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ABSTRACT 

 

DIM POINT TARGET TRACKING IN INFRARED IMAGE SEQUENCES 

WITH LOW SNR 

 

Güler, Zahide Selin 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof.  Elif Vural 

February 2016, 90 pages 

 

Dim point target tracking in infrared (IR) images has been an active research area 

especially in military fields. Due to the long distance from IR sensors, target appears 

as a dim moving point hidden in a heavily cluttered background and causes the Signal 

to Noise Ratio (SNR) to be very low. We present a tracking algorithm based on Particle 

Filters (PF), which estimates the target position by using both brightness level and 

motion model measurements. A target candidate list for the presented PF algorithm is 

generated by Top-Hat background subtraction and statistical information of frame 

sequences. An important advantage of the proposed algorithm is that it does not use 

any a priori knowledge of the target properties. The performance of the proposed 

algorithm is evaluated on different types of IR image sequences generated from 

different detector types, varying SNR levels and different target motions. The 

experimental results demonstrate that the algorithm can successfully track dim moving 

point target in low SNR environment and accurately estimate its trajectory. 

Keywords: IR Image Sequences, Particle Filter, Dim Point Target Tracking, Low 

SNR, Top-Hat Morphological Filter, TBD.  
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ÖZ 

 

DÜŞÜK SİNYAL-GÜRÜLTÜ ORANINA SAHİP KIZILÖTESİ GÖRÜNTÜ 

SEKANSLARINDA SÖNÜK NOKTA HEDEF İZLEME 

 

Güler, Zahide Selin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

 Tez Yöneticisi: Yrd. Doç. Dr. Elif Vural 

Şubat 2016, 90 sayfa 

 

Kızılötesi görüntülerde sönük nokta hedef izleme, özellikle askeri sahada aktif bir 

araştırma alanı olarak yer almaktadır. Kızılötesi sensörlerden uzakta olmasından 

kaynaklı olarak, hedef, yoğun karışıklığa sahip arka plan içerisinde gizlenmiş bir 

hareket eden sönük nokta olarak belirmekte ve sinyal-gürültü oranının çok düşük 

olmasına sebep olmaktadır. Sunulan Parçacık Filtre Hedef İzleme algoritması hareket 

modeli ve parlaklık seviyesi ölçümlerini kullanarak hedef pozisyonu kestirimi 

sunmaktadır. PF algoritması için hedef aday listesi, Top-Hat arkaplan çıkarılması ve 

çerçeve sekansının istatistiksel bilgileri kullanılarak oluşturulmaktadır. Önerilen 

algoritmanın önemli bir avantajı ise hedef özelliklerine dair hiçbir önsel bilgi 

kullanmıyor olmasıdır. Çalışmada önerilen algoritmanın performansını incelemek için 

farklı dedektörlerden elde edilen farklı görüntü sekansları, değişken sinyal-gürültü 

seviyeleri ve farklı hedef hareketleri kullanılmıştır. Deney sonuçlarına göre algoritma, 

düşük gürültü-sinyal oranındaki bir çevredeki hareket eden sönük nokta hedefini 

başarılı bir şekilde takip edebilmekte ve hassas olarak yörüngesini kestirebilmektedir.  

Anahtar Kelimeler: Kızılötesi Görüntü Sekansı, Parçacık Filtre, Sönük Nokta Hedef 

İzleme, Düşük Sinyal-Gürültü Oranı, Top-Hat Morfolojik Filtre, İzle-Bul.   
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CHAPTER 1  

 

INTRODUCTION 

 

 

Object detection and tracking are important research topics of today. They find 

applications in both civilian and military fields such as surveillance, human 

identification, rescue operations, security services, diagnosis of diseases, robot 

navigation and guidance in weapon systems. Considering these application areas, 

object detection and tracking over a sequence of images could be thought of as an 

important and challenging task due to the complex background environments.  

Object detection involves extracting the location of objects of interest in the frame of 

a video sequence. Object extraction is the most critical step and the type of the 

application area serves to generate its requirements but also specifies its limitations. 

The type of imaging wavelength, object detection range, size of the object and signal 

to noise ratio (SNR) or signal to clutter plus noise ratio (SCNR) are the most known 

limitations of object detection algorithms. Statistical models, background subtraction, 

optical flow, are some of the approaches used to deal with these obstacles.  

Object tracking can be defined as the problem of estimating the trajectory of an object 

within image sequences as it moves between frames. In other words, a tracker assigns 

the target as the consistent parts of the image in different frames of a video [1]. It is 

known that object tracking needs both spatial and temporal information. Technological 

achievements like high powered computers, high quality video cameras and the 

increasing need for automated video analysis are the main reasons why object tracking 

has become this popular [2]. 

In literature, detection and tracking algorithms are categorized into two broad classes: 

detect-before-track (DBT) and track-before-detect (TBD). These two classes differ in 
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their manners of using the intensity and motion information. These two approaches 

will be detailed in Chapter 2. 

1.1. DIM POINT TARGET TRACKING 

“"Dim" will be taken to mean low contrast with the background” [3]. It is more 

difficult to detect and track dim point targets than brighter ones and distinguishing 

them from heavy clutters is a challenging task in infrared search and track systems 

[27]. 

Recently the detection and tracking of dim point moving targets in IR images in 

cluttered background has been an active research area in military applications, for 

example early warning systems, air and missile defense systems, etc. Fast and reliable 

automatic target detection and tracking is a very important task especially when the 

distance between the target and the imaging system is too high which causes the target 

to occupy several pixels or even one pixel in each frame of the image sequence. Due 

to its long distance from the IR sensors, the target appears as a dim moving point 

hidden in a heavily cluttered background in an IR image sequence. Thus its SNR is 

very low, which results in limited information for performing detection or tracking 

tasks [39]. “The target may also appear and disappear at unknown points in time” [4]. 

“As a result of small pixel size, poor contrast and lack of texture information of the 

target, it is difficult to make an effective distinction between the IR dim target and the 

background” [28]. 

In the situations where the Signal to Noise Ratio (SNR) is so low that the target cannot 

be detected in a single frame, the best way to enhance the SNR is to apply track-before-

detect (TBD) techniques to determine the target information through image frames [5]. 

Many TBD algorithms have been proposed such as Hough transform (HT) [6], 

dynamic programming [7], [8] and the particle filtering method [9], [10]. These 

algorithms will be explained in detail in the following sections. 

1.2. MOTIVATION 

In order to leave the defense system enough time to respond, the target must be found 

as soon as possible and from a long distance. The need for detection and tracking from 
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long distance makes the tracking capability the key component of the whole defense 

system. Therefore, the study of low contrast small target detection and tracking 

algorithms is quite meaningful for increasing the attack distance and the response 

speed of the weapons. Because of the lack of prior information on the small target 

image such as shape, texture and type, the information on a small target available to 

the system is comparatively less and the target can be easily covered by clutter and 

noise when the SNR is low [11]. 

In order to overcome this problem, this thesis aims to develop and use a TBD method 

based on the Particle Filter, which is preferred due to its strong capability to handle 

low SNR. The aim of the study is to use this TBD algorithm in image sequences with 

different noisy backgrounds and different SNR values for the detection and tracking 

of dim point moving target. The proposed method takes the advantage of the TBD 

approach but also has the capability of eliminating unlikely target candidates according 

to the statistical information within frames. To gather the statistical information, 

algorithm utilizes some preprocessing steps on first few image frames. The aim of this 

approach is to detect all candidate points that can possibly be the true target. Then, the 

algorithm eliminates the initial candidates progressively, by considering their motion 

consistency to find the true target. Furthermore the proposed method processes the 

frames of the image sequence in a sequential manner. This ensures the causality of the 

algorithm, which potentially allows its usage in real-time tracking applications. 

1.3. SCOPE AND OUTLINE OF THE THESIS 

In this thesis a Particle Filter based method is presented for the tracking of a dim point 

moving target in low SNR.  

Next in Chapter 2 a literature review about object detection and tracking algorithms is 

given. Theoretical details of the proposed algorithm are also discussed. 

In Chapter 3 the explanation and implementation procedure of the proposed method is 

presented.  

Chapter 4 focuses on the details of data generation process, algorithm implementation 

in MATLAB and simulation results of proposed algorithm. 
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Finally, the conclusions and future directions are mentioned in Chapter 5. 
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CHAPTER 2  

 

DIM POINT TARGET DETECTION AND TRACKING ALGORITHMS 

 

 

In this chapter, dim point target detection and target tracking will be covered in detail 

separately, and related algorithms will be introduced and discussed. 

2.1. INTRODUCTION 

Dim point target detection and tracking in IR images are currently attracting great 

interest in both civil and military applications.  

In IR image sequences, the interested target appears as a dim point in cluttered 

background because of the distance between the target and the sensor, and has no 

feature information like shape, texture or target type. Furthermore, aerodynamical 

effects and disturbances decreases the SNR in a very low levels in real environments. 

“The only information for the detection and tracking of a dim target is its unknown 

intensity and velocity” [12]. 

2.2. LITERATURE REVIEW 

Tracking algorithms can be classified as: detect-before-track (DBT) and  track-before-

detect (TBD). In DBT, target intensity is used first and target motion is used after the 

detection. On the other hand in TBD,  target motion is used before the target intensity 

[12].  

Standard DBT techniques detect the target at each measurement and then use these 

detections to estimate the trajectory of the target. DBT algorithms are adequate for 

applications where the targets are bright compared with the background. However, in 

many real cases, the target has an intensity below the detection threshold for many 

successive frames [34]. As a result, they perform poorly in long range surveillance 

where the target size is a few pixels or even a single pixel, and it can be easily lost in 

noise and clutter [4][39]. “DBT algorithms have two disadvantages: 
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1. They exhibit poor performance when the SNR is low,  

2. Much of the information contained in the measurements is completely 

discarded due to the application of a detection threshold at each frame” [13].  

TBD algorithms such as dynamic programing, Hough Transform, Particle Filter, etc. 

on the other hand, have fairly good advantages in the area of tracking dim point targets 

in low SNR environments. Instead of thresholding each frame, data is processed over 

a number of frames then the algorithm decides whether it is target or not.  

TBD is specifically used in very low SNR scenarios. Latest research highlighted the 

performance of TBD is for low SNR more than DBT. But the performance of TBD 

algorithms can degrade in the presence of a velocity mismatch or a target maneuver 

[12]. 

A main challenge for any DBT and TBD algorithm is, the huge amount of data to be 

handled. This increases the computational complexity and the computation time. 

Therefore the realization and implementation of real-time tracking systems are either 

costly or they sacrifice on accuracy [4]. 

2.3. DETECT BEFORE TRACK 

DBT algorithms adopt a "single-frame detection and multi-frame confirmation" 

strategy, and work well with image sequences of high SNR by focusing on the target's 

spatial character rather than the temporal character during the detection procedure. 

Compared with TBD, the detection based on DBT is faster, simpler and easier to 

implement in real-time, but may fail in the case of low SNR and the contrast between 

target and background. “Figure 2.1 shows the flow chart of DBT algorithms” [14]. 

Various techniques for detection can be used  such as Mathematical Morphologic 

Method, Statistical Modelling, Genetic Algorithms, Wavelet Transformation [43], 

Higher Order Correlation Method [44], Empirical Mode [44][28], etc. 
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Figure 2.1 “DBT Algorithm Flow Chart” [14] 

The critical issue of DBT algorithms is to pre-detect the target efficiently from a single 

frame. “The robustness of DBT algorithms is directly related to the characteristics of 

both small targets and backgrounds” [45]. In conclusion the key task of the target 

detection in cluttered background is distinguishing the real target region from the 

clutter background fast and efficiently [43]. 

2.3.1. PREPROCESSING 

Preprocessing is a common name for low-level abstraction operations on images. The 

aim of these operations is to improve the image data in order to suppress unwanted 

distortions or to enhance image features which are important for further processing 

steps. Preprocessing operations can be pixel brightness transformations, geometric 

transformations, utilizing local neighborhood properties, etc. If some a priori 

knowledge is known, such as the nature of degradation, the nature of noise, and target 

properties (shape, size, etc.), preprocessing operations may be simplified considerably. 

2.3.2. BINARIZATION JUDGEMENT 

A brightness based threshold is chosen for detection; if the intensity value of a pixel is 

above this threshold it is probably the target, then then the pixel value is assigned as 

1; and if the intensity value of a pixel is below this threshold, it is probably not target, 

then the pixel value is assigned as 0.  

{
c[x, y] ≥ Threshold,                    c[x, y] = target = 1

c[x, y] ≤ Threshold,              c[x, y] = no target = 0
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where [x, y] represents the pixel coordinates [25]. 

2.3.3. MULTI-FRAME CONFIRMATION AND CORRECTION 

In the final step, because of not applying the appropriate threshold, there can be more 

than one trajectories. At this stage of the DBT algorithm the spatial information 

obtained from previous stages is compared with the temporal behavior of the target 

and the most consistent trajectory is determined. 

2.4. TRACK BEFORE DETECT 

Meanwhile, TBD algorithms adopt a "multi-frame detection" strategy to detect the 

target, by using both spatial and temporal information. The algorithm keeps tracking 

more than one candidate trajectories initialized in the detection process, and estimates 

a posterior probability for each one, which is compared with some kind of threshold at 

the end of the process. If one's posterior probability exceeds the threshold, it will be 

predicted as a target trajectory. TBD is preferred as an efficient and robust signal 

processing algorithm which uses extended observation time and reduces the 

probability of false alarm rate [46]. Previous studies suggest that TBD algorithms have 

a more complex structure and need more computation and storage than DBT 

algorithms, but are extremely effective in low SNR environments. Figure 2.2 shows 

the flow chart of TBD algorithms [14]. 

 

Figure 2.2 “TBD Algorithm Flow Chart” [14] 
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2.4.1. BACKGROUND SUPPRESSION 

A background suppression algorithm, aims to estimate the background image 

distribution as accurately as possible, such that the residual information follows the 

Gaussian distribution. Then, it subtracts estimated background from the image 

sequence, while trying not to remove the information of the target from the sequence. 

2.4.2. TRAJECTORY TRACKING AND THRESHOLD 

JUDGEMENT 

In this stage of the algorithm, target candidates are tracked via the motion model 

representation of the target that is searched. Then a posterior probability based 

threshold is applied and the most probable trajectory is assigned as the target’s true 

trajectory.  

2.5. TRACK BEFORE DETECT ALGORITHMS 

Many TBD algorithms have been proposed for dim point target tracking [26] like 

Probability Hypothesis Density [29], Viterbi Algorithm [32], Recursive Bayesian 

Algorithm [39], mean-shift algorithm [30], Probabilistic Data Association [35], non-

linear filtering [42] etc. But the most famous TBD tactics involve Hough Transform 

(HT) [46], [41], Dynamic Programming (DP) [7], [8], [16] and Particle Filtering (PF) 

[31], [33], [36], [38]. These three algorithms are explained below. 

The detection of straight lines in a clutter is the most common usage of HT in image 

processing. HT is generally applied on single images. The algorithm is based on 

representing the coordinates of points with a line equation defined by ρ and θ. The 

equation is given in Figure 2.3. 
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Figure 2.3 Hough Transform Equation for Representation of a Line 

“HT has been widely used in image processing because of its robustness against noise. 

But HT has a long computation time and large memory requirements” [15]. The 

evolution of the Standard Hough transform (SHT), has led to some modified 

algorithms, such as randomized Hough transform (RHT) or Multi-dimensional Hough 

Transform (MHT) for tracking in clutter with higher probability of detection and lower 

computational cost. The HT uses the idea of defining a mutual constraint between 

image points and the parameters ρ and θ, based on basic line equation.  HT can be 

described as a one to many mapping from a point on the image to a set of parameter 

values. In other words, HT calculates parameters of all straight lines, which belong to 

the set that represents a line which passes through a given image point (x,y).  

Dynamic Programming is also a TBD algorithm which searches all the possible states, 

scans each pixel and marks probable tracks in each frame, and determines where it was 

in the beginning of its motion in the previous images. Each transition receives a score 

and the scores are related to target’s intensity, velocity, direction and are given 

considering their surrounding and a priori restrictions [16].  

Both DP and HT algorithms use score-based methods to detect the true target 

trajectory, that need to trace back and reconstruct the best path. Therefore, these 

algorithms cannot be applied if there is a requirement for on-line target tracking. 

Particle Filter is another TBD technique which has the advantages of dealing with 

nonlinear/non-Gaussian problems. Recently, it has received more and more attention 
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as a track-before-detect algorithm [17]. “PF is based on Monte Carlo simulation and 

recursive Bayesian estimation” [18]. Figure 2.4 shows how PF works in each frame. 

 

Figure 2.4 Particle Filter representation in each frame [40] 

PF is at the core of the algorithm proposed in this thesis and is explained in detail in 

the following section. 

2.6.  PARTICLE FILTER ALGORITHM 

In order to analyze a dynamic system, two models are known to be required: the system 

model which describes the change in the state with time and the measurement model 

which relates the noisy measurements to the state. 

In the Bayesian model, to define the posterior probability density function (pdf) of the 

state one should gather all available information that also includes the set of 

measurements. An optimal estimate of the state and a measure of the estimation 

accuracy may be obtained from this posterior pdf. In many problems, an estimate is 

required every time that a measurement is received. For this case, a recursive filter has 

become a convenient solution. 

A recursive filtering approach defines as an algorithm which processes received data 

sequentially rather than as a batch so that storing the complete data set is not a necessity 

if a new measurement becomes available [19]. 
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“Recursive filters consist of two main stages: prediction and update. In the prediction 

stage, the algorithm uses the system model to predict the next state from the new 

measurement. The state prediction process is generally subjected to an unknown 

disturbances that results in a deformation and spread into the state pdf. The update 

stage, uses the latest measurement to modify and correct the prediction pdf. This is 

accomplished using Bayes theorem, which is the algorithm for updating the knowledge 

about the target state with using the information from new data” [19]. 

The state of a system evolves in time and information about the state is obtained from 

noisy measurements at each time step. In a discrete-time state-space model, the state 

of a system evolves according to: 

𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1, 𝑣𝑘−1) (2.1) 

 

where 𝒙𝒌 is a vector representing the state of the system at time 𝒌, 𝒗𝒌−𝟏is the state 

noise vector, 𝒇𝒌 is a non-linear and time-dependent function describing the evolution 

of the state vector. 

Information about 𝒙𝒌  is obtained only through noisy measurements of it, 𝒛𝒌 , which 

are governed by the equation 

𝑧𝑘 = ℎ𝑘(𝑥𝑘, 𝑛𝑘) (2.2) 

 

where 𝒉𝒌 is a possibly non-linear and time-dependent function describing the 

measurement process and 𝒏𝒌 is the measurement noise vector. 

The tracking problem can be defined as recursively calculating up to some degree of 

belief in the state 𝒙𝒌 at time 𝒌, given the data 𝒛𝟏:𝒌 up to time 𝒌. The relation between 

𝒙𝒌 and 𝒛𝟏:𝒌 is captured through the pdf 𝒑(𝒙𝒌|𝒛𝟏:𝒌). It is assumed that the initial pdf 

𝒑(𝒙𝟎|𝒛𝟎) ≡ 𝒑(𝒙𝟎), which is also known as the prior distribution where 𝒛𝟎 is the set 

of no measurements. Then, the pdf 𝒑(𝒙𝒌|𝒛𝟏:𝒌) may be obtained, recursively, in two 

stages: prediction and update[19]. 
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Suppose that the required pdf 𝒑(𝒙𝒌−𝟏|𝒛𝟏:𝒌−𝟏) at time 𝒌 − 𝟏 is available. The 

prediction stage involves using the system model (2.1) to obtain the prior pdf of the 

state at time 𝒌 via the Chapman–Kolmogorov equation [19] 

𝑝(𝑥𝑘|𝑧1:𝑘−1) =  ∫𝑝(𝑥𝑘|𝑥𝑘−1) 𝑝(𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1 (2.3) 

 

where 𝒑(𝒙𝒌|𝒙𝒌−𝟏, 𝒛𝟏:𝒌−𝟏) = 𝒑(𝒙𝒌|𝒙𝒌−𝟏) as (2.1) describes a Markov process of order 

one[19].  

At time step 𝒌, a measurement 𝒛𝒌 becomes available, and this may be used to update 

the prior (update stage) via Bayes’ rule [19] 

𝑝(𝑥𝑘|𝑧1:𝑘) =  
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 (2.4) 

where 

𝑝(𝑧𝑘|𝑧1:𝑘−1) =  ∫𝑝(𝑧𝑘|𝑥𝑘) 𝑝(𝑥𝑘|𝑧1:𝑘−1)𝑑𝑥𝑘 (2.5) 

 

depends on the likelihood function 𝒑(𝒛𝒌|𝒙𝒌) defined by the measurement model (2.2) 

and the known statistics of 𝒏𝒌. In the update stage (2.4), in order to modify the prior 

density, the measurement 𝑧𝑘 is used to obtain the required posterior density of the 

current state[19]. 

The relation between (2.3) and (2.4) form the basis for the optimal Bayesian solution. 

This recursive propagation of the posterior density represents only a conceptual 

solution, unfortunately cannot be determined analytically. Solutions do exist in a 

restrictive set of cases which will be detailed[19].  

2.6.1. SEQUENTIAL IMPORTANCE SAMPLING (SIS) 

Sequential importance sampling (SIS) is the most basic Monte Carlo method used for 

when the prediction and update steps cannot be analytically computed. In deriving the 

SIS algorithm, it is useful to consider the full posterior distribution at time 𝒌, 

𝒑(𝒙𝟎:𝒌|𝒛𝟏:𝒌), rather than the filtering distribution, 𝒑(𝒙𝒌|𝒛𝟏:𝒌) which is just the 
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marginal of the full posterior distribution with respect to 𝒙𝒌. “The idea in SIS algorithm 

is to approximate the posterior distribution at time,  𝒑(𝒙𝟎:𝒌|𝒛𝟏:𝒌) , with a weighted set 

of samples {𝒙𝟎:𝒌
𝒊 , 𝝎𝒌

𝒊 }
𝒊=𝟏

𝑵
, also called particles. The weights are normalized as 

∑ 𝝎𝒌
𝒊 = 𝟏𝒊 . The particles are recursively updated to obtain an approximation to the 

posterior distribution as” [19] 

 

𝑝(𝑥0:𝑘|𝑧1:𝑘) ≈  ∑𝜔𝑘
𝑖 𝛿(𝑥0:𝑘 − 𝑥0:𝑘

𝑖  )

𝑁𝑠

𝑖=1

 (2.6) 

 

Another property of the SIS algorithm is its dependence on importance sampling. In 

importance sampling, target distribution 𝒑(𝒙) is approximated with using samples 

from a proposal distribution 𝒒(𝒙). It is generally used when there is a difficulty in 

sampling directly from the target distribution itself. It is accepted that sampling from 

the proposal distributions is more convenient. To compensate for the discrepancy 

between the target and proposal distributions, one has to weight each sample 𝒙𝒊 by 

[19] 

 𝜔𝑖   ∝  𝜋(𝑥𝑖)/𝑞(𝑥𝑖) (2.7) 

 

where 𝝅(𝒙) is a function that is proportional to 𝒑(𝒙) (i.e. 𝒑(𝒙) ∝  𝝅(𝒙)) and that we 

know how to evaluate. Then, a weighted approximation to the density 𝒑(𝒙) is given 

by [19] 

𝑝(𝑥) ≈  ∑𝜔𝑖𝛿(𝑥 − 𝑥𝑖  )

𝑁𝑠

𝑖=1

 (2.8) 

 

Therefore, if the samples 𝒙𝟎:𝒌
𝒊  are drawn from an importance density 𝒒(𝒙𝟎:𝒌

𝒊 |𝒛𝟏:𝒌), then 

the weights in (2.6) are defined by (2.7) to be [19] 

𝜔𝑘
𝑖 ∝

𝑝(𝑥0:𝑘
𝑖 |𝑧1:𝑘)

𝑞(𝑥0:𝑘
𝑖 |𝑧1:𝑘)

 (2.9) 

 



15 

 

 

Returning to the sequential case, at each iteration, one could have samples constituting 

an approximation to 𝒑(𝒙𝟎:𝒌−𝟏|𝒛𝟏:𝒌−𝟏) and want to approximate 𝒑(𝒙𝟎:𝒌|𝒛𝟏:𝒌) with a 

new set of samples. If the importance density is chosen to factorize such that [19] 

𝑞(𝑥0:𝑘|𝑧1:𝑘) = 𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘)𝑞(𝑥0:𝑘−1|𝑧1:𝑘−1) (2.10) 

 

then one can obtain samples 𝒙𝟎:𝒌
𝒊 ~ 𝒒(𝒙𝟎:𝒌|𝒛𝟏:𝒌) by evolving each of the existing 

samples 𝒙𝟎:𝒌−𝟏
𝒊 ~ 𝒒(𝒙𝟎:𝒌−𝟏|𝒛𝟏:𝒌−𝟏) with the new state 𝒙𝒌

𝒊 ~ 𝒒(𝒙𝒌|𝒙𝟎:𝒌−𝟏, 𝒛𝟏:𝒌). [19] 

The weight update equation can be shown to be 

𝜔𝑘
𝑖 ∝ 

𝑝(𝑧𝑘|𝑥𝑘
𝑖 ) 𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )𝑝(𝑥0:𝑘−1

𝑖 |𝑧1:𝑘−1)

𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘)𝑞(𝑥0:𝑘−1
𝑖 |𝑧1:𝑘−1)

 

= 𝜔𝑘−1
𝑖  

𝑝(𝑧𝑘|𝑥𝑘
𝑖 ) 𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘)
 

(2.11) 

Furthermore, if  𝒒(𝒙𝒌|𝒙𝟎:𝒌−𝟏, 𝒛𝟏:𝒌) =  𝒒(𝒙𝒌|𝒙𝒌−𝟏, 𝒛𝒌) , then the importance density 

becomes only dependent on 𝒙𝒌−𝟏 and 𝒛𝒌. This is useful when only a filtered estimate 

of 𝒑(𝒙𝒌|𝒛𝟏:𝒌) is required at each time step. In such scenarios, only 𝒙𝒌
𝒊  need to be stored; 

therefore, one can discard the path 𝒙𝟎:𝒌−𝟏
𝒊  and the history of observations 𝒛𝟏:𝒌−𝟏. The 

modified weight is then[19] 

𝜔𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖  
𝑝(𝑧𝑘|𝑥𝑘

𝑖 ) 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑧𝑘)
 (2.12) 

 

and the posterior filtered density 𝒑(𝒙𝒌|𝒛𝟏:𝒌) can be approximated as  

 

𝑝(𝑥𝑘|𝑧1:𝑘) ≈  ∑𝜔𝑘
𝑖 𝛿(𝑥𝑘 − 𝑥𝑘

𝑖  )

𝑁𝑠

𝑖=1

 (2.13) 

 

where the weights are defined in (2.12). It can be shown that as 𝑵𝒔 →  ∞ , the 

approximation (2.13) approaches the true posterior density 𝒑(𝒙𝒌|𝒛𝟏:𝒌)[19]. 

The SIS algorithm thus consists of recursive propagation of the weights and support 

points as each measurement is received sequentially. A pseudo-code description of this 

algorithm is given by Algorithm 1. 
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Algorithm 1 Pseudo-code for SIS Particle Filter 

for i=1:Ns 

 𝑥𝑘
𝑖  ~ 𝑞(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 , 𝑧𝑘) 

 Assign the particle a weight, 𝜔𝑘
𝑖 , according to (2.12) 

end for 

 

 

Figure 2.5 Demonstration of the SIS filtering algorithm on a linear Gaussian model 

[20] 

In Figure 2.5 the red line shows the state, xk, of the system at each time step k; the 

blue circles show the measurements, zk , at the corresponding time steps. The gray dots 

represent the particles generated by the SIS algorithm. Darker colors correspond to a 

larger weight for the particle. In this example, N = 50 particles is used [20]. 

2.6.1.1. DEGENERACY PROBLEM 

The iterations of Algorithm 1 leads to a degeneracy problem where only a few of the 

particles have a significant weight, and all the others have very small weights. 

Degeneracy is typically measured by an estimate of the effective sample size:  

𝑁𝑒𝑓𝑓 = 
𝑁𝑠

1 + 𝑣𝑎𝑟(𝜔𝑘
∗𝑖)

 (2.14) 
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where 𝝎𝒌
∗𝒊 = 𝒑(𝒙𝒌

𝒊 |𝒛𝟏:𝒌) 𝒒(𝒙𝒌
𝒊 |𝒙𝒌−𝟏

𝒊 , 𝒛𝒌)⁄  is referred to as the “true weight”.  A 

smaller  𝑵𝒆𝒇𝒇 means a larger variance for the weights, hence more degeneracy. (2.14) 

cannot be evaluated exactly, but an estimate 𝑵𝒆𝒇�̂� of 𝑵𝒆𝒇𝒇 can be obtained by 

𝑵𝒆𝒇�̂� = 
1

∑ (𝜔𝑘
𝑖 )2𝑁𝑠

𝑖=1

 (2.15) 

 

where  𝝎𝒌
𝒊  is the normalized weight obtained using (2.11). 

 

Figure 2.6 Particle weights and Neff change with respect to k 

“The weights of all 50 particles (x-axis) at each time step k (y-axis) (in the left).In 

Figure 2.6 brighter colors represent larger weights. The effective sample size called 

Neff  is shown as a function of time step k (in the right)” [20]. 

 

As one can see from Figure 2.6  as k increases, Neff drops very quickly to values 

smaller than 5. Thus for large k, only a few of the particles have significant weights. 

2.6.1.2. RESAMPLING 

A possible solution to deal with the degeneracy problem is resampling. The idea of 

resampling is to eliminate particles that have small weights and to concentrate on 

particles with large weights. The resampling step involves generating a new set 



18 

 

 

{𝒙𝒌
∗𝒊}

𝒊=𝟏

𝑵𝒔
 by resampling, Ns , times from an approximate discrete representation of  

𝒑(𝒙𝒌|𝒛𝟏:𝒌) given by [19]   

𝑝(𝑥𝑘|𝑧1:𝑘) ≈  ∑𝜔𝑘
𝑖 𝛿(𝑥𝑘 − 𝑥𝑘

𝑖  )

𝑁𝑠

𝑖=1

 (2.16) 

so that 𝐏𝐫(𝒙𝒌
𝒊∗ = 𝒙𝒌

𝒋
) =  𝝎𝒌

𝒋
. The resulting sample is in fact an i.i.d. sample from the 

discrete density (2.16); therefore, the weights are now reset to 𝝎𝒌
𝒊 = 𝟏 𝑵𝒔⁄ . Pseudo-

code descriptions of resampling and Particle Filter algorithms are given respectively 

in Algorithm 2 and Algorithm 3.  

2.6.2. SAMPLING IMPORTANCE RESAMPLING (SIR) 

Particle filtering algorithms mostly describe a variant of the SIS algorithm mentioned 

above. The SIR algorithm also can be seen as a variant of SIS. But in this case the 

proposal distribution 𝒒(𝒙𝒌|𝒙𝒌−𝟏
𝒊 , 𝒛𝒌) is taken to be the state transition distribution 

𝒑(𝒙𝒌|𝒙𝒌−𝟏
𝒊 ) and resampling is applied at every iteration. Thus, in the SIR algorithm, 

the update equations for the particles become [19] 

𝑥𝑘
𝑖  ~ 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖 ) (2.17) 

𝜔𝑘
𝑖  ∝ 𝑝(𝑧𝑘|𝑥𝑘

𝑖 ) (2.18) 

 

The resampling step follows the update equations. Note that the 𝝎𝒌−𝟏
𝒊  term disappears 

in the weight update equation in (2.18) because after resampling at time k-1, all 

weights 𝝎𝒌−𝟏
𝒊  become equal. [19] 

Algorithm 2 Pseudo-code for Resampling 

Initialize the CDF c1=0 

for i=2:Ns 

 Construct CDF: 𝑐𝑖 = 𝑐𝑖−1 + 𝜔𝑘
𝑖

 

end for 

Start CDF: i=1 

Draw a starting point: 𝑢1~ 𝑈[0, 𝑁𝑠
−1] 
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for j=1:Ns 

move along the CDF: 𝑢𝑗 = 𝑢1 + 𝑁𝑠
−1 (𝑗 − 1) 

while 𝑢𝑗  >  𝑐𝑖 

i=i+1 

end while 

assign sample: 𝑥𝑘
𝑗∗

= 𝑥𝑘
𝑖   

assign weight: 𝜔𝑘
𝑗
= 𝑁𝑠

−1  

assign parent: 𝑖𝑗 = 𝑖 

end for 

 

Algorithm 3 Pseudo-code for Generic Particle Filter 

for i=1:Ns 

 𝑥𝑘
𝑖  ~ 𝑞(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 , 𝑧𝑘) 

 Assign the particle a weight, 𝜔𝑘
𝑖 , according to (2.12) 

end for 

Calculate total weight: 𝑡 = 𝑆𝑈𝑀 [{𝜔𝑘
𝑖 }

𝑖=1

𝑁𝑠
] 

for i=1:Ns 

normalize: 𝜔𝑘
𝑖 = 𝑡−1𝜔𝑘

𝑖  

end for 

If   𝑁𝑒𝑓�̂�  < 𝑁𝑇  

Resample using Algorithm 2 

end if 
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Figure 2.7 “Comparison of SIR and SIS algorithms” [20]. 

In Figure 2.7 an SIR filter is applied to a linear Gaussian system. The red line shows 

the state, 𝒙𝒌, of the system at each time step k ; the blue circles show the measurements, 

𝒛𝒌, at each time step. The gray dots represent the particles generated by the SIR 

algorithm. An SIS filter is applied to the same system. The SIS filter uses the same 

proposal distribution as the SIR filter, but does not involve resampling step. In this 

example, there are N = 50 particles in both cases [20]. 

The main advantage of the SIR algorithm is that it is extremely simple to implement, 

since it only requires sampling from the distribution 𝒑(𝒙𝒌|𝒙𝒌−𝟏
𝒊 ) and evaluating 

𝒑(𝒛𝒌|𝒙𝒌
𝒊 ). Its disadvantage is the independence of the proposal distribution 

𝒑(𝒙𝒌|𝒙𝒌−𝟏
𝒊 ) from the observations 𝒛𝒌 (this means that the states are updated without 

directly taking into account the information provided by the observations).  

In order to overcome this, a motion model is used for the state update equation. The 

motion model is estimated from the measurements and the motional behavior of the 

target in a feedback loop. The motion model assumption and its usage in the algorithm 

will be detailed in Chapter 3. 
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CHAPTER 3  

 

PROPOSED ALGORITHM  

 

 

As mentioned in Chapter 1, the aim of the thesis is to track dim targets in low SNR. 

The main properties of the proposed algorithm can be listed below.  

 A preprocessing step is applied for eliminating the points which are below 

some threshold that is adaptively calculated considering the statistical 

properties of the image frames.  

 A separate PF algorithm is initiated to track each one of the candidate points 

that stay above the threshold after the preprocessing step. Initiating the PF 

algorithm with a list of candidate points rather than searching for the whole 

image sequence reduce the computational complexity. 

 The PF algorithm generates particles for each candidate between some 

predefined windows of frames and tracks them separately. 

 Candidate points are eliminated with respect to an error measure based on 

motion consistency, which also reduces the computational complexity. 

 The PF algorithm is also fed with the estimates of the target candidates measure 

calculated from the current trajectory estimates. The velocity information is 

used in addition to the intensity information in order to define a hybrid 

weighting strategy to update particle weights. This provides robustness when 

the SNR is very low and intensity measurements cannot track the target.  

In Figure 3.1 a flow chart of the proposed algorithm is given.  
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In order to test the performance of the proposed algorithm, different SNR levels and 

different data types are used. The image sequence generation process and the details 

of the algorithm are given in this chapter. 

3.1. IMAGE SEQUENCE GENERATION 

The need for dim target tracking occurs in a scenario where a target must be tracked 

within a long distance range and under low SNR conditions. In order to realize this 

scenario a series of image sequences are generated including different intensity values 

for target representation and different types of sensor recorded video sequences.  

Two detector data (SENSOR TYPE-1 and SENSOR TYPE-2) are used for generating 

the dataset. The number of frames in the image sequences change but they are all 

sampled at 100 Hz. Each frame has the size of 100x100 pixels. A chosen frame of each 

data is given in Figure 3.3.   

 A representative target model is integrated into the image sequences with different 

intensity values. In order to represent the target in each image sequence, the mean 

value of each frame in each image sequence is calculated and a chosen value between 

10 and 100 is added into the frame in a specific coordinate which is determined from 

the motion model of the target. The reason for using a range of different target intensity 

values is to compare performance of the algorithm in different SNR conditions. 

Xest 

IR IMAGE SEQUENCE 

PRE- 

PROCESSING 

 PARTICLE 

FILTER 

CANDIDATE ELIMINATION 

BACKGROUND 

ESTIMATION 

LIST OF 

CANDIDATE 

POINTS 

Figure 3.1 Proposed Algorithm Flow Chart 
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In order to visualize the intensity distribution of image sequences, histograms of a 

representative frame for each dataset are shown in Figure 3.2. As one can see, in the 

first frame of each dataset; in SENSOR TYPE-1, the intensity value changes between 

7166 and 7225, and the mean value is 7195; while in SENSOR TYPE-2, the intensity 

value changes between 8579 and 8619, and the mean value is 8602. The values of pixel 

intensities depend on the detector image stream type. In this study both SENSOR 

TYPE-1 and SENSOR TYPE-2 have 14-bit streams for images. 

 

a. Histogram of SENSOR TYPE-1 image in 1st  frame 

 

b. Histogram of SENSOR TYPE-2 image in 1st  frame 

Figure 3.2 Intensity Distributions of Image Sequences in 10th frame 
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Two different motions are generated; the first one represents a target motion that enters 

the scene on the left side of the frame and moves horizontally, the second one enters 

the scene on the left corner and moves in a diagonal direction. The second motion 

model is chosen to generate a challenging data considering the pattern of the SENSOR 

TYPE-1 image sequence. In both motion models target enters in the first frame. 

In Figure 3.3 the first frames of each dataset where the target intensity is 30 above the 

mean intensity, is presented as an example for each image sequence pattern. The bright 

pixels in red circles represent the target which enters the scene in the coordinates [70,1] 

(a and b) and [40, 1] (c and d). Red lines represents the trajectory of target’s movement 

in sequential frames. 

From this point on, the motion of the target where it enters the scene in [70,1] is called 

“Motion 1” and the other motion which starts from the point [40,1] is called “Motion 

2”. 

  

a. SENSOR TYPE-2 b. SENSOR TYPE-1 
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c. SENSOR TYPE-2 d. SENSOR TYPE-1 

Figure 3.3 First frame of image sequences SENSOR TYPE-2 (a and c) SENSOR 

TYPE-1 (b and d)  

3.2. OBSERVATION MODEL OF IR IMAGE SEQUENCE  

The target will only occupy one or several pixels in the imaging plane when it is far 

away from the IR imaging system, although its actual diameter may be more than ten 

meters. In such situations, the noise amplitude is often quite similar to the intensity of 

dim targets and the targets are totally mixed up with noise in IR images [14]. 

In general, the observation model of IR image sequences can be described as follows: 

𝐼(𝑥, 𝑦, 𝑘) =  {
𝐵(𝑥, 𝑦, 𝑘) + 𝑇(𝑥, 𝑦, 𝑘) + 𝑁(𝑥, 𝑦, 𝑘)    𝑤𝑖𝑡ℎ 𝑡𝑎𝑟𝑔𝑒𝑡

𝐵(𝑥, 𝑦, 𝑘) +  𝑁(𝑥, 𝑦, 𝑘)       𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑎𝑟𝑔𝑒𝑡
  

 

(3.1) 

where 𝐼(𝑥, 𝑦, 𝑘) represents the overall image intensity, 𝐵(𝑥, 𝑦, 𝑘) is the intensity of 

background clutter, 𝑁(𝑥, 𝑦, 𝑘) is the intensity of noise and 𝑇(𝑥, 𝑦, 𝑘) is the target 

intensity. 𝑥 and  𝑦  represents the spatial coordinates and 𝑘 represents the temporal 

coordinate of frames [4]. 

3.3. TARGET STATE TRANSITION MODEL 

The dim target is usually considered as a point in a single IR image. The target motion 

model is expressed as follows 

𝑥𝑘 = 𝐴 𝑥𝑘−1 + 𝐵𝑘 + 𝐶 𝑛𝑘                  k=1,2,...K (3.2) 
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where 𝑥𝑘 = [𝑥 𝑥 ̇ 𝑦 �̇�]𝑇, 𝑥 is the target’s coordinate in x-axis at time 𝑘, 𝑥 ̇ is the target’s 

speed along the x-axis, 𝑦 is the target’s coordinate in y-axis at time 𝑘, �̇� is the target’s 

speed along the y-axis. 𝑛𝑘 represents the process noise. 𝐴 is the state transition matrix 

𝐴 =

[
 
 
 
 

1     𝜕𝑇   0      0

0     1      0      0

  0     0      1     𝜕𝑇

  0     0      0       1]
 
 
 
 

 (3.3) 

𝜕𝑇 is the time interval between consecutive frames. 𝐵𝑘 is the vector [�̅�𝑥 ̇̅ �̅��̅̇�]𝑇 which 

represents the expected change in the displacement and speed. 

The model described in (3.2) is in the form of general state transition model. In this 

study for the simplicity of the model, velocity indices are not included in the state 

model. The state model thus consists only of the target coordinates, nevertheless, 

thanks to the 𝐵𝑘   parameter, the velocity information can still be captured in the model. 

The 𝐵𝑘 vector is calculated from the estimated displacement over a predefined number 

of frames and updated regularly during the motion. This vector used for directing 

particles is thus computed based on the past motion information and will be detailed 

in Chapter 4. 

3.4. PROPOSED ALGORTIHM AND IMPLEMENTATION PROCESS 

It has been discussed in Chapter 2 that in low SNR tracking problems, TBD algorithms 

offer the best solutions for dim target tracking. Regarding its performance in nonlinear, 

non-Gaussian environments [17] the Particle Filter is chosen to solve the problem 

studied in this thesis. 

The PF algorithm examines each pixel as a candidate. For datasets where the target 

intensity is relatively high compared to the background, a simple thresholding is 

enough to find the real target and there is no need to eliminate any target candidates. 

But in the case of lower intensities the threshold must be set sufficiently low to detect 

the real target, however, this results in many other candidates as well. It is assumed 

that the target appears in the scene from the first frame. The proposed algorithm detects 

the target candidates in the initial frames and reduces the number of candidate points, 
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which are given as input to the PF algorithm, gradually throughout the frames of the 

image sequence.  

The applied algorithm will be detailed in the following sections. In the first part, 

background subtraction, morphological operations and their implementation processes 

are given. These algorithms serve to detect candidate points for the PF algorithm and 

are called as preprocessing operations. In the second part, tracking the candidate points 

with the PF algorithm is explained.  

3.4.1. PREPROCESSING OPERATIONS FOR CANDIDATE 

DETECTION 

A pre-processing method is adopted because of the low SNR and low contrast features 

in a single frame [37]. The purpose of the preprocessing algorithm is to gather 

statistical information about the image sequence in the first few frames and suppress 

noise and background regarding this information. After the thresholding and 

binarization steps candidate points will be generated. The aim of this step is to only 

reduce the number of candidates, not to change the properties of the input sequences 

to avoid any information loss. For each of these candidate points, the PF runs on the 

original input image sequences. 

3.4.1.1. ELIMINATING THE NON-LINEARITY OF 

TEMPERATURE DISTRIBUTION  

Detector image sequences are generated by recording while the detector is fixed in 

front of a wall, being exposed to temperature changes. According to Zhang. F et. al. 

the pixels in the same row of the image correspond to the same atmosphere temperature 

approximately. The intensity mean of ith row is given by [12] 

�̅�𝑖 = ∑𝑢𝑖𝑗/𝑛

𝑛

𝑗=1

 (3.4) 

 

where �̅�𝑖 denotes the mean of the ith row, 𝑢𝑖𝑗   denotes intensity of the pixel lying on 

the ith row and the jth column, n is the number of pixels in one row. The non-linear 
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distribution of the temperature and the background are effectively suppressed by 

subtracting the mean intensity of its row from each pixel [12] 

�̃�𝑖𝑗 =  𝑢𝑖𝑗 − �̅�𝑖 (3.5) 

 

 

(a) Before eliminating temperature distribution 

 

(b) After eliminating temperature distribution 

 

Figure 3.4 Temperature Distribution Elimination for SENSOR TYPE-1 
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Figure 3.4 shows the effect of temperature distribution elimination process.  One can 

see that the intensity level of bright pixels is reduced. 

3.4.1.2. TOP-HAT MORPHOLOGICAL FILTER 

Morphological operations are commonly used in tiny target detection in IR images. 

The development of morphological research offers good results in dim target detection 

and thus morphological image processing has become a new trend in IR image 

processing [22]. 

The Top-hat operator in mathematical morphology can find the mass of bright pixels. 

After eliminating the temperature non-linearity, the Top-hat operator is utilized to 

reject background while preserving the target and enhancing the SNR of the images 

[12]. 

The morphological filter theory includes some basic operations. Given the input image 

𝐹 = {𝑥, 𝑓(𝑥)|𝑥 ∈ 𝑃, 𝑃 ⊆  𝐸2}  and the structuring elements  

𝐵 = {𝑚, 𝑏(𝑚)|𝑚 ∈ 𝑆, 𝑆 ⊆  𝐸2}   where 𝐸2 represents Euclidian space, 𝑃 and 𝑆 

represent the sets of input and structuring elements, the dilation operation of 𝐹 and 𝐵 

is defined by [22] 

(𝐹 ⊕ 𝐵)(𝑥) =  𝑠𝑢𝑝{𝑓(𝑥 − 𝑚) + 𝑏(𝑚)}  

where 𝑚 ∈ 𝑆, 𝑥 − 𝑚 ∈ 𝑃 
(3.6) 

(𝐹 𝐵)(𝑥) =  𝑖𝑛𝑓{𝑓(𝑥 + 𝑚) − 𝑏(𝑚)}  

where 𝑚 ∈ 𝑆, 𝑥 + 𝑚 ∈ 𝑃 
 

(3.7) 

where 𝑓(𝑥 ± 𝑚) represents moving along a vector over the input image F. The 

morphological opening and closing operations of 𝐹 and 𝐵 are defined, respectively, 

by the combination of the erosion and dilation operations as follows [22] 

(𝐹 ∘ 𝐵)(𝑥) =  (𝐹 𝐵) ⊕ 𝐵 (3.8) 

(𝐹 𝐵)(𝑥) =  (𝐹 ⊕ 𝐵) 𝐵 
 

(3.9) 

Based on (3.8) and (3.9), the opening Top- Hat and closing Top-Hat operations are 

defined, that is [22]  
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𝑂𝑇𝐻𝐹,𝐵(𝑥) =  (𝐹 − 𝐹 ∘ 𝐵)(𝑥) (3.10) 

𝐶𝑇𝐻𝐹,𝐵(𝑥) =  (𝐹 𝐵 − 𝐹)(𝑥) 
 

(3.11) 

The Top-Hat operation has some characteristics of high-pass filtering. Therefore the 

opening Top- Hat operator can detect the peaks of an image and the closing Top-Hat 

operator can detect the minimum points [22]. Opening Top-Hat is appropriate for dim 

target detection considering its characteristics of filtering. In Figure 3.5, the Top-Hat 

operation output of the SENSOR TYPE-1 image is shown. 

 

Figure 3.5 SENSOR TYPE-1 image after Opening Top Hat Morphological Operation 

3.4.1.3. PROJECTING OPERATION 

Even after improving the image SNR with morphological operations, the target still 

cannot be detected. The need for gathering statistical information of the image 

sequences arises in order to detect the target or target candidates. This operation called 

projecting [12] performed by summing the preprocessed images along the time axis 

can be formulated as [23] 

𝐼𝑐(𝑥, 𝑦) = ∑
𝐷(𝑥, 𝑦, 𝑘)

𝜎𝑘

𝑚−1

𝑘=0

 (3.12) 

where 𝐷(𝑥, 𝑦, 𝑘) is the preprocessed image, 𝑚 is the number of images that have taken 

part in this projecting operation and 𝜎𝑘 is the standard deviation of an image 𝐷(𝑥, 𝑦, 𝑘). 
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The parameter m is chosen as 3, as small as possible, to minimize time delay. Figure 

3.6 shows the final image of the projected 1st frame of the SENSOR TYPE-1 image.   

 

Figure 3.6 SENSOR TYPE-1 sequence first frame after projection operation 

3.4.1.4. ADAPTIVE THRESHOLDING AND BINARIZATION 

After the projection operation, a thresholding step is needed to distinguish the 

candidate points from background pixels. Considering the change of the image in each 

frame, an adaptive thresholding solution has been found more appropriate. We use a 

mean and standard deviation dependent threshold as in [24]: 

𝑇 =  𝜇 + 𝛼 𝜎 (3.13) 

where 𝜇 is the mean and 𝜎 is the standard deviation of the selected frames. 𝛼 is a 

variable for changing the threshold level. Once the threshold is set, the points whose 

intensities are above the threshold 𝑇 are determined. They are the candidate points 

which may be real target points, background points or noise points.  

The candidate target locations are obtained by binarizing the thresholded image. 

Figure 3.7 shows the output of this stage for the 1st frames of the SENSOR TYPE-1 

and SENSOR TYPE-2 datasets for the target intensity level of 30. The target is 

circumscribed in red and is in the coordinates [70,1]. One can see that reducing the 

threshold results in more candidate points to be tracked by the PF algorithm. 
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(a) 1st frame of SENSOR TYPE-1 

image when 

 𝛼 = 2.5 

(b) 1st frame of SENSOR TYPE-1 

image when 

 𝛼 = 4 

  

(c) 1st frame of SENSOR TYPE-2 

image when 𝛼 = 2.5 

(d) 1st frame of SENSOR TYPE-2 

image when 𝛼 = 4 

Figure 3.7  Output of thresholding and binarization for two datasets (when target 

intensity level is 30) 

3.4.2. PARTICLE FILTER TARGET TRACKING 

From this step on, candidate points which are the output of the preprocessing algorithm 

will be tracked separately and eliminated progressively based on a motion consistency 

error criterion computed on the estimated trajectories. The observation and target state 

transition models given in Chapter 3 are used in the PF algorithm. Some difficulties 

have been faced on datasets where the dim target has a very low intensity compared to 

the background. In order to overcome these difficulties, we have used some hybrid 
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weighting strategies in the PF algorithm is strengthened with using some information 

feedback algorithms which will also be detailed in PF target tracking steps. 

In Section 2.6.1, we describe the conventional scenario where the weights of the 

particles are set based only on intensity measurements, while in Section 3.4.2.2.1 we 

present the hybrid weighting strategy that also employs a motion consistency criterion. 

3.4.2.1. BACKGROUND ESTIMATION 

We first discuss an online background estimation strategy for background subtraction, 

in order to reduce the effect of background intensity changes on the performance of 

the algorithm. 

In order to estimate a background image, it is required to have a few frames that 

represent the properties of the true background. Although the background may change 

over time due to temporal variations of the background pattern, an estimate can be 

found by calculating the mean of the observed frames until a given time instant. The 

necessary number of accumulated frames depends on two important facts: 

 The more the number of accumulated frames is, the better the background 

will be estimated. 

 When the background is estimated from a small number of frames, the 

shadow of the target can appear in the background-subtracted frames 

because of its slow motion. 

To be more specific, if the algorithm waits too much to acquire a sufficient number of 

frames for the estimation of the background, it can cause an error accumulation in the 

PF algorithm. But if the background is estimated from a small number of frames, the 

probability of subtracting the target from the input image is higher. We find a 

compromise by applying an adaptive approach, which is detailed in Algorithm 8 and 

Algorithm 9.  

Algorithm 8 Background Accumulation Algorithm in Projecting Operation Step 

Total Image=0 

for  k= 1 : 3 
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  𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 +  𝐼𝑛𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒(𝑘) 

end for 

 

Algorithm 9 Background Subtraction Algorithm in Particle Filter 

for  k= 4 : # of frames 

  𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒(𝑘) = 𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒(𝑘 − 1) +  𝐼𝑛𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒(𝑘) 

 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒/𝑘  

 𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒(𝑘) =  𝐼𝑛𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒(𝑘)  −  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 

 Use subtracted image for PF algorithm 

end for   

 

The background estimation process decreases the tracking error and helps the PF 

algorithm to estimate the target more accurately. A subtracted image example is given 

in Figure 3.8. 

 

Figure 3.8 10th frame of subtracted image for SENSOR TYPE-1 data 

3.4.2.2. PARTICLE FILTER IMPLEMENTATION 

A candidate list of potential targets is generated from the above preprocessing steps 

and given as input to the PF algorithm.  In this section, we explain how the weights 
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can be set based only on intensity measurements. In accordance with the theoretical 

explanation of the PF SIR algorithm in Chapter 2, in the state update equations, 

𝑝(𝑥𝑘|𝑥𝑘−1
𝑖 ) is defined based on the target state transition model, the measurement 𝑧𝑘 

is defined as the intensity of the estimated target point and the weight update is defined 

based on the intensity change. The distribution of the weights of the particles are set 

as follows 

𝑃𝑤(𝑚) =  1 √2𝜋𝜎𝑘
2exp (− (𝑧 − 𝑧𝑘(𝑚))2 (2𝜎𝑘

2)⁄ )⁄   m=1,2,…N (3.14) 

 

where 𝑧 is the reference intensity of the target, measured at the initially detected target 

pixel in the beginning of the sequence, 𝑧𝑘(𝑚) is the mth estimate from the mth particle, 

and 𝜎𝑘 is the standard deviation of the image intensity on the kth frame. N represents 

the number of particles.  

Algorithm steps will be presented in a specific order, described below: 

Algorithm 4 Particle Filter Implementation 

Input the list of candidate points 

for k= 4: # of frames 

for  n=1:# of candidate points 

for  i= 1: Ns 

 𝑥𝑘
𝑖  ~ 𝑞(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 , 𝑧𝑘) 

 Take the new measurement 𝑧𝑘 for 𝑥𝑘
𝑖  

 Assign the particle a weight, 𝜔𝑘
𝑖  

according to (3.14) 

end for 

 Normalize: 𝜔𝑘
𝑖 = 𝑡−1𝜔𝑘

𝑖  

 Resample weights (Algorithm 2) 

 Calculate final estimated position as the mean 

value of resampled particle points 

end for  

 Save estimated trajectory for each candidate  
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end for 

This algorithm runs for each frame and at the end of each frame it estimates the new 

target position for each one of the candidate targets. 

During the PF algorithm implementation, a couple of issues are faced with and some 

approaches to solve these problems are proposed. These issues and solution oriented 

approaches are discussed in the next section. 

3.4.2.2.1. WEIGHTING STRATEGIES IN PF 

3.4.2.2.1.1. STANDARD PARTICLE WEIGHTING 

As described in Section 2.6 standard PF weighting algorithm uses only the intensity 

measurements. This may results in weighting the noisy pixel more, as a consequence 

of the intensity similarities between background pixels and target pixel. Thus 

algorithm may track the background pixel.  

3.4.2.2.1.2. INTENSITY AND MOTION 

INFORMATION COMBINED PARTICLE 

WEIGHTING 

In the PF, the weights of the particles are determined according to the intensity 

measurements. In scenarios where the target intensity is very low and the background 

has a pattern with intensity close to that of the target, for instance as in the SENSOR 

TYPE-1 images in Figure 3.3, computing the weights purely based on the intensity 

measurements may fail as the algorithm favors particle locations with higher intensity 

even though the motion model directs it where to search the new estimate. 

The proposed solution is to use not only intensity dependent weighting but also to use 

the information about the motion model that is learned from the past behavior of the 

target.  

In order to apply this, we define likelihood functions of particles based on the velocity 

change in both x and y coordinates as in (3.16). This weight is then multiplied by the 

weight in (3.14), so that the overall weights of the particles depends on both intensity 

and the motion behavior of the candidate. 
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𝑃𝑤𝑝
(𝑚) =  1 √2𝜋𝜎𝑣

2 exp (− (∆𝑣 − 𝑣𝑘(𝑚))
2

(2𝜎𝑣
2)⁄ )⁄   m=1,2,…N (3.16) 

 

Here ∆𝑣  represents the mean velocities in both horizontal and vertical directions, 

𝑣𝑘(𝑚) represents the displacement vector of the mth particle from the (k-1)th 

estimated candidate position. Velocity dependent weighting is chosen for reducing the 

effect of intensity and imposing the consistency of the motion of the particles with the 

current trajectory estimates. Combining the intensity information with motion 

consistency clues is especially helpful for not losing the target on certain frames of the 

sequence where the intensity information becomes temporarily unreliable.  

This solution is proposed considering the real target motion where the velocity of the 

target cannot change rapidly. Even though the velocity of the target may vary over 

time, this usually happens smoothly in practice.  

Algorithm 7 summarizes the steps of the combined weighting process. K represents 

the number of frames up to which the mean velocities are calculated. We have 

experimentally observed that this combined weighting strategy has been very useful 

for successfully tracking the target in image sequences such as SENSOR TYPE-1 

where the background has a challenging pattern.  

We have so far discussed several strategies to address the aforementioned challenges 

in dim point target tracking. All of the proposed approaches aim to handle low SNR 

problems.  

Algorithm 7 Combined Particle Weighting 

for  k= K: # of frames 

for  i= 1: Ns 

 𝑥𝑘
𝑖  ~ 𝑞(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 , 𝑧𝑘) 

 Take the new measurement 𝑧𝑘 for 𝑥𝑘
𝑖  

 Assign the particle a weight, 𝜔𝑘
𝑖  according to 

(3.14) and (3.16) 

 Calculate 𝑃𝑤𝑝
=𝑃𝑤𝑝

𝑃𝑤  
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end for  

 Normalize: 𝜔𝑘
𝑖 = 1 𝑁𝑠⁄ 𝜔𝑘

𝑖   

 Resample weights (Algorithm 2) 

 Calculate final estimated position as the mean value of 

resampled particle points 

end for 

 

The performance evaluation of the algorithms detailed in this chapter will be presented 

in Chapter 4. 

3.4.2.2.2. ELIMINATE CANDIDATE POINTS 

For datasets with high intensity target, choosing a relatively high 𝛼 value, thresholding 

and binarization process results in few candidates to track with the PF. Each candidate 

is taken as an input for the PF and the algorithm tracks it through the frames.  

When the target intensity is low in a dataset, 𝛼 should be decreased to a lower level 

for catching the target in the first frame. On the other hand, decreasing the threshold 

level produces dozens of candidate points for the PF. The PF algorithm performs better 

at large population sizes, but in the case of dozens of particle filters each having 

thousands of particles, finding the true target and tracking it becomes a 

computationally complex process and is not preferable for systems where a fast 

response is crucial. 

The solution that we adopt for this problem is to begin tracking each one of the initially 

detected candidates and eliminate them gradually throughout the frames based on 

some error criterion on the estimated trajectories. This approach leads to analyzing a 

few frames, then eliminating some of the candidates based on their mean error in these 

frames, continuing to track the rest of the candidates for a few frames more, then 

eliminating again, and continuing this procedure until the number of candidates 

decreases to 2 or 1. 

The error that the algorithm uses for the elimination process, is called the “Trajectory 

Cost” and is explained in Algorithm 5. 
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Algorithm 5 Calculation of trajectory cost for each candidate points based on 

motion consistency 

for n=1:# of candidate points 

for  k= 4: # of frames 

 Take the first M estimated points in consecutive frames 

(p_1,p_2,..,p_M) 

 Calculate the  displacement ∆𝑥 in x direction and the displacement 

∆𝑦 in y direction; ∆𝑥1 = 𝑝𝑀𝑥
− 𝑝1𝑥

 and  ∆𝑦1 =  𝑝𝑀𝑦
− 𝑝1𝑦

 

 Define ∆𝑣1 = [∆𝑥1;  ∆𝑦1]′ 

 Take the second Mth points beginning from the p_M (p_M, 

p_(M+1),…,p_(2M-1))  

 Calculate  ∆𝑥2 = 𝑝(2𝑀−1)𝑥 − 𝑝𝑀𝑥
 and  ∆𝑦2 = 𝑝(2𝑀−1)𝑦 − 𝑝𝑀𝑦

 

 Define ∆𝑣2 = [∆𝑥2;  ∆𝑦2]′ 

 Calculate 
‖∆𝑣2−∆𝑣1‖

(‖∆𝑣2‖+‖∆𝑣1‖) 2⁄
 as trajectory cost 

end for  

 Calculate mean value of trajectory cost for all candidate points 

 Eliminate candidates that have 𝑇𝑟𝑎𝑗_𝑐𝑜𝑠𝑡𝑛 ≥ 𝑚𝑒𝑎𝑛(𝑇𝑟𝑎𝑗_𝑐𝑜𝑠𝑡1:𝑛) 

 Make a new list of residual candidates  

end for 

 

As described above, the trajectory cost is computed over group of frames of size M.  

The aim of the algorithm is to check how much the velocity changes throughout the 

frames. The proposed trajectory cost is thus helpful for eliminating trajectories where 

the velocity of the target changes unexpectedly over adjacent groups of frames, which 

is not likely to happen in a real scenario. In order to control the speed of elimination 

of the candidates within the first few frames, the windows are chosen to consist of 

some variable size of frame intervals.  
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3.4.2.2.3. UPDATE OF THE STATE TRANSITION MODEL 

Particles near the target have weights larger than other particles, since their intensity 

values are higher and thus closer to the predetermined target intensity. As a result, the 

particle set moves along with the target. 

In settings with low target intensity, it becomes more difficult for the algorithm to 

distinguish between the target and the noisy background. To overcome this issue, the 

expected displacement vector 𝐵 vector in (3.2) is updated in every S frames and fed 

back to the state transition model. The algorithm is given below: 

Algorithm 6 Update B in state transition  

Take estimated point in kth frame, pk 

s=1 

for  k=k+1: # of frames 

 Take estimated point in (k+1)th frame , pk+1 

 Calculate ∆𝑥 displacement in x direction and ∆𝑦 displacement in y 

direction; ∆𝑥 =  𝑝𝑘+1𝑥
− 𝑝𝑘𝑥

 and  ∆𝑦 =  𝑝𝑘+1𝑦
− 𝑝𝑘𝑦

 

 Define ∆𝑣(𝑘) = [∆𝑥; 0; ∆𝑦; 0]′ 

 𝑝𝑘 = 𝑝𝑘+1 

 𝑠 = 𝑠 + 1 

if s=S 

 mean(∆𝑣) = 
1

𝑆
∑ ∆𝑣(𝑘)𝑘  

 B= mean(∆𝑣) 

end if 

end for   

 

The displacement vector is thus computed as the average displacement of the target 

between adjacent frames along the estimated trajectory. This update process helps 

particles to move towards a direction that is predicted from the target’s past motion 

information.  
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CHAPTER 4  

 

EXPERIMENTAL RESULTS  

 

 

In this chapter we experimentally study the performance of the proposed algorithm. 

The algorithm is applied on 2 different data sequences (SENSOR TYPE-1 and 

SENSOR TYPE-2) and tested at different target intensity values. The synthetically 

generated target motion is embedded into each image sequences. The speed of the 

target in both the horizontal and diagonal motion models is selected as 1 pixel per 2 

frames, in order to realistically model the motion of a real target at a distance of 10-15 

kms away from the sensor.   

Point target SNR calculation of an IR image sequence can not be done using in 

traditional SNR, PSNR, etc. definitions that concern logarithmic equations. According 

to J.Tang et al. [21] dim target SNR can be calculated as: 

𝑆𝑁𝑅 =  
∑ 𝑎𝑏𝑠(𝑆𝑖 − �̅�)

𝑁𝑠
𝑖

𝑁𝑠

√
∑ (𝑆𝐵 − �̅�)2𝑁𝐵

𝑖

𝑁𝐵
⁄  (4.1) 

where 𝑆𝑖 is the signal value corresponding to each pixel i. 𝑆𝐵 is the signal value 

corresponding to each background pixel. �̅� is the mean of the background signal, 

defined as �̅� = ∑ 𝑆𝐵
𝑁𝐵
𝑖 𝑁𝐵⁄  . The parameter 𝑁𝐵 is the total number of pixels in the 

processed area, in this case 100 x 100, 10000 pixels without the target pixel, only 

background. 𝑁𝑆 is the number of pixels occupied by the target which is 1. 

The SNR levels that are calculated with respect to the definition in (3.1) are given in 

Table 4.1, Table 4.2 and Table 4.3. The SNR value of each frame in the sequence is 

calculated, and the minimum and mean SNR values over all frames are reported in the 

tables SNR values are small and too close to each other, in the following analyses and 

discussions image sequences will be referred to by their target intensity level for better 

comprehension. 
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Table 4.1 Mean and Minimum SNR for SENSOR TYPE-1 and SENSOR TYPE-2 

image sequences (intensity levels 100, 60 and 50) 

Intensity  

 Level 

Data 

Mean+100 Mean+60 Mean+50 

Min 

SNR 

Mean 

SNR 

Min 

SNR 

Mean 

SNR 

Min 

SNR 

Mean 

SNR 

SENSOR 

TYPE-1 

0.1079 0.1093 0.0648 0.0656 0.0540 0.0546 

SENSOR 

TYPE-2 

0.2249 0.2423 0.1349 0.1454 0.1124 0.1212 

 

Table 4.2 Mean and Minimum SNR for SENSOR TYPE-1 and SENSOR TYPE-2 

image sequences (intensity levels 30, 20 and 10) 

Intensity  

 Level 

Data 

Mean+30 Mean+20 Mean+10 

Min 

SNR 

Mean 

SNR 

Min 

SNR 

Mean 

SNR 

Min 

SNR 

Mean 

SNR 

SENSOR 

TYPE-1 
0.0324 0.0328 0.0216 0.0219 0.0108 0.0109 

SENSOR 

TYPE-2 
0.0675 0.0727 0.0450 0.0485 0.0225 0.0242 

 

Table 4.3 Mean and Minimum SNR for SENSOR TYPE-1 and SENSOR TYPE-2 

image sequences (intensity levels 15, 14 and 13) 

Intensity  

 Level 

Data 

Mean+15 Mean+14 Mean+13 

Min 

SNR 

Mean 

SNR 

Min 

SNR 

Mean 

SNR 

Min 

SNR 

Mean 

SNR 

SENSOR 

TYPE-1 
0.0162 0.0164 0.0151 0.0153 0.0140 0.0142 

SENSOR 

TYPE-2 
0.0337 0.0363 0.0315 0.0339 - - 
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The algorithm is first tested for high SNR targets. In these datasets, the target can be 

easily seen and tracked. But in lower SNR cases, distinguishing the target from the 

background becomes difficult and thresholding becomes a particularly critical stage, 

where the threshold must be chosen properly to avoid the risk of not detecting the 

candidate in the beginning of the sequence. After encountering such problems, we have 

decided to eliminate candidates with preprocessing and the adaptive thresholding 

steps. 

As described in Chapter 3, the proposed algorithm starts with preprocessing the image 

sequence. The preprocessing algorithms are applied only on the first 3 frames of the 

input image to gather the statistical information. Primarily the aim is to eliminate as 

many candidates as possible and keep the input list of candidates for PF algorithms.  

The first step is to eliminate temperature effects using (3.4) and (3.5). After that, Top-

Hat Morphological Filter is implemented in the algorithm for each image frame to 

reject the background while preserving the target in the image. Then the projecting 

operation is done for gathering the statistical information of the image sequences for 

the first 3 frames, and, candidate list is generated for the PF algorithm. The PF 

algorithm starts to tracks the candidates from the 4th frame on. Hence, the studied 

tracking algorithm is implemented in a sequential and causal way, where each frame 

is processed using the information obtained from only the preceding frames. 

Waiting for four frames to get the statistical information of target, the initial 

background image to be subtracted from the sequence is also obtained from the first 

four frames. 

Following the projecting algorithm, the binarization process is applied. The threshold 

level is chosen as described in (3.13).The 𝛼 values for the given datasets are selected 

as in Table 4.4 . 
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Table 4.4  𝛼 values for given image sequences 

Intensity  

 Level 

Data 

Mean+ 

100 

Mean+ 

60 

Mean+ 

50 

Mean+ 

30 

Mean+ 

20,15,14 

Mean+ 

10 

SENSOR 

TYPE-1 
9 8 6 4 3 2.5 

SENSOR 

TYPE-2 

9 8 6 4 3 2.5 

 

After the thresholding step, the list of the locations of target candidates is generated 

and given as input to the PF algorithm. 

Before running the PF algorithm, some parameters should be initialized firstly. These 

parameters are listed below. 

 Population size of particles 

 The A matrix and the C in (3.2) 

 Number of frames (window length) during which target candidates are tracked 

before elimination 

The population size parameter is generally set to the value, 5 000, which has been 

experimentally observed to give usually good results in the trials of the algorithm. The 

population size will be analyzed in the next section. The A matrix is defined regarding 

the constant velocity motion of the target as; 

𝐴 = [
1 0
0 1

] 

and C value is assigned as 0.5 for the general usage of the algorithm. The effect of the 

C parameter will also be examined in detail, later. 

The values of window intervals are given below in Table 4.5. Window intervals are 

assigned regarding the difficulties of the image sequences, especially the SENSOR 

TYPE-1 sequence, and the beginning of the tracking with PFs.  
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Table 4.5 Chosen window intervals 

Window 

number 

Frame 

numbers 

Window 1 4-10 

Window 2 11-19 

Window 3 20-28 

Window 4 29-134 

 

After initialization step is done, PF algorithm is ready to be run. Outputs of PF 

algorithm is the trajectory estimates and maximum estimation error which can be 

defined as the maximum squared error may done in each frame of estimation.  

The first tests are conducted on, high SNR data sequences and the SNR levels are 

reduced gradually throughout the tests. The MSE and the maximum estimation error 

values are given in Table 4.6, Table 4.7 and Table 4.8 for the trials which are given in 

following figures. Dash cells mean, image sequence with the chosen motion was not 

available for this study. Image sequences were generated considering the performance 

comparison of the algorithm in different SNR and different image sequence patterns. 

𝑀𝑆𝐸 =  
1

𝑁
 ∑‖[

𝑥𝑘

𝑦𝑘
] − [

�̃�𝑘

�̃�𝑘
]‖

2

 (4.1) 

Where 𝑥𝑘 and 𝑦𝑘 are the true location of the target and �̃�𝑘 and �̃�𝑘 are the estimated 

locations. N represents the total number of frames.  

Table 4.6 MSE and Maximum Estimation Error for SENSOR TYPE-1 and SENSOR 

TYPE-2 image sequences where N=5000 (intensity level 100, 60 and 50) 

Intensity  

 Level 

Data 

Mean+ 

100 

Mean+ 

60 

Mean+ 

50 

 
Motion 

number 

Max 

Estimation 

Error 

MSE 

Max 

Estimation 

Error 

MSE 

Max 

Estimation 

Error 

MSE 

S
E

N
S

O
R

 

T
Y

P
E

-1
 

Motion 

1 
0.4274 0.0504 0.4738 0.0532 0.4294 0.0528 

Motion 

2 
0.2859 0.0254 0.2744 0.0233 0.2845 0.0261 
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S
E

N
S

O
R

 

T
Y

P
E

-2
 

Motion 

1 
0.4031 0.0523 0.4842 0.0537 0.4236 0.0536 

Motion 

2 
- - - - - - 

 

Table 4.7 MSE and Maximum Estimation Error for SENSOR TYPE-1 and SENSOR 

TYPE-2 image sequences where N=5000 (intensity level 30 and 20) 

Intensity  

 Level 

Data 

Mean+ 

30 

Mean+ 

20 

 
Motion 

number 

Max 

Estimation 

Error 

MSE 

Max 

Estimation 

Error 

MSE 

S
E

N
S

O
R

 

T
Y

P
E

-1
 

Motion 

1 
3.4665 0.1742 3.8947 0.7032 

Motion 

2 
0.2901 0.0244 0.5785 0.1677 

S
E

N
S

O
R

 

T
Y

P
E

-2
 

Motion 

1 
0.4261 0.0496 1.7588 0.3710 

Motion 

2 
0.2805 0.0246 0.5841 0.1701 

 

Table 4.8 MSE and Maximum Estimation Error for SENSOR TYPE-1 and SENSOR 

TYPE-2 image sequences where N=5000 (intensity level 30, 20 and 10) 

Intensity  

 Level 

Data 

Mean+ 

15 

Mean+ 

14 

Mean+ 

13 

Mean+ 

10 

 
Motion 

number 

Max 

Estimation 

Error 

MSE 

Max 

Estimation 

Error 

MSE 

Max 

Estimation 

Error 

MSE 

Max 

Estimation 

Error 

MSE 

S
E

N
S

O
R

 

T
Y

P
E

-1
 

Motion 

1 
9.0340 12.320 8.3779 14.901 12.840 55.306 37.242 379.87 

Motion 

2 
2.6710 0.2260 - - - - 2.4577 0.5166 

S
E

N
S

O
R

 

T
Y

P
E

-2
 

Motion 

1 
1.2659 0.4094 6.8281 3.2369 - - NO TRACK 

Motion 

2 
- - - - - - - - 

 

Following figures show the outputs of the PF algorithm where the population size is 

N=5000 in all setups, except for the SENSOR TYPE-1 data motion 1 with target 
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intensity levels 15, 14 and 13, where the population size is selected as N=7000. The 

input image and the image after background subtraction for the randomly chosen 28th 

frame are shown in each figure to visualize the SNR of the image sequences and the 

visibility of the target. Red circles are indicate the target when it is not visible. In each 

figure, the evolution of the estimation error for the sequence and a trajectory estimation 

are given. The aim of this representation is to compare and visualize both the estimated 

trajectory and the estimation error obtained on the given sequence. 

In the cases where intensity levels are below 20, the PF algorithm needs a feedback 

loop where the estimated motion model captured by the B vector directs the particles 

towards the correct pixel and velocity information is included in the particle weights 

to reduce the dependency on intensity measurements. It is also necessary to increase 

the population size to reduce the MSE of tracking. 

According to Table 4.6, Table 4.7 and Table 4.8 as the intensity of the target decreases, 

the MSE increases gradually. But in the levels of 15, 14 and 13; the SNR gets lower 

and the estimation error of the PF algorithm increases. Although it is an expected 

observation, the proposed algorithm reaches its limit in Motion Model 1 approximately 

in the target intensity level of 10 based on the effect of the background pattern.  
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 

c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.1 SENSOR TYPE-1 data for Motion 1 with target intensity level 100 

Estimation Error per Frame 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.2 SENSOR TYPE-1 data for Motion 1 with target intensity level 60 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.3 SENSOR TYPE-1 data for Motion 1 with target intensity level 50 

Estimation Error per Frame 
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In Figure 4.1, Figure 4.2 and Figure 4.3 simulation results are given for the SENSOR 

TYPE-1 image sequence with target intensity levels 100, 60 and 50 where the target 

motion is Motion 1. In this situation, there is no need to use Bk in the state model and 

the velocity based weighting algorithm. Tracking algorithm uses only intensity 

measurements and the estimated trajectory accurately traces that of the actual target. 

As one can see, the estimated target trajectories match with the true trajectories with 

the given MSEs in each frame. As given in Table 4.6 the MSE values are around 0.05 

pixel per frame. 

In Figure 4.4, Figure 4.5 and Figure 4.6 the results of SENSOR TYPE-1 data in 

Motion 2 with target intensity levels 100, 60 and 50 are given. The accuracy of the 

algorithm can be seen in both the estimated trajectories and the MSE plots. As given 

in Table 4.6 the MSE values are about 0.02 pixel per frame. 

Figure 4.7, Figure 4.8 and Figure 4.9 present the results obtained on the SENSOR 

TYPE-2 data sequence under the same conditions with Motion 1. As given in the Table 

4.6 the MSE values are about 0.05 pixel per frame. 

As a result of high intensity, the PF algorithm can accurately distribute, weight and 

resample the particles by using only the intensity measurements only. In such 

situations where the SNR is high, the PF algorithm performs perfectly as expected.  
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.4  SENSOR TYPE-1 data for Motion 2 with target intensity level 100 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.5  SENSOR TYPE-1 data for Motion 2 with target intensity level 60 
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a. 28th frame of Input Image b. 28th frame of background subtracted 

Input Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.6  SENSOR TYPE-1 data for Motion 2 with target intensity level 50 
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a. 28th frame of Input Image b. 28th frame of background subtracted 

Input Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.7  SENSOR TYPE-2 data for Motion 1 with target intensity level 100 

Estimation Error per Frame 
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a. 28th frame of Input Image b. 28th frame of background subtracted 

Input Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.8  SENSOR TYPE-2 data for Motion 1 with target intensity level 60 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.9 SENSOR TYPE-2 data for Motion 1 with target intensity level 50  

Estimation Error per Frame 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.10  SENSOR TYPE-1 data for Motion 1 with target intensity level 30 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.11  SENSOR TYPE-1 data for Motion 1 with target intensity level 20 

Estimation Error per Frame 
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Figure 4.10 and Figure 4.11 are the results obtained at intensity levels 30 and 20 for 

the SENSOR TYPE-1 image with Motion 1. Without background estimation, the 

algorithm mixed up the target with near background pixels. As given in 28th frame of 

input image, there are many background pixels whose intensities are similar to that of 

the target. Thus background estimation is a crucial step at these SNR levels. In Table 

4.7, the MSE of the intensity level 30 is still seen to be low, 0.17. But at the intensity 

level 20 it gets hard for the algorithm to track the target and the MSE rises to 0.7. 

In Figure 4.12 and Figure 4.13 the results of SENSOR TYPE-1 with Motion 2 are 

shown. In the first few frames, the target can be estimated correctly. In the following 

frames the target is tracked successfully thanks to the accurate estimation of the Bk 

vector in the motion model, which is fed back to the PF algorithm. The velocity based 

weighting is not necessary and not used in these settings. In Table 4.7 the MSEs are 

calculated as 0.02 and 0.16. 

Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17 present the results obtained 

under the same conditions for the SENSOR TYPE-2 image sequences. The MSE 

values corresponding to these figures are given in Table 4.7 respectively as 0.05, 0.37, 

0.02 and 0.17. As one can see, the MSE increases as the target intensity is reduced. 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.12  SENSOR TYPE-1 data for Motion 2 with target intensity level 30 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.13 SENSOR TYPE-1 data for Motion 2 with target intensity level 20 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.14 SENSOR TYPE-2 data for Motion 1 with target intensity level 30 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.15 SENSOR TYPE-2 data for Motion 1 with target intensity level 20 

Estimation Error per Frame 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.16  SENSOR TYPE-2 data for Motion 2 with target intensity level 30  

Estimation Error per Frame 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.17 SENSOR TYPE-2 data for Motion 2 with target intensity level 20 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 

c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.18  SENSOR TYPE-1 data for Motion 1 with target intensity level 15 
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Es
ti

m
at

io
n

 E
rr

o
r 



68 

 

 

  
a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.19  SENSOR TYPE-1 data for Motion 1 with target intensity level 14 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.20  SENSOR TYPE-1 data for Motion 1 with target intensity level 13 
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The intensity levels 15, 14 and 13 are the levels where the target cannot be seen by 

human eyes. The SNR is really low, thus the target intensity becomes quiet close to 

the background pixels. In these situations, updating Bk recursively, weighting the 

particles based also on the motion information and increasing the number of particles 

do really enhance the tracking performance of the algorithm.  

As shown in Figure 4.18 and Figure 4.19, even though the algorithm loses the target 

in the middle of the sequence, it is later capable of catching up and tracking the target 

until the end of the sequence. This is due to the inclusion of the velocity information 

in the combined weighting strategy. 

As one can see in Figure 4.20, it is impossible to see the target by human eyes even in 

the background subtracted image in this case. But the PF algorithm still can track the 

target in most of the frames. 

Figure 4.21 presents the results obtained with the Motion 2 for the same case defined 

above. The target can easily be tracked in this low SNR case. The error level is given 

in Table 4.8. 

The performance difference in between Motion 1 and Motion 2 on the SENSOR 

TYPE-1 dataset is because of the movement of the target over different regions of the 

background pattern. In Motion 1, the target enters a quiet complex region of the 

background pattern and can be easily lost in the background pixels which have similar 

intensity values. 

Figure 4.22, Figure 4.23, the low intensity level is observed to be tolerable by the 

algorithm and the target is tracked successfully.  

Lastly, the algorithm is tested on the FLIR sequence at intensity level 10. For the 

SENSOR TYPE-1 image with Motion 1 in Figure 4.24, the PF starts to track the target 

but then reaches its limits at the chosen parameter set (noise, particle size, etc.) and 

loses the track. On the other hand, Motion 2 still can still be tracked even at this level 

of SNR. The results obtained on the SENSOR TYPE-1 dataset for Motion 2 are given 

in Figure 4.25. 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.21  SENSOR TYPE-1 data for Motion 2 with target intensity level 15 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.22 SENSOR TYPE-2 data for Motion 1 with target intensity level 15 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.23 SENSOR TYPE-2 data for Motion 1 with target intensity level 14 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.24  SENSOR TYPE-1 data for Motion 1 with target intensity level 10 
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a. 28th frame of Input Image b. 28th frame of background subtracted Input 

Image 

 
c. Trajectory Estimation output of PF algorithm 

 
d. Estimation Error for each Frame 

Figure 4.25  SENSOR TYPE-1 data for Motion 2 with target intensity level 10 
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The effect of motion based weighting process which was mentioned in 3.4.2.2.1 is 

given in below figures. SENSOR TYPE-1 data with intensity 30 is chosen for the 

comparison of hybrid and standard weighting of particles. 

 
a. Trajectory Estimation output of PF algorithm with only intensity based weighting 

 
b. Trajectory Estimation output of PF algorithm with combined weighting 

Figure 4.26 Comparison of standard and combined weighting 

As one can see from Figure 4.26 intensity based weighting process in the PF algorithm 

fails when the SNR is low. On the other hand the combined weighting process 

enhances the accuracy of the tracking. 
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The effect of changing the particle population size is also analyzed. The algorithm is 

tested using SENSOR TYPE-1 image with target intensity 30 for varying population 

sizes. The MSE values are generated by simulating the same particle size for ten times 

and calculating the mean of the MSE. The values of MSE with respect to the particle 

size is given in Table 4.9. The results are also displayed in Figure 4.27, which is 

obtained by interpolating the data. 

Table 4.9 MSE Distribution with respect to Particle Size 

Particle 
Size 

MSE 

250 0,39605 

500 0,36482 

750 0,35549 

1000 0,35629 

1250 0,34512 

1500 0,3459 

1750 0,34662 

2000 0,3514 

2250 0,34502 

2500 0,34423 

2750 0,34776 

3000 0,35508 

3500 0,34867 

4000 0,35218 

5000 0,34457 
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Figure 4.27 Effect of Particle Size on MSE 

As one can see from the MSE values in Table 4.9 increasing the number of particles 

improves the accuracy of the estimation. But above a level of population size, the error 

values become similar to each other.  

Another parameter which should be analyzed is the vector Bk that is used in the motion 

model. Bk vector is updated as described in Algorithm 6, where S, represents the 

number of frames over which the average displacement is estimated to update Bk. The 

variation of the MSE with the number of frames is reported in Table 4.10 and Figure 

4.27. 

Table 4.10 The effect of B vector generation on MSE 

S, 

 # of frames 

MSE for 

Motion 

Model 2 

3 0,1667 

5 0,1641 

10 0,1598 

15 0,1499 

20 0,1426 

25 0,1356 

Population Size 

M
SE
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30 0,1381 

35 0,1229 

40 0,1190 

45 0,1089 

50 0,0985 

 

The Bk vector is used to estimate and update the motion model based on the target’s 

past motion. The choice of the motion model 2 is due to the reason that the algorithm 

is less affected by the background pattern and the tracking is more accurate than 

Motion model 1 at the same intensity. Simulation results show that, in motion model 

2, increasing the number of frames to estimate Bk , results in a decrease in the MSE. 

The reason of the improvement of the algorithm performance due to the increase in the 

number of frames to calculate the Bk vector is because of the linearity of the target 

motion model chosen in these experiments. Since the true Bk vector does not change 

throughout the frames its estimate gets better when a larger number of frames is used. 

Another motion model, like a curvy trajectory with a non-constant velocity vector 

would probably not favor a very large number of frames due to the change in the 

velocity. 

We have also observed that for a lower MSE in motion model 2, as the number of 

frames for updating Bk is increased, a larger number of particles is needed. It can be 

explained as follows: A smaller population size causes an increase in the MSE of the 

trajectory, so the estimated states that are used for the calculation of Bk contain some 

error. Thus updating Bk over a larger number of frames results in an error 

accumulation. The accuracy of the estimation of Bk improves as the number of frames 

increases as in the previous case.   
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Figure 4.28 The effect of Bk vector generation on MSE 

 

The next parameter to analyze in detail, is the measurement noise in the motion model, 

C. The algorithm is tested for the different C values given in Table 4.11. 

Table 4.11 Noise coefficient effect on MSE 

Noise Coefficient 

C 
MSE 

0,005 No track 

0,05 No track 

0,1 No track 

0,5 0,34240 

1 0,46484 

1,5 0,86140 

2 3,55750 
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Figure 4.29 The effect of measurement noise in PF MSE 

As seen in Figure 4.29, the increase in the noise coefficient, C in (3.2) results in an 

increase in the trajectory estimation, MSE. For lower values of C, the process noise in 

the state update equation is taken so small that the algorithm cannot distribute the 

particles within a sufficiently large region where the target probably exists. Hence, the 

target cannot be tracked as reported in Table 4.11. On the other hand, when C is larger, 

the process noise is assumed to be bigger and the area of the distributed particles 

increases but the target is mostly lost in this too large region. 

To conclude, the experimental results presented in this chapter have led to the 

following findings. The proposed PF based tracking algorithm can track the target in 

really low SNR even if it is not visible to human eyes. However in situations where 

the SNR is very low, the algorithm may result in a high estimation error and it may 

even lose the target. It is observed that, the performance degradation in very low SNR 

sequences can be mitigated by including priors on the motional behavior of the target 

in the state transition model.   

Number of Frames 

M
SE
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CHAPTER 5  

 

CONCLUSION 

 

 

In this study, a Particle Filter based tracking algorithm is offered to solve the problem 

of tracking dim point targets in IR image sequences with low SNR.  

In the thesis, two IR image sequences generated from two different IR cameras are 

used and the target motion is embedded into the sequences synthetically. The 

performance of the algorithm is studied for different SNR values generated by 

changing the intensity of the target.  

The proposed algorithm includes some approaches that enhance the performance and 

robustness of the algorithm in the low SNR cases. These approaches are listed below: 

 The proposed algorithm is a TBD algorithm which uses preprocessing steps to 

reduce the number of candidates for tracking. 

 The proposed algorithm is based on the Particle Filter where the particles are 

weighted using both intensity measurements and the estimated motion 

information. 

 The proposed algorithm includes a state transition model which is updated with 

the past motion information that directs the particles towards the target’s real 

coordinates. 

 The proposed algorithm offers an approach for gradually eliminating the initial 

candidates since the number of candidates may be large, which increases the 

computational complexity. This approach is based on the motion consistency 

of each candidate point between its past and present motion. 

 The tracking of the target in each frame is achieved by using the information 

of only previous frames. For this reason the algorithm is causal. 
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The results show that the Particle Filter tracking algorithm with the proposed 

approaches performs well in low SNR IR image sequences with a tolerable MSE. It is 

also shown that the background pattern affects the traceability of the target. In order 

to improve the performance of the algorithm especially in very low SNR data, we have 

adopted several approaches such as the inclusion of the velocity information in the PF 

weighting process and the adaptive estimation and update of the state transition model 

parameters. The experimental results suggest that these proposed strategies give 

promising results especially in data with challenging background patterns. 

The performance of the algorithm may change under the conditions listed below; 

 If the target has high velocity during its motion the algorithm may fail to track 

it. State model can be redesigned to solve this problem with including the 

velocity and acceleration changes. 

 If the target can not be detected at the beginning of its motion, the algorithm 

couldn’t be able to track it because it can only track candidate points at the 

beginning. 

 If the target has an oncoming motion, the algorithm may fail to track it because 

it appears at the same pixel for a while before its size starts to increase. 

5.1. FUTURE DIRECTIONS 

Some future directions of our study are the following: 

 Even though the algorithm is observed to track the target under very low SNR 

conditions the trajectory estimation error may be high. This error may be 

decreased by choosing a state transition model that includes velocity and 

acceleration information. Enriching the state transition model in this way may 

result in better tracking performance. 

 Although the algorithm has not been tested on maneuvering targets, it can 

potentially handle this scenario due to the estimation and update of the target 

velocity information. The performance evaluation of the proposed tracking 

algorithm on maneuvering targets is an interesting future direction. 
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