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ABSTRACT

BASIC THRESHOLDING CLASSIFICATION

Toksöz, Mehmet Altan
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. İlkay Ulusoy

March 2016, 128 pages

In this thesis, we propose a light-weight sparsity-based algorithm, basic thresholding
classifier (BTC), for classification applications (such as face identification, hyper-
spectral image classification, etc.) which is capable of identifying test samples ex-
tremely rapidly and performing high classification accuracy. Originally BTC is a
linear classifier which works based on the assumption that the samples of the classes
of a given dataset are linearly separable. However, in practice those samples may
not be linearly separable. In this context, we also propose another algorithm namely
kernel basic thresholding classifier (KBTC) which is a non-linear kernel version of
the BTC algorithm. KBTC can achieve promising results especially when the given
samples are linearly non-separable. For both proposals, we introduce sufficient iden-
tification conditions (SICs) under which BTC and KBTC can identify any test sample
in the range space of a given dictionary. By using SICs, we develop parameter esti-
mation procedures which do not require any cross validation. Both BTC and KBTC
algorithms provide efficient classifier fusion schemes in which individual classifier
outputs are combined to produce better classification results. For instance, for the
application of face identification, this is done by combining the residuals having
different random projectors. For spatial applications such as hyper-spectral image
classification, the fusion is carried out by incorporating the spatial information, in
which the output residual maps are filtered using a smoothing filter. Numerical re-
sults on publicly available face and hyper-spectral datasets show that our proposal
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outperforms well-known support vector machines (SVM)-based techniques, multino-
mial logistic regression (MLR)-based methods, and sparsity-based approaches like
l1-minimization and simultaneous orthogonal matching pursuit (SOMP) in terms of
both classification accuracy and computational cost.

Keywords: basic thresholding classifier (BTC), kernel basic thresholding classifier
(KBTC), sufficient indentification condition (SIC), face identification, hyper-spectral
image classification, support vector machines (SVM), multinomial logistic regression
(MLR), simultaneous orthogonal matching pursuit (SOMP)
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ÖZ

TEMEL EŞİKLEME SINIFLANDIRMA

Toksöz, Mehmet Altan
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. İlkay Ulusoy

Mart 2016 , 128 sayfa

Bu tezde, bazı sınıflandırma uygulamaları (yüz tanıma, hiper-spektral imge sınıflan-
dırma vb.) için yüksek sınıflandırma doğruluğu ile test numunelerini son derece hızlı
bir şekilde sınıflandırabilen seyreklik tabanlı temel eşikleme sınıflandırıcı (BTC) öne-
rilmektedir. Orjinalinde BTC doğrusal bir sınıflandırıcı olup verilen bir veri küme-
sinin sınıflarına ait örneklerin doğrusal olarak ayırt edilebilir varsayımı üzerine ça-
lışmaktadır. Ancak pratikte bu örnekler doğrusal olarak her zaman ayırt edilemeye-
bilmektedir. Bu kapsamda, BTC’nin doğrusal doğrusal olmayan çekirdek versiyonu
KBTC de ayrıca takdim edilmektedir. Özellikle doğrusal bir şekilde ayırt edileme-
yen örnekler verildiğinde KBTC gelecek vaat eden sonuçlar elde edebilmektedir. Ve-
rilen bir sözlüğün değer kümesi uzayında bulunan herhangi bir test örneği, takdim
edilen yeterli tanıma koşulu (SIC) altında sınıflandırılabilmektedir. Bu koşul kulla-
nılarak çapraz doğrulama gerektirmeyen parametre kestirim yöntemleri geliştirilmiş-
tir. BTC ve KBTC algoritmaları, sınıflandırma doğruluğunu arttırmak için bireysel
sınıflandırıcı çıkışlarını birleştirerek füzyon tekniklerinin etkili bir şekilde uygulan-
masını sağlamaktadır. Örneğin bu işlem, yüz tanıma uygulamaları için farklı rasgele
projektörlere sahip sınıflandırıcıların çıkıştaki artık değerlerinin birleştirilmesiyle ya-
pılır. Füzyon işlemi, hiper-spektral imge sınıflandırma gibi uzamsal uygulamalarda
ise uzamsal bir filtre kullanılarak çıkıştaki artık değer haritalarının düzleştirilmesiyle
yapılmaktadır. Bazı yaygın yüz ve hiper-spektral veri setleri kullanılarak gerçekleşti-
rilen deneylerde, önerdiğimiz BTC ve KBTC algoritmaları, sınıflandırma doğruluğu
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ve maliyeti açısından, tanınmış destek vektör makineleri (SVM) tabanlı teknikler, çok
terimli lojistik regresyon tabanlı metotlar, l1-minimizasyonu ve eşzamanlı dik eşleş-
tirme takibi (SOMP) gibi seyreklik tabanlı yaklaşımlardan daha iyi sonuçlar vermek-
tedir.

Anahtar Kelimeler: temel eşikleme sınıflandırıcı (BTC), çekirdek temel eşikleme sı-
nıflandırıcı (KBTC), yeterli tanıma şartı (SIC), yüz tanıma, hiper-spektral imge sı-
nıflandırma, destek vektör makineleri (SVM), çok terimli lojistik regresyon (MLR),
eşzamanlı dik eşleştirme takibi (SOMP)
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CHAPTER 1

INTRODUCTION

The term classification is usually referred to as assigning objects into different cate-

gories. It can also be interpreted as assigning predefined class labels to each object

under testing. Those objects could be human faces, fingerprints, characters, digits,

signals, documents, diseases, proteins, genes, speech, emotions, galaxies, objects in

a scene, hyper-spectral pixels, etc.

The classification / recognition / identification process can easily be performed by

human brains. On the other hand, it is not quite easy for the artificial classifiers

or recognizers because the process involves quite complex stages such as sensing,

preprocessing, feature extraction, dimension reduction, and decision making. Fig.

1.1 shows a typical classification scheme. Sensors such as camera, microphone or

other type of acquisition devices are able to capture high quality raw data in today’s

technology. Although the sensing and preprocessing stages are performed easily, the

feature extraction stage could be problematic. Perhaps, the performance of a classifier

is mostly affected by the quality of the features. A good feature is considered to

be discriminative, informative, robust, reliable, independent, invariant to scale and

transformation.

Figure 1.1: A typical classification scheme
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Features in a classification problem could be color, shape, texture, size, sound, in-

tensity of a pixel, gender, height, weight, measured frequency value, etc. They are

generally mapped to real line and stored in the vectors. An N -dimensional feature

vector can also be interpreted as a point in an N -dimensional feature space. Some-

times using all of the extracted features does not improve the classification process.

Instead, it may cause performance degradation in terms of accuracy and speed. To

overcome this problem, an information reduction stage namely dimension reduction

is integrated to the whole system.

The final stage of a classification process, decision making, is performed by a clas-

sifier. if high quality features are passed to the classifier, the objects under test can

easily be classified. However, in real world applications, extracting good features

from the raw data is not always possible. In this case, in order to increase classifica-

tion accuracy, we need to design sophisticated classifiers. These kinds of classifiers

not only perform high classification accuracy but also act quickly. They also require

few processing steps and memory.

In the literature, variety of classifiers have been proposed addressing the classifica-

tion problem. They can be divided into two main categories namely parametric and

non-parametric approaches. One example of parametric techniques is the Bayesian

decision theory in which a priori probability densities are known for each class. Those

densities are converted to a posteriori probabilities and final decisions are made based

on them [1]. Unfortunately, in practice, those densities are generally unknown. There-

fore, it is inevitable to use non-parametric approaches. There are various methods in

this category such as density or parameter estimation-based techniques in which the

underlying densities and parameters are estimated based on the provided training data.

Sometimes decision boundaries are formed using the training data, which is referred

to as learning. If the class labels of the training data are known, then this kind of

learning is called supervised learning. If there is no labeled data, in this case, the

learning process becomes unsupervised learning or clustering.

Recently, sparse representation-based classification algorithms in the category of su-

pervised techniques have got significant attention [2, 3, 4, 5, 6, 7, 8]. Over the last

two decades, tremendous research activities have been observed in the area of sparse
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Figure 1.2: A sparse signal

signal representation and compressed sensing [9, 10, 11, 12, 13]. This is mainly be-

cause of the fact that significant portion of the signals in the nature are sparse, that is,

most of the components of them are zero (Fig. 1.2). Sparsity provides that real world

signals can be represented by the combinations of a few basis vectors. For instance, a

typical image can be successfully compressed via JPEG technique which works based

on the assumption that an image can be represented by a few discrete cosine basis.

While the nice properties of compressible or sparse signals in the area of signal pro-

cessing are inspiring, the computer vision community is more interested in the se-

mantic information of a signal rather than compressed sensing and compact represen-

tation. For instance, state-of-the-art results have been achieved based on sparse rep-

resentation in image de-noising and in-painting [14, 15, 16], image super-resolution

[17, 18, 19, 20], object tracking [4, 21, 22], face recognition [2, 6, 23, 24, 25, 26],

image smoothing [27], image classification [28, 7, 29, 30, 31], etc.

Although sparse representation-based techniques achieve promising results, the un-

derlying framework, sparse signal recovery or reconstruction, is not an easy task.

Until now, various algorithms have been proposed addressing the problem of sparse

reconstruction. Convex relaxation and l1-minimization-based techniques [10, 32, 33,

34], greedy approaches [35, 36, 37, 38], Bregman iteration-based procedures [39, 40],

3



and linear programming-based [41] methods have been deeply investigated. Unfor-

tunately, while some of those approaches are extremely costly, the others are highly

sensitive to noise and corruption. As we stated previously, most of the classifica-

tion applications involve noisy and corrupted features such as face recognition under

illumination variations, noise, and corruption. In some applications such as hyper-

spectral image classifications, the problems involve classification of hundred thou-

sands of pixels, which requires extremely cost effective classifiers.

In this thesis, we propose two sparsity-based, light-weight, and easy-to-implement

classification algorithms which achieve state-of-the-art results in terms of both ac-

curacy and computational cost. While the first algorithm addresses the applications

in which the samples of data are linearly separable, the other one refers the prob-

lems involving non-linearly separable data. The following section briefly presents the

organization of the thesis.

1.1. Outline

This thesis provides the following contributions to the field of computer vision and

classification:

• In Chapter 2, we briefly discuss some of the common existing techniques in

classification including non-parametric approaches, neural network-based meth-

ods, and sparsity-based classifiers.

• In Chapter 3, we introduce the basic thresholding classification (BTC) algo-

rithm and give the construction of it step by step. We also provide necessary

guidance for parameter estimation.

• Chapter 4 introduces the kernel basic thresholding classification (KBTC) al-

gorithm which achieves promising results in the problems especially involving

non-linearly separable data. We present full guidance of the parameter estima-

tion steps by utilizing the propositions related to the algorithm.

• In Chapter 5, the performance of the BTC algorithm is compared to those of

the state-of-the-art sparsity-based techniques in the application of face identi-

4



fication. We also provide an effective classification fusion technique in which

individual classifiers are combined to achieve better classification performance.

At the end of the chapter, an efficient validation scheme is presented in order to

reject invalid test samples.

• Chapter 6 compares the performance of the BTC technique with those of the

powerful non-linear kernel methods such as SVM in the application of hyper-

spectral image classification. This chapter also introduces a spatial-spectral

framework in which the residual maps produced by the proposed algorithms

are smoothed using edge preserving filtering techniques. This intermediate step

extremely improves the classification accuracy.

• In Chapter 7, we compare the performance of the KBTC algorithm with those

of the state-of-the-art non-linear kernel approaches as well as the linear BTC

in hyper-spectral image classification. This chapter shows how the non-linear

similarity-based KBTC achieves significant performance improvements over

the linear ones as well as the other techniques. We also provide fixed training

sets by which efficient comparison of the algorithms is performed.

• Finally, Chapter 8 concludes this thesis by presenting summary and future di-

rections.

Please note that the Chapter 5, 6, and 7 are based on the following papers:

M. A. Toksoz and I. Ulusoy, “Hyperspectral Image Classification via Kernel Basic

Thresholding Classifier”, IEEE Transactions on Geoscience and Remote Sensing,

Manuscript submitted for publication, 2016.

M. A. Toksoz and I. Ulusoy, “Hyperspectral Image Classification via Basic

Thresholding Classifier”, IEEE Transactions on Geoscience and Remote Sensing,

Manuscript accepted for publication, 2016.

M. A. Toksoz and I. Ulusoy, “Classification via ensembles of basic thresholding

classifiers,” IET Computer Vision, Manuscript accepted for publication, 2015.
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1.2. Notations

Throughout the thesis we will use some notations which are described as follows:

• We will use capital letters for matrices and sets. For instance, a given dictionary

consisting of training samples will be shown by the matrix A. Exceptionally,

the threshold parameter, the number of features, and the number of classes will

be represented by M , B, and C, respectively.

• Small letters will be used to represent vectors. In classification applications,

typically the small letter y is used to describe a given test sample which is a

vector containing features. Exceptionally, the small letters i, j, k, m, and n will

be used for indexes.

• The ith column of a dictionary A will be shown by A(i) which corresponds to

a training sample. If we want to extract the sub matrix whose indexes in Λ, we

will use the notation A(Λ).

• Small Greek letters such as α and γ will denote the constants.

• The notation Ai will represent the sub matrix which contains only the training

samples of the ith class. A sample belonging to ith class will be denoted by ai.

• Finally, the range space of a vector will be shown by R(.) and the notations

‖.‖0, ‖.‖1, and ‖.‖2 will represent the l0, l1, and l2 norms, respectively.
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CHAPTER 2

EXISTING METHODS

In this chapter, we briefly discuss commonly used classification algorithms in the

literature.

2.1. Nearest Neighbor Classifier

One of the most intuitive and primitive methods in the class of non-parametric tech-

niques is the nearest neighbor (NN) classifier. The classification is simply performed

based on the Euclidean distances between testing and training samples in the feature

space. It has been shown in [42] that when the size of the training data goes to infinity,

its error rate does not exceed the double Bayes error rate.

NN classifier is commonly used in the classification applications such as face recog-

nition. Usually features are transformed before using it. One of the most popular

subspace-based transformation methods is the principal component analysis (PCA)

approach [43, 44]. In PCA, high dimensional data is projected to a lower dimensional

subspace in which first principal component carries most discriminative information.

Another popular approach of the subspace-based algorithms is the linear discriminant

analysis (LDA) method, also known as Fisher’s LDA [45]. The goal of the LDA is

to seek a projection to a lower dimensional subspace such that maximum separability

is obtained between samples of different classes. This is achieved by maximizing

the ratio |V
TSbV |

|V TSwV | , where Sb is the between-class scatter matrix, Sw is the within-class

scatter matrix, and V is the projection which can be obtained from the eigenvectors of

S−1w Sb. Although LDA is a powerful dimensionality reduction method, it encounters
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Figure 2.1: Nearest neighbors of a test instance

a common high dimensionality problem in the classification applications. In other

words, the size of the feature vectors is generally larger than the number of training

samples. This makes the Sw matrix singular, which is usually called small sample

size problem (SSS).

Although NN-based approaches work well under normal conditions, they are highly

sensitive to corruption and noise in the features. A more sophisticated version of

NN classifier is the k-NN technique which executes majority voting among k nearest

training samples [46]. As shown in [47], its performance does not exceed those of

linear and non-linear SVM classifiers. First, second, and third nearest neighbors of a

test instance could be seen in Fig. 2.1.

2.2. Neural Networks

Over the last two decades, artificial neural networks (ANN) has become more impor-

tant in computer vision and pattern recognition. One of the most popular ANN-based

methods is the back-propagation (BP) algorithm which is a gradient based method

[48]. At every epoch, the algorithm adjusts the connection weights in the network

such that the difference of the desired and actual output vector is minimized. BPNN

was successfully applied to hand written digit recognition [49, 50]. Recently, FF-

BPNN has been applied to face recognition using PCA [51, 52].

Fig. 2.2 shows a structure of a typical network which has three layers, namely, input,
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Figure 2.2: A three-layer neural network

hidden, and output ones. In a classification application, generally, the number of

input units is equal to the length of feature vectors. The number of hidden units

could be determined experimentally, and finally the number of output units is equal

to the number of classes in the application. There could be more than one hidden

layers in the network. Very recently, deep convolutional neural networks (CNN) has

been successfully applied to hyper-spectral image classification [53]. The technique

becomes superior to the SVM approach, however, it requires more training samples

than a conventional classifier.

2.3. Support Vector Machines (SVM)

SVM is a binary classification technique in which a maximum distance decision sur-

face is found between closest points (support vectors) of two classes [54]. The points

are assumed to be linearly separable. In case they are inseparable, a penalty factor

C is utilized. Alternatively, a non-linear kernel (RBF, Polynomial, etc.) is used to

determine a non-linear decision boundary. The hyper-plane found by the algorithm

has maximum distances to the support vectors (Fig. 2.3).
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Figure 2.3: Support vector machines

Since the algorithm is originally a binary classification technique, it can not be di-

rectly applied to a multi-class classification problem. There are various strategies

proposed in the literature to extend the binary SVMs to multi-class SVMs. The two

famous of them namely one-against-all (OAA) and one-against-one (OAO) strategies

are quite common for multi-class problems. In OAA approach, the number of bi-

nary SVMs is equal to the number of classes in the training set. Each SVM finds a

separating hyper plane between ith class and the rest of the classes. There are some

drawbacks of this strategy. First, the number of train pixels per class is unbalanced

since the rest of the classes has more train pixels than the ith class. Second, the size

of one SVM classifier is very large and it requires large memories. In OAO approach,

for every possible pair of classes there exists a binary SVM. This approach is a sym-

metric one and every SVM requires less memory than the OAA approach. However,

the number of classifiers is larger than the OAA strategy. Therefore, we can say that

during the classification procedure, it requires more time. SVM approach has been ap-

plied to plenty of classification problems in the literature including text classification

[55, 56, 57, 58], face recognition [59, 60, 61], protein classification [62, 63, 64, 65],

gene classification [66, 67], hyper-spectral image classification [47, 68, 69, 70, 71],
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Figure 2.4: Sparse representation

spam categorization [72], etc. Although this technique is quite common, its parame-

ters are determined using cross validation which may result in non-optimal parameter

set.

2.4. Sparse Representation-Based Classification (SRC)

As we stated in the previous chapter, most of the signals in the nature are sparse and

a few components of them carry information. The major challenge in sparse approx-

imation / reconstruction is to recover the original signal x ∈ RN using a few mea-

surements y ∈ RB and the sensing (measurement) matrix A ∈ RB×N (Fig. 2.4). It is

assumed that each column of A has unit Euclidean norm and the system of equations

is mostly under-determined (B � N ).

The reconstruction task could be written as the following minimization problem:

x̂ = arg min
x
‖x‖0 subject to y = Ax or subject to ‖y − Ax‖2 ≤ ε (2.1)

where ‖x‖0 is l0 norm of x, which counts the number of non-zero components in

x ,and ε is small error tolerance. Unfortunately, the problem is not tractable and
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Figure 2.5: l1 versus l2 regularized solutions

it is NP-hard. One intuitive solution could be found by replacing l0 norm with l2

norm (Euclidean norm) which results in Tikhonov regularization [73]. However, this

technique does not produce sparse solution. Alternative approach is to replace l0

norm with l1 since it is convex and close to l0 function. Luckily, this method provides

sparse solution. The comparison between these two approaches is demonstrated in

Fig. 2.5.

We can also compare the two methods by performing an experiment. Assume that we

have a sparse signal x ∈ R512 having 15 non-zero entries and a sensing matrix A ∈
R170×512 whose entries are filled with numbers drawn from Gaussian distribution. The

observation vector y can be formed by decoding x via A, that is, y = Ax. We can

then recover x givenA and y by performing l1 and l2 regularizations. The result could

be seen in Fig. 2.6. As we can observe, l1 regularization approach exactly recovers

the original x, having very tiny ripples. On the other hand, the result obtained by l2

regularization is highly dense and only a few peaks can be observed.

l1 regularized solution could be obtained via some convex relaxation methods such

as basis pursuit [13], least absolute shrinkage and selection operator (LASSO) [74],

homotopy [75], etc. The common problems of these techniques are heavy compu-

tational complexity. Greedy approximations such as orthogonal matching pursuit

(OMP) [35], compressive sampling matching pursuit (CoSaMP) [36], stage-wise or-
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Figure 2.6: An experiment: l1 versus l2 regularized solutions

13



Figure 2.7: Sparse representation in classification

thogonal matching pursuit (StOMP) [38] are available in the literature to reduce the

computational burden in sparse approximation.

Recently, sparse representation has been successfully applied to classification prob-

lems by exploiting the fact that identity information (class identity) of a given test

sample is sparse among the other classes [2, 3]. In this case, the matrix A does not

contain the basis elements but the labeled training samples. The measurement vector

y becomes the sample to be classified and the sparse signal x is interpreted as the

vector consisting of identity information. The new interpretation is shown in Fig. 2.7.

After finding the sparse code using l1-minimization in the new configuration, class

identity of a given test sample is estimated via class-wise regression error. That is,

class(y) = arg min
i
‖y − Ax̂i‖2 ∀i ∈ {1, 2, . . . , C} (2.2)

where x̂i represents the ith class portion of the estimated sparse code x̂ among C

many classes. The class estimation stage could also be seen in Fig. 2.8.

The most crucial side of this approach is low sensitivity to corrupted features because

of the fact that the errors due to these kinds of features are often sparse with respect to

the dictionary elements [2]. Although this approach achieves state-of-the-art results,
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Figure 2.8: Class estimation via class-wise regression error

its sparse recovery part based on the l1 minimization is extremely costly and infeasible

to apply huge size problems such as hyper-spectral image classification. Alternative

approaches such as collaborative representation-based classification (CRC) based on

l2 regularization have been proposed to reduce the computational cost. However,

as observed in Fig. 2.6, the method uses non-sparse solution which only provides

satisfactory results if the problem contains very large number of features. Therefore,

this approach fails in most of the conventional classification problems involving a

moderate number of features.
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CHAPTER 3

BASIC THRESHOLDING CLASSIFICATION

All the limitations with the described algorithms in the previous chapter force us to

seek a method for classification problems having the following properties:

• It provides high classification accuracy.

• It is robust, cost effective, and fast.

• It is easy to implement.

• It has no parameter tuning experimentally.

In this context, we propose the BTC algorithm for classification applications which

approximately satisfies aforementioned properties. BTC is motivated by basic thresh-

olding (BT) algorithm which could be considered one of the simplest techniques in

compressed sensing theory [76, 77]. Unlike BT, which is a generic sparse signal re-

covery algorithm, BTC is a classifier which utilizes Tikhonov’s regularization [73]

for the overdetermined systems and performs classification using class-wise regres-

sion error. In the following section, we will develop the BTC algorithm step by step.

3.1. Basic Thresholding Classifier

In the generic sparse signal recovery problem, BT algorithm applies the following

two stages given a dictionary containing orthonormal atoms:
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• The first step consists of selecting a subset of the atoms (D) from the whole

dictionary A which are close in angle to the signal y.

• The second step estimates the sparse code for y with respect to the pruned dic-

tionary D, which is performed by solving the following minimization problem:

x̂ = arg min
x
‖y −Dx‖2 (3.1)

The solution is obtained using the ordinary least squares (OLS) technique,

x̂(Λ) = (DTD)−1DTy. Note that in the expression, only the entries indexed

with Λ are updated and the others are set to zero. The index set Λ consists of

the indexes of M (threshold) largest correlations.

Here, the assumption is that y is a linear combination of a subset of orthonormal basis

vectors included in the dictionary. In classification problems, the assumption of or-

thonormal basis vectors fails since the selected subset of the atoms contains extremely

correlated columns possibly from the same class. Therefore, the matrix constructed

using the selected atoms of the original dictionary becomes singular and the OLS

produces meaningless bad sparse approximation. One solution to this problem is to

utilize Tikhonov’s regularization method for the overdetermined systems. In this case,

the minimization problem could be written as follows:

x̂ = arg min
x
‖y −Dx‖22 + α ‖x‖22 (3.2)

The solution of the minimization problem could be obtained by manipulating the cost

function below,

J(x) = ‖y −Dx‖22 + α ‖x‖22 (3.3)

The expanded version of it can be written as,

J(x) = (y −Dx)T (y −Dx) + αxTx

= yTy − 2DTyx+ xTDTDx+ αxTx
(3.4)
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In order to find x which minimizes J(x), we take the gradient of J(x) with respect to

x and set it to zero, that is,

∇J(x) = 0

−2DTy + 2DTDx+ 2αx = 0

(DTD + α)x = DTy

x = (DTD + αI)−1DTy

(3.5)

The final equation which estimates the sparse code becomes as follows,

x̂(Λ) = (DTD + αI)−1DTy (3.6)

Here, α is a small regularization constant which is generally problem dependent.

Tikhonov’s regularization has the following advantages:

• It filters out the small or zero eigenvalues of DTD.

• It is simple to implement and it requires no complex decompositions like sin-

gular value decomposition (SVD).

• It preserves the structure of DTD matrix and the effects of it could easily be

analyzed.

We can also repeat the same experiment performed in the previous chapter in order

to see how BTC technique produces an efficient sparse solution. The result could be

seen in Fig. 3.1. As we can observe, most of the components of sparse x are perfectly

recovered by BTC and only a few insignificant components of it are missed.

As we stated previously, BTC not only recovers the sparse code, but also performs

classification using a predetermined dictionary containing labeled training samples. It

produces the class label of a test sample based on the minimal residual or equivalently

class-wise regression error. The implementation is given in Algorithm 1.

The BTC algorithm performs the following steps:

• In the first step, BTC finds the correlation vector v containing the linear corre-

lations between the test sample y and the samples of all training set A in the

original feature space via inner product.
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Figure 3.1: An experiment: Sparse solution via BTC

Algorithm 1 BTC
INPUT:

Dictionary A ∈ RB×N

Test sample y ∈ RB

Threshold M ∈ N

Regularization constant α ∈ (0, 1)

Initial sparse coefficients with zeros x̂ ∈ RN

OUTPUT:

Class of y

Residual vector ε ∈ RC

PROCEDURE:

1: v ← ATy

2: Λ← LM(v)

3: D ← A(Λ)

4: x̂(Λ)← (DTD + αI)−1DTy

5: ε(j)← ‖y − Ajx̂j‖2 ∀j ∈ {1, 2, . . . , C}
6: class(y)← arg minj ε(j)
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• In the second step, the operator LM(.) selects the index set Λ consisting of the

indexes of M largest correlations.

• Then, D matrix is extracted from the original dictionary A by means of the

index set Λ.

• The entires of the sparse code x indexed with Λ are estimated using regularized

least squares technique with a small regularization constant α.

• Finally, it calculates the residuals for all classes, and predicts the class of y

based on the minimum residual.

3.2. Upper Bound for the Threshold

Tikhonov’s regularization not only helps us estimate the sparse code x but also pro-

vides the upper bound for the threshold parameter M . Notice that this regularization

technique requires the system of equations is overdetermined. Therefore, the number

of columns of D, which is equal to the threshold parameter M , can not exceed the

number of rows (features (B)) of it. We can then define the following relation,

M < B (3.7)

This relation highly reduces the cost of the algorithm since B � N . A nice thing that

the boundaries of M provide us is that M does not grow as the number of classes in

the dictionary increases. For instance, assume that we have 1000 subjects and each

contains 10 samples. Also suppose that we want to reduce the feature vector size to

120. In this example, M will be less than 120. This will highly reduce the cost of

BTC algorithm. However, for an l1-minimization-based classification technique, the

dictionary size will be 120×104 which will extremely increase the convergence time.

In the following part, we will introduce a sufficient identification condition (SIC) for

BTC and based on it, we will develop a procedure to determine the best value of the

parameter M in the SIC sense.
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3.3. Sufficient Identification Condition for BTC

In compressed sensing theory, one of the most fundamental property of a dictionary

is the mutual incoherence quantity (3.8).

µ , max
i 6=j
| < A(i), A(j) > | (3.8)

It simply measures how much any two elements in a dictionary look alike. Using µ

one can determine under which conditions an algorithm recovers the correct sparse

code. For instance, Tropp [78] showed that if µ < 1
2K−1 , then the OMP algorithm

perfectly recovers any K-sparse vector x from the measurements y = Ax. In generic

sparse signal recovery, µ is desired to be small. A dictionary having µ = 0.05 will

satisfy exact recovery condition for OMP to recover any sparse signal having sparsity

of at most 10. Unfortunately, in classification applications, the columns of a dictio-

nary are highly correlated. Therefore, we can not use the quantity µ to determine such

conditions [3]. Cumulative coherence is another quantity which measures the maxi-

mum total similarity between a fixed column and the collection of other columns [78].

Even the conditions based on this measure are not useful for classification problems

because of the high correlations.

Luckily, the BTC algorithm enables us to develop such conditions for the dictionaries

in classification applications. Let us consider the following proposition:

Proposition 3.3.1. A sufficient condition for BTC to identify a test sample y belonging

to the ith class of the dictionary A is that

max
j 6=i

‖y − Aix̂i‖2
‖y − Ajx̂j‖2

< 1 (3.9)

where x̂i and x̂j are the ith and jth class portions of x̂, respectively.

Proof. A test sample y belonging to the ith class can be successfully identified via

BTC if and only if the residual ‖y − Aix̂i‖2 is minimum. It implies that,

‖y − Aix̂i‖2 < min
j 6=i
‖y − Ajx̂j‖2 (3.10)

Dividing both sides of the inequality with the right hand side concludes the proof.
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Based on the proposition, we define a quantity namely the SIC rate as follows: We

replace the testing sample y with ai which is a training sample belonging to Ai. We

also replace the Ai matrix with Ai which excludes the column ai. Now the training

sample ai is not belonging to the dictionary A anymore. Then, the quantity could be

expressed as follows,

βM(ai) , max
j 6=i

∥∥ai − Aix̂i∥∥2
‖ai − Ajx̂j‖2

(3.11)

Notice that we used the notation βM(ai) because the expression is also a function

of the parameter M . If we can find a threshold value which minimizes βM(ai), we

then state that this is the best threshold for the selected ai in the SIC sense. One

could compute the value of βM(ai) using Algorithm 2. In the algorithm, the operator

LM−1(.) selects the indexes of M largest correlations excluding the first one which

corresponds to the index of ai. The idea of the best threshold in the SIC sense for

Algorithm 2 βM(ai)

INPUT:

Dictionary A ∈ RB×N

Any selected sample from the ith class ai ∈ RB

Threshold M ∈ N

Regularization constant α ∈ (0, 1)

Initial sparse coefficients with zeros x̂ ∈ RN

OUTPUT:

βM(ai) ∈ R

PROCEDURE:

1: v ← ATai

2: Λ← LM−1(v)

3: D ← A(Λ)

4: x̂(Λ)← (DTD + αI)−1DTai

5: ε(j)← ‖ai − Ajx̂j‖2 ∀j ∈ {1, 2, . . . , C}
6: βM(ai)← maxj 6=i ε(i)/ε(j)

any ai could be extended to the all samples of A. Let βM be the quantity which

is computed by averaging the βM(ai) for all samples of A. This is shown by the
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following expression.

βM ,
1

N

N∑
k=1

βM(A(k)) (3.12)

3.4. Parameter Selection

Parameter selection is quite critical for a classifier, which highly effects the classifica-

tion performance. Some algorithms use cross validation in which some portion of the

training data is used for testing purposes. This method may not always provide good

parameter estimation. Bad estimation of the parameters highly reduces the classifi-

cation accuracy. In the following parts, we will provide some procedures to estimate

the parameters of BTC.

3.4.1 Estimating the Threshold Parameter

Using the previously defined quantity βM , one can estimate the threshold parame-

ter. The best estimate of M could be found in the SIC sense using the following

minimization expression:

M̂ = arg min
M

βM (3.13)

By varying M from 1 to B, we could plot the quantity βM , and choose the best M

which minimizes it. Since βM is generally convex, the procedures such as binary

search and steepest descent could be utilized and the best value of M could be found

in a few steps. However, since the parameter determination is an off-line procedure,

exhaustive search could also be used.

3.4.2 Selection of the Regularization Parameter

The best value of α is generally problem dependent. Once it is determined for a classi-

fication application, it is fixed for all experiments. For example, for face identification

one could set it to 0.01 for all experiments while for pixel-wise hyper-spectral image

classification, it can be fixed to 0.0001. Sometimes, the optimal choice of α is not

critical and it is set to a quite small number just to prevent the ill-conditioned matrix
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operation. For instance, for spatial-spectral hyper-spectral image classification, it is

set to very small number such as 10−10.
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CHAPTER 4

KERNEL BASIC THRESHOLDING CLASSIFICATION

4.1. Mapping to Hyperspace

As we stated previously, in practice, given test samples belonging to different classes

may not be distinguishable or separable in the original B dimensional feature space.

One solution to this problem is to map the samples in the original feature space to

some arbitrarily large or possibly infinite dimensional hyperspace via a mapping func-

tion φ [79], that is,

φ : RB −→ F by y 7−→ φ(y) (4.1)

Fig. 4.1 shows how inseparable data in two dimensional space becomes separable

in three dimensional space via a separating hyper-plane. This solution could also be

applied to the BTC algorithm. In the following parts, we are going to develop kernel

basic thresholding classifier by utilizing this technique.

4.1.1 Mapping the Cost Function

We know that BTC uses the cost function given below,

J(x) = ‖y −Dx‖22 + α ‖x‖22 (4.2)

If we map both the test sample y and the selected D matrix to F via the mapping

function φ, we then obtain the new cost function as follows,

J(x) = ‖φ(y)− φ(D)x‖22 + α ‖x‖22 (4.3)
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Figure 4.1: Mapping to hyperspace

It could also be expanded as,

J(x) = (φ(y)− φ(D)x)T (φ(y)− φ(D)x) + αxTx

= φ(y)Tφ(y)− 2φ(D)Tφ(y)x+ xTφ(D)Tφ(D)x+ αxTx
(4.4)

In order to find x which minimizes J(x) in F , we take the gradient of J(x) with

respect to x and set it to zero, that is,

∇J(x) = 0

−2φ(D)Tφ(y) + 2φ(D)Tφ(D)x+ 2αx = 0

(φ(D)Tφ(D) + α)x = φ(D)Tφ(y)

x = (φ(D)Tφ(D) + αI)−1φ(D)Tφ(y)

(4.5)

The final equation which estimates the sparse code in F in terms of mapped elements

becomes as follows,

x̂(Λ) = (φ(D)Tφ(D) + αI)−1φ(D)Tφ(y) (4.6)

4.1.2 Kernel Trick

Since we do not know the mapping function φ, we can not directly calculate x̂ using

(4.6). However, notice that the expression contains the inner products 〈φ(D(i)), φ(D(j))〉
∀i, j ∈ {1, 2, . . . ,M} and 〈φ(D(i)), y〉 ∀i ∈ {1, 2, . . . ,M}. This enables us to use

28



the kernel trick [80] by which we can calculate the inner products of two vectors in F
implicitly via a kernel function, that is, K(x, y) = 〈φ(x), φ(y)〉. Then, the kernelized

version of (4.6) becomes as follows,

x̂(Λ) = (K(D,D) + αI)−1K(D, y) (4.7)

where K(D,D) is an M ×M Gram matrix such that the entry corresponding to the

ith row and jth column is equivalent to K(D(i), D(j)) = 〈φ(D(i)), φ(D(j))〉 and

K(D, y) is an M × 1 vector whose entries are K(D(i), y) = 〈φ(D(i)), y〉 ∀i ∈
{1, 2, . . . ,M}.

4.1.3 Mapping the Residuals

After finding the sparse code estimation in F , we also need to determine the dis-

tances or residuals in F between the test sample and the best representation of it for

all classes, that is, ε(j) = ‖φ(y)− φ(Aj)x̂j‖2 ∀j ∈ {1, 2, . . . , C}. Since we can

not calculate φ(y) and φ(Aj) directly, we are required to expand the expression as

follows,

ε(j) = ‖φ(y)− φ(Aj)x̂j‖2

=
√

(φ(y)− φ(Aj)x̂j)T (φ(y)− φ(Aj)x̂j)

=
√
φ(y)Tφ(y)− 2x̂Tj φ(Aj)Tφ(y) + x̂Tj φ(Aj)Tφ(Aj)x̂j

=
√
K(y, y)− 2x̂Tj K(Aj, y) + x̂Tj K(Aj, Aj)x̂j

(4.8)

4.2. Kernel Basic Thresholding Classifier

After obtaining the required kernelized expressions, we can easily construct the KBTC

algorithm.

The implementation of the KBTC algorithm is presented in Algorithm 3. The KBTC

technique performs the following steps:
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Algorithm 3 KBTC
INPUT:

Dictionary A ∈ RB×N

Test sample y ∈ RB

Threshold M ∈ N

Regularization constant α ∈ (0, 1)

Initial sparse coefficients with zeros x̂ ∈ RN

OUTPUT:

Class of y

Residual vector ε ∈ RC

PROCEDURE:

1: v ← K(A, y)

2: Λ← LM(v)

3: D ← A(Λ)

4: x̂(Λ)← (K(D,D) + αI)−1K(D, y)

5: ε(j)←
√
K(y, y)− 2x̂Tj K(Aj, y) + x̂Tj K(Aj, Aj)x̂j ∀j ∈ {1, 2, . . . , C}

6: class(y)← arg minj ε(j)
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• In the first step, KBTC finds the non-linear correlations between the test sample

y and the samples of all training set A in F using the kernel function K(., .).

• In the second step, it chooses the index set of largest M correlations using the

operator LM(.).

• Then, it forms the sub matrix D by using the indexes in the set Λ.

• Using the expression (K(D,D) + αI)−1K(D, y), it estimates the sparse code

indexed with Λ.

• Finally, it calculates the residuals for all classes, and predicts the class of y

based on the minimum residual.

Note that computing K(D,D) whenever a new sample is needed to be classified,

is infeasible. Instead, we recommend computing K(A,A) off-line and extract the

required matrix as K(D,D) ← K(A(Λ), A(Λ)). This way of computing K(D,D)

highly reduces the computational cost. There are several kernels used in the literature

such as the polynomial kernel K(x, y) = (1 + xTy)d and the radial basis function

(RBF) kernel K(x, y) = exp(−γ ‖x− y‖22). In this dissertation, we use the RBF

kernel which is more commonly preferred. There are three parameters in the KBTC

algorithm namely the regularization constant α, the thresholdM , and the γ parameter

of the kernel function. The choice of α is an easy one because it is used just to prevent

the ill-conditioned matrix inversion. Typically, we set it to very small number such as

10−9, 10−10, etc. The most critical parameter is γ which determines the hyperspace F
in which the classes of a dictionary should be separate enough such that a test sample

could be classified correctly. SVM technique uses cross validation to determine the

γ parameter. However, this method may not provide the best γ for all classifiers.

In the next part, we will introduce sufficient identification condition for KBTC and

based on it, we will develop some procedures to determine the best values of γ and

M parameters.
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4.3. Sufficient Identification Condition for KBTC

Proposition 4.3.1. A sufficient condition for KBTC to identify a test sample y belong-

ing to the ith class of the dictionary A is that

max
j 6=i

√
K(y, y)− 2x̂Ti K(Ai, y) + x̂Ti K(Ai, Ai)x̂i√
K(y, y)− 2x̂Tj K(Aj, y) + x̂Tj K(Aj, Aj)x̂j

< 1 (4.9)

where x̂ is the sparse code estimated via KBTC, x̂i and x̂j are the ith and jth class

portions of x̂, respectively, and K(., .) is the kernel function.

Proof. A test sample y belonging to the ith class can be successfully identified if and

only if the residual ‖φ(y)− φ(Ai)x̂i‖2 is minimum. It implies that,

‖φ(y)− φ(Ai)x̂i‖2 < min
j 6=i
‖φ(y)− φ(Aj)x̂j‖2 (4.10)

Expanding both sides of the inequality we obtain that,

√
φ(y)Tφ(y)− 2x̂Ti φ(Ai)Tφ(y) + x̂Ti φ(Ai)Tφ(Ai)x̂i

< min
j 6=i

√
φ(y)Tφ(y)− 2x̂Tj φ(Aj)Tφ(y) + x̂Tj φ(Aj)Tφ(Aj)x̂j

√
K(y, y)− 2x̂Ti K(Ai, y) + x̂Ti K(Ai, Ai)x̂i

< min
j 6=i

√
K(y, y)− 2x̂Tj K(Aj, y) + x̂Tj K(Aj, Aj)x̂j

(4.11)

Finally, dividing both sides of the inequality with the right hand side concludes the

proof.

Now, based on the proposition, we define a quantity by replacing the test sample y

with ai which is a training sample belonging to Ai and also replacing the Ai ma-

trix with Ai which excludes the column ai. It means that ai is not belonging to the

dictionary A anymore. Then, the quantity could be expressed as follows,

β(γ,M, ai) , max
j 6=i

√
K(ai, ai)− 2x̂Ti K(Ai, ai) + x̂Ti K(Ai, Ai)x̂i√
K(ai, ai)− 2x̂Tj K(Aj, ai) + x̂Tj K(Aj, Aj)x̂j

(4.12)
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One could easily compute β(γ,M, ai) using the Algorithm 4. It is similar to the

Algorithm 3, however, this time the input is any selected training sample belonging

to ith class and the operator LM−1(.) chooses the indexes of M largest non-linear

correlations excluding the first one which is the index of ai itself. The final output

value is equivalent to the ratio of residual belonging to the ith class and minimum

residual whose class is not equal to i.

Algorithm 4 β(γ,M, ai)

INPUT:

Dictionary A ∈ RB×N

Any selected training sample from the ith class ai ∈ RB

Threshold M ∈ N

Regularization constant α ∈ (0, 1)

Initial sparse coefficients with zeros x̂ ∈ RN

OUTPUT:

β(γ,M, ai) ∈ R

PROCEDURE:

1: v ← K(A, ai)

2: Λ← LM−1(v)

3: D ← A(Λ)

4: x̂(Λ)← (K(D,D) + αI)−1K(D, ai)

5: ε(j)←
√
K(ai, ai)− 2x̂Tj K(Aj, ai) + x̂Tj K(Aj, Aj)x̂j ∀j ∈ {1, 2, . . . , C}

6: β(γ,M, ai)← maxj 6=i ε(i)/ε(j)

As we stated previously, the quantity β(γ,M, ai) is quite important because we will

utilize it in order to estimate the parameters of the KBTC algorithm.

4.4. Parameter Selection

Notice that we used the notation β(γ,M, ai) for our quantity because it is depended

on γ and the threshold M . In the following two parts, we develop some methodolo-

gies to estimate γ and M using the quantity β(γ,M, ai).
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4.4.1 Estimating the γ Parameter

Notice that β(γ,M, ai) is calculated only for a column of the dictionary A. If we

repeat the procedure for all columns of A and then average it, we obtain the following

averaged quantity,

β(γ,M) ,
1

N

N∑
n=1

β(γ,M,A(n)) (4.13)

Knowing that M could have values from 1 to B − 1, we could compute β(γ,M) for

all Ms and then average it. The final averaged quantity becomes as follows,

β(γ) ,
1

(B − 1)

1

N

B−1∑
m=1

N∑
n=1

β(γ,m,A(n)) (4.14)

Using β(γ) one can easily estimate the best γ for KBTC by solving the following

minimization problem.

γ̂ = arg min
γ
β(γ) (4.15)

As we stated previously, γ̂ determines the hyperspace F that KBTC works in. After

estimating γ, we also need to estimate M . In the following part, we will follow the

similar procedures to estimate M .

4.4.2 Estimating the Threshold Parameter

Since we determined the γ, we could set it to the estimated value of it in the following

function.

β(γ̂,M) ,
1

N

N∑
n=1

β(γ̂,M,A(n)) (4.16)

Now we can easily find the best estimate of M using the following minimization

expression.

M̂ = arg min
M

β(γ̂,M) (4.17)

By varying M from 1 to B, we could plot the quantity β(γ̂,M), and choose the best

M which minimizes it.

34



4.5. Alternative 5th Step Calculation

We could also develop some other alternative expressions for the 5th stages of both

Algorithm 4 and 3. For this purpose, we will use the following proposition:

Proposition 4.5.1. If the inequality ‖φ(y)− φ(Ai)xi‖2 < minj 6=i ‖φ(y)− φ(Aj)xj‖2
holds for a given sample y, then the following inequality also holds.

|K(y, y)− xTi K(Ai, y)| < min
j 6=i
|K(y, y)− xTj K(Aj, y)| (4.18)

Proof. We know that both φ(Ai)xi and φ(Aj)xj lie in the range space of φ(A).

The sparse representation assumption φ(y) = φ(A)x implies that φ(y) also lies in

R(φ(A)). Therefore, both the residual vectors φ(y) − φ(Ai)xi and φ(y) − φ(Aj)xj

lie in R(φ(A)). Projecting those vectors on to the vector φ(y) via dot product with

φ(y)/ ‖φ(y)‖2 does not change the direction of the inequality, that is,∥∥∥∥〈 φ(y)

‖φ(y)‖2
, φ(y)− φ(Ai)xi〉

∥∥∥∥
2

< min
j 6=i

∥∥∥∥〈 φ(y)

‖φ(y)‖2
, φ(y)− φ(Aj)xj〉

∥∥∥∥
2

(4.19)

Then the expression becomes as follows,

|φ(y)Tφ(y)− xTi φ(Ai)
Tφ(y)| < min

j 6=i
|φ(y)Tφ(y)− xTj φ(Aj)

Tφ(y)| (4.20)

Finally, writing the expression in terms of kernel function concludes the proof.

|K(y, y)− xTi K(Ai, y)| < min
j 6=i
|K(y, y)− xTj K(Aj, y)| (4.21)

By using the proposition, we can replace the 5th steps of Algorithm 3 and 4 with

ε(j) ← |K(y, y) − x̂Tj K(Aj, y)| ∀j ∈ {1, 2, . . . , C} and with ε(j) ← |K(ai, ai) −
x̂Tj K(Aj, ai)| ∀j ∈ {1, 2, . . . , C}, respectively.
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CHAPTER 5

FACE RECOGNITION VIA BTC

5.1. Introduction

Face recognition is obviously one of the most widely investigated subjects in com-

puter vision and pattern recognition. Law enforcement, access control systems, and

several commercial applications have made face recognition an attractive research

area for the last two decades. Researchers have proposed various face recognition

methods to provide robust, reliable, low-cost, and high-accuracy automatic identifica-

tion of frontal-view faces under various difficulties. Among those, appearance based

face recognition techniques have been very popular. One of the most popular appear-

ance methods is the Principal Component Analysis (PCA) or Eigenfaces approach

[43]. In PCA, high dimensional features of both train and test samples are projected

to a lower dimensional subspace. Test images are then classified using Nearest Neigh-

bor (NN) classifier in the new feature space. Another popular subspace method is the

Linear Discriminant Analysis (LDA), also known as Fisher’s LDA which extracts the

lower dimensional features by using both within-class and between-class information

[81]. Afterwards, an NN classification is performed in the identification part. All

those approaches and variants focus on the feature extraction and dimension reduc-

tion stages.

Recently, Wright et al. [2] have proposed a robust algorithm, Sparse Representation-

based Classification (SRC), for face recognition which focuses on the classification

stage rather than the feature extraction. They exploit the fact that the identity in-

formation of a person is sparse among all identities in a given face database. They
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use a mathematical model in which any test image lying in the span of a class of a

given dataset can be represented by a linear combination of all train samples of the

same set. This representation is then used for classification. They showed the robust-

ness of the algorithm under both conventional (PCA, LDA, etc.) and unconventional

(Down-sampled and Random) features. In the sparse information recovery part, they

use l1-minimization which requires solving a convex optimization problem. Unfor-

tunately, l1-minimization has a high computational complexity especially for large

scale applications.

Recently, Yang et al. [82] have investigated the performances of several popular and

fast l1-minimizers. As stated in [82], one of the fastest algorithm is the homotopy

method which was originally proposed in [75]. When we consider real time applica-

tions with large scale datasets, even homotopy method converges very slowly.

An interesting alternative to l1-minimizers has been proposed in [83] for face recog-

nition problem. The authors actually propose a hash matrix in the feature extraction

part, then they use either l1-minimization or Orthogonal Matching Pursuit (OMP)

for the sparse information recovery. They recommend OMP with hashing which is

extremely fast. It is indeed quite fast, however, in case of noisy sparse signal recov-

ery, its performance reduces dramatically. Therefore, it is not recommended for face

recognition especially when the train samples have illumination, expression etc. vari-

ations. Another alternative has been proposed in [84]. Instead of l1-minimization,

they use l2-minimization which could be considered fast, however, it is very sensitive

to alignment variations, therefore, is not so robust.

In this chapter, we propose the BTC algorithm for face identification problem which

is capable of identifying frontal-view test samples extremely rapidly and perform-

ing high recognition rates. By exploiting rapid recognition capability, we propose a

fusion scheme in which individual BTC classifiers are combined to produce better

identification results especially when very small number of features is used. Finally,

we propose an efficient validation technique to reject invalid test samples. Numerical

results show that BTC is a tempting alternative to greedy and l1-minimization-based

algorithms [85].
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5.2. Feature Extraction

In face recognition, the goal is to correctly identify the class label of any given test

image using a dictionary containing labeled training samples. In this context, gray

scale face samples with size of w × h are embedded into m dimensional vectors

where m = wh. Let ai,j ∈ Rm with ‖ai,j‖2 = 1 be the vector containing the pixels

of the jth sample of class i and let Ai = [ai,1 ai,2 . . . ai,Ni
] ∈ Rm×Ni represent the

matrix containing the training samples of the ith class with Ni many samples and C

denote the number of classes. Then, the final face dictionary A could be constructed

in such a way that A = [A1 A2 . . . AC ] ∈ Rm×N where N =
∑C

i=1Ni.

When we consider a face image at a typical dimension, 100 × 100, the final vector

storing the pixels of that image will have the size of 104. The computational com-

plexity of processing with dictionaries having this number of rows is extremely high.

Also most of the data in such vectors are redundant and do not carry discriminative

information. Therefore, a projection R ∈ RB×m, where B � m, is required to rem-

edy aforementioned problems. After finding such a transformation, one can calculate

the lower dimensional representation of the dictionary, Φ ∈ RB×N , where Φ = RA.

In the following part, we will briefly describe the random projections technique.

5.3. Random Projections

According to Johnson-Lindenstrauss Lemma [86], any m dimensional set in Eu-

clidean space could be embedded intoO(logm/ε2) dimensional Euclidean space pre-

serving the distances between any pair of points with small distortions which are not

larger than a factor of (1 + ε), where 0 < ε < 1. Random projections could be con-

sidered one of the such embeddings which project the original data spherically onto

a random B-dimensional hyperplane (B � m). There are various advantages of the

use of random projections: 1-) It is a very simple and computationally efficient tech-

nique. 2-) It preserves the distances between any pair of points with small distortions.

3-) It is data independent unlike PCA or LDA. 4-) It provides classifier output vari-

ability by which we can combine the outputs of several classifiers having different

random projectors.
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Random projection matrices could be constructed in several ways. For instance, each

entry of the matrix is selected from the zero mean and i.i.d. random variables hav-

ing Normal distribution. Then, each row of the matrix is normalized to unit length.

This kind of projection was successfully applied in face recognition in [2]. Another

way is to select each entry from i.i.d. random variables from the Bernoulli distri-

bution. Both ways have similar mathematical properties. Storing Bernoulli random

variables (integers) obviously requires less memory than storing Normal random vari-

ables (double size numbers). Achlioptas [87] proposed sparse random projections in

which entries are selected from {+
√

3, 0,−
√

3} with probabilities {1
6
, 2
3
, 1
6
}. A more

generic version of this technique was proposed in [88]. It is called very sparse ran-

dom projection in which entries are selected from {+
√
S, 0,−

√
S}with probabilities

{ 1
2S
, 1 − 1

S
, 1
2S
} where S is a positive integer. Note that the random projection ma-

trices from the Bernoulli distribution and variants are normalized by
√
m to produce

unit length row. In this thesis, we use the last technique in which we can adjust the

sparsity of the input features by varying the S parameter. Also, if we are working on

a device having limited storage capacity, aggressive choice of S (e.g. 100) will highly

reduce the size of the random projection matrix (We can only store the locations of

{+
√
S}s and {−

√
S}s) without losing significant discriminative features.

5.4. Recognition with a Single Classifier

Assume that after random projection we obtained the lower dimensional representa-

tion of the dictionary as Φ ∈ RB×N and the test face image as y ∈ RB. Then, one can

use the following expression in order to identify y:

Id(y)← BTC(Φ, y,M, α) (5.1)

The details of the algorithm could be found in Chapter 3. Using the described quan-

tity (3.12), the threshold value M can be estimated for any dataset. For instance, we

computed βM for Extended Yale-B dataset for 504 and 120 features. In Fig. 5.1,

we plotted βM by simply ranging M over the intervals (1, 120) and (1, 504). By

observing the plotted curves, the optimum value of M in SIC sense could be deter-
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Figure 5.1: βM vs threshold M on Extended Yale-B dataset for dimensions 120 and
512

mined approximately by picking the value which makes βM minimum. Note that the

detailed descriptions of the Extended Yale-B dataset is given in Section 5.6.

In generic classification problems, it is always desired to reduce the dimensionality of

the input features. Here, the goal is not only to increase the discriminative properties

of the features, but also to reduce the memory usage and computational burden. It is

valid for face recognition as well. Consider the portable devices like cell phones and

near feature intelligent robots for which energy requirement is always problematic.

Therefore, the designers have to keep the processing capability of such intelligent

devices in low levels. In this context, we need to construct reliable algorithms which

are able to provide highly accurate results using only a small number of features.

On the other hand, keeping the number of features small does not always provide

good results especially for a single classifier. Immediate remedy of this problem is

to combine the outputs of several classifiers. In this sense, we need high accuracy

individual classifiers having enough level of output diversity. Those requirements

are exactly met by individual BTC classifiers with different random projections. In

the following section, we will develop an efficient fusion scheme by combining the

outputs of individual BTC classifiers.
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Figure 5.2: Classifier ensembles

5.5. Classifier Ensembles

In this part, we present a classifier fusion scheme to increase the classification accu-

racy further. In Fig. 5.2, we see how we can combine the outputs of n individual

BTCs using parallel topology. This architecture is commonly used in the literature

[89], [90], [91]. Assume that the random projector for the ith BTC is Ri ∈ RB×m and

the corresponding residual vector containing the errors for each class is εi ∈ RC . We

can then combine the individual residuals to obtain one final residual vector. Here,

the sample mean of the residuals, as indicated in [92] and successfully applied in [93],

could be considered as a good combiner, that is, ε = 1
n

∑n
i=1 ε

i. The technique used

in here combining the intermediate function output instead of direct classification

results is called support function fusion [89]. After obtaining the overall residual vec-

tor, final classification is done by selecting the class which has the minimum residual.

Algorithm 5 describes the practical implementation of BTC-n. Note that the fusion

technique given here is similar to the method used in [93]. Here, we use the outputs

of individual BTCs instead of the outputs of l1 minimizers.
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Algorithm 5 BTC-n
INPUT:

Dictionary A ∈ Rm×N

Test sample y ∈ Rm

Threshold parameter M ∈ N

Regularization parameter α ∈ (0, 1)

Random Projectors Ri ∈ RB×m i ∈ {1, 2, ..., n}
OUTPUT:

Identity of y

PROCEDURE:

1: ε(j)← 0 ∀j ∈ {1, 2, ..., C}
2: for i← 1, n do

3: Φi ← RiA

4: yi ← Riy

5: εi ← BTC(Φi, yi,M, α)

6: ε← ε+ εi

7: end for

8: ε← ε/n

9: Id(y)← arg minj ε(j)
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Table 5.1: Computed M values for each dataset and dimension

Dimension(d) 30 56 120 504

Extended Yale-B 29 48 88 172

Faces 94 11 11 33 21

Faces 95 11 26 36 38

Faces 96 11 13 35 43

ORL 6 6 6 6

5.6. Experimental Verification and Performance Comparison

In this section, we will compare the classification performances of SRC, OMP, COMP,

and BTC as well as their ensembles, SRC-n, OMP-n, COMP-n, and BTC-n, on pub-

licly available datasets namely Extended Yale-B, Faces 94, 95, 96, and ORL in face

identification domain. We tested the performances using 30, 56, 120, and 504 features

as used in [2] and [93]. Note that in the beginning of the experiments we computed

the threshold values for each dataset and feature vector size according to properties

of the datasets. Also note that whenever the dictionary changes, that is, some classes

and samples are added or removed from it, the M value for that dictionary must be

recalculated. The computed M values are shown in Table 5.1.

5.6.1 Results on Extended Yale-B

The Extended Yale-B face dataset contains 38 classes (subjects) each having about 64

frontal face samples with resolution 192 x 168. The samples have perfect alignment

and different illuminations per individual (Fig. 5.3). As in [2] and [93], we randomly

selected half of the samples (about 32 per class) for training and remaining half for

testing to make sure that the results do not depend on any special configuration of the

dictionary. We used the same random instance for all algorithms. For SRC method,

we chose Homotopy l1 minimizer during the experiments with tolerance 1e-12. We

set the sparsity level of OMP algorithm to the average number of samples per class

(N ) for all experiments. For BTC algorithm, we used the threshold values given in

Table 5.1 and for all experiments we set the regularization constant α to 0.01. For face
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Figure 5.3: Sample faces from Extended Yale-B dataset

identification, this is the value that we propose based on the experiment we provide on

Extended Yale-B. As shown in Fig. 5.5, the classification accuracies are maximized

at 0.01 for BTC and BTC-n techniques. We repeated the experiments 50 times with

50 different random projectors (Bernoulli random projections) for each method to

make sure that results do not depend on any special choice of the projection matrix.

The classification accuracies of each method are shown in Table 5.2. In multi-class

problems, considering only classification accuracy may not be enough to show the

real performance of a classifier as indicated in [94]. Therefore, we also added kappa

(κ) statistic in Table 5.2 which measures pairwise degree of agreement among set of

raters [95].

In the single classifier case, we see that the rates of SRC and BTC are very close

to each other. In case of 30 and 504 features, BTC slightly outperforms the SRC

method. On the other hand, SRC slightly performs better than BTC at 56d and 120d.

The performance of OMP algorithm is quite low at dimensions 30d, 56d, and 120d as

expected. We also added Cholesky-based OMP (COMP) which performs better than

ordinary OMP. In the case of classifier ensembles using 5 individual classifiers, we

see that the accuracies highly increase. For this case, BTC-5 outperforms the other

45



Table 5.2: Recognition rates and κ statistics on Extended Yale-B dataset

Accuracy κ statistics

Dimension(d) 30 56 120 504 30 56 120 504

SRC [%] 83.47 91.82 95.77 97.40 83.02 91.60 95.65 97.33

OMP [%] 66.59 76.66 89.91 96.52 65.69 76.03 89.64 96.43

COMP [%] 72.23 86.75 93.24 97.03 71.48 86.40 93.05 96.95

BTC [%] 83.98 91.25 95.44 98.14 83.54 91.01 95.32 98.09

SRC-5 [%] 90.87 94.98 96.87 97.45 90.62 94.84 96.79 97.38

OMP-5 [%] 78.20 81.90 93.58 96.87 77.61 81.41 93.41 96.79

COMP-5 [%] 83.96 90.46 94.90 97.37 83.53 90.20 94.76 97.29

BTC-5 [%] 92.51 95.97 97.45 98.84 92.31 95.86 97.38 98.81

techniques at all dimensions. The ensemble technique namely E-Random or SRC-5

proposed in [93] achieves 90.72, 94.12, 96.35, 98.26 percent at the same dimensions,

respectively, using 5 classifiers. we see that BTC-5 outperforms E-Random which is

computationally quite expensive.

We also compared the computation times per sample for each method in order to

further investigate the feasibility of each proposal. Fig. 5.4 shows the classification

times per individual for each method at each dimension. Note that all experiments

were performed in MATLAB on a workstation with dual quad-core 2.67 GHz Intel

processors and 4GB of memory. As expected SRC is slow and OMP and COMP are

fast. On the other hand, we see that single BTC is extremely fast as compared to the

others. The speed of the proposal enables us efficiently use the ensemble technique

which is superior to the single classifiers. The SRC-n approach is highly inefficient

in terms of computational cost although its classification accuracy is high. We also

compared the performances of the ensemble techniques with respect to the number

of classifiers using only 30 features in Fig. 5.6. We observe that for all cases BTC-n

is superior to the other methods. Up to 5 classifiers, the classification accuracies im-

mediately increase. Based on this observation, combining 5 or 10 classifiers could be

good choice depending on the speed of the algorithm. The corresponding computa-

tion times for the ensemble techniques are given in Fig. 5.7. The results show that

the computation performance differences between BTC-n and the other approaches
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Figure 5.4: Classification times on Extended Yale-B
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Figure 5.5: Classification accuracies with respect to regularization parameter (α)
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Figure 5.6: Classification accuracies on Extended Yale-B using ensemble techniques
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Figure 5.7: Classification times on Extended Yale-B using ensemble techniques
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Table 5.3: Description of each dataset

Dataset Difficulty Resolution Captured Num. of Tr. smp. Te. smp.
resolution classes per class per class

Faces 94 Easy 180× 200 123× 123 152 10 10
Faces 95 Medium 180× 200 75× 75 72 10 10
Faces 96 Hard 196× 196 98× 98 151 10 10

ORL Medium 9× 112 92× 112 40 5 5

are significant.

5.6.2 Results on Faces 94, 95, 96, and ORL

The goal of the experiments on Faces 94, 95, and 96 is to compare the classification

performances under automatic object detection framework. Note that we used Viola-

Jones detector to capture the faces [96]. Since the detector that we use is not able to

perfectly capture and align the test samples, the maximum identification rates of the

classifiers are decreased. Because of this reason, we focus on the performance differ-

ences rather than the maximum rates achieved. Brief description of the datasets could

be seen in Table 5.3. The detailed description of each dataset (Faces 94, 95, 96) could

be found in [97]. Notice that this time we have more realistic scenarios which con-

tain misalignments, head scale, expression, and illumination variations in the cropped

faces. We have also chance to compare the performances under ORL which has a few

(5) training samples per subject. Configurations for these experiments were similar

to the previous ones. The only differences were the number of classes and samples

for each dataset.

Fig. 5.8 shows the recognition rates on Faces 94 dataset for SRC-n, OMP-n, COMP-

n, and BTC-n methods with respect to the number of classifiers using 30 features. As

we see in the figure, BTC-n outperforms the other techniques as expected. Notice

that this time, OMP-n’s and COMP-n’s performances are acceptable as compared to

the results on Extended Yale-B. This is because the illumination variations are not

significant which corresponds to less-noisy sparse recovery. They even outperform

the SRC-n method. However, previous results on Extended Yale-B show that those

approaches are not as robust as the SRC-n and BTC-n techniques.
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Figure 5.8: Recognition rates on Faces 94
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Figure 5.9: Recognition rates on Faces 95
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Figure 5.10: Recognition rates on Faces 96
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Figure 5.11: Recognition rates on ORL
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In Fig. 5.9 we see the classification performances on Faces 95 dataset. This dataset

is more difficult than the previous one. Therefore, the performances of all methods

slightly decreased as compared to the previous case. This time also BTC-n technique

outperforms the others. We observe that SRC-n is superior to the OMP-n and COMP-

n techniques because of the difficulty of the dataset.

In Fig. 5.10 we see the classification accuracies on Faces 96 dataset which could be

considered the most difficult one. This time the performances of the all methods de-

creased. The performance differences are similar to those of the previous experiment.

The best results also were obtained by BTC-n.

Fig. 5.11 shows the classification performances on ORL dataset. As expected BTC-n

achieves best results as in the previous cases. This time the performances of BTC-

n, OMP-n, and COMP-n are very close. However, BTC-n slightly outperforms the

OMP-n and COMP-n methods. SRC-n achieves the lowest rates. This shows that

SRC-n is vulnerable to the number of samples per subject especially when the dictio-

nary has very small number of samples per class.

5.6.3 Comparison with the Correlation Classifier

One could wonder what happens if we directly use simple correlations instead of

sparse representation. For this purpose, we designed an algorithm namely simple

correlation classifier (CORR) which performs the following steps:

• Find the correlation vector v containing the M largest linear correlations be-

tween the test sample y and the samples of all training set A ∈ RB×N .

• Set the remaining N −M entries in v to zero.

• Perform classification using the sum of the linear correlations within each class,

that is,

class(y) = arg max
j

∑
i

vj(i) ∀j ∈ {1, 2, . . . , C} (5.2)

where i represents the correlation index within a class and j shows the class

index.
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Figure 5.12: Comparison with correlation classifier (Extended Yale-B)

Using this method, we repeated the same experiment previously performed on Ex-

tended Yale-B dataset. The recognition rates for different feature vector sizes and

threshold values (M ) could be seen in Fig. 5.12. We can observe that the best results

are achieved when M is set to 1. This means that the best policy is to find the class

label of the dictionary element having the highest correlation with the test sample.

Note that we could have used the majority voting (MV) technique instead of the sum

operation. However, the sum operation is superior to the MV technique.

By observing the results, we can also compare the performance of this intuitive

method with that of the proposed algorithm. We see that the accuracies obtained

by BTC are far beyond the CORR approach. This experiment not only shows the

superiority of BTC but also the power of the sparse representation.

5.6.4 Rejecting Invalid Test Samples

Evaluating a classifier considering only classification performance and computational

cost is not enough in real world applications. A classifier must also be able to reject
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invalid test samples and correctly classify the valid ones at the same time. Up to now

we only considered the cases where the test sample belongs to one of the classes in

the dictionary. This time we consider a test sample which does not belong to any of

the classes. Rejection could be performed by using a predefined threshold value. In

this thesis, we propose a validation mechanism based on the residual vector which

is produced when the test sample y is applied to the BTC algorithm. As we stated

previously, the residual vector contains entries for all classes in the dictionary. In this

context, we define the following measure for any test sample y.

γ(y) , 1− ε(i)

ε(j)
(5.3)

where i = arg mink ε(k) and j = arg mink 6=i ε(k). Here, i and j are simply the

class indexes which give the smallest and the second smallest residuals, respectively.

Notice that the ratio in (5.3) is the natural result of βM that we mentioned previously.

Assume that we apply y to the BTC algorithm and obtain γ(y) being close to 1. Then,

we say that with high probability it belongs to one of the classes. If the result is close

to 0, then we say that it probably does not belong to any of the classes. Let us define

τ ∈ (0, 1) as the rejection threshold. If the following condition is not satisfied, then

the test sample is rejected.

γ(y) ≥ τ (5.4)

Unlike the rejection rule defined here, SRC algorithm uses the Sparsity Concentra-

tion Index (SCI) to reject invalid test samples [2]. It is based on the estimated sparse

code x. The details of the rule could be found in [2]. In order to compare the rejec-

tion performances of BTC, SRC, OMP, and COMP we designed a new experimental

configuration. This time in the experiments, we included Extended Yale-B, Faces 94,

95, and 96 at the dimension 120d. We also included only half of the classes in the

training sets. However, the test sets remained the same. Therefore, half of the classes

and their samples in the test sets were invalid for the new dictionaries. Since the dic-

tionaries were redesigned, we recalculated the M values which are 72, 11, 33, 24 for

Extended Yale-B, Faces 94, 95, and 96, respectively. We then generated the normal-

ized Receiver Operating Characteristics (ROC) curves for each dataset and algorithm

by simply sweeping τ over the range (0,1). Note that for SRC, OMP, and COMP we

used the SCI rule.
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Figure 5.13: ROC curves on Extended Yale-B
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Figure 5.14: ROC curves on Faces 94
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Figure 5.15: ROC curves on Faces 95
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Figure 5.16: ROC curves on Faces 96
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Fig. 5.13 shows the ROC curves for Extended Yale-B dataset. In this set, BTC

significantly outperforms the other algorithms. Since the dataset Faces 94 is an easy

one, all algorithms generate nearly the same curves in Fig. 5.14. In Fig. 5.15, we

see the results for Faces 95. In this case, up to 0.1 false positive rate, SRC slightly

outperforms BTC. After that point, BTC performs better than SRC up to 0.3. After

this rate, the performances are nearly the same. Finally, Fig. 5.16 shows the ROC

curves for Faces 96, which was the most difficult one. This time again BTC algorithm

achieves the best results.

5.7. Conclusions

In this chapter, we introduced basic thresholding classification for face recognition

which has significant speed, accuracy, and rejection performance improvements over

l1-minimization-based and greedy approaches. One of the main contributions is that

unlike most of the classification algorithms, the computation performance of the pro-

posed algorithm does not depend on the number of classes in the dictionary. It de-

pends only on the feature vector size which is already intended to be small. By

exploiting the output diversity property of the random projections and speed of the

proposed algorithm, we developed a classifier ensemble mechanism which efficiently

combines the outputs of the individual classifiers to further increase the classifica-

tion accuracy especially in the case of small feature vector size. The ensemble tech-

nique also enables us to run each individual classifier in parallel manner. Finally,

in order to reject invalid samples, we presented a rejection methodology which was

actually developed by using the natural results of the sufficient identification condi-

tion rate. We demonstrated the performance and robustness of the algorithm under

various well-known publicly available datasets. Simulation results showed that basic

thresholding classification is a quite reasonable alternative to some state-of-the-art

l1-minimization-based and greedy classifiers.
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CHAPTER 6

HYPER-SPECTRAL IMAGE CLASSIFICATION VIA BTC

6.1. Introduction

Different materials on the surface of earth have different electromagnetic spectral sig-

natures. In a given scene, those signatures could be captured by remote sensors with

a small spatial and spectral resolution. Each pixel of a captured hyper-spectral im-

age (HSI) or data cube contains very useful spectral measurements or features which

could be used to distinguish different materials and objects. With the advancement of

the sensor technology, current sensors are able to capture hundreds of spectral mea-

surements. However, increasing the number of spectral features of a HSI pixel does

not always help to increase the correct classification rate of the pixel. For instance,

in the supervised classification techniques, at some point increasing the input feature

vector size further may reduce the classification accuracy. This is known as high

dimensionality problem or Hughes phenomenon [98].

Several dimension reduction techniques have been proposed to eliminate the effects

of Hughes phenomenon [99], [100], [101]. Besides, to increase the classification

accuracy, various approaches have been proposed. Among those, support vector ma-

chines (SVM) technique outperformed classical methods such as K-nearest neighbor

(K-NN) and radial basis function (RBF) networks [47]. It has been shown that SVM

distinguishes in terms of classification accuracy, computational cost, low vulnerabil-

ity to Hughes phenomenon, and it requires a few training samples [47], [71]. On the

other hand, SVM approach has some limitations. First, it has parameter tuning (C,

γ, error tolerance) and kernel (linear, RBF, etc.) selection steps which are done using
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k-fold cross validation in which some portion of the training data is used for testing

purposes. Those procedures are cumbersome and the resulting parameter set may

not be optimum for the test sets [102]. Second, since SVM is a binary classifier, a

conversion strategy to multi-class case is required. An easy one is the one-against-all

(OAA) strategy in which a test sample may result as unclassified which causes low

classification accuracies [102]. Another strategy is the one-against-one approach in

which number of binary classifiers (K(K − 1)/2) increases dramatically as the num-

ber of classes (K) increases. The final limitation is that the probability outputs of the

SVM classifier can not be directly provided and an estimation procedure is required

such as logistic sigmoid [103]. Therefore, the SVM-based methods using probability

outputs must rely on those estimates.

The SVM approach described above is in the class of pixel-wise algorithms since it

uses only the spectral features. It is well known that the performance of a pixel-wise

classifier could be improved by incorporating spatial information based on the fact

that neighboring pixels in the homogeneous regions of a HSI have similar spectral

signatures. Therefore, various approaches have been proposed to combine the spec-

tral and spatial information. For instance, a composite kernels approach has been pro-

posed in [104] which successfully enhances the classification accuracy of the SVM.

A segmentation-based technique proposed in [105] combines the segmentation maps

obtained via clustering and pixel-wise classification results of the SVM technique.

Final decisions are made by majority voting in the adaptively defined windows. A

similar framework has been proposed in [106] which utilizes segmentation maps us-

ing watershed transformation. All these methods share common limitations since they

are based on the SVM approach.

One of the recent spatial-spectral frameworks, which utilizes an edge-preserving fil-

ter, has been proposed in [107]. The method uses the SVM classifier as the pixel-

wise classification step. For each class, the probability maps, which are the posterior

probability outputs of the SVM classifier, are smoothed by an edge-preserving fil-

ter with a gray scale or rgb guidance image. Final decision for each pixel is then

made based on the maximum probabilities. As an edge-preserving filter, they use one

of the recent state-of-the-art techniques namely guided image filtering [108]. Since

the proposed framework is based on SVM, it has also common problems with the
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SVM-based classifiers. One alternative to SVM classifier is multinomial logistic re-

gression (MLR)[109] method in which class posterior probability distributions are

learned using Bayesian framework. MLR has been successfully applied to HSI clas-

sification in [110], [111], and [112]. One of the recent techniques based on MLR

has been proposed in [113]. The method uses logistic regression via splitting and

augmented Lagrangian (LORSAL) [114] algorithm with active learning in order to

estimate the posterior distributions. In the segmentation stage, it utilizes a multilevel

logistic (MLL) prior to encode the spatial information. LORSAL-MLL (L-MLL)

technique achieves promising results as compared to classical segmentation methods.

Recently, sparsity-based methods, sparse representation-based classification (SRC)

and joint SRC (J-SRC), alternative to SVM-based frameworks have been success-

fully applied to HSI classification [115, 115, 116, 117, 118, 119]. SRC originally

was proposed for face identification in [2]. Since SRC is based on l1 minimization

which includes solving costly convex optimization problem, greedy algorithms like

orthogonal matching pursuit (OMP) [78] and simultaneous OMP (SOMP) have been

preferred for HSI classification in [115]. SOMP was originally proposed in [37] for

generic simultaneous sparse information recovery. HSI version of SOMP is based on

a joint sparsity model assuming that the pixels in the small neighborhood of a test

pixel share a common sparsity pattern. Those pixels are simultaneously represented

by the linear combinations of the training samples of a predetermined dictionary. Ker-

nelized versions of SOMP have been developed in [116], [120], and [121] to exploit

the non-linear nature of the kernels for a better class separability. Another version

of SOMP namely weighted joint sparsity (W-JSM) or WSOMP has been proposed

in [122]. The method calculates a non-local weight matrix for neighboring pixels

of each test pixel. It then executes the standard SOMP with the calculated weight

matrix. Multi-scale adaptive sparse representation (MASR), which utilizes spatial in-

formation at multiple scales, has been proposed in [123]. A final one is the adaptive

SOMP (ASOMP) which adaptively selects the neighborhood of the test pixel accord-

ing to a predetermined segmentation map [124]. All SOMP-based approaches have

several common drawbacks. The most important one is the extensive computational

cost due to simultaneous sparse recovery of the surrounding pixels of the test sample.

Another limitation is the parameter tuning step in which the sparsity level K0, error
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tolerance ε, maximum iterations, and the weight thresholds are needed to be tuned

experimentally. Once the parameters are determined for a dataset, they may not be

optimum for some other datasets. Therefore, there is no guidance for the parameter

selection.

In this chapter, we propose the basic thresholding classifier (BTC) for HSI classifi-

cation. It is a pixel-wise light-weight method which classifies every pixel of an HSI

image using only spectral features. During the classification it uses a predetermined

dictionary containing labeled training pixels. For each pixel, it produces two out-

puts which are the error vector consisting of the residuals and the class label selected

based on the minimal residual. To improve the classification accuracy of BTC, we

extend our framework to a three-step spatial-spectral procedure. First, we run pixel-

wise classification step using BTC for each pixel of a given HSI. The output residual

vectors form a cube which is also interpreted as a stack of images. Every image is

also called as residual map. Secondly, we smooth every residual map using an aver-

aging filter. In the final step, we determine the class label of each pixel based on the

minimal residual. The contribution of this chapter is threefold:

• We introduce a new sparsity-based algorithm for HSI classification which is

light-weight, cost effective, easy to implement, and provides high classification

accuracy. Unlike classical approaches such as minimum distance, K-NN, and

SVM techniques, our method has low vulnerability to the corrupted, noisy, and

partial features in the test samples since it is based on sparse representation

which exploits the fact that the errors due to these kinds of features are often

sparse with respect to the standard basis [2]. It also distinguishes from previous

sparsity-based techniques in its ability to classify test pixels extremely rapidly.

• The proposed approach eliminates the limitations of well-known SVM tech-

nique. First, unlike SVM, it does not have training and cross-validation stages.

We give the full guidance of threshold and regularization parameter selection of

the BTC method. On the other hand, the parameters of SVM (C, γ) have to be

determined using cross-validation which may result in a non-optimal set. Sec-

ond, the computational cost of BTC does not significantly increase as the num-

ber of classes (K) increases. However, since the number of binary classifiers
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is dependent on the square of K in one of the common conversion strategies

(OAO) of SVM to multi-class case, the cost of SVM dramatically increases as

K increases. Finally, SVM does not provide residuals which might be used for

intermediate processing such as smoothing.

• Our proposal can easily be extended to spatial-spectral case by smoothing the

residual maps. This procedure eliminates high computational cost of joint spar-

sity model or SOMP-based techniques in which simultaneous sparse code re-

covery is essential. This low cost intermediate process extremely increases the

classification accuracy of the proposed method. It is even able to outperform

non-linear SVM-based techniques which use direct classification output maps

of the spectral-only SVM.

6.2. HSI Classification

In the context of HSI classification, spectral measurements are embedded into B di-

mensional feature vectors. Let ai,j ∈ RB with ‖ai,j‖2 = 1 be the vector consisting of

the spectral features of the jth sample of the class i and let Ai = [ai,1 ai,2 . . . ai,Ni
] ∈

RB×Ni denote the matrix containing the training pixels of the ith class with Ni many

pixels. Then, one can construct the dictionary A with C many classes in a way that

A = [A1 A2 . . . AC ] ∈ RB×N where N =
∑C

i=1Ni.

Suppose that we constructed an HSI dictionary A ∈ RB×N and we are given a test

pixel y ∈ RB to be classified. In the sparse representation model, the assumption

is that there exists a minimum l1-norm sparse code x ∈ RN such that y = Ax or

y = Ax+ σ where σ is a small error [2]. The problem is equivalent to

x̂ = arg min
x
‖x‖1 subject to y = Ax (6.1)

or alternatively subject to ‖y − Ax‖2 ≤ σ. The class of y is then found using the

following expression.

class(y) = arg min
i
‖y − Ax̂i‖2 ∀i ∈ {1, 2, . . . , C} (6.2)

where x̂i represents the ith class portion of the estimated sparse code x̂. As we
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stated previously, solving (6.1) is not an easy problem. l1-minimization or convex

relaxation-based techniques such as homotopy method [82] could be used. However,

those techniques are quite expensive for the applications such as HSI classification. A

faster way of solving (6.1) is the OMP technique which has been successfully applied

in HSI classification [115]. When we use OMP, the expression in (6.1) is replaced

with (6.3).

x̂ = OMP (A, y) (6.3)

The details of the OMP algorithm could be found in [78]. In order to incorporate

spatial information, Chen et al. proposed the joint sparsity model (JSM) in [116].

In this case, not only the test pixel y is used but also the surrounding n − 1 pixels

y1, y2, . . . , yn−1 in a given window T are used in the minimization problem where

the corresponding sparse codes are x1, x2, . . . , xn−1. This time expression (6.1) is

replaced with the following:

X̂ = arg min
X
‖X‖row,0 subject to Y = AX (6.4)

or alternatively subject to ‖Y − AX‖F ≤ σ where X = [x x1 x2 . . . xn−1], Y =

[y y1 y2 . . . yn−1], and ‖X‖row,0 is the number of nonzero rows. The class of y is

then found using the following expression:

class(y) = arg min
i

∥∥∥Y − AX̂i

∥∥∥
F
∀i ∈ {1, 2, . . . , C} (6.5)

where X̂i represents the ith class portion of the estimated sparse code matrix X̂ . For

this case, greedy SOMP algorithm is preferred to solve (6.4) in [115]. The details

of SOMP could be found both in [115] and [37]. As we stated previously, although

SOMP technique is a greedy approach, it is computationally expensive since it simul-

taneously recovers the sparse codes of test and surrounding pixels.

All the limitations with the SVM and SOMP algorithms force us to use BTC for HSI

classification [125]. One can use the following expression in order to classify the

given pixel y:

Class(y)← BTC(A, y,M, α) (6.6)

Note that the details of proposed technique could be found in Chapter 3. Before

using the BTC algorithm, first, we need to determine the parameters M and α. In the
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following section, we will show how the parameters are selected using the quantity

βM .

6.3. Parameter Selection

We plotted βMs for the dictionaries constructed using some publicly available well-

known hyper-spectral images. The βMs for the dictionaries of Indian Pines, Salinas

and Pavia University images are given in Fig. 6.1. The detailed description of each

dataset and the corresponding dictionaries are given in Section 6.5. We see that in all

plots of Fig. 6.1, βM decays and reaches approximately to some minimum value. As

we stated previously, any M at which βM is close to the minimum value is an accept-

able choice. However, we need to consider that increasing M will also increase the

computational cost. For the given plots, we selected the regularization constant α as

10−4 which is a good choice for pixel-wise HSI classification. The effects of α could

also be seen in the figures. Without α, the decaying βM would start to increase at

some point due to the noisy eigenvalues which reduce the classification performance.

One could think that the optimum choice of α is quite critical for BTC. It is impor-

tant in spectral-only classification, however, in the following part, we will show that

the effects of it will be compensated by the post processing smoothing in the spatial

extension case. Therefore, using the optimal choice of α will not be critical any-

more. Instead of optimal choice, we will prefer a quite small α in order to avoid an

ill-conditioned matrix operation.

6.4. Extension to Spatial-Spectral BTC

In this section, we extend our pixel-wise proposal to a three-step spatial-spectral

framework in order to incorporate spatial information. In the first step, each pixel

y ∈ RB in a given HSI, H ∈ Rn1×n2×B containing n1 × n2 pixels, is classified

using BTC. The produced outputs are not only the class labels but also the resid-

ual vectors, ε ∈ RC , for all pixels. The resulting residual vectors form a residual

cube R ∈ Rn1×n2×C which could also be interpreted as a stack of images represent-

ing residual maps (mapi ∈ Rn1×n2 for all i ∈ {1, 2, . . . , C}). In the second step,
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Figure 6.1: βM vs threshold for Indian Pines, Salinas, and Pavia University (α =

10−4)

each mapi for all i ∈ {1, 2, . . . , C} is smoothed via an averaging filter producing

mapi for all i ∈ {1, 2, . . . , C}. Before smoothing operation, the values in the resid-

ual cube R are normalized between 0 and 1. Also note that by using the intermediate

classification map of spectral-only BTC, we simply set the residual values to the max-

imum value 1 in mapi for the entries whose labels are not equal to i. This improves

the classification performance. The smoothed maps form a smoothed residual cube

R ∈ Rn1×n2×C . In the final step, class label of each pixel is determined based on min-

imal smoothed residuals, that is, class(y) = arg mini ε(i) where i ∈ {1, 2, . . . , C}.
The overall framework is shown in Fig. 6.2. For the spatial-spectral extension case,

in which α is set to very small number (10−10), we also plotted βMs in Fig. 6.3 for

the dictionaries of the images used in this work. As we see in the figure, the decaying

βMs start to increase at some point because of the noisy eigenvalues. As we stated

in the previous part, the optimal choice of α for BTC in the spatial extension is not

critical and a quite small value (10−8, 10−9, 10−10, etc.) could be used only to prevent

the singular matrix inverse. Also note that using a bit larger value such as 10−4 will

reduce the classification accuracy of the spatial-spectral classifier since it eliminates

66



Figure 6.2: Spatial-Spectral BTC

Table 6.1: Description of each dataset

Dataset Size Spatial Spectral Num. of Sensor Num. of

resolution coverage classes bands

Indian Pines 145 × 145 × 220 20 m 0.4 − 2.5 µm 16 AVIRIS 200

Salinas 512 × 217× 224 3.7 m 0.4 − 2.5 µm 16 AVIRIS 204

Pavia University 610 × 340 × 115 1.5 m 0.43 − 0.86 µm 9 ROSIS 103

some discriminative small eigenvalues. Therefore, in the spatial extension, we always

prefer to use a very small regularization constant.

6.5. Experimental Results

6.5.1 Datasets

As in [107], we also used three well-known publicly available datasets namely Indian

Pines, Salinas, and Pavia University in this work. We present the brief description of

each dataset in Table 6.1. Both the Indian Pines and Salinas images were captured by

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. The Pavia Univer-

sity image was captured by Reflective Optics System Imaging Spectrometer (ROSIS)

sensor. Before the experiments, some noisy water absorption bands (20 bands for

Indian Pines and Salinas, 12 bands for Pavia University) were discarded. The 3-Band

color image, ground truth, each class and the corresponding number of training and

test pixels are given for Indian Pines, Salinas, and Pavia University in Fig. 6.4, Fig.

6.5, and Fig. 6.6, respectively.
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Figure 6.3: βM vs threshold for Indian Pines, Salinas, and Pavia University (α =

10−10)

6.5.2 Performance Indexes

During the experiments, we used three commonly preferred performance indexes

namely overall accuracy (OA), average accuracy (AA), and the kappa coefficient (κ).

In addition to them, we also included the computation time. OA shows the percent-

age of the correctly classified samples and AA gives the average of the percentages

of the correctly classified samples in each class. The κ coefficient is used to measure

the degree of consistency [126]. The computation time is also an important measure

which determines whether the classifier is feasible for the real time applications or

not.

6.5.3 Experimental Setup

In the experiments, we included various spectral-only algorithms such as SVM [47],

OMP [115], and BTC as well as some state-of-the-art spatial-spectral methods such

as EPF-G-g [107], L-MLL [113], SOMP [115], and spatial-spectral BTC. EPF-G-g
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Figure 6.4: a-) 3-Band color image b-) ground truth image, and c-) each class and the

corresponding number of training and test pixels of Indian Pines dataset
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Figure 6.5: a-) 3-Band color image b-) ground truth image, and c-) each class and the

corresponding number of training and test pixels of Salinas dataset
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Figure 6.6: a-) 3-Band color image b-) ground truth image, and c-) each class and the

corresponding number of training and test pixels of Pavia University dataset
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is based on SVM and guided image filtering. We used two versions of this method

namely SVM-GF (based on guided filter [108]) and SVM-WLS (based on weighted

least squares filtering [127]). For our spatial-spectral proposal, we also used the same

filtering techniques in order to smooth the resulting residual maps and called the two

versions of it as BTC-GF and BTC-WLS. For SVM-based classifiers, we used well-

known and fast LIBSVM library which was written in C++ [128]. The parameters (C,

γ) of SVM were chosen by 5-fold cross validation by varying C from 10−2 to 104 and

γ from 2−3 to 24. Since the non-linear RBF kernel is superior to the linear kernel (dot

product), we used the RBF kernel for the SVM-based methods. In all experiments,

for SVM-GF and BTC-GF, we set the filtering parameters namely filtering size (r)

and blur degree (ε) to 3 and 0.01, respectively. Those values are proposed in [107]

for HSI classification. Since both GF and WLS filters require a gray-scale guidance

image, we obtained it by extracting the first principal component of the given HSI

using the principal component analysis (PCA) [129] procedure. Since the L-MLL

approach requires an active learning stage, we set the initial training set to the half of

the all training set for all experiments. We then incremented the samples by 50 using

random selection (RS) method up to the whole training set. The classification and

segmentation stages were performed after the learning stage. For OMP and SOMP

classifiers, we used the SPArsa toolbox provided by Julien Mairal [130]. There is

no guidance for the selection of sparsity parameter (L) of the OMP and SOMP tech-

niques. However, based on the experiments in [115] and [122], we set L to 25 for

OMP and 30 for SOMP. Similarly, we set the spatial window size (T) to 25 for SOMP

technique. Note that we used the same values for all experiments.

The reason that we include the WLS filter is because it does not cause halo artifacts

at the edges of an image as the degree of smoothing increases [127]. However, the

guided filter and bilateral filter [131] techniques tend to blur over the edges. Similar to

the filtering techniques mentioned here, WLS filtering also has two input parameters

namely the degree of smoothing (λ) and the degree of sharpening (α) over the pre-

served edges. Note that the reader should not confuse the parameter α here with the

regularization parameter of BTC method. Since there is no guidance for the selection

of WLS filtering parameters in HSI classification, in this thesis, our proposal is 0.4

for λ and 0.9 for α based on the experiment we performed on the Indian Pines dataset.
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Figure 6.7: Overall accuracy (%) grid by varying the λ and α pair of WLS filter on

Indian Pines dataset using BTC-WLS method
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Note that the details of the experiment are presented in the following subsection. We

obtained the metric OA by varying λ from 0.1 to 1.0 and α from 0.1 to 1.5 using the

BTC-WLS method. The resulting OA grid is shown in Fig. 6.7. The wide contour in

the middle of the figure shows the highest OA region. The coordinates of the points

in this region are also acceptable choices for the WLS filtering in our case. Note that

the WLS filter parameters are fixed to the proposed values (λ = 0.4, α = 0.9) for all

experiments.

Regarding the regularization parameter (α) of our proposal, as we pointed out in the

previous section, we set it to 10−4 for the spectral-only BTC and 10−10 for BTC-GF

and BTC-WLS techniques. Note that like spectral-only SVM and OMP methods,

spectral-only BTC is also not a practical HSI classifier. We used those methods as the

reference for our experiments. Therefore, the choice of proposed regularization pa-

rameter in the spectral-only case is not critical for real-world applications. However,

for BTC-GF and BTC-WLS approaches, we should select a quite small number in

order to only prevent ill-conditioned matrix operation. Since any quite small number

is acceptable, there is no guidance required for the selection of this parameter.

For the choice of threshold parameter (M) of the proposed BTC-based techniques,

once the dictionary is determined, one can immediately plot the βM by varying M

from 1 to the number of bands (B) available. Then, the best value of it in the described

sense could be easily determined by looking at the resulting plot. Notice that the

procedure does not require any cross validation or experiment and it is totally based

on the predetermined dictionary. In the following subsections, we will provide the

estimated M values for each experiment based on the βM plots given in the previous

section. A final note about the setup is that we performed all experiments on a PC

with a quad-core 2.67 GHz processor and 4GB of memory.

6.5.4 Results on Indian Pines Dataset

We performed the first experiment on the Indian Pines dataset. We randomly selected

10% of the ground truth pixels for training set (dictionary) and the remaining 90% for

testing. We limited the minimum number of training pixels to 10 for each class. Each

class and the corresponding number of test and training pixels are given in Fig. 6.4c.
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Table 6.2: The results (accuracy per class (%), OA (%), AA (%), κ (%), Time (s)

of twenty Monte Carlo runs) for spectral-only and spatial-spectral methods on Indian

Pines dataset

Spectral-Only Spatial-Spectral

Class SVM OMP BTC SOMP L-MLL SVM-GF SVM-WLS BTC-GF BTC-WLS

1 60.28 57.50 76.11 81.11 87.22 98.33 96.67 100.00 98.89

2 75.86 61.63 72.82 89.06 92.61 91.59 90.88 95.67 94.27

3 65.19 53.00 62.24 84.75 89.18 85.74 86.79 95.88 97.51

4 47.70 31.60 43.71 69.81 79.90 87.65 90.94 95.40 94.41

5 87.12 85.51 88.23 93.02 90.69 95.46 95.23 95.18 94.63

6 95.40 93.15 96.26 99.21 99.54 100.00 99.74 100.00 100.00

7 88.89 81.67 85.56 89.44 93.33 97.22 97.22 97.22 96.11

8 95.19 92.47 97.33 99.86 99.69 100.00 100.00 100.00 100.00

9 91.00 63.00 84.00 78.00 96.00 98.00 86.00 97.00 100.00

10 74.45 57.25 70.35 85.27 89.01 93.83 93.36 93.27 93.59

11 83.73 72.87 81.98 90.38 95.10 98.07 98.58 98.81 99.41

12 65.35 50.99 65.63 87.90 93.65 95.03 96.81 98.59 99.25

13 94.62 95.71 98.91 98.15 99.18 99.67 100.00 100.00 100.00

14 95.02 92.55 96.26 98.91 97.78 100.00 100.00 99.93 99.83

15 52.31 44.84 51.84 81.67 83.97 84.06 84.15 91.87 93.29

16 78.19 81.93 85.42 99.40 75.42 95.06 91.93 98.43 96.99

OA 80.18 70.80 79.17 90.74 93.36 95.16 95.34 97.38 97.51

AA 78.14 69.73 78.04 89.12 91.39 94.98 94.27 97.33 97.39

κ 77.28 66.53 76.11 89.43 92.42 94.46 94.66 97.01 97.15

Time 11.44 7.33 4.62 86.98 3.23 26.48 27.47 7.89 8.77

Figure 6.8: Classification Maps on Indian Pines Dataset with Overall Accuracies
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For sparsity-based algorithms, each training pixel (column) of the constructed dictio-

nary was l2 normalized. For SVM-based approaches, both the training and testing

pixels were normalized between −1 and 1. For BTC method, based on the βM plot

given in Fig. 6.1, we set the thresholdM to 80 at which βM approaches approximately

to the minimum. Similarly, for BTC-GF and BTC-WLS methods, by observing the

plot given in Fig. 6.3, we set theM parameter to 60. Based-on this configurations, we

repeated the experiments for twenty Monte Carlo runs both for spectral-only methods

(SVM, OMP, BTC) and for spatial-spectral approaches (SOMP, L-MLL, SVM-GF,

SVM-WLS, BTC-GF, BTC-WLS). The classification results are shown in Table 6.2.

We have also provided the classification maps with overall accuracies (%) in Fig. 6.8.

In spectral-only case, as expected the SVM method having non-linear kernel (RBF)

achieves best results in terms of OA, AA, and κ. This is because unlike SVM ap-

proach both OMP and BTC methods use linear kernel (dot product). On the other

hand, classification results of the BTC method are very close to those of SVM. In

terms of computation time, the best result is achieved by the BTC method. In spatial-

spectral case, both BTC-GF and BTC-WLS approaches achieve best results in terms

of all metrics except the computation time. The OA and AA differences between

BTC-WLS and SVM-WLS are about 2% and 3%, respectively. When we compare

the BTC-GF and BTC-WLS methods with the SOMP method, the performance dif-

ferences are significant. This results show that smoothing residual maps is quite ef-

fective way of improving the classification accuracy. The L-MLL method achieves

better than the SOMP technique and it is the fastest algorithm in this case. However,

the performance differences in terms of classification accuracies between the pro-

posed BTC-based methods and L-MLL are significant. The SVM-based approaches

perform quite slower than the proposed algorithms and the L-MLL method. The re-

sults also show that the SOMP method is computationally very expensive. Note that

the time metric in the table include the classification time as well as the smoothing

time. When implementing the WLS filter, we applied the preconditioned conjugate

gradient method with incomplete Cholesky decomposition which highly reduces the

computational cost [132]. A final note about this experiment is that WLS-based ap-

proaches are generally superior to the GF-based methods.
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Table 6.3: The results (accuracy per class (%), OA (%), AA (%), κ (%), Time (s) of

twenty Monte Carlo runs) for spectral-only and spatial-spectral methods on Salinas

dataset

Spectral-Only Spatial-Spectral

Class SVM OMP BTC SOMP L-MLL SVM-GF SVM-WLS BTC-GF BTC-WLS

1 99.15 99.28 99.44 90.68 99.88 100.00 100.00 100.00 100.00

2 99.76 99.85 99.22 92.11 99.97 100.00 100.00 99.99 100.00

3 99.03 97.19 97.38 91.10 99.87 100.00 100.00 100.00 100.00

4 99.34 98.56 99.33 86.71 99.05 100.00 100.00 100.00 99.95

5 98.26 98.16 98.74 88.77 99.04 99.58 99.45 99.83 99.83

6 99.77 99.88 99.77 88.52 99.87 100.00 99.97 100.00 100.00

7 99.66 99.84 99.64 93.53 99.80 100.00 100.00 99.94 100.00

8 87.30 78.07 88.83 88.54 93.79 96.03 98.35 98.04 99.43

9 99.56 99.77 99.42 91.09 99.98 100.00 100.00 100.00 100.00

10 94.65 96.18 94.38 84.43 96.48 99.51 100.00 99.86 100.00

11 96.98 98.08 97.93 86.16 97.82 100.00 100.00 100.00 100.00

12 99.49 99.32 99.98 86.49 100.00 100.00 100.00 100.00 100.00

13 97.79 97.86 97.51 85.94 97.94 100.00 99.49 99.90 99.34

14 95.70 95.30 96.85 90.20 97.76 99.84 98.93 99.85 99.64

15 71.51 64.93 65.89 72.43 72.91 82.15 86.21 85.61 89.36

16 98.42 98.50 98.38 89.11 98.87 99.99 100.00 99.92 99.99

OA 92.68 89.94 92.20 87.02 94.59 96.72 97.74 97.63 98.42

AA 96.02 95.05 95.79 87.86 97.06 98.57 98.90 98.93 99.22

κ 91.84 88.80 91.30 85.61 93.96 96.34 97.48 97.36 98.24

Time 61.81 113.51 24.37 988.99 30.16 135.85 138.94 42.80 45.55
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Figure 6.9: Classification Maps on Salinas Dataset with Overall Accuracies
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6.5.5 Results on Salinas Dataset

The second experiment was performed on the Salinas dataset. Since the number of

ground truth pixels is large as compared to the first dataset, this time we selected 5%

of the ground truth pixels for training set (dictionary) and the remaining 95% for test-

ing. Similarly, each class, the number of training, and test pixels are given in Fig.

6.5c. The normalization process for the SVM and sparsity-based approaches was

performed as described in the first experiment. For spectral-only and spatial-spectral

BTC methods, we set M to 50, and to 20, respectively based on the βM plots given

in Fig. 6.1 and in Fig. 6.3. We repeated the experiments for twenty Monte Carlo runs

for all methods. The classification results are shown in Table 6.3. We have also in-

cluded the classification maps with overall accuracies (%) in Fig. 6.9. Since the HSI

contains large homogeneous areas as compared to the previous case, all spectral-only

approaches perform quite similarly. The SVM method again achieves best results ex-

cept the classification time due to the reason we explained in the previous subsection.

In terms of classification time, again the fastest one is the BTC method. Since the

dictionary size is larger in this case, the OMP method performs quite slowly as com-

pared to the others. In the spatial-spectral case, similar to the previous experiment,

BTC-WLS technique again achieves the best results in terms of all metrics except the

computation time. The performance differences between the filtering-based methods

and the SOMP method are significant. In terms of OA, BTC-WLS performs approxi-

mately 4% better than the L-MLL method. In terms of computational cost, although

L-MLL approach slightly outperforms the BTC-based techniques, the computational

performance differences between these methods and the SVM-based approaches are

significant.

6.5.6 Results on Pavia University Dataset

The third experiment was performed on the Pavia University dataset. Similar to the

previous experiment, we chose the 5% of the ground truth pixels for training and

95% for testing. Each class of this dataset, the number of training and testing pixels

for each class are shown in Fig. 6.6c. The threshold parameter (M ) was set to 40

for BTC and 35 for BTC-GF and BTC-WLS techniques based on the plots given in
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Table 6.4: The results (accuracy per class (%), OA (%), AA (%), κ (%), Time (s)

of twenty Monte Carlo runs) for spectral-only and spatial-spectral methods on Pavia

University dataset

Spectral-Only Spatial-Spectral

Class SVM OMP BTC SOMP L-MLL SVM-GF SVM-WLS BTC-GF BTC-WLS

1 93.07 66.58 87.74 87.30 98.66 98.74 98.69 98.88 98.79

2 97.93 88.51 93.47 99.69 99.70 99.92 100.00 99.83 100.00

3 75.02 56.61 72.84 79.80 80.98 85.40 85.88 90.71 93.79

4 93.44 84.41 91.87 92.58 95.94 96.41 90.89 96.53 90.71

5 99.21 99.80 99.50 100.00 99.53 100.00 100.00 100.00 100.00

6 86.50 58.13 73.35 65.62 98.97 98.55 99.97 94.55 99.27

7 84.74 55.31 73.29 80.59 90.25 99.81 100.00 97.27 99.46

8 90.09 60.33 73.32 67.78 94.64 98.78 99.45 96.79 98.87

9 99.86 79.78 88.55 63.87 99.87 99.86 98.77 99.35 97.58

OA 93.39 76.38 86.81 88.16 97.54 98.51 98.37 98.03 98.59

AA 91.10 72.16 83.77 81.92 95.39 97.50 97.07 97.10 97.61

κ 91.19 68.67 82.46 83.98 96.73 98.02 97.84 97.38 98.12

Time 17.58 47.19 13.48 503.57 37.37 92.21 96.65 63.80 67.94

Figure 6.10: Classification Maps on Pavia University Dataset with Overall Accuracies
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Fig. 6.1 and in Fig. 6.3, respectively. The experiments were repeated for twenty

Monte Carlo runs for all methods using the same configurations given in the previous

experiments. The classification results are given in Table 6.4. Similarly, we have also

provided the classification maps with overall accuracies (%) for each method in Fig.

6.10. This time in spectral-only case the performance differences between the SVM

method and the sparsity-based methods are significant in terms of OA, AA, and κ

metrics. It even outperforms the SOMP method. This is because the classes of Pavia

University dataset are highly non-linearly separable. On the other hand, in spatial-

spectral case, BTC and SVM-based methods perform quite similarly. The best results

are achieved by the BTC-WLS method. This time L-MLL technique achieves 1%

worse than BTC-WLS in terms of OA. For this case, the fastest method is the L-MLL

approach as well. Classification accuracy difference on the third class is significant

between the BTC and SVM-based approaches. SVM-GF method outperforms the

SVM-WLS technique. We believe this is the reason that the SVM-GF method has

been proposed since it seems more robust for HSI classification.

6.5.7 Results using Fixed Training Set

We performed the last experiment on the Pavia University dataset using fixed training

set which is available on Dr. Li’s web page1. The original set contains 3921 training

samples, however, we noticed that only 2777 of them are included in the ground truth

(Fig. 6.11a). Therefore, for this experiment, we used 2777 of the training samples,

which are shown in Fig. 6.11b. The number of training and testing pixels for each

class are shown in Table 6.5. Fig. 6.11b also shows that most of the pixels are grouped

together which means that the samples belonging to the same class are highly similar

to each other. This reduces the diversity of the input features causing lower classifi-

cation accuracies as compared to the previous experiments. For this experiment, we

evaluated the performances of the BTC-WLS technique and the final spatial-spectral

techniques (SOMP, L-MLL, SVM-GF) proposed in [115], [113], and [107], respec-

tively. The threshold parameter (M ) was set to 5 for the BTC-WLS technique based

on the βM plot using fixed training set. The classification results are given in Table

6.5. Again BTC-WLS achieves best results in terms of OA, AA, and κ. This time the
1 http://www.lx.it.pt/ jun/
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Figure 6.11: a-) Ground truth image b) fixed training samples, and c-) class numbers

and the corresponding classes of Pavia University dataset

performance differences between the proposed method and the other techniques are

significant. Although L-MLL outperforms the other approaches in terms of classifi-

cation time, the performance difference is not significant between our proposal and

the L-MLL technique in terms of this metric. On the other hand, SOMP and SVM-GF

performs quite slowly as compared to L-MLL and BTC-WLS.
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Table 6.5: The results (accuracy per class (%), OA (%), AA (%), κ (%), Time (s)

using fixed training set) for spatial-spectral methods on Pavia University dataset

Class Train Test SOMP [115] L-MLL [113] SVM-GF [107] BTC-WLS

1 327 6304 62.72 92.61 96.19 91.89

2 503 18146 71.49 70.80 79.00 86.75

3 284 1815 81.60 76.80 62.98 82.26

4 152 2912 89.66 91.79 96.81 92.41

5 232 1113 100.00 99.82 100.00 100.00

6 457 4572 94.03 99.02 98.60 98.43

7 349 981 95.51 98.37 100.00 100.00

8 318 3364 65.67 98.69 99.05 99.35

9 152 795 57.99 99.87 99.75 97.74

OA - - 75.09 83.67 87.71 91.07

AA - - 79.85 91.98 92.48 94.31

κ - - 68.29 79.21 84.12 88.27

Time - - 660.18 51.18 100.14 63.36

6.6. Conclusions

In this chapter, we proposed a light-weight sparsity-based classifier (BTC) for HSI

classification alternative to the well-known SVM-based approaches and other greedy

methods such as SOMP. The proposed method is easy to implement and performs

quite fast. One of the most important advantages of the proposal is that it does not re-

quire any cross validation or classification experiment for parameter selection. Based

on the guidance we have presented in chapter 3, one could easily select the threshold

parameter once the dictionary is constructed. To improve the classification accuracy,

we have proposed quite efficient framework in which the output residual maps of the

pixel-wise classification procedure are smoothed using an edge preserving filtering

method. Simulation results on the publicly available datasets showed that this inter-

mediate procedure highly improves the classification accuracy. This approach could

also be applied to any other sparsity-based classifier.
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CHAPTER 7

HYPER-SPECTRAL IMAGE CLASSIFICATION VIA KBTC

7.1. Introduction

The spectral signatures obtained by remote sensors could be used to distinguish the

materials and objects on the surface of the earth. Those signatures are stored in the

three dimensional data cubes called hyper-spectral images (HSI). While the first two

dimensions of an image are used to describe the spatial coordinates, the last dimen-

sion is used to represent the spectral coordinate. The pixels of an image can be in-

terpreted as the feature vectors containing spectral measurements. Various methods

have been proposed in the literature to classify those pixels using the spectral mea-

surements. Among those, support vector machines (SVM) [54] approach with radial

basis function (RBF) kernel is commonly preferred. It is well known that the SVM

classifier can achieve satisfactory results using only a few training samples [47], [71].

It also has low sensitivity to Hughes phenomenon [98]. On the other hand, it has

some limitations such as conversion from binary classification to multi-class one and

parameter determination via cross validation. When one-against-all approach is used

as a conversion technique, some of the samples may be evaluated as unclassified

[102]. If one-against-one approach is preferred, this time an increment in the number

of classes significantly increases the binary classifiers used. Based on SVM, spatial-

spectral techniques such as composite kernels [104], segmentation maps [105], [106],

edge-preserving filtering [107] have been developed to increase the classification ac-

curacies by incorporating the spatial information. Although those approaches achieve

promising results, they share common limitations with SVM.
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Multinomial logistic regression (MLR)[109], which is based on Bayesian framework,

has been used as an alternative to SVM in HSI classification [110], [111], and [112].

One of the MLR-based techniques which uses active learning namely logistic regres-

sion via splitting and augmented Lagrangian (LORSAL) has been proposed in [114]

and achieved promising results with the segmentation framework namely L-MLL

(LORSAL multi-level logistic prior). It has the advantage of using active learning

and RBF kernel.

A powerful alternative to SVM is the sparse representation-based classification scheme

which is based on the assumption that the test samples can be modeled as the sparse

linear combinations of the basis dictionary elements. It was introduced in [2] and

successfully applied to many classification problems. Unlike classical methods, this

technique has low sensitivity to the corrupted or partial features exploiting the fact

that the errors are sparse with respect to dictionary elements. Recently, joint sparsity-

based methods (JSM) have been successfully applied to HSI classification. A greedy

approach namely the simultaneous orthogonal matching pursuit (SOMP) [37] was

used for simultaneous classification of neighboring pixels in a given region based

on the assumption that the pixels in a predetermined window share a common spar-

sity model [115]. Non-linear kernel versions of this approach have been proposed

[116], [120], and [121] to achieve better performance when the samples of different

classes are linearly non-separable. To improve the classification accuracy, a weight-

ing matrix based version of SOMP namely WSOMP has been proposed in [122]. An

adaptive version of SOMP namely ASOMP has been developed in [124] to adaptively

define the neighborhood pixels in the supervision of a segmentation map. Finally, a

multi-scale adaptive sparse representation, which incorporates spatial information at

different scales, has been successfully applied to HSI classification. However, JSM-

based approaches suffer from the extensive computational cost because of simultane-

ous sparse recovery of the neighboring pixels. Another drawback is to select the spar-

sity level and the neighborhood window experimentally which may vary and cause

non-optimal results.

To eliminate the problems with the aforementioned approaches, basic thresholding

classifier (BTC) was introduced in 3. It is a sparsity-based light-weight linear clas-

sifier which is able to achieve promising results and classify test samples extremely
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rapidly as compared to the other sparsity-based algorithms. In this chapter, we pro-

pose the kernelized version of the BTC algorithm namely kernel basic thresholding

classifier (KBTC) which is capable of classifying the samples of classes of a given

dataset when they are linearly non-separable [133]. Three major contributions of this

chapter are follows:

• We propose a non-linear kernel version of the basic thresholding classifica-

tion algorithm namely KBTC for HSI classification. The proposed non-linear

sparsity-based method can achieve higher classification results as compared to

the linear sparsity based ones especially when the classes of a given dataset are

linearly non-separable.

• Unlike SVM, in which the parameters are obtained via cross validation, we

provide a full parameter selection guidance by which the kernel and threshold

parameters can easily be estimated without using any experiment and cross

validation.

• We extend the proposal to a spatial-spectral framework in which the final clas-

sification is performed based on the smoothed residual maps. We also pro-

vide more realistic fixed train sets alternative to those selected randomly from

a given dataset.

7.2. HSI Classification

In this section, we will briefly describe the HSI classification problem in the sparse

representation model. Let Ai ∈ RB×Ni be the matrix containing B dimensional Ni

many training pixels which are belonging to the ith class. Then, with C many classes

one could construct the dictionaryA in such a way thatA = [A1 A2 . . . AC ] ∈ RB×N

where N =
∑C

i=1Ni. In this context, a test pixel y ∈ RB can be classified as follows:

Sparse representation model states that there exists a sparse code x ∈ RN having

minimum l1 norm such that y = Ax or y = Ax + ε where ε is a small error [2]. The

minimization problem is equivalent to

x̂ = arg min
x
‖x‖1 subject to y = Ax (7.1)
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or subject to ‖y − Ax‖2 ≤ ε. Then, we could find the class of y using the following

expression

class(y) = arg min
i
‖y − Ax̂i‖2 ∀i ∈ {1, 2, . . . , C} (7.2)

where x̂i denotes the ith class portion of the estimated sparse code vector x̂. The min-

imization problem (7.1) could be solved using convex relaxation-based techniques

(homotopy [82]) or alternatively greedy approaches such as OMP [37]. However,

those techniques and their variants [115] suffer from high computational cost. To

eliminate the problems with those techniques, a simple and light-weight sparsity-

based method, basic thresholding classifier (BTC) was introduced in chapter 3. Un-

fortunately, this approach works based on the fact that the classes of a given HSI are

linearly separable. In practice, the situation may not be like this. Therefore, in order

to eliminate the limitations with the aforementioned algorithms, we propose KBTC

algorithm for HSI classification. In this context, one can use the following expression

in order to classify a given pixel:

Class(y)← KBTC(A, y, γ,M, α) (7.3)

The details of the algorithm could be found in Chapter 4.

7.3. Extension to Spatial-Spectral KBTC

Since incorporating spatial information highly improves the classification accuracy,

we extend our pixel-wise proposal (KBTC) to a spatial-spectral framework namely

KBTC-WLS. Notice that when a test pixel y is classified, KBTC produces not only

the class identity of y but also a residual vector ε ∈ RC which contains distances to

each class. Suppose that we classified every pixel of a given HSI, H ∈ Rn1×n2×B

consisting of n1 × n2 pixels, using the KBTC method. We could interpret the result-

ing residual vectors as a residual cube R ∈ Rn1×n2×C in which each layer represents

a residual map. The idea is to smooth those maps using an averaging filter and then

determine the class of each pixel based on minimal smoothed residuals. This inter-

mediate step highly improves the classification results. We use weighted least squares

method (WLS) [127] as the smoothing filter which successfully preserves the edges
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via a gray scale guidance image. We prefer this filter because it does not cause halo

artifacts at the edges. The gray scale guidance image could be obtained via principal

component analysis (PCA) technique by reducing the dimensions of the original HSI

from B to 1. We give the overall framework step-by-step as follows:

• The parameters γ and M are estimated for a given dictionary A using the pro-

cedures provided in chapter 4.

• Every pixel of a given HSI is classified via KBTC. Note that the entries of the

resulting residual cube are normalized between 0 and 1.

• We obtain the gray scale guidance image by reducing the dimension of the

original HSI from B to 1 using the PCA technique.

• We apply WLS filtering to each residual map by means of the guidance image

obtained in the previous step. In order to reduce the computation cost of the

WLS filtering, preconditioned conjugate gradient (PCG) method with incom-

plete Cholesky decomposition [132] could be used when taking the inverses of

the large sparse matrices.

• The class of each pixel is determined based on minimal smoothed residuals.

The overall framework could also be seen in Fig. 7.1. Please note that since we ob-

tain the pixel-wise class map before the smoothing procedure, we could set the error

values to the maximum value 1 in the ith residual map for the entries whose labels

are not equal to i using the pixel-wise class map. This improves the classification

performance further.

7.4. Experimental Results

7.4.1 Scaling

Scaling both the testing and training data is quite important before applying the KBTC

algorithm. We recommend scaling the entries in the feature vectors to the range

[−1,+1] or [0, 1]. Suppose that we scaled a training pixel from [100, 20, 50, ...]T to
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Figure 7.1: Spatial-Spectral KBTC (KBTC-WLS)

[1, 0.2, 0.5, ...]T . If a test pixel having the feature vector [110, 25, 45, ...]T is needed to

be classified, then it should be scaled to [1.1, 0.25, 0.45, ...]T . It is similar to the scal-

ing in RBF kernel SVM [134]. Please note that linear BTC uses different approach in

which only the training pixel vectors are l2 normalized.

7.4.2 Datasets

We performed the experiments using three publicly available HSI datasets namely In-

dian Pines, Salinas, and Pavia University. Detailed description of each dataset is given

Table 7.1. The original Indian Pines image contains 16 different classes. However,

we discarded 7 of them because of insufficient number of training and testing samples

[135]. We carried out the experiments using fixed and grouped training pixels instead

of random selection. This is because in case of random selection, it is highly likely to

have a training sample which may be closely related to a testing sample. Therefore,

this type of experiment may not present realistic results. On the other hand, in our

case, we exclude training pixels from the testing areas which is quite similar to real

world scenarios. The experiments using fixed and grouped training pixels could also

be seen in [136],[115], and [116] for Pavia University dataset. In our experiments, we

used 27 training pixels for each class of Indian Pines and Pavia University datasets.

Those samples were taken from 3 distinct 3×3 blocks. For Salinas dataset we used 32

training pixels for each class. This time the samples were taken from 2 distinct 4× 4

blocks. The ground truth image, each class with corresponding number of training

and testing pixels, and the starting coordinates of the distinct blocks from which the
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Table 7.1: Description of each dataset

Dataset Size Spatial Spectral Num. of Sensor Num. of

resolution coverage classes bands

Indian Pines 145 × 145 × 220 20 m 0.4 − 2.5 µm 9 AVIRIS 200

Salinas 512 × 217× 224 3.7 m 0.4 − 2.5 µm 16 AVIRIS 204

Pavia University 610 × 340 × 115 1.5 m 0.43 − 0.86 µm 9 ROSIS 103

fixed training pixels were taken are given for each dataset in Fig. 7.2, Fig. 7.3, and

Fig. 7.4, respectively. We provided the coordinates of the blocks because anyone can

easily repeat the experiments and compare the results.

7.4.3 Experimental Setup

Before the experiments, we estimated the γ and M parameters of KBTC using the

training sets and the procedures provided in the previous section. For each dataset,

we computed the values of β(γ) by varying γ from 2−10 to 21. The results could be

seen in Table 7.2. If we keep track of the computed values of β(γ) for any dataset,

we observe that the resulting function is strictly convex. This implies that β(γ) has

unique minimum. Therefore, the best value of γ in the described sense could easily

be estimated. The estimated γ values which minimize β(γ) are 2−6, 2−6, 2−1 for the

dictionaries constructed using Indian Pines and Salinas and Pavia University datasets,

respectively. If we insert the estimated γ values to β(γ̂,M) function, then we could

estimate the best value of the threshold by varying M from 1 to B − 1. The M value

that minimizes β(γ̂,M) is considered to be the best estimate of it in the described

sense. We performed this procedure and obtained β(γ̂,M) plots in Fig. 7.5 for each

dataset used in this chapter. The estimated threshold values are 95, 92, and 35 for

Indian Pines, Salinas, and Pavia University datasets, respectively.

We included the spectral-only classifiers as well as the spatial-spectral ones in the

experiments. RBF kernel SVM [47] could be considered one of the strongest spectral-

only classifiers in the literature. Another approach in this category is the LORSAL

[113] technique which also uses the RBF kernel. It has the advantage of using active

learning. Although it is not fair, we included the linear similarity-based BTC in order
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Figure 7.2: a-) Ground truth image, b-) fixed training pixels, c-) each class with cor-

responding number of training and testing pixels, and the coordinates of the grouped

training pixels for Indian Pines dataset

Figure 7.3: a-) Ground truth image, b-) fixed training pixels, c-) each class with

corresponding number of training and test pixels, and the coordinates of the grouped

training pixels for Salinas dataset
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Figure 7.4: a-) Ground truth image, b-) fixed training pixels, c-) each class with

corresponding number of training and test pixels, and the coordinates of the grouped

training pixels for Pavia University dataset
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Table 7.2: β(γ) values for each γ and dataset

β(γ)

γ Indian Pines Salinas Pavia University

21 0.9314 0.3322 0.4612

20 0.8250 0.2410 0.4263

2−1 0.6950 0.1836 0.4176

2−2 0.5719 0.1499 0.4265

2−3 0.4751 0.1302 0.4549

2−4 0.4093 0.1183 0.5025

2−5 0.3743 0.1123 0.5712

2−6 0.3644 0.1106 0.6630

2−7 0.3737 0.1127 0.7669

2−8 0.3949 0.1176 0.8925

2−9 0.4263 0.1251 1.0429

2−10 0.4681 0.1355 1.2670
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Figure 7.5: β(γ̂,M) vs threshold values for Indian Pines, Salinas, and Pavia Univer-

sity
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to show how the non-linear KBTC algorithm is superior to it. For SVM method, we

used LIBSVM library [128] and we selected the parameters (C, γ) of it via 5-fold

cross validation by varying C from 10−5 to 105 and γ from 2−5 to 25. The spatial

extensions of those algorithms highly improve the results obtained in the pixel-wise

classification stage. Those techniques used in this chapter are SVM-GF [107] (based

on guided filter [108]), L-MLL (based on LORSAL), BTC-WLS, and KBTC-WLS.

In order for fair comparison we used SVM-WLS instead of SVM-GF since the WLS

filter-based techniques achieve better results. WLS filter has two parameters namely

the smoothing (λ) and the sharpening (α) degrees. We set those parameters to 0.4 and

0.9 for all experiments, respectively. For LORSAL and L-MLL techniques, we set

the initial training samples to the half of the all available training pixels, and during

the learning stage we incremented the samples by 20 using random selection (RS).

Under this configuration we repeated the experiments for all datasets in a PC having

a quad-core 3.60 GHz processor and 16GB of memory.

7.4.4 Performance Indexes

The performance indexes used in this work are as follows:

• Overall Accuracy (OA): It is the percentage of correctly classified pixels among

the whole test samples.

• Average Accuracy (AA): It shows the mean of individual class accuracies.

• The κ coefficient: It measures the degree of consistency [126].

• Computation time: It is used to measure the computational complexity of an

algorithm. It also determines if an algorithm is suitable for real time applica-

tions.

7.4.5 Classification Results

Using the training and testing samples given in Fig. 7.2, we carried out the first exper-

iment on Indian Pines dataset both for spectral-only and spatial-spectral approaches.
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Figure 7.6: Classification Maps on Indian Pines Dataset with Overall Accuracies

The classification results are shown in Table 7.3. We also provided the corresponding

classification maps with OAs(%) in Fig. 7.6. Both in the spectral-only and spatial-

spectral cases, KBTC achieves best results in terms of all metrics except the computa-

tion time. The performance differences between the KBTC and the other algorithms

are significant. In the first case, KBTC performs about 5% better than LORSAL

technique in terms of overall accuracy. It also improves the result of linear BTC

approximately 7.5%. LORSAL technique performs about 1% better than the SVM

method using the advantage of active learning. In the latter case, BTC-WLS achieves

promising results by means of smoothing the residual maps. KBTC-WLS exploits

the same technique and outperforms the BTC-WLS approach by achieving about 3%

better in terms of OA. Although the LORSAL approach performs well in the spectral-

only case, L-MLL technique, which is based on LORSAL, performs worse than the

other approaches in the latter case. This experiment shows that KBTC significantly

improves the performance of linear similarity-based BTC both in spectral-only and

spatial-spectral cases. In terms of computation time, LORSAL and its spatial ex-

tension are the fastest ones. Although KBTC and KBTC-WLS are the slowest ones,

there is no significant difference between the computation times of these methods and

those of the other techniques except LORSAL and L-MLL.
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Table 7.3: The results (accuracy per class (%), OA (%), AA (%), κ (%), Time (s)

using fixed training set) for spectral-only and spatial-spectral methods on Indian Pines

dataset

Spectral-Only Spatial-Spectral

Class No SVM LORSAL BTC KBTC SVM-WLS L-MLL BTC-WLS KBTC-WLS

1 52.53 51.46 47.47 64.03 77.02 67.81 80.66 81.87

2 49.32 45.08 56.04 56.04 68.99 51.93 82.81 81.32

3 89.47 73.68 88.82 88.82 96.05 84.65 96.05 96.05

4 92.75 95.73 90.75 98.58 99.86 99.57 100.00 100.00

5 98.45 98.45 95.79 99.56 100.00 100.00 100.00 100.00

6 65.50 56.40 44.66 69.95 89.63 73.54 70.05 99.26

7 49.63 57.50 58.81 54.57 68.57 65.53 89.17 83.61

8 56.36 61.13 37.81 65.90 85.87 81.27 76.15 93.11

9 88.93 92.57 86.03 92.65 100.00 97.25 99.19 100.00

OA 65.39 66.25 63.60 71.18 82.97 76.23 87.56 90.36

AA 71.43 70.22 67.35 76.67 87.33 80.17 88.23 92.80

κ 60.15 60.76 57.53 66.68 80.27 72.32 85.26 88.73

Time 1.89 0.18 1.78 2.90 2.44 0.41 2.33 3.47

We performed the second experiment on the Salinas dataset using the training and

testing samples given in Fig. 7.3. The classification results could be seen in Table

7.4. We also included the corresponding classification maps with OAs(%) in Fig.

7.6. As we can see in Fig. 7.3, this HSI consists of large homogeneous areas as

compared to the previous HSI. Therefore, the classification results achieved by the

spectral-only techniques are closer to each other. The OA achieved by KBTC is

about 1% better than that of BTC approach. This result also shows that the dictionary

constructed for Salinas image is more linearly separable than the previous one. KBTC

also outperforms the SVM and LORSAL techniques having approximately 3% and

1.5% better accuracies, respectively. In the spatial-spectral case, the accuracies are

also closer to each other. In this case, again KBTC-WLS achieves the best results in

terms of all metrics except the computation time.

Finally, the last experiment was performed on the Pavia University dataset using the

training and testing samples given in Fig. 7.4. The classification results are given

in Table 7.4. We also included the corresponding classification maps with OAs(%)

in Fig. 7.8. The results obtained both in the spectral-only and spatial-spectral cases
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Table 7.4: The results (accuracy per class (%), OA (%), AA (%), κ (%), Time (s) using

fixed training set) for spectral-only and spatial-spectral methods on Salinas dataset

Spectral-Only Spatial-Spectral

Class No SVM LORSAL BTC KBTC SVM-WLS L-MLL BTC-WLS KBTC-WLS

1 96.56 95.45 97.02 97.42 100.00 96.61 100.00 100.00

2 99.76 99.38 98.51 99.46 100.00 99.73 100.00 100.00

3 73.15 86.37 87.65 82.46 95.27 97.43 100.00 100.00

4 98.53 91.48 98.83 97.21 100.00 91.48 100.00 100.00

5 97.73 98.11 95.39 97.73 99.36 98.37 99.77 99.51

6 96.79 95.80 99.41 98.55 99.92 96.87 100.00 99.92

7 97.86 96.48 97.60 99.10 100.00 97.07 100.00 100.00

8 73.28 73.25 75.18 75.35 93.28 86.24 88.81 93.44

9 97.18 97.21 96.29 98.31 100.00 97.50 100.00 100.00

10 85.77 77.85 85.37 90.48 99.14 80.04 96.03 99.14

11 96.81 96.43 99.52 98.75 100.00 96.72 100.00 100.00

12 99.63 94.67 99.47 94.72 100.00 95.62 100.00 100.00

13 97.96 98.98 97.85 98.30 99.66 98.98 99.21 99.89

14 90.46 89.40 93.26 90.37 98.55 92.20 99.42 99.52

15 59.72 74.47 69.79 69.00 81.45 88.82 78.15 83.32

16 77.07 82.48 78.87 94.20 92.90 91.15 92.28 100.00

OA 85.08 86.67 87.39 88.14 95.55 92.47 94.17 96.28

AA 89.89 90.48 91.87 92.58 97.47 94.05 97.10 98.42

κ 83.38 85.18 85.98 86.81 95.04 91.62 93.50 95.85

Time 8.66 1.94 6.69 17.44 12.98 3.84 10.93 21.71
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Figure 7.7: Classification Maps on Salinas Dataset with Overall Accuracies
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Figure 7.8: Classification Maps on Pavia University Dataset with Overall Accuracies
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Table 7.5: The results (accuracy per class (%), OA (%), AA (%), κ (%), Time (s) using

fixed training set) for spectral-only and spatial-spectral methods on Pavia University

dataset

Spectral-Only Spatial-Spectral

Class No SVM LORSAL BTC KBTC SVM-WLS L-MLL BTC-WLS KBTC-WLS

1 74.11 75.44 66.81 75.79 89.58 89.52 90.48 90.40

2 63.44 67.82 62.03 73.87 68.59 74.21 70.98 82.92

3 69.35 63.08 66.17 75.63 89.48 63.75 97.06 90.64

4 97.07 90.12 94.80 97.14 93.97 89.96 94.01 93.71

5 86.12 93.17 99.09 94.01 99.24 96.97 100.00 100.00

6 69.07 74.29 65.23 78.83 77.75 80.69 85.67 94.86

7 85.96 89.10 82.27 93.17 100.00 94.32 100.00 100.00

8 79.48 83.31 46.62 75.73 90.78 91.57 76.17 88.59

9 99.78 95.00 81.85 100.00 99.13 93.15 90.54 98.70

OA 72.01 74.48 66.56 78.43 80.23 81.18 81.30 88.51

AA 80.48 81.25 73.87 84.90 89.83 86.01 89.43 93.31

κ 64.92 67.83 58.22 72.67 75.06 75.98 76.40 85.26

Time 6.56 1.51 6.49 7.85 11.36 3.80 11.19 12.58

show that this dataset is the most difficult one. The pixels of this HSI are quite mixed

and those belonging to different classes are highly non-linearly separable. The per-

formance differences between the linear similarity-based BTC and the kernelized ap-

proaches are significant. KBTC achieves about 12% overall accuracy improvement

over the BTC technique by means of RBF kernel. This time the LORSAL method

performs about 2.5% better than the SVM technique. However, its performance is

about 4% less than that of KBTC. Although BTC achieves quite low results in the

spectral-only case, BTC-WLS closes the gap between the other approaches using the

smoothed residual maps. It even outperforms the SVM-GF and L-MLL methods. On

the other hand, KBTC-WLS performs about 7% better than BTC-WLS in terms of

OA.

7.5. Conclusions

In this chapter, we proposed a non-linear kernel version of the previously intro-

duced basic thresholding classification algorithm for HSI classification. The pro-
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posed method achieves significant performance improvement over the linear version

of it especially in the experiments in which the samples of the classes are linearly non-

separable. The classification results on the publicly available datasets showed that the

proposed algorithm also outperforms the well-known RBF kernel SVM and recently

introduced logistic regression-based LORSAL technique. Based on the weighted

least squares filter, we also presented the spatial-spectral version of the proposal,

which achieves better performances as compared to the recently introduced state-of-

the-art spatial-spectral approaches such as SVM-WLS (GF) and L-MLL. Another

significance of the proposed framework is that the threshold and the kernel parameter

could be easily estimated via the procedures we provided in Chapter 4 without any

cross validation or experiment.
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CHAPTER 8

CONCLUDING REMARKS

8.1. Summary

In this thesis, we have addressed the problem of classification in computer vision

and pattern recognition by introducing two sparsity-based methods. While the first

algorithm (BTC) refers the applications involving linearly separable data, the other

one (KBTC) addresses the problems consisting of non-linearly separable classes. The

techniques are easy to understand and require a few steps to implement. In some chal-

lenging applications such as face recognition and hyper-spectral image classification,

we have shown that the proposed approaches achieve state-of-the-art classification

accuracies as compared to the strongest classifiers in the literature. They also outper-

form those methods by classifying the given testing samples extremely rapidly. The

proposals require a few parameters which could be determined via efficient off-line

procedures. These procedures do not involve experiments such as cross validation in

which the parameters are determined experimentally. Moreover, we have proposed

some problem-specific fusion techniques which significantly improve the classifica-

tion performances of our individual classifiers. For instance, in face recognition, the

fusion is performed by means of taking the average of the output residuals provided by

individual classifiers having different random projections. In case of HSI classifica-

tion, this is achieved by smoothing the output residual maps using recently introduced

edge preserving filtering techniques. The proposed fusion mechanisms could also be

applied to other sparsity-based classification algorithms. We believe that BTC and

KBTC algorithms together constitute a complete classification framework.

103



8.2. Discussion

Although the proposed algorithms are based on sparse representation, they signifi-

cantly differ from the other sparsity-based techniques when performing sparse recov-

ery. It is known that conventional methods (l1 minimization, greedy pursuits) use iter-

ative expressions at this stage. However, our proposals consist of non-iterative struc-

tures such as thresholding and Tikhonov regularized sparse code estimation which

result in fast classification operation. Other than speed issues, it is unclear if an

iteration-based approach can perform satisfactory results or it can converge in most

cases. Further studies are required on the robustness of the iteration-based methods

for classification applications.

At the dictionary pruning stages of the proposed techniques, we apply a fixed thresh-

olding policy which has been shown to be robust. On the other hand, it is doubtful

whether an adaptive pruning stage will improve the classification accuracies or not.

Even so, it is difficult to adapt a correlation based adaptive stage and the performance

improvement is not guaranteed. It is also worth mentioning that the kernelized version

of the proposal uses RBF kernel which is quite common and popular kernel function

in classification applications. It is suspicious if the other type of kernel functions

such as polynomial kernel will improve the performance. We also note that KBTC

is superior to BTC especially in non-linearly separable cases. However, it does not

mean that it is always superior. In some applications, linear algorithms outperform

the non-linear ones.

8.3. Future Directions

There are many future directions related to the proposed algorithms to consider. Let

us mention them one by one:

• As we can observe, both proposals involve inverse matrix operation. Using the

properties of symmetric positive definite matrices, the inverse operation could

be performed more efficiently in order to reduce the computational cost. Also

for this purpose, the properties of Gram matrices could be further investigated.
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• Currently, selection of the pruned dictionary is performed based on linear and

non-linear correlations. More sophisticated approaches could be utilized in

order to improve this step.

• We have measured the performances of the proposed techniques using the ap-

plications involving elementary features or those containing simple feature pro-

jections. It is required to investigate them under more advanced transform tech-

niques such as scale-invariant feature transform (SIFT) [137, 138], histogram

of oriented gradients (HOG) [139], Hough transform [140], etc.

• In HSI classification, spatial-spectral extensions of the proposals currently uti-

lize the gray-scale guidance image obtained via PCA of the given HSI in the

edge preserving smoothing stages. We believe that filtering the guidance im-

age using an aggressive edge-aware filter such as L0 smoothing technique [27]

further improves the classification performance.

• It would be interesting to investigate the performance of the KBTC algorithm

under multiple kernel learning framework [141, 142] based on the fact that the

real world data in the feature space is highly heterogeneous. Another future di-

rection could be adapting a dictionary learning [143] stage which may improve

the classification accuracy as well as the computational efficiency.
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APPENDIX A

MATLAB CODES

The following function implements the BTC algorithm.

function [btcResult, errMatrix] = btc(labels, A, Y, M, alpha)

% This function implements the basic thresholding classifier for any

% classification applications such as face recognition, hyperspectral

% image classification, etc.

%

% INPUTS:

% labels: 1 X N vector of integers consisting of class labels

% of the input training samples where N denotes the number of

% training samples.

% A: B X N dictionary whose columns represent L2 normalized training

% samples where B represents the number of features.

% Y: B X L matrix consisting of testing samples where L represents

% the number of testing samples. For fast computation, it is

% recommended that L is less than 10000. If it is larger, then Y can

% be partitioned.

% M: Threshold parameter (integer) which is less than B.

% alpha: Regularization parameter between 0 and 1.

%

% OUTPUTS:

% errMatrix: C X L error matrix containing residual for each sample

% btcResult: 1 X L decision vector containing predicted labels

[~, N] = size(A);

[~, L] = size(Y);

C = max(labels); % C shows the number of classes

X = zeros(N, L); % initialize the sparse codes for each test sample
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% calculate gram matrix, this can be performed outside the func

mappedTrains = A' * A;

% linear correlation vector is calculated for each test sample

mappedAy = A' * Y;

% correlation vectors are sorted in descending order

[~, sortedLabels] = sort(abs(mappedAy), 'descend');

I = alpha * eye(M); % regularization matrix

for k = 1:L % sparse code vector is calculated for each sample

support = sortedLabels(1:M, k);

X(support, k) = (mappedTrains(support,support) + I) \ ...

mappedAy(support,k);

end

errMatrix = zeros(C, L); % initialize error (residual) matrix

% calculate class-wise regression error vector for each sample

for classIndex = 1:C

ind = (labels == classIndex);

Yp = A(:,ind)*X(ind, :);

errMatrix(classIndex,:) = sqrt(sum((Y-Yp).ˆ2, 1));

end

% make decision for each sample based on minimum residual

[~, btcResult] = min(errMatrix, [], 1);

end

The function below is used to calculate β quantity for BTC. It also estimates the

threshold parameter M .

function [avgBeta, bestM] = averageBetaBtc(labels, A, alpha)

% This function implements the quantity average beta for btc.

%

% INPUTS:

% labels: 1 X N vector of integers consisting of class labels

% of the input training samples where N denotes the number of

% training samples.

% A: B X N dictionary whose columns represent L2 normalized training

% samples where B represents the number of features.

% alpha: Regularization parameter between 0 and 1.

%

% OUTPUTS:

% avgBeta: 1 X B-1 vector containing beta values. Plot it and see at
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% which index it becomes minimum. This index gives the best M.

% bestM: The best value of the threshold M (estimated)

[B, N] = size(A);

C = max(labels);

avgBeta = zeros(1, B-1);

mappedTrains = A' * A;

[~, sortedLabels] = sort(abs(mappedTrains), 'descend');

% for each M, determine the beta value

for m=1:B-1

X = zeros(N, N);

I = alpha * eye(m);

for k = 1:N

support = sortedLabels(2:m+1, k);

X(support, k) = (mappedTrains(support,support) + I) \...

mappedTrains(support,k);

end

% for each sample determine the residual

errMatrix = zeros(C, N);

for classIndex = 1:C

ind = (labels == classIndex);

Yp = A(:,ind)*X(ind, :);

errMatrix(classIndex,:) = sqrt(sum(abs(A-Yp).ˆ2,1));

end

% calculate the average beta

[res, sorted] = sort(errMatrix);

res1 = res(1,:);

res2 = res(2,:);

ind = (labels ~= sorted(1,:));

res2(ind) = res1(ind);

trueResiduals = errMatrix(labels + (0:N-1)*C);

avgBeta(m) = mean(trueResiduals./res2);

end

[~, bestM] = min(avgBeta); % estimate the threshold M.

end

The following function implements the KBTC algorithm. Please make sure that the

columns of the training and testing matrices are normalized as described in Chapter
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4.

function [kbtcResult, errMatrix] = kbtc(labels, A, Y, M, alpha, gamma)

% This function implements the kernel basic thresholding classifier

% for any classification applications such as face recognition,

% hyperspectral image classification, etc.

%

% INPUTS:

% labels: 1 X N vector of integers consisting of class labels

% of the input training samples where N denotes the number of

% training samples.

% A: B X N dictionary whose columns represent normalized training

% samples where B represents the number of features.

% Y: B X L matrix consisting of testing samples where L represents

% the number of testing samples. For fast computation, it is

% recommended that L is less than 10000. If it is larger, then Y can

% be partitioned.

% M: Threshold parameter (integer) which is less than B.

% alpha: Regularization parameter between 0 and 1.

% gamma: Kernel parameter.

%

% OUTPUTS:

% errMatrix: C X L error matrix containing residual for each sample

% kbtcResult: 1 X L decision vector containing predicted labels

[~, N] = size(A);

[~, L] = size(Y);

C = max(labels); % C shows the number of classes

X = zeros(N, L); % initialize sparse codes for each sample

% calculate gram matrix, this can be performed outside the func

mappedTrains = kernelFunction(gamma, A, A);

% calculate nonlinear correlations

mappedAy = kernelFunction(gamma, A, Y);

[~, sortedLabels] = sort(abs(mappedAy), 'descend');

I = alpha * eye(M); % regularization matrix

for k = 1:L

support = sortedLabels(1:M, k);

X(support, k) = (mappedTrains(support,support) + I) \...

mappedAy(support,k);
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end

errMatrix = zeros(C, L); % initialize error (residual) matrix

% calculate class-wise regression error vector for each sample

c1 = kernelFunction(gamma,Y);

for classIndex = 1:C

ind = (labels == classIndex);

KA = mappedTrains(ind,ind);

c2 = -2*dot(X(ind,:),mappedAy(ind,:));

c3 = X(ind,:)'*KA;

c3 = dot(c3', X(ind,:));

errMatrix(classIndex,:) = sqrt(abs(c1 + c2 + c3));

end

% make decision for each sample based on minimum residual

[~, kbtcResult] = min(errMatrix, [], 1);

end

The function below is used to determine the parameters of the KBTC algorithm.

function [gamma, M] = determineKbtcParams(labels, A, alpha)

% This function determines the parameters of kbtc

%

% INPUTS:

% labels: 1 X N vector of integers consisting of class labels

% of the input training samples where N denotes the number of

% training samples.

% A: B X N dictionary whose columns represent normalized training

% samples where B represents the number of features.

% alpha: Regularization parameter between 0 and 1.

%

% OUTPUTS:

% gamma: Estimated kernel parameter

% M: Estimated threshold

[B, ~] = size(A);

minBeta = inf;

bestGamma = 0;

bestGammaIndex = 1;

k = 1;

% call average beta function for each gamma and determine the best
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% gamma at which beta becomes minimum.

for gammaIndex = 5:-1:-10

gamma = 2ˆ(gammaIndex);

avgBetaGamma(k,:) = averageBetaKbtc(labels, A, alpha, gamma);

avgBeta = mean(avgBetaGamma(k,:));

if avgBeta < minBeta

minBeta = avgBeta;

bestGamma = gamma;

bestGammaIndex = k;

end

disp(['gamma = ', num2str(gamma), ', avgbeta = ', num2str(avgBeta)])

k = k + 1;

end

gamma = bestGamma;

disp(['best gamma = ', num2str(bestGamma)]);

% estimate the threshold parameter

figure;

plot(1:B-1, avgBetaGamma(bestGammaIndex, :));

xlabel('threshold (M)');

ylabel('average beta');

[~, M] = min(avgBetaGamma(bestGammaIndex, :));

disp(['best threshold = ', num2str(M)]);

end

The following function implements the β quantity for KBTC.

function [avgBeta] = averageBetaKbtc(labels, A, alpha, gamma)

% This function implements the quantity average beta for kbtc.

%

% INPUTS:

% labels: 1 X N vector of integers consisting of class labels

% of the input training samples where N denotes the number of

% training samples.

% A: B X N dictionary whose columns represent normalized training

% samples where B represents the number of features.

% alpha: Regularization parameter between 0 and 1.

% gamma: RBF Kernel parameter.

%

% OUTPUTS
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% avgBeta: 1 X B-1 vector containing beta values. Plot it and see at

% which index it becomes minimum. This index gives the best M.

[B, N] = size(A);

C = max(labels);

avgBeta = zeros(1, B-1);

mappedTrains = kernelFunction(gamma, A, A);

[~, sortedLabels] = sort(abs(mappedTrains), 'descend');

for m = 1:B-1 % for each M, determine the beta value

X = zeros(N, N);

I = alpha * eye(m);

for k = 1:N

support = sortedLabels(2:m+1, k);

X(support, k) = (mappedTrains(support,support) + I) \...

mappedTrains(support,k);

end

errMatrix = zeros(C, N);

% for each sample determine the residual

c1 = kernelFunction(gamma,A);

for classIndex = 1:C

ind = (labels == classIndex);

KA = mappedTrains(ind,ind);

c2 = -2*dot(X(ind,:), mappedTrains(ind,:));

c3 = X(ind,:)'*KA;

c3 = dot(c3',X(ind,:));

errMatrix(classIndex,:) = sqrt(abs(c1 + c2 + c3));

end

% calculate the average beta

[res, sorted] = sort(errMatrix);

res1 = res(1,:);

res2 = res(2,:);

ind = (labels ~= sorted(1,:));

res2(ind) = res1(ind);

trueResiduals = errMatrix(labels + (0:N-1)*C);

avgBeta(m) = mean(trueResiduals./res2);

end
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end

The function below is used to determine the kernel matrix for KBTC algorithm.

function [corr] = kernelFunction(gamma, D1, D2)

% This function implements the RBF kernel

%

% INPUTS:

% gamma: Kernel parameter

% D1: First matrix

% D2: Second matrix

% OUTPUT:

% corr: Correlation matrix or vector

if nargin > 2

n1sq = sum(D1.ˆ2,1);

n1 = size(D1,2);

n2sq = sum(D2.ˆ2,1);

n2 = size(D2,2);

c = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*(D1'*D2);

else

c = sum((D1-D1).ˆ2,1);

end

corr = exp(-gamma*c);

end
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