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ABSTRACT

A CONTENT BOOSTED HYBRID RECOMMENDATION SYSTEM

Çapraz, Seval

M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Selim Temizer

January 2016, 102 pages

Nowadays, most of e-commerce and social media sites use recommendation sys-

tems to help users find more relevant products easily. The key feature of recom-

mendation is personalization which means different products are being offered

for different users according to each user s interests. In literature, there are a lot

of algorithms and tools which implement recommendation systems. The most

common techniques for recommendation systems include Collaborative Filtering

(CF) and Content-Based Filtering (CBF). To increase efficiency and accuracy,

these methods can be combined in a hybrid recommendation system. Apache

Mahout is one of the tools which focuses primarily on algorithms in the areas

of CF, clustering and classification. In this study, we used Apache Mahout for

blending item-based and user-based methods of CF with switching approach.

The Pearson Correlation Similarity and Nearest N-User Algorithm is used in

user-based CF, while Tanimoto Coefficient Similarity and Generic Boolean Pref-

erence is used in item-based CF. Moreover, we added genre-based average ratings

as content-based filtering so that the final recommendation list becomes more
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relevant to user. The proposed hybrid algorithm is tested on MovieLens dataset

and validated with k-fold cross validation. This new hybrid recommendation

system that is used to find patterns in data and develop a model for the purpose

of making accurate and efficient recommender systems is proposed and detailed

in this thesis study.

Keywords: Recommendation Systems, Hybrid Model, Collaborative Filtering,

Content Based Filtering
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ÖZ

İÇERİK ARTTIRIMLI HİBRİT BİR ÖNERİ SİSTEMİ

Çapraz, Seval

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Selim Temizer

Ocak 2016 , 102 sayfa

Günümüzde e-ticaret ve sosyal medya sitelerinin çoğu tüketicilerin daha kolay il-

gili ürün bulmalarına yardımcı olmak için öneri sistemleri kullanmaktadır. Öneri

sisteminin anahtar özelliği kişiselleştirilmiş olmasıdır, yani kullanıcının ilgisine

göre farklı kullanıcılar için farklı ürünlerin önerilmesidir. Literatürde öneri sis-

temlerini gerçekleştiren birçok algoritma ve araç vardır. Öneri sistemleri için en

yaygın teknikler İşbirlikçi Filtreleme(CF) ve İçerik-Tabanlı Filtrelemedir(CBF).

Etkinliğini ve doğruluğunu artırmak için, bu yöntemler bir hibrit öneri sistemi

içerisinde birleştirilebilir. Apache Mahout, genel olarak CF, kümeleme ve sınıf-

lanfırma algoritmalarına odaklanan bir araçtır. Bu çalışmada CF yöntemlerinden

parça-bazlı ve kullanıcı-bazlı yöntemlerin makas değiştirme yaklaşımı ile har-

manlanması için Apache Mahout kullanılmıştır. Parça-bazlı CF için Tanimoto

Katsayısı Benzerlik ve Genel Boole Tercih algoritmaları kullanılırken, kullanıcı-

bazlı CF için Pearson Korelasyon Benzerlik ve En Yakın N-Kullanıcı algoritması

kullanılmıştır. Bundan başka, içerik-tabanlı filtreleme için tür-tabanlı ortalama
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değerlendirme eklenmiştir, böylece sonuç öneri listesi kullanıcı ile daha alakalı

olmuştur. Önerilen hibrit algoritma MovieLens veri kümesi ile test edilmiş ve

k-kat çapraz geçerleme yöntemi ile onaylanmıştır. Öneri sistemlerini daha doğru

ve etkili yapabilmek amacıyla veriler içerisinde desenler bulmak ve bir model

geliştirmek için kullanılan bu yeni hibrit öneri sistemi bu tez çalışması içerisinde

önerilmekte ve detaylandırılmaktadır.

Anahtar Kelimeler: Öneri Sistemleri, Hibrit model, İşbirlikçi Filtreleme, İçerik

Tabanlı Filtreleme
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CHAPTER 1

INTRODUCTION

Nowadays, internet is available everywhere due to the advances in technology.

There are cell phones, computers and smart watches that have internet con-

nection capabilities and they are really cheap to buy. People are using these

tools and provide more and more information through internet. Therefore there

is a huge information overload and it is growing day by day. Information is

obtained by not only personal computers and mobile phones, but also cash reg-

isters which people use when they are shopping. Cash registers are recording

every user transaction. As a result, corporate databases store excessive amount

of data like point-of-sale transactions and credit card purchases. For instance,

Wal-Mart operates a chain of discount department stores and every day it col-

lects 20 million point-of-sale transactions. In addition to this, research centers

have huge databases for scientific purposes. Astronomical observatories store

images of galaxies and they record every second of the universe. As a result,

databases have grown from gigabytes to terabytes. To emphasize its significance,

if we assume that each book requires 1 megabyte, then a terabyte is equivalent

to about 1 million books. As a result, large data sets have become available ev-

erywhere. What will the information holders do with this huge data set? Huge

data set can be beneficial if it is monitored and managed appropriately. In this

sense, data mining is needed.

Data mining is a technique to discover patterns in data. It also provides finding

associations, changes, anomalies and statistically significant structures in data

[8]. It is easier to apply data mining techniques now than in the past. While
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the data is growing, scientists and engineers propose more improvements in

technology such as available and affordable computing power. Therefore data

mining has become popular in many applications, because raw data by itself

does not provide much information. They have to process, organize, structure

or present the data in a given context in order to make it useful and gain more

insights.

Several companies use data mining for many reasons. To name a few exam-

ples, firstly, CapitalOne bank uses data mining for forecasting whether a loan

applicant will default on the loan. The prediction is based on given information

about user’s demographics, credit history, type of loan, etc. Secondly, Face-

book uses data mining methods for prediction of activeness of users within 3

months time period. Thirdly, British law enforcement and intelligence agencies

use data mining to predict the future behavior of people so that they can take

precautions against crimes or security threats. We can give more examples from

the e-commerce sector. E-commerce sites use recommendation systems to offer

effective suggestions. Netflix (the largest DVD-by-mail rental company) and

Amazon.com use data mining to provide recommendations to their customers.

So they are recommending new products which customers might also be inter-

ested in besides the other products in their website. Recommendation is done

also with personalization. So people are going to see recommended products

which they are interested in. Moreover the results may be useful for prediction

in order to guess future buying behavior. Recommendation systems are popular

not only in e-commerce sector, but also in digital media sector. The websites

which offer music, movie or photography use recommendation systems. There

are many reasons to apply recommendation systems. An internet radio can

choose the next song to play using data mining algorithms, or a movie website

can suggest a movie which users may like. There is too much to watch, listen

to or read. So people need to filter, make choices and select only the content or

information that is relevant or interesting for them personally. Therefore data

mining helps them to eliminate unrelated content. This thesis investigates these

data mining techniques for recommendation and proposes a hybrid method.

In early 1990s, the first automated systems were developed that could assist

2



FactorWiseMatrixFactorization 

Matrixfactorization 

ItemKNN 

Random Items 

Popular Items 

SigmoidSVDPlusPlus 

SigmoidCombinedAsymmetricFactorModel 

SigmoidItemAsymmetricFactorModel 

SigmoidUserAsymmetricFactorModel 

GlobalAverage 

SVDPlusPlus 

TimeAwareBaselineWithFrequencies 

CoClustering 

UserItemBaseline 

UserKNN 

BiPolarSlopeOne 

NaiveBayes 

TimeAwareBaseline 

SVD 

Collaborative Filtering 

Content-based Filtering 

Figure 1.1: A word cloud of major data mining algorithms

users in filtering interesting content. The concept of collaborative filtering was

born. It uses the behavior of the community as a guide for individual users.

This idea was soon followed by other approaches on tackling the information

overload problem and over the last 20 years hundreds of new recommendation

algorithms or strategies were developed and researched. To create a recommen-

dation system, we need to use data mining techniques. So the tasks are really

obvious: first we need to find patterns in data. Second, develop a model for

purpose. Lastly we need to make accurate and efficient recommendation.

If we want to recommend content to users, what algorithm do we use? There

are a lot of data mining algorithms (Figure 1.1). How can we choose from

so many and be sure to have made a good choice? There are many types of

recommendation systems: search-based recommendations, category-based rec-

ommendations, collaborative filtering, clustering, association rules, information

filtering, classifiers.

In the last few years there has even been a rise in software libraries such as

• Mymedialite
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• Lenskit

• Mahout

They offer implementations of recommendation algorithms out of the box. My-

medialite is a lightweight, multi-purpose library of recommender system algo-

rithms such as GlobalAverage, UserAverage, ItemAverage, SlopeOne, UserItem-

Baseline, ItemKNNPearson, FactorWiseMatrixFactorization, MatrixFactoriza-

tion, BiasedMatrixFactorization, SVDPlusPlus. Lenskit provides flexible, mea-

surable implementation of Item-based CF, User-based CF, Matrix factorization

and Slope-One algorithms. Mahout also provides many implementation of algo-

rithms such as Item-based CF, User-based CF, Matrix Factorization with ALS,

Weighted Matrix Factorization, SVD PlusPlus etc.

Implementing an advice algorithm is now too easy like clicking a button, but

again the problem now lies on choosing ideal advice algorithm for a given rec-

ommendation scenario.

Recent studies indicated that associating more than one data mining algorithm

may give better results. For this reason, combining collaborative filtering (CF)

and content based filtering (CBF) approach has been used to create a hybrid

recommender system in this thesis. There are several reasons why these two

algorithms are selected. First of all, they are not difficult to implement and

they give favorable results as it is articulated in later chapters.

Collaborative filtering (CF) techniques make a comparison between customers

depending on their previous acquisitions to make recommendations for simi-

lar customers. It is also called social filtering. To implement a CF algorithm,

these steps should be followed: Firstly, find customers who are similar regarding

tastes, preferences and past behaviors. To find similar customers, nearest neigh-

bors algorithm can be applied. Secondly, accumulate weighted choices of these

neighbors. Thirdly, make suggestion based on accumulated weighted choices.

To illustrate the concept, an example is given in Figure 1.2. We can recommend

books to User 3. This user is very close to User 2. He has bought all the

books User 2 has bought. Therefore Book 5 is highly recommended. User 4 is

4



Book 1 Book 2 Book 3 Book 4 Book 5 Book 6
User 1 X X
User 2 X X X
User 3 X X
User 4 X X
User 5 X X

Figure 1.2: An Example of Collaborative Filtering

somewhat close to User 3. Book 6 is recommended to a lower extent. User 1 and

User 5 are not similar to User 3 at all. Their weights are going to be zero. As a

result, Book 5 and Book 6 are recommended to this user based on collaborative

filtering.

There are certain advantages of CF. First of all, it is extremely powerful and

efficient. Furthermore it finds very relevant recommendations. If the database is

so big, it means there are a lot of past behaviors. Therefore CF provides better

recommendations. The bigger the database, the more the past behaviors, the

better the recommendations. There are also disadvantages of CF. It is difficult

to implement, and it is somewhat resource and time-consuming. This algorithm

is fiercely dependent on the past behavior of users. What about a new item

that has never been purchased? It cannot be recommended because it does not

have any history. What about a new customer who has never bought anything?

He or she cannot be compared to other customers, therefore no items can be

recommended to him or her.

The other algorithm which we used in the hybrid algorithm is content based

filtering (CBF). This method considers the features of items. The features can

be considered as attributes or characteristics of the item. For example, the

attributes may be the type, stars, year etc. for a film. It can also be textual

content like title, description, table of contents, etc. To implement the CBF,

the average scores for each feature is calculated by using original data. The

average scores are weights for suggestions. Each weight can be added to all

recommendations if the recommended item has the feature. Suppose that, the

average score of a user for movies which star Leonardo Dicaprio is 4. If the

suggested movie also stars Leonardo Dicaprio, we can add 4 to the predicted
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rating.

The second common usage of CBF is in information retrieval. CBF technique is

mostly used for finding similar text documents in order to estimate the distance

between two textual documents. CBF scans and parses a textual document

and counts word occurrences. Several words or tokens which are too common

in daily language are not accounted for CBF. These words are stop words. For

instance, the, a, for... etc. Moreover, CBF includes the words that do not appear

enough in documents. It transforms each document into a normed TFIDF (Term

Frequency / Inverted Document Frequency) vector. The distance between any

pair of vectors is calculated mathematically.

There are advantages of CBF. There is no need for past purchase history. It

is not extremely difficult to implement. On the other hand, there are certain

disadvantages, as well. It offers static recommendations. When the content

is not very informative, it is not efficient. Information filtering is more suited

to recommend technical books than novels or movies. Generally collaborative

systems report a better performance than content-based approaches, but their

success relies on the presence of a sufficient number of user ratings. So both

algorithms have problems if we use them alone. We are going to combine these

algorithms as a hybrid recommender system. Of course, this method is done in

history many times. But we contributed by adding some innovative processes

in it.

In literature, there are many researches about e-learning and e-commerce which

propose hybrid methods but their general approach is not in total alignment

with ours. When more than one algorithm is used, it is called hybrid. So

the algorithms can be different for different hybrid methods. In our proposed

method, we are going to use MovieLens 1M dataset. The recommendation is

going to be made by comparing the watching habits and given scores of similar

users. It is collaborative filtering (CF). Our approach also boosts this by offering

movies that share characteristics with other movies that a user has rated highly.

It is content based filtering (CBF). After the implementation of method, to

improve the performance of content-based prototypes, it is necessary to use some
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other ways of modeling the movies and re-estimating the similarities among them

with a new similarity function.

Several studies analytically compare the performance of the hybrid with the pure

collaborative and content-based methods and prove that the hybrid methods can

provide more correct advices than pure approaches. These methods can also be

used to accomplish some of the common problems in recommender systems such

as cold start and the sparsity problem. If no user preference information is

existing to form any basis for suggestions, it is called cold start problem [32].

The sparsity problem happens when existing data are insufficient for determining

similar users (neighbors) and it is a main issue that limits the quality of advices

and the applicability of collaborative filtering in general [28].

In this thesis, we used collaborative filtering and content based filtering method

to recommend items to users by using different datasets like MovieLens dataset

and METU Student Elective Course dataset. Firstly, we created movie recom-

mendation system on MovieLens dataset by using Apache Mahout. Very big

datasets can be run on Mahout with cloud computing platform. Instead of

developing our system from scratch, we prefer to use Apache Mahout. It has

the clustering algorithms we are looking for as well as the recommendation al-

gorithms. The results are compared with user-based CF, item-based CF and

hybrid method. We evaluate the accuracy of the system by using MAE (Mean

Absolute Error). MAE just evaluates the accuracy based on rating values. It

is comparing predicted rating and actual rating. So MAE is the average of the

absolute errors between the real rating and the prediction. Besides, we used

Precision and Recall to evaluate our results. We don’t have any test dataset

besides MovieLens 1M, so we segregated the test data randomly from original

dataset. We implemented k-fold cross validation. Secondly, we used METU

Student Elective Course dataset in order to see the accuracy of the algorithms

in a practical real-world scenario. By using this dataset, we tried to implement

student course recommendation system and validate it especially with students

in real world. Calculating accuracy of recommendations was our first aim on

this survey. For both of these goals, we used Apache Mahout library.
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As a result, to implement the hybrid method, we performed experiments with

MovieLens dataset and METU elective course dataset. The implementation is

done by using Apache Mahout library which is an innovative and fabulous tool

for recommender systems. The results are compared with validation metrics.

The rest of the thesis is organized as follows. The background studies in the

literature about CF, CBF and other recommender systems which are proposed

in recent years are given in Chapter 2. The detailed descriptions and algorithms

of recommendation systems are given in Chapter 3. The datasets which we used

are explained in Chapter 4. To implement Recommendation Systems, we used

Apache Mahout library. It is mentioned on Chapter 5. We explained our pro-

posed system in detail by describing all parameters, datasets and innovations

added to the baseline approach in Chapter 6. Lastly, we presented our exper-

imental results and discussed the results which are validated with evaluation

metrics as well as explaining the limitations of the study in Chapter 7. In Chap-

ter 8, we summarized the work done and explained contributions of the study

and possible improvement points of the proposed system.
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CHAPTER 2

RELATED WORK

Data mining allows us to get recommendations or forecasts for future from very

huge data. It is a process of getting meaningful information from meaningless

raw data. The forecasts which data mining provides are crucial for recommender

systems. The exact problem in this field is to get better and more accurate

forecasts. Because of the better forecasts, not only the companies can sell more

products, but also the customers can be satisfied because they are going to

reach the desired products easily. The most common methods in this field are

Collaborative Filtering, Content Based Filtering and hybrid approaches.

The first system that implemented the collaborative filtering method was the

Tapestry project at Xerox PARC [15] in 1992. The project coined the collab-

orative filtering term. One of the other early systems is a music recommender

named Ringo ([41], [35]) which is proposed in 1994. The other one is a system

for rating USENET [30] in the same year. GroupLens is one of the first collabo-

rative filtering recommendation system, which recommends movies [30]. Other

examples are Amazon.com that recommends books, and the Jester system that

recommends jokes.

If the relatively old studies on recommender systems are investigated, it is dis-

cernible that scientists mostly worked on text based domains to implement

content-based filtering, collaborative and knowledge-based filtering. Sometimes,

effective suggestions are produced on movie ([22]), music ([9], [18]) and web site

domains. Besides, in recent years, efforts were made on e-government ([34]), e-

learning and e-commerce domains ([40] [36], [1], [10]). Recent studies show that
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filtering methods can give more effective results when they are used together.

In this thesis, we aimed firstly the minimization of shortages of hybrid approach

found in literature ([38], [12], [25], [23], [13]), and secondly the utilization of such

an approach for another domain. The main purposes of this thesis are to investi-

gate the new application areas of data mining and to calculate the effectiveness

of our hybrid approach.

Data mining is the main part of recommender systems. In old recommender sys-

tems, data mining and data processing are utilized together and various methods

are developed. In this thesis, data mining methods are studied together to reach

at the hybrid approach. Similar studies have been performed since 1997 and have

much more interest in recent years. Recommender systems are important not

just for individuals but also for companies and governments. Future prediction

is benefited in a lot of areas such as finance, shopping, internet, music, cinema,

and e-government. In this thesis, one for such domain is selected applying our

effective hybrid filtering approach.

Recommender systems are especially developed for e-commerce, e-government

and e-learning ([39], [40], [19]) in recent studies. Moreover, a lot of recom-

mender systems for music, cinema, book and entertainment domain (TV pro-

gram recommendation [44], Flickr group recommendation [43]) are developed.

In development of such systems, data mining techniques and algorithms are ef-

fectively used. Some of the most effective filtering examples are content-based,

collaborative, user-based and data-based. Hybrid recommender system is the

combined usage of these filtering methods. In 2013, AR (association rule) and

SVD (singular value decomposition) are utilized together as a hybrid solution

for the recruitment of the partner filtering recommender system.

In recent years, hybrid recommender systems have gained significant importance.

For example, Netflix company organized a contest in 2006. The contest began

on October 2, 2006 and continued through at least October 2, 2011. They

wanted from contestants to create better movie recommendation by using their

dataset. Netflix is already using a world-class movie recommendation system:

CinematchSM. Its job is to predict whether someone will enjoy a movie based
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on how much they liked or disliked other movies. However the contestants find

better recommendations than CinematchSM. The contest by Netflix resulted

in a big jump in the research of the recommender systems, more than 40,000

teams were trying to create a good algorithm. In the end, BellKor’s Pragmatic

Chaos [2][29][20] won the contest because their approach regards time unlike

other studies. One of the other striking findings belong to Krishnan [21] who

compared the recommendation results of machine against humans. According

to the study of Krishnan, the machine won in most of the comparisons because

machines can handle more data than humans can.

Hybrid approaches are developed for recommender systems used for e-commerce

systems and TV programs. There are also some studies for social networks. One

of them is about group recommendation system for Flickr. In another study,

friend recommendation is performed using LinkedIn profiles. Music recommen-

dation is investigated via auto-tagging and hybrid-matching. Some algorithms

are developed for the recommendation used in search engines. Some studies

made use of similarity trees such as fuzzy-tree. For example, recommender sys-

tems are developed for telecommunication products using this algorithm. Ge-

netic algorithm and Bayes categorization are also utilized in some studies. These

studies are beneficial to develop algorithms with scalable, accurate results.

One of the article in literature (Zhao and Shang et al. [45]) is about using

Hadoop to get better performance and shorter response time in Collaborative-

Filtering(CF) algorithm. The similarity measure method is The Pearson corre-

lation coefficient. They run the algorithm on 9 computers which have Hadoop

clusters. They do not consider the accuracy, but the running time. They claim

that CF in Hadoop platform provides good performance. I come up with an

idea to use hybrid recommendation system in Hadoop so it will provide not only

better performance, but also better accuracy. This idea is already investigated

by a few researchers in recent years. We can still use a different hybrid rec-

ommendation on Hadoop platform. Another algorithm which is described in

an article (Wang and Zheng et al. [42]) is a hybrid recommendation algorithm

which is run on Hadoop platform. Firstly, user’s possible ratings are predicted

by using content-based filtering algorithm. They used a fill sparse matrix in
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content-based filtering algorithm, so it can fill the missing data. Then they used

MapReduce to calculate the final score to get the list of recommended items.

They used eight ordinary PC machines to build Hadoop clusters. Experimen-

tal results are given in the article. They claim that this method improves the

accuracy of recommendation. Dooms et al. [11] focuses on responsiveness and

scalability of User-specific online hybrid recommender systems. They have an

online system called MovieBrain. They tried to get better results with user

control on the recommendations.

In this thesis, some of the studies performed earlier are re-visited. Some of the

proven algorithms are preferred to be utilized together. Firstly, Robin Burke’s

research studies [6] and [7] helped a lot in our work. We decided to use switching

hybridization strategy by the help of these papers. Secondly, Manos Papagelis’s

studies [28] and [27] are so beneficial that we decided to use category boosted

method for content-based filtering. Thirdly, Badrul Sarwar’s study [31] led us to

decide which evaluation metric we were going to use. Therefore many studies in

literature helped us to implement and design a hybrid recommendation system.

The mentioned studies above could be found in resources section of the thesis. In

this thesis, one of the promising sector "Movie" is selected as a domain to apply

algorithms. The other data which we used is the registration records of junior

and senior students in Middle East Technical University. We used the given

scores of students to implement an elective-course recommendation system.
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CHAPTER 3

RECOMMENDATION SYSTEMS

3.1 Recommendation Systems

Recommendation systems aim to improve accuracy of suggestions which users

might interest. Recommender systems are based on cognitive science, informa-

tion retrieval, approximation theory. It emerged as an independent area in mid

1990s with the focus on structures of ratings. In recommendation systems, the

main job is to find unseen and unrated items for a user in order to choose the

correct items with the highest estimation values. The systems try to estimate

ratings by using domain knowledge, similarity algorithms and machine learning

approaches. So a recommender system is responsible for predicting the rating

or preference that a user would give to an item. When a user creates his or

her profile, the system have to get the user preferences in order to provide her

interesting recommendations.

Both consumers and sellers can benefit from recommendation systems. Due to

the recommendation systems, users can reach the interesting and related items

easily. Recommendation systems can be applied to a variety of applications.

For example, some of the recommended items are movies, songs, news, books,

research articles, social tags, search queries and products in general. In addition

to this, there exist recommendation systems for jokes, restaurants, financial

services, life insurance, friends (like Facebook or dating websites), and followers

(like Twitter). You can see history of recommendation systems and the examples

in Chapter 9.

13



Movie 1 Movie 2 Movie 3 Movie 4
User 1 4 2 5 -
User 2 - 1 4 -
User 3 - - 3 5

Figure 3.1: User x Item Matrix
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Figure 3.2: User x Item Graph

In most of the recommendation systems, the dataset includes three main ele-

ments: user, item and rating. The data can be represented by a matrix. In the

matrix, rows point out users, columns point out items and matrix entries are

the ratings. These three elements are enough for collaborative filtering so that

we can find the users who are similar each other. If a user loves comedy movies

and gives higher ratings for comedy movies, it is easy to find another user who

also loves comedy movies, because ratings are available. If we want to increase

the accuracy and quality of recommendations, we can consider the other pa-

rameters like features of items. For example, an item may have various features

like price, year, time, location etc. Similarly, a user may have various features

like gender, age, country, address etc. Besides the matrix representation, graph

visualization of user x item matrix is used in some of the algorithms. In graph

illustration, users and items are represented with nodes and the weighted edges

which are the ratings of users for the items. The examples of matrix and graph

representations are given in Figure 3.1 and Figure 3.2 [26].
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Three basic approaches are used in literature for recommendation systems. The

first of them is collaborative filtering (CF) which uses user similarity for item rec-

ommendation. The second one is content based filtering (CBF) which uses item

similarity for item recommendation. The last one is hybrid approach which ba-

sically combines previous two approaches. The following sections present the

recommendation methods. Firstly Collaborative Filtering is discussed, then

Content-Based Filtering is given and lastly hybrid approach is mentioned.

3.2 Recommendation Systems with Collaborative Filtering

By using user similarity, we can decide which item to recommend in Collabo-

rative filtering (CF) approach. This approach provides to find similar users in

taste. We can recommend items rated by these alike users (neighbors). The

underlying opinion of the CF approach is that if two people have same opinion

on an argument, they are more likely to have same opinion on a different ar-

gument. For example, a CF recommendation system for television tastes could

make predictions about which television show a user may like. This approach is

based on given past ratings of that user. The algorithm uses likes and dislikes of

users to predict the future behavior. People often get the best recommendation

from other people who have similar tastes with themselves. The motivation for

CF lies on that idea. CF methods search techniques to associate people on a

topic and making suggestion on this topic.

k-Nearest Neighbors(KNN) method is the most widely used CF approach.

In this way, firstly, k most similar users are identified. Then, the items are se-

lected if it is marked by these users. The items should not be rated by the user,

but should be rated by the neighbors. The rating values for all items are calcu-

lated. For this computation, weighted or notweighted average of the neighbors’

ratings are calculated. Finally, the system decides on the items which have the

highest scores. Besides KNN, there exist other methods used for collaborative

filtering (CF):

• Clustering methods [5],
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• Bayesian networks [5],

• Artificial Neural Networks [3],

• SVD [3],

• Probabilistic Latent Semantic Analysis (PLSA) [37],

• Latent Drichlet Allocation (LDA) [24].

CF is generally applied on very large data sets. The data sets can be varied in

different sectors. For instance, CF can be used in mineral exploration to sense

and monitor data. CF can also be used on financial data, such as financial

service institutions that integrate many financial sources. Some CF application

focus on user data, such as electronic commerce and web applications. This

thesis focuses on CF for user data, although some of the methods may apply

CF in other major applications as well.

Typically, the workflow of a CF system is:

A user gives ratings for items (e.g. books, movies, songs... etc.) of the sys-

tem. The system compares this user’s ratings with other users’ ratings. As a

result, the system finds the people with most similar tastes. They are called

neighbors. Then the items are selected for recommendation. The recommended

items should be the ones which have rated highly by the neighbors, but not yet

being rated by this user. This process need some time to calculate prediction,

therefore it cannot be run in real time. There should be also enough ratings of

the user to run CF algorithm. If there are a lot of past entries of a user, the

system can generate more accurate results.

CF systems can be run on two forms: user-based and item-based. Both of them

have two steps: (1) find similar users, (2) find recommended item based on

similar users. In user-based manner, the algorithm looks for users who share

the same rating patterns with the active user. Then it calculates prediction

for the active user based on the ratings from those like-minded users found in

step 1. This falls under the category of User-Based CF. Alternatively, Item-

Based CF offers the related products. These alike products are determined
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by identifying similar users. If some of the users bought both x and y, a user

who bought only x can get recommendation of y. So this algorithm proceeds

in an item-centric manner. First it builds an item-item matrix determining

relationships between pairs of items. Then it infers the tastes of the current

user by examining the matrix and matching that user’s data.

To sum up, the past ratings of similar users are used in CF in order to get

recommended items. CF methods build a matrix of the user preferences for the

items. In this matrix, each row represents a user profile, whereas the columns

are items. The value Rui, ij is the rating of the user ui for the item ij. Figure

3.1 depicts the matrix of user–item ratings. CF can be one of two types:

(1) User-based CF:

1. Find the neighbors whose ratings are similar to the ratings of the selected

user U.

2. Calculate a prediction for the selected user U by using the ratings from

those like-minded users found in Step 1.

(2) Item-based CF:

1. Build an item-item matrix determining relationships between pairs of items.

2. Calculate a prediction for the selected user U by using this matrix and

data on the current user.

The details of both types of CF is given below.

3.2.1 User–based neighborhood

The predicted rating value of item i for the active user u is Pu,i. It can be

calculated as the average of the ratings’ values of the users similar to u. The

predicted rating score of item i for user u is given in Equation 3.1 [16], where

R̄u is the average rating of user u, and Ru,i is the rating of the user u for the
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item i.

Pu,i = R̄u +

k∑
v∈Neighbors(u)

sim(u, v)(Rv,i − R̄v)

k∑
v∈Neighbors(u)

sim(u, v)

. (3.1)

This method is also known as user–based CF. However, to predict Pu,i, the set

of users who are similar (e.g. like-minded people) to u ( v ∈ Neighbors(u)),

the similarity between them ( sim(u, v) ), and the size of this set ( k ) are

needed to be known by the algorithm. This is similar solving the user–profile

matching problem. Pearson correlation, cosine similarity, and clustering based

on stereotypes are the most common methods to find the neighbors of u.

3.2.2 Item–based neighborhood

Item–based approach benefits from the similarity among the items. This method

examines the set of items that have been rated by a user, and calculates the

similarity among the target item in order to decide whether recommendation

is worthy to the user or not. As a first step in this approach, the similarity

between i and j is obtained. In the calculation of this similarity, one could benefit

from Cosine Similarity, Pearson Correlation, Adjusted Cosine, or computing the

conditional probability, P (j|i). The definition of the cosine similarity is given

in Equation 3.2 [16], where U represents the set of users who rated i and j and

Ru,i symbolizes the rating of user u on item i:

sim(i, j) = cos(~i,~j) =
~i.~j

‖i‖ ∗ ‖j‖
=

∑
u∈U

Ru,iRu,j√∑
u∈U

R2
u,i

√∑
u∈U

R2
u,j

. (3.2)

On the other hand, for the item–based similarity, the differences in rating scale

between different users are not taken into account by the Cosine Similarity. It

is possible to make the use of user average rating from each co–rated pair, and

cope with the limitation of Cosine Similarity with the Adjusted Cosine Similarity,

given in Equation 3.3. In Equation 3.3, R̄u represents the average rating of the
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u–th user:

sim(i, j) =

∑
u∈U

(Ru,i − R̄u)(Ru,j − R̄u)√∑
u∈U

(Ru,i − R̄u)2
√∑

u∈U

(Ru,j − R̄u)2
. (3.3)

Pearson r correlation commonly used for correlation–based similarity. The corre-

lation between two variables shows the degree to which the variables are related.

The correlation similarity is defined in Equation 3.4 [16], where R̄i represents

the average rating of the i–th item:

sim(i, j) =
Cov(i, j)

σiσj
=

∑
u∈U

(Ru,i − R̄i)(Ru,j − R̄j)√∑
u∈U

(Ru,i − R̄i)
2

√∑
u∈U

(Ru,j − R̄j)
2

. (3.4)

Equation 3.5 [16] defines similarity using conditional probability, P (j|i):

sim(i, j) = P (j|i) ' f(i ∩ j)
f(i)

. (3.5)

where f(X) represents the number of customers by whom the item set X has

been purchased. The only asymmetric metric is this one, so sim(i, j) 6= sim(j, i).

After the computation of the similarity among the items, the next step is the

prediction of a value for the active item, i, to the target user, u. Usually, how

the user rates the similar items of i is captured for this task. The predicted

value for item i to user u is given in Equation 3.6 [16], where Sk(i;u) represents

the set of k neighbors of item i, that is rated by the user u. The weighted sum

of the user’s ratings, ∀j ∈ Sk(i;u) is required for the predicted value.

Pu,i =

∑
j∈Sk(i;u)

sim(i, j)Ru,j

∑
j∈Sk(i;u)

sim(i, j)
. (3.6)

The Slope One algorithm can be given as an example of item-based CF. It was

introduced in 2005. It can be seen as the simplest form of item-based algorithm

which is based on ratings.
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The original item-based recommendation is totally based on user-item ranking

(e.g., a user rated a movie with 3 stars, or a user "likes" a video). When we com-

pute the similarity between items, we are not supposed to know anything other

than all users’ history of ratings. So the similarity between items is computed

based on the ratings instead of the meta data of item content.

Here is an example of Collaborative Filtering. Suppose we have only access to
some rating data like Table 3.1.

Table3.1: Example of Collaborative Filtering data
user 1 likes: movie, cooking
user 2 likes: movie, biking, hiking
user 3 likes: biking, cooking
user 4 likes: hiking

Suppose that we want to make recommendations for user 4. First we create an

inverted index for items, we will get results as Table 3.2.

Table3.2: Example of Inverted Index For Items
movie: user 1, user 2
cooking: user 1, user 3
biking: user 2, user 3
hiking: user 2, user 4

Since this is a binary rating (like or not), we can use a similarity measure like

Jaccard Similarity (Formula 3.7) to compute item similarity.

JaccardSimilarity(movie, cooking) =
|user1|
|user1, 2, 3|

=
1

3
. (3.7)

In the enumerator, user1 is the only user who has both movie and cooking. In

the Figure 3.2, the union of movie and cooking has 3 distinct users (user 1, user

2, user 3). In Jaccard Similarity 3.7, |.| here denote the size of the set. So we

know the similarity between movie and cooking is 1/3 in our case. We can just

do the same thing for all possible item pairs (i, j).

After similarity computation is done for all pairs, we can continue to find

recommendation for a specific user. When we look at the similarity score of

similarity(hiking, x) where x is any other tags we might have. If we need to
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make a recommendation for user 3, we can aggregate the similarity score from

each items in its list. For example,

score(movie) = Similarity(biking,movie) + Similarity(cooking,movie)

score(hiking) = Similarity(biking, hiking) + Similarity(cooking, hiking)

There exist some challenges in CF approach. Firstly, if there are not enough

ratings of a user (e.g new users), the system can not recommend accurately be-

cause finding similar users becomes difficult. This problem is called cold start.

Cold start problem may occur when the system cannot draw any inferences

for users or items about which it has not yet gathered sufficient information.

Secondly, similar to new user, the system may not response well when a new

item is added into the system. If a new item added to the system, it have to

wait to be recommended until it is rated by a few users. Third, some problems

can be occurred because of data sparsity during finding neighbors of the user. If

number of items is bigger than the number of users in a system, the recommen-

dations can be more different for two neighbors. In the same way, if a user rated

items which were not rated by others, it is hard for that user to have accurate

recommendations since there is not many neighbors.

3.3 Recommendation Systems with Content Based Filtering

Bu using features of items, Content Based Filtering (CBF) approach can be

used for generating recommendations. If we know the content of either user or

item, we can calculate content-based similarity. The most of the systems have

user-profile and item-profile. For example, a movie can have stars, directors,

genres etc. For user profile, we can do the same thing based on the user’s likes

some movie stars, directors or genres etc. Then the similarity of user and item

can be computed using similarity functions (e.g. Cosine Similarity).

With content-based filtering, the recommended movies are going to be more

relevant to the user. For instance, if a user rated mostly comedy movies with

higher values, the system would recommend comedy movies more than other
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types of movies. Features to define items help to calculate similarity between

items. For example, in a movie recommendation system, information of genre,

year, actors and directors can be beneficial for CBF. CBF approaches are divided

into two parts: heuristics based CBF approaches and machine learning based

CBF approaches. Heuristic based methods include weights of features, TF-IDF

(Term Frequency-Inverse Document Frequency) values etc. Machine learning

based methods are composed of Bayesian classifiers, decision trees, clustering

etc.

There are a few certain limitations in CBF. Firstly, content-based approaches

require features of items. The items do not have features usually. Gathering the

features and concluding the recommender job require a significant knowledge en-

gineering effort. Secondly, distinguishing the items is impossible when two items

are represented with the same features somehow. Thirdly, the recommended

items can become repetitive, because only similarity of items is considered. Al-

though the recommended items should be different on disparate subjects, CBF

causes a problem of getting always same recommendation. Lastly, new users

have not rated enough number of items, so they may suffer from not getting

accurate recommendation. This problem is known as cold start problem [14]

in the literature. When a new user or new item is introduced to the system,

the system knows nothing about them and therefore, it can not recommend

anything.

One of the popular examples of a content-based recommender system is Pandora

Radio which plays music based on the songs that users listen in the past. There

exist other examples of content-based recommendation systems, such as movie

recommendation or book recommendation.

The early CBF approaches focused on the text domain. They usually used tech-

niques from Information Retrieval (IR) like extracting meaningful information

from the text. On the other hand, the recent studies focus on CBF solutions

that cope with more complex domains, such as movie, music, TV program, book.

Multimedia domain is so improved in recent years, and there is a lot of available

data sets which include item features more than in the past. The scientists im-
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proved feature extraction and machine learning algorithms by using these data

sets.

CBF methods focus on an objective distance among the items, while CF methods

focus on subjective factor. The distance between two items can be computed by

a similarity function. Most of the distance metrics deal with numeric attributes,

or single feature vectors. Some common distances, given two feature vectors x

and y, are: Euclidean (Equation 3.8), Manhattan (Equation 3.9), Chebychev

(Equation 3.10), cosine distance for vectors (see previously defined Equation

3.2), and Mahalanobis distance (Equation 3.11) (All formulas are taken from

[16]).

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (3.8)

d(x, y) =
n∑

i=1

|xi − yi|. (3.9)

d(x, y) = maxi=1..n|xi − yi|. (3.10)

d(x, y) =
√

(x− y)TS−1(x− y). (3.11)

Some of the distance metrics accept that the attributes are orthogonal such

as Euclidean (Equation 3.8), Manhattan (Equation 3.9), Chebychev (Equation

3.10) distances. The Mahalanobis distance uses the covariance matrix S. As

a result, Mahalanobis is more vigorous to the dependencies among features. A

delta function can be used when the attributes are nominal (not numeric). One

of simple delta functions is like: δ(a, b) = 0⇔ a = b, and δ(a, b) = 1 otherwise.

Then, a distance metric among nominal attributes can be defined as Equation

3.12 [16] (where ω is a reduction factor):

d(x, y) = ω
n∑

i=1

δ(xi, yi). (3.12)

If we want to deal with both numeric and nominal features, then the final dis-

tance metric can combine two equations. One of them is Equation 3.12 for
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nominal attributes. For numeric attributes we can use one of these equations:

3.8, 3.9, 3.10, 3.11.

Here is a concrete example of CBF. For instance, our user-profile (using binary

encoding, 0 means not-like, 1 means like) is like in Table 3.3, which contains

user’s preference over 5 movie stars and 5 movie genres:

Table3.3: Example of User Profile
Users Movie stars 0-4 Movie Genres
user1: 0 0 0 1 1 1 1 1 0 0
user2: 1 1 0 0 0 0 0 0 1 1
user3: 0 0 0 1 1 1 1 1 1 0

Our movie-profile is like in Table 3.4.

Table3.4: Example of Movie Profile
Movies Movie stars 0 - 4 Movie Genres
movie1: 0 0 0 0 1 1 1 0 0 0
movie2: 1 1 1 0 0 0 0 1 0 1
movie3: 0 0 1 0 1 1 0 1 0 1

To calculate how good a movie is for a user, we use Cosine Similarity (Formula

3.13):

CosSimilarity(user,movie) =
DotProduct(user,movie)

||user|| · ||movie||
. (3.13)

CosSimilarity(user1,movie1) = 0·0+0·0+0·0+1·0+1·1+1·1+1·1+1·0+0·0+0·0√
5·
√
3

= 3
(
√
5·
√
3)

= 0.77460

Similarly:

CosSimilarity(user2,movie2) = 3
(
√
4·
√
5)

= 0.67082

CosSimilarity(user3,movie3) = 3
(
√
6·
√
5)

= 0.54772

We used content-based filtering after hybrid approach between User-based CF

and Item-Based CF. The user’s ratings are aggregated based on movie’s genre.

So each genre has average rating for a user. We add this average genre rating

24



value to the last predicted rating of each movie based on its genre. For instance,

a user gave three ratings for three movies:

• movie1 (Action, Adventure) 3.0

• movie2 (Comedy, Romance) 4.0

• movie3 (Comedy, Adventure) 5.0

So the average value of each genre will be like:

• Action 3.0/1 = 3

• Adventure (3.0+5.0)/2 = 4

• Comedy (4.0+5.0)/2 = 4.5

• Romance 4.0/1 = 4

The recommended movies and their predicted ratings for this user are given:

• movie4 (Comedy, Romance) 4.0

• movie5 (Adventure) 4.0

• movie6 (Thriller) 4.0

Movie4, movie5 and movie6 have same predicted ratings after Collaborative

Filtering method. We need to add genre average values so that user’s ratings for

each genre are going to determine the final recommendation list. After genre-

based filtering, the ratings are aggregated with genre’s average values.

• movie4 (Comedy, Romance) 4.0 + (4.5 + 4) = 12.5

• movie5 (Adventure) 4.0 + 4 = 8

• movie6 (Thriller) 4.0
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In normalization, we are reducing the highest score to 5. Therefore we are

multiplying all scores with (5/maxScore). In this example, we multiplied all

scores with (5/12.5)=0.4. After normalization:

• movie4 (Comedy, Romance) 5.0

• movie5 (Adventure) 3.2

• movie6 (Thriller) 1.6

As you can see, the movie4 is more suitable to the taste of User1 than movie5 and

movie6. It seems that movie6 is not related to the user. The genre-based filtering

is a kind of content-based filtering. We can do the same for directors, actors

and actresses. However the MovieLens dataset does not have much information

about movies.

3.4 Recommendation Systems with Hybrid Approach

Hybrid methods basically combines collaborative filtering (CF) and content

based filtering (CBF) approaches to give recommendations. For Hybrid Fil-

tering, we need to use same dataset for both CF and CBF algorithms, so the

dataset should be suitable for both of them. Two algorithms have problems when

they are used alone. Hybrid approaches not only tries to solve the problems but

also tries to increase the accuracy of prediction.

The common problems of recommender systems are explained below.

• Early rating: CF method has problem of early rating. This means that

first user in the system is going to rate items without receiving any rec-

ommendation. So we should decide which items to recommend without

looking at the past ratings of this user. CF approach cannot provide rec-

ommendations for new users since there are no user ratings. Same problem

is valid for new items since there are no user ratings on the item to forecast.

• Data sparsity: When there is not much information in dataset, the sys-

tems can not calculate correct similarity. Sometimes the system can not
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associate the user with other users, so it can not find any recommended

item. Besides this, if two users rated same items, both are going to see

same recommendation. Therefore it is a hard problem to compute simi-

larity.

• Cold start for user: If a new user participates the system, he or she

is going to see no recommendation, because there is no given rating for

items. If user does not have sufficient number of ratings, he or she can

suffer from unrelated recommendation. This may occur when similar users

to this user cannot be found. This problem is called Cold Start.

• Cold start for item: If an item is introduced to the system, it can not be

recommended until it is rated by anybody. Also if an item does not have

enough ratings, it can suffer from not being recommended. This problem

is called Cold Start too.

• Attacks: If there exist attacks to the recommendation system, the system

should recognize it and try to avoid it. For instance, some user can copy

the other user’s profile and can get same recommendations. The system

should separate the users who are attacker and the users who are very

similar.

CBF approaches solve some of the defects of the CF like early–rater problem.

When a new item is added, the similarity can be computed by looking the other

items. In CBF, we do not need the ratings of users on an item to recommend

it, so any item can be recommended without being rated by users. This is

impossible in CF methods. We can say that CBF solves the cold start for item

problem, however other problems still exist in pure algorithms. Therefore the

proposed solutions in literature try to solve these problems by creating hybrid

approaches.

We can say that a recommender system should provide accuracy, coverage, nov-

elty, diversity, stability, resistance to attacks. We can summarize the require-

ments as follows [26]:

• Accuracy: Providing better recommendations and prediction.
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• Coverage: Capacity of estimating rating of an item.

• Novelty: Degree of diversity between recommended and known items.

• Diversity: Degree of diversity among recommended items.

• Stability: Not firmly changing recommendations in a short period of time.

• Resistance to attacks: Not being damaged by attacks

We researched about hybrid recommender systems in this thesis. The most of the

studies in literature are mostly about making the algorithm faster by using more

clusters on Hadoop which is cloud platform for distributed computing. They

focus on scalability and responsiveness of recommender systems. Hadoop and

MapReduce can make the algorithm faster and easier. Some of scientists used

8 computers so they had 8 clusters of Hadoop. The recommendation algorithm

can response in minutes with 8 clusters. The studies compared the response

time of Hadoop with using more and more clusters. However in this thesis, we

focused on the accuracy of hybrid approach than the scalability and response

time.

In order to do hybrid filtering, CF and CBF algorithms can be implemented

individually and displayed separately. In a second option, both scores of CF and

CBF algorithms can be multiplied the ranking scores in order to merge them

into a single recommendation set. In literature, there exist seven hybridization

techniques that are explained briefly below [7]:

• Weighted: The score of both recommendation components are combined

numerically.

• Switching: The system selects one of the recommendation components

and applies the selected one.

• Mixed: Recommendations from different recommenders are presented in

a combined list.

• Feature Combination: Features of different knowledge sources are com-

bined together and given to a single recommendation algorithm.
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• Feature Augmentation: A set of features can be calculated by one

technique, and then they can be the input to the next technique.

• Cascade: Recommenders are given strict priority, with the lower priority

ones breaking ties in the scoring of the higher ones.

• Meta-level: A model can be produced by one technique, which is then

the input used by the next technique.

First of all, we used weighted approach. Secondly we used switching approach

in this thesis. We agreed on using switching method at the end. Our hybrid

solution works like the following:

First, the result of user-based algorithm is called s1 while the result of item-

based is called s2. There are 100 movies in each result list so that the most of

the movies have both s1 and s2 predicted rating values.

If a movie is not in list of 100 results of user-based, then it’s s1 value equals to

zero. In the same way, if a movie does not exist in 100 results of item-based,

then s2 value equals to zero. Consequently, in weighted method, the s1 and s2

scores are going to be multiplied with weights and are aggregated in a single

value. In switching method if a movie has both s1 and s2 results, the system is

going to select the one which is higher precision.

In weighted method, we calculated the total weighted score of all movies in result

sets. The total score is calculated as (w1*s1)+(w2*s2). In the formula, w1 and

w2 are weights in decimal number. The first 100 movies of the total result are

regarded.

After trying the different numbers for w1 and w2, we can look at precision

and recall. In simple terms, high precision means that an algorithm returned

substantially more relevant items than irrelevant items, while high recall means

that an algorithm returned most of the relevant results.

In switching method, we chose recommended items by looking the precision and

recall of the randomly chosen 1000 users in MovieLens 1M data (There are 6040

users and 3952 different movies in total).
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We run the algorithms separately with weighted and switching hybridization

techniques. We tried the pure collaborative filtering methods (user-based CF

and item-based CF) alone and get the precision values. After that we chose the

hybridization technique. Switching method gave better results than the weighted

method. Therefore we focus on it in later studies. In switching hybridization,

CF method with the highest precision value is selected. Then, at the last step,

we applied content-based filtering. The implementation details of our hybrid

approach is given in Chapter 6. The pseudo code of our final hybrid approach

which includes content-based filtering and switching hybridization between user-

based CF and item-based CF is given in Algorithm 1, Algorithm 2, Algorithm

3, Algorithm 4, Algorithm 5.

After getting results, we needed to evaluate the results. The recommendation

systems need evaluation metrics to calculate the error rate. There are statistical

methods to measure error rate:

• Root Mean Squared Error (RMSE)

• Mean Absolute Error (MAE)

In statistics, the mean absolute error (MAE) is a quantity used to measure how

close predictions are to the eventual outcomes. The root-mean-square deviation

(RMSD) or root-mean-square error (RMSE) is a frequently used measure of the

differences between values (sample and population values) predicted by a model

or an estimator and the values actually observed. In this thesis, we calculated

MAE and compared it other methods with k-fold cross validation technique.

The details of validation metrics are given in Chapter 7.
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Algorithm 1 Pseudo Code of Hybrid Recommendation System
1: procedure Hybrid–Recommender

2: movieData← movies.csv

3: for Fold k=1 to 5 do

4: model← trainingdatak.csv

5: testModel ← testdatak.csv

6: for each user u in testModel do

7: resultUB ← UserBasedCF(model, u.ID)

8: CalcValidationMetrics(resultUB, testModel)

9: resultIB ← ItemBasedCF(model, u.ID)

10: Normalize(resultIB)

11: CalcValidationMetrics(resultIB, testModel)

12: resultUB−IB ← merge(resultUB, resultIB)

13: for each movie m in resultUB−IB do

14: if precisionIB > precisionUB then

15: resultCfHY BRID ← resultIB

16: else

17: resultCfHY BRID ← resultUB

18: end if

19: end for

20: Sort(resultCfHY BRID)

21: resultHY BRID ← ContentBasedFiltering(resultCfHY BRID)

22: Normalize(resultHY BRID)

23: Sort(resultHY BRID)

24: CalcValidationMetrics(resultHY BRID, testModel)

25: precisionk ← add precisionu to end of file.

26: recallk ← add recallu to end of file.

27: fmeasurek ← add fmeasureu to end of file.

28: maek ← add maeu to end of file.

29: end for

30: end for

31: end procedure
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Algorithm 2 Pseudo Code of User Based CF
1: procedure USER–BASED CF

2: userSimilarity ← PearsonCorrelationSimilarity(model)

3: neighborhood ← NearestNUserNeighborhood(numberOfNeighbors,

userSimilarity, model)

4: recommender ← GenericUserBasedRecommender(model,

neighborhood, userSimilarity)

5: cachingRecommender ← CachingRecommender(recommender)

6: recommendations ← cachingRecommender.recommend(userId, num-

berOfRecommendations)

7: return recommendations

8: end procedure

Algorithm 3 Pseudo Code of Item Based CF
1: procedure ITEM–BASED CF

2: itemSimilarity ← TanimotoCoefficientSimilarity(model)

3: recommender ← GenericBooleanPrefItemBasedRecommender(model,

itemSimilarity)

4: cachingRecommender ← CachingRecommender(recommender)

5: recommendations ← cachingRecommender.recommend(userId, num-

berOfRecommendations);

6: return recommendations

7: end procedure
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Algorithm 4 Pseudo Code of Content Based Filtering
1: procedure CONTENT–BASED FILTERING

2: for each genre g in model do

3: Avgg ← Calculate average rating of user

4: end for

5: for each movie m in resultCfHybrid do

6: for each genre g which m has do

7: ratingm ← ratingm + Avgg

8: end for

9: end forreturn resultCfHybrid

10: end procedure

Algorithm 5 Pseudo Code of Validation Metrics
1: procedure Validation–Metrics

2: precision← number of found in test / number of recommendation size

3: recall← number of found in test / number of test size

4: F −measure← (2 * p * r) / (p + r)

5: MAE ← (Total differences between predicted and actual rating) / num-

ber of common items in result and test data.

6: end procedure
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CHAPTER 4

DATASETS

In this chapter, the datasets which are used for experiments to implement hybrid

recommendation system are discussed and given in detail.

4.1 MovieLens Dataset

The first dataset we chose is MovieLens. This dataset contains 1,000,209

anonymous ratings of 3,952 movies made by 6,040 MovieLens users who joined

MovieLens in 2000. The correctness of data is not guaranteed but this data is

very suitable for movie recommendation systems. Research usage of MovieLens

Dataset is allowed under some conditions.

MovieLens data can be used in many research related to information filtering,

collaborative filtering, and recommender systems. This dataset helped a lot

to improve collaborative filtering and content-based methods in history. It is

such an old dataset because it includes movies which are released in 2000. The

dataset summary is given in Figure 4.1. All ratings are contained in the file

"ratings.dat" and are in the following format:

UserID::MovieID::Rating::Timestamp

• UserIDs range between 1 and 6040

• MovieIDs range between 1 and 3952

• Ratings are made on a 5-star scale (whole-star ratings only)
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Figure 4.1: Summary of MovieLens 1M data

• Timestamp is represented in seconds since the epoch as returned by time(2)

• Each user has at least 20 ratings

User information which in the file "users.dat" is in the following format:

UserID::Gender::Age::Occupation::Zip-code

All demographic information is provided voluntarily by the users and is not

checked for accuracy. Only users who have provided some demographic infor-

mation are included in this data set.

• Gender is denoted by a "M" for male and "F" for female

• Age is chosen from the following ranges:

1: "Under 18" 18: "18-24" 25: "25-34"

35: "35-44" 45: "45-49" 50: "50-55"

56: "56+"

• Occupation is chosen from the following choices:

0: "other" or not specified 1: "academic/educator"

2: "artist" 3: "clerical/admin"

4: "college/grad student" 5: "customer service"

6: "doctor/health care" 7: "executive/managerial"

8: "farmer" 9: "homemaker"

10: "K-12 student" 11: "lawyer"

12: "programmer" 13: "retired"

14: "sales/marketing" 15: "scientist"

16: "self-employed" 17: "technician/engineer"

18: "tradesman/craftsman" 19: "unemployed"

20: "writer"
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Movie information is in the file "movies.dat" and is in the following format:

MovieID::Title::Genres

• Titles are identical to titles provided by the IMDB (including year of re-

lease)

• Genres are pipe-separated and are selected from the following genres:
Action Adventure Animation

Children’s Comedy Crime

Documentary Drama Fantasy

Film-Noir Horror Musical

Mystery Romance Sci-Fi

Thriller War Western

• Some MovieIDs do not correspond to a movie due to accidental duplicate

entries and/or test entries

• Movies are mostly entered by hand, so errors and inconsistencies may exist

This dataset is separated into two parts like Training data and Test data. One

part includes some of ratings of from randomly chosen 1000 users. This part is

used as test data. The other part includes all ratings except the ones which are

taken for test data. So this part is used as training data. The ratings for the

test data are chosen randomly from the users. So, both users and ratings are

randomly chosen for test set.

4.2 METU Student Elective Course Dataset

The third dataset which we use in this thesis is METU Student Elective

Course dataset. This dataset is not open for everyone and it can be used

with permission of Computer Engineering Department of Middle East Technical

University. In this dataset, there are 1056 ratings of 300 students which they

have given at the beginning of 3 semesters for 20 courses. We can think of it

as a matrix. There are students as rows and the elective courses as columns in
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a matrix. The intersection of rows and columns shows scores. A student can

give at most 100 score in total if we sum up all scores which he or she has given

for one semester. For example, if a student can give 90 points for an elective

course, then he or she can give at most 10 points for another course. He or she

cannot give more than 10 points anymore. This method is done for placing or

distributing the students among all elective lessons by their scores. To sum up,

students are selected for the elective courses by the scores which they gave.

The dataset summary is given in Figure 4.2. A snippet of semester1.csv is given

in Table 4.1.

Table4.1: Unnormalized and normalized data example for METU Elective
Course Data Set

Unnormalized Dataset Normalized Dataset
student,lecture,score,semester student,lecture,score,semester
1,476,1,1 1,476,1.01,1
1,498,99,1 1,498,100.0,1
2,498,99,3 2,498,100.0,3
3,469,99,2 3,469,100.0,2
4,424,1,1 4,424,1.42,1
4,443,70,1 4,443,100.0,1
4,465,4,1 4,465,5.71,1
4,495,25,1 4,495,35.71,1
4,352,50,3 4,352,100.0,3
4,498,50,3 4,498,100.0,3

This dataset has real world content and it consists of 3 semesters. The students’

identity is not given in dataset because their names replaced with anonymous

ids like 1, 2, 3, etc. However the lecture names are given correctly like 476, 498,

etc. We used this dataset to implement course recommendation system with

our hybrid method. The validation of recommended items were analyzed with

a survey among students in METU Computer Engineering department.

There were some problems in dataset, so we solved them with normalization

before processing. First of all, the system allows students to give scores depen-

dent on how many lectures they are allowed to take for one semester. Some of

students are allowed to take just two elective courses for a semester while some
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of them are not. So students can be selected for the lecture of either the higher

score or the other. When the students are restricted to select two courses, they

are dividing the 100 points into two. On the other hand, students who are re-

stricted to select three courses are dividing the 100 points into three. This causes

a problem of finding similar scores among students because they are dividing

scores based on their number of elective course limit. When you look at the

example snippet of dataset, S1 and S4 gave whole 100 points for one lecture. S2

separated the scores into three and S3 separated the scores into two. So while

S2 gave 35 points for Course 5, S3 gave 95 points for the same course. However

both S2 and S3 wanted to enroll Course 5 which is their most desired course for

both of them. So 35 and 95 scores should point out the similarity for S2 and S3.

Therefore we needed normalization.

Secondly, The system always enables students to enter score for one more les-

son based on their balance. For example, if a student is allowed to enroll one

course, the online system allows to enter scores for two courses. As a result,

this student can be elected for one of these courses. However some of students

gave 100 points for just one lecture so they do not distribute the scores. In the

example above, S1 and S4 gave 100 points for one lecture. This cause problem

of finding recommendations. They gave entire score to a course and the system

automatically elected them because they are the ones who gave higher scores.

Lets say another student gave 99 points for this lecture, this means this student

want to enroll this course as much as them. Thus we subtracted 1 from 100, so

we assume the students gave 99 points for the course. This is one of the parts

of normalization.

After the normalization the biggest score of a user became 100 and other scores

are multiplied with (100 / biggestScore) to normalize. So if a user wants to enroll

a course, we can identify them by their scores. Normalization and exporting data

is done by Java programming and the normalization code is given at Appendix

A.

The courses have genre types. There are 9 genre types. Genres are pipe-

separated and are selected from the following genres:
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Figure 4.2: Summary of Metu Elective Course data

Computational Algorithm Database

Theory Automata Programming

Software Computer Systems Vision
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CHAPTER 5

RECOMMENDATION SYSTEM WITH APACHE

MAHOUT

In this chapter, the implementation details of hybrid recommendation system

with Apache Mahout are discussed and given in detail.

5.1 Recommendation System Implementation with Apache Mahout

Recommender systems provide reaching more products, knowledge and similar

people easily for users. A recommender system can predict the taste of a user

based on his or her past, item similarities and the associations with other peo-

ple. The recommendation systems become popular over the past 20 years. In

this period, a rich collection of tools that enable to implement recommendation

systems are emerged. There are a lot of recommender tools in order to use

and evaluate for the recommendation algorithms. One of the most significant of

those tools is Apache Mahout.

Apache Mahout is one of the machine learning libraries. It is scalable so

that it can handle very large data sets. Apache Mahout provides paralleliz-

able running of algorithms with MapReduce paradigm on Hadoop distributed

computing platform. People involved in the Apache Lucene project started the

Mahout project to deal with machine learning algorithms for clustering and cat-

egorization. Apache Mahout is tried to get example recommendations. It is an

official Apache project and freely distributed on internet thus available from any

of the Apache mirrors.
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Apache Mahout can deal with the following tasks:

1. Recommendation systems: Mahout administers wide range of CF al-

gorithms. Recommendation Job workflow is given in Figure 5.1 which is

taken from [17].

2. Clustering: Mahout can compute TF-IDF and can cluster text docu-

ments so that we can find related texts.

3. Classification: Mahout implements learning methods and can classify

documents. It can find the correct category for unlabeled documents.

4. Frequent item-set mining: Mahout can take a group of items and

detects which individual items usually appear together.

Mahout includes recommendation algorithms such as slope one, user based, item

based and is incredibly easy to extend. It also has some pretty useful cluster-

ing algorithms which support dimension reduction features. This is useful for

scientists in case their matrix is sparse (that is, a lot of tags that have very few

usage stats). Also Mahout supports Lucene which has frequency–inverse docu-

ment frequency (TF-IDF) features to cluster tags and documents. In addition

to this, Mahout works in a collaboration with Solr. Both are Apache projects.

Solr is an indexing tool built on Apache Lucene. Solr is highly reliable, scalable

and fault tolerant, providing distributed indexing, replication and load-balanced

querying, automated failover and recovery, centralized configuration and more.

In this thesis, Apache Mahout used for implementation of CF recommenda-

tion on MovieLens dataset and METU Elective Course Dataset. Recommender

of Mahout processes a data set in a text file which each line includes user id,

item id and rating value. The ids and rating value have to be separated with

comma as described in Chapter 4. Therefore every line should have the format

"userID,itemID,ratingValue". The rating value can be in different range in dif-

ferent applications. For a movie recommendation system, the rating values are

varied from 0 to 5 as an integer number.
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Figure 5.1: Recommender Job workflow of Apache Mahout

5.2 User Based Collaborative Filtering Implementation with Apache

Mahout

In this thesis, firstly, we created a user-based recommender on Apache Mahout.

The idea behind this approach is described in Chapter 3. To calculate the simi-

larity of users, we have to compare their interactions. There are several methods

for doing this. One popular method is to compute the correlation coefficient be-

tween their interactions. In Mahout, we used Pearson Correlation Similarity.

The codes below runs Pearson Correlation Similarity (PCS) algorithm to im-

plement user similarity. After that, we had to define which similar users we

wanted to leverage for the recommender. This example program (Table 5.1)

recommends 10 movies for user 1. Nearest N-User Neighborhood algorithm is

used to find 3 similar users. The short version of our Java code which was used

in this study is given at Appendix B.

Table5.1: Java Code example of User-based CF on Apache Mahout
1 Use rS im i l a r i t y u s e r S im i l a r i t y = new Pea r s onCor r e l a t i onS im i l a r i t y (

model ) ;
2 UserNeighborhood neighborhood = new NearestNUserNeighborhood (3 ,

u s e rS im i l a r i t y , model ) ;
3 Recommender recommender = new GenericUserBasedRecommender (model ,

neighborhood , u s e r S im i l a r i t y ) ;
4 Recommender cachingRecommender = new CachingRecommender ( recommender

) ;
5 List<RecommendedItem> recommendations = cachingRecommender .

recommend (1 , 10) ;
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PCS is a well known algorithm to find similarity of nodes. This metric measures

how highly correlated are two variables. PCS is measured from -1 to +1 unlike

the Euclidean Distance similarity score which is scaled from 0 to 1. A Pearson

Correlation Coefficient of 1 means that the data objects are perfectly correlated

while a score of -1 indicates that the data objects are not correlated at all. In

essence, the Pearson Correlation score finds the ratio between the covariance and

the standard deviation of both objects. In the mathematical form, the score can

be described as formula 5.1 [33].

Pearson(x, y) =

∑
xy −

∑
x
∑

y

N√
(
∑
x2 − (

∑
x)2

N
)(
∑
y2 − (

∑
y)2

N
)
. (5.1)

K-nearest neighbor (KNN) is an algorithm to find nearest items among the

whole collection, so it can be used in collaborative filtering as well. The most

important idea lies in a term "similarity". To recommend something to the user

in question, you find people from his neighborhood that have similar profile.

5.3 Item Based Collaborative Filtering Implementation with Apache

Mahout

There is a pretty standard Mahout item-based recommender for movies using

MovieLens data. We used Tanimoto Coefficient Similarity and Generic

Boolean Preference Item Based Recommender to calculate item-based

recommendations. The item based filtering can be done on mostly boolean data

sets. If input data set does not have a preference value, we can call it like boolean

data set. For example, input data set would be like the following format in Table

5.2.

Table5.2: Boolean data set format
UserId1,ItemId1
UserId2,ItemId2

Here it can be based on some data where a user either likes an item or he or she

does not. There is no preference value associated with this. For similarity algo-
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rithm, we can either go in for Tanimoto Coefficient Similarity or Log Likelihood

Similarity. For recommender, we need to use Generic Boolean Pref User Based

Recommender or Generic Boolean Pref Item Based Recommender. Mahout

provides a number of item-based implementations – a generic recommender,

Boolean preferences recommender, Slope one, SVD and KNN. To implement

an item based recommendation, we chose Tanimoto Coefficient Similarity and

Generic Boolean Preference Item Based Recommender (Table 5.3).

Table5.3: Java Code example of Item-based CF on Apache Mahout
1 I t emS im i l a r i t y i t emS im i l a r i t y = new Tan imotoCoe f f i c i en tS im i l a r i t y (

model ) ;
2 ItemBasedRecommender recommender = new

GenericBooleanPrefItemBasedRecommender (model , i t emS im i l a r i t y ) ;

We are experimenting with injecting content-based knowledge into the recom-

mender, so that we can most highly recommend movies that are not only similar

in the normal collaborative filtering sense, but also similar in the sense that they

share many common terms.

The movies content similarities can be computed by cosine similarity of TF-IDF

vectors and they are precomputed using a Mahout batch and read from a dataset

file. This is not possible for Movielens Dataset because features of movies are

limited with their title, year and genre. We have just these three information on

MovieLens dataset, so we used just item-based filtering. The distance measure

which name is Tanimoto Coefficient Similarity. The Tanimoto coefficient

between two points, a and b, with k dimensions is calculated as in the Equation

5.2. The Tanimoto similarity is only applicable for a binary variable, and for

binary variables the Tanimoto coefficient ranges from 0 to +1 (where +1 is the

highest similarity).

TanimotoCoefficient =

k∑
j=1

(aj × bj)

k∑
j=1

a2j +
k∑

j=1

b2j −
k∑

j=1

(aj × bj)
. (5.2)
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5.4 Hybrid Approach Implementation on Apache Mahout

We have a few options for hybridization (explained in 3.4). One of them is

using weights. We can use weights in linearly merging two result set. Therefore,

the new result set should cover the test data at most. The second option is

switching approach. We can choose one of the algorithm which covers the test

data at most.

"A switching hybrid builds in item-level sensitivity to the hybridization strategy:

the system uses some criterion to switch between recommendation techniques.

Tran and Cohen (1999) proposed a more straightforward switching hybrid. In

their system, the agreement between a user’s past ratings and the recommenda-

tions of each technique are used to select the technique to employ for the next

recommendation." Robin Burke, 2002 [6]

We are trying to get maximize not only the number of coincidences but also the

ratings of test data. We have to consider the rating of the user for a specific

movie genre in training data before we recommend it. So we can get the average

of the ratings of the user for the all watched movie genres which exist on training

dataset. So we added content based filtering at the end of the process.

Hybrid approach and content-based filtering are not supported by Apache Ma-

hout. We created our hybrid approach and content-based filtering without using

Apache Mahout library. The details are given in Chapter 6.
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CHAPTER 6

EXPERIMENTS

In this chapter, the experiments to implement hybrid recommendation system

are discussed and given in detail. For experiments, we used Apache Mahout li-

brary for collaborative filtering. The algorithms are mentioned in Chapter 3 and

the details of Apache Mahout is given in Chapter 5. In this chapter, we gave only

the details of experiments. We created and implemented hybrid recommendation

system. Firstly, we did experiments with User-based CF. We used Pearson Cor-

relation Similarity and Nearest N-User Algorithm for User-based CF. Secondly,

we did experiments with Item-based CF. We used Tanimoto Coefficient Similar-

ity and Generic Boolean Preference algorithms for Item-based CF. Thirdly, we

blended item-based and user-based methods of CF with weighted and switch-

ing hybridization approaches. Lastly, we added genre-based average ratings as

content-based filtering so that the final recommendation list became more rele-

vant to user. We used 2 different datasets which are discussed in Chapter 4. The

proposed hybrid algorithm is tested on MovieLens dataset and METU Elective

Course dataset. The results are validated with k-fold cross validation which is

given in Chapter 7.

6.1 Experiments on MovieLens Dataset

In this section, each CF and CBF methods are explored by performing experi-

ments in practice on MovieLens Dataset.
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6.1.1 Experiments with Collaborative Filtering on MovieLens Dataset

We tried out two types of CF: User-based CF and Item-based CF. Firstly, we

did experiments with User-based CF which uses Pearson Correlation Similarity

and Nearest N-User Algorithm. Secondly, we did experiments with Item-based

CF which uses Tanimoto Coefficient Similarity and Generic Boolean Preference

algorithms.

6.1.1.1 Experiments with User Based Filtering on MovieLens Dataset

First of all, we wanted to make recommendation for User 1 on MovieLens. we

looked at his MovieLens profile and then at profiles of other users in MovieLens.

We found 10 people with similar profiles and checked what they like. If 8 of 10

people with similar profiles like new film, most probably User 1 will like it too.

The movies which User 1 watched and scored are given in Appendix C. Accord-
ing the movies which User 1 watched, we can group the movies in their genre so
that we can find the average score of the user for each genre 6.1.

Table6.1: Average score of the user1 for each genre
Genre How many movies? Average Score
Drama 21 4.42
Children’s 20 4.25
Animation 18 4.11
Musical 14 4.28
Comedy 14 4.14
Romance 6 3.66
Action 5 4.20
Adventure 5 4.00
Fantasy 3 4.00
Thriller 3 3.66
Sci-Fi 3 4.33
Crime 2 4.00
War 2 5.00

So we can say that this user likes drama and animation more than other type

of movies. It is obvious that this user is going to get recommendations mostly

on these topics: drama, children’s, animation, musical and comedy. The similar
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users should be selected from the ones who gave better points for the drama

and animation movies. In first configuration, we found 3 neighbors of User 1

based on nearest neighbor algorithm. The recommended movies are limited to

10. The recommended movies for this user on Mahout with Nearest N-User

Neighborhood is in the following Table 6.2.

Table6.2: The result of Nearest 3-User Neighborhood

1 : item:2763 Thomas Crown Affair, The (1999) Action|Thriller

value:5.0

2 : item:2571 Matrix, The (1999) Action|Sci-Fi|Thriller

value:5.0

3 : item:110 Braveheart (1995) Action|Drama|War

value:4.5

4 : item:480 Jurassic Park (1993) Action|Adventure|Sci-Fi

value:4.5

5 : item:551 Nightmare Bef(1993) Children’s|Comedy|Musical

value:3.5

6 : item:2581 Never Been Kissed (1999) Comedy|Romance

value:3.5

7 : item:2701 Wild Wild West (1999) Action|Sci-Fi|Western

value:3.3

8 : item:2723 Mystery Men (1999) Action|Adventure|Comedy

value:2.6

9 : item:2683 Austin Powers: The Spy Who (1999) Comedy

value:2.5

10 : item:1513 Romy and Michele’s High Sc (1997) Comedy

value:2.5

The similarity values of Pearson Correlation plus Nearest N-User Algorithm

generate predicted ratings which range from 0 to 5 for MovieLens dataset. As

you can see, the similar users to User 1 watched Thomas Crown Affair and

Matrix and they gave higher scores for these movies, so the predicted ratings for

these movies are 5. The similar users also like action and thriller movies. The
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other recommended movies are in Drama, Children’s and Comedy which are

suitable for User 1. We can try the same algorithm with different configurations

like more number of neighbors.

If we expand our neighbors from 3 to 10, thenNearest N-User Neighborhood

recommendation gives the following result Table 6.3.

Table6.3: The result of Nearest 10-User Neighborhood

0 : item:858 Godfather, The (1972) Action|Crime|Drama

value:5.0

1 : item:2858 American Beauty (1999) Comedy|Drama

value:5.0

2 : item:1617 L.A. Confi. (1997) Crime|Film-Noir|Mystery|Thriller

value:5.0

3 : item:587 Ghost (1990) Comedy|Romance|Thriller

value:5.0

4 : item:2763 Thomas Crown Affair, The (1999) Action|Thriller

value:5.0

5 : item:3578 Gladiator (2000) Action|Drama

value:5.0

6 : item:1517 Austin Powers: International Man (1997) Comedy

value:5.0

7 : item:141 Birdcage, The (1996) Comedy

value:5.0

8 : item:1221 Godfather: Part II, The (1974) Action|Crime|Drama

value:5.0

9 : item:457 Fugitive, The (1993) Action|Thriller

value:5.0

It can be seen from the table above that the results are getting better and the

similarity results are all 5. There is more Drama movies in the recommended

movies now. The algorithm found 10 similar users to User 1 and naturally it

found more recommendation. If we expand the neighbor size more and more,

the accuracy of predicted movies is going to lower again until it reaches the
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optimal size of neighbors. In literature, some of studies shows that 30 neighbors

is enough for kNN, so 30 neighbors are acceptable most of the time [31]. In our

hybrid study, we used 30 neighbors for MovieLens 1M dataset.

If we use Threshold User Neighborhood rather than Nearest N-User Neigh-

borhood, we can get different results. The similarity function is the same as

Pearson Correlation. When the threshold is 0.1, the result of Threshold

User Neighborhood is like the following Table 6.4.

Table6.4: The result of Threshold User Neighborhood

0 : item:3245 I Am Cuba (Soy Cuba/Ya Kuba) (1964) Drama

value:5.0

1 : item:2503 Apple, The (Sib) (1998) Drama

value:5.0

2 : item:1420 Message to Love: The Isle (1996) Documentary

value:5.0

3 : item:559 Paris, France (1993) Comedy

value:5.0

4 : item:1002 Ed’s Next Move (1996) Comedy

value:5.0

5 : item:649 Cold Fever (1994) Comedy|Drama

value:5.0

6 : item:2197 Firelight (1997) Drama

value:5.0

7 : item:669 Aparajito (1956) Drama

value:4.8

8 : item:1872 Go Now (1995) Drama

value:4.7

9 : item:2129 Saltmen of Tibet, The (1997) Documentary

value:4.6

The Threshold Neighborhood gave totally different results than other Neighbor-

hood algorithm. The genres of the recommended items are similar like Drama

and Comedy. To sum up, we used Collaborative Filtering to find and recommend
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movies to User 1. However the recommendations are not good enough for this

user because he loves drama and children’s genre more than action and thriller.

The recommended movies are chosen by looking other people who watched the

same movies and gave similar points. We did not look at the types of movies,

and this may change the recommendations a lot. Therefore we need content

based filtering too.

6.1.1.2 Experiments with Item Based Filtering on MovieLens Dataset

The 10 results of item-based recommendation in Mahout on MovieLens 1M data

set for User 1 are given in Table 6.5.

Table6.5: The 10 results of item-based recommendation in Mahout on Movie-

Lens 1M data for User 1

0 : item:364 Lion King (1994) Animation|Children’s|Musical

value: 12.99

1 : item:1196 Star Wars: Episode V (1980) Action|Adventure|

value: 12.38 Drama|Sci-Fi|War

2 : item:1265 Groundhog Day (1993) Comedy|Romance

value: 12.37

3 : item:2174 Beetlejuice (1988) Comedy|Fantasy

value: 12.31

4 : item:2081 Little Mermaid, The (1989) Animation|

value: 12.28 Children’s|Comedy|Musical|Romance

5 : item:2716 Ghostbusters (1984) Comedy|Horror

value: 12.08

6 : [item:1073 Willy Wonka and the Choco (1971) Adventure|

value: 12.04 Children’s|Comedy|Fantasy

7 : item:1198 Raiders of the Lost Ark (1981) Action|Adventure

value: 12.03

8 : item:318 Shawshank Redemption, The (1994) Drama

value: 12.03

9 : item:1307 When Harry Met Sally... (1989) Comedy|Romance
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Table 6.5 Item-based result (Continued)

value: 11.99

The result of Mahout withTanimoto Coefficient Similarity gave some results

with higher similarity values. The predicted values of ratings with Tanimoto

and Generic Boolean Pref Item Based Recommender range from 0 to 13 for

MovieLens dataset for User 1. If we look at the genres of the recommended

movies, they are mostly from type of Comedy, Animation and Children’s. So

the recommendations are suitable with the User 1’s profile. How we can combine

these informations is given in the next section in hybrid approach.

6.1.2 Hybrid Approach Implementation on MovieLens Dataset

In previous sections, the experiments of content based and collaborative filtering

algorithms are discussed. So, for a given pair of movies, we have:

• The user similarity (Pearson Correlation) 0 <= s1 <= 5

• The content similarity (Tanimoto) 0 <= s2 <= 13

In our initial run, we run the same algorithms to find 100 recommended movies.

So the common recommended movies are investigated. The Nearest N-User

Algorithm is run to find 50 nearest user in between 6040 users in MovieLens

1M dataset. There are 3952 different movies in dataset. Therefore 100 movies

are selected from these criteria. As a result, there are 20 common recommended

movies which are given in Table 6.6.

Table6.6: Common recommended movies and their scores from User-based (s1)

and Item-based (s2)

Common Movies s1 s2

Honey, I Shrunk the Kids (1989) 5.0 10.54

Witness (1985) 5.0 10.28

Few Good Men, A (1992) 5.0 10.64
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Table 6.6 Common movies (Continued)

Common Movies s1 s2

Good Will Hunting (1997) 5.0 11.38

Matrix (1999) 4.81 11.67

Aliens (1986) 4.75 10.91

Godfather (1972) 4.72 10.66

Casablanca (1942) 4.71 10.17

Forrest Gump (1994) 4.6 11.77

Fugitive (1993) 4.6 11.63

Braveheart (1995) 4.54 10.83

American Beauty (1999) 4.52 10.55

Lady and the Tramp (1955) 4.5 11.40

True Lies (1994) 4.5 10.57

Animal House (1978) 4.5 10.53

Hunt for Red October (1990) 4.5 10.85

League of Their Own (1992) 4.5 10.46

Shawshank Redemption (1994) 4.5 12.03

Rocky (1976) 4.5 10.29

Mask (1994) 4.5 10.71

To see the accuracy of results, the data is divided into two parts. In initial

configuration, from user 1 to user 1000, the half of ratings are separated into

training and test data. The rest of users stayed same, so we can calculate the

ratings by using all 6040 users. After the separation, the results are compared

with test results. There are more coincidences in item-based algorithm than

user-based algorithm.

The results which is run on MovieLens 1M dataset can be seen at figure 6.1. In

the figure, NN means Nearest N-User Algorithm which is used for user-based cal-

culation and TCS means Tanimoto Coefficient Similarity which is used for item-

based calculation. The Pearson Correlation Similarity and Nearest N-User (NN)

Algorithm are executed to find 100 nearest users and recommend 100 movies.
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MovieLens 1M Dataset Results
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Figure 6.1: Comparing Algorithm Results with Test Data of MovieLens 1M

Tanimoto Coefficient Similarity(TCS) and Generic Boolean Preference(GBF)

Item Based Recommendation is used to recommend 100 movies. So the coinci-

dences are found in two hundred recommended movies. The recall of Item-based

approach is better than the User-based approach.

We needed a new hybrid solution to get better results. After the hybridiza-

tion, the recall and precision values are not changing a lot but the accuracy of

predicted ratings are changing a lot in average. We have a few options for hy-

bridization. First of it weighted hybrid solution. We tried it first, then switching

hybrid solution is tried. The switching solution gives better results for movie

domain than the weighted hybrid solution.

In the weighted hybrid solution, the score of different recommendation compo-

nents are combined numerically. We tried this method to implement a weighted

hybrid recommender system, but the results are not promising enough. The

results are discussed in next chapter.

We used switching hybridization technique which is using one of the best al-

gorithm after trying weighted one. As a result, we combine user-based and

item-based algorithms with switching hybridization method. The results are
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better than the weighted one. The switching technique works like selecting the

best algorithm after first try. The evaluation metric is precision which is a ra-

tio between number of test data found in recommendation list and size of the

recommendation list. We used k-fold cross validation. We get the average of

precision for each fold. For MovieLens dataset, k is 5.

User n
%20

%80

Other Users

U
se

r B
as

ed
 

R
ec

om
m

en
da

tio
ns

Ite
m

 B
as

ed
 

R
ec

om
m

en
da

tio
ns

A
pa

ch
e

M
ah

ou
t

E
ng

in
e

O
TH

E
R

R
A

TI
N

G
S

R
A

TI
N

G
S Test

Training

H
yb

rid
 

R
ec

om
m

en
da

tio
ns

s1100 100

Calculate precisions and select 
the method which has higher 

precision.

Movies
Calculate average score of each 

genre

For each genre, add average 
score to current score for each 
film in that genre.

R
eo

rd
er

in
g

Precision
Recall
F-measure
MAE

100

First 20

Apache Mahout

s2

Figure 6.2: Hybrid Solution Overview

In the case where the content similarity is not null, we want to use its value

to weight the user similarity, in order to give a boost to movies with similar

contents. To achieve this, after the combining two method, we added the average

ratings for genres to the movies. Therefore the result set is ordered again with

content-based filtering which is now genre-based. The hybrid approach overview

is given in Figure 6.2. The switching hybridization method is used between User-

based CF and Item-based CF. After then the average genre scores are added

to the predicted scores as weights. Then the scores are normalized to range

between 0 and 5. The program which uses Apache Mahout is written in Java.

The datasets are hold as comma separated values. The results are also recorded

as comma separated values in different files.
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Lets look at the results of User 1 again after creating training and test data

by dividing the data into two parts. This user has 53 ratings in initial data

(Appendix C). To explain the how the system works, we extracted 26 ratings of

the User 1 into test data. So 27 ratings are left for training data. We calculated

the NN Algorithm and GBF Item Based Recommendation with training dataset.

There are 8 coincidences in the results of these two algorithms. Just the 3 of

them are included in test data. The all results are given in Table 6.7.

Table6.7: The movie list which are found in both test data set and result

Movies Name Genre Found In Rating

Apollo 13 (1995) Drama Common 5

Schindler’s List (1993) Drama Common 5

War

Mary Poppins (1964) Children’s TCS 5

Comedy

Musical

Rain Man (1988) Drama TCS 5

Cinderella (1950) Animation TCS 5

Comedy

Musical

Wizard of Oz The (1939) Adventure Common 4

Children’s

Drama

Musical

Aladdin (1992) Animation TCS 4

Children’s

Comedy

Musical

Big (1988) Comedy TCS 4

Fantasy

Ferris Bueller’s Day Off (1986) Comedy TCS 4

Fargo (1996) Crime TCS 4

Drama
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Table 6.7 The movies found in both (Continued)

Movies Name Genre Found In Rating

Thriller

Airplane! (1980) Comedy TCS 4

Bambi (1942) Animation TCS 4

Children’s

To Kill a Mockingbird (1962) Drama NN 4

Princess Bride The (1987) Action TCS 3

Adventure

Comedy

Romance

There are 14 movies which are found in recommendations and test data. So

the user is already watched and gave ratings for these movies. Let’s call these

movies as coincidences. We ordered the coincidences based on ratings of user

1. If two movies have same rating, then the common one should be on the top.

The common means that the movie is recommended from both in user-based

and in item-based method.

6.1.2.1 The Weighted Hybrid Approach

The item-based method alone gives better results than user-based method. Nat-

urally, in weighted approach, the weight of item-based method should be bigger

than the user-based one. To sum up, we chose the weights like below:

Weight for user-based method = 0.11;

Weight for item-based method = 0.91;

For a movie, the algorithm finds user-based predicted score(s1) and item-based

predicted score(s2). Both scores ranges from 0 to 5 and they are decimal num-

bers. If the both scores exist for a movie, the scores are multiplying with weights.

58



Otherwise, the score stays as it is for hybrid. Pseudo code is given below:

• If s1 != 0 and s2 != 0, then assign (w1*s1 + w2*s2) as hybrid score.

• If s1 == 0 and s2 != 0, then assign s2 as hybrid score.

• If s1 != 0 and s2 == 0, then assign s1 as hybrid score.

After the multiplication, the whole recommendation result list is ordered based

on new scores. The ordered list then enters a new process to add average scores

of genres which is content-based filtering.

6.1.2.2 The Switching Hybrid Approach

The switching approach means we are going to choose the algorithm after try-

ing both of it. First item-based method alone is applied on the dataset. The

precision and recall values are calculated. Then the user-based method alone is

applied on the same dataset. After that, we can choose the one which has better

precision result.

For a movie, the algorithm finds user-based predicted score(s1) and item-based

predicted score(s2). After normalization, both scores ranges from 0 to 5 and they

are decimal numbers. If the one of scores exists for a movie, the precision, recall,

f-measure and MAE are calculated. Then the hybrid approach can choose one

of the algorithm based on one of these evaluation metrics. We chose precision

metric to compare two algorithms. User-based precision (precision1) and item-

based precision (precision2) are calculated. Pseudo code is given below:

• If precision1 > precision2, then assign s1 as hybrid score.

• If precision2 > precision1, then assign s2 as hybrid score.

After the switching, the whole recommendation result list is ordered based on

new scores. The ordered list then enters a new process to add average scores of

genres which is content-based filtering.

59



6.1.3 Experiments with Content Based Filtering on MovieLens Dataset

In content-based approach, average score of each actor, director, and genre are

calculated. We have just genre information in MovieLens dataset, so the program

calculates average score of genre. For each genre, it adds average score to current

score for each film in that genre. Then it calculates average score (predicted

rating) for each movie.

The implementation of hybrid recommendation system is done in Java program-

ming language. It is using Apache Mahout mr 0.12.0 library (mahout-mr-0.12.0-

SNAPSHOT.jar) to implement user-based and item based functions like Nearest

N-Neighbor algorithm. However for Content-Based filtering, there is no Mahout

Library exists, so we did it by writing pure Java code. Firstly, we calculated

the average rating for each genre which a user watched and gave scores. Then,

we added these scores to the final hybrid scores. After that, we normalized all

scores to range between 0 and 5, so that we could compare the final predicted

rating with test data. After the normalization, the final result was reordered

from highest score to lowest score. The first 20 results were evaluated with

evaluation metrics. The overview of category boosted content based filtering is

given on Figure 6.3.

We validated our method with k-fold cross validation and calculated precision,

recall, f-measure and MAE on each fold execution. The configuration of Near-

est N-Neighbor algorithm is set to find 30 nearest neighbors, because using 30

neighbors are optimal and recommended in literature [31]. The configuration of

the Java program is set like below. The validation is given in next chapter.

For each user:

How many neighbors found?: 30

How many recommended movies found?: 100 for user-based, 100 for item-

based

How many recommended movies in result are regarded for validation?:

First 20 movies
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6.2 Experiments on METU Student Elective Course Dataset

6.2.1 Hybrid Approach Implementation on METU Student Elective

Course Dataset

We used switching hybridization technique plus category-boosted CBF onMETU

Student Elective Course Dataset. In previous sections, the CF and CBF meth-

ods are discussed one by one on MovieLens dataset. The final solution is run on

METU Student Elective Course dataset with minor changes. The 3-fold cross

validation is done. Precision, Recall, F-Measure and MAE are calculated after

each fold. The results which is run on METU Elective Course dataset can be

seen in next chapter.

For each user:

How many neighbors found?: 10

How many recommended courses found?: 15 for user-based, 15 for item-

based

How many recommended courses in result are regarded for valida-

tion?: First 5 courses
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CHAPTER 7

RESULTS AND VALIDATION

In this chapter, the results are evaluated by MAE (Mean Absolute Error), Pre-

cision, Recall and F-Measure metrics. The results of hybrid approach on Metu

Elective Course Dataset is also evaluated by a user study.

7.1 Validation Metrics

In order to validate the results of Hybrid approach, k-fold cross validation is used.

Cross-validation (or rotation estimation), is a model validation technique for

assessing how the results of a statistical analysis will generalize to an independent

data set. When the goal is prediction, and one wants to estimate how accurately

a predictive model will perform in practice, cross-validation technique can be

used.

In each round of cross-validation, the data set is partitioned into two subsets.

One subset is used as training set to performing the analysis. The other subset

is used as testing set to validate the analysis. Multiple rounds should be run on

different subsets so that the final validation result is the average of all results.

In k-fold cross-validation, k equal sized subsets are generated from the original

data set randomly. Among k subsets, one of the single subset is selected as test

data, and the remaining subsets are used as training data. The cross-validation

process is then repeated k times (the folds), with each of the k subsets used

exactly once as the test data. A single prediction is produced from k results

from the all folds by getting the average of them. In literature, 10-fold cross-
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validation is commonly used. We used 5-fold cross-validation for MovieLens

dataset 7.1 and 3-fold cross-validation for METU Student Elective Course

dataset since each user does not have enough ratings for accurate estimation.
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Figure 7.1: K-fold cross validation overview

Precision is ratio of number of recommended items which is in the test sub-

set and the recommendation size 7.1. Recall is ratio of number of recom-

mended items which is in the test subset and the test data size 7.2. F-measure

is one of the combined measure of precision and recall 7.3. Generally F1 is

used and it is one of the common F-measure. The F1 score is the 2*((preci-

sion*recall)/(precision+recall)). The F1 score conveys the balance between the

precision and the recall. We used F1 method for F-measure.

precision =
|relevantMovies| ∩ |retrievedMovies|

|retrievedMovies|
. (7.1)

recall =
|relevantMovies| ∩ |retrievedMovies|

|relevantMovies|
. (7.2)

F1 = 2 · precision · recall
precision+ recall

. (7.3)

We believe the hybrid method gives better recommendations but the Precision

and Recall measures are lower than pure item-based CF. The precision may not

be the indicator for best algorithm because it looks the number of items which

are found both in result list and test subset. There are two reasons why the

precision and recall values are not an indicator for recommendation systems:
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(1) First of all, when we offer 100 recommendations, it covers the test subset

better. If there are 100 movies in the test subset, the recall can be 100/100 =

1 at most. However offering 100 recommendation does not good for users. For

example, Amazon shows just a few recommended books like 3 or 5 books. If we

generate 5 recommendation with algorithm, it will just cover at most 5 movies

in the test subset. In this case, our recall value is going to be 5/100 at most, and

it is very low. So the recall is really dependent on number of recommendation in

result. Moreover, if the number of recommended items is changing frequently, we

can not get correct precision. For example, the test subset size can be dependent

on the user’s rating size. Therefore, both precision and recall do not reflect the

correct evaluation.

(2) If something is searched in a search engine (e.g. Google), related results are

very important so that the recall should be very high. Recall value is considerable

criterion for information retrieval. On the other hand, any user may like the

items which are not related to their past information and which are not in the

test subset. Irrelevant items can be recommended in recommendation systems

and users can like them. For example, users who bought x, also bought y.

Therefore the sellers are putting x and y side by side at the same floor so that

users can reach the related products easily. We cannot trust recall value in

this case because the test subset may not include the items which should be

recommended for a user. For instance, the user-based method gives lower recall

values. If we do a user-study on users, we can see that the recommended items

are mostly liked by users. Because user-based methods are not regarding similar

items, but similar user’s behaviors.

If we do not use recall values, we cannot use F-measure too. However many

studies in literature used both precision and recall, so we calculated all of them.

The most reliable technique is asking the users if the recommendation is good

or bad. User-study is not applicable for MovieLens dataset. The users are

not known and the dataset includes old ratings from 2000. For this reason, we

calculated the precision and recall values.

The Precision, Recall and F-Measure, the MAE (Mean Absolute Error) are
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calculated. The formula of MAE is given in Equation 7.4. The MAE is an

average of the absolute errors |ei| = |fi − yi|, where fi indicates the prediction

and yi indicates the true value. Relative frequencies may be included in the

formula as weight factors. The MAE is a common measure of forecast error in

time series analysis.

MAE =
1

n

n∑
i=1

|fi − yi| =
1

n

n∑
i=1

|ei|. (7.4)

7.2 Validation of Hybrid Approach on MovieLens 1M Dataset

The MovieLens 1M dataset is partitioned into 5 equal sized subsamples. If a user

have 100 ratings, there are random 20 ratings in first test subset and remaining

80 ratings in first training subset. In each fold, the test subset is changed with

other random 20 ratings. The precision, recall, f-measure and MAE values are

calculated for user-based, item-based and hybrid method in each phase.

Figure 7.2: Precision Averages of Weighted Hybridization
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Figure 7.3: Recall Averages of Weighted Hybridization

For the weighted approach, the averages of precision, recall and F1 in each fold

are given at Figure 7.2, Figure 7.3 and Figure 7.4. The averages of all folds are

given in Table 7.1.

Figure 7.4: F-measure Averages of Weighted Hybridization

Table7.1: Average Values of Precision, Recall and F-measure of Weighted Hybrid
Method on MovieLens data set after 5-Fold Cross Validation

Method Avg. Precision Avg. Recall Avg. F-measure
User-based CF 0.043 0.031 0.029
Item-based CF 0.145 0.137 0.112
Hybrid Method 0.096 0.083 0.071

In weighted hybridization approach, the hybrid method is always in between
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user-based and item-based method. The item-based method always covers the

test subset better than other methods. Therefore, we needed to change our

hybridization method.

In second configuration, we run the algorithm with switching hybridization

approach without content based filtering (CBF). The results are slightly better

than the weighted method. We select the algorithm with the highest precision

among user-based CF and item-based CF. The program selects the algorithm for

each user differently. If precision of user-based is greater for user 1, we used user-

based CF or vice versa. For the switching approach, the averages of precision,

recall and F1 in each fold are given at Figure 7.5, Figure 7.6 and Figure 7.7.

Figure 7.5: Precision Averages of Switching Hybridization without Category-
Boosted CBF

Figure 7.6: Recall Averages of Switching Hybridization without Category-
Boosted CBF
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Figure 7.7: F-measure Averages of Switching Hybridization without Category-
Boosted CBF

In third configuration, we run the algorithm with switching hybridization ap-

proach and plus category-boosted CBF. The results are slightly better than the

only weighted and only switching method. For the switching approach with

category-boosted CBF, the averages of precision, recall and F1 in each fold are

given at Figure 7.8, Figure 7.9 and Figure 7.10.

Figure 7.8: Precision Averages of Switching Hybridization with Category-
Boosted CBF
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Figure 7.9: Recall Averages of Switching Hybridization with Category-Boosted
CBF

Figure 7.10: F-measure Averages of Switching Hybridization with Category-
Boosted CBF

The highest 100 precisions of switching hybrid method are compared with other

methods (user-based and item-based). We did it 5 times because of 5-fold cross-

validation. The results of first fold are given in Figure 7.11 and Figure 7.12. In

addition to this, recall of first fold can be seen on Figure 7.13 and Figure 7.14

and F-measure can be seen on Figure 7.15 and Figure 7.16. The averages of all

folds are given in Table 7.2 for without category-boosted and in Table 7.3 for

with category-boosted.
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Figure 7.11: Precision of switching hybrid method without category-boosted
CBF on MovieLens 1M Dataset - 1. Fold

Figure 7.12: Precision of switching hybrid method with category-boosted CBF
on MovieLens 1M Dataset - 1. Fold

Figure 7.13: Recall of switching hybrid method without category-boosted CBF
on MovieLens 1M Dataset - 1. Fold
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Figure 7.14: Recall of switching hybrid method with category-boosted CBF on
MovieLens 1M Dataset - 1. Fold

Figure 7.15: F-Measure(F1) of switching hybrid method without category-
boosted CBF on MovieLens 1M Dataset - 1. Fold

Figure 7.16: F-Measure(F1) of switching hybrid method with category-boosted
CBF on MovieLens 1M Dataset - 1. Fold
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Table7.2: Average Values of Precision, Recall and F-measure of Switching Hybrid
Method without category-boosted CBF on MovieLens data set after 5-Fold Cross
Validation

Method Avg. Precision Avg. Recall Avg. F-measure
User-based CF 0.093 0.024 0.036
Item-based CF 0.407 0.117 0.175
Hybrid Method 0.153 0.041 0.062

Table7.3: Average Values of Precision, Recall and F-measure of Switching Hybrid
Method with category-boosted CBF on MovieLens data set after 5-Fold Cross
Validation

Method Avg. Pre. Avg. Re. Avg. F-mea. Avg. MAE
User-based CF 0.093 0.024 0.036 2.876
Item-based CF 0.407 0.117 0.175 1.041
Hybrid Method 0.270 0.073 0.111 0.941

For switching technique, 879 users are randomly chosen for test. Their ratings

are separated 5 parts randomly. So 5-cross validation is used. Among 879 users,

how many of them resulted with higher precision values after hybrid method is

calculated. The result is not better than the item-based. Using hybrid method

diminishes the precision of item-based. Using category boosted method also

increases the precision a little bit. All results which calculated after each fold are

given in Table 7.4 to compare results of switching hybrid method with category-

boosted CBF.

Table7.4: Number of the highest precision values for each method when using
switching hybrid method with category-boosted CBF on MovieLens

UB IB Hybrid UB(%) IB(%) Hybrid(%)
1. fold 9 692 168 1.02 78.73 19.11
2. fold 11 677 182 1.25 77.02 20.71
3. fold 10 688 172 1.14 78.27 19.57
4. fold 13 692 169 1.48 78.73 19.23
5. fold 11 678 182 1.25 77.13 20.71

We calculated the MAE for switching method with category boosted CBF, it

can bee seen in Figure 7.17 while the averages of calculated MAE for first fold

are given in Figure 7.18. The figures shows that the calculated MAE of hybrid
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method is better than the item-based method. It is also sometimes better than

the user-based method too.

Figure 7.17: MAE of each fold on MovieLens 1M Dataset when using switching
hybrid method with category-boosted CBF

Figure 7.18: MAE of first fold on MovieLens 1M Dataset when using switching
hybrid method with category-boosted CBF

7.3 Runtime Performance of Algorithm on MovieLens 1M

The more data in a recommendation system, the better the results. Mahout

provides performance on big data. For best results, we used following command-

line flags to our JVM:
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-server: Enables the server VM, which is generally appropriate for long running,

computation intensive applications.

-Xmx4096m -Xms2048m: Make the heap as big as possible. Giving a lot of

memory for caching helps performance of Mahout.

-da -dsa: Disable all assertions.

-XX:NewRatio=9: Increase heap allocated to old objects, which is most of

them in this framework.

The program was run on Eclipse on Java7se and is compressed in a jar file. The

jar file is a Java Archive file format which enables developers to bundle multiple

files into a single archive file. This jar file is run on different computers which

have different performances.

The first computer have these features: 4 cores (Intel Core i5, 2.60 GHz), 8 GB

RAM and Windows 8 64-bit. The algorithm took 3 hours 40 minutes 44 seconds

to run on console for 5-fold cross validation on MovieLens 1M dataset. For each

fold, it took 45 minutes to finish. To calculate the precision, recall, f-measure

and MAE, the algorithm is run on 8 hours 30 minutes in same computer. Each

fold is calculated in 1 hour 42 minutes.

The same program with same dataset is also run on Slurm machine with 20

nodes. Each node has 1 core and 3 GB RAM. The Slurm was installed on

Ubuntu. We changed the system to run on distributed system with 5 threads.

Each thread was run on different fold in 5-fold cross validation. The program

was resulted in 74 minutes to implement algorithm and calculate the evaluation

metrics. We can say that, it took 1 hour 14 minutes to finish for 5 folds. It means

each fold can be calculated in 14 minutes. Slurm made the recommendation

system 7.2 times faster.
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7.4 Validation of Hybrid Approach on METU Student Elective Course

Dataset

The same algorithm is run on METU Elective Course Dataset and the evaluation

metrics are calculated. The configuration parameters are given below:

• Number of neighbors : 10

• Number of recommendations : 15

• Number of recommendations which is used in validation : First 5 courses

The time to run whole algorithm took less than 1 minute because the dataset

includes nearly 1055 ratings and it is smaller than the MovieLens dataset which

includes over 1 million ratings. Therefore we do not need to run it on Slurm since

there is no performance issue on METU Elective Course Dataset. The results

are evaluated with precision (Figure 7.21), recall (Figure 7.22), f-measure (Fig-

ure 7.23) and MAE (Figure 7.27 and Figure 7.28). Precision averages are given

in Figure 7.24, recall averages are given in Figure 7.25, and f-measure averages

are given in Figure 7.26). Average values of precision, recall and f-measure of

switching hybrid method with category-boosted CBF on METU Elective Course

dataset after 3-fold cross validation is given in Table 7.5. Number of the high-

est precision values for each method when using switching hybrid method with

category-boosted CBF on METU Elective Course dataset is given in Table 7.6.

The results show that the pure item-based collaborative filtering gives best re-

sult. Therefore we needed to do a user-study.

We prepared a user survey and asked students who are currently a student in

METU in 3rd or 4th grade. The dataset includes their actual ratings, so we

asked them if they likes the recommendations or not. There were 10 question

which 8 of them are our recommendations. 2 of them are not our recommenda-

tions but the pure algorithms generated them. We were expecting a dislike for

these 2 questions. The results of user-study showed that our hybrid approach is

successful on predicting the elective lectures. The results can be seen on Figure

7.19 and Figure 7.20.
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65 students participated in our survey. There are 300 students in the dataset.

This means that more than 10 percent of whole students participated to the

user survey. The most of the students liked the 5 of 8 recommendations which

are produced by our hybrid algorithm. The most of the students disliked all 2

recommendations which are not produced by our hybrid algorithm and this is

an expected result. So the 7 out of 10 recommendations are verified by students.

Our hybrid algorithm is successful in 70 percent probability. The results can be

seen on following figures. The user-survey results proved that our algorithm is

better than the pure algorithms.

Figure 7.19: User Survey Results on Our Recommendations

Figure 7.20: User Survey Results on Not-Our Recommendations
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Figure 7.21: Precision of switching hybrid method with category-boosted CBF
on METU Elective Course Dataset - 1. Fold

Figure 7.22: Recall of switching hybrid method with category-boosted CBF on
METU Elective Course Dataset - 1. Fold

Figure 7.23: F-Measure(F1) of switching hybrid method without category-
boosted CBF on METU Elective Course Dataset - 1. Fold

Table7.5: Average Values of Precision, Recall and F-measure of Switching Hybrid
Method with category-boosted CBF on METU Elective Course dataset after 3-
Fold Cross Validation

Method Avg. Pre. Avg. Re. Avg. F-mea. Avg. MAE
User-based CF 0.157 0.468 0.231 25.653
Item-based CF 0.176 0.585 0.266 18.269
Hybrid Method 0.121 0.394 0.182 27.351
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Table7.6: Number of the highest precision values for each method when using
switching hybrid method with category-boosted CBF on METU Elective Course
dataset

UB IB Hybrid UB(%) IB(%) Hybrid(%)
1. fold 3 3 12 10 10 40
2. fold 2 4 11 6.6 13.3 36.6
3. fold 4 4 11 13.3 13.3 36.6

Figure 7.24: Precision Averages of each fold on METU Student Elective Course
Dataset when using switching hybrid method with category-boosted CBF

Figure 7.25: Recall Averages of each fold on METU Student Elective Course
Dataset when using switching hybrid method with category-boosted CBF
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Figure 7.26: F-measure Averages of each fold on METU Student Elective Course
Dataset when using switching hybrid method with category-boosted CBF

Figure 7.27: MAE of each fold on METU Student Elective Course Dataset when
using switching hybrid method with category-boosted CBF

Figure 7.28: MAE of first fold on METU Student Elective Course Dataset when
using switching hybrid method with category-boosted CBF
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CHAPTER 8

CONCLUSION

Nowadays, There is an information overload in the internet and people hardly

find the things which fit their taste. People require to filter the information, so

recommendation systems help them in this way. Recommendation systems be-

come popular due to their benefits for both companies and users. The companies

want to offer to the user specific information to increase the purchases while users

want to reach the relevant items easily. There are three prevailed approaches

in literature for better recommendation: content based filtering (CBF), collab-

orative filtering (CF) and hybrid approaches. The most of the recommendation

applications use the algorithms of these three approaches. The performance of

the hybrid approach is compared with the pure collaborative and content-based

methods in several studies. As a result, the studies demonstrate that pure ap-

proaches have problems and are not enough for a better recommendation system

and the hybrid method is needed. The CBF and CF methods can be used in

a hybrid approach to overcome some of the common problems in recommender

systems such as cold start and the sparsity problem. We improved a hybrid

method and performed experiments with bigger and more varied data set. Af-

ter we done on experiments, we compared results with validation metrics such

as precision, recall, f-measure and mean absolute error (MAE). We used k-fold

cross validation technique for this study. After the experiments are done, we

also did a survey on users to whom the dataset belongs.

The results show that most of the time, using only Item-Based CF gives better

precision, recall and f-measure. However Item-Based CF generates predicted
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values with higher error rate and it does not good enough for prediction of user

ratings. On the other hand, User-Based CF gives worse prediction, recall and

f-measure, but it predicts the closest ratings. For these reasons, we needed to

implement a new hybrid method by using Item-Based and User-Based CF. We

tried weighted and switching hybridization techniques and we chose "switching

approach" at the end. Switching method is more suitable for combining Item-

based and User-based CF and generates better results. Our algorithm selects

the correct method based on the highest precision after first try. Also we added

category boosted filtering which is one kind of CBF. Using CBF increases the

prediction’s accuracy. The results after experiments are evaluated with evalu-

ation metrics and a user study. As a result, we verified that our method gives

better MAE values and better results for users. Our method is also easy to

implement and more suitable for recommendation systems, therefore it can be

used in real life.

We used MovieLens dataset in our first experiment. The program which runs

our algorithm recommends 20 movies for each user at the end of the experiments.

So the number of recommendation is fixed. In future work, we can recommend

different number of recommendations to each user rather than recommending

constant 20 recommendation. The number of movies can be bound to deter-

mined threshold. For example, recommending the movies which have predicted

ratings greater than the threshold 4.0. Also we can limit the maximum number

of recommended movies like 20 movies. If there are more than 20 movies which

have predicted rating greater than 4.0, we can take the first 20 movies and omit

the rest of them. This method enables the special number of recommended items

for each user. We can calculate the precision by finding the common items which

exists in recommendations and test subset. Changing the recommendation sizes

based on users may give better results.

We also used METU Elective Course Dataset which includes actual ratings of

junior and senior students for elective courses in a university. We implemented

the hybrid algorithm on this dataset and took results. The recommended courses

are asked to the students. The students are responded for 10 recommendations.

The user survey showed that the accuracy of hybrid recommendations are 70
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percent.

In future work, this study can run on distributed computing platform. Apache

Mahout works alongside Hadoop which is distributed computing platform, so

we can scale it out easily. We are using MapReduce which supports Hadoop and

MapReduce. We did not use Hadoop and Mapreduce for this study, however

they can be used in the future work to implement movie recommendation system

with scalable format.
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APPENDIX A

JAVA CODE FOR NORMALIZATION FOR METU

ELECTIVE COURSE DATASET

1 pub l i c s t a t i c S t r ing [ ] normal ize ( S t r ing [ ] l i s t ) {

2 St r ing [ ] norma l i z edL i s t = new St r ing [ l i s t . l ength ] ;

3

4 i n t max = 0 ;

5

6 // f i nd max value

7 f o r ( i n t i =0; i<l i s t . l ength ; i++){

8 i f ( l i s t [ i ] . l ength ( ) == 0) {

9 cont inue ;

10 }

11 i f ( I n t eg e r . pa r s e In t ( l i s t [ i ] )>max) {

12 max = Int eg e r . pa r s e In t ( l i s t [ i ] ) ;

13 }

14 }

15 double no rma l i z a t i o n_co e f f i c i e n t = 100 .0 / max ;

16

17 //mult ip ly a l l va lue s with norma l i za t i on c o e f f i c i e n t

18 f o r ( i n t i =0; i<l i s t . l ength ; i++){

19 i f ( l i s t [ i ] . l ength ( ) == 0) {

20 norma l i z edL i s t [ i ] = "" ;

21 cont inue ;

22 } e l s e i f ( l i s t [ i ] . equa l s ( "0" ) ) {

23 norma l i z edL i s t [ i ] = "0" ;

24 cont inue ;

25 }
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26 double r e s u l t = ( ( i n t ) ( ( double ) ( ( In t eg e r . pa r s e In t ( l i s t [ i ] ) ∗

no rma l i z a t i o n_co e f f i c i e n t ) ) ∗ 100 .0 ) ) / 1 0 0 . 0 ;

27 norma l i z edL i s t [ i ] = r e s u l t + "" ;

28 }

29 re turn norma l i z edL i s t ;

30 }
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APPENDIX B

MAHOUT JAVA CODE FOR MOVIE

RECOMMENDATION ON MOVIELENS

1 package mahoutOnMovieLens ;

2

3 import java . i o . BufferedReader ;

4 import java . i o . F i l e ;

5 import java . i o . FileNotFoundException ;

6 import java . i o . Fi leReader ;

7 import java . i o . IOException ;

8 import java . u t i l . HashMap ;

9 import java . u t i l . I t e r a t o r ;

10 import java . u t i l . L i s t ;

11 import java . u t i l .Map;

12

13 import org . apache . mahout . c f . t a s t e . common . TasteException ;

14 import org . apache . mahout . c f . t a s t e . impl . model . f i l e . FileDataModel ;

15 import org . apache . mahout . c f . t a s t e . impl . neighborhood .

NearestNUserNeighborhood ;

16 import org . apache . mahout . c f . t a s t e . impl . neighborhood .

ThresholdUserNeighborhood ;

17 import org . apache . mahout . c f . t a s t e . impl . recommender .

CachingRecommender ;

18 import org . apache . mahout . c f . t a s t e . impl . recommender .

GenericUserBasedRecommender ;

19 import org . apache . mahout . c f . t a s t e . model . DataModel ;

20 import org . apache . mahout . c f . t a s t e . neighborhood . UserNeighborhood ;

21 import org . apache . mahout . c f . t a s t e . recommender . RecommendedItem ;
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22 import org . apache . mahout . c f . t a s t e . recommender . Recommender ;

23 import org . apache . mahout . c f . t a s t e . recommender . UserBasedRecommender ;

24 import org . apache . mahout . c f . t a s t e . s im i l a r i t y . Us e rS im i l a r i t y ;

25 import org . apache . mahout . c f . t a s t e . impl . s im i l a r i t y .

Pea r s onCor r e l a t i onS im i l a r i t y ;

26 /∗∗

27 ∗ This program recommends movies to user 1 in MovieLens 1M Dataset

28 ∗ by doing Co l l abo ra t i v e F i l t e r i n g

29 ∗ @author Seval Capraz

30 ∗

31 ∗/

32 pub l i c c l a s s Main {

33

34 s t a t i c Map<Long , Str ing> mapA;

35 s t a t i c Map<Long , Str ing> mapOfUser ;

36

37 pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) throws

FileNotFoundException ,

38 TasteException {

39

40 mapA = new HashMap<Long , Str ing >() ;

41

42 Main . loadMovieList ( "moviesForMahout . dat" ) ;

43 printUserMovieNames ( ) ;

44

45 DataModel model ;

46 t ry {

47 model = new FileDataModel (new F i l e ( " ratingsForMahout . dat" ) ) ;

48

49 System . out . p r i n t l n ( "\n#####␣

NearestNUserNeighborhoodRecommendation␣#####") ;

50 NearestNUserNeighborhoodRecommendation (model ) ;

51

52 System . out . p r i n t l n ( "\n#####␣ThresholdUserNeighborhood␣#####")

;

53 ThresholdUserNeighborhood (model ) ;

54
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55 System . out . p r i n t l n ( "\nThe␣program␣ i s ␣run␣ s u c c e s s f u l l y . " ) ;

56

57 } catch ( IOException e ) {

58 e . pr intStackTrace ( ) ;

59 }

60

61 }

62

63 pub l i c s t a t i c void NearestNUserNeighborhoodRecommendation (

DataModel model )

64 throws TasteException {

65 Use rS im i l a r i t y u s e r S im i l a r i t y = new

Pea r s onCor r e l a t i onS im i l a r i t y (model ) ;

66 UserNeighborhood neighborhood = new NearestNUserNeighborhood

(10 ,

67 u s e rS im i l a r i t y , model ) ;

68 Recommender recommender = new GenericUserBasedRecommender (model

,

69 neighborhood , u s e r S im i l a r i t y ) ;

70 Recommender cachingRecommender = new CachingRecommender (

recommender ) ;

71

72 List<RecommendedItem> recommendations = cachingRecommender .

recommend (1 ,

73 10) ;

74 i n t num = 0 ;

75 f o r (RecommendedItem recommendedItem : recommendations ) {

76 System . out . p r i n t l n (num + "␣ : ␣" + recommendedItem ) ;

77 System . out . p r i n t l n ( "␣␣␣␣␣"

78 + Main . findMovieName ( recommendedItem . getItemID ( ) ) ) ;

79 num++;

80 }

81 }

82

83 pub l i c s t a t i c void ThresholdUserNeighborhood (DataModel model )

84 throws TasteException {
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85 Use rS im i l a r i t y u s e r S im i l a r i t y = new

Pea r s onCor r e l a t i onS im i l a r i t y (model ) ;

86 UserNeighborhood neighborhood = new ThresholdUserNeighborhood

( 0 . 1 ,

87 u s e rS im i l a r i t y , model ) ;

88 UserBasedRecommender recommender = new

GenericUserBasedRecommender (

89 model , neighborhood , u s e r S im i l a r i t y ) ;

90

91 CachingRecommender cachingRecommender = new CachingRecommender (

92 recommender ) ;

93

94 List<RecommendedItem> recommendations = cachingRecommender .

recommend (1 ,

95 10) ;

96 i n t num = 0 ;

97 f o r (RecommendedItem recommendedItem : recommendations ) {

98 System . out . p r i n t l n (num + "␣ : ␣" + recommendedItem ) ;

99 System . out . p r i n t l n ( "␣␣␣␣␣"

100 + Main . findMovieName ( recommendedItem . getItemID ( ) ) ) ;

101 num++;

102 }

103 }

104

105 pub l i c s t a t i c S t r ing findMovieName (Long itemId ) {

106 re turn mapA. get ( itemId ) ;

107 }

108

109 pub l i c s t a t i c void loadMovieList ( S t r ing f i leName ) {

110 BufferedReader in ;

111 St r ing n ex t l i n e ;

112

113 t ry {

114 in = new BufferedReader (new Fi leReader ( f i leName ) ) ;

115 nex t l i n e = in . readLine ( ) ; // Read f i r s t l i n e

116 St r ing newL [ ] ;

117 whi le ( n ex t l i n e != nu l l ) {
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118 newL = nex t l i n e . s p l i t ( " : : " ) ;

119 mapA. put (Long . parseLong (newL [ 0 ] ) , newL [ 1 ] + "␣" + newL [ 2 ] ) ;

120 nex t l i n e = in . readLine ( ) ; // Read another l i n e

121 }

122

123 in . c l o s e ( ) ; // And c l o s e on EOF

124

125 } catch ( IOException e ) {

126 System . out . p r i n t l n ( "Exception " + e ) ;

127 System . e x i t (0 ) ;

128 }

129 }

130

131 pub l i c s t a t i c void loadMovieOfUserList ( S t r ing f i leName ) {

132 BufferedReader in ;

133 St r ing n ex t l i n e ;

134

135 t ry {

136 in = new BufferedReader (new Fi leReader ( f i leName ) ) ;

137 nex t l i n e = in . readLine ( ) ; // Read f i r s t l i n e

138 St r ing newL [ ] ;

139 f o r ( i n t i = 1 ; i < 54 ; i++) {

140 newL = nex t l i n e . s p l i t ( " , " ) ;

141 mapOfUser . put (Long . parseLong (newL [ 1 ] ) , newL [ 2 ] ) ;

142 nex t l i n e = in . readLine ( ) ; // Read another l i n e

143 }

144

145 in . c l o s e ( ) ; // And c l o s e on EOF

146

147 } catch ( IOException e ) {

148 System . out . p r i n t l n ( "Exception " + e ) ;

149 System . e x i t (0 ) ;

150 }

151 }

152

153 pub l i c s t a t i c void printUserMovieNames ( ) {

154 mapOfUser = new HashMap<Long , Str ing >() ;
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155 Main . loadMovieOfUserList ( " ratingsForMahout . dat" ) ;

156

157 I t e r a t o r i t = mapOfUser . entrySet ( ) . i t e r a t o r ( ) ;

158 i n t num = 1 ;

159 whi le ( i t . hasNext ( ) ) {

160 Map. Entry pa i r = (Map. Entry ) i t . next ( ) ;

161 System . out . p r i n t l n (num + " ) ␣"

162 + Main . findMovieName ( ( Long ) pa i r . getKey ( ) ) + "␣&␣"

163 + pa i r . getValue ( ) + "␣\\\\␣" ) ;

164 i t . remove ( ) ;

165 num++;

166 }

167 }

168 }
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APPENDIX C

MOVIE LIST OF USER 1 AND HIS SCORES

1) Toy Story (1995) 5

Animation|Children’s|Comedy

2) E.T. the Extra-Terrestrial (1982) 4

Children’s|Drama|Fantasy|Sci-Fi

3) Mulan (1998) 4

Animation|Children’s

4) Pleasantville (1998) 3

Comedy

5) Bambi (1942) 4

Animation|Children’s

6) Star Wars: Episode IV - A New Hope (1977) 4

Action|Adventure|Fantasy|Sci-Fi

7) Gigi (1958) 4

Musical

8) Dead Poets Society (1989) 4

Drama

9) Saving Private Ryan (1998) 5

Action|Drama|War

10) Apollo 13 (1995) 5

Drama

11) Erin Brockovich (2000) 4

Drama

12) Meet Joe Black (1998) 3

Romance
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13) Wizard of Oz, The (1939) 4

Adventure|Children’s|Drama|Musical

14) Schindler’s List (1993) 5

Drama|War

15) My Fair Lady (1964) 3

Musical|Romance

16) Girl, Interrupted (1999) 4

Drama

17) Back to the Future (1985) 5

Comedy|Sci-Fi

18) Bug’s Life, A (1998) 5

Animation|Children’s|Comedy

19) Pocahontas (1995) 5

Animation|Children’s|Musical|Romance

20) Secret Garden, The (1993) 4

Children’s|Drama

21) James and the Giant Peach (1996) 3

Animation|Children’s|Musical

22) Hunchback of Notre Dame, The (1996) 4

Animation|Children’s|Musical

23) Run Lola Run (Lola rennt) (1998) 4

Action|Crime|Romance

24) Fargo (1996) 4

Crime|Drama|Thriller

25) Close Shave, A (1995) 3

Animation|Comedy|Thriller

26) Sound of Music, The (1965) 5

Musical

27) Ferris Bueller’s Day Off (1986) 4

Comedy

28) Cinderella (1950) 5

Animation|Children’s|Musical
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29) Tarzan (1999) 3

Animation|Children’s

30) Mary Poppins (1964) 5

Children’s|Comedy|Musical

31) Dumbo (1941) 5

Animation|Children’s|Musical

32) Christmas Story, A (1983) 5

Comedy|Drama

33) The Last Days of Disco (1998) 5

Drama

34) Big (1988) 4

Comedy|Fantasy

35) Miracle on 34th Street (1947) 4

Drama

36) Airplane! (1980) 4

Comedy

37) Rain Man (1988) 5

Drama

38) Ben-Hur (1959) 5

Action|Adventure|Drama

39) Titanic (1997) 4

Drama|Romance

40) Driving Miss Daisy (1989) 4

Drama

41) Ponette (1996) 4

Drama

42) Antz (1998) 4

Animation|Children’s

43) One Flew Over the Cuckoo’s Nest (1975) 5

Drama

44) Aladdin (1992) 4

Animation|Children’s|Comedy|Musical
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45) Princess Bride, The (1987) 3

Action|Adventure|Comedy|Romance

46) Toy Story 2 (1999) 4

Animation|Children’s|Comedy

47) Beauty and the Beast (1991) 5

Animation|Children’s|Musical

48) Snow White and the Seven Dwarfs (1937) 4

Animation|Children’s|Musical

49) Hercules (1997) 4

Adventure|Animation|Children’s|Comedy|Musical

50) Sixth Sense, The (1999) 4

Thriller

51) To Kill a Mockingbird (1962) 4

Drama

52) Wallace and Gromit: The Best of Aar. (1996) 3

Animation

53) Awakenings (1990) 5

Drama
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