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ABSTRACT

AN EFFECTIVE APPROACH FOR COMPARISON OF ASSOCIATION
RULE MINING ALGORITHMS BASED ON CONTROLLED DATA,
STATISTICAL INFERENCE AND MULTIPLE CRITERIA

Azadiamin, Sanam
M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Gulser Koksal

February 2016, 89 pages

Association rules are an important set of data mining results, which are helpful in
handling large amount of data and extracting useful association information from
them. There are many algorithms developed for finding interesting association rules
and also some other algorithms for rule reduction purposes. All of the proposed
methods have some strong and weak points, which can be useful according to their
application areas. In the literature, there exist several comparison studies trying to
find the best algorithm according to the user’s interests. But every comparison
approach considers these algorithms using different measures, and it is hard to assess
performance of an algorithm with respect to a measure since interesting association
rules are unknown. A novel comparison method has been proposed by Jabarnejad
(2010) based on interesting rules generated by logistic regression to compare rule
reduction algorithms. In this study, this approach is extended to cover all association

rule mining algorithms, on a broader set of test data developing and using relevant

v



comparison measures. This approach utilizes design and analysis of experiments to
generate test data. Furthermore, it defines several comparison measures, and the
dependency and importance of these measures are analyzed using statistical methods
such as factor analysis, ANOVA and nonparametric hypothesis tests. Finally, if
statistical analyses show significant differences between applied association rule
mining methods, it handles multiple comparisons using PROMETHEE. The
approach is demonstrated by comparing three association rule mining algorithms.
The results are discussed and future research directions are presented.

Key Words: Association rule mining, comparison of association rule mining
methods, interesting rules, comparison measures, factor analysis, ANOVA,
nonparametric hypothesis test, PROMETHEE.
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0z

BIRLIKTELIK KURAL MADENCILiGi ALGORITMALARININ
KARSILASTIRILMASI iCIN KONTROLLU VERI, ISTATISTIKSEL
CIKARIM VE COK KRITER TABANLI ETKILi BIR YAKLASIM

Azadiamin, Sanam
Yiksek Lisans, Endistri Mihendisligi Bolimi

Tez Yoneticisi: Prof. Dr. Gulser Koksal

Subat 2016, 89 Sayfa

Birliktelik kurallari, veri madenciliginin 6nemli sonuglarindan biri olarak hacimli
verilerin analizine ve onlardan faydali bilgiler ¢ikarilmasma yardimer olur. Ilging
birliktelik kurallarin bulunmasi ve bunlarin azaltilmasi i¢in bir ¢ok algoritma
gelistirilmistir. Tim Onerilen metotlarin giiclii ve zayif noktalar1 vardir ve bu

metotlar uygulanilan veriye gore faydali olabilir.

Literatiirde birliktelik kural madenciligi algoritmalarini karsilastiran bazi ¢alismalar
mevcuttur. Ancak bunlar en iyi algoritmay belirlemede yeterince basarili degildir.
Her karsilagtirma yontemi bu algoritmalar1 farkl 6lctilere gore degerlendirmekte ve
dogru kurallar bilinmedigi ig¢in bu degerlendirme yeterince giivenilir sonug
veremeyebilmektedir. Jabarnejad (2010) lojistik regresyona dayali  bir

mekanizmadan ilging kurallar elde eden ve bunlar1 bulmada en basarili olan kural
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azaltma algoritmasini belirleyen bir yontem gelistirmistir. Bu ¢alismada, bu yontem
genel olarak birliktelik kural madenciligi algoritmalarin1 karsilastirmak {izere
genisletilmigtir. Bu amagla dogru kurallarin nasil tiiretilecegi, algoritmalarin hangi
veriler lizerinde test edilecegi, karsilastirmada hangi dlgiilerin nasil kullanilacag: ile
ilgili bir yaklasim 6nerilmistir. Test verilerinin olusturulmasi i¢in istatistiksel deney
tasarimi  ve analizi; karsilastirma Olgllerinin iligkilerinin  ve dnemlerinin
degerlendirilmesi i¢in faktor analizi, ANOVA ve parametrik olmayan hipotez testi
gibi istatistiksel metotlar kullanilmistir. Sonugta, eger karsilastirilan birliktelik kural
madenciligi algoritmalar1 arasinda Onemli istatistiksel farklar varsa, bunlarin
karsilastirmasit PROMETHEE ile yapilmistir. Yontem, 6rnek olarak segilen (g
algoritmanin karsilastirilmasi i¢in uygulanmistir. Sonuglar tartisilmis, ileri aragtirma

konular1 sunulmustur.

Anahtar kelimeler: Birliktelik kural madenciligi, birliktelik kural madenciligi
metotlarinin karsilastirilmasi, ilging kurallar, karsilastirma 6lculeri, faktor analizi,
ANOVA, parametrik olmayan hipotez testi, PROMETHEE.
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CHAPTER 1

INTRODUCTION

Data mining is a well advanced field of study that helps data analysts in
interpreting very large amount of data, and extracting interesting and useful
information from them. Many data mining approaches have been presented in
the literature. One of the most useful approaches is association rule mining.
Association rule mining is searching the data to find the relationships and
associations between different attributes of data (Narvekar et al., 2015). To find
such associations and the rules between them, many algorithms and methods
have been proposed and developed, each method has several advantages and
shortcomings, and each one is useful for a specific application or a specific data
type. Each algorithm mines some rules according to some defined interestingness
measures without knowing the exact desired rules. Every run of these algorithms
cause a large number of mined association rules which may contain many
redundant rules. To overcome these problems some approaches are introduced.
One of them is the concept of closed set of items which drastically reduces the
rule set and helps in giving more abstract information (Zaki, 2000). Other
approaches consider some other interestingness measures in addition to support
and confidence (Brin et al., 1997; Fukuda et al., 1996; Nakaya et al., 1999;
Padmanabhan et al., 1998). Some methods are also developed to group and prune
redundant rules and get desired rules (Bayardo et al., 2000; Berrardo et al. 2007;
Strehl et al., 1999; Ng et al., 1998; Srikant et al., 1997; Toivonen et al., 1995).
But there also exist approaches that do the both job at the same time; they find

the association rules while pruning the redundant ones (Vu et al., 2014).
1



Some comparisons of these algorithms have been performed in the literature by
considering different measures and by testing the algorithms on various real and
artificial data sets. Most of these comparison methods consider the algorithmic
aspects of association rules (Hipp et al., 2000), or considering the running time
of the algorithms. Some of them are also considering some common
interestingness measures like support or confidence. In fact, to the best of our
knowledge, no method in the literature considers all these criteria simultaneously
and can select the best algorithm accordingly. Actually an important problem is
that the user’s interesting rules or in other words “true” rules are not known in

any of these cases, so the comparisons are subject to inaccuracies or even errors.

In this thesis study, this comparison problem is addressed. For this purpose, we
use a novel comparison approach proposed by Jabarnejad (2010), and develop
and test it further to compare association rule mining algorithms in general. Use
of a statistical experiment is proposed to compare the algorithms for different
sizes and types of data as well as other factors such as number of attributes and
support value. New performance measures are developed to compare the
association rule mining algorithms, since those developed by Jabarnejad (2010)
are appropriate only to compare the rule reduction algorithms. As there may be
dependencies between some of these newly defined performance measures, and
as we prefer to use measures that show different properties of the association rule
mining algorithms, we propose to find and select independent measures, to the
best we can, based on a factor analysis of the experimental results. Our
comparison approach, then, proposes to perform hypothesis tests to find out if all
of the algorithms have the same average performance or not. Such statistical
comparisons of the algorithms may reveal that algorithms perform equally well
for some or all selected comparison measures. Otherwise, if according to the
statistical test results the algorithms seem to be different for at least two
comparison measures, we propose the use of an appropriate Multi Criteria

Decision Making approach such as PROMETHEE to compare the algorithms.



In order to demonstrate our comparison method, some association rule mining
algorithms are selected among the ones commonly used in the literature for
comparison (Hipp et al., 2000; Zheng et al., 2001; Margahny et al., 2006; Vu et
al., 2014; Fournier-Viger et al., 2014) and also by considering availability of their
software (Fournier-Viger et al., 2014; Borgelt, 2015).

The thesis is organized as the following: In Chapter 2, a literature review is given
and a background about association rule mining algorithms and their comparison
methods is provided for the thesis work. A review about some multi criteria
decision making approaches including PROMETHEE is also provided in this
Chapter. In Chapter 3, Jabarnejad’s comparison method (Jabarnejad, 2010) is
reviewed in detail, and true rules generation using sample regression model is
covered. Then experimental data generation is described, comparison measures
are developed, and the comparison approach is presented. Chapter 4 contains
information about an application of the comparison method on the selected
algorithms. Statistical analyses of these selected algorithms are also explained in
this chapter as part of the proposed comparison approach. Conclusions and future
work directions are provided in Chapter 5.






CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

Association rules include important information for data interpreters, and many
association rule mining algorithms are developed to extract these information for
different applications. In the literature a brief description about association rules and
the related algorithms is given, and comparisons done in various studies about these
methods considering several comparison measures are provided. Furthermore, a
background on PROMETHEE, one of the most effective multi criteria decision

making approaches, is given.

2.1 Association Rule Mining and Rule Reduction Algorithms

Association rules are first introduced by Agrawal et al. (1993). An association rule
shows a transaction in the form of x =y, in which x and y are two sets of items that
do not share common items. These two sets are called an item set. In this kind of
expression, x stands as an antecedent, and y stands as a consequent of the association
rule. The goal of association rule discovery is to find these kind of associations
among items from a set of transactions in data set. The most evident example of one
association rule can be found in a market basket data set which shows the relation of
two items; when someone buys a bread he will probably buy an egg. So a bread and

an egg are an item set of this rule.



There are many algorithms developed for finding association rules. Most of them
and especially the most basic ones are trying to find all association rules. This leads
to finding many association rules that most of them may be redundant and not
interesting for users. These algorithms work with some predefined measures or
interestingness measures which help users in finding association rules. The most
common used interestingness measures, are support and confidence that are defined
according to user’s interests. The support of an item set x =y in the database D is
defined as the percentage of transactions that contain x = y. It measures the
generality of the rule. The confidence of (x =) is the percentage of transactions in
D containing x that also contain y. It measures the strength of the rule. The user
defines the minimum thresholds for support and confidence and if the rule’s support
and confidence are above specified thresholds, it will be discovered by that

association rule mining algorithm.

There are many algorithms trying to find the association rules by searching the data
set and counting the support values of frequent item sets. These algorithms can be
categorized into two approaches according to the search strategy they apply on data
sets (Hipp et al., 2000). The first approach employs the breadth-first search (BFS)
strategy, and the other one employs the depth-first search (DFS) strategy. The
strategies work like this: if there are k-item sets in the data, BFS strategy counts
support values of all (k - 1)-itemsets before counting the support values of the k-
itemsets. Unlike this, DFS starts counting the support values of k-itemsets, and then
proceeds to counting other support values recursively. The most well-known
association rule mining algorithm is Apriori algorithm developed by Agrawal et al.
(1993), which is the basic of many other algorithms developed later. It discovers all
significant association rules in data sets by using the BFS strategy. AprioriTID and
AprioriHybrid are extensions of the basic Apriori algorithm that were developed in
order to improve some properties of it (Agrawal et al., 1994). Later Han et al. (2000)
proposed FP-growth to mine the frequent itemsets. It works according to the DFS

6



strategy and frequent-pattern tree structure based on prefix-tree. FP-growth improves
the efficiency of the mining process by avoiding the costly and repeated data scans,
and mining a set of smaller tasks using partitioning-based method in order to reduce
the search space. This causes the faster performance in comparison to Apriori. There
are many developed algorithms introduced later for finding association rules like
Eclat (Zaki, 2000), Charm (Zaki et al., 2002), Closet (Pei et al., 2000) which discover
frequent itemsets. Recursive elimination, known as Relim (Borgelt, 2005), is also
one of these algorithms for finding frequent itemsets. It works without applying
prefix trees, processes the transactions directly, and performs the task of mining by

using the simple recursive structure.

There are several software packages that apply these methods such as Weka (Weka,
2016) and SPMF (Fournier-Viger et al., 2014). SPMF, which is used for the
application of association rule mining algorithms in this thesis, is a java open source
data mining library which provides java codes of more than 100 data mining
algorithms with a simple user interface for application purpose. The user defines
some thresholds like the minimum support value according to the selected method,
and gets the output in the form of text file. Different performance tests are provided
in this source in order to evaluate the performance of SPMF.

Association rule finding algorithms are not enough by themselves to find interesting
and desired rules, since they may find many redundant rules. In order to prune these
redundant rules, some methods have been developed which help in delivering the
interested results. This sometimes also happens by defining some more
interestingness measures in addition to support and confidence. These methods and
approaches are also known as rule reduction algorithms (Zaki, 2000; Brin et al., 1997
Fukuda et al., 1996; Nakaya et al., 1999; Padmanabhan et al., 1998; Bayardo et al.,
2000; Berrardo et al. 2007; Strehl et al., 1999; Ng et al., 1998; Srikant et al., 1997,
Toivonen et al., 1995).


http://www.philippe-fournier-viger.com/spmf/zaki2000.pdf
http://www.philippe-fournier-viger.com/spmf/Charm02.pdf

2.2 Comparison Methods of Association Rule Mining Algorithms

By studying the comparisons of association rule mining algorithms published in the
literature, it can be seen that they almost use the same measures such as execution
time of algorithms on different data, or they look at usability of these algorithms in

sparse or dense data sets, and by considering different support values defined by user.

Hipp et al. (2000) deals with the algorithmic aspects of association rule mining
algorithms. In their work, the performance analyses are done using both runtime
experiments and theoretic considerations. In this work, three important algorithms,
namely Apriori, Eclat, and Partition have been compared, and although they have
employed different strategies, runtime behavior is found similar for them in the

performed experiments.

Zheng et al. (2001) compares five well-known algorithms (Apriori, FP growth,
Closet, Charm, and MagnumOpus) for their running time and by considering
different support values, on several real and artificial data sets. The results showed
that FP-growth has the best performance in running time. It also showed that new
algorithms like FP-growth and Charm are much faster than Apriori. However,
Apriori is faster than others for high minimum support in these experiments. Also on
the real dataset, for minimum support, FP-growth is better than Apriori. It also shows

that the algorithm selection is mostly dependent on the support value.

Margahny et al. (2005) compares Apriori, Eclat, and FP-Growth according to the
number of data scans and also data structures, and at last develops a method to
address the deficiency of these algorithms. It can be seen that FP-growth is better

than the others, since it has showed less number of data scans in these experiments.

8



Vu et al. (2014) also compares the running time of three well-known algorithms
(Apriori, Eclat, and FP-Growth) on sparse and dense data sets. According to the
results, each algorithm shows different performance on different data types. Eclat
performance is the best on dense data, while FP-growth has the fastest run on the
sparse data. Apriori shows the weakest performance from the point of support with

regard to other mentioned methods.

Fournier-Viger et al. (2014) also compares the running time of some well-known
algorithms. Execution time of several important algorithms including Apriori, FP-
growth, and Relim on dense and sparse dataset samples have been compared. FP-
growth shows the best performance for both execution time and memory usage

measures.

There is also a novel comparison method proposed by Jabarnejad (2010), which
enables data analysts to precisely evaluate the performance of different rule
reduction methods on controlled data sets for which true rules are known. This

method is used and extended in this thesis study.

2.3 Comparison Measures

In the literature certain measures are used to compare the algorithms. The execution
time is one of them, which is used in almost every comparison study. Interestingness
measures which play an essential role in association rule mining in order to find the
desired rules according to user’s interest, can also be used as comparison measures.
There are many studies in the literature, which deal with interestingness measures to
find the best rules especially in the post processing step of association rule mining.

The most well-known and classical measures to characterize association rules are



support and confidence. Jimenez et al. (2013) defines interestingness measures for
standard association rules. These include support, confidence, lift and conviction.
Omiecinski (2003) introduces three metrics according to the rules confidence to find
the interesting rules. McGarry (2005) divides the measures of interest into subjective
and objective measures, and the characteristics of them have been discussed in his
work. In his work, objective criteria such as rule coverage, rule complexity, rule
confidence and rule completeness are often used as a measure of the interestingness
of the discovered rules. Geng et al. (2006) also provides the list of probability based
objective interestingness measures for rules in which some privilege measures like
support, confidence, and lift can be seen. Bramer (2007) also uses confidence,
support and completeness as three main and common measures. There are also other
works like Vo et al. (2011) that make use of these common interestingness measures.
In Choi et al. (2005) business values of rules are discussed according to three
categorizations. Tan et al. (2002) provides a comparative study according to certain
attributes and an original approach to the selection of measures by an expert. Later,
Lenca et al. (2008) has completed this work by providing the list of some important
and different measures which help users to find the best rules. This measures list is
developed by defining some attributes which help users to select interesting and
important measures by the means of PROMETHEE approach. The list of the most
preferable measures determined by PROMETHEE includes BF, CONV,
CENCONF, LOE, and CONF.

2.4 PROMETHEE and Other MCDM Approaches

In many problems, several objectives or criteria should be considered at the same
time to find the desired results and solve the problems. These problems are handled
in the domain of multi criteria decision making (MCDM), and they can be solved
using methods available in this area. The study of the association rule mining

methods considering several performance measures defined for comparing purpose,

10



can be considered as one of these multi criteria decision making problems since
different algorithms may behave differently for different criteria, and the best method

selection is not the easy challenge for the users in many cases.

Many MCDM approaches make decision making process easier. Analytic Hierarchy
Process (AHP) (Saaty, 1988) is one of the most well-known methods in this area,
which is helpful in finding the most desirable alternative solution considering several
independent criteria. Founder of AHP, Saaty, says “Many decision problems cannot
be structured hierarchically because they involve the interaction and dependence of
higher-level elements on lower-level elements. Not only does the importance of the
criteria determine the importance of the alternatives as in a hierarchy, but also the
importance of the alternatives themselves determines the importance of the criteria.
Feedback enables us to factor the future into the present to determine what we have
to do to attain a desired future” (Saaty, 2000). In such cases, Saaty (2000) proposes
to use Analytic Network Process (ANP). The Analytical Network Process (ANP) is
a generalization of the Analytic Hierarchy Process (AHP) and developed by Saaty
(2000) which deals with problems with interdependent elements, and it works with
constructed network structure. ANP does pairwise comparisons by asking several

questions to the decision maker.

PROMETHEE (Preference Ranking Organization Method for Enrichment
Evaluation) is another MCDM approach introduced by Brans (1985). Priorities of
alternatives under multiple criteria can be evaluated by this method. PROMETHEE
assumes criteria are independent of each other. Therefore in the case of dependent
criteria, some researchers prefer finding weights of criteria by ANP and then using
PROMETHEE for ranking the alternatives (Anakli, 2009; Tseng, 2009; Barve et al.,
2015; Sakthivel et al., 2015). PROMETHEE has several steps which is briefly
covered here (Anakli, 2009).
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Step 1: Data matrix is constructed and notation is:
A: Alternatives
K: Set of criteria (the criteria indices)
F: Real valued criteria

W: weight of criteria (relative importance of criterion fx, which can be obtained
using ANP Method for dependent criteria, and AHP Method for independent
criteria.)

Step 2: preference functions, which represent the intensity of the preference of one
alternative over another, are determined for each criterion according to the properties
of each criterion. Preference function has to be a non-decreasing function and its

value equals to zero for negative values of d.

Then we define d = fk(Al) — fk(A2) for all criteria and for all pairwise alternative

comparisons.
We can also define Pk(A1,A2) = p(fi(A1) — f2(A2)).

After choosing the preference function and calculating d values, next step is
determination of corresponding parameters for preference function by asking several
questions to decision maker. Then according to these values and defined preference

function, Pk is calculated for all pairwise comparisons.
Step 3: multi — criteria preference index, [], is calculated as:

YK wiPj(A1, A2)
k ]
Xja W)

[T(A1, A2) =

[1 (A1, A2) represents the decision maker’s preference intensity of alternative Ai over

A by considering all sub criteria at the same time.

[[= 0 means weak preference of alternatives, and [[= 1 means strong preference of

alternatives.
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Using above formula, [] values are calculated for pairwise comparisons of all

alternatives and then gained the overall comparison of all alternatives by considering
all criteria.

Step 4:

Then leaving and entering flows for each alternative are defined, like:

P~ (Ay) = Xier[1(4;,47) Entering flow of alternative 1

Pt(A1) = Yier[1(A1,, A Leaving flow of alternative 1

®(A;) = &1 (4A;) — @ (4;) Net flow of alternative 1
Step 5:

Complete preorders are determined in this step by comparing the net flow values. So,
Priorities can be determined by this way, and the best association rule mining
algorithm will be selected.
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CHAPTER 3

ASSOCIATION RULE MINING ALGORITHM COMPARISON
METHOD

A new comparison method based on regression model, statistical analyses, and
MCDM approaches is developed. This method applies the comparison process
between different association rule mining algorithms considering the real interesting
rules defined by the user using regression model. Several steps are defined for this
comparison approach including defining the real interesting rules or true rules,
generating experimental data, defining comparison measures, and finally comparing

algorithms using the values of comparison measures and different analyses.

3.1 Overview of the Method

The idea of the comparison method proposed by Jabarnejad (2010) is to intentionally
generate sample data considering several factors with evident interesting association
rules (true rules), then apply different association rule mining algorithms on the
generated data, and finally evaluate the performance of the applied association rule
mining algorithms based on some measures. Data consist of independent and random
variables (in his thesis work some process variables and one failure status). In this
method, a logistic regression model is used to simulate the failure incidence of, say,
a manufacturing system. The power of this method is that, unlike other comparison
methods, we know the true rules expressed in the form of a logistic regression model.
15



Therefore, we can compare the rules derived by the algorithms with the true rules.
Jabarnejad (2010) compares rule reduction algorithms. We extend this method to the
case where we can compare association rule mining algorithms, in general. For this
purpose, we revise the comparison measures, develop new ways of generating test
data including sparse and dense data. We use some statistical analyses in the
proposed comparison approach. We also improve the way we compare the

algorithms under multiple criteria or measures.

3.2 Generation of True Rules

After selecting the algorithms and defining the comparison measures, we need
several data sets to perform our comparison. For this purpose, we generate some
artificial data with known rules which we call true rules, apply selected algorithms
on them, and finally measure performance of each algorithm on each data set using
a set of comparison measures. For generating these data, we basically use the
approach of Jabarnejad (2010), which is explained here briefly. According to this
approach, some independent binary variables x,,x, ,..., x,, representing, say,
manufacturing process variables and one binary variable z representing the failure
status of the manufacturing system are defined. Then a logistic regression model is
used to predict the probability of not observing the failure event. In order to explain
the true rule’s generation process clearly, one sample regression model can be

defined as in Equation (3.1).

y=2999 —x; — Xy —X3— X3 — X5 + € (3.2)

For our proposed model, we consider five process variables which have significant
effects on the failure event. These are effective process variables which are

independent of each other, and have uniform distributions. Value of a process
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variable is taken as 1, if it is available and active in the system, otherwise zero. For
this model, we also consider that all these five process variables have negative effect
on logity, so their coefficients are considered to be —1 in the given logistic regression
model. According to this model, logit y is calculated using Equation (3.1) in which
€ , representing the error, is supposed to have a normal distribution with mean 0 and
variance 0.1. The constant term of the model which can be considered as the initial
effect of the setup on the system, is taken as 2.999 to obtain a clear failure status as

explained below.

The independent process variables are assigned random values according to a
designed experiment, € is assigned a random value, and from Equation (3.1) the
corresponding logit (y) value is obtained. Probability of not observing the failure,

f(y), is calculated after placing the y value in Equation (3.2)

ey

fo) = (3.2)

Then the failure status is determined by Equation (3.3):

_ (1iff(y) < 0.5
z= {o if f(y) > 0.5 (3.3)

If z =1 there is a failure, and if z = 0 no failure occurs. When f(y) = 0.5, failure status
remains at a borderline. To avoid this situation, the constant term in Equation (3.1)
is selected as slightly different than 3.

In this thesis, we use the logistic regression model of Equation (3.1). The sample
generated data with four runs is given in Table 3.1.
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Table 3.1 Sample Generated Data with Four Runs

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 1 1

Since there are two levels for each of the five process variables in the defined model,
there are 32 possible combinations of the process variable values. The resulting
expected logistic function values for all possible combinations of the process
variables are listed in Appendix A. In the table provided in appendix A, f'(y) shows
the probability of observing the failure, which is f'(y)=1-1(y), and f(y) shows the

probability of observing the success.

Every one of these 32 combinations can be considered as an association rule. When
association rule mining algorithms are applied on these generated data, we have two
consequents which are failure probability f (y), or success probability f (y). So we
have 64 association rules with defined confidences. The confidences of rules, with
the success event as consequent, are consistent with the probabilities of not observing
a failure event or f (y). Similarly, the confidences of rules, with the failure event as
consequent, are consistent with the probabilities of observing a failure event or £(y).
We assume the data analyst is interested in failure event with minimum confidence
of 50%, as we have 32 rules consistent with failure event and just 16 of them have
confidence more than 50%, these 16 association rules become important failure
association rules. In this thesis, we call them as true rules which are listed in Table
3.2. These true rules will be considered as a benchmark to analyze the association

rule mining algorithms.
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Table 3.2 True Rules

X1 X2 X3 X4 X5 y f(y) Confidence
1 0 1 0 1 1 -0.0010 0.4997 0.5002
2 1 0 1 0 1 -0.0010 0.4997 0.5002
3 1 0 1 1 0 -0.0010 0.4997 0.5002
4 1 1 0 1 1 -1.0010 0.2687 0.7312
5 1 1 0 0 1 -0.0010 0.4997 0.5002
6 1 1 1 1 0 -1.0010 0.2687 0.7312
7 0 0 1 1 1 -0.0010 0.4997 0.5002
8 0 1 1 0 1 -0.0010 0.4997 0.5002
9 1 1 1 0 1 -1.0010 0.2687 0.7312
10 1 1 0 1 0 -0.0010 0.4997 0.5002
11 1 1 1 0 0 -0.0010 0.4997 0.5002
12 1 0 0 1 1 -0.0010 0.4997 0.5002
13 0 1 1 1 0 -0.0010 0.4997 0.5002
14 0 1 1 1 1 -1.0010 0.2687 0.7312
15 1 0 1 1 1 -1.0010 0.2687 0.7312
16 1 1 1 1 1 -2.0010 0.1190 0.8809

3.3 Design of Experiments and Generation of Experimental Data

By applying the regression analysis method explained in the previous section, we
can generate artificial data with known rules, and by defining desired confidence
level and thresholds, we can determine true rules. By doing this, we will know
interesting rules and use them as our benchmark in evaluating the performance of
applied association rule mining algorithms. As mentioned above, we obtained 16 true
rules shown in Table 3.2. Jabarnejad (2010) in his thesis work defines four true rules
and uses them in comparing two grouping and pruning methods for association rules,
and the method is good, if it does not prune these rules and also if it does not keep
other rules except them as much as possible. As a result, important failure rules,
namely, true rules can be used to measure the performance of rule reduction methods

from the view of information loss. In this thesis, we extend this method and evaluate
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the association rule mining algorithms to see if they give us these true rules, and how
they are efficient in giving the less number of redundant rules and more of the true
rules. We also evaluate their performance on several generated data sets based on

some performance measures.

In this study, in order to have better and more realistic comparison results, we
propose to apply the comparison method on data sets generated according to a
statistically designed experiment taking into account properties of real data sets. In
the proposed experimental design, the following factors are taken into account: Data
type (DT) (sparse, dense), number of attributes (NA), size of data (number of runs
of the desired regression model) (NR), support value (SV). These different data sets

can be generated using the logistic regression based method explained in Section 3.2.

Let us define these factors in detail, and the way they are defined in generated data.
Data type (DT) is one of the most important factors which should be considered when
applying different association rule mining algorithms. As it is mentioned in the
literature, many association rule mining algorithms have different results on different
data sets and in order to understand and compare them better, they should be applied
on different data types. Sparsity and density show data type which may have different
definitions according to their application areas. In numerical analysis, sparsity
describes the percentage of cells in a database table that most of the elements are
zero. By contrast, density shows the percentage of cells in a database table that most
of the elements are nonzero. The fraction of zero elements over the total number of
elements in a matrix is called the sparsity (Tewarson, 1973). By using these
definitions, we have calculated sparsity considering the 0 and 1 elements in our
generated data sets; if sparsity is below 45, we have considered that data set as dense,
otherwise sparse. So we have considered two levels for Data type (DT): sparsity <
45 (D) or sparsity > 45 (S).
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Number of attributes (NA) is also one important factor which have been considered
in generating data sets. As mentioned in part 3.2, some process variables should be
defined for suggested regression model in order to generate association rules. For
our model we have considered five process variables or attributes which are effective
in failure / success events. However, in real data, we commonly encounter with many
process variables that make data more complex, and due to this, many redundant
association rules are mined that makes the role of association rule mining algorithms
more important in finding true rules and also finding the least number of redundant
rules. So in order to make our artificial data show the characteristics of real data, we
add some other ineffective process variables in the model, which do not have any
effect on failure / success event, but make artificial data more real and complex.
Some of these variables are assigned randomly, and some of them can take values
dependent on other effective process variables’ values. Two kinds of these attributes
have been considered in our model. The first type is dependent on other effective

process variables, and can be defined as:

Ifx; + x, + x3+ x4 + x5 = 3,then x4 = 1, otherwise x4 = 0.

This variable shows that if at least 3 effective process variables have the value of 1,
then it will be 1. Otherwise, it will be 0.

Second type ineffective attribute also does not have any effect on failure/success
event, and also it is not dependent on other effective process variables. The value of

this variable is assigned randomly as 0 or 1.

Two levels have been considered for number of attributes (NA) factor, 7 or 14, in
which 7 attribute level shows data set having 5 effective and 2 ineffective attributes,
and this data set may not reflect the real data sets completely. In contrast, 14
attributes may reflect real data sets better, by considering much more ineffective

attributes as defined above.
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One other factor that is defined for generating data sets is data size (NR), which
shows the number of runs of the suggested regression model. 100 or 10000 tuples is
considered for data generation, the first one shows a small data set, the second level

shows a big data set.

As mentioned in literature, support value is one of the most effective factors the user
determines. As mentioned, different association rule mining algorithms show
different performances with different support values. Support value (SV) is not
effective in generating the data sets, but it is the threshold we define when applying
association rule mining algorithms on generated data. Since it is important in
performance of association rule mining algorithms, we consider it as one factor in
experimental designs. Two levels are defined for it: 0.05 or 0.20. The first one is
considered as a low support value, and the second one as a high support value. The
reason of setting low support value as 0.05 is that, it causes mining approximately
all association rules by selected algorithm. And, the reason for selecting 0.20 as high
support value is that, setting higher values cause approximately no rule mining. A

Matlab code is developed for generation of the suggested data sets.

In creating different data sets, we consider DT, NA and NR. SV is not important for
generating different data sets, because support values are just considered in applying
different algorithms on data sets. Hence, we have 2x2x2=8 different data sets. We
can compare any number of algorithms on these data sets, and with two different
support values. For example, if we compare three algorithms, this leads to a full
factorial design with 8x2x3=48 different experiments to conduct. But we can also
use a fractional factorial design instead of the full one (Hedayat et al., 2012). Since
we need a comprehensive comparison considering all defined factors and levels, we
use a full factorial design. The full factorial design for collecting data to compare

three algorithms using selected factors and levels is available in Appendix B.
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We need to run each association rule mining algorithm on these designs, and totally

for three association rule algorithms, we have 48 experimental runs.

For having better results, we suggest replicating generating datasets at least twenty

times, therefore 960 experiments to be performed.

3.4 Comparison Measures

We have used Tan et al. (2002) and Lenca et al. (2008) in the selection of
interestingness measures, since they have provided a complete evaluation of these
measures used in previous works, and ranked them according to user’s interest by
using multi criteria decision making approaches. The interestingness measures
selected are shown in Table 3.3. In this selection, we have tried to choose commonly

used and different ones that constitute a complete set.

Their absolute and relative definitions are available in Table 3.4, based on the

following explanations and notation.

Given a rule A-> B, define

r1 = ngy,=the number of records satisfying both A and B (the examples of the rule),
r2 = n,= the number of records satisfying B,

r3 = ngi= the number of records not satisfying B,

r4 = n, ;= the number of records satisfying A but not B (the counterexamples of
the rule),

r5 = n,= the number of records satisfying A,

ré = n = the total number of records,
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r7= the number of records satisfying both A and B, and also including other

redundant attributes in antecedent and consequent

P, = probability of observing a

P, = probability of observing b

Pj = probability of not observing b

P, = probability of observing a but not b

P, /b = probability of observing a if b is available in the consequent of a rule

P, 5 = probability of observing a if b is not available in the consequent of a rule

P} /4 = probability of observing b if a is available in the antecedent of a rule

For the case of true rules, A is the antecedent of the true rules, and B is the failure

event.

We have defined 7 rules as defined by notations (r1, r2, ..., r7) for true rules, using

a Matlab code, for calculating the above mentioned interestingness measures.

Table 3.3 Selected Interestingness Measures

Measure name Abbreviation
Bayes Factor BF
Confidence CONF
Conviction CONV
Lift LIFT
Loevinger LOE
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Table 3.4 Absolute and Relative Definitions of the Selected Measures (Lenca et al., 2008)

Absolute definition Relative definition
BF nabnz M
nyn; P./5
CONF Ngp Pp/a
na
CONV n,ny PPp
nn. P
LIFT nngp Pp /s
n,n, P,
LOE nng, —Ngny Pb/a = Pb
Nalp 1-P,

We have customized these interestingness measures according to the true rules
defined in our proposed method. Hence, we define the following five interestingness

measures to be used in the comparison:

> M1 =

BF' = probability of the availability of antecedents of true rules if failure exist
- probability of the availability ofantecedents of true rules if success exist

> MZ =

CONF' = probability of failure if antecedents of true rules exist

> M3 =
CONV' = probability of the availability of antecedents of true rules*probability of success
- probability of success in availability of antecedents of true rules
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> M4_=

__ probability offailure if antecedents of true rules exist

LIFT' =
probability of failure
> M5 =
LOE' = probability of failure if antecedents of true rules exist—probability of failure

probability of success

These measures are calculated for true rules presented with our logistic regression

model for each association rule mining algorithm.

We interpret these measures from statistical viewpoint (as suggested by Omiecinski,
2003; Tan, 2004; Hahsler, 2016) as follows.

Bayes factor (BF) is the degree to which we favor one hypothesis over another. For
example, for the case of true rules, we want to know to what degree observing the
antecedents of true rules in failure events is favored to observing the antecedents of
true rules in success events. If BF is greater than 1, since our defined true rules have
failure in their consequents, it means that the data favor true rules, so the measure is
good and desirable for this experiment. Similarly, if BF is smaller than 1, this means

that the algorithm does not perform well regarding the BF measure and the case this

happened. BF ranges between [0, oo].

Confidence (CONF) also shows the proportion of the transactions that contains
antecedent of the rule which also contains consequent of the rule. For the case of
defined true rules, confidence means the probability of observing the true rules by
the algorithm. So, if the CONF is close to 1, the algorithm is more efficient in finding
desired true rules. CONF ranges between [0, 1].
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Conviction (CONV) is supposed as an alternative to confidence which is not
sufficient to capture the direction of associations. Conviction can be interpreted as
the ratio of the expected frequency that antecedent of the rule occurs without its
consequent. In other words, it is the frequency that the rule makes an incorrect
prediction. For the case of true rules, CONV can be interpreted as the probability of

not observing the true rule. It also ranges between [0, 1].

Lift is another interestingness measure which considers the dependency degree of
the antecedent and consequent of the rule. It measures how many times more often
antecedent and consequent of the desired rule occur together than expected if they
were statistically independent. For the case of true rules, it shows the occurrence of

true rules by considering the statistically dependency of the antecedent and
consequent of the true rules. Lift ranges between [0, c0]. When it becomes 1, it means

antecedent and consequent are independent.

Loevinger (LOE), which is also known as certainty factor, is a measure of variation
of the probability that consequent of the desired rule is in a transaction when only
considering transactions with antecedent of that rule. An increasing LOE or a
negative LOE shows the decrease of the probability that consequent is not in a
transaction that antecedent is in. In the case of true rules, an increasing or negative
LOE shows a high probability of observing true rules when applying the desired
association rule mining algorithm. LOE ranges between [-1, 1].

Besides these five interestingness measures, we propose to use two other measures
which can be more helpful in evaluating the strength of association rule mining

algorithms in finding interesting and also non redundant rules.

If we define rl and r7as

r1= the number of all mined true rules
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r7= the number of all mined true rules and all other true rules including redundant

attributes

Then, % shows the ratio of true rules without redundant elements to true rules

including redundant attributes. It ranges between [0, 1]. When it becomes 1, it means
that all the found true rules have non-redundant elements. If it is O, it means that the
algorithm could not find any non-redundant true rule, and this is the worst case.

% , Is another measure that shows the ratio of true rules to all rules including failure
b

event. It also ranges between [0, 1], and the value 1 means that all the rules including

the failure event in their consequent are true rules, and this is the best case.

Besides the above measures, we include two other measures that most of the
comparison studies in the literature have used them in their works. These two
measures are, Time and memory use. We get the values of them from the software
we use for applying the selected algorithms on generated data. As it is evident, Time
shows the execution time it takes for the algorithm to find the association rules on
the generated data. Memory use shows the memory used by the applied algorithm in

finding the rules.

A complete list of all the measures proposed for use in comparing the association

rule mining algorithms is available in Table 3.5.
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Table 3.5 Complete List of All Comparison Measures

Measure name Measure name
BF rl
r7
CONF Nap
Np
CONV Time
LIFT Memory use
LOE

3.5 Preference Functions

As mentioned, in the second step of PROMETHEE, preference functions are to be
determined for each criterion according to the properties of the criterion. There are
six main types of preference functions including Usual, U-shape, V-shape, Level,
Linear, and Gaussian (Brans et al., 1985). In order to select one of these preference
functions for each criterion, we need to define the criteria and relevant objective
functions properly. Then related parameters for each preference function are
determined by asking several questions to decision maker and also using some

statistical analyses.

The V-shape and Linear preference functions are appropriate for quantitative criteria
(Brans et al., 1985; Behzadian et al., 2010).

Since our defined comparison measures are all quantitative criteria, the Linear or V-
shape preference functions are suitable. So, according to the pairwise comparisons
of algorithms as mentioned in the next section, the preference and indifference
parameters are determined for each criterion. For each criterion defined in this thesis,
if the decision maker decides not to define an indifference parameter for a criterion,
V-shape function can also be chosen. Otherwise the Linear preference function is
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appropriate. These preference functions need to be calibrated according to the

statistical analyses.

Since indifference parameter is important in defined comparison measures, two
different shapes of linear preference function are used for selected comparison
measures according to the definitions and objective functions. The proposed
preference function and its formula for BF, CONF, LIFT, and LOE measures are as

defined in Figure 3.1.

The proposed preference function and its formula for CONV, Time, and Memory

use measures are as defined in Figure 3.2.

Pid)

1 jfd 0, q=>d \i
q
P(d) = , <d<
p—q q p|
~ d L 1, p<d )

qa P

Figure 3.1 Preference Function for BF, CONF, LIFT, and LOE Measures

Bid)
( 0, d>—q \
..................... 1 _d_q
P(d)=! , —p<d<-—
— p q
L 1, d<-p
p -q 4

Figure 3.2 Preference Function for CONV, Time, and Memory Use Measures
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3.6 Comparison Method

The first step in comparison of a set of association rule mining algorithms is to collect
comparison measure data by applying the algorithms on the data sets generated
according to the experimental design and the logistic regression model explained in

Sections 3.3 and 3.2, respectively.

In comparing association rule mining algorithms and identifying the most favorable
ones based on multiple criteria, it is preferred to consider an independent and
complete set of evaluation criteria. Some of the criteria defined in the previous
section may be correlated with each other for a given set of association rule mining
algorithms (alternatives) and data sets they are applied on. Therefore, before
proceeding to a comparison, a factor analysis of the collected data is suggested to be
performed to identify highly correlated measures. It is advisable to choose a single
measure in each group of highly correlated measures loaded under a factor, for use
in the overall comparison. In choosing these measures, we can utilize matrix plots
to observe types of dependencies (linear or nonlinear) between pairs of these
measures. The measures distributed independently from the others should be
favored.

The next step is testing the set of hypotheses that all algorithms perform the same on
the average or not with respect to the selected comparison measures, separately. For
this purpose, ANOVA of the collected measure data can be performed. The ANOVA
model should consider the main effects of data size (NR), sparsity (DT), number of
attributes (NA), and support value (SV) as blocking variables, and the algorithm as
the main variable we are interested in. If ANOVA assumptions that errors are
distributed normally with a constant variance are not satisfied, an appropriate data
transformation can be tired. If this does not help satisfying the error assumptions,
then a nonparametric hypothesis test alternative such as Friedman test can be used.

The Friedman test may consider a main factor (the algorithm), and also a blocking
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variable. The blocking variable can be a combined one of some or all of the variables
NR, DT, NA and SV. For this purpose, we can investigate plots of measure values
of the algorithms versus the variables NR, DT, NA and SV. If these plots indicate
that performances of the algorithms change to a considerable extend with some or
all of these blocking variables, then a new blocking variable can be identified by
combining the influential variables in such a way that the levels of the combined
variable correspond to the tested combinations of the levels of the individual

variables.

Unless the mean performance of at least one algorithm is different than those of the
others in statistical sense for at least one comparison measure, we conclude that the
algorithms perform equally well. Otherwise, we identify for how many measures the
algorithms seem to be different. If algorithms seem to be different for only one
measure, we conclude based on the statistical test results (parametric or non-
parametric). If the algorithms seem to be different for at least two measures we can
use a combination of AHP/ANP and PROMETHEE to compare them.

PROMETHEE requires identification and use of preference function values in
comparing pairs of algorithms for each of the selected comparison measures. If the
difference between a given pair of algorithms is not statistically significant according
to a certain measure under consideration, then the preference function value
corresponding to that difference is advised to be taken as zero. In order to help the
assessment of preference function values of such differences, we can perform
hypothesis tests of equality of means of each and every possible pair of algorithms
(using again the blocking variables) for each and every comparison measure selected.
Since this requires, for each comparison measure and n algorithms, n (n-1)/2 tests,
type | errors of them might add up to an undesirable amount. In order to overcome
this problem, we can use a low significance level, a value, for each of these pairwise

tests. For all practical purposes, a = 2x0.10/ (n (n-1)) can be used.

32



As it is explained in Section 2.4, PROMETHEE consists of several steps. The first
step is data matrix construction, and for this step weights of the comparison criteria
need to be identified. These weights can be found by using AHP, if the criteria are
independent of each other. In spite of the use of factor analysis results in selecting
the criteria, if the selected criteria are believed to have considerable dependencies,

then one can identify their weights by using ANP.

At the second step of PROMETHEE, preference functions are determined separately
for the criteria. In Section 3.5, certain preference function types are suggested for the
comparison measures. Here, these functions need to be calibrated for the selected
measures based on the pairwise comparison of the algorithms. For example, if the
difference of means of any two algorithms is found statistically insignificant, then
the preference function value corresponding to the absolute difference between their
means (and any lower difference value) can be taken as zero or close to zero. The
other shape parameters of the preference functions such as the difference
corresponding to a maximum preference value can be identified again by considering
the maximum difference value observed in the data and also by using the expert
knowledge about the algorithms and measures.

At the third step, a multi-criteria preference index is calculated for each pairwise
comparison. According to these results, entering and leaving flows are defined for
each alternative. Finally at the last step, priorities are determined by comparing the

net flows of all alternatives.

We can use PROMETHEE in two separate ways for comparing the algorithms. First,
we can consider algorithms as alternatives, and compare them comprehensively
considering all the criteria and all data types, as explained above. Second, we can
compare the algorithms under specific levels of the blocking variables (data size,
sparsity or data type, number of attributes, and support value) separately. In the latter

case, alternatives can be considered as algorithms under specific levels of the
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blocking variables. For example, it is possible to compare algorithms to each other
only for the cases of small and sparse data with small number of attributes and small
support value. Similarly, it is possible to compare algorithms under certain levels of
the blocking variables to those under certain other levels of the blocking variables.
Such comparisons can be done in a similar manner as explained above for the overall

comparison of the algorithms.
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CHAPTER 4

APPLICATION OF THE METHOD

In this chapter, use of the comparison method is demonstrated on some selected
association rule mining algorithms. Use of the method in comparison of other

algorithms are discussed.

4.1 Selected Algorithms for Application

In order to demonstrate the comparison method, the following association rule
mining algorithms are selected among the ones used in the literature for comparison:
Apriori (Agrawal et al., 1994), FP-growth (Han et al., 2000) and Relim (Borgelt,
2005). In this selection, availability of their software (Fournier-Viger et al., 2014) is
considered besides their being subjects to a comparison in the literature (Zheng et
al., 2001; Margahny et al., 2006; Vu et al., 2014; Fournier-Viger et al., 2014),

showing different performance to some extent.

4.2 Design of Experiments, Experimental Data, True Rules

We have used the full factorial design described in Chapter 3 and available in
Appendix B to collect the data needed for comparison of the algorithms. Other than

the algorithm and support value, we have three factors (DT, NA, NR) that can be
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used in generating the data sets. As explained in Chapter 3, there are 8 possible

combinations of these factors each at two levels.

For each combination, say data generator, we have generated 20 data sets as
replicates. Each data set generated has a different sparsity value, which we categorize
into low and high levels by considering the 0.45 threshold for sparsity. The complete

list of these sparsity values obtained for the replicates is given in Table 4.1.

Table 4.1. Sparsity Values for 20 Replications

Data
Index | repl | rep2 | rep3 | repd | rep5 | rep6 | rep? | rep8 | rep9 | repl0

1 056 | 051 | 052 | 052 | 052 | 052 | 052 | 055 | 054 | 051
056 | 052 | 050 | 049 | 051 | 051 | 052 | 050 | 052 | 051
040 | 036 | 039 | 037 | 039 | 038 | 038 | 0.38 | 040 | 0.40
031 | 027 | 026 | 030 | 025 | 027 | 0.26 | 028 | 0.29 | 0.27
054 | 051 | 051 | 051 | 052 | 051 | 051 | 051 | 051 | 052
052 | 051 | 051 | 051 | 050 | 051 | 051 | 051 | 050 | 051
042 | 039 | 040 | 038 | 039 | 039 | 039 | 039 | 0.39 | 039

8 0.29 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
Data
Index | repll | repl2 | repl3 | repl4 | repl5 | repl6 | repl7 | repl8 | repl9 | rep20

1 051 | 052 | 049 | 049 | 048 | 050 | 050 | 052 | 054 | 050
050 | 052 | 051 | 051 | 049 | 051 | 052 | 051 | 052 | 051
038 | 039 | 037 | 037 | 037 | 038 | 0.36 | 037 | 041 | 040
028 | 029 | 025 | 030 | 029 | 029 | 029 | 0.26 | 0.28 | 0.28
051 | 051 | 051 | 051 | 052 | 051 | 052 | 051 | 052 | 051
051 | 051 | 050 | 050 | 051 | 050 | 051 | 051 | 050 | 051
039 | 039 | 039 | 039 | 0.39 | 039 | 039 | 039 | 039 | 039
027 | 027 | 027 | 027 | 027 | 027 | 027 | 027 | 027 | 0.27

~N | oo bW

O (N | |0 | W (N

Selected algorithms have been run on each and every replicate data set, using the
java code provided in SPMF website (Fournier-Viger et al., 2014), according to the

experimental design provided in Appendix B.
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4.3 Results for Comparison Measures

We have calculated the comparison measures provided in Chapter 3, based on the
collected data, for Apriori (Algorithm 1), FP-growth (Algorithm 2), and Relim
(Algorithm 3). A Matlab code has been developed and used for this purpose. The
sample results of the calculated measures for one replication are shown in Table 4.2.

Table 4.2 Results for Comparison Measures for Some Experiments

Alg. | NR | DT | NA | SV | BF | CONF | CONV | LIFT | LOE | ng/n, | r1/r7 | Time | Memory
1 1 1 1 1 1 1.16 0.46 0.54 213 | 083 | 0.16 | 0.40 20 12.44
2 1 1 1 1 2 * * * * * 0 * 2 20.32
3 1 1 1 2 1 1.61 0.47 0.91 176 | 043 | 0.01 | 0.05 175 25.16
4 1 1 1 2 2 * * * * * 0 * 6 27.38
5 1 1 2 1 1 1.07 0.47 0.55 194 | 0.80 | 0.15 | 0.33 45 8.38
6 1 1 2 1 2 * * * * * 0 * 2 10.6
7 1 1 2 2 1 1.42 0.46 0.88 160 | 037 | 0.01 | 0.05 86 14.94
8 1 1 2 2 2 * * * * * 0 * 5 23.51
9 1 2 1 1 1 1.10 0.47 0.56 194 | 0.77 | 0.17 | 0.36 159 9.87
10 1 2 1 1 2 * * * * * * * 41 17.24
11 1 2 1 2 1 1.78 0.47 1.03 172 | 036 | 0.01 | 0.07 | 2120 30.25
12 1 2 1 2 2 * * * * * 0 * 314 17.7
13 1 2 2 1 1 1.09 0.47 0.56 194 | 0.77 | 0.17 | 0.35 91 25.84
14 1 2 2 1 2 * * * * * * * 68 10.46
15 1 2 2 2 1 1.79 0.47 1.03 173 | 036 | 0.01 | 0.07 | 2109 24.59
16 1 2 2 2 2 * * * * * 0 * 328 8.65
17 2 1 1 1 1 1.22 0.46 0.53 227 | 088 | 0.18 | 0.45 15 19.74
18 2 1 1 1 2 * * * * * 0 * 12 22.18
19 2 1 1 2 1 | 161 | 047 0.91 176 | 043 | 0.01 | 0.05 | 152 28.04
20 2 1 1 2 2 * * * * * 0 * 17 17.07

*: indefinite values

37



4.4 Comparison of the Algorithms

After calculating the defined measures on different data sets according to the
experimental design, we need to compare the results of these measures to find the
most effective algorithm(s). The results of the comparison measures may not
dominantly favor one specific algorithm. Every algorithm will probably have its own
pros and cons. Therefore, we need to use a multi criteria decision making approach
to have a proper comparison of the results by considering all criteria simultaneously.
We use PROMETHEE for this purpose, but before proceeding to it, the statistical

analyses suggested in Chapter 3 are needed to be done.

First, comparison measures should be studied in detail in order to find the
correlations among them for the purpose of reducing them to independent and

complete set of evaluation criteria for PROMETHEE, to the best we can.

In order to identify highly correlated measures, a factor analysis is performed of the
collected data in our experiments. As it can be seen in Table 3.5, we use 7
interestingness measures, and two other measures (time and memory use) used in the
previous comparisons in the literature. Time and memory usage are two uncorrelated
measures according to these results as shown in Table 4.2. But high correlations exist

among the interestingness measures BF, CONF, LIFT, and LOE, and also among

CONV, e and 2.
np r7
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We select a representative measure from each of these groups of correlated measures.
In order to have a proper selection, we utilize matrix plots shown in Figure 4.2 to
observe types of dependencies (linear or nonlinear) between pairs of these measures.
We try to eliminate measures with not only strong linear dependencies, but also
having distinct nonlinear dependency patterns, if any. We have chosen BF and
CONV that are suggested to give the useful information about association rule
mining algorithms according to some works in the literature and definitions used for
them (Tan et al., 2002; Lenca et al., 2008). They also show the less dependency with
the other measures. We could also use some other measures instead of them like
LIFT, but we prefer to use BF and CONV in this work. As a result, we reduce the
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Matrix Plot of BF, CONF, CONV, LIFT, LOE, nab/nb, r1/r7
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Figure 4.2 Matrix Plots of the Interestingness Measures

The next step is testing the set of hypotheses that all algorithms perform the same on
the average or not with respect to the selected comparison measures, separately. For
this purpose, ANOVA of the collected measure data is performed. The ANOVA has
been done considering the main effects of data size, sparsity, number of attributes,
and support value as blocking variables, and the algorithm as the main variable we
are interested in. But as stated before in Chapter 3, we should check if errors are
distributed normally with a constant variance or not as one of the important
assumptions of ANOVA, and if it is not satisfied for a measure, an appropriate data
transformation should be done for that measure. For this purpose, we have used Box-
Cox transformation for all comparison measures except CONV. Since CONV ranges
between [0, 1], we have tried ArcsinVCONV transformation for it. But for BF, even
the transformations have not helped satisfying the error assumptions. Therefore,
instead of ANOVA, we have used a nonparametric hypothesis test option, the
Freidman test, and evaluated all the variables data size, number of attributes, support

value, and sparsity as blocking variables, and the algorithms as the main factor. We
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have noticed from plots of measure values of the algorithms versus the variables NR,
DT, NA and SV, that performances of the algorithms change to a considerable extend
with almost all of these blocking variables. Therefore, in order to reflect the effect
of all these factors simultaneously, a new blocking variable is identified by
combining all these variables in such a way that the levels of the combined variable
correspond to the tested combinations of the levels of the individual variables. The
residual plots and results of all these parametric and nonparametric hypotheses tests
are available in Appendix C. It should also be noted that we have considered all the
attributes categorical in ANOVA tests, because all of them have 2 or 3 levels. We

have also taken a = 0.1 for these hypotheses tests.

In all of these tests, we have observed that at least one algorithm shows a
significantly different performance than the others on the average, for all comparison
measures. Since the algorithms seem to be different for all measures, we can use
PROMETHEE to compare them. The preference functions to be used in
PROMETHEE need to be calibrated based on pairwise comparisons of the
algorithms using hypothesis tests as explained in Chapter 3. We have performed all
these hypothesis tests for pairwise comparisons of algorithms with a = 0.03.
According to the results of these tests summarized in Appendix D, algorithms 1 and
2 cannot be considered as significantly different from each other on the average in
their CONV and BF performance, but all the other pairwise comparisons show

statistically significant differences between the algorithms.

Comparison of the algorithms using PROMETHEE is performed according to the

steps described in Chapter 2 as follows:

Step 1: A data matrix is constructed from alternatives (algorithms), criteria
(comparison measures), and weights of criteria, W. We have assumed the same

weights for all the criteria. (It is possible to adjust these weights using AHP for these
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independent criteria, if found more appropriate.) The averages of the algorithms for
the comparison measures BF (f1), CONV (f2), Time (f3) and Memory use (f1) are
provided in Table 4.3.

Table 4.3 Data Matrix Structure

A1 A2 As w
f1 0.5973 0.5967 0.4914 0.2500
f2 0.9777 0.9783 0.5768 0.2500
fs 354.8941 | 137.1500 152.7844 0.2500
fa 40.4407 48.2535 94.7381 0.2500

Step 2: Preference functions are determined for each criterion according to the data
type. These functions need to be calibrated for the selected measures based on the
pairwise comparison of the algorithms. Ranges of the Criteria and Objective
Functions are given in Table 4.4. Since the data are real valued, continuous functions
are preferable. And, since small differences between two alternative methods are
negligible up to a point, and preference intensity starts to increase from that point,
we choose the “Criterion with Linear Preference and Indifference area” preference
function for all four criteria (see Section 3.5). Figures 3.1 and 3.2 display the

mentioned preference function for defined criteria.
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Table 4.4 Ranges of Criteria and Objective Functions

I Obijective
Criteria Function
0<CONV<1 Min
0 <BF <+ Max
0 <Time < +o0 Min
0 <Memory <+ Min

We define d = fi(Ai) — f(A;) for criterion k and for all (Ai, A;j) pairwise alternative

comparisons. These values are shown in Table 4.5.

Table 4.5 Calculated d Values for Alternative Pairs

Criterion | d(A1,A2) | d(A1,A3) | d(A2,A3) | d(A2,AL) | d(AsA1) | d(As3AL)
BF 0.0006 0.1059 0.1053 -0.0006 -0.1059 -0.1053
CONV -0.0006 0.4008 0.4014 0.0006 -0.4008 -0.4014
Time 217.7441 | 202.1098 | -15.6344 | -217.7440 | -202.1100 | 15.6343
Memory | -7.8127 -54.2973 | -46.4846 7.8127 54.2973 46.4845

Then, g and p, which are the indifference and preference thresholds, respectively, are
determined according to the literature and results of the pairwise comparisons of the
algorithms by statistical hypothesis tests. Two important questions are asked for this

purpose:

1) What is the smallest d value at which the preference function, P (d), equals

to 1? This gives the p value.
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2) What is the highest d value at which preference function, P (d), equals to 0?

This gives the g value.

Statistical tests show that A1=A2 can be assumed for CONV and BF. Therefore,
these two algorithms show the same performance for these two measures
statistically, and g, which is the indifference threshold, can be assigned for these two
measures according to the absolute differences between Al and A2. So the absolute
difference between CONV (A1) and CONV (A2) is calculated, similarly the absolute
difference between BF (Al) and BF (A2) is calculated. The results of these
calculations can be seen in the Table 4.5. Then, q values for CONV and BF are
assigned close to these absolute differences. Since other pairwise comparisons show
that algorithms have different performances, p values are assigned considering the

absolute differences between all algorithms.

Similarly, p and q values for Time and Memory are assigned according to the most
and the least absolute differences between all algorithms. The assigned p and q values

are shown in Table 4.6.

Table 4.6 p and g Values of Criteria

Criterion p q
BF 0.1000 0.0010
CONV 0.4000 0.0010
Time 200.0000 10.0000
Memory Use 50.0000 5.0000
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Then according to these p and q values, and defined preference function, we have

calculated P for all pairwise comparisons as it can be seen in Table 4.7:

Table 4.7 Calculation of Preferences for All Pairwise Comparisons

Criterion | P(A1, A2) | P(A1, As) | P(A2, As) |P(Az, A1) |P(As, A1) |P(As3, A2)
BF 0 1 1 0 0 0
CONV 0 0 0 0 1 1
Time 0 0 0.0296 1 1 0
Memory 0.0625 1 0.9218 0 0 0

Step 3: The multi criteria preference index is calculated for all pairwise comparisons

of the alternatives. The results are given in Table 4.8.

Table 4.8 Multi Criteria Preference Index

[1 (A1, A2) [1 (A1, As) [1 (A2, As)
0.0156 0.5000 0.4878
[T (A2, A1) [T (As, Ar) 1 (As, A2)
0.2500 0.5000 0.2500

Step 4: Leaving and entering flows for each alternative is defined and the results are
provided in Table 4.9.

45



Table 4.9 Calculated Flows for Each Alternative

¢~ (A1) »~(43) ¢~ (A43)
0.7500 0.2656 0.9878
»* (A1) »*(42) »*(43)
0.5156 0.7378 0.7500
»(A1) »(Az) ¢ (4s3)
-0.2343 0.4722 -0.2378

Step 5: Priorities can be determined by this way:
A2>A1>As

FP-growth > Apriori > Relim

As a result, taking into consideration all of the selected comparison criteria and all
studied data characteristics, we can conclude that FP-growth is the best algorithm

among all three algorithms.

It is also possible to use PROMETHEE for comparing the algorithms under specific
levels of the blocking variables (data size, sparsity, number of attributes, and support
value) separately. For example, we may want to compare algorithms for sparse data,
and also for dense data, separately. As we have 3 algorithms, this leads to six
alternatives for PROMETHEE analyses. In other words, the alternatives can be
considered as algorithms under specific levels of a blocking variable. The detailed
results of these comparisons are available in Appendix E. As it can be seen from the
provided results, for most of the cases and factors, FP-growth is better than the
others. The results obtained for time and memory use measures are also consistent
with the literature results (Zheng et al., 2001; Vu et al., 2014; Fournier-Viger et al.,

2014). But there exist some differences between the results we obtain by using the
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proposed method and the literature results. As it is mentioned in Zheng et al. (2001),
for time measure, FP-growth performs better than Apriori in low support values.
Meanwhile Apriori is faster in high support values. But, our results show that FP-
growth is the best algorithm for both low and high support values. We also find that
for small data and low attribute numbers, Apriori is the best algorithm. This is not

provided in the literature for Apriori, and our proposed method reveals this fact.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK SUGGESTIONS

Selecting the most appropriate association rule mining algorithm for the desired
application has always been considered as a challenging problem, since there exist
many different association rule mining algorithms, several criteria are considered in
comparing them, and true interesting rules are unknown for the test data available in
the literature. This study provides an objective way of comparing the association rule
mining algorithms, based on known true rules, considering all relevant comparison
criteria and data characteristics as well as statistically significant differences.
Jabarnejad (2010) addresses this issue by proposing the novel method for comparing
the rule reduction methods. In this thesis, we have used the main idea presented in
Jabarnejad (2010), and extended it to the case of comparing association rule mining
algorithms. We have contributed to this approach by systematically generating a
representative and wide variety of data sets using the logistic regression models and
considering many effective factors such as sparsity. This method enables data
analysts to precisely evaluate association rule mining algorithms by considering
these various data sets, several interestingness and other comparison measures, and
the most important of all by knowing the exact true rules defined by the user using

logistic regression models.
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Another contribution of the thesis is to suggest and demonstrate use of statistical and
multi criteria decision making approaches in an integrated manner in this particular

case of comparing the association rule mining algorithms.

Although we propose a method with defined comparison measures for comparing
the association rule mining algorithms, there also exist algorithms performing rule
reductions. As a future work, similar analyses can be done on these rule reduction
algorithms by defining appropriate comparison measures for them. Larger series of
experiments can be conducted for these kinds of algorithms to select the most
desirable one(s) which can mine the association rules more efficiently and also group

and prune the redundant rules at the same time.

We provide several comparison measures for comparing the association rule mining
algorithms. These measures can be studied further to include other relevant and

important measures to express more efficient and comprehensive results.
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APPENDIX A

EXPECTED LOGISTIC FUNCTION FOR ALL COMBINATIONS OF
PROCESS VARIABLE VALUES

Table A.1 Expected Logistic Function for All Combinations of Process Variable Values

X1 X2 X3 Xy Xs E (y|x) f(y) )
0 1 0 1 1 -0.0010 0.4997 0.5002
1 0 1 0 1 -0.0010 0.4997 0.5002
0 0 1 1 0 0.9990 0.7308 0.2691
1 0 1 1 0 -0.0010 0.4997 0.5002
1 1 0 1 1 -1.0010 0.2687 0.7312
1 0 0 0 0 1.9990 0.8806 0.1193
1 0 1 0 0 0.9990 0.7308 0.2691
0 0 0 0 1 1.9990 0.8806 0.1193
0 0 1 0 0 1.9990 0.8806 0.1193
0 0 0 1 0 1.9990 0.8806 0.1193
1 1 0 0 1 -0.0010 0.4997 0.5002
1 1 1 1 0 -1.0010 0.2687 0.7312
0 0 1 1 1 -0.0010 0.4997 0.5002
0 1 0 0 0 1.9990 0.8806 0.1193
0 1 0 1 0 0.9990 0.7308 0.2691
0 1 0 0 1 0.9990 0.7308 0.2691
1 0 0 1 0 0.9990 0.7308 0.2691
0 1 1 0 1 -0.0010 0.4997 0.5002
0 1 1 0 0 0.9990 0.7308 0.2691
1 1 1 0 1 -1.0010 0.2687 0.7312
0 0 0 1 1 0.9990 0.7308 0.2691
1 1 0 1 0 -0.0010 0.4997 0.5002
1 1 1 0 0 -0.0010 0.4997 0.5002

59



Table A.1 (Continued)

X1 X2 X3 Xy Xs E (y[x) f(y) £y
1 0 0 1 1 -0.0010 0.4997 0.5002
0 1 1 1 0 -0.0010 0.4997 0.5002
1 1 0 0 0 0.9990 0.7308 0.2691
0 1 1 1 1 -1.0010 0.2687 0.7312
1 0 1 1 1 -1.0010 0.2687 0.7312
1 0 0 0 1 0.9990 0.7308 0.2691
0 0 0 0 0 2.9990 0.9525 0.0474
1 1 1 1 1 -2.0010 0.1190 0.8809
0 0 1 0 1 0.9990 0.7308 0.2691

60




APPENDIX B

FULL FACTORIAL DESIGN ON SELECTED FACTORS AND LEVELS

Table B.1 Full Factorial Design on Selected Factors and Levels

Experiment DS DT NA sV
1 100 S 7 0.05
2 100 S 7 0.2
3 100 S 14 0.05
4 100 S 14 0.2
5 100 D 7 0.05
6 100 D 7 0.2
7 100 D 14 0.05
8 100 D 14 0.2
9 10000 S 7 0.05

10 10000 S 7 0.2
11 10000 S 14 0.05
12 10000 S 14 0.2
13 10000 D 7 0.05
14 10000 D 7 0.2
15 10000 D 14 0.05
16 10000 D 14 0.2
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APPENDIX C

THE RESIDUAL PLOTS AND RESULTS OF ALL PARAMETRIC AND
NONPARAMETRIC TESTS

Residual Plots for CONV

Normal Probability Plot Versus Fits
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Figure C.1 CONV before Transformation
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Figure C.2 CONV after Transformation with Box-Cox
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Residual Plots for Trans(CONV)
Normal Probability Plot
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Figure C.3 CONV after Transformation with arcsin

General Linear Model: Trans(CONV) versus Algorithm, Data Size, Sparsity, ...

Method

Factor coding (-1, 0, +1)

Rows unused 557

Factor Informaticon

Eactcr Type Levels WValues

Llgorithm Fixed 3 1, 2, 3

Data Size Fixed 2 1, 2

Sparsity Fixed 2 1, 2

Lttributes Fixed 2 1, 2

Support Value Fixed 2 1, 2

Enalysis of Variance

Source DF 243 55 243 M3 F-Value P-Value
Algorithm 2 3.43139 1.71&0 61.49 0.000
Data Size 1 0.4639 0.4639 16.63 0.000
Sparsity 1 0.0285 0.0285 1.02 0.313
Attributes 1 14.2025 14.2025 508.97 0.000
Support Value 1 g8.0027 8.0027 286.79 0.000

Error 396 11.0501 0.0279
Lack-of-Fit 25 3.4710 0.1388 &.80 0.000
Pure Error 371 7.5791 0.0204

Total 402 38.89%20

Model Summary

5 B-zqg BE-zg{adj) BE-sg(pred)
0.167046 71.59% 71.16% 70.52%

Figure C. 4 ANOVA Results for CONV
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Figure C.6 BF after Transformation with Box-Cox
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General Linear Model: BF+1 versus Algorithm, Data Size, Sparsity, ...

Method
Factor coding {-1, 0, +1)
Rows unused 450

Box-Cox tranasformation

Bounded A 2.32794

Estimated A 2.32794

95% CI for A (2.02744, 2.83244)
Factor Information

Factor Type Lewvels WValues
Algocrithm Fixed 3 1, 2, 3
Data Size Fixed 2 1, 2
Sparsity Fixed 2 1, 2
Attributes Fixed 2 1, 2
Suppeort Value Fixed 2 1, 2

Analysis of Variance for Transformed Besponse

Source LOF Rdj S5 Adj MS F-Value P-Value
Algorithm 2 24.238 12.118%9 79.30 0.000
Data Size 1 1.150 1.1498 7.52 0.008
Sparsity 1 0.087 0.0885 0.57 0.452
Lttributes 1 44,247 44,2470 289.54 0.000
Support Value 1 16.315 16.3148 106.76 0.000

Error 503 76.869 0.1528
Lack-of-Fit 29 10.451 0.3604 2.57 0.000
Pure Error 474 66.417 0.1401

Figure C.7 ANOVA Results for BF

Friedman Test: Average(BF) versus Treatment blocked by Block variable

5 .00 DF=2 P =0.018
5=10.11 DF =2 P = 0.006 {adjusted for ties)

Sum of
Treatment N Est Median Ranks
1 12 1.103& 28.0
2 12 1.1034 28.0
3 12 0.6865 16.0

Grand median = 0.9645

Figure C.8 Friedman Test Results for BF

We used algorithms as the main variable, and a combination of other factors as the

blocking variable in Friedman test.
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Residual Plots for Time
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Figure C.9 Time before Transformation
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Figure C.10 Time after Transformation with Box-Cox
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General Linear Model: Time versus Algorithm, Data Size, Sparsity, ...
Method

Factor coding (-1, 0, +1)

Factor Information

Factor Type Levels Values
Algorithm Fixed 3 1, 2, 3
Data Size Fixed 2 1, 2
Sparsity Fixed 2 1, 2
Lttributes Fixed 2 1, 2
Support Value Fixed 2 1, 2

Analysis of Variance

Source DF Adj 55 Adj M5 F-Value P-Value
Algorithm 2 9440564 4720282 33.13 0.000
Data Size 1 31109443 31109443 218.74 0.000
Sparsity 1 136873 136873 0.96 0.327
Attributes 1 26924996 26924994 189.32 0.000
Support Value 1 11486208 11488208 20.77 0.000

Error 953 135536139 l4z22
Lack-of-Fit 41 108987118 2609442 23.38 0.000
Pure Error 912 28549021 31304

Total 953 214634823

Model Summary
5 B-3qg BR-s3g{adj) R-sa(pred)
377.121 36.B85% 36.46% 35.92%

Figure C.11 ANOVA Results for Time
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Figure C.12 Memory Use before Transformation

Residual Plots for Memory
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Figure C.13 Memory Use after Transformation with Box-Cox
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General Linear Model: Memory versus Algorithm, Data Size, Sparsity, ...
Method
Factor coding -1, 0, +L)

Box-Cox transformation

Rounded A ]
Eatimated A -0.00551444
95% CI for A {-0.0860144, 0.0749858)

Factor Information

Factor Type Levels WValues
Algorithm Fixed 3 1, 2, 3
Data 3ize Fixed 2 1, 2
Sparsity Fixed 2 1, 2
hrtributes Fixed 2 1, 2
Support Valus Fixed 2 1, 2

Analysis of Variance for Transformed Response

Source DF bkdy 55 hdy M5 F-Value PE-Value
Algorithm 2 177.412 28.7058 205.23 0.000
Data Size 1 11.301 11.3008 26.15 0.000
Sparsity 1 0.247 0.2470 0.57 0.450
Attributes 1 4,758 4.T7560 11.00 0.001
Support Value 1 0.412 0.4123 0.95 0.329

Error 953 411.%504 0.4322
Lack-of-Fit 41 14,5948 0.3648 0.24 0.756
Pure Error 912 39£.955 0.4353

Total 959 &06.031

Figure C.14 ANOVA Results for Memory Use
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APPENDIX D

THE RESIDUAL PLOTS AND RESULTS OF ALL PARAMETRIC AND
NONPARAMETRIC TESTS FOR PAIRWISE COMPARISONS

ANOVA for comparing algorithms 1 and 2 with regard to CONV:

" Residual Plots for Trans(CONV) (=n =R
Residual Plots for Trans(CONV)
Mormal Probability Plot Versus Fits
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Figure D.1 Residual Plots for Trans (CONV) for Comparing Algorithms 1 and 2
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General Linear Model: Trans(CONV) versus algorithm, Data Size, Sparsity, ...

Enalysis of Variance

Socurce DF Rdj 35 BRdj M5 F-Value P-Value
algorithm 1 0.0000 0.0000 0.00 0.9689
Data Size 1 0.0138 0.0138 1.38 0.242
Sparsity 1 0.0245 0.0245 2.44 0.1139
Attributes 1 12.6739 12.6739 1263.69 0.000
support value 1 8.2005 6.2005 8ls.2 0.000

Error 251 2.5173 0.0100
Lack-of-Fit 14 1.2214 0.0872 15.95 0.000
Pure Error 237 1.29&0 0.00355

Total 256 24.8902

Model Summary
5 B-3gq BR-3g({adj) ER-sg(pred)
0.100146 829.89% B9.68% 89.00%

Figure D.2 ANOVA Results for Trans (CONV) for Comparing Algorithms 1 and 2
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ANOVA for comparing algorithms 1 and 2 with regard to BF:

" Residual Plots for BF+1 o=@ 3]
Residual Plots for BF+1
Normal Probability Plot Versus Fits
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Figure D.3 Residual Plots for BF for Comparing Algorithms 1 and 2

Friedman Test: Average(BF) versus Treatment blocked by Block variable

3=0.00 DF=1 P =1.000

5=0,00 DF=1 PF = 1.000 {adjusted for ties)
Sum of

Treatment N Est Median Ranks

1 12 1.1035 18.0

2 12 1.1035 18.0

Grand median = 1.1035

Figure D.4 Friedman Test Results for BF for Comparing Algorithms 1 and 2

We used algorithms as the main variable, and a combination of other factors as the
blocking variable. P values show that Algorithms 1 and 2 algorithms 1 and 2 cannot

be considered as significantly different from each other on the average with 0=0.03.
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ANOVA for comparing algorithms 1 and 2 with regard to Time:

+ Residual Plots for Time = ==
Residual Plots for Time
MNormal Probability Plot Versus Fits
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Figure D.5 Residual Plots for Transformed Time for Comparing Algorithms 1 and 2

General Linear Model: Time versus Algorithm, Data Size, Sparsity, ...
Box-Cox transformation

Rounded A 0.0410131
Eatimated X 0.0410131
95% CI for & (0.0165131, 0.0655131)

BEnalysis of Variance for Transformed EResponse

Scurce DF Rdj 55 Bdj M5 F-Valus P-Value
Llgorithm 1 0.05388 0.05388 24.38 0.000
Data Size 1 2.471%4 2.67184 1212.74 0.000
Sparsity 1 0.026682 0.02662 12.08 0.001
Attributes 1 0.34945 0.54394%8 385.357 0.000
Support Value 1 0.88155% 0.6815% 309.38 0.000

Error 634 1.39635 0.00220
Lack-of-Fit 26 0.4648% 0.01788 11.6a7 0.000
Pure Error 602 0.93195 0.00153

Total 633 5.68017

Model Summary for Transformed Response

5 B-ag ER-3g{adj) BR-ag({pred)

0.0469386 75.41% 75.21% 74.94%

Figure D.6 ANOVA Results for Time for Comparing Algorithms 1 and 2
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ANOVA for comparing algorithms 1 and 2 with regard to Memory Use:

« Residual Plots for Memory EI@
Residual Plots for Memory
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Figure D.7 Residual Plots for Transformed Memory Use for Comparing Algorithms1 and?2

General Linear Model: Memory versus Algorithm, Data Size, Sparsity, ...
Box-Cox transformation

Rounded 2 -0.5
Eatimated A -0.402076
95% CI for A {-0.50357&, -0.30057&)

Analy3is of Variance for Tranaformed Response

Source OF ndj 355 Edj M5 F-Value P-Value
Algorithm 1 0.0480&6 0.048080 14.74 0.000
Data Size 1 0.05936 0.059354 18.23 0.000
Sparaity 1 g.00022 0.000222 0.07 0.794
Attributes 1 0.0135%8 0.013575 4.17 0.042
Support Value 1 0.0033& 0.003357 1.03 0.310

Error 634 2.0&471 0.003257
Lack-ocf-Fit 26 0.08805 0.003387 1.04 0.408
Pure Error 602 1.97&&5 0.003251

Total 839 2.18927

Model Summary for Transformed Response
5 B-3g B-sgiadj) BR-sgipred)
0.05706869 5.69% 4,95% 3.90%

Figure D.8 ANOVA Results for Memory Use for Comparing Algorithms 1 and 2
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ANOVA for comparing algorithms 1 and 3 with regard to CONV:

+ Residual Plots for Trans(CONV) = R
Residual Plots for Trans(CONV)
Normal Probability Plot Versus Fits
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Figure D.9 Residual Plots for Trans (CONV) for Comparing Algorithms 1 and 3

General Linear Model: Trans(CONV) versus Algorithm, Data Size, Sparsity, ...
Analysis of Variance
Source DF 4] 35 Adj M5 F-Value P-Value

Algorithm 1 2.3593 2.3592¢ 68.09 0.000
Data Size 1 0.4648 0.46461 13.41 0.000a
Sparaity 1 0.0144 0.01440 0.42 0.520
Attributes 1 g.0826 8.082a3 233.27 0.000a
Support Value 1 4.8376 4.83761 139.61 0.000

Error 268 9.2861 0.03445
Lack-ocf-Fit 16 2.3739 0.14837 5.41 0.000
Pure Error 252 6.9122 0.02743

Total 273 25.5409

Model Summary

S B-3aq BEB-3q{adj) R-zg(pred)

0.186144 63.64% 62.96% 62.03%

Figure D.10 ANOVA Results for Trans (CONV) for Comparing Algorithms 1 and 3
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ANOVA for comparing algorithms 1 and 3 with regard to BF:

+ Residual Plots for BF+1 =] @ =]
Residual Plots for BF+1
Normal Probability Plot Versus Fits
9‘1—: 50 . . ¢
e " 358 . l‘ 4
o
g : i * i I.

P
|y

-5.0 -25 oo 25 50 0 2 4 [ 8
Residual Fitted Value
Histogram

& 8 B

Frequency

=
i

-30 -15 00 15 30 45
Residual

Figure D.11 Residual Plots for BF for Comparing Algorithms 1 and 3

Friedman Test: Average(BF) versus Treatment blocked by Block variable

3=25.33 DF=1 F = 0.021
5=46.40 DF =1 P = 0.011 {adjusted for ties)

Sum of
Treatment N Est Median Ranks
1 12 1.10339 22.0
3 12 0.6864 14.0

Grand median = 0.8952

Figure D.12 Friedman Test Results for BF for Comparing Algorithms 1 and 3

P values show that Algorithms 1 and 3 can be considered as significantly different

from each other for this measure with 0=0.03.
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ANOVA for comparing algorithms 1 and 3 with regard to Time:

" Residual Plots for Time =N Ech |
Residual Plots for Time
Normal Probability Plot Versus Fits
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Figure D.13 Residual Plots for Transformed Time for Comparing Algorithms 1 and 3

General Linear Model: Time versus Algorithm, Data Size, Sparsity, ...
Box-Cox transformation
Rounded A i}
Esatimated A 0. g8

95% CI for A { 941159, 0.0500588

RAnalvsis of Variance for Transformed Response

Ecurce DF Bdjy 55 Bdj M5 F-Value P-Value
Algorithm 1 4.34 4.34 4.71 0.030
Data Size 1 1030.40 1030.40 1120.04 0.000
Sparsity 1 2.17 2.17 2.36 0.125
Attributes 1 438.19 438.19 476.31 0.000
Support Value 1 237.89 237.89 258.59 0.000

Error 634 583.26 0.92
Lack-of-Fit 26 194.93 7.50 11.74 0.000
Pure Error 608 388.33 0.64

Total 639 2296€.25

Model Summary for Transformed Besponse
5 R-3g R-sgladj) ER-sgipred)
0.959150 74.60% 74.40% T4.12%

Figure D.14 ANOVA Results for Transformed Time for Comparing Algorithms 1 and 3
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ANOVA for comparing algorithms 1 and 3 with regard to Memory Use:

+ Residual Plots for Memory EI@
Residual Plots for Memory
Normal Probability Plot Versus Fits
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Figure D.15 Residual Plots for Transformed Memory Use for Comparing Algorithms 1
and 3

General Linear Model: Memory versus Algorithm, Data Size, Sparsity, ...
Box-Cox transformation

Founded A 0.179075
Estimated A 0.179075
95% CI for A (0.082574%, 0.277575)

Enalysis of Variance for Transformed Response

Socurce DF hdj 35 Adj M5 F-Value P-Value
Algorithm 1 20.1131 20.1131 371.02 0.000
Data Size 1 0.2955 0.2955 5.45 0.020
Sparsity 1 0.0071 0.0071 0.13 0.717
Attributes 1 0.4459 0.4459 g.23 0.004
Support Value 1 0.0014 0.0014 0.03 0.873

Error £34 34.3693 0.0542
Lack-of-Fit 28 0.690& 0.0266 0.48 0.987
Pure Error 608 33.6787 0.0554

Total §39 55.2324

Model Summary for Transformed Response
5 R-3qg BER-sgl{adj) E-sg(pred)
0.232831 37.77% 37.28% 36.59%

Figure D.16 ANOVA Results for Transformed Memory Use for Comparing Algorithms 1
and 3
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ANOVA for comparing algorithms 2 and 3 with regard to CONV:

" Residual Plots for Trans(CONV) = R
Residual Plots for Trans(CONV)
Normal Probability Plot Versus Fits
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Figure D.17 Residual Plots for Trans (CONV) for Comparing Algorithms 2 and 3

General Linear Model: Trans(CONV) versus Algorithm, Data Size, Sparsity, ...

Analysis of Variance

Source DF Adjy 55 24y M5 F-Value P-Value
Rlgorithm 1 2.4069 2.40695 65.94 0.000
Data Size 1 0.4807 0.48070 13.77 0.000
Sparaity 1 0.0184 0.01841 0.53 0.468
Attributes 1 £.2990 E.29903 237.69 0.000
Support Value 1 4.8722 4.8721% 139.54 0.000

Error 269 9.3923 0.03492
Lack-of-Fit 16 2.4423 0.15264 5.56 0.000
Pure Error 253 6.9500 0.02747

Total 274 26.0968

Model Summary
5 B-3g BR-s3g{adj) ER-sg(pred)
0.186857 64.01% £3.34% f2.41%

Figure D.18 ANOVA Results for Trans (CONV) for Comparing Algorithms 2 and 3
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ANOVA for comparing algorithms 2 and 3 with regard to BF:

+ Residual Plots fer BF+1 [r=rl - | s
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Figure D.19 Residual Plots for BF for Comparing Algorithms 2 and 3

Friedman Test: Average(BF) versus Treatment blocked by Block variable

5=5.33 DF=1 P =
S=6.40 DF=1 P =
Treatment H Est Median
2 12 1.1031
3 12 0.6864
Grand median = 0.8948

0.021
0.011 {adjusted for ties)

Sum of
Ranks
22.0

14.0

Figure D.20 Friedman Test Results for BF for Comparing Algorithms 2 and 3
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ANOVA for comparing algorithms 2 and 3 with regard to Time:

+" Residual Plots for Time =n e <)
Residual Plots for Time
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Figure D.21 Residual Plots for Transformed Time for Comparing Algorithms 2 and 3

General Linear Model: Time versus Algorithm, Data Size, Sparsity, ...

an—Cnx transformation Rounded & 0.0534844
Estimated A 0.0534844
95% CI for A (0.0229844, 0.0835844)

Analvsis of Variance for Transformed Eesponse

Socurce DF Rdj 355 hdj M3 F-Value P-Value
Algorithm 1 0.02074 0.02074 5.33 0.021
Data Size 1 3.7705& 3.7705& 969.19 0.000
Sparsity 1 0.05313 0.05313 13.66 0.000
Attributes 1 1.19427 1.19427 306.98 0.000
Support Value 1 0.28101 0.26101 67.09 0.000

Error 634 2.46653 0.00389
Lack-of-Fit 26 0.2448% 0.00942 2.58 0.000
Pure Error 608 2.22164 0.00365

Total 639 7.76624

Model Summary for Transformed Response
5 R-sqg E-s3gl{adj) E-sg{pred)
0.0823733 68.24% §7.99% 87.64%

Figure D.22 ANOVA Results for Transformed Time for Comparing Algorithms 2 and 3

82



ANOVA for comparing algorithms 2 and 3 with regard to Memory Use:

" Residual Plots for Memaory EI@
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Figure D.23 Residual Plots for Transformed Memory Use for Comparing Algorithms 2
and 3

General Linear Model: Memory versus Algorithm, Data Size, Sparsity, ...
Box-Cox transformation

Rounded A 0.154683
Estimated A 0.154683
95% CI for A {0.0511826, 0.260183)

RAnalysis of Variance for Transformed Response

Source DF Rdj 55 2dj M5 F-Value FP-Value
Algorithm 1 B.4357 &.43572 2683.88 0.000
Data Size 1 1.1748 1.1747& 36.75 0.000
Sparsity 1 0.0403 0.04029 1.28 0.262
Attributes 1 0.4185 0.4195%0 13.12 0.000
Support Value 1 0.0487 0.04971 1.55 0.213

Error 634 20.2680 0.03197
Lack-of-Fit 28 0.68826 0.02825 0.81 0.730
Pure Error 608 19.5855 0.0322

Total 639 30.388

Model Summary for Transformed Response
5 R-3g ER-sgf{adj) ER-sgi{pred)
0.178797 33.30% 2.78% 32.03%

Figure D.24 ANOVA Results for Transformed Memory Use for Comparing Algorithms 2
and 3
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APPENDIX E

COMPARISON OF THE ALGORITHMS WITH REGARD TO DATA SIZE,

SPARSITY, NUMBER OF ATTRIBUTES, AND SUPPORT VALUE

FACTORS

PROMETHEE with regard to Sparsity:

Table E.1 Notations for Alternatives (Regarding DT)

Algorithm1= Apriori

Algorithm2=FP-growth

Algorithm3= Relim

A= Algorithm1 on

As= Algorithm2 on

As= Algorithm3 on sparse

sparse data sparse data data
A= Algorithm 1 on A= Algorithm 2 on As= Algorithm 3 on dense
dense data dense data data

Table E.2 Data Matrix Structure (Regarding DT)

A Az Az Ay As As W
f1 0.5801 0.6145 0.5796 0.6137 0.4776 0.5051 0.25
fa 0.9360 1.0193 0.9374 1.0191 0.5528 0.6008 | 0.25
fs3 | 368.2563 | 341.5320 | 151.1500 | 123.1500 | 161.2438 | 144.3250 | 0.25
fs | 40.8390 | 40.0425 | 46.5290 | 499781 | 93.3005 | 96.1757 | 0.25
Table E.3 Calculated Net Flows for Each Alternative (Regarding DT)

As A Az Ay As As
-0.5707 -0.3323 0.8488 1.0304 -0.5747 -0.4014
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Priorities are:

As>A3>AS>ASAI>AS

Algorithm 2 performs better on dense data than on sparse data. Overall, it performs

better for both sparse and dense data than the others.
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PROMETHEE with regard to

Number of Attributes:

Table E.4 Notations for Alternatives (Regarding NA)

Algorithm1= Apriori

Algorithm2=FP-growth

Algorithm3= Relim

A;= Algorithm1 with 7

As= Algorithm2 with 7

As= Algorithm3 with 7

NA NA NA
Ao= Algorithm 1 with | As= Algorithm 2 with 14 | As= Algorithm 3 with
14 NA NA 14 NA

Table E.5 Data Matrix Structure (Regarding NA)

A1 A Az Ay As As W
fi | 0.4397 0.7549 0.4385 0.7548 | 0.3652 06175 | 0.25
f, | 0.8214 1.1340 0.8216 1.1349 | 0.5028 0.6509 | 0.25
f; | 48.8625 | 660.9258 | 50.5687 | 223.7313 | 42.9812 | 262.5875 | 0.25
fa | 39.2484 | 41.6331 | 43.7816 | 52.7254 | 85.6579 | 103.8183 | 0.25

Table E.6 Calculated Net Flows for Each Alternative (Regarding NA)

As

Ao

As

Ay

As

As

1.2663

-0.6396

0.7088

0.0424

-0.1367

-0.7406

Priorities are:

A1>A3>A4>A5>A2>A6

Algorithm 1 is good for low attribute numbers, but Algorithm 2 is good for high

attribute numbers.

87



PROMETHEE with regard to Data Size:

Table E.7 Notations for Alternatives (Regarding NR)

Algorithml1= Apriori

Algorithm2=FP-growth

Algorithm3= Relim

A:= Algorithm1 with

As= Algorithm2 with

As= Algorithm3 with low

low NR low NR NR
Ao= Algorithm 1 with A,= Algorithm 2 with As= Algorithm 3 with
high NR high NR high NR
Table E.8 Data Matrix Structure (Regarding NR)
As Az As Aq As As w
f1 0.4961 0.7997 0.4956 0.7988 0.4157 0.6426 | 0.25
fo 0.7428 1.4474 0.7428 1.4493 0.4405 0.8494 | 0.25
fs 43.5062 | 666.2820 | 28.9687 | 245.3313 | 32.3062 | 273.2625 | 0.25
fs 37.7192 | 43.1623 | 35.5018 61.0052 | 87.0812 | 102.3950 | 0.25
Table E.9 Calculated Net Flows for Each Alternative (Regarding NR)
A1 Az Az A, As As
1.6223 -0.7291 0.9612 -0.4445 -0.2444 -1.1654

A1>A3>As>A>A>Ag

Priorities are:

Algorithm 1 is good for small data. Algorithm 2 is good for large data.
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PROMETHEE with regard to Support Value:

Table E.10 Notations for Alternatives (Regarding SV)

Algorithm1= Apriori

Algorithm2=FP-growth

Algorithm3= Relim

A= Algorithm1 with

As= Algorithm2 with

As= Algorithm3 with

low SV low SV low SV
Az= Algorithm 1 with A,= Algorithm 2 with As= Algorithm 3 with
high SV high SV high SV

Table E.11 Data Matrix Structure (Regarding SV)

As A As Ay As As W
f1 0.7697 0.2525 0.7688 0.2525 0.6198 0.2344 | 0.25
fo 1.4028 0.1273 1.4037 0.1273 0.8310 0.0685 | 0.25
fs 612.0008 | 97.7875 | 194.1563 | 80.1437 | 166.8313 | 138.7375 | 0.25
fs 40.3347 | 40.5468 | 52.1138 | 44.3933 | 95.6903 | 93.7858 | 0.25
Table E.12 Calculated Net Flows for Each Alternative (Regarding SV)
Ay A Az As As Ab
-0.6746 1.0154 0.2457 1.0802 -0.8939 -0.7351

Algorithm 2 is good for both low and high support value. It performs better for

high support values.

Priorities are:

A>A>Az>A1>Ac>As
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