5)(0,0,2)[24] with drift 5394.703
The Best Model ARIMA(2,0,4)(0,0,2)[24] with drift
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