

A COMPARATIVE STUDY ON AUTOMATED ANDROID APPLICATION

TESTING TOOLS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜLÇİN HÖKELEKLİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

MAY 2016

A COMPERATIVE STUDY ON ANDROID APPLICATION TESTING

TOOLS

Submitted by GÜLÇİN HÖKELEKLİ in partial fulfillment of the requirements for

the degree of Master of Science in Information Systems, Middle East Technical

University by,

Prof. Dr. Nazife Baykal ____________________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin _____________________

Head of Department, Information Systems

Assoc. Prof. Dr. Aysu Betin Can _____________________

Supervisor, Information Systems, METU

Examining Committee Members

Assoc. Prof. Dr. Aysu Betin Can

IS, Middle East Technical University _____________________

Assoc. Prof. Dr. Altan Koçyiğit

IS, Middle East Technical University _____________________

Assist. Prof. Dr. Erhan Eren

IS, Middle East Technical University _____________________

Assist. Prof. Dr. Murat Perit Çakır

COGS, Middle East Technical University _____________________

Assist. Prof. Dr. Abdül Kadir Görür

CENG, Çankaya University _____________________

Date: 06.05.2016

v

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name: Gülçin HÖKELEKLİ

Signature:

vi

ABSTRACT

A COMPARATIVE STUDY ON AUTOMATED ANDROID APPLICATION

TESTING TOOLS

Hökelekli, Gülçin

M.Sc., Department of Information Systems

Advisor: Assoc. Prof. Dr. Aysu Betin Can

MAY 2016, 86 Pages

Nowadays, as mobile devices have become widespread, mobile application

development has become an area which is considerably popular. This popularity

increases the importance of mobile application testing. Distinguishing properties of

mobile devices increase the importance of test automation. Thus, the number of

mobile test automation tools is growing. Each tool has some advantages and

limitations. The aim of this study is to compare the most popular mobile testing

tools. We choose Android testing tools because of Android’s prevalence in the

market. To achieve this aim of the study, firstly we have identified the criteria that

will be used for comparison of the testing tools. Then, we have selected three most

commonly used Android test automation tools. Afterwards, we have analyzed and

compared the selected tools in terms of the criteria identified before. In order to

make this comparison we have made a detailed research on tutorials and conducted a

case study in which we have written and run same test cases by using each of the

selected tools.

Keywords: Android Application Testing, Test Automation, Mobile Application

Testing, Android Test Automation Tools

vii

ÖZ

ANDROID UYGULAMALARI TEST OTOMASYON ARAÇLARI ÜZERİNE

KARŞILAŞTIRMALI ÇALIŞMA

Hökelekli, Gülçin

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Danışmanları: Doç. Dr. Aysu Betin Can

Mayıs 2016, 86 Sayfa

Günümüzde mobil cihazların yaygınlaşmasıyla mobil uygulama geliştirme önemli

ölçüde popüler hale gelmiştir. Bu popülarite mobil uygulama testlerinin önemini

arttırmaktadır. Mobil cihazların ayırt edici özellikleri, test otomasyonunun önemini

arttırmaktadır. Bu nedenle, mobil uygulama test otomasyon araçlarının sayısı

artmaktadır. Her bir araç, bazı avantajlara ve kısıtlara sahiptir. Bu çalışmanın amacı,

en popüler mobil test araçlarını karşılaştırmaktır. Android’in pazardaki

yaygınlığından dolayı Android test araçları seçilmiştir. Çalışmamızın amacına

ulaşabilmek için ilk olarak test araçlarını karşılaştırırken kullanacağımız kriterleri

belirledik. Sonra, en yaygın olarak kullanılan Android test otomasyon araçlarını

seçtik. Daha sonra, seçtiğimiz araçları analiz ettik ve belirlemiş olduğumuz kriterlere

göre karşılaştırdık. Bu karşılaştırmayı yapmak için dokümanlar üzerinde detaylı bir

araştırma yaptık ve seçmiş olduğumuz her bir araç ile aynı test senaryolarını

yazdığımız bir örnek olay incelemesi yaptık.

Anahtar Kelimeler: Android Uygulama Testi, Test Otomasyonu, Mobil Uygulama

Testi, Android Test Otomasyon Aracı

viii

To My Family

Sema, Ruhi and Furkan

ix

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Assoc. Prof. Dr. Aysu BETİN

CAN for her guidance, encouragements and support during my thesis study.

I also would like to thank my amazing family: Sema, Ruhi and Furkan HÖKELEKLİ

for their concern, patience and encouragements during this process.

I would like to send special thanks to my best friend Merve Vildan ŞİMŞEK for all

of her help, endless support and motivation throughout Master’s Program.

I am also grateful to my colleagues and managers at Turkish Ministry of Economy

Department of IT for their support and understanding during my Master’s Program.

I would also like to thank TÜBİTAK for scholarship.

x

xi

TABLE OF CONTENTS

ABSTRACT ...vi

ÖZ .. vii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xv

1. INTRODUCTION .. 1

2. BACKGROUND TECHNOLOGY AND LITERATURE REVIEW 5
2.1 BACKGROUND TECHNOLOGY ... 5

2.1.1 ANDROID APPLICATION DEVELOPMENT ... 5
2.1.2 ANDROID APPLICATION TESTING.. 6
2.1.3 ROBOTIUM .. 7
2.1.4 APPIUM ... 8
2.1.5 UI AUTOMATOR .. 8

2.2 LITERATURE REVIEW .. 9
2.2.1 MOBILE TESTING .. 9
2.2.2 COMPERATIVE STUDIES .. 10

3 METHODOLOGY .. 13
3.1 SELECTING TOOLS .. 14
3.2 SELECTING APPLICATIONS TO TEST ... 16
3.3 IDENTIFIYING CRITERIA .. 19
3.4 EVALUATING THE TOOLS WITH RESPECT TO THE CRITERIA 24

3.4.1 ROBOTIUM .. 25
3.4.2 APPIUM ... 32
3.4.3 UIAUTOMATOR .. 42

4 EXPERIMENTAL STUDY .. 49
4.1 PREPARATION ... 49
4.2 TEST CASES ... 50
4.3 EXPERIMENT .. 53
4.3.1. Robotium results ... 53
4.3.2. Appium results ... 59
4.3.3. UIAutomator results ... 62
4.3.4 Comparison on criteria C10-C28 .. 65

5 RESULTS AND CONCLUSION ... 69
5.1. RESULTS .. 69
5.2. LIMITATIONS .. 78

xii

5.3. CONCLUSION AND FUTURE WORK .. 78

REFERENCES .. 80

xiii

LIST OF TABLES

Table 3.2.1: PROPERTIES OF ANDROID APPS USED IN OUR STUDY 19

Table 3.3.1: EVALUATION CRITERIA FOR MOBILE TEST AUTOMATION

TOOLS ... 21

Table 3.3.2: GESTURES FOR EVALUATING MOBILE TEST AUTOMATION

TOOLS ... 24

Table 4.2.1: EQUIVALANT CLASSES ... 50

Table 4.3.1.1: ROBOTIUM TEST CASES ... 54

Table 4.3.2.1: APPIUM TEST CASES ... 59

Table 4.3.3.1: UIAUTOMATOR TEST CASES ... 63

Table 5.1.1: RESULTING TABLE OF COMPARISON OF THE TOOLS WITH

RESPECT TO THE CRITERIA .. 69

Table 5.1.2: REQUIRED LOC FOR THE SAME TEST SUITE 73

Table 5.1.3: COMPARISON AND ANALYSIS OF MEAN TEST EXECUTION

TIMES .. 75

xiv

LIST OF FIGURES

Figure 3.1: Research Methodology .. 14

Figure 3.2.1: Calculator Application UI ... 17

Figure 3.2.2: Droidweight application UI .. 18

Figure 3.2.3: 2048 Application UI ... 18

Figure 3.3.1 : Gestures ... 24

Figure 3.4.2.1: Appium Connection States .. 36

Figure 3.4.2.2 :Screenshot of Appium Android Settings ... 40

Figure 3.4.2.3 : Screenshot of Appium General Settings ... 41

Figure 4.3.1.1: Robotium Test Report of DroidWeight ... 55

Figure 4.3.1.2: Robotium Report Of DroidWeight Test Cases With Disabled UI

Elements ... 57

Figure 4.3.1.3: Robotium Test Report of 2048 .. 58

Figure 4.3.2.1: Appium Test Report of DroidWeight .. 60

Figure 4.3.2.2: Appium Test Report of 2048 ... 62

Figure 5.1.1: The Number Of Criteria Met By Selected Tools 73

file:///F:/HOCANIN%20DÜZELTMELERİ%2019NİSAN/TEZ%20%20HOCANIN%20VE%20REF%20DUZELTMELERI%20BIRLIKTE.docx%23_Toc449131534

xv

LIST OF ABBREVIATIONS

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

SDK Software Development Kit

IDE Integrated Development Environment

UI User Interface

GUI Graphical User Interface

APP Application

JDK Java Development Kit

RAM Random Access Memory

CPU Central Processing Unit

LOC Line of Code

APK Android Application Package

xvi

1

CHAPTER I

1. INTRODUCTION

Since the first decade of the twenty-first century, there is a dramatic explosion on

mobile communication technologies. By 2007, when Apple Inc. introduced IPhone

which is “one of the first smartphones to use a multi-touch interface” [1], mobile

phones started to be replaced with smartphones. A smartphone is actually a mobile

phone that has an operating system, a more powerful hardware and personal

computer functionalities. As smartphones have become an essential part of our lives,

the number of mobile applications is growing in a remarkable way. By March 2016,

there are 2,051,820 Android applications in the market [2]. The world’s changing its

direction to mobile, makes mobile application development a major area in IT

industry.

The increase in the importance of mobile application development makes mobile

application testing very significant as well. IEEE Computer Society defines mobile

application testing as: "testing activities for native and Web applications on mobile

devices using well-defined software test methods and tools to ensure quality in

functions, behaviors, performance, and quality of service, as well as features, such as

mobility, usability, interoperability, connectivity, security, and privacy.”[3]

As traditional software testing, mobile application testing can be conducted using

either manual or automated approach. In automated testing, special software are used

for test case generation, execution and verification while in manual testing those

processes are done by human [4]. The significance of mobile application testing

raises the need for test automation frameworks for mobile applications. Thus,

software companies have developed various mobile application testing frameworks

with different capabilities and properties.

The aim of this study is to make a comparison between most widely used mobile

application testing tools. In this comparison, we examined the detailed technical

insight about selected tools. Because of Android’s prevalence in the market, we

choose Android application testing tools.

Our study has three parts. Firstly, we have identified criteria to be used for

comparison. We have aimed to make a detailed list of criteria to present the technical

capabilities of the tools effectively. In order to accomplish this aim, we have used

mobile application testing checklists and our exploratory study together. We have

2

focused on GUI based functional testing, interrupt testing and memory leakage

testing [5]. In the second part, we have evaluated selected tools; Robotium, Appium

and UIAutomator with respect to the criteria we have identified. In the last part, we

have conducted a case study. We have selected two mobile applications to

implement and run same test cases using each tool.

There are a number of studies on mobile testing frameworks and making comparison

between them. Gunasekaran and Bargavi [6] reviewed five testing tools; Appium,

MonkeyTalk, Ranorex, Robotium and UIAutomator. Their study includes main

information about capabilities and implementation of these tools and a comparative

study. They used 6 criteria including high level properties. These criteria are;

supporting Android or iOS platforms, scripting language, being cross platform,

ability to take screenshot and ability to verify expected and actual outputs. They did

not consider properties such as connectivity, simulating gestures or interruptions.

Gao,Bai,Tsai and Uehara [3] gives general information about mobile testing

automation such as testing types, approaches and difficulties of mobile application

testing. Their study also includes a table of comparison of mobile testing tools. They

focused on 15 mobile testing tools including the tools that support iOS platform.

However, their criteria are also very high level. The attributes they focused on are;

testing types provided by the tools, supported platforms, supported application types,

ability to test on emulator or real device, scripting languages, ability to record and

replay, being open source and requiring subscription. Even the number of tools and

criteria are not small, they did not give information such as interaction of soft

keyboard and notification area, ability to test APK files, or ability to run tests using

command prompt.

Singh, Gadgil and Chudgor [7] conducted a study about the mobile testing tool;

Appium. They gave detailed information about Appium. They added a comparison

table as well. Their table includes six mobile testing tools: Instruments,

UIAutomator, Selenium, Monkey Talk, Robotium and Appium. They compared

these tools with respect to supported platforms, being open source, being cross

platform and supported browsers. They did not include the tools’ ability to test

connections, gestures, memory and battery leakage or record and replay property.

Even there are a number of related studies[6][3][7], the criteria that they compared

the tools with respect to, are very high level and not including detailed technical

information. It is easy to reach the information they provided, by using official Web

pages of the tools. On the other hand, in our study, we compared the tools with

respect to 28 criteria including functional properties, connectivity properties,

interruption handling capabilities, properties about test environment, memory and

battery leakage handling capabilities. We have also considered documentation and

community of the tools, ease of environment setup and scripting languages. We have

provided detailed technical information and mentioned functional capabilities such

as interaction with soft keyboard or notifications and generating test report files

3

which may be needed in the later stages of testing process. In addition, the criteria

that we identified may be used for later comparative studies such as comparison of

tools for IOS platform or the tools which will be released later.

We have conducted a case study in which we have experienced capabilities and

limitations of tools. We have developed test suites using equivalence class

partitioning, for two applications. We implemented these test suites using 3 tools and

compared the tools. We concluded that, Robotium provides 52% of the criteria

totally, Appium provides 18% of the criteria totally and UIAutomator provides 13%

of the criteria in total. We have found out that there is not a single tool that meets all

of the criteria.

This thesis is structured as follows:

 In Chapter 2, we give information about background technology; Android

Application Development, Android Application Testing and selected

frameworks; Robotium, Appium and UI Automator. We also give

information about the literature review that we have conducted at different

stages of our study.

 In Chapter 3, we present our research methodology in a detailed manner.

 In Chapter 4, we explain our experimental study in details.

 In Chapter 5, we present result of our study and future directions.

4

5

CHAPTER II

2. BACKGROUND TECHNOLOGY AND LITERATURE REVIEW

2.1 BACKGROUND TECHNOLOGY

In this chapter, we present general information about related technologies.

2.1.1 ANDROID APPLICATION DEVELOPMENT

Android is a mobile operating system which provides large set of features that

supports mobile applications [8]. Android application development refers to the

process of creating Android applications using Java.

Android applications have four types of components [9]:

 Activities: An Android Application consists of a number of activities.

Activities are screens that users interact in order to perform an action such as

take a photo or send an e-mail. Generally there is a main activity which is

presented to the user when the application starts. In order to perform multiple

actions activities call each other.

 Services: A service runs in the background to perform long running or remote

processes and does not provide a user interface. For example a service

enables the music to play in the background without interrupting a running

application.

 Content providers: Content providers enable for query and modify data

stored in file system, database or any other storage location.

 Broadcast receivers: Broadcast receivers deal with system or application

broadcast announcements such as low battery, screen turn off. They do not

provide a user interface. They may send notifications to alert user about the

announcement.

The application development environment includes Java Development Kit, Android

SDK, an IDE (Eclipse or Android Studio) and a virtual device (emulator). Android

SDK provides a variety of tools that helps for developing Android applications.

Virtual device which is provided by Android SDK, helps developers to develop, run

and test applications without using a physical device [10].

When an Android code is compiled, an APK (Android package) file is generated.

This APK file contains all the contents of the application. In order to install an

Android application to the device, this APK file is used.

6

2.1.2 ANDROID APPLICATION TESTING

Testing is an integral part of software development lifecycle. It is a critical process as

it helps “improve the quality of your apps, ensure better user satisfaction, and reduce

overall development time spent on fixing defects”[11]. Thus, new testing

approaches, technologies and strategies are being developed to make this process

faster, much efficient and more reliable.

As mobile applications have become an essential part of our lives, importance of

mobile application testing increases continuously. Mobile applications have special

characteristics that make mobile application testing different from traditional and

Web application testing. These typical characteristics can be listed as follows [12]:

 Mobile connectivity: Mobile applications connect to mobile networks which

may be different in terms of speed, security and reliability. This property

arises the need for extra functional testing performed under different

connectivity scenarios.

 Limited resources: Mobile devices are far away from computers in terms of

hardware resources such as RAM, disk space and CPU. Thus, resource

shortage should be considered during testing process.

 Autonomy: The functionality of traditional computers relies on electricity

supply. On the other hand each mobile application may require different

energy consumption. For instance an application that requires continuous 3G

connectivity, strongly affects the autonomy of the device. That is why;

energy consumption of mobile device should be evaluated during testing

process.

 New user interface: Mobile devices vary in terms of UI properties such as

screen size and resolution. Mobile applications may look and differently on

different UI. Thus, during GUI testing mobile applications it is necessary to

consider that different mobile devices may react differently to the same

application because of the differences of user interface.

 Context awareness: Mobile apps may sense the context and act according to

the different contextual input such as temperature, location and brightness.

The number of contextual input may be huge. Thus, context specific testing

techniques and coverage criteria should be used for mobile app testing.

 Adaptation: Mobile application may adapt to the contextual information

during its execution. This adaptation should be considered during testing

process.

7

 New programming language: New frameworks, APIs, libraries and

programming languages such as Objective-C is used for mobile applications.

Traditional testing techniques are needed to be revised according to them.

 New Mobile Operating System: Mobile operating systems (Android and iOS)

are different from computer operating systems and from each other.

Moreover, new versions of mobile operating systems are released

continuously. Testing approaches that may detect bugs related to the

unreliability and variety of operating systems should be used for mobile

application testing.

 Diversity of phones and phone makers: There are a big number of different

mobile devices and vendors. It is stated that 1.800 hardware/OS different

configurations exist. This situation arises the need for testing techniques to

cover maximum diversity.

 Touch screens: The main input source of mobile apps are touch screens.

Thus, considering touch screen functionalities is an important step of mobile

app testing.

Android application testing refers to the set of activities to evaluate an Android

application. As Android is a mobile operating system, Android applications have the

properties stated above and these properties should be considered during testing

process. Android allows running test suites on either a real Android device or a

virtual Android device.

Android development kit provides ‘Testing Support Library’ which includes APIs to

that allows developing and running test code for Android apps. Support Library is

available inside Android SDK Manager. Support library also includes test

automation tools; AndroidJUnitRunner, Espresso and UIAutomator [13]. Android

JunitRunner is a test runner that runs Junit 3 and Junit 4 tests on Android

applications [14]. Espresso and UIAutomator are UI testing frameworks. Espresso

runs on single application where UIAutomator can run on any application installed

on the target device.

2.1.3 ROBOTIUM

Robotium is a widely used open source Android test automation framework. It was

developed by Renas Reda and first released in 2010 [15]. Robotium is mostly used

for functional user interface testing, however it can be used for system and

acceptance tests as well. It supports both native and hybrid application tests. Native

applications are the ones which are developed for a specific platform and can be

downloaded from mobile application stores. On the other hand hybrid applications

are combinations of native and web applications. The difference of hybrid

8

applications from the native ones are that they require HTML to be rendered in a

browser. Similar to native apps, hybrid apps can be installed from app store as well.

[16]

When we searched on tutorials, blogs and forums, we have seen that, each of the 5

sources that are mentioned in section 3.1, states Robotium as one of the most popular

open source Android testing frameworks. Its similarity to Selenium [35] which is one

of the widely used test automation framework for Web applications is one of the

reasons for this popularity.

The source code of Robotium is accessible on GitHub[17] and anyone can contribute

to the framework’s development.

2.1.4 APPIUM

Appium is a popular open source testing framework that can be used for both

Android and iOS applications. The main purpose of Appium is writing one test code

and running it on both platforms without changing the code. Its first release on

GitHub was on 2012 by Don Cuellar. Afterwards, the company, Sauce Labs created

a team for supporting Appium. In May,2014 Appium version 1.0 was released [18].

It supports native, hybrid and mobile web application tests. Mobile web applications

are the ones which do not require installation and who needs to be tested using

different mobile browsers [7].

As a result of our searches on most used Android testing frameworks, we have found

that each of our sources mentions Appium. Being a cross-platform framework is

makes Appium to go a step forward.

The source code of Appium is accessible on GitHub [19] for contribution of

developers.

2.1.5 UI AUTOMATOR

UIAutomator is an automated mobile testing tool which is included in Android

Testing Support Library. Unlike Robotium and Appium, UIAutomator comes with

Android SDK. It requires Android 4.3 (API Level 18 or higher) [13]. UIAutomator

provides APIs for building UI tests, user interactions and system events.

UIAutomator has a viewer named UIAutomatorViewer. This viewer analyzes the

user interface components which are currently displayed on an Android device. It

provides information about layout hierarchy and user interface components’

properties such as ID, text, class. It is a viewer which is widely used. Even other

mobile test automation tools get help from UIAutomatorViewer for inspecting UI

components.

9

When we searched about the most popular mobile application testing frameworks,

we have found out that 4 of 5 sources that we searched states UIAutomator as one of

the most popular Android test automation tools. Its successful viewer and being

included in Android SDK increases the tool’s popularity. In addition, Appium uses

UIAutomator internally [20].

2.2 LITERATURE REVIEW

In this part, we presented our literature review under two sections: (1) studies about

mobile testing, (2) comparative studies about software development and testing.

2.2.1 MOBILE TESTING

Mobile testing is an area which has been popular recently. As mobile applications

have become a major area in IT sector, mobile testing have started to get attention of

researchers.

Muccini, Francesco and Esposito [12] conducted a study about whether mobile

applications need any specific approach for their verification and validation or not.

They answered three questions in their study. (1) Are mobile applications so

different than traditional software to require special testing approach? (2) What are

the new testing challenges come with mobile applications? (3) What is the role of

automation in mobile testing? They concluded that; (1) Mobile applications are so

different than traditional software and need specific testing approaches. (2) The new

testing challenges are mostly caused by the mobility and contextual nature of mobile

applications. (3) In order to keep cost of mobile applications low and detecting bugs

at different layers such as operating system, application, application framework and

hardware layers, automation is needed. However more detailed studies are needed

for a more accurate answer.

Bayley, Flood, Harrison and Martin [21] proposed a cross platform mobile testing

automation tool named MobiTest. They aimed to generate test suite running on

different platforms for the same application by this tool. Their focus was GUI

testing. They emphasized that, the main challenge of developing a cross platform

testing tool is platform specific features. The architecture of MobiTest solved some

of the issues however they stated that, there are more issues such as determining

components and attributes for different platforms and gathering knowledge about

how existing multi-platform applications identify components, which should be

studied and solved later on. The design of the tool has not been completed yet. As

future work, they aim to complete the design of MobiTest and implement the tool

firstly for Android then for multiple platforms.

10

Shah,G , Shah,P and Muchhala[22] discussed Appium in their study. They examined

the architecture of Appium, its components and how to work with Appium. As it is a

cross platform tool, working with Appium is studied for iOS and Android separately.

They concluded their study with advantages and disadvantages of Appium. They

indicated that; mainly, being cross platform, open source, supporting multiple

languages are advantages of the tool. They stated disadvantages of Appium as its

technical limitation on running tests on different iOS devices and APIs older that

API 16 being not supported by Appium.

2.2.2 COMPERATIVE STUDIES

There are a number of comparative study which inspired us for conducting such kind

of a study.

Jain,A, Jain,M and Dhankar [23] made a comparison between software test

automation frameworks, QTP and Ranorex. These tools are used for testing Web

and desktop applications The authors emphasized the importance of test automation

and advantages over manual testing. According to their study, automated testing is

faster, needs less investment on human resources, more reliable, enables test run

multiple times, helps for performing compatibility testing and more economic in long

term. They gave general information about the benefits and disadvantages of the

tools QTP (Quick Test Professional) and Ranorex. For comparison, they gave points

between 1-10 to each of the tool according to a set of criteria. Their criteria is; cost,

environment, supported browser, online support, supported coding languages, ease of

learning, strongly typed, evolution with age, training cost and integration with

quality assurance tools. Technical detail information was not used for comparing the

tools. They concluded that, Ranorex provides significant cost benefits.

Kaur and Gupta [24] conducted a comparative study on test automation tools;

Selenium, Quick Test Professional and Testcomplete which are used for Web and

Windows application testingThey aimed to compare them to discover their usability

and efficiency. They evaluated these tools according to the features; Licensing cost,

application support, object oriented language support and scalability, support for

operating system and platforms, programming skills, usage, working with database

applications, platform dependency and report generation. As a result of this

evaluation study, they stated that, Quick Test Professional which is the most

expensive one is the best among the three.

Dalmasso,Datta, Bonnet and Nikaein [25] conducted a comparative study on cross

platform mobile application development tools. They stated that, developing

applications for different platforms individually requires more knowledge and effort.

Cross platform development tools reduces cost and time of application development.

They aimed to compare the performance of cross platform application development

tools; PhoneGap, Sencha, JQueryMobile and Titanium. They developed Android

11

applications using each of these tools and observed their memory usage, CPU usage

and power consumption.

Rani, Suri and Khatri [26] conducted a comparative study on mutation testing tools.

In mutation testing, the program is modified by some small changes to model low

level defects. Some of these defects are detected in testing process while some of

them are not recognized as defect. The idea of mutation test is to evaluate the quality

of the tests by observing the amount of detected mutations. In the paper, it is stated

that manual mutation testing requires a lot of time and effort. That is why there are a

number of automation tools for mutation testing. In the study, 5 mutation testing

tools; MuClipse, Judy, Jumble, Jester and PIT is compared. They conducted an

experimental study. They generated mutants for some programs using each tool. As a

result of this experimental study, they compared the tools according to their fault

finding abilities. As a result of this study, they concluded that each tool has some

special features and the most suitable tool changes according to the requirements.

Kumar and Singh [27] conducted a comparative study on Web service testing tools.

Web services are software components that can be accessed by different

programming interfaces. They emphasized that, there are several number of Web

service test automation tools. The most important criteria for these tools are

performance. They selected 6 web service testing tool to compare. These tools are;

Apache Jmeter, Soapui Pro, Wcf Storm, Wizdl, SOA Cleaner and SOAPSonar

Personal. At first, they analyzed these tools on the basis of application support,

programming language and framework, OS support, license, developer and Website.

Then, they created and run test cases against temperature conversion web service

using each of the tools and compared the tools in terms their performance. They

compared the tools according their response time to valid and invalid inputs. They

concluded that Wcf Storm has the maximum response time. Apache Jmeter and

Wizdl has similar response time which is smaller than Wcf Storm. SOAPSonar

Personal has the lowest response time which means it is the fastest tool among six.

12

13

CHAPTER III

3 METHODOLOGY

In this chapter we explain the methodology used in our study in a detailed manner.

Our research methodology is presented in Figure 3.1. In this figure, it is shown that,

we have started our study with literature review. Then we have selected the Android

test automation tools to evaluate. Afterwards, we have selected Android applications

to be used during different phases of our study. Then we have examined blogs,

checklists and related works to identify our comparison criteria. After examination,

we have written test code for a selected application to find new criteria After the

criteria identification is completed, we have examined tutorials, blogs, books related

studies and forums to evaluate the selected tools with respect to the identified set of

criteria. Afterwards, we have conducted an experimental study in which we have

developed test suites for 2 selected applications using testing tools we evaluated.

Lastly, we have analyzed the results we gathered as a result of examination of

resources and our experimental study.

In this chapter, in the first section, we explain the process of selecting frameworks to

compare. In the second section, we give information about the process of selecting

applications to test. In the third section, we presented information about the process

of criteria identification. In the fourth section, we give information about writing test

code using a selected framework in order to find out new criteria. In the fifth section,

we presented information about the process of evaluating frameworks with respect to

the criteria. Lastly, in the sixth section we give information about our case study.

14

Figure 3.1: Research Methodology

3.1 SELECTING TOOLS

Mobile application testing frameworks are aimed to automatize testing process of

mobile applications. There are a number of mobile testing frameworks which enables

testers to conduct automatized functional, performance, acceptance and integration

tests of mobile applications. In order to select tools to compare, we searched most

widely used open source tools from a number of web pages, blogs and tutorials. We

have selected Android as our target because of its prevalence in the market. Thus, we

choose open source tools which are applicable for Android.

Sauce Labs is an American web and mobile app test automation company. “In 2015,

the company was named by the San Francisco Business Times as one of the top 100

fastest growing private companies in the Bay Area for a second consecutive year,

reporting 3-year revenue growth of 472%” [28]. The company listed most popular

Android test automation tools as [29]:

End

Start

Literature

review

Selecting

tools
Selecting applications to

test

Examination of, blogs,

related studies,

checklists

Identifying

criteria

Writing test

code using

selected tool

Examination of tutorials,

blogs, books, related studies,

forums

Evaluating tools with

respect to the criteria

Experimetal Study:

Writing test code for

the application using

selected tools

Analyzing

results

15

 Calabash

 MonkeyTalk

 Robotium

 UIAutomator

 Selendroid

Testdroid is a set of products related to software development and testing by Bitbar

Technologies Limited. Bitbar is a company founded in 2009 and has customers

included Facebook, LinkedIn, Flipboard, Pinterest, and eBay [30]. Testdroid has a

blog which includes articles about mobile application testing. This blog lists top 5

Android test frameworks as follows[31]:

 Robotium

 UIAutomator

 Espresso

 Calabash

 Appium

Optimus Information is a company headquartered in Canada. The company provides

outsourced technology services to companies. Their services are about software

development, mobile development, software testing and business intelligence. In

their blog [36] they listed 10 most popular mobile testing tools as follows:

 Appium for Android and iOS

 Calabash for Android and iOS

 MonkeyTalk for Android and iOS

 Robotium for Android

 Selendroid for Android

 UIAutomator for Android

 UIAutomation for iOS

 Frank for iOS

 KIF (Keep It Functional) for iOS

 iOS Driver for iOS

TestingExcellence is a website founded in 2007 and provides software testing

articles, tutorials, information about testing tools, conferences and news. Amir

Ghahrai who is the founder of the website states the popular open source mobile

automation tools as follows [37]:

 Appium for Android and iOS

 Calabash for Android and iOS

 Frank for iOS

 MonkeyTalk for Android and iOS

16

 UIAutomation for iOS

 Robotium for Android

 iOS Driver for iOS

 UIAutomator for Android

 KIF for iOS

 Selendroid for Android

 EarlGrey for iOS

TestLab4apps is a company interested in mobile application testing. They use test

methods which combine manual and automated testing. They conduct different kinds

of mobile application tests such as functional, compatibility, stress, acceptance and

user interface. In their blog [38], they listed 5 open source Android app test

automation tools as follows:

 Appium

 Robotium

 MonkeyTalk

 MonkeyRunner

 Sikuli

As a result of our research we have found out that, Robotium and Appium are the

most widely used mobile testing frameworks. Each of the five resources that we have

searched mentioned Robotium and four of them mentioned Appium. Thus, we have

selected these two frameworks for our study.

UIAutomator is another widely used framework. We have found out that, four of the

five resources we searched mentioned about this tool. UIAutomator differentiate

from others as it is one of the test automation tools which is included in Android

Testing Support Library. Android Support Library is available with Android SDK.

Other tools included in Support Library are AndroidJUnitRunner and Espresso [13].

However, they are not as popular as UIAutomator. Another property of UIAutomator

is that, it provides API for other tools. For instance Appium uses UIAutomator

driver.

Because of these distinguishing properties and its popularity, we have selected

UIAutomator for our study too.

As a result, Appium, Robotium and UIAutomator are selected to be compared in our

study.

3.2 SELECTING APPLICATIONS TO TEST

One small sized and two medium sized open source applications are selected to be

used in different phases of our study.

17

For identifying criteria, a small sized application; Android Scientific Calculator is

selected. It is a scientific calculator whose GUI is shown in Figure 3.2.1.

Figure 3.2.1: Calculator Application UI
1

We have downloaded the source code of the application[39] and wrote test cases

based on equivalent class partitioning for this application. During this process we

have determined some criteria that were not mentioned in checklists that we have

studied.

We have conducted a case study as well. For this case study we have selected two

open source medium sized applications, DroidWeight and 2048. Droidweight is a

health application that aims to track weight and some other body parameters. It is an

application that can be downloaded from Google Play Store [40]. Three main screens

of the application is shown in Figure 3.2.2.We have downloaded the source code of

the application from GitHub [41].

1 Code Monkey. (2013). Calculator (open source) (Version 2.0.1) [Mobile Application Software].

Retrieved from https://sourceforge.net/projects/androidcalculat/

https://sourceforge.net/projects/androidcalculat/

18

Figure 3.2.2: Droidweight application UI

2

2048 is a popular mobile game that is available on both Android and iOS platforms.

There are many different versions of the application on Google Play Store. For our

study, we have downloaded a version which enables users to play offline [42]. 2048

is a hybrid application that includes a webview. This property allows us to determine

the capabilities of the testing frameworks on testing hybrid applications. The main

screen of the application is shown in Figure 3.2.3.
3

2 Aymanstar.(2013). droidweight (Version 17) [Mobile Application Software]. Gathered from
https://github.com/aymanstar/droidweight
3 uberspot. (2016). 2048 (Version 2.06) [Android Application Software]. Gathered from
https://github.com/uberspot/2048-android

Figure 3.2.3: 2048 Application UI
3

https://github.com/aymanstar/droidweight
https://github.com/uberspot/2048-android

19

Table 3.2.1 shows the properties of three Android applications, Calculator,

Droidweight and 2048.

Table 3.2.1: PROPERTIES OF ANDROID APPS USED IN OUR STUDY

Calculator Droidweight 2048

Line of code (LOC): 835 3966 168

Number of packages: 2 10 2

Number of classes 10 48 12

Number of methods 31 295 8

Number of screens 1 3 1

DroidWeight and 2048 are open source applications whose source code is not

difficult to read and to understand. This property simplifies the process of

understanding the applications and developing test cases. Moreover, these

applications provide functionalities that enable us to test capabilities of the

frameworks. For instance, drag and drop property of the test tool can be tested on

2048 effectively. Because of these reasons we have selected these two applications

for our case study.

3.3 IDENTIFIYING CRITERIA

In order to identify criteria to evaluate testing frameworks, firstly, we have searched

mobile testing checklists. We have selected the criteria related to GUI testing,

interrupt testing and memory/storage leakage testing.

Test management approach (TMap) which is a software testing organization,

combines insights and techniques about testing [32]. TMap released a checklist [33]

for mobile application testing. Characteristics, which is needed to be tested are listed

under five parts;

 Device Specific Checks present characteristics which are related to the device

that the application is installed. There are 27 device specific checks in

TMap’s checklist.

 Network Specific Checks present characteristics which are related to network

connection. There are 9 network specific checks in TMap’s checklist.

 App Specific Checks present frequently used functionalities of the

application. There are 14 app specific checks in TMap’s checklist.

20

 App User Interface Checks present characteristics that provide a better user

experience. There are 19 app user interface checks in TMap’s checklist.

 Store Specific Checks, which are gathered with the help of Apple store

guidelines, present characteristics needed to be tested before submitting the

application to the store. There are 35 store specific checks in TMap’s

checklist.

As we are interested in GUI based functional testing, interrupt testing and memory

and battery leakage testing, some of the characteristics, mostly under the parts ‘App

User Interface Checks’ and ‘Store Specific Checks’, listed in the TMap’s checklist

were out of our scope. App user interface checks are related to user experience rather

than the functionality of the app. Store specific checks are not necessary unless the

application will submitted to the store. Other characteristics inspired us for selecting

criteria in our study.

RapidValue Solutions[34] published an article that provides a checklist for selecting

suitable mobile test automation tool. The checklist includes requirements that mobile

application testing tools must have and the tools that meets these requirements.

These requirements are listed under following parts;

 Identification methods: Capability of the tool for identifying objects.

 Devices exactly like the actual user has: No Jailbreak/Rooting: The tool’s not

requiring any changes in the device under test.

 Supported phones

 Plugs-in to existing test environments: Ability of the tool to integrate into

testing environment.

 Recorder: Having capability to record and replay tests.

 Same test can run on different devices

 Test Execution: The speed of execution and the tool’s ability to run serial

tests.

 Full Functionality Support: Functionalities that the tool should be support

such as gestures.

 Device connectivity: The tool’s ability to test connectivity of the device

Another article is”Testing Checklist for Mobile Applications” by Anurag Khode

[35]. In this article, 26 test cases and expected results of them was listed. These are

the tests which should be run when a mobile application is tested. The test cased are

mainly about interrupt testing, such as call/sms handling, removal of battery/charger,

etc. Tests to provide a better user interface such as installation, application logo, exit

application were also stated in the article. However there were not any test case

related to GUI testing.

In addition to the checklists, we have examined blogs [43][44] and the related studies

[3][6][7] discussed in Chapter 2.

21

To determine the criteria list, we have searched about the behaviors, properties,

requirements and possible user actions of mobile applications that are needed to be

tested. We have gathered about 100 criteria. The criteria related to installation,

integration, usability and store (such as Google Play and Apple Store) are out of our

scope, thus we have not included these criteria in our study. We have included the

criteria related to GUI, network, interruption and memory/battery leakage as they are

our main focus. Moreover, we have also added some criteria which give general

information about tools such as test language, documentation and community of the

tool, ease of setup. As a result of this research we have defined 19 criteria to be used

in our study.

We have also conducted an exploratory study to identify additional criteria. We have

created test suite for Scientific Calculator App and have developed test code using

Robotium, Appium and UIAutomator. During this process we have found 9 new

properties needed to be tested using automation tools and not stated in the resources

we searched. Thus we have also added these properties to our criteria.

As a result of our search and exploratory study we have identified 28 criteria which

we have compared our selected tools with respect to. These criteria can be used for

evaluation of other mobile testing tools as well. Table 3.3.1 shows resulting criteria.

Table 3.3.1: EVALUATION CRITERIA FOR MOBILE TEST AUTOMATION

TOOLS

 Criteria

C1 Can we use delays in test code

C2 Can we test gestures

C3 Can we select different options at the same time

C4 Can the tool take screenshot

C5

Is it possible to reach "back", "recent apps" and "home" buttons using the

tool

C6 Is interaction with soft keyboard available

C7

Can we test the behavior of the app with different internet connection (no

connection, Wi-Fi, 3G, 2G)

C8 Can we test behavior of the app on airplane mode

C9 Is interaction with status bar notifications available

C10 Is it possible to generate test report file using the tool

C11 Does the tool have record and replay property

C12 Can we test the behavior of the app when a there is an incoming call/sms

C13

Can we test the behavior of the app when a there is a popup alert (alarm,

calendar)

C14

Can we test the behavior of the app when a there is an incoming push

message from another app

C15 Can we test if inserting and removing charger causes any problem or not

22

C16 Can we test the behavior of the app when the battery is low

C17 Can we test the behavior of the app when the memory is low

C18 Can we test on emulator

C19 Can we test on real device

C20 Is testing with APK file available

C21 Is testing with source code available

C22 Test language

C23 Can we execute tests using command prompt

C24 Can we test hybrid applications

C25

Is it possible to test an application without developer level knowledge

about the application code

C26 Is it fast & easy to setup working environment

C27 Is the documentation about the tool enough

C28 Is the community active

 Criteria 1 represents whether the tool enables inserting waits inside the test

code for different purposes such as waiting for a new window to open.

 Criteria 2 represents the ability of the tool to simulate different user gestures.

The gestures we investigated are given in Table 3.3.2.

 Criteria 3 represents the ability of the tool to simulate selecting more than one

option at the same time such as clicking on different points on the screen at

the same time. Multiselection refers to the user action in which the user clicks

on more than one element on the screen simultaneously. Such interaction

could be an undesired one or unintentionally performed. In mobile

application testing process it is needed to test the behavior of the application

when this situation occurs. Thus, we wanted to represent the tool’s ability to

simulate multiselection with this criteria.

 Criteria 4 represents the ability of the tool to take screenshot of the virtual or

real mobile device.

 Criteria 5 represents the ability of the tool to reach three main Android

buttons; back, recent apps and home

 Criteria 6 represents the ability of the tool to interact with soft keyboard, such

as clicking on soft keyboard buttons and closing soft keyboard.

 Criteria 7 represents the ability of the tool to change internet connection. The

options are turning on and off WI-FI, turning off mobile data transfer,

opening 3G and 4G mobile data transfer

 Criteria 8 represents the ability to of the tool to change the device mode to

Airplane mode

 Criteria 9 represents the ability of the tool to reach and interact with the

notification area.

 Criteria 10 represents the ability of the tool to generate and export test report

as a file.

23

 Criteria 11 represents the ability of the tool for recording tests from emulator

or real device and play back the recorded tests.

 Criteria 12 represents the ability of the tool to simulate an incoming call and

text message.

 Criteria 13 represents the ability of the tool to simulate popup alerts such as

alarm and calendar alerts.

 Criteria 14 represents the ability of the tool to simulate push messages from

another applications.

 Criteria 15 represents the ability of the tool to simulate inserting and

removing charger to the device.

 Criteria 16 represents the ability of the tool to change battery level of the

device.

 Criteria 17 represents the ability of the tool to change used memory level of

the device.

 Criteria 18 represents the ability of the tool to run test cases on emulator

(virtual device).

 Criteria 19 represents the ability of the tool to run test cases on a real physical

device.

 Criteria 20 represents the ability of the tool to create test suite and run test

code using APK file of the application.

 Criteria 21 represents the ability of the tool to create test suite and run test

code using source code of the application.

 Criteria 22 represents the language used for writing test code using the tool

 Criteria 23 represents the ability to run tests created by the tool using

command prompt.

 Criteria 24 represents the ability of the tool to create and run tests for hybrid

applications. Hybrid applications are apps which are combination of web and

native applications. They are developed for a specific platform and run inside

a native container like native mobile apps. However, they also include

webviews that are built with web technologies such as HTML, CSS and

JavaScript [45].

 Criteria 25 represents the ability to create and run tests using the tool, without

deep knowledge about the source code of the application such as name and

functionalities of the methods, classes and packages and id of UI elements

 Criteria 26 represents the ease of preparing working environment of the tool

such as downloading and installing necessary software, importing libraries

and jar files.

 Criteria 27 represents if available documentation (tutorials, blogs, videos,

books) provides sufficient information to use the tool efficiently or not.

 Criteria 28 represents if the community of the tool such as Google Groups,

Github page and forums are active or not.

24

As criteria 2; ‘Testing Gestures’ consists of different gestures, we have also created a

table that shows each gesture separately. Table 3.3.2 shows these gestures.

Table 3.3.2: GESTURES FOR EVALUATING MOBILE TEST AUTOMATION

TOOLS

Gesture Definition

Drag
The gesture consists of clicking on an object, moving it across
the screen and releasing it.

Pinch

Two fingers are put on the screen and the gap between fingers
shrinks or expands. When this gap shrinks, the gesture is
named as pinch-in and when the gap expands the gesture is
named as pinch-out. This gesture is mainly used for zooming.

Swipe

Similar to drag gesture, swipe gesture consists of the activities
tapping on the screen with one finger, move the finger across
the screen and release. The main difference between drag and
swipe is that, swipe gesture does not have a target screen
element while drag has [46].

Long Click (Long Press)
Long click (long press) means clicking on the screen with one
finger, waiting for a while in soconds and release.

Figure 3.3.1 : Gestures

4

3.4 EVALUATING THE TOOLS WITH RESPECT TO THE CRITERIA

After criteria identification, we have evaluated mobile applications testing tools with

respect to our criteria set. For each of the criteria, we have searched on papers,

tutorials, blogs, books and related studies to determine whether the tool meets the

criteria or not. If the information we needed was not stated any of the sources, we

4 Adapted from http://www.htc.com/us/support/htc-one/howto/cat_54453.html

http://www.htc.com/us/support/htc-one/howto/cat_54453.html

25

have opened issues on GitHub, Google Groups or forums such as Stack Overflow

which is a web site that includes questions and answers related to programming.

3.4.1 ROBOTIUM

We have evaluated Robotium according to the criteria represented in Table 3.3.1. In

this part, we explain the ability of Robotium to meet each of the criteria.

C.1 Insert Delays into Test Code

Robotium allows simulating delays by inserting waits inside the code. These delays

may be used for either simulating a user wait or system wait such as waiting for a

new window to open.

In order to test delays, Robotium provides the method, solo.sleep(time) in which

time refers to the miliseconds that we wanted to wait for.

C.2 Testing Gestures

Robotium allows for simulating mostly used gestures [47].

 In order to simulate drag gesture it is possible to use the method;
solo.drag(fromX, toX, fromY, toY, stepCount)

The parameters ‘fromX’ and ‘fromY’ refer to the coordinates of the initial point

where drag action starts.

The parameters ‘toX’ and ‘toY’ refer to the coordinates of the last point where drag

action ends.

The parameter stepCount refers to the number of steps to complete drag action.

 In order to simulate swipe gesture it is possible to use the method;

solo.swipe(startPoint1, startPoint2, endPoint1, endPoint2);

Robotium allows swipe gesture with two fingers. The parameters ‘startPoint1’ and

‘startPoint2’ refer to the initial points of the first and second fingers. The parameters

‘endPoint1’ and ‘endPoint2’ are the end points for two fingers .

 In order to simulate pinch gesture, it is possible to use the method;

solo.pinchToZoom(startPoint1, startPoint2, endPoint1, endPoint2);

26

The parameters ‘startPoint1’ and startPoint2 refer to the initial points of two fingers.

The parameters ‘endPoint1’and ‘endPoint2’ refer to the last points of two fingers.

 In order to simulate long click gesture, Robotium provides a number of

different methods. Two of these methods are;

o solo.clickLongOnText(text);

Using this method it is possible to long click on the screen where the

parameter ‘text’ appears.

o solo.clickLongOnScreen(x, y);

Using this method, it is possible to long click on a point whose

coordinates are stated as ‘x’ and ‘y’.

C.3 Selecting Different Options At The Same Time

Robotium resources do not provide information whether selecting different options at

the same time is possible or not using the tool. We have examined the API too, but

could not find any method or functionality to simulate multi selection in Robotium

API

C.4 Taking Screenshot

Robotium allows taking screenshot of the real or virtual device using the method;

solo.takeScreenshot();

All screenshots are stored on the folder /sdcard/Robotium-Screenshots/. In order to

save the screenshot it is necessary to give permission to main application to write SD

Card. For this purpose, it is necessary to add following line of code to the manifest

file of the application under test [48].

<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE">

C.5 Reaching "Back", "Recent Apps" And "Home" Buttons

After our research, we have concluded that Android hardware buttons; back, search,

home and recent apps can be reached by Robotium using solo.sendKey() method.

However, with our case studies and a deeper research, we found that clicking on

Android hardware buttons is not working properly. The tool API contains the static

values KEYCODE_HOME and KEYCODE_APP_SWITCH to be used as

solo.sendKey(KeyEvent.KEYCODE_HOME) and

solo.sendKey(KeyEvent.KEYCODE_APP_SWITCH) but these methods are not

27

functional and do not trigger any action.Only “Back” button is functional by

solo.sendKey(KeyEvent.KEYCODE_BACK) or solo.goBack() method.

C.6 Interaction With Soft Keyboard

Pressing on soft keyboard generates key events. These key events are represented by

key codes [49].

Robotium allows interaction with soft keyboard by sending key code with the

command;

 solo.sendKey(key code);

Hiding the soft keyboard is also possible using the method;

solo.HideSoftKeyboard();

C.7 Different Internet Connection (No Connection, Wi-Fi, 3G, 2G)

Robotium allows users to set WI-FI and mobile data as turned on or turned off.

However, it is not possible to set network type as 2G, 3G or 4G. Methods for these

settings are [50] ;

solo.setMobileData(turnedOn);

solo.setWiFiData(turnedOn);

These methods gets boolean parameters (true or false).

Changing those states needs permissons in the AndroidManifest.xml file of the

application under test. It is necessary to add permissions for changing network state

and changing network state of the application using following lines of code:

<uses-permission android:name="

android.permission.CHANGE_NETWORK_STATE">

<uses-permission android:name="

android.permission.CHANGE_WIFI_STATE ">

C.8 Airplane Mode

Robotium resources do not provide information if changing device mode to airplane

mode is possible or not using the tool.We have also examined the API to find a

method to change the device to airplane mode but could not find any related method.

C.9 Interaction With Status Bar Notifications

Interaction with status bar notification such as pulling down the notification area and

click on notification is not possible using Robotium [43].

28

C.10 Generating Test Report File

Robotium allows users to generate test reports as XML files. After running a test, a

button: ‘Test Run History’ appears on Eclipse. Using ‘Export’ option, we have

downloaded our test report as XML file.

C.11 Record And Replay Property

Robotium does not have record and replay functionality itself. However there is

another product; Robotium Recorder whose developers define as; “Robotium

Recorder is the result of everything that we have learned from creating and

continuously working with the Robotium framework for the last 4 years.” [51]

Robotium Recorder is available for Eclipse and Android Studio as plugin. Record

and reply functionality is enabled by this tool. However, unlike Robotium, Recorder

is not free.

C.12 Simulating An Incoming Call/Sms

In Google Group, the developer of Robotium Renas Reda states that, simulating an

incoming call or sms is not possible using Robotium [52].

C.13 Simulating Popup Alert (Alarm, Calendar)

Robotium resources do not provide information if it is possible to simulate popup

alerts using the tool or not. In addition, during test development, we could not find

any Robotium method or functionality to simulate popup alerts.

C.14 Simulating An Incoming Push Message From Another App

Robotium resources do not provide information if it is possible to simulate incoming

push messages using the tool or not. When we examined the Robotium API, we

could not find any method to simulate an incoming push message either.

C.15 Simulating Inserting And Removing Charger

Robotium resources do not provide information if it is possible to simulate inserting

and removing charger to the device or not. During test case development, we could

not find any Robotium method that enables to simulate inserting or removing

charger.

C.16 Testing The Behavior Of The App When The Battery Is Low

29

Robotium resources do not provide information if it is possible to simulate the

situation that the battery of the device is low or not. When we examined API we

could not find any method or function to simulate low battery either.

C.17 Testing The Behavior Of The App When The Memory Is Low

Robotium resources do not provide information if it is possible to simulate the

situation that the memory of the device is low or not. When we examined API we

could not find any method or function to simulate low memory either.

C.18 Testing On Emulator

It is possible to run Robotium tests on emulator. For our case study we have run all

tests on emulator.

C.19 Testing On Real Device

 It is clearly stated that Robotium allows users to run tests on real mobile devices

[16].

C.20 Testing With APK File

Robotium allows users to test with APK file as well as with source code. Hovewer,

in order to test with it, the APK file needs to have the same certificate signature with

the test project. Signature matching is a process which has some compelling steps. If

the certificate signature is known, it is necessary to use the same signature in test

project [53]. If the certificate signature is not known, it is necessary to delete the

signature and use the same signature for both the application and the test project. If

the application is not signed, then it is necessary to sign the application APK. In

order to sign the application, following lines of command is used:

jarsigner -keystore ~/.android/debug.keystore -storepass android -

keypass

android Application.apk androiddebugkey

zipalign 4 Application.apk TempApplication.apk

After these commands it is necessary to change the name of TempApplication.apk to

Application.apk.

If the application is signed, then fistly it is necessary to delete the application sign by

deleting META_INF folder of the application. Afterwards,the application is resigned

using the commands presented above.

Thus, testing with APK file is possible but not as easy as testing with source code .

30

C.21 Testing With Source Code

Robotium allows user to test with the application’s source code. In order to test with

source code, the source code of the application is downloaded and a new Android

test project is created. Application under test is selected as the target project of the

test project. This step adds Android Manifest file of the test project the code:

<instrumentation android:targetPackage="package name of the app

under test" />

Then a new Java class is created inside the test project. It is necessary to import the

activity that is aimed to test in the test activity.

In addition, it is also possible to create and run test suites for the applications that are

cloned from Github by following the same steps explained above.

C.22 Test Language

The language used for coding the test cases for Robotium is Java.

C.23 Executing Tests Using Command Prompt

It is possible to execute tests using command prompt with Robotium. In order to

accomplish it, firstly it is necessary to move to the directory where adb.exe file is

located. This file is under android-sdk-windows\platform-tools directory.

Then, in order to execute tests, following line of command is entered on command

line:

adb shell am instrument -w test package

name/android.test.InstrumentationTestRunner

C.24 Testing Hybrid Applications

Hybrid application is a combination of a web application and native Android

application and includes a web view. “Web view is a control in android which is

used to display web pages within itself.” [54]

In the GitHub page of Robotium, it is clearly stated that Robotium has a full support

for both native and hybrid Android applications [17].

In our case study, we have developed and run test suite for the application 2048

which is a hybrid application. While we could be able to reach UI elements of the

native application; DroidWeight by their id, it is not possible for an hybrid

application.

31

C.25 Need For Developer Level Knowledge About The Code

When we searched on tutorials, it is stated that; “Robotium helps us to quickly write

powerful test cases with minimal knowledge of the application under test.” On the

other hand, even it is possible to test with apk file, without any knowledge about

source code, we have concluded that it is not an effective way of testing with

Robotium because of the following reasons;

 UI elements are reachable by their index and texts. However, sometimes

Robotium faces problems finding elements by these information. Thus,

reaching UI elements by their ID might be more effective.

 When creating a test project using Robotium, it is needed to find package and

launcher activity name of the application under test. Without knowledge

about source code, it needs some complicated process to reach that

information.

 Taking screenshot is possible with Robotium. However, this functionality

needs permission which should be added to Android.Manifest file of the

application under test. Thus, reaching and modifying the Android.Manifest

file of the project is mandatory to use screenshot functionality of Robotium.

C.26 Working Environment Setup

Setting up working environment is not a complicated or time consuming process.

The setup process is as follows. Using Eclipse or Android Studio, a new test project

is created. Robotium jar file is downloaded and added to the test project by using

“Add External Jars” menu of the IDE. After these steps which require a couple of

minutes, environment setup to work with Robotium is completed.

C.27 Documentation

As Android testing is a new area, the number of documentation gathered from

Internet sources, such as forums, blogs and tutorials are more informative, up to date

and comprehensive than books. This documentation may be considered as

satisfactory for Robotium.

C.28 Community

Robotium is one of the most popular open source Android testing tools. When we

searched the mostly used Android testing tools, each source that we searched

mentioned Robotium. As a result of this popularity, Robotium community is highly

active.

32

Developer of Robotium; Renas Reda is very active on the Github page of the tool. By

April,2016 there are 39 open, 696 closed issues on Robotium Github page [17].

Morever, there is a Robotium developers group in Google Groups. In this group

Robotium users interact with each other and Renas Reda is also actively joins

discussions [55].

On stackoverflow.com By April, 2016 there are 977 questions with the “robotium”

tag [56].

These numbers may be considered as indicators and it is possible to say that the

Robotium community is remarkably active.

3.4.2 APPIUM

We have evaluated Appium according to the criteria represented in Table 3.3.1 In

this section, we evaluate the ability of Appium to meet each of the criteria.

C.1 Insert Delays into Test Code

It is possible to simulate delays by inserting waits inside the code using Appium. For

this purpose Thread.sleep(milliseconds) method which simulates waits in

milliseconds can be used.

C.2 Testing Gestures

Appium provides ability to simulate most used gestures; drag, swipe, pinch and long

click [57].

 In order to simulate drag gesture it is possible to use following lines of code;

TouchAction touchAction = new TouchAction(driver);

touchAction.press(x1,y1).perform();

touchAction.moveTo(x2,y2).release().perform();

Firstly, we create an instance of a Touch Action class. This class provides methods to

perform different mobile gestures. Then, we use press() method and state the

coordinates of the point that we want to start drag action as parameters. Later, using

moveTo() method we state the coordinates of the point that we want to end drag

action as parameters.

 Appium allows to swipe horizontal or vertical. In order to simulate swipe

gesture it is possible to use following line of code:

driver.swipe(startx, starty, endx, endy, duration);

33

In this method, the parameters ‘startx’ and ‘starty’ represents the coordinates of the

initial point that swipe action starts. The parameters ‘endx’ and ‘endy’ represents the

point where swipe action ends. The parameter ‘duration’ is the time in milliseconds

to complete swipe action.

 In order to simulate pinch gesture it is possible to use the method;

driver.pinch(x,y);

In this method the parameter x and y refer to the coordinates to terminate pinch

action.

In order to simulate pinch gesture, it is also possible to use MultiTouchAction class.

The following lines of code shows an example of using MultiTouchAction class for

pinch gesture [58] :

MultiTouchAction multiTouch = new MultiTouchAction(driver);

TouchAction tAction0 = new TouchAction(driver);

TouchAction tAction1 = new TouchAction(driver);

tAction0.press(scrWidth/2,scrHeight/2).waitAction(1000).moveTo

(0,60).release();

tAction1.press(scrWidth/2,scrHeight/2+40).waitAction(1000).mov

eTo(0,80).release();

multiTouch.add(tAction0).add(tAction1);

multiTouch.perform();

In the piece of code given above, ‘scrWidth’ refers to the width of the screen and

‘scrHeight’ represents the height of the screen. In tAction0, the finger is pressed on

the center of the screen and moved to y axis. In tAction1, the finger is pressed

slightly down on the center of the screen and moved to y axis.

 In order to simulate long click gesture it is possible to use following lines of

code;

TouchAction action = new TouchAction((MobileDriver)

driver).longPress(WebElement);

action.perform();

In this piece of code, a touch action is created and performed. In this touch action,

long click on an element on the screen (represented as WebElement) is simulated.

34

C.3 Selecting Different Options At The Same Time

Appium provides ability to simulate selecting different options at the same time. For

this purpose, ‘MultiTouchAction’ class is used. Using this class it is possible to

generate a set of touch actions.

 MultiTouchAction action = new MultiTouchAction((MobileDriver)

driver);

 TouchAction action1 = new TouchAction((MobileDriver)

driver).longPress(x1, y1);

 TouchAction action2 = new TouchAction((MobileDriver)

driver).longPress(x2, y2);

action.add(action1).add(action2).perform();

In the piece of code presented above, firstly an instance is created from

MultiTouchAction class. Then two long press action is defined. ‘action1’ is a touch

action that performs long click on a point whose coordinates are ‘x1’ and ‘y1’.

‘action2’ is a touch action that performs long click on another point whose

coordinates are ‘x2’ and ‘y2’. Lastly, these actions are added to multi touch action

(action) and performed simultaneously.

C.4 Taking Screensot

Appium allows for taking screenshot and define the location where it is desired to

store the screenshot. Using following lines of code, it is possible to take and store

screenshot.

String file = "file name";

File srcFile=((TakesScreenshot)driver)

.getScreenshotAs(OutputType.FILE);

new File(file).mkdirs();

String destFile = "screenShot.png"

FileUtils.copyFile(srcFile,new File(file + '/' + destFile));

In the first line, the name of the file where the screenshot will be located is defined.

In the second and third line, screenshot is captured. Then, the directory where the

screenshot will be located is created. After that, name of the screenshot is defined. In

the last line, the screenshot is stored under the defined directory and with the given

name.

C.5 Reaching "Back", "RecentApps" And "Home" Buttons

Appium allows reaching and clicking on Android hardware buttons; ‘Back’,

‘RecentApps’ and ‘Home’. It is possible to reach those buttons using Android key

codes [48].

35

 driver.pressKeyCode(AndroidKeyCode.BACK) method is used to press

‘Back’ button.

 driver.pressKeyCode(AndroidKeyCode.HOME) method is used to press

‘Home’ button.

 driver.pressKeyCode(AndroidKeyCode.KEYCODE_APP_SWITCH) method is

used to press ‘RecentApps’ button.

C.6 Interaction With Soft Keyboard

Interacting with soft keyboard is possible using Appium. For this interaction

following methods are used;

 driver.getKeyboard().sendKeys(String s) allows writing string s to the

text field using soft keyboard.

 driver.pressKeyCode(int keycode) allows clicking on soft keyboard

button whose keycode is given as parameter.

 driver.hideKeyboard() hides the soft keyboard.

C.7 Different Internet Connection (No Connection, Wi-Fi, 3G, 2G) &

C.8 Airplane Mode

Appium allows to make connection and mode settings with a single line of code

presented below. However, similar to Robotium,it is possible to turn on/turn off WI-

FI and mobile data but it is not possible to set network type as 2G, 3G or 4G.

driver.setNetworkConnection(int value);

The paramater ‘value’ is assigned according to the desired state shown in Figure

3.4.2.1.

36

 Figure 3.4.2.1: Appium Connection States
5

The figure indicates that,

 When it is needed to set mobile data, Wi-fi and airplane mode off, the

parameter, value should be set to 0.

 When it is needed to set mobile data and Wi-fi off, airplane mode on, the

parameter, value should be set to 1.

 When it is needed to set mobile data and airplane mode off, Wi-fi on, the

parameter, value should be set to 2.

 When it is needed to set Wi-fi and airplane mode of, mobile data on the

parameter, value should be set to 3.

 When it is needed to set mobile data and Wi-fi on, airplane mode off, the

parameter, value should be set to 4.

C.9 Interaction With Status Bar Notifications

Appium allows opening notifications and click on them.

driver.openNotification() method opens the notification area. After opening the

area, it is possible to click on the area using xpath, class name or coordinates of the

screen element that is needed to be reached.

5
https://github.com/appium/appium/blob/master/docs/en/writing-

running-appium/network_connection.md

https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/network_connection.md
https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/network_connection.md

37

C.10 Generating Test Report File

Appium uses TestNG which provides test reports. TestNG is an open source testing

framework similar to JUnit but includes additional functionalities [59]. It can be used

not only for unit testing but also other types of tests such as integration, tests, end to

end tests. After executing a test suite, a folder, named ‘test-output’ is created

automatically. Under this folder, generated test reports with different formats are

listed.

C.11 Record And Replay Property

Appium has an ‘Inspector’ to record and replay tests. Appium Inspector allows

recording tests and replaying them when the apk file of the applications is given.

Appium detects necessary information, such as package name and launcher activity

name automatically after APK file is selected.

However, Inspector has two limitations [60][61][62];

 It can be used only for native apps, hybrid application cannot be tested using

Appium inspector.

 It does not support Windows platform properly. It fails inspecting elements

and record and replay function is not available on Windows.

C.12 Simulating An Incoming Call/Sms

On Appium GitHub page [63] and the blog of Rapid Value Solution [30], it is stated

that simulating an incoming call or sms is not possible using Appium.

C.13 Simulating Popup Alert (Alarm, Calendar)

Appium resources do not provide information if simulating a popup alert is possible

or not using the tool. When we examined API, we could not find any method to

simulate a popup alert either.

On the other hand it is possible to interact with them if any. When there is an

incoming alarm, using driver.swicthTo().alert method it is possible to reach the

alert and then it is possible to click any button on the alarm popup.

C.14 Simulating An Incoming Push Message From Another App

Appium resources do not provide information if simulating an incoming push

message possible or not using the tool. During test development, we could not find

any function that simulates an incoming push message either.

38

C.15 Simulating Inserting And Removing Charger

Appium resources do not provide information if simulating inserting or removing

charger is possible or not using the tool. During test development, we could not find

any method or function to simulate inserting or removing charger.

C.16 Testing The Behavior Of The App When The Battery Is Low

Appium resources do not provide information if simulating low battery is possible or

not using the tool. When we examined the API, we could not be able to find a

method or function for simulating low battery.

C.17 Testing The Behavior Of The App When The Memory Is Low

Appium resources do not provide information if simulating low memory is possible

or not using the tool. When we examined the API, we could not be able to find a

method or function for simulating low memory.

C.18 Testing On Emulator

It is possible to run Appium tests on emulator. For our case study we have run all

tests on emulator.

C.19 Testing On Real Device

It is clearly stated that it is possible to run Appium tests on real device [64].

C.20 Testing With Apk File

As a blackbox testing tool, Appium allows for testing with apk file. Using Appium

Inspector it is possible to get the properties (such as id, index, name, class) of UI

components of the target application. As Inspector does not work properly on

Windows, it is also possible to use UIAutomatorviewer whose details are explained

in section 3.1 to detect UI elements. Then using these information, it is possible to

write test cases for the application. It is also possible to test applications with apk file

using the record and replay property of Appium Inspector.

C.21 Testing With Source Code

Appium allows testing applications whose source code is available. In our case study

we have developed and run test cases for the applications with source code.

39

C.22 Test Language

Any WebDriver compatible language such as Java, Objective-C, JavaScript,PHP,

Python, Ruby, C#, Perl may be used for writing tests using Appium [65].

C.23 Executing Tests Using Command Prompt

It is possible to execute Appium tests on command prompt. However, it is necessary

to use a build tool such as Ant [66] [67]. Executing TestNG tests using Ant is a

painful process. Firstly, it is necessary to create a testng.xml file under project

directory. This file contains information such as package name, class name and

method name. Order of test cases can be also mentioned here. Then, test execution

can be triggered using the command:

java -cp "directory name \testng.jar; directory name\jcommander.jar"

org.testng.TestNG testng.xml

C.24 Testing Hybrid Applications

Appium allows testing hybrid applications as well as native applications. However,

Appium Inspector does not work properly with hybrid applications. The tool is not

stable for recognizing webview elements. A webview element could be reached

when a test suite is executed but could not be reached when the same test suite is

executed later on.

C.25 Need For Developer Level Knowledge About The Code

Appium allows testing with minimal knowledge about the source code of the

application. Even the information needed to test an apk file such as package name

and launcher activity name can be reachable using Appium Inspector easily. Thus,

testing with Appium does not need developer level knowledge about the source code

of the application under test.

C.26 Working Environment Setup

The process to setup working environment for Appium needs a considerable effort.

In addition to the software Eclipse, Android SDK and JDK that are needed by other

tools as well, Appium requires more software. This additional software can be listed

as:

 TestNG which is a testing framework that covers various testing types

 Selenium Server JAR is needed as Appium uses Selenium Web Driver for

test automation

40

 Appium Server

After installation, it is needed to make necessary settings on Appium Server. Figure

3.4.2.2. shows the Android Settings page of Appium. On this page, Platform Name,

Automation Name, Platform Version and Device Name must be set. The same

settings should be made inside setUp() method of the Appium test project as well.

Figure 3.4.2.2 : Screen shot of Appium Android Settings

Figure 3.4.2.3 shows the General Settings page of Appium. On this page it is

necessary to set server address and port.

41

Figure 3.4.2.3 : Screenshot of Appium General Settings

C.27 Documentation

The number of Appium documents is not as much as Robotium documents.

Especially, as setting up working environment is a long and complicated process,

users need documentation that clearly describes this process; however, it is difficult

to find such documentation. Mostly, finding necessary information may be possible

using videos and tutorials prepared by users as a result of their experiences. Even

Appium e-books and tutorials are not satisfactory. Thanks to the documents prepared

by the experienced users, it is possible to indicate that, Appium documentation is

helpful and adequate.

C.28 Community

As Appium is an open source framework and used by both Android and iOS testers,

its community is big and active.

Appium has an active official discussion group [69] where Appium users may ask

questions, open issues and discuss about Appium testing.

By April,2016, on its Github page[19] there are 740 open, 3.547 closed issues. On

stackoverflow.com there are 1916 entry with ‘appium’ tag by April,2016 [56].

These numbers can be considered as indicators and we may say that Appium

community is remarkably active.

42

3.4.3 UIAUTOMATOR

We have evaluated UIAutomator according to the criteria represented in Table 4.1.

In this part, we explain the ability of UIAutomator to meet each of the criteria.

C.1 Insert Delays into Test Code

UIAutomator allows for simulating delays by inserting waits inside the code. Using

sleep(milliseconds) method it is possible to simulate wait for specified time in

milliseconds.

C.2 Testing Gestures

UIAutomator allows simulating most used user gestures partially.

 In order to simulate drag gesture following method can be used:

getUiDevice().drag(startX, startY, endX, endY, steps)

In this method the parameters ‘startX’ and ‘startY’ represents the coordinates of the

point where drag action starts. The parameters ‘endX’ and ‘endY’ represents the

coordinates of the point where drag action ends. The parameter ‘steps’ represents the

number of steps to complete the drag action. More number of steps means a slower

action.

 In order to simulate swipe gesture following method can be used:

getUiDevice().swipe(startX, startY, endX, endY, steps)

In this method the parameters ‘startX’ and ‘startY’ represents the coordinates of the

point where swipe action starts. The parameters ‘endX’ and ‘endY’ represents the

coordinates of the point where swipe action ends. The parameter ‘steps’ represents

the number of steps to complete the swipe action.

 In order to simulate pinch in and out gesture following lines of code can be

used:

UiObject.pinchIn(percent, steps);

UiObject. pinchOut(percent, steps);

pinchIn() and pinchOut() are the methods of UiObject class. Thus, in order to use

these methods firstly an instance of UiObject class is created. Then, to simulate the

gesture that two finger move towards other pinchIn() method, to simulate the gesture

that two fingers move opposite across other pinchOut() method is used. The

43

parameter, ‘percent’ represents “percentage of the object's diagonal length for the

pinch gesture”[70]. The parameter ‘steps’ represents the number of steps to complete

the gesture.

 In order to simulate long click gesture, UIAutomator provides the method;

UiObject.longClick();

However, this method does not work properly. We have found that, the best way to

simulate long click is using swipe() method [71].

getUiDevice().swipe(startX, startY, endX, endY, steps)

By giving the same x and y coordinates for starting and ending points in swipe

method, it is possible to simulate long click.

C.3 Selecting Different Options At The Same Time (Undesired Multi

Selection)

UIAutomator resources do not provide information if selecting different options at

the same time is possible or not using the tool. During test development process, we

could not find any method or function to simulate multiselection either.

C.4 Taking Screenshot

UIAutomator enables taking screenshot of the real or virtual device. Using following

lines of code, it is possible to take screenshot:

File path = new File("file path");

geUiDevice().takeScreenshot(path);

In the first line of the code above, the path where the screenshot is stored is defined.

Then, the screenshot is taken.

C.5 Reaching "Back", "Recent Apps" And "Home" Buttons

UIAutomator enables to reach and click Android hardware buttons.

 In order to click on Android Back button, getUiDevice().pressBack()

method can be used.

 In order to click on Android Home button, getUiDevice().pressHome()

method can be used.

 In order to click on Android Recent Apps button,

getUiDevice().pressRecentApps() method can be used.

44

C.6 Interaction With Soft Keyboard

UIAutomator allows for reaching an clicking on soft keyboard buttons by using key

codes of them as follows;

getUiDevice().pressKeyCode(key code);

However, the tool does not provide a method to hide the soft keyboard. Pressing

back button may be a solution to hide the keyboard however sometimes when soft

keyboard is not opened unexpectedly, clicking on back button results with an

undesired action.

C.7 Different Internet Connection (No Connection, Wi-Fi, 3G, 2G) &

C.8 Airplane Mode

UIAutomator enables for reaching nearly all UI elements. In order to edit connection

and mode settings of the device, it is possible to go to ‘Settings’ page of the device

and make necessary settings such as turning on/off Wi-Fi, turning on/off Airplane

Mode, turning on/off mobile data. Unlike other automation tools, UIAutomator also

allows changing the preferred network type to 2G or 3G

C.9 Interaction With Status Bar Notifications

UIAutomator partially allows interaction with status bar notification. Using the tool,

it is possible to open notification area using the method;

getUiDevice().openNotification();

However, it is not possible to click on desired notification either by sending the

coordinates x and y as parameters or creating a WebElement object for the

notification.

C.10 Generating Test Report File

On discussion forums, it is stated that generating test reports is not possible using

UIAutomator [72]. Command prompt shows execution results (execution time,

success, failure) however, it does not provide a test report file as XML.

C.11 Record And Replay Property

On resources we searched [30] [73], it is stated that UIAutomator does not provide

record and replay functionality.

45

C.12 Simulating An Incoming Call/Sms

UIAutomator resources do not provide information if simulating an incoming call is

possible or not using the tool. When we examined the API, we could not find any

method or function for simulating an incoming call or sms using UIAutomator.

C.13 Simulating Popup Alert (Alarm, Calendar)

UIAutomator resources do During test implementation, we could not find any

method or function to simulate such an action either..

C.14 Simulating An Incoming Push Message From Another App

UIAutomator resources do not provide information if simulating an incoming push

message is possible or not using the tool. When we examined the API, we could not

find any method or function to simulate an incoming push message.

C.15 Simulating Inserting And Removing Charger

UIAutomator resources do not provide information if simulating inserting and

removing charger is possible or not using the tool. When we examined the API, we

could not find any method or function to simulate inserting and removing charger.

C.16 Testing The Behavior Of The App When The Battery Is Low

UIAutomator resources do not provide information if simulating low battery is

possible or not using the tool. When we examined the API, we could not find any

method or function to simulate low battery either.

C.17 Testing The Behavior Of The App When The Memory Is Low

UIAutomator resources do not provide information if simulating low battery is

possible or not using the tool. When we examined the API, we could not find any

method or function to simulate low memory either.

C.18 Testing On Emulator

UIAutomator enables running tests on emulator (virtual device). In our case study,

we have run our test suite on emulator.

C.19 Testing On Real Device

It is clearly stated that running UIAutomator tests on real device is possible [74].

46

C.20 Testing With Apk File &&

C.21 Testing With Source Code

In order to test an application using UIAutomator, it is needed to select the target

application under ‘Applications’ menu of the device. The only requirement for

testing is, the application’s being installed on the device. Thus, there is no difference

between testing an application with APK file or source code. As a result, both testing

with APK file and testing with source code is possible with UIAutomator.

C.22 Test Language

UIAutomator uses Java as the language for implementing the test code.

C.23 Executing Tests Using Command Prompt

Running UIAutoamator tests using command prompt is possible using the build tools

Ant or Gradle. We have run our tests using Ant tool. In order to run a test suite using

command prompt following steps should be followed [75]:

 Firstly, configuration file is created:

<android-sdk>/tools/android create uitest-project -n <name> -t

1 -p <path>

 Then, JAR file is created:

ant build

 The created JAR file is pushed to the device:

adb push ~/dev/workspace/Settings/bin/LaunchSettings.jar

/data/local/tmp/

 After pushing JAR file to the device, test is executed:

adb shell uiautomator runtest LaunchSettings.jar -c

com.my.LaunchSettings

C.24 Testing Hybrid Applications

On the resources we searched, it is stated that UIAutomator does not support hybrid

applications [76][77]. In our case study, we have also observed that

UIAutomatorviewer recognizes some webview objects but not all of them. For

example, the webview buttons ‘New Game’ and ‘Undo’ could be reached without

any problem. However, the main game elements that represent numbers could not be

recognized by UIAutomatorViewer and could not be reached by UIAutomator. We

have concluded that, testing hybrid applications is partially enabled by UIAutomator.

47

C.25 Need To Have Developer Level Knowledge About The Code

UIAutomator enables to develop and run test suite with minimal knowledge about

implementation of the application. Using UIAutomatorviewer, the properties such as

id, index, class name, package name of each UI component can be accessed easily.

Using these properties, test cases can be written and run without additional

information.

C.26 Working Environment Setup

As the tool comes with Android Test Library, it is very easy and fast to setup

UIAutomator working environment. In order to create tests using UIAutomator,

android.jar and uiautomator.jar files and Junit4 library should be imported to the test

project.

C.27 Documentation

One of the main disadvantages of UIAutomator is lack of documentation. During our

study, we have faced difficulties for finding documents about the tool. Especially in

compared to the other tools we have studied, it is obvious that there is not enough

available documentation about UIAutomator.

C.28 Community

By March 2016 on its Github page [78] there are 54 open 94 closed issue. On

stackoverflow.com [56] there are 349 entries with the tag ‘uiautomator’. Compared

to Robotium and Appium these numbers are considerably low.

We have also experienced that, when we opened an issue on GitHub or

stackoverflow.com, either we did not receive feedback or it takes a long time

(weeks) to receive.

Thus, we have concluded that, the community of the tool cannot be considered as

active.

48

49

CHAPTER IV

4 EXPERIMENTAL STUDY

In this chapter we explained the case study that we have conducted using two

Android applications and the selected mobile application testing tools. In our case

study we have developed test code for applications using test automation tools. With

each of the tool we have created the same test suite. This allows us to compare the

performance of the tools and efforts needed to be spent to create and run test cases

for each of the tool.

4.1 PREPARATION

For our case study we used two Android applications; Droidweight and 2048. These

are open source applications whose source code is available on GitHub. Details of

these applications are explained in section 4.2.

We have used Eclipse Mars 4.5.0 and JDK 1.8.0_72 as development environment.

We have performed our study on Intel Core i5 processor of a 2. 20 GHz clock with

64 bit Windows 10 operating system. We have downloaded and installed Android

SDK [79] which includes development tools, emulators and necessary libraries to

build Android applications. We have run all applications and tests using virtual

device, whose properties are as follows:

 Device: Nexus 5 (4.95’’, 1080 x 1920: xxhdpi)

 Target: Google APIs (Google Inc.) – API Level 23

 CPU/ABI: Google APIs Intel Atom (x86)

 Keyboard: Hardware keyboard present

 Skin: No skin

 Front Camera: None

 Back Camera: None

 RAM: 2048

 VM Heap:64

 Internal Storage : 200 MiB

 SD Card Size: 200 MiB

 Emulation Options: Use host GPU

We have used Robotium version 5.5.4. For this purpose, we have downloaded [80]

the jar file; ‘robotium-solo-5.5.4.jar’ and imported to our test projects in Eclipse.

50

We have downloaded [81] and used Appium version 1.4.16.1. After downloading

Appium server, we have made necessary settings as follows:

On Android Settings window:

 Platform Name: Android

 Automation Name: Appium

 Platform Version: 6.0 Marshmallow (API Level 23)

 Device Name: MyEmulator

On General Settings window:

 Server Address: 127.0.0.1

 Port: 4723

In order to use UIAutomator, we have imported the jar files; ‘android.jar’ and

‘uiautomator.jar’ from our Android SDK. We have also added ‘Junit4’ library to our

test projects.

4.2 TEST CASES

We have used equivalence class partitioning to generate tests for our applications.

Equivalence class partitioning is a testing technique whose idea is to divide a set of

tests into partitions which are expected to be responded by the system under test

equivalently. [82]. In this technique at least one condition from each partition is

tested and it is expected that all conditions in the same partition behave in the same

way.

Table 4.2.1 shows the equivalent classes that we have used to create test suite in our

case study. We have defined these equivalent classes based on our criteria set. By

these equivalent classes, we have defined possible behaviors of the application

under 8 parts. We have defined 22 equivalent classes.

Table 4.2.1: EQUIVALANCE CLASSES

 Equivalance Class

Connection A1 Airplane mode on

 A2
Airplane mode off, Wi-Fi off, Mobile data

off

 A3
Airplane mode off, Wi-Fi on, Mobile data

off

 A4
Airplane mode off, Wi-Fi off, mobile data

on

 A5 Airplane mode off, Wi-Fi on, Mobile data

51

on

Editview E1 Editview is clickable

 E2 Editview is editable

 E3 Editview is disabled

Button B1 Button is clickable

 B2 Button is disabled

Soft keyboard S1 Softkeyboard is clickable

 S2 Softkeyboard is hiden

 S3 Softkeyboard is disabled

Notification area N1 Notification area is pulled down

 N2 Notification area is clickable

 N3 Notification area is unreachable

Android BACK button C1 Android BACK button is clickable

 C2 Android BACK button is disabled

Android HOME button H1 Android HOME button is clickable

 H2 Android HOME button is disabled

Android RECENT APPS

button
R1 Android RECENT APPS button is clickable

R2 Android RECENT APPS button is disabled

In addition to these test cases, for evaluating gesture abilities, we choose a set of

points for drag, swipe, long click, pinch, and click on two widgets actions. This

results in five test cases to check gesture abilities. Inserting delays and taking

screenshots are also tested in two test cases.

Our test cases for the application DroidWeight are as follows. As the other test cases

use the same framework utilities we have not implemented all of the functionalities

and combinations.

 A4: We have set airplane mode off, Wi-Fi off and Mobile data on.

 E1: We have clicked on editviews whose ids are; ‘currentWeight’,

‘dialoginput’ and ‘comment’.

 E2: We have edited the text in editviews whose ids are: ‘currentWeight’,

‘dialoginput’ and ‘comment’.

 B1: We have clicked on buttons whose ids are; ‘button1’ and ’calculator’

 S1: We have clicked on soft keyboard buttons; ‘t’ ,‘e’,’s’,’t’ and ‘delete’.

 S2: We have hidden the soft keyboard.

 N1: We have opened the notification area.

 N2: We have clicked on a notification whose coordinates are (521,349).

52

 C1: We have clicked on Android Back button on ‘Statistics’ page.

 H1: We have clicked on Android Home button on ‘Statistics’ page.

 R1: We have clicked on Android Recent Apps button on ‘Statistics’ page.

In order to find the ability of the tool for disabling UI elements and test their

functionality in disabled mode, we have also created test cases.

 E3: We have disabled the editview with id ‘currentWeight’ and clicked on it.

 B2: We have disabled the button with text ‘Go’ and clicked on it.

 S3: We have disabled the softkeyboard when entering input to the edit view

with id ‘comment’

 N2: We have disabled the notification area to be opened

 C3: We have disabled the Android ‘Back’ button and clicked on it.

 H2: We have disabled the Android ‘Home’ button and clicked on it.

 N3: We have disabled the Android ‘Recent Apps’ button and clicked on it.

Additionally,

 We have selected the following representors from gestures;

o We have dragged from the point (458,1424) to the point (458,590) on

‘History’ page.

o We have swiped from the point (458,1424) to the point (458,590) on

‘History’ page.

o We have click long on an item whose id is ‘LinearLayout01’

o We have pinch with two fingers on ‘History’ page. The first finger moves

from the point (541,781) to (541,590). The second finger moves from the

point (541,1072) to (541,1276).

 We have taken screenshot of the ‘History’ page.

 We have clicked on texts ‘History’ and ‘Statistics’ simultaneously.

 We have inserted waits after clicking on buttons, performing drag gesture and

opening notification area.

As DroidWeight and 2048 do not have any image, it is not meaningful but possible

to write test code for pinch gesture. So, we have implemented test code for pinch

gesture even there is no action mapped to it.

Our test cases for the application 2048 are:

 A4: We have set airplane mode off, Wi-Fi off and Mobile data on

 B1: We have clicked on buttons whose texts are ‘New Game’ and ‘Cancel’

 N1: We have opened the notification area.

 N2: We have clicked on a notification whose coordinates are (521,349)

 C1: We have clicked on Android Back button on ‘main page

53

 H1: We have clicked on Android Home button on ‘main page

 R1: We have clicked on Android Recent Apps button on ‘main page

The application 2048 does not include an object with editview type. As this widget

does not exist, we could not be able to write a test case, which is expected, for

editview. Softkeyboard is a widget which can be opened and used when an editview

is clicked. As an editview does not exist on 2048, we could not be able to write a test

case that tests the behavior of the softkeyboard either.

Additionally,

 We have dragged an item whose text is ‘2’ and index is ‘0’ to the right.

 We have taken screenshot of the main page

 We have clicked on the buttons ‘New Game’ and ‘Undo’ simultaneously.

 We have inserted waits after clicking on buttons and performing drag gesture

and opening notification are.

 We have pinch with two fingers on main page. The first finger moves from

the point (541,781) to (541,590). The second finger moves from the point

(541,1072) to (541,1276).

The application does not include an item that has any functionality triggered by long

click or swipe. So, it is not functional and meaningful to write test code that

simulates these gestures. As we have implemented a functional test code for these

gestures for the application ‘DroidWeight’, we have not implemented a test case to

simulate long click and swipe for the application 2048.

4.3 EXPERIMENT

We present our evaluation of the tools under two sections: test code implementation

aspect (criteria C1-C9) and the criteria where we do not have to implement test code

(criteria C10-C28).

For the evaluation of the criteria between C1-C9, we have developed test suites that

include test cases whose details are explained in section 4.2. Using each of the tool,

Robotium, Appium and UIAutomator, we have implemented test suites for the

applications ‘DroidWeight’ and ‘2048’ whose details are explained in the section

3.2.

4.3.1. Robotium results

54

For the application ‘DroidWeight’ we have developed a test suite consisting of 9 test

cases, using Robotium. As Robotium gives an alphabetic order to run tests, we have

given test case names starting with a letter from ‘A’ to ‘I’ to set execution order. We

reached UI elements either by their id or text.

Table 4.3.1.1 shows the test cases implemented using Robotium, the equivalent

classes they include and functionalities they test.

Table 4.3.1.1: ROBOTIUM TEST CASES

Test Case Equivalent Class or Functionality

testAInternetConnection A4

testBScreenItems E1,E2,B1

testCLongClick Long click gesture

testDDrag Drag gesture

testESwipe Swipe gesture

testFScreenShot Taking screenshot

testGSoftKeyboard S1,S2

testHWButtons C1,H1,R1

testIPinch Pinch gesture

Total line of code for implementing these tests with Robotium is 119. Total time to

execute test cases is 188,422 seconds. Figure 4.3.1.1 shows the test report that is

generated after the execution of the test suite. In this report it is shown that there are

9 tests in the class (lines 4-12). 9 of them is started and 0 of them is ignored. There is

no failure in the executed test suite. As reaching notification area and simulating

simultaneous multi selection is not possible using Robotium, we could not create test

cases for this functionalities,

55

Figure 4.3.1.1: Robotium Test Report of DroidWeight

The report in Figure 4.3.1.1 shows each test case by its name and execution time.

The report generated by Robotium shows

 Execution of the test case ‘testAInternetConnection’ in which we set airplane

mode and connection settings lasts 8,346 seconds with success.

 Execution of the test case ‘testBScreenItems’ in which we test UI elements

by clicking on buttons, clicking on and editing editviews, and inserting waits,

lasts 35,927 seconds with success.

 Execution of the test case ‘testCLongClick’ in which we simulate long click

gesture, lasts 17,2016 seconds with success.

 Execution of the test case ‘testDDrag’ in which we simulate drag gesture,

lasts 35,28 seconds with success.

56

 Execution of the test case ‘testESwipe’ in which we simulate swipe gesture

lasts 23,195 seconds with success.

 Execution of the test case ‘testFScreenShot’ in which we take screenshot of

the device, lasts 10,46 seconds with success.

 Execution of the test case ‘testGSoftKeyboard’ in which we test entering

input using soft keyboard lasts 20,483 seconds with success.

 Execution of the test case ‘testHWButtons’ in which we test Android

hardware buttons; Back, Home and Recent Apps by clicking on each, lasts

20,447 seconds with success.

 Execution of the test ‘testIPinch’ in which we simulate pinch gesture with

two fingers, lasts 17,077 seconds with success.

Additionally, we have created test cases that disable the UI items and reach them.

Robotium does not provide functionality to disable the notification area and Android

hardware buttons. So, we could not be able to write cases that test the equivalent

classes; N2, C2, H2 and N3. We have generated 3 test cases that test the UI elements

in disabled mode. Figure 4.3.1.2 shows the report generated after execution of these

3 test cases. The report shows that, we get error when we try to reach a disabled

element.

The report represents that,

 Execution of the test case ‘testADisabledEditView’ which includes the

equiavalent class E3, lasts 7,477 seconds and ends with an error.

 Execution of the test case ‘testBDisabledButton’ which includes the

equivalent class B2, lasts 10,241 seconds and ends with an error.

 Execution of the test case ‘testCDisabledKeyboard’ which includes the

equivalent class S3, lasts 12,023 seconds and ends with an error.

57

Figure 4.3.1.2: Robotium Report Of DroidWeight Test Cases With Disabled UI

Elements

For the application 2048, we have created a test suite consists of 6 test cases using

Robotium. Inside these test cases we have tested the application behaviors stated in

the section 4.2. Total line of code is 68. Total time to execute test suite is 93,397

seconds.

58

After running the test suite, the tool has generated a test report which is shown in

Figure 4.3.1.3.

Figure 4.3.1.3: Robotium Test Report of 2048

The test report generated by Robotium shows that there are 6 tests in the test suite.

As reaching the notification area and simultaneous multi selection is not supported

by Robotium, the test suite consists of 6 test cases instead of 8 test cases.6 of them is

started and 0 of them is ignored. There is no failure in the executed test suite.

The report shows each test cases by their name and execution time. The report in

Figure 4.3.1.3 shows that;

 Execution of the test case ‘testAInternetConnection’ in which we set airplane

mode and connection settings lasts 13,051 seconds with success.

 Execution of the test case ‘testBScreenItems’ in which we test UI elements

by clicking on buttons, and inserting waits, lasts 23,343 seconds with success.

 Execution of the test case ‘testDDrag’ in which we simulate drag gesture,

lasts 19,415 seconds with success.

 Execution of the test case ‘testFScreenShot’ in which we take screenshot of

the device, lasts 22,644 seconds with success.

 Execution of the test case ‘testHWButtons’ in which we test Android

hardware buttons; Back, Home and Recent Apps by clicking on each, lasts

14,945 seconds with success.

 Execution of the test ‘testIPinch’ in which we simulate pinch gesture with

two fingers, lasts 17,077 seconds with success.

While implementing the test cases using Robotium, we have reached UI elements by

their id or their text. In order to reach id of the elements we used

‘uiautomatorviewer’. As 2048 is a hybrid project that includes a webview, we could

not be able to reach properties such as id and index of the UI elements of that

application. Thus, we have reached all UI elements of 2048 by their text.

59

4.3.2. Appium results

We have developed test code for DroidWeight and 2048 using Appium. In order to

set execution order of test cases, we give priority to each test case and define test

case names starting with numbers from 1 to 11.

For DroidWeight, we have developed a test suite consists of 11 test cases. As a

result we have implemented a test suite of 166 LOC for DroidWeight application. If

we exclude the lines that are written to test notifications and multi selection, we see

that 150 LOC is written for 9 test cases which are the same test cases with Robotium.

So, we have concluded that more LOC is needed to implement the same test suite

using Appium than using Robotium.

Table 4.3.2.1 shows the test cases implemented using Appium, the equivalent classes

they include and functionalities they test.

Table 4.3.2.1: APPIUM TEST CASES

Test Case Equivalent Class or Functionality

test11ZInternetConnection A4

test1BScreenItems E1, E2, B1

test2CLongClick Long click gesture

test3DDrag Drag gesture

test4ESwipe Swipe gesture

test5FScreenShot Taking screenshot

test6GSoftKeyboard S1, S2

test7MultiTouch Simultaneous multi touch

test8HWButtons C1, H1, R1

test9INotifications N1,N2

test10KPinch Pinch gesture

After running the test suite, Appium generates a report which is presented in Figure

4.3.2.1. The report shows that, total execution time is 273163 milliseconds. 11 test

cases are passed and 0 test cases are failed. Each test case is shown with its name and

execution time. The report generated by Appium in Figure 4.3.2.1 shows that

 Execution of the test case ‘test10ZInternetConnection’ in which we set

airplane mode and connection settings lasts 38718 milliseconds with success.

 Execution of the test case ‘test1BScreenItems’ in which we test UI elements

by clicking on buttons, clicking on and editing editviews, and inserting

waits, lasts 41996 milliseconds with success.

 Execution of the test case ‘test2CLongClick’ in which we simulate long click

gesture, lasts 6081 milliseconds with success.

60

 Execution of the test case ‘test3DDrag’ in which we simulate drag gesture,

lasts 12861 milliseconds with success.

 Execution of the test case ‘test4ESwipe’ in which we simulate swipe gesture

lasts 59614 milliseconds with success.

 Execution of the test case ‘test5FScreenShot’ in which we take screenshot of

the device, lasts 9560 milliseconds with success.

 Execution of the test case ‘test6GSoftKeyboard’ in which we test entering

input using soft keyboard lasts 30178 milliseconds with success.

 Execution of the test case ‘test7MultiTouch’ in which we simulate two

simultaneous touch on the screen, lasts 3002 milliseconds with success.

 Execution of the test case ‘test8HWButtons’ in which we test Android

hardware buttons; Back, Home and Recent Apps by clicking on each, lasts

13564 milliseconds with success.

 Execution of the test case ‘test9INotifications’ in which we open the

notification area and click on a notification; lasts 5375 milliseconds with

success.

 Execution of the test ‘testIPinch’ in which we simulate pinch gesture with

two fingers, lasts 24224 milliseconds with success.

Appium does not provide any functionality to disable UI elements. That is why, we

could not be able to implement test cases that include equivalent classes;

E3,B2,S3,R2,C2,H2 and N2.

Figure 4.3.2.1: Appium Test Report of DroidWeight

61

For the application 2048, we have implemented a test suite that consists of 8 test

cases that test the application behavior stated in section 4.2. Total execution time for

these test cases is 156077 milliseconds.

We have written 113 LOC for this test suite. When we exclude the lines written for

the notification area and multi touch, there are 97 LOC. This number is more that the

LOC of the same test cases written by Robotium.

After running the test suite, the tool provides a report which is presented in Figure

4.3.2.2. The report shows that, 8 test cases are passed and 0 test cases are failed.

According to the report in Figure 4.3.2.2 generated by Appium;

 Execution of the test case ‘test7AInternetConnection’ in which we set

airplane mode and connection settings lasts 45292 milliseconds with success.

 Execution of the test case ‘test1BScreenItems’ in which we test UI elements

by clicking on buttons, and inserting waits, lasts 31209 milliseconds with

success.

 Execution of the test case ‘test2DDrag’ in which we simulate drag gesture,

lasts 10858 seconds with failure.

 Execution of the test case ‘test3FScreenShot’ in which we take screenshot of

the device, lasts 15758 milliseconds with success.

 Execution of the test case ‘test5HWButtons’ in which we test Android

hardware buttons; Back, Home and Recent Apps by clicking on each, lasts

2648 milliseconds with success.

 Execution of the test case ‘Test6IMultiTouch’ in which we test clicking on

two buttons at the same time, lasts 16330 milliseconds with success.

 Execution of the test case ‘test6INotification’ in which we open the

notification area and click on a notification lasts 5327 milliseconds with

success.

 Execution of the test ‘testIPinch’ in which we simulate pinch gesture with

two fingers, lasts 15162 milliseconds with success.

62

Figure 4.3.2.2: Appium Test Report of 2048

Similar to Robotium, we have reached UI components by their id and text using

Appium. For DroidWeight, we could easily reach the elements. Even, we have faced

difficulties, we have reached WebView elements of 2048 using Appium.

4.3.3. UIAutomator results

After Robotium and Appium, we have developed test code for DroidWeight and

2048 using UIAutomator. Developing and running tests using UIAutomator needs

more time and effort. Unlike Appium and Robotium, we do not select a target project

to test when we create a UIAutomator test project. When we create test projects with

Appium or Robotium using Eclipse, at the beginning of the test project creation, we

need to select the target application that we aim to test. This means, only one

application can be reached and tested inside a test project with these tools. On the

other hand, UIAutomator test projects does not require a target application. Inside the

test project, we may navigate any application or setting using UIAutomator. This

situation makes the entire device menu reachable. On the other hand, it increases the

line of code needed for developing tests. Moreover, running UIAutomator tests

requires some time to spend with command prompt. As it is explained in section

3.4.3, a number of commands are used for each time to execute a test suite. These

commands are for creating test project, building it, pushing the test project to device

and running the tests. In addition to these commands it is also necessary to add

another command to clear the application data. Because, when a test suite runs,

UIAutomator stores data in cache and when we modify the test suite and try to run

the modified suite, the tool may run the previous test suite from the cache. Thus, we

63

have concluded that executing test suite is a time consuming and painful process

with UIAutomator.

For DroidWeight, we have developed a test suite consists of 10 test cases instead of

11, because simulating simultaneous multi selection is not possible with

UIAutomator. Even it is possible to open the notification area, we have experienced

that, UIAutomator does not allow for clicking on a notification.

We have written 131 LOC for DroidWeight application. If we exclude the lines

which is written to test notifications, we see that 127 LOC is written for 9 test case

which are the same test cases with Robotium. So, we have concluded that for the

same test suite, UIAutomator requires more LOC than Robotium and less LOC than

Appium.

Table 4.3.3.1 shows the test cases implemented using UIAutomator, the equivalent

classes they include and functionalities they test.

Table 4.3.3.1: UIAUTOMATOR TEST CASES

Test Case Equivalent Class or Functionality

testAInternetConnection A4

testBScreenItems B1,B2

testCLongClick Long click gesture

testDDrag Drag gesture

testESwipe Swipe gesture

testFScreenShot Taking screenshot

testGSoftKeyboard S1

testHWButtons C1, H1, R1

testINotification N1

testKPinch Pinch gesture

UIAutomator prints the test results on command prompt. However, it does not

provide a report file. So, we have examined the execution times on command

prompt. We have found that, total execution time for 9 test cases is 160,52 seconds.

We have also run each test cases individually. We have found that;

 Execution of the test case ‘testAInternetConnection’ in which we set airplane

mode and connection settings lasts 41,460 seconds.

 Execution of the test case ‘testBScreenItems’ in which we test UI elements

by clicking on buttons, and inserting waits, lasts 43,798 seconds.

 Execution of the test case ‘testCLongClick’ in which we simulate long click

gesture, lasts 21,477 seconds.

64

 Execution of the test case ‘testDDrag’ in which we simulate drag gesture,

lasts 22,651 seconds.

 Execution of the test case ‘testESwipe’ in which we simulate swipe gesture

lasts 19,760 seconds.

 Execution of the test case ‘testFScreenShot’ in which we take screenshot of

the device, lasts 1,514 seconds.

 Execution of the test case ‘testGSoftKeyboard’ in which we test entering

input using soft keyboard lasts 15,276 seconds.

 Execution of the test case ‘testHWButtons’ in which we test Android

hardware buttons; Back, Home and Recent Apps by clicking on each, lasts

13,741 seconds

 Execution of the test case ‘testINotification’ in which we open the

notification area lasts 1,203 seconds.

 Execution of the test ‘testIPinch’ in which we simulate pinch gesture with

two fingers, lasts 9,85 seconds with success.

UIAutomator does not provide any functionality to disable UI elements. . That is

why, we could not be able to implement test cases that include equivalent classes;

E3, B2, S3, R2, C2, H2 and N2.

UIAutomatorviewer provides a number of information of UI elements such as class

name, resource id, bounds, is clickable, is checkable. Reaching UI elements easily

using one or more of these properties is possible. We have reached UI elements

using class name, text, id and description of them.

Even manuals state that UIAutomator does not support hybrid applications, we have

created a test project for 2048, in order to validate this statement. We have seen that

the test cases, which are not related to the webview works well using UIAutomator.

These test cases are;

 ‘testAInternetConnection’ in which we set airplane mode and connection

settings lasts 22,410 seconds.

 ‘testFScreenShot’ in which we take screenshot of the device, lasts 1,256

seconds.

 testHWButtons’ in which we test Android hardware buttons; Back, Home

and Recent Apps by clicking on each, lasts 4,743 seconds.

 ‘testINotification’ in which we open the notification area lasts 0,782 seconds.

 ‘testIPinch’ in which we simulate pinch gesture with two fingers, lasts 4,239

seconds

Moreover, some buttons inside the webview is also reachable. These are the elements

that are recognized by UIAutomatorViewer. We could be able to reach and click on

them with the following test case which is the same with the ‘testScreenItems’ test

cases of Robotium and Appium test suites.

65

 ‘test1BScreenItems’ in which we test UI elements by clicking on buttons,

and inserting waits, lasts 9,384 milliseconds.

On the other hand, there are some elements, which are the main draggable game

elements that represent numbers such as ‘2’, ‘4’, ‘8’ and cannot be recognized by

UIAutomatorViewer. We have reached these elements using their texts and

performed drag gesture on them in Robotium and Appium test cases. However,

UIAutomator does not allow reaching them. As a result of this experimental study,

we have concluded that, UIAutomator partially supports testing hybrid applications.

4.3.4 Comparison on criteria C10-C28

For the criteria C10, test report generation, we have gathered information from

manuals, blogs and forums and validated them with our experimental study. We have

created test reports presented above, using Robotium and Appium. These are simple

HTML reports which are informative and easy to understand. Appium allows

generating reports with different types. The report type we used ‘emaillable-report’ is

easier to read with its colored format in compared to Robotium. However, the values

of ‘Start’ column is not easy to understand. It presents the starting time of the

execution as Epoch time and it is needed to use a converter to convert this time to an

understandable format. Epoch time is also known as Unix Time in which the time is

“defined as the number of seconds that have elapsed since 00:00:00 Coordinated

Universal Time (UTC), Thursday, 1 January 1970” [83].

The criteria C11, which is about record and replay ability of the tools, we have

gathered from the manuals the information that Robotium and UIAutomator does not

support this property whereas Appium does. When we try to record and replay tests

using Appium Inspector and make a deeper search, we have found that, this property

is only supported on iOS platform. As we work on Windows, we could not be able to

experience the record and replay property of Appium.

For the evaluation of the criteria between C12-C17 which is related to interrupt

testing and leakage testing, we have searched on manuals and blogs. As this criteria

is not supported by Robotium, Appium and UIAutomator, we have not included test

cases for them.

The criteria between C18-C24 we have gathered information from manuals and

supported a number of them with our experimental study. We have run our tests on

emulator and using source code of the applications. On the other hand, the resources

have provided sufficient information about running tests on real device and using apk

file of the application.

Robotium and UIAutomator allows writing test cases using Java and Appium allows

using any WebDriver compatible language. We have developed all of test suites

66

using Java. The notations are simple and self-explanatory. On the other hand,

allowing different languages is an important advantage for Appium.

Each of the three tools enables executing tests using command prompt. For

Robotium, running tests using command prompt is as easy as running tests using

IDE. However, Appium and UIAutomator require build tools such as Ant or Gradle

to run tests using command line. It needs an important amount of time and effort to

execute tests using command line for these two tools. For Appium, command line is

not a fast and easy way to execute tests, thus we do not prefer this way. However,

UIAutomator allows execution only using command line. Thus, we have run all

UIAutomator test suite with this way which is not an efficient one.

It is stated in the manuals that testing hybrid applications is possible with Robotium

and Appium but not possible using UIAutomator. We have created test suite for the

hybrid application 2048 using each tool. We have not experienced difficulties by

Robotium. Appium supports hybrid applications as well but sometimes the tool may

fail at recognizing webview elements. For example the main game elements that

represents numbers such as ‘2’, ‘4’, ‘8’, can be recognized and reached when a test

suite is executed. Next time the same test suite is executed; these elements may not

be reached by Appium. We have also created a test suite for the hybrid application

2048 using UIAutomator. We have experienced that, some webview elements can be

reached by UIAutomator, where some of them cannot. So, we have concluded that,

UIAutomator partially supports hybrid applications. As a result of this exploratory

study, we have decided that, Robotium is the one which may test hybrid applications

as well as native Android applications.

We have evaluated the criteria between C25- C28 as a result of our experiences. As

Robotium, Appium and UIAutomator are black box testing tools, it was stated in

manuals that knowledge about source code of the application is not necessary to

create tests using these tools. In our experimental study, we have concluded that even

this statement is generally true, some information such as package name and the

launcher activity name about the source code is necessary for testing with Robotium.

In addition, reaching and modifying the Android.Manifest file which provides

information about an application to Android system [84], is required to use some

Robotium methods such as taking screenshot and changing network state. For this

methods, it necessary to give permission in Android.Manifest file of the application.

We have experienced that, setting up working environment such as downloading and

installing necessary software, importing libraries and jar files, was fast and easy for

the tools, Robotium and UIAutomator. However, Appium requires a number of steps

whose details are explained in section 3.4.2 before starting test suite creation.

As Android application testing is a new area we had some doubts about

documentation and community of the automation tools. However, even the number

of official documentation such as books, manuals is few in numbers; blogs and

67

forums are highly active and provide most of the information about Robotium and

Appium. When we need information that we could not find or when we face

problems about the tool, we have created issues on active community Web pages and

generally, got feedback in 1-7 days. However, this case is different for UIAutomator.

The documents and tutorials that enable users to learn UIAutomator and its

capabilities are insufficient. Moreover, getting feedback to an opened issue is either

not possible or takes weeks. We concluded that, one of the main disadvantages of

UIAutomator is lack of documentation and an active community.

68

69

CHAPTER V

5 RESULTS AND CONCLUSION

In this chapter, we present the results and conclusion of our study. In section 5.1 we

present the results gathered from our comparative study. In section 5.2 we explain

the limitations of this study. In section 5.3 we present our concluding remarks and

suggestions for future work.

5.1. RESULTS

We represent the results of our comparative study on Robotium, Appium and

UIAutomator in Table 5.1.1. In this table,

 “Yes” indicates that, it is explicitly stated that the tool meets the stated

criteria.

 “No” indicates that, it is explicitly stated that the tool does not meet the stated

criteria.

 “NI” indicates that, there is not any information if the tool meets the stated

criteria or not.

 “Partially” indicates that, the tool does not completely but partially meets the

stated criteria.

Table 5.1.1: RESULTING TABLE OF COMPARISON OF THE TOOLS WITH

RESPECT TO THE CRITERIA

Criteria

R
o

b
o

ti
u

m

A
p

p
iu

m

U
IA

u
to

m
a

to
r

C1 Can we test delays Yes Yes Yes

C2 Can we test gestures Yes Yes Yes

C3
Can we select different options at the same

time (undesired multi selection)
NI Yes NI

C4 Can the tool take screenshot Yes Yes Yes

C5 Is it possible to reach "back", "recent apps" Partially Yes Yes

70

and "home" buttons using the tool

C6 Is interaction with soft keyboard available Yes Yes Partially

C7

Can we test the behavior of the app with

different internet connection (no

connection, Wi-Fi, 3G, 2G)

Partially Partially Yes

C8
Can we test behavior of the app on airplane

mode
NI Yes Yes

C9
Is interaction with status bar notifications

available
No Yes Partially

C10
Is it possible to generate test report files

using the tool
Yes Yes No

C11
Does the tool have record and replay

property
No Partially No

C12
Can we test the behavior of the app when a

there is an incoming call/sms
No No NI

C13
Can we test the behavior of the app when a

there is a popup alert (alarm, calendar)
NI NI NI

C14

Can we test the behavior of the app when a

there is an incoming push message from

another app

NI NI NI

C15
Can we test if inserting and removing

charger causes any problem or not
NI NI NI

C16
Can we test the behavior of the app when

the battery is low
NI NI NI

C17
Can we test the behavior of the app when

the memory is low
NI NI NI

C18 Can we test on emulator Yes Yes Yes

C19 Can we test on real device Yes Yes Yes

C20 Is testing with apk file available Yes Yes Yes

C21 Is testing with source code available Yes Yes Yes

C22 Test language Java Any Java

C23
Can we execute tests using command

prompt
Yes Yes Yes

C24
Can we test hybrid applications

Yes Yes Partially

C25

Is it possible to test an application without

developer level knowledge about the

application code

Partially Yes Yes

C26
Is it fast&easy to setup working

environment
Yes No Yes

C27 Is the documentation about the tool enough Yes Yes No

C28 Is the community active Yes Yes No

In the table 5.1.1;

71

 For the criteria C5, as clicking on “Home” and “Recent Apps” buttons do not

work properly but clicking on “Back” button works, it is stated as “Partially”

for Robotium.

 For the criteria C6, as clicking on softkeyboard button is possible but hiding

softkeyboard is not, it is stated as “Partially” for UIAutomator.

 For the criteria C7, it is possible to set Wi-Fi and mobile data on/off,

however, it is not possible to change mobile data settings as 2G,3G or 4G

using Robotium and Appium,Thus, it is stated as “Partially” for these tools.

 For the criteria C9 as it is possible to open the notification area but not

possible to click on it using UIAutomator, it is stated as “Partially” for this

tool.

 For the criteria C11, as Appium supports record and replay functionality only

on IOS platform, this criteria is stated as “Partially” for Appium.

 For the criteria C24, as UIAutomator allows reaching some elements of

WebView, successfully, this criteria is stated as “Partially” for UIAutomator.

 For the criteria C25, Robotium requires knowledge about package name and

launcher activity name of the application under test when we work with APK

file. In addition, to use some Robotium functionalities such as screenshot and

making connection settings, it is necessary to reach the application’s code to

give permission. However, access and knowledge about the entire source

code is not necessary. That is why, this criteria is stated as “Partially” for

Robotium.

The table shows that, there is no single tool that meets all of the criteria. 8 criteria are

met by each of the 3 tools. The criteria related to interrupt testing and leakage testing

(C12-C17) is either not met by the selected tools or there is no information about

them. This situation shows that, a new Android testing tool that meets these criteria

may be one step forward from these popular testing tools. Record and replay

property (C11) is another criteria that needs attention. Only Appium supports record

and replay property and only for iOS platform. None of these three tools support

recording and replaying tests on Windows.

We have also found that simulating undesired multi selection (C3) and interaction

with status bar notifications (C9) are completely met only with Appium. So, if these

criteria are essential for testing an application, Appium may be the most suitable

tool. As Robotium and Appium cannot set the mobile data to 2G, 3G or 4G, testing

the behavior of the app with different internet connection (C7) can be completely

achieved only using UIAutomator. This means, if reaching these settings is an

important requirement of an application’s testing process, UIAutomator may be the

most suitable tool.

The table also points out that, reaching Android hardware buttons (C5), setting

airplane mode (C8) and testing without knowledge about source code of the

application (C25) are not completely allowed by Robotium where Appium and

72

UIAutomator completely allows them. So, if these criteria are needed to be met for

testing process, it might not be a good idea to use Robotium. Similarly, setting up

working environment (C26) is fast and easy for Robotium and UIAutomator but

more difficult and time consuming for Appium. Thus, if a tool whose working

environment can be prepared easily is desired, it is not a good idea to choose Appium

as testing automation tool. Generating test report file (C10), a rich documentation

(C27) and an active community (C28) are the criteria which are provided by

Robotium and Appium but not by UIAutomator. So, it these criteria are taught as

essentials, it is not a good idea to use UIAutomator. Interaction with soft keyboard

(C6) and testing hybrid applications (C24) are totally enabled by Robotium and

Appium where UIAutomator partially enables. Thus, if a test suite requires full

interaction with the soft keyboard it is better not to use UIAutomator. Similarly, if a

hybrid application is tested, UIAutomator will not be the most suitable testing tool.

We have concluded that not only for developing but also for testing Android

applications, Java is the leading programming language. Java is essential to use

Robotium and UIAutomator. Appium allows using any WebDriver compatible

language which also includes Java.

When we examined the APIs for implementing tests for UI items in disabled mode,

we have seen that, only Robotium allows some of the UI elements to disable. These

elements are widgets with editview type, button type and soft keyboard. Other

elements such as notification area and Android hardware buttons cannot be disabled

using Robotium. On the other hand Appium and UIAutomator does not allow for

disabling any UI element. This situation shows that, these 3 automation tools are lack

of the functionality to disable UI elements.

We have concluded that, if a mobile application consists of a number of functions,

the criteria related to functional testing (C1-C9) is more important and the tool which

meets these criteria should be used for testing. If the application includes sensitive

data or processes which can be affected by interrupts, the criteria related to interrupt

testing (C12-C17) can be considered more significant and the tool that meets these

criteria as the more suitable one. If the source code of the application under test is

not reachable, the criteria related to access to source code (C20, C21, C25) can be

considered more important for that application.

We have also seen that Robotium meets 14 (52%) criteria totally and 3 (11%) criteria

partially. It is clearly stated that, Robotium does not meet 3 (11%) of the criteria.

Robotium resources do not provide sufficient information about 7 (26%) criteria. On

the other hand, Appium meets 18 (67%) criteria totally and 2 (7%) criteria partially.

It is clearly stated that, Appium does not meet 2 (7%) criteria. Appium resources do

not provide sufficient information about 5 (19%) criteria. UIAutomator meets 13

(48%) of the criteria totally and 3 (11%) of the criteria partially. It is stated that,

UIAutomator does not meet 4 (15%) criteria. UIAutomator resources do not provide

sufficient information about 7 (26%) criteria. From these statistics, we can conclude

73

that Appium is the tool which meets the most number of criteria and UIAutomator is

the tool which meets the least number of criteria. In Figure 5.1.1, we present these

statistics.

Figure 5.1.1 : The Number Of Criteria Met By Selected Tools

We have compared the three tools in terms of line of code (LOC) needed to be

written for the same test suite. For the application ‘DroidWeight’ we have analyzed

the LOC for 8 test cases which are enabled by each of the three tools. For the

application ‘2048’, we have analyzed the LOC for 5 test cases which are enabled by

both Robotium and Appium. Because UIAutomator does not support hybrid

application testing well, we have not analyzed its LOC for the application ‘2048’.

Table 5.1.2 shows that, Appium is the tool that requires the most LOC for testing

both native applications and hybrid applications than other tools. Robotium is the

tool that requires the least LOC for testing native and hybrid applications.

Table 5.1.2: REQUIRED LOC FOR THE SAME TEST SUITE

 Robotium Appium UIAutomator

DroidWeight (Native App) 119 150 127

2048 (Hybrid App) 68 97 -

In order to compare execution times of the tools, we have executed the test cases

which are developed to test the application ‘DroidWeight’ 30 times using each of the

3 tools. We have calculated the average execution time for each test case. Table 5.1.3

shows the mean execution times, standard deviations and p-values which shows the

0

2

4

6

8

10

12

14

16

18

20

Robotium Appium UIAutomator

Yes

Partially

No

NI

74

significance of differences between execution times of Robotium, Appium and

UIAutomator test cases. The table shows that, performances of the tools differentiate

for different functionalities. It is not possible to select one of them as the tool that

provides shortest execution time.

When we have analyzed the table in terms of significance of differences between

execution times, we have gathered following results;

 For the test case ‘TestInternetConnection()’,as p-values are 0,000 which is

lower than 0,05; the differences between mean execution times of each tool is

significant. The table shows that; Robotium is significantly faster than other

two tools and Appium is slower than other tools for execution of this test

case.

 For the test case ‘TestScreenItems()’,as each p-value is lower than 0,05; the

differences between mean execution times of each tool is significant. The

table shows that; Robotium is significantly faster than other two tools and

Appium is slower than other tools for execution of this test case.

 For the test case ‘TestLongClick()’, as p-values of Robotium and

UIAutomator is 0,910 which is higher than 0,05; the differences between

mean execution times of these tools is not significant. On the other hand, ‘P-

values of Appium and other two tools are lower than 0,05. This shows that,

the mean execution time of Appium is significantly different from Robotium

and UIAutomator. The figure shows that; Appium is significantly faster than

other two tools whose execution times are nearly equal for the test case

‘TestScreenItems()
 For the test case ‘TestDrag()’, as each p-value is 0,000 which is lower than

0,05; the differences between mean execution times of each tool is

significant. The figure shows that; Appium is significantly faster than other

two tools and Robotium is slower than other tools for execution of this test

case.

 For the test case ‘TestSwipe ()’, as p- values are 0,562 which is higher than

0,05; the differences between mean execution times of Robotium and

UIAutomator is not significant. On the other hand, p-values of Appium and

other two tools are lower than 0,05. This shows that, the mean execution time

of Appium is significantly different from Robotium and UIAutomator. The

figure shows that; Appium is significantly slower than other two tools whose

execution times are nearly equal for the test case ‘TestSwipe()’.
 For the test case ‘TestScreenShot()’, as each p-value is lower than 0,05; the

differences between mean execution times of each tool is significant. The

figure shows that; UIAutomator is significantly faster than other two tools

and Appium is slower than other tools for execution of this test case.

 For the test case ‘TestSoftKeyboard()’, as each p-value is 0,000 which is

lower than 0,05; the differences between mean execution times of each tool is

significant. The figure shows that; UIAutomator is significantly faster than

75

other two tools and Robotium is slower than other tools for execution of this

test case.

 For the test case ‘TestHWButtons()’, as each p-value is lower than 0,05; the

differences between mean execution times of each tool is significant. The

figure shows that; UIAutomator is significantly faster than other two tools

and Robotium is slower than other tools for execution of the test case

‘TestHWButtons()’.

 For the test case ‘TestPinch()’, as as each p-value is 0,000 which is lower

than 0,05; the differences between mean execution times of each tool is

significant. The figure shows that; UIAutomator is significantly faster than

other two tools and Appium is slower than other tools for execution of the

test case ‘TestPinch()’.

Table 5.1.3: COMPARISON AND ANALYSIS OF MEAN TEST EXECUTION

TIMES

TestCase Robotium Appium UIAutomator

testInternetConnection()

Mean 8,496 44,461 37,804

Std.

Deviation
1,902 3,886 1,758

P-value

A
p
p
iu

m
 0,000

R
o
b
o
ti

u
m

 0,000
R

o
b
o
ti

u
m

 0,000

U
IA

u
to

m
at

o
r 0,000

U
IA

u
to

m
at

o
r 0,000

A
p
p
iu

m

0,000

testScreenItems()

Mean 36,463 39,636 38,104

Std.

Deviation
2,120 0,924 2,029

P-value

A
p

p
iu

m
 0,000

R
o

b
o

ti
u

m
 0,000

R
o

b
o

ti
u

m
 0,002

U
IA

u
to

m
at

o

r

0,002

U
IA

u
to

m
at

o

r

0,004

A
p
p
iu

m

0,004

testLongClick()

Mean 18,555 5,980 18,389

Std. 1,934 0,645 1,768

76

Deviation

P-value

A
p

p
iu

m
 0,000

R
o

b
o

ti
u

m
 0,000

R
o

b
o

ti
u

m
 0,910

U
IA

u
to

m
at

o
r 0,910

U
IA

u
to

m
at

o
r 0,000

A
p

p
iu

m

0,000

testDrag()

Mean 32,461 13,183 22,923

Std.

Deviation
2,754 0,793 0,625

P-value

A
p
p
iu

m
 0,000

R
o
b
o
ti

u
m

 0,000

R
o
b
o
ti

u
m

 0,000

U
IA

u
to

m
at

o

r

0,000

U
IA

u
to

m
at

o

r

0,000

A
p
p
iu

m

0,000

testSwipe()

Mean 21,694 59,818 21,124

Std.

Deviation
2,244 2,496 1,619

P-value

A
p
p
iu

m
 0,000

R
o
b
o
ti

u
m

 0,000

R
o
b
o
ti

u
m

 0,562

U
IA

u
to

m
at

o
r 0,562

U
IA

u
to

m
at

o
r 0,000

A
p

p
iu

m

0,000

testScreenShot()

Mean 9,355 10,431 1,446

Std.

Deviation
1,494 1,177 0,056

P-value

A
p

p
iu

m
 0,001

R
o

b
o

ti
u

m
 0,001

R
o

b
o

ti
u

m
 0,000

77

U
IA

u
to

m
at

o

r

0,000

U
IA

u
to

m
at

o

r

0,000

A
p

p
iu

m

0,000

testSoftKeyboard()

Mean 20,527 23,374 17,689

Std.

Deviation
3,554 2,203 1,106

P-value

A
p

p
iu

m
 0,000

R
o

b
o

ti
u

m
 0,000

R
o

b
o

ti
u

m
 0,000

U
IA

u
to

m
at

o
r

0,000

U
IA

u
to

m
at

o
r

0,000

A
p
p
iu

m

0,000

testHWButtons()

Mean 18,379 14,883 13,974

Std.

Deviation
1,997 0,562 1,285

P-value

A
p
p
iu

m
 0,000

R
o
b
o
ti

u
m

 0,000

R
o
b
o
ti

u
m

 0,000

U
IA

u
to

m
at

o

r

0,000

U
IA

u
to

m
at

o

r

0,038

A
p
p
iu

m

0,038

testPinch()

Mean 16,117 18,765 11,627

Std.

Deviation
3,138 0,773 0,255

P-value

A
p

p
iu

m
 0,000

R
o

b
o

ti
u

m
 0,000

R
o

b
o

ti
u

m
 0,000

U
IA

u
to

m
at

o

r

0,000

U
IA

u
to

m
at

o

r

0,000

A
p

p
iu

m

0,000

testMultiTouch() Mean - 2,059 -

testNotifications() Mean - 5,552 0,804

78

5.2. LIMITATIONS

We have faced some difficulties and limitations on this study. Firstly, finding an

open source Android project whose source code is easy to understand was not easy.

We have searched on GitHub and FDroid to find suitable applications for our study.

Some of the applications we found include errors, some of them do not work

properly in our environment, and some of them have the source code which is quite

complicated and hard to understand. As a result of a long search we have found

‘DroidWeight’ and ‘2048’ to study.

There are limitations in our study. We have conducted our study only with open

source Android testing tools. Our study does not include Android test automation

tools that require subscription and payment. Another limitation is that, we worked on

Windows platform only. We have not been able to test the tools’ capabilities on iOS

platform. Moreover, as we have studied with Android applications, we could not

evaluate the cross platform testing tool; Appium on iOS applications. Thirdly, as

Android testing is a new area, we have faced difficulties about reaching

documentation. The number of books, official web pages and tutorials were limited.

Thus, we have generally used forums and blogs to reach information we need during

the study. Sometimes we could not find the information we need on any of the

documents we reached. When we faced this situation, we have created topics on

forums and opened issues on GitHub. In addition, we have focused on GUI testing,

interrupt testing and leakage testing. The automation tools have not evaluated with

respect to other testing types. Another limitation of our study is that, we have

conducted our experimental study on medium sized applications. If the test suites are

executed on complex applications, some of the test cases may fail, so; the results

may not be stable. Finally, we have executed all test suites on the same environment

without any changes on hardware and operating system. If the setup environment

changes, execution times may change for each tool and each test case.

5.3. CONCLUSION AND FUTURE WORK

In this thesis study, we have compared three most popular open source Android test

automation tools. In order to achieve this, firstly we have identified the criteria which

is used for comparison of the tools. We have examined blogs, checklists and related

studies and conducted an exploratory study for criteria identification. We have aimed

to make a list of criteria which is not only usable for our study but also for future

studies related to mobile application testing and mobile application testing tools.

Then, we have evaluated the tools with respect to these criteria. In order to

accomplish this, we have conducted a research and a case study. In this case study,

we have created test suites for 2 Android applications using each of the selected

automation tools. According to the research and case study, we have compared these

tools in terms of the criteria they meet, required line of code and test execution times.

79

As a result of our study, we have concluded that, each automation tool has some

strong and weak points. There is not a single tool that meets all of the criteria. Thus,

it is not possible to point out one tool as the best or the most advantageous one. The

most suitable test automation tool for an Android application depends on the

requirements and properties of the application.

We also observed that there is a need for test automation for simulating incoming

call, sms, push notification, alarm, simulating effects of inserting and removing

charger and simulating lack of battery and memory.

As future work, there may be some improvements on this study. We plan to add IOS

and more cross platform test automation tools to this comparative study. We also

plan to enhance the comparison criteria by adding new ones and update existing ones

as more detailed. We plan to prioritize the criteria by giving coefficients for each.

Further studies could be also conducted on the comparison of mobile testing tools

which are not free and open source.

80

81

REFERENCES

1. Smartphone. (n.d.). Retrieved March 04, 2016, from

https://en.wikipedia.org/wiki/Smartphone

2. The Statistics Portal: Number of available applications in the Google Play Store from

December 2009 to February 2016.(n.d.). Retrieved March 05, 2016, from

http://www.statista.com/statistics/266210/number-of-available-applications-in-the-

google-play-store/

3. Gao, J., Bai,X., Tsai, W. & Uehara,T. (2014). Mobile Application Testing:A

Tutorial. Computer Magazine. 47 (2). 46-55

4. Test automation. (n.d.). Retrieved March 05, 2016, from

https://en.wikipedia.org/wiki/Test_automation

5. Mobile application testing. (n.d.). Retrieved March 05, 2016, from

https://en.wikipedia.org/wiki/Mobile_application_testing

6. Gunasekaran,S. & Bargavi,V. (2015) Survey on Automation Testing Tools For

Mobile Applications. International Journal of Advanced Engineering Research and

Science (IJAERS). 2(11). 36-41

7. Singh,S., Gadgil,R. & Chudgor,A. (2014). Automated Testing of Mobile

Applications using Scripting Tecnnique: A Study on Appium. International Journal

of Current Engineering and Technology (IJCET). 4(5). 3627-3630

8. Tools Help. (n.d.). Retrieved March 05, 2016, from

http://developer.android.com/tools/help/index.html

9. Application Fundamentals. (n.d.). Retrieved March 05, 2016, from

http://developer.android.com/guide/components/fundamentals.html

10. Running Apps in the Android Emulator. (n.d.). Retrieved March 05, 2016, from

http://developer.android.com/tools/devices/emulator.html

11. Android Testing Tools. (n.d.). Retrieved March 07, 2016, from

http://developer.android.com/tools/testing/testing-tools.html

12. Muccini,H., Francesco,A. & Esposito,P. (2012). Software Testing of Mobile

Applications: Challenges and Future Research Directions, presented at 7th

International Workshop on Automation of Software Test (AST), Zurich, Switzerland,

2012. IEEE.

13. Testing Support Library. (n.d.). Retrieved March 08, 2016, from

http://developer.android.com/tools/testing-support-library/index.html

14. AndroidJunitRunner. (n.d.). Retrieved March 08, 2016 from

http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRun

ner.html

15. Robotium:FAQ. (n.d.). Retrieved March 07, 2016 from

http://robotium.com/pages/faq

16. Zadgaonkar, H. (2013). Robotium Automated Testing for Android. Retrieved from

https://ebooks-it.org/178216801x-ebook.html

https://en.wikipedia.org/wiki/Smartphone
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://en.wikipedia.org/wiki/Test_automation
https://en.wikipedia.org/wiki/Mobile_application_testing
http://developer.android.com/tools/help/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/tools/devices/emulator.html
http://developer.android.com/tools/testing/testing-tools.html
http://developer.android.com/tools/testing-support-library/index.html
http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html
http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html
https://ebooks-it.org/178216801x-ebook.html

82

17. GitHub: RobotiumTech/Robotium. (n.d.). Retrieved January 15, 2016 from

https://github.com/RobotiumTech/robotium

18. The History of Appium. (n.d.). Retrieved February 07, 2016 from

http://appium.io/history.html?lang=tr

19. GitHub: appium/Appium. (n.d.). Retrieved January 25, 2016 from

https://github.com/appium/appium

20. Appium Design. (n.d.). Retrieved March 02, 2016 from

http://appium.io/introduction.html

21. Bayley,I., Flood,D., Harrison,R. & Martin,C. (2012). MobiTest: A Cross-Platform

Tool for Testing Mobile Applications, presented at 7
th

 International Conference on

Software Engineering Advances (ICSEA), Lisbon, Portugal, 2012. IARIA.

22. Shah,G., Shah,P. & Muchhala,R. (2014). Software Testing Automation using

Appium. International Journal of Current Engineering and Technology (IJCET).

4(5). 3528-3531

23. Jain,A., Jain,M. & Dhankar,S. (2014). A Comparison of RANOREX and QTP

Automated Testing Tools and their impact on Software Testing. International Journal

of Engineering, Management & Sciences (IJEMS). 1(1). 8-12

24. Kaur,H. & Gupta,G. (2013). Comparative Study of Automated Testing Tools:

Selenium, Quick Test Professional and Testcomplete. International Journal of

Engineering Research and Application (IJERA). 3(5). 1739-1743

25. Dalmasso,I., Datta,K.S., Bonnet,C & Nikaein, N. (2013). Survey, Comparison and

Evaluation of Cross Platform Mobile Application Development Tools, presented at

9th International Wireless Communications and Mobile Computing Conference

(IWCMC). Sardinia, Italy, 2013. IEEE.

26. Rani,S., Suri,B, & Khatri,S.K. (2015). Experimental Comparison of Automated

Mutation Testing Tools for Java, presented at 4th International Conference on

Reliability, Infocom Technologies and Optimization (ICRITO) , Noida,India, 2015.

IEEE.

27. Kumar,R. & Singh, A.J. (2015). A Comparative Study and Analysis of Web Service

Testing Tools. A Monthly Journal of Computer Science and Information Technology

(IJCSMC). 4(1). 433-442

28. Sauce Labs. (n.d.). Retrieved March 1, 2016

https://en.wikipedia.org/wiki/Sauce_Labs

29. Mobile Testing Tools - 11 Open Source Frameworks Compared. (n.d.). Retrieved

January 8, 2015 from https://saucelabs.com/resources/mobile-testing-tools

30. Testdroid. (n.d.). Retrieved March 1, 2016 from

https://en.wikipedia.org/wiki/Testdroid

31. Shao,L. (2015). Top 5 Android Testing Frameworks (with Examples). Retrieved

from http://testdroid.com/tech/top-5-android-testing-frameworks-with-examples

https://github.com/RobotiumTech/robotium
http://appium.io/history.html?lang=tr
https://github.com/appium/appium
http://appium.io/introduction.html
https://en.wikipedia.org/wiki/Sauce_Labs
https://saucelabs.com/resources/mobile-testing-tools
https://en.wikipedia.org/wiki/Testdroid
http://testdroid.com/tech/top-5-android-testing-frameworks-with-examples

83

32. Test Management Approach. (n.d.). Retrieved January 8, 2016 from

https://en.wikipedia.org/wiki/Test_Management_Approach

33. Checklist Mobile App Testing. (n.d.). Retrieved January 8, 2016 from

http://www.tmap.net/downloads

34. Suvesh,T.K. & Sanoj,S. (2014). How to Evaluate a Mobile Test Automation Tools

for your Application?. Retrieved from http://www.rapidvaluesolutions.com/how-to-

evaluate-a-mobile-test-automation-tool-for-your-application/

35. Khode,A. (2012). Testing Checklist for Mobile Applications. Retrieved from

http://www.mobileappstesting.com/testing-checklist-for-mobile-applications/

36. Top 10 Mobile Testing Tools. (2015). Retrieved from

http://www.optimusinfo.com/blog/top-10-mobile-testing-tools/

37. Ghahrai, A. (2014). 10+ Open Source Mobile Test Automation Tools. Retrieved

from http://www.testingexcellence.com/open-source-mobile-test-automation-tools/

38. Baluk,M. & Miscellaneous. (2014). 5 Open Source Tools for Android App Test

Automation. Retrieved from http://www.testlab4apps.com/5-open-source-tools-for-

android-app-test-automation/

39. Android calculator application. (n.d.). Retrieved January 3, 2016 from

https://sourceforge.net/projects/androidcalculat/

40. Droid Weight – Android Application in Google Play Store. (n.d.). Retrieved January

15, 2016 from

https://play.google.com/store/apps/details?id=de.delusions.measure&hl=tr

41. GitHub: aymanstar/droidweight. (n.d.). Retrieved January 15, 2016 from

https://github.com/aymanstar/droidweight

42. GitHub: uberspot/2048. (n.d.). Retrieved January 22, 2016 from

https://github.com/uberspot/2048-android

43. Gurram,S. (2012). What is Robotium. Retrieved from

http://robotiumsolo.blogspot.com.tr/2012/12/what-is-robotium.html

44. Plotytsia, S. (2014). How to Choose the Right Mobile Test Automation Tool?.

Retrieved from http://www.testlab4apps.com/how-to-choose-the-right-mobile-test-

automation-tool/

45. Bristove,J. (2015). What is a Hybrid Mobile App?. Retrieved from

http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/

46. Gestures. (n.d.). Retrieved February 15, 2016 from

https://www.google.com/design/spec/patterns/gestures.html#gestures-drag-swipe-or-

fling-details

47. com.jayway.android.robotium.solo.Solo. (n.d.). Retrieved January 16, 2016 from

http://grepcode.com/file/repo1.maven.org/maven2/com.jayway.android.robotium/rob

otium-solo/4.2/com/jayway/android/robotium/solo/Solo.java

https://en.wikipedia.org/wiki/Test_Management_Approach
http://www.tmap.net/downloads
http://www.rapidvaluesolutions.com/how-to-evaluate-a-mobile-test-automation-tool-for-your-application/
http://www.rapidvaluesolutions.com/how-to-evaluate-a-mobile-test-automation-tool-for-your-application/
http://www.mobileappstesting.com/testing-checklist-for-mobile-applications/
http://www.optimusinfo.com/blog/top-10-mobile-testing-tools/
http://www.testingexcellence.com/open-source-mobile-test-automation-tools/
http://www.testlab4apps.com/5-open-source-tools-for-android-app-test-automation/
http://www.testlab4apps.com/5-open-source-tools-for-android-app-test-automation/
https://sourceforge.net/projects/androidcalculat/
https://play.google.com/store/apps/details?id=de.delusions.measure&hl=tr
https://github.com/uberspot/2048-android
http://robotiumsolo.blogspot.com.tr/2012/12/what-is-robotium.html
http://www.testlab4apps.com/how-to-choose-the-right-mobile-test-automation-tool/
http://www.testlab4apps.com/how-to-choose-the-right-mobile-test-automation-tool/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
https://www.google.com/design/spec/patterns/gestures.html#gestures-drag-swipe-or-fling-details
https://www.google.com/design/spec/patterns/gestures.html#gestures-drag-swipe-or-fling-details
http://grepcode.com/file/repo1.maven.org/maven2/com.jayway.android.robotium/robotium-solo/4.2/com/jayway/android/robotium/solo/Solo.java
http://grepcode.com/file/repo1.maven.org/maven2/com.jayway.android.robotium/robotium-solo/4.2/com/jayway/android/robotium/solo/Solo.java

84

48. Joshi,S. (2014). 15+ Useful Robotium Code Snippets for Android Test Automation.

Retrieved from https://www.javacodegeeks.com/2014/06/15-useful-robotium-code-

snippets-for-android-test-automation.html

49. Key Event. (n.d.). Retrieved January 20, 2016 from

http://developer.android.com/reference/android/view/KeyEvent.html

50. Class SystemUtils. (n.d.). Retrieved January 20, 2016 from

https://robotium.googlecode.com/svn/doc/com/robotium/solo/SystemUtils.html

51. Robotium FAQ. (n.d.). Retrieved January 3, 2016 from

http://robotium.com/pages/faq

52. Robotium Developers Google Group- Simulating incoming call using Robotium.

(n.d.). Retrieved January 22, 2016 from

https://groups.google.com/forum/#!topic/robotium-developers/Za8B-6GS9Ps

53. Black Box Testing With Robotium On APK Files. (n.d.). Retrieved January 25, 2016

from https://robotium.googlecode.com/files/RobotiumForBeginners.pdf

54. WebView. (n.d.). Retrieved March 22, 2016 from

http://developer.android.com/reference/android/webkit/WebView.html

55. Robotium Developers Google Group. (n.d.). Retrieved April 3, 2016 from

https://groups.google.com/forum/#!forum/robotium-developers

56. Stackoverflow: Tags. (n.d.). Retrieved April 3, 2016 from

http://stackoverflow.com/tags

57. Appium Tutorials. (n.d.). Retrieved February 2, 2016 from http://software-testing-

tutorials-automation.blogspot.com.tr/2015/10/appium-tutorials.html

58. Hans,M. (2015). Advanced User Interactions. Packt Publishing (ed.), Appium

Essentials. Retrieved from https://www.safaribooksonline.com/library/view/appium-

essentials/9781784392482/ch07.html

59. TestNG. (n.d.). Retrieved February 11, 2016 from http://testng.org/doc/index.html

60. Appium Tutorial for Beginners. (n.d.). Retrieved February 5, 2016 from

http://www.guru99.com/introduction-to-appium.html

61. Appium Android Setup. (2015). Retrieved from

http://www.seleniumtests.com/2015/05/appium-and-android-setup.html

62. Appium Top 50 Real Time Interview Questions Evergreen. (2015). Retrieved from

https://www.linkedin.com/pulse/appium-top-50-real-time-interview-questions-

evergreen-akhil-reddy

63. GitHub: Appium Issues. (2016). Retrieved from

https://github.com/appium/appium/issues/6179

64. What is Appium? Why Need Appium? Limitations of Appium. (n.d.). Retrieved

February 20, 2016 from http://software-testing-tutorials-

automation.blogspot.com.tr/2015/09/what-is-appium-why-need-appium.html

https://www.javacodegeeks.com/2014/06/15-useful-robotium-code-snippets-for-android-test-automation.html
https://www.javacodegeeks.com/2014/06/15-useful-robotium-code-snippets-for-android-test-automation.html
http://developer.android.com/reference/android/view/KeyEvent.html
https://robotium.googlecode.com/svn/doc/com/robotium/solo/SystemUtils.html
http://robotium.com/pages/faq
https://groups.google.com/forum/#!topic/robotium-developers/Za8B-6GS9Ps
https://robotium.googlecode.com/files/RobotiumForBeginners.pdf
http://developer.android.com/reference/android/webkit/WebView.html
https://groups.google.com/forum/#!forum/robotium-developers
http://stackoverflow.com/tags
http://software-testing-tutorials-automation.blogspot.com.tr/2015/10/appium-tutorials.html
http://software-testing-tutorials-automation.blogspot.com.tr/2015/10/appium-tutorials.html
https://www.safaribooksonline.com/library/view/appium-essentials/9781784392482/ch07.html
https://www.safaribooksonline.com/library/view/appium-essentials/9781784392482/ch07.html
http://testng.org/doc/index.html
http://www.seleniumtests.com/2015/05/appium-and-android-setup.html
https://www.linkedin.com/pulse/appium-top-50-real-time-interview-questions-evergreen-akhil-reddy
https://www.linkedin.com/pulse/appium-top-50-real-time-interview-questions-evergreen-akhil-reddy
https://github.com/appium/appium/issues/6179
http://software-testing-tutorials-automation.blogspot.com.tr/2015/09/what-is-appium-why-need-appium.html
http://software-testing-tutorials-automation.blogspot.com.tr/2015/09/what-is-appium-why-need-appium.html

85

65. Appium: Getting Started. (n.d.). Retrieved March 02, 2016 from

http://appium.io/getting-started.html

66. Stackoverflow: Questions – Run Appium Test on Command Line. (2016). Retrieved

from http://stackoverflow.com/questions/35738517/run-appium-test-on-command-

line/35738746#35738746

67. TestNG. (n.d.). TestNG Ant Task. Retrieved March 12, 2016 from

http://testng.org/doc/ant.html

68. Creating And Running WebDriver Test Suit Using testng.xml file.(n.d.). Retrieved

March 15, 2016 from http://software-testing-tutorials-

automation.blogspot.com.tr/2014/03/creating-and-running-test-suit-using.html

69. Appium Discussion Group. (n.d.). Retrieved January 2, 2016 from

https://discuss.appium.io/

70. UiObject Class (n.d.). Retrieved February 21, 2016 from

http://developer.android.com/reference/android/support/test/uiautomator/UiObject.ht

ml

71. Stackoverflow: Questions- How to Achieve Long Click in UiAutomator. (2014).

Retrieved from http://stackoverflow.com/questions/21432561/how-to-achieve-long-

click-in-uiautomator

72. Stackoverflow: Questions – UIAutomator Test Report. (2016). Retrieved from

http://stackoverflow.com/questions/36240732/uiautomator-test-

report/36255451#36255451

73. Patil,K. (2015). Top 5 Open Source Automation Tools For Ios And Android

(Infographic). Retrieved from http://afourtech.com/automation-tools-for-ios-and-

android-apps/

74. Testing UI For Multiple Apps. (n.d.). Retrieved March 12, 2016 from

http://developer.android.com/training/testing/ui-testing/uiautomator-testing.html

75. Uiautomator: Starting with uiautomator. (2013). Retrieved from

http://uiautomatortester.blogspot.com.tr/2013/09/starting-with-uiautomator.html

76. Chakraborty, J. (2015). Top 5 Android Testing Frameworks. Retrieved from

https://www.linkedin.com/pulse/top-5-android-testing-frameworks-jaybrata-

chakraborty?trk=prof-post&trkSplashRedir=true&forceNoSplash=true

77. Helppi, V.V. (2013). The Pros and Cons of Different Android Testing Methods.

Retrieved from http://testdroid.com/news/the-pros-and-cons-of-different-android-

testing-methods

78. GitHub: uiautomator issues. (n.d.). Retrieved March 3, 2016 from

https://github.com/xiaocong/uiautomator/issues

79. Android Studio The Official IDE for Android. (n.d.). Retrieved December 15, 2015

from http://developer.android.com/sdk/index.html

80. GitHub: RobotiumTech/Robotium. (n.d.). Retrieved January 2, 2016 from

https://github.com/RobotiumTech/robotium/wiki/Downloads

http://appium.io/getting-started.html
http://stackoverflow.com/questions/35738517/run-appium-test-on-command-line/35738746#35738746
http://stackoverflow.com/questions/35738517/run-appium-test-on-command-line/35738746#35738746
http://testng.org/doc/ant.html
http://software-testing-tutorials-automation.blogspot.com.tr/2014/03/creating-and-running-test-suit-using.html
http://software-testing-tutorials-automation.blogspot.com.tr/2014/03/creating-and-running-test-suit-using.html
https://discuss.appium.io/
http://developer.android.com/reference/android/support/test/uiautomator/UiObject.html
http://developer.android.com/reference/android/support/test/uiautomator/UiObject.html
http://stackoverflow.com/questions/21432561/how-to-achieve-long-click-in-uiautomator
http://stackoverflow.com/questions/21432561/how-to-achieve-long-click-in-uiautomator
http://stackoverflow.com/questions/36240732/uiautomator-test-report/36255451#36255451
http://stackoverflow.com/questions/36240732/uiautomator-test-report/36255451#36255451
http://afourtech.com/automation-tools-for-ios-and-android-apps/
http://afourtech.com/automation-tools-for-ios-and-android-apps/
http://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
http://uiautomatortester.blogspot.com.tr/2013/09/starting-with-uiautomator.html
https://www.linkedin.com/pulse/top-5-android-testing-frameworks-jaybrata-chakraborty?trk=prof-post&trkSplashRedir=true&forceNoSplash=true
https://www.linkedin.com/pulse/top-5-android-testing-frameworks-jaybrata-chakraborty?trk=prof-post&trkSplashRedir=true&forceNoSplash=true
http://testdroid.com/news/the-pros-and-cons-of-different-android-testing-methods
http://testdroid.com/news/the-pros-and-cons-of-different-android-testing-methods
https://github.com/xiaocong/uiautomator/issues
http://developer.android.com/sdk/index.html
https://github.com/RobotiumTech/robotium/wiki/Downloads

86

81. Appium Download. (n.d.). Retrieved January 10, 2016 from

https://bitbucket.org/appium/appium.app/downloads/

82. What is Equivalence partitioning in Software testing?. (n.d.). Retrieved March 14,

2016 from http://istqbexamcertification.com/what-is-equivalence-partitioning-in-

software-testing/

83. Unix Time. (n.d.). Retrieved March 10, 2016 from

https://en.wikipedia.org/wiki/Unix_time

84. App Manifest. (n.d.). Retrieved April 13, 2016 from

http://developer.android.com/guide/topics/manifest/manifest-intro.html

https://bitbucket.org/appium/appium.app/downloads/
http://istqbexamcertification.com/what-is-equivalence-partitioning-in-software-testing/
http://istqbexamcertification.com/what-is-equivalence-partitioning-in-software-testing/
https://en.wikipedia.org/wiki/Unix_time
http://developer.android.com/guide/topics/manifest/manifest-intro.html

