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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2015





Approval of the thesis:

INDOOR LOCALIZATION AND TRACKING BASED ON RSSI AND
ACCELEROMETER MEASUREMENTS
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ABSTRACT

INDOOR LOCALIZATION AND TRACKING BASED ON RSSI AND
ACCELEROMETER MEASUREMENTS

Doğan, Melih

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Ali Özgür Yılmaz

Co-Supervisor : Assoc. Prof. Dr. Umut Orguner

December 2015, 64 pages

In this study, first, received signal strength (RSS) based indoor localization and track-
ing techniques including maximum likelihood estimation (MLE), Kalman Filter (KF),
serial and parallel extended Kalman Filter (EKF) are investigated and their perfor-
mances compared to each other via a simulation study. Later, sensor fusion with RSS
and inertial measurement unit (IMU) for target tracking is discussed to improve ac-
curacy of RSS-based tracking by using KF and EKF as fusion algorithms. Effects of
channel parameters and IMU precision to tracking performance are analyzed. Deriva-
tions of Posterior Cramer-Rao Bounds for tracking are provided for ONLY RSS and
RSS/IMU fusion scenarios with respect to different measurement variances. Finally,
we establish a test-bed for RSS based localization and tracking by using Xbee S2 RF
modules. ONLY RSS and RSS/IMU fusion scenarios are compared to each other ex-
perimentally. RSSI performance is also examined with respect to antenna orientation
of Xbee S2 RF module.

Keywords: Kalman Filter, Tracking, RSS, PCRLB, IMU
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ÖZ

ALINAN SİNYAL GÜCÜ VE İVMEÖLÇER TABANLI İÇ MEKAN KONUM
BULMA VE TAKİP

Doğan, Melih

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ali Özgür Yılmaz

Ortak Tez Yöneticisi : Doç. Dr. Umut Orguner

Aralık 2015 , 64 sayfa

Bu çalışmada ilk olarak, en yüksek benzerlik kestirimi (MLE), Kalman filtresi (KF),
seri ve paralel genişletilmiş Kalman filtresi (EKF) içeren, alınan sinyal gücüne (RSS)
dayanan iç mekan konumlama ve takipleme teknikleri incelendi ve performansları
birbirlerine göre karşılaştırıldı. Daha sonra alınan sinyal gücü (RSS) ve atalet ölçüm
ünitesi (IMU) füzyonu kullanılarak RSS tabanlı takipleme doğruluğunun artırılması
tartışıldı. Kanal parametrelerinin ve IMU kesinlik değerinin takipleme performansı
üzerine etkileri analiz edildi. Sadece RSS ve füzyon senaryoları için sonraki Cramer-
Rao alt sınırı farklı ölçüm varyanslarına göre hesaplandı. Son olarak Xbee S2 kablo-
suz modüllerinden oluşan bir test düzeneği kuruldu. Sadece RSS ve RSS/IMU füzyon
senaroları deneysel olarak karşılaştırıldı. Ayrıca almaç oryantasyonuna göre RSS per-
formansı incelendi.

Anahtar Kelimeler: Kalman Filtresi, Takip, Alınan Sinyal Gücü, PCRLB, Atalet Öl-
çüm Ünitesi
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CHAPTER 1

INTRODUCTION

A Wireless Sensor Network (WSN) is a group of small sensor nodes which are ca-

pable of communication, computation and sensing with long life batteries. Recently

emerging advanced technologies have made WSNs more feasible with inexpensive

nodes. During the past decade, usage of WSNs spread to many areas like energy

saving, intelligent buildings and healthcare [2]. Due to these advances in WSN tech-

nologies, localization and tracking have become more important because data such

as, temperature, humudity coming from nodes without location information is use-

less most of the time.

In a given WSN, the process of discovering 2D or 3D positions of nodes is referred

to as localization. The first thing coming to mind about localization is GPS (Global

Positioning System) [3] especially for outdoor environments. In this technology, the

travel times of a GPS signal is measured to compute the distances between satellites

and a GPS receiver. Due to the obstacles in indoor environments such as walls and

furniture, radio wave propagation is affected, in other respects line-of-sight is required

for GPS. Also, high cost hardware and high power consumption of GPS can be con-

sidered as disadvantages of it. These properties of GPS show that GPS is not feasible

for indoor environments. On the other hand, WSNs consist of tiny, low cost, and

battery-powered devices that work cooperatively and this have attracted researcher’s

interest for indoor positioning.

Recently, a great variety of localization techniques based on WSNs that use RF signal

measurements have been proposed in literature including time-of-arrival (TOA), an-

gle of arrival (AOA), time difference of arrival (TDOA) and received signal strength
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indicator (RSSI) [4, 5]. TOA and TDOA techniques use geometric relationships be-

tween anchors and blindfolded nodes but synchronization problems make their appli-

cation difficult. Also AOA based techniques are unfavorable due to the necessity of

antenna arrays. Among these techniques, the popularity of RSS comes from its low

complexity and low cost since almost all wireless devices are capable of measuring

RSS and reporting it.

Some static localization methods in literature are maximum likelihood estimation

(MLE) [6, 7], multidimensional scaling (MDS) [8], trilateration, and multilateration

[9, 10]. MLE can be considered to be much more complex, but minimizing esti-

mation error variance with increasing number of measurements and being unbiased

makes it conventional, at least as a performance reference. Performances of these

RSSI based techniques can be enhanced for tracking moving objects with the Kalman

Filter approach which uses prior states and measurements to obtain the trajectory of

a moving target. Despite the low complexity of RSS, effects of multi-path channels

cause serious errors on the performance of RSS based techniques.

Different type of sensors, absolute and relative sensors, are fused to benefit from

each’s strengths particularly for low cost devices. One common relative sensor which

integrates the accelerometer, gyroscope and magnetometer is Inertial Measurement

Unit (IMU) and generally used to increase performance of the GPS-based localization

and tracking [11]. Also, there have been research on RSS/IMU fusion for indoor

tracking [12, 13].

In this thesis, RSS based indoor localization and tracking are investigated with differ-

ent algorithms like MLE, Kalman Filter, Serial EKF and Parallel EKF. It is observed

that usage of filters bring about remarkable enhancements as compared with static

localization, also shown experimentally. Additionally, our main focus is mitigating

corresponding errors of RSS based tracking by using RSS/IMU fusion. Rather than

a step detection method [14] or using position and velocity information [12, 13], we

directly used the raw acceleration data in our fusion case. Tracking by using sensor

fusion decreases the error by 30%. Possible effects of channel parameters and IMU

measurement precision on tracking performance are also examined. As a system de-

sign tool, Posterior Cramer-Rao Lower Bound which is an approach to the bound on

2



the estimate variance of non-deterministic parameters is studied for indoor RSS based

and RSS/IMU fusion tracking problems.

The rest of this study is organized as follows:

In Chapter 2, system models and some localization algorithms in WSNs are defined.

In Chapter 3, RSS based indoor tracking concept is investigated in great detail with

simulations. PCRLBs are described and calculations for the RSS based systems are

introduced in Chapter 4. In Chapter 5, details of the testbed implementation and

experimental results are given. Finally, In Chapter 6, by summarizing the study and

discussing the future work, we complete the thesis.
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CHAPTER 2

SYSTEM MODELS

2.1 Wireless Localization

In WSN localization, usually there are a number of fixed nodes with known coor-

dinates (anchor), some nodes without their location information (blindfolded), and

various sensor measurements which are taken between these nodes. These measure-

ments are used to estimate the position of targets as precisely as possible. For the

positioning problem, we have to define a model that represents our system.

Suppose a sensor field with n blindfolded and m anchor nodes with a total of N=n+m

nodes where m anchor nodes (AN) have their positions aj = [aj1 aj2]
T ∈ R2, j =

1, ...,m. The n blindfolded nodes (BN) are at unknown locations xi = [xi1 xi2]
T ∈

R2, i = 1, ..., n.

Measurements taken between anchor and blindfolded nodes can be represented as

deterministic functions of their positions for different measurement types. Also each

measurement has its own measurement errors. The measurement taken between node

i and j is shown in 2.1

mij = f(xi, aj) + eij (2.1)

where f(xi, aj) is a function of positions at xi and aj where eij is the measurement

noise. f(xi, aj) can be linear or non-linear with respect to positions of nodes. The

measurement error eij can have various characteristics and probability density func-

tions (PDF) depending on the measurement type. In WSN, measurements can be

5



Figure 2.1: A WSN with four anchor node and one blindfolded node

collected at anchors, blindfolded nodes or at both anchor and blindfolded nodes.

2.2 Measurement Types

Since performance of position estimation highly depends on the measurement char-

acteristics, various measurements such as TOA, TDOA, AOA and RSS are used de-

pending on the system requirements. Also accurate measurement models should be

used for better performance for localization.

2.2.1 Angle of Arrival (AOA)

The angle between an orientation and a corresponding signal’s incoming direction is

known as the AOA [15]. The AOA techniques can be examined in two main groups

depending on the usage of amplitude response or phase response of the receiver an-

tenna. In the amplitude measuring technique, the direction at which the maximum

received signal is measured is considered as the direction of the transmitter. How-

ever, a small error on received signal strength can cause large AOA errors. Phase

measurement technique requires an antenna array to utilize phase differences at each

element of the antenna array to obtain AOA.

6



Despite the fact that performance of AOA can be enhanced with increasing number

of receiver antennas, there are limitations on AOA quality due to shadowing, line-of-

sight requirements, and multipath effect. Also, localization using AOA needs antenna

array at each node and this increases system complexity and cost [16]. For this rea-

son AOA measurements have not been so far a popular technique for localization

problems in WSNs.

2.2.2 Time of Arrival (TOA)

The TOA is propagation time from a transmitter to a receiver and it is used to deter-

mine distance between the transmitter and the receiver. To calculate distance, TOA

is multiplied with propagation speed which is usually the speed of light denoted by

c. Accurate TOA measurements need perfect synchronization between anchors and

blindfolded nodes. A TOA measurement can be shown as a circle with its center at

transmitter and receiver at some point on the circumference of this circle. At least

three transmitters are needed to localize the receiver as given in Figure 2.2 because

the position of the receiver is obtained from the intersection of these circles.

Figure 2.2: Trilateration in 2D space in ideal case

The time difference of arrival (TDOA) based localization is analogous to TOA. Where

TOA technique uses propagation time between each anchor and blindfolded node,

TDOA uses propagation time differences between each node to localize blindfolded

nodes.

7



Accuracy of TOA techniques may be quite high with perfect synchronization. How-

ever this method is sensitive to timing errors in non-line of sight conditions and not

robust to multipath effect.

2.2.3 Received Signal Strength Indicator (RSSI)

Received signal strength (RSS) is a popular localization technique because of low

cost, easy implementation and low power consumption. All of the lately developed

sensor nodes in the market have the ability to measure and deliver RSS without need

of extra hardware and this leads us to benefit from savings in cost and power con-

sumption which are essential issues for sensor networks. Our aim in this study is

to localize and track a blindfolded node using RSS measurements between anchors

and the blindfolded node. To obtain distance from RSS values, we need a propaga-

tion model, namely a measurement model. In literature there are different approaches

for propagation like Free Space, Log-Normal Shadowing model and ITU Path Loss

model [17, 6]. In our study we use Log-Normal Shadowing model. In this model,

measured power at receivers RSSI circuit is modeled as follows

mij = P̂ij = P0−10α log10

√
(aj1 − xi1)2 + (aj2 − xi2)2

d0

+eij = P (dij)+eij (2.2)

where P̂ij is RSS measurement, P (dij) is received power for an ideal channel, α

is path loss exponent, d0 is reference distance, P0 is reference power at reference

distance d0 and eij is a zero-mean Gaussian measurement noise representing the cu-

mulative effects of multipath, shadowing etc. and its variance is σ2 (eij ∼ N (0, σ2)).

Variance σ2 and path loss exponent α depend on the channel and environment char-

acteristics and they are usually estimated by empirical measurements. Commonly,

σ value is between 6dB and 12dB. Considering the channel between nodes i and j,

measured RSS from i to j equals to the measured RSS from j to i , i.e., P̂ij = P̂ji.

The received power can be considered as a random variable with normal distribution

where its mean is P (dij) and variance is σ2 , i.e., P̂ij ∼ N (P (dij), σ
2). Estimat-

ing the distance between node i and node j from a given P̂ij can be done by using

8



Maximum Likelihood Estimation (MLE). In [7], MLE of distance is given as follows

d̂ij = 10(P0−P̂ij)/10α (2.3)

where d̂ij is the estimated distance. This estimated distance value can be used directly

as a measurement in localization and tracking algorithms.

2.3 Basic Static Localization Algorithms

2.3.1 Maximum Likelihood Estimation

The MLE method is a centralized and well-known approach for localization which

could use different measurements like RSS, TOA and connectivity to obtain posi-

tion estimate [18]. MLE estimators are preferable due to their variance approaching

Cramer-Rao lower bound (CRLB) asymptotically [19]. Mainly, in order to estimate

the position of a node, MLE minimizes the cost function which consist of differences

between measured and estimated distance [4]. In [6], MLE cost function for RSS

measurements in a collaborative scenario is given. Also the cost function for TOA

and RSS measurements is given in [7]. A conjugate gradient method is often used

in order to minimize cost functions of MLE. Assuming all RSS measurements are

independent identical distributed (i.i.d.) and all nodes are connected to each other,

the MLE cost function of a configuration matrix of blindfolded nodes in 2D for RSS

measurement is written as follows [6]

MLERSS(X) =
n∑
i=1

N∑
j=i+1

(log(dij)− log(d̂ij))
2 (2.4)

where configuration matrix X = [x1 x2 ... xn an+1 an+2... aN ]
T , xi = [xi1 xi2]

T ,

aj = [aj1 aj2]
T carries locations of nodes, n represents the number of the BNs and

number of all nodes is n +m equals to N . As mentioned previously, gradient based

algorithms are commonly used to minimize MLE cost function. One problem of

such algorithms is that there are locally optimal solutions besides the global optimal

solution. Because of this problem, MLE is sensitive to initial estimate when run with
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the aforementioned algorithms. In order to overcome this situation, initial values

should be set carefully or estimated by another estimation method.

2.3.2 Multidimensional Scaling Algorithms

Multidimensional Scaling (MDS) is a statistical technique used to analyze distance-

like data in multidimensional space and displays structure of data as a geometrical

picture [20]. MDS applications are commonly used in a great variety of areas, such

as psychology, statistics, visualization, marketing and so on. MDS technique usage is

also popular in localization problems [21, 6, 22, 23]. Given configuration matrixX =

[x1 x2 ... xn an+1 an+2... aN ]
T , calculation of MDS in 2D is made by minimizing the

stress given in [20]

MDSRSS(X) =
N−1∑
i=1

N∑
j=i+1

(dij − d̂ij)2 (2.5)

where dij is the euclidean distance between nodes i and j (either blindfolded or

anchor) and measured distance is d̂ij . This minimization problem typically can be

solved with SMACOF (Scaling by MAjorizing a COmplicated Function) [24] or gra-

dient based approaches [20].

In literature, several enhanced and hybrid MDS algorithms have been proposed re-

cently. In [22] and [6] integrated MDS-MLE method is proposed to benefit from

different advantages of both MLE and MDS. In this method, firstly, an estimate is

obtained from MDS in order to use advantage of superior convergence of it and af-

terwards MLE is used for tuning MDS results to remove modeling errors caused by

MDS method. Throughout the simulations it is shown that a MDS-MLE method has

better performance than both MDS and MLE [22]. In [8] a classic MDS algorithm

based MDS-MAP method is proposed by Shang. In MDS-MAP, shortest paths from

each node to another are computed in order to form a distance matrix. After applying

MDS to this matrix, absolute coordinates are obtained with sufficiently many number

of anchors (3 or 4) through a linear transformation.
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2.3.3 Trilateration and Multilateration

Trilateration is the process of obtaining the position of a node from its distance to

three anchors. Three circles are formed based on these distance measurements and

intersection of them is used to localize the node in space [25]. The centers of these

circles are at anchor locations and distance measurements from the anchor to blind-

folded node determine the circle radius. The trilateration scheme is shown in Figure

2.2 and more information about trilateration is given in [9]. Being easy to implement

makes trilateration quite popular with various measurement types, such as RSS, TOA

and TDOA, but errors are inevitable for each of them. Despite the fact that trilater-

ation gives accurate results with low-noise distance measurements, it is not feasible

with high-noise measurement errors or with collinearity of three anchors.

When three anchors do not produce sufficiently good localization results, a possible

solution is using measurements from multiple neighbor nodes, which is called multi-

lateration [25]. As described in [3], GPS is an example of localization that is based

on TDOA measurements and multilateration. Usually intersection of distance mea-

surements is not a single point and obtaining position of a node is posed as a Least

Square Estimation (LSE) problem.

In the literature, there are several different approaches based on multilateration. In

[10] a collaborative multilateration algorithm is suggested which facilitates estima-

tion of node locations in multi-hop sensor deployments by known anchor locations

and distance measurements. With this algorithm, localization of blindfolded nodes

which cannot communicate directly with anchors is possible. Also collaborative mul-

tilateration and iterative multilateration for ad-hoc node deployment is proposed in

[26]. Iterative multilateration is a distributed algorithm and all nodes in the network

is capable of running it.
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CHAPTER 3

TRACKING ALGORITHMS

3.1 Problem Statement

Object/target tracking represents a problem to estimate location, trajectory and char-

acteristics of an object by using sensor measurements and kinematic models [27]. The

measurements consist of all information about the object in the environment reported

from the sensor which can be any measuring device like camera, smart phone, radar,

or other tiny devices. The typical tracking problem is actually a state estimation

problem where the state is composed of kinematic variables like position, velocity

and the acceleration. There are various well-known Bayesian tracking algorithms

namely filters in literature [28, 29, 30] and most common ones are Kalman filter and

its extensions. We consider the state space model below

xk = f(xk−1) + wk (3.1)

yk = h(xk) + vk (3.2)

where

• xk ∈ Rnx is the state with the initial state x0 ∼ p(x0);

• yk ∈ Rny is the observation;

• wk ∈ Rxn is a process noise and its distribution p(wk) independent from xk;

• vk∈ Ryn is the white measurement noise with a known distribution p(vk) inde-
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pendent from xk.

Finding the posterior density p(xk|y1:k) is a main goal in Bayesian state estimation,

y1:k
∆
= {y1, y2, ...yk} represents the measurement sequence. The process noise wk

is introduced to account for unknown disturbance on the system dynamics. In other

words, a larger process noise represents that we trust less on the state equation. Simi-

larly the measurement noise vk is introduced to account for imperfections in measured

data. There are basic equations namely prediction and update for computing poste-

rior density from previous state’s recursively. This recursive solution is derived from

Total Probability Law and Bayes Theorem [31] as follows

p(xk−1|y1:k−1)
prediction−−−−−→ p(xk|y1:k−1)

update−−−→ p(xk|y1:k) (3.3)

For each k starting with p(x0) and k = 1;

• Prediction update

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.4)

• Measurement update

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.5)

where

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk. (3.6)

With the knowledge of p(xk|y1:k), it is possible to obtain an optimal estimate accord-

ing to a suitable benchmark. The most common one is the minimum mean square

error (MMSE) and the estimates for the predicted and estimated states are given as

x̂MMSE
k|k−1 = E[xk|y1:k−1],

x̂MMSE
k|k = E[xk|y1:k].

(3.7)
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3.2 Kinematic Models For Target Tracking

3.2.1 (Nearly) Constant Velocity Model

Considering the motion in two dimension (2D), the most common motion is the no

motion xk+1 = xk. For the moving objects the simplest motion is the motion with a

constant velocity (CV). The state of CV model composed of the velocity and position

of the moving object is as follows

XCV
k = [xk ẋk yk ẏk]

T (3.8)

where xk and ẋk represent position and velocity of target on the x-axis, yk and ẏk are

also for the y-axis. The general state model is given as,

XCV
k

∆
=


xk

ẋk

yk

ẏk

 =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




xk−1

ẋk−1

yk−1

ẏk−1

+


T 2/2 0

T 0

0 T 2/2

0 T


axk
ayk

 (3.9)

where axk ∼ N (0, σa
2) and ayk ∼ N (0, σa

2) represent the change in velocity (ac-

celeration) that is considered as a Gaussian. The reason of saying "nearly" while

describing this model is the fluctuation on velocity which is acceleration is assumed

to be Gaussian white noise.

3.2.2 (Nearly) Constant Acceleration Model

In this model, target position, velocity and acceleration form the state vector given as

XCA
k = [xk ẋk ẍk yk ẏk ÿk]

T (3.10)

where ẍk and ÿk are the accelerations on the x and y-axis. The reason of saying

"nearly" while describing this model is the fluctuation on acceleration which is as-
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sumed to be Gaussian white noise. The state space model for this model is as follows,

XCA
k

∆
=



xk

ẋk

ẍk

yk

ẏk

ÿk


=



1 T T 2/2 0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T T 2/2

0 0 0 0 1 T

0 0 0 0 0 1





xk−1

ẋk−1

ẍk−1

yk−1

ẏk−1

ÿk−1


+



T 2/2 0

T 0

1 0

0 T 2/2

0 T

0 1



nxk
nyk



(3.11)

where nxk ∼ N (0, σn
2) and nyk ∼ N (0, σn

2) are white noises.

3.3 Kalman Filters

The Kalman filter (KF) is proposed by R.E. Kalman as a novel recursive solution to

the linear filtering problem in 1960 [32]. Thenceforward, KF has drawn interest from

extensive research areas with the advances in digital computing. The explanatory

information of the KF is given in first chapter of [33].

Basically, the Kalman filter consists of mathematical equations that form a predictor-

corrector type estimator. Kalman filter is optimal in the sense of minimizing mean

square error with the assumptions of independent Gaussian noise and linearity of the

model. The key point of this optimality is that Kalman filter fuses all available infor-

mation. All noisy measurements, system and measurement device dynamics, statis-

tics of noises, measurement errors, ambiguity of dynamic models, and knowledge

about initial conditions are incorporated in Kalman filter [33]. Since it is a recursive

algorithm, KF does not need to keep previous data in storage and the filtering process

is repeated when a new measurement is available. There are some variants of KF in

the literature and most prevalents are the Extended KF [34, 28] and unscented KF

[35, 36]. These are widespread algorithms in the field of data processing.
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3.3.1 Kalman Filter

The most special case of the state space system given in Section (3.1) is a linear

Gaussian system. In this case we consider the linear system below

xk = Axk−1 + wk

yk = Hxk + vk
(3.12)

with the process noise wk and measurement noise vk terms. These are Gaussian

and have probability distributions as follows

wk ∼ N (0, Q) where Q > 0 ∈ Rnx×nx

vk ∼ N (0, R) where R > 0 ∈ Rny×ny .
(3.13)

where Q and R process noise covariance and measurement noise covariance

respectively. For this special case, all posterior densities are Gaussian. The KF algo-

rithm is based on feedback control; begin with the estimation of the process from the

state space model, after that noisy measurements are used to give a feedback to the fil-

ter. Hence, the algorithm can be examined in two main parts prediction update and

measurement update. As a result, this algorithm represents a predictor-corrector

type estimation problem. Recursive process flow taken from [1] is given in Table 3.1

and the terms in this algorithm are named in the literature as follows.

• x̂k|k−1 : Predicted State

• Pk|k−1 : A priori estimate covariance

• x̂k|k : A posteriori state estimate

• Pk|k : Estimate covariance

• ŷk|l−1 : Predicted measurement

• (yk − ŷk|k−1) :Measurement residual (innovation)

• Sk|k−1 : Covariance of predicted measurement (Residual covariance)

• Kk: Kalman gain
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TABLE 3.1: Kalman Filter [1]

• Initialization with x̂0|0, P0|0 and k = 1

• For each k

- Prediction Update

x̂k|k−1 = Ax̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T +Q

- Measurement Update

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkSk|k−1K
T
k

where

ŷk|k−1 = Hx̂k|k−1

Sk|k−1 = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1

k|k−1

The KF propagates the conditional probability density shown in (3.3) and calculates

the state estimate by minimizing mean square error. Under the linearity and Gaussian

assumptions, since the pdf p(xk|y1:k) is Gaussian, it is sufficient to propagate only

mean x̂k|k and covariance Pk|k as shown in 3.14.

x̂k−1|k−1, Pk−1|k−1
prediction−−−−−→ x̂k|k−1, Pk|k−1

update−−−→ x̂k|k, Pk|k (3.14)

3.3.2 Extended Kalman Filter

In most filtering problems, system dynamics are not linear and conditional probability

densities are non-Gaussian. In searching the optimum solution for the nonlinear fil-

tering problem, we need conditional probability density functions but infinitely many

parameters are required for an exact description. For this reason, some approxima-

tions are proposed in the literature [37, 38, 39].

The most common and basic approach for nonlinear filtering is the linearization which

is used in Extended Kalman Filter (EKF). In EKF, all non-linear models are linearized
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to apply the original Kalman filter equations. Consider the non-linear system below,

xk = f(xk−1) + wk

yk = h(xk) + vk
(3.15)

with process noises wk ∼ N (0, Q), measurement vk ∼ N (0, R) and initial state

p(x0) ∼ N (x0, P0|0). Recursive algorithm of EKF is given in Table 3.2

TABLE 3.2: Extended Kalman Filter [1]

• Initialization with x̂0|0, P0|0 and k = 1

• For each k

- Prediction Update

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = FPk−1|k−1F
T +Q

where

F = ∂f
∂xk|k−1

|xk−1=x̂k−1|k−1

- Measurement Update

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkSk|k−1K
T
k

where

ŷk|k−1 = h(x̂k|k−1)

H = ∂h
∂xk
|xk=x̂k|k−1

Sk|k−1 = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1

k|k−1

The matrices F and H are Jacobian matrices of the non-linear functions. One of the

drawbacks of EKF is that EKF can be highly unstable when there is high uncertainty

in the variable to be transformed. Also, in some applications Jacobian matrices are

very complex and can make the implementation of the filter difficult [40]. On the

other hand, EKF can give good results with small uncertainty.

In case of more than one measurement source and high-dimensional measurements,

processing the measurements serially prevents the high dimensional matrix inversions

in the measurement update part. Hence we can talk about two versions of EKF which
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are Serial EKF and Parallel EKF and they differ from each other in the way they

process measurements. Serial EKF algorithm is given Table 3.3 and Parallel EKF is

given in Table 3.4

TABLE 3.3: Serial EKF

• Initialization with x̂0|0, P0|0 and k = 1

• For each k

- Prediction Update

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = FPk−1|k−1F
T +Q

where

F = ∂f
∂xk|k−1

|xk−1=x̂k−1|k−1

- Sort the measurements such that yk = [ymax...ymin]

- Set j=1, for each j ≤ N

- Measurement Update

x̂k|k−1 = x̂k|k−1 +Kk(yk,j − ŷk|k−1)

Pk|k−1 = Pk|k−1 −KkSk|k−1K
T
k

where

ŷk|k−1 = hj(x̂k|k−1)

Hj =
∂hj
∂xk
|xk=x̂k|k−1

(Hj is Jacobian matrix for the measurement

source j with measurement yk,j)

Sk|k−1 = HjPk|k−1Hj
T +R

Kk = Pk|k−1Hj
TS−1

k|k−1

end for

x̂k|k = xk|k−1

Pk|k = Pk|k−1
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TABLE 3.4: Parallel EKF

• Initialization with x̂0|0, P0|0 and k = 1

• For each k

- Prediction Update

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = FPk−1|k−1F
T +Q

where

F = ∂f
∂xk|k−1

|xk−1=x̂k−1|k−1

- h = [h1h2...hN ]
T for N number of measurement

- yk = [y1y2...yN ]
T : measurement vector

- Measurement Update

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkSk|k−1K
T
k

where

ŷk|k−1 = h(x̂k|k−1)

H = ∂h
∂xk
|xk=x̂k|k−1

Sk|k−1 = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1

k|k−1

3.3.3 Unscented Kalman Filter

The Unscented Transformation is a method to statistically linearize a non-linear func-

tion of a random variable. In this method, n points called sigma points are se-

lected deterministically from prior distribution of a random variable and propagated

through the non-linear function [36]. These propagated points form a statistics that

can be used to estimate non-linearly transformed mean and variance [40]. The Un-

scented Kalman filter (UKF) uses unscented transformation in the implementation of

Kalman filter [35]. Since EKF has limitations like difficult to calculate or non-existent

Jacobian matrices and non-accuracy of inaccurate error propagation, the UKF was

proposed to overcome these deficiencies.
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3.4 Sensor Fusion

In localization and tracking of an object, various types of sensors are used. Basically,

these sensors are classified in two different groups which are relative (inertial) and

absolute position sensors in [41]. The relative sensor gives information about its sit-

uation relative to its previous state. Gyroscope, accelerometer and magnetometer are

examples of this type of sensors. The absolute positioning is based on information

of node’s location relative to a reference point at a known position and most popu-

lar example of it is GPS. Both sensor types have advantages and disadvantages that

deeply affect the performance of the positioning and tracking. Generally inertial sen-

sors have ability to give good results for short time intervals but they suffers from drift

for extended periods of time. On the other hand, absolute position sensors may not

provide the measurements all the time during the estimation due to communication

problems and environmental obstacles.

Generally, both of these sensors are fused for enhancing performance of estimation by

using their strengths. For example, the absolute measurements techniques like TOA,

TDOA, AOA and RSSI can be combined with the relative sensors like accelerom-

eter, gyroscope, magnetometer and compass. For the fusion process, Kalman filter

and its variants are commonly used, GPS/IMU fusion for positioning with Kalman

filter is provided in [11]. In [14], pedestrian localization in indoor environments by

TDOA/IMU fusion is given where the IMU is used for step detection and orientation

estimation by EKF.

Our objective is enhancing the performance of RSS based tracking by implementing

RSS/IMU fusion. In [12], RSS measurements and velocity measurements from IMU

are fused and it is shown that sensor fusion technique reduces the drift caused by IMU.

In addition the approach is powerful against fluctuations on the RSSI measurements.

Achieved results are 1 meter root mean square error on each axis. In [13], another

fusion technique is proposed which combines RSS and IMU measurements taken by

a smartphone. Firstly, orientation, position and velocity states are estimated with

Sequential Monte Carlo Kalman filter (SMC-KF), secondly position of the node is

estimated with the proposed RSS based localization algorithm and lastly both of the

measurements (IMU and RSSI) are combined by a navigation filter which consists of
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SMC filter and Kalman filter. As a result, sensor fusuion reduces the position error

around %35 compared to only-RSS case.

3.4.1 IMU Measurement Model

In general, IMUs consist of three dimensional (3D) gyroscopes, 3D accelerometers

and 3D magnetometers based on Micro-Electro-Mechanical Systems (MEMS). The

local magnetic field is obtained by the magnetometers. Nearly all modern gyroscopes

measure angular velocity or rate-of-turn whereas conventional gyroscopes measure

orientation. The accelerometers sense both linear acceleration and gravity. In [42], the

accelerometer measurements are modeled with external specific force which consists

of linear acceleration and Earth’s gravitational field g, bias and Gaussian noise as

follows

ya = f + ba + ea (3.16)

where ya is the measurement, f is the external specific force, ba is a slowly time-

varying bias and ea is the i.i.d. Gaussian noise. In our simulations, perfect orientation

is assumed. Gravitational force part is subtracted so that the external specific force is

equal to linear acceleration on each axis. In addition, the bias is not included in our

model. Simplified model for our problem is as follows

ya = la + ea (3.17)

where la is the linear acceleration.

3.5 Simulation Results

For the simulations, we generated a trajectory in a room to be followed by a blind-

folded node and we deployed 4 anchors at the corners of the room given in Figure 3.1.

The tracking algorithms are implemented for two cases to analyze how the sensor fu-

sion affects estimation of the true trajectory. In the first case only RSS measurements
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are available whereas RSS and acceleration (IMU) measurements are fused in the

second case. Static localization is implemented for only RSS measurements. Kalman

filter, Serial and Parallel EKF algorithms are implemented for both only RSS and

RSS/IMU sensor fusion cases.

Figure 3.1: True trajectory of blindfolded node

For the Kalman filter, firstly static locations of blindfolded node are estimated from

RSS measurements by MLE method given in Section 2.3.1, then these position esti-

mates are used as measurements in the Kalman filter. For the serial and parallel EKF,

RSS values are used as measurements directly in the filters.

In RSS/IMU fusion case, acceleration measurements on both x and y axes are taken

with the frequency of 20 Hz. RSS measurements are taken with the frequency of 2

Hz, i.e., 2 RSS measurements are taken each second. When RSS measurement is

available measurement update part of the filter is made with the RSS measurements.

The sensor fusion algorithm is given in Table 3.5

In order to compare the filters in position RMSE sense, 500 MC runs are made to

calculate the RMSE values of the filters. Initial values and simulation parameters are

given in Table 3.6. The standard deviation of the acceleration is calculated by taking
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TABLE 3.5: Sensor Fusion

• Initialization with x̂0|0, P0|0 and k = 1

• For each k

1-Prediction Update

calculate x̂k|k−1 and Pk|k−1

2 Measurement Updates

calculate x̂k|k and Pk|k with acceleration data

if (RSS measurement is available)

{

firstly, take the estimated state and covariance

as predicted state and covariance as follows

x̂k|k−1 = x̂k|k

Pk|k−1 = Pk|k

then, calculate x̂k|k and Pk|k with RSS measurements

}

several measurements from the smartphone’s (Iphone 5) accelerometer.

TABLE 3.6: Simulation Parameters

Simulation Parameters

Path loss exponent α 3

Standard deviation of RSS σRSS 6 dB

First meter power of RSS P0 -48 dBm

Standard deviation of acceleration σACC 0.0152 m/s2

In filters we use constant acceleration model given in (3.11) and the measurement

model given in (2.2). Acceleration measurement model is linear and h(xk) for the

acceleration measurements is given as

h(xk) = Hacc =

0 0 1 0 0 0

0 0 0 0 0 1

 . (3.18)
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Initial state x̂0|0 which is obtained from static localization (MLE) by using RSS mea-

surements and initial covariance P0|0 matrices, where (1,1) and (4,4) elements are

obtained from averaging Mean Squared Error (MSE) of static localization over 500

Monte Carlo runs for both x and y axes, are given as follows

x̂0|0 =

[
x̂MLE(RSS) 0 0 ŷMLE(RSS) 0 0

]T
(3.19)

P0|0 =



MSE(MLE)(x̂) 0 0 0 0 0

0 0.0065 0 0 0 0

0 0 0.00023 0 0 0

0 0 0 MSE(MLE)(ŷ) 0 0

0 0 0 0 0.0065 0

0 0 0 0 0 0.00023


(3.20)

Measurement noise covariance for KF is formed from the MSE values of static local-

ization (MLE) as follows

R =

MSE(MLE)(x̂) 0

0 MSE(MLE)(ŷ)

 . (3.21)

The measurement covariances of the other filters are taken as

RRSS = σ2
RSS × I4 (3.22)

RACC = σ2
ACC × I2 (3.23)

with the identity matrix I . Lastly, the process noise covariance matrix is set as follows

Q = 0.000023× I6. (3.24)
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• Figure 3.2 gives the drift of the position estimate from Kalman Filter by using

only the acceleration data. As it seen in the figure, the position error increases

over the time and reaches to 24 meter after 80 seconds because the error of the

acceleration accumulates while estimating the position.

• Figure 3.3 indicates the comparison of performance of the static localization

and tracking filters in the sense of RMSE for ONLY RSS case. When the

blindfolded node approaches to the anchors, error of the MLE decreases. As

it is seen, filters outperforms the localization (MLE) and using the positions

estimated by MLE as a measurement in the Kalman filter gives better results.

At the turning points, the filter performances decrease since we used constant

acceleration model in our implementations and sharp turnings do not match the

model.

• Figure 3.4 shows the RMSE performance of the filters for RSS/IMU fusion

case and errors are near 1.5 meter. Figures 3.5-3.7 shows the comparison of the

ONLY RSS and RSS/IMU fusion cases for each filter. Sensor fusion decreases

the error approximately % 30 for the given measurement variances. All filter

results for both cases are given in Figure 3.8.

• Figure 3.9 shows the CDF of tracking algorithms for ONLY RSS case. It is

seen that there are errors up to 5 m for the serial and parallel EKF. In Figure

3.10, CDF of tracking algorithm for RSS/IMU fusion cases is presented and in

this scenario 4 m errors are seen for serial and parallel EKF. Comparison of all

CDFs is presented in Figure 3.11.
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Figure 3.2: Tracking with ONLY ACC measurements

Figure 3.3: RMSE comparison of tracking algorithms with ONLY RSS measurements
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Figure 3.4: RMSE comparison of tracking algorithms for RSS/IMU fusion case

Figure 3.5: RMSE comparison of Kalman filter for ONLY RSS and RSS/IMU fusion

cases
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Figure 3.6: RMSE comparison of Parallel EKF for ONLY RSS and RSS/IMU fusion

cases

Figure 3.7: RMSE comparison of Serial EKF for ONLY RSS and RSS/IMU fusion

cases
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Figure 3.8: RMSE comparison of all filters for ONLY RSS and RSS/IMU fusion

cases

Figure 3.9: CDF of tracking algorithms for ONLY RSS

31



Figure 3.10: CDF of tracking algorithms for RSS/IMU fusion case

Figure 3.11: CDF of tracking algorithms for ONLY RSS and RSS/IMU fusion cases
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3.5.1 Effects of the Measurement Variances

The reliability of the measurements is crucial for the localization and tracking per-

formance. In the wireless system, a channel depends on time, frequency and space

that affects the measurements. Because of these dependencies on the wireless chan-

nel, various factors affect the RSSI and cause variation. We can divide these factors

into groups such as hardware based, environmental based, human based, spatial and

interference. These factors are examined experimentally in [43]. It is possible to use

time, frequency and space dimensions to our advantage with various techniques in

order to acquire more reliable RSS samples. For example, changing the operating

frequency among the multiple carrier frequencies (frequency hopping) is a widely

used technique since different channels may have dissimilar characteristics. Time

diversity and space/orientation diversity are also used for enhancing the RSS based

localization performance. The variation of the RSS can be decreased with the use of

such techniques.

The Inertial Measurement Unit (IMU) is another measurement source used in local-

ization and tracking systems. Inertial sensors are generally classified according to

their performance. In the market, one can encounter navigational (high precision),

tactical, industrial and consumer grade (low precision) IMUs. The navigational (ma-

rine) IMUs serve the best position and orientation estimate yet their cost can reach

over 1 million dollars. The cheapest one is consumer grade with the poorest perfor-

mance. In this case the errors in the position estimates from the accelerometer data is

enormous even if bias is little on the acceleration. A user’s acceleration is obtained

when the gravitational source is subtracted out from measurements, but orientation

estimation is needed and the error from this estimation can cause a bias on the accel-

eration. Hence it is really difficult to obtain sufficient data from low cost IMU.

In this part, filter performances are analyzed depending on both RSS and acceleration

standard deviations. The results are presented in Table 3.7-3.12.

• In Table 3.7, results of 500 MC runs for the ONLY RSS case are documented for

different RSS standard deviations. Localization error is around 1.75 m where

the filters can reach 1 m error while the standard deviation of the RSS is 3 dB.
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• In Table 3.8, sensor fusion is analyzed with respect to RSS standard deviation

while keeping the acceleration standard deviation fixed at 0.015m/s2. As seen

in the table, tracking errors can be reduced to around 0.7 meter while the σRSS

is 3 dB.

• Table 3.9 shows the sensor fusion performance with respect to acceleration data

precision while keeping the σRSS fixed at 6 dB. The error is nearly 1 meter

when the σACC is reduced to half.

• As we see in the Table 3.10, 0.54 meter error performance is attainable with the

sensor fusion where the RSS std. dev. is 3 dB and the acceleration std. dev. is

0.0015m/s2.

TABLE 3.7: RMSE (m) values of ONLY RSS cases for different σRSS values

σRSS STATIC (MLE) PARALLEL EKF SERIAL EKF KALMAN FILTER

6 3.13490 2.18142 2.05910 1.76425

5 2.69558 1.87645 1.77750 1.55707

4 2.24157 1.44799 1,40324 1.30112

3 1.76306 1.02954 1.02867 1.06386

TABLE 3.8: RMSE (m) values of RSS/IMU fusion cases for different σRSS values
(σACC = 0.015 m/s2 )

σRSS PARALLEL EKF SERIAL EKF KALMAN FILTER

6 1.53588 1.47114 1.33647

5 1.36404 1.38344 1.21088

4 1.10589 1.07392 0.99653

3 0.73603 0.72799 0.75795

TABLE 3.9: RMSE (m) values of RSS/IMU fusion cases for different σACC values
(σRSS = 6 dB )

σACC PARALLEL EKF SERIAL EKF KALMAN FILTER

0.015 1.53588 1.47114 1.33647

0.0075 0.97440 0.96381 1.02247

0.0015 0.93956 0,89362 0.98124

0.00075 0.86364 0.86023 0.95592
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TABLE 3.10: RMSE (m) values of RSS/IMU fusion cases for different σACC values
(σRSS = 3 dB )

σACC PARALLEL EKF SERIAL EKF KALMAN FILTER

0.0075 0.56841 0.56763 0.70763

0.0015 0.54128 0.54681 0.63786

3.5.2 Effects of the Path Loss Exponent

In RSS-based localization, the path loss exponent is a significant factor which depends

on the local environment and differs from channel to channel. Typical path loss expo-

nents are given in [17] for different environments. In the buildings, the PLE’s range

is 1.6 to 3.5 when the receiver and transmitter at the same floor, for multiple floors the

PLE is between 2 and 6. However, attenuations due to obstacles in buildings expands

the range of empirical PLE. In Table 3.11 performances of localization and tracking

algorithms for ONLY RSS case versus path loss exponent are given. As it seen in the

table, errors tend to be higher at the low PLEs. The results for RSS+IMU fusion case

according to PLE are shown in Table 3.12. As a conclusion, all performances for both

cases are inversely proportional to the PLE.

TABLE 3.11: RMSE (m) values of ONLY RSS cases for different α (path loss expo-
nent) values (σRSS = 6 dB, σACC = 0.015 m/s2 )

α STATIC (MLE) PARALLEL EKF SERIAL EKF KALMAN FILTER

4 2.47592 1.66968 1.55112 1.41389

3.5 2.74735 1.90181 1.79137 1.54108

3 3.14158 2.16087 2.07628 1.78011

2.50 3.63913 2.73508 2.48623 2.22456

2 4.45352 3.32225 3.09149 2.77758

1.50 5.61991 4.46848 4.13585 3.46903
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TABLE 3.12: RMSE (m) values of RSS/IMU fusion cases for different α (path loss
exponent) values (σRSS = 6, σACC = 0.015 m/s2 )

α PARALLEL EKF SERIAL EKF KALMAN FILTER

4 0.94086 0.94825 1.07331

3.5 1.15682 1.14536 1.11483

3 1.49482 1.48357 1.37007

2.50 1.66790 1.62269 1.52969

2 2.00511 1.88616 1.69568

1.50 2.37407 2.32365 1.93667

36



CHAPTER 4

POSTERIOR CRAMER RAO BOUND FOR FILTERING

One common bound on the performance of an estimator is conventional Cramér-Rao

lower bound (CRLB) [44]. The CRLB gives a minimum achievable variance for any

unbiased estimator of a non-random parameter. This bound provides opportunity to

compare the implemented algorithms and had been used as a benchmark to compare

estimators with each other. So, CRLB gives information about the reachable max-

imum performance of a system before implementing it and can be considered as a

system design tool.

Since CRLB is a bound for static estimation problems, it is not convenient for tracking

problems because the states are changing dynamically. For random parameters, a

lower bound that is analogous to CRLB is presented by Van Trees in [44]. This

bound is called as posterior CRLB (PCRLB) or Bayesian CRLB and given by the

inverse of Fisher Information Matrix (FIM) for a random vector.

In the derivation of FIM for the PCRLB, the expectations are taken with respect to the

joint distribution of the states and the measurements which is p(xk, yk) for the time

k. Since these expectations takes averages over the measurements, the PCRLB is an

off-line bound and is derived from only the initial state, the measurement model and

the state space model.

Considering a vector of states Xk = [x0, x1, ..., xk] and its estimate X̂k|k based on the

measurements Yk = [y1, y2, ..., yk], the CRLB for vector parameters can be written as
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the inverse of the FIM Jk [29]

MSE(X̂k|k) = E
{
(X̂k|k −Xk)(X̂k|k −Xk)

T
}
≥ Jk

−1 (4.1)

Jk = E
{
[5Xk

log p(Xk, Yk)][5Xk
log p(Xk, Yk)]

T
}

(4.2)

where5Xk
is a first-order partial derivative with respect to Xk.

4.1 Posterior Cramer Rao Lower Bound For Filtering

Since the CRLB depends on the assumption of the deterministic state variables, Van

Trees proposed a new bound for the non-deterministic parameters which is posterior

CRLB in [44]. Consider the general form for the state and measurement models

xk = f(xk−1) + wk (4.3)

yk = h(xk) + vk (4.4)

the PCRLB which bounds the estimate covariance is given as follows

MSE(X̂k|k) = E
{
(X̂k|k −Xk)(X̂k|k −Xk)

T
}
≥ Jk

−1 (4.5)

Jk = E
{
−5Xk

5T
Xk

log p(Xk, Yk)
}

(4.6)

where the partial derivatives in equation (4.6) are calculated at the true state and the

expectation is taken with respect to Yk and Xk different from the CRLB where the

expectation is taken over the only Yk. As the time k increases, the PCRLB becomes

difficult to compute due to the large data processing. Thankfully, in [45] Tichavsky

et al. proposed a recursive solution for calculation of the PCRLB.
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Suppose that Xk is a sequence of the n-dimensional states and the corresponding

FIM is J with the dimension (nk × nk). Jk is the (n × n) dimensional FIM for the

state xk and the sequence (J1, J2, ..., Jk) is the FIM matrices for the estimation of the

states (x1, x2, ..., xk). Tichavsky derived the following recursive algorithm in order to

obtain Jk.

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k (4.7)

where

D11
k = Ep(xk+1,xk)

{
−5xk 5T

xk
log p(xk+1|xk)

}
(4.8)

D12
k = (D21

k )T = Ep(xk+1,xk)

{
−5xk 5T

xk+1
log p(xk+1|xk)

}
(4.9)

D22
k = Ep(xk+1,xk)

{
−5xk+1

5T
xk+1

log p(xk+1|xk)
}

+ Ep(xk+1,yk+1)

{
−5xk+1

5T
xk+1

log p(yk+1|xk+1)
}

= D22,a
k +D22,b

k

(4.10)

with the initial value

J0 = E
{
−5x0 5T

x0
log p(x0)

}
. (4.11)

For the case of the linear and Gaussian system given in equation (3.12), conditional

pdfs of p(xk+1|xk) and p(yk|xk) are given as follows.

p(xk+1|xk) =
1

(2π)2|Qk|1/2
exp[−(1/2)(xk+1 −Akxk)TQ−1

k (xk+1 −Akxk)] (4.12)

p(yk|xk) =
1

(2π)2|Rk|1/2
exp[−(1/2)(yk −Hkxk)

TR−1
k (yk −Hkxk)] (4.13)

where |Qk| and |Rk| are the determinants of Qk and Rk respectively. It can easily be

shown that

D11
k = ATkQ

−1
k Ak (4.14)
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D12
k = (D21

k )T = −ATkQ−1
k (4.15)

D22
k = Q−1

k +HT
k+1R

−1
k+1Hk+1 (4.16)

However, for the non-linear measurement model such as RSS measurement model

given in equation (2.2), the expectation in D22,b
k involves a highly nonlinear function

and is not analytically tractable. In order to calculate this expectation, Monte Carlo

random sampling methods are usually used.

4.1.1 Monte Carlo Approximation for the PCRLB

For the non-linear measurement model, D22,b
k term of the recursive PCRLB equation

requires the knowledge of p(xk+1, yk+1). Based on the assumption of the zero mean

Gaussian measurement noise we have

5xk+1
log p(yk+1|xk+1) = 5xk+1

[
− 1

2
[yk+1 − h(xk+1)]

TR−1
k+1[yk+1 − h(xk+1)]

]
=
[
5xk+1

h(xk+1)
T
]
R−1
k+1

[
yk+1 − h(xk+1)

]
(4.17)

and D22,b
k matrix given in (4.10) can be further computed as

D22,b
k = Ep(xk+1,yk+1)

{[
5xk+1

log p(yk+1|xk+1)
] [
5xk+1

log p(yk+1|xk+1)
]T}

= Ep(xk+1,yk+1)

{[
5xk+1

h(xk+1)
T
]
R−1
k+1

[
5xk+1

h(xk+1)
T
]T}

= Ep(xk+1,yk+1)

{
HT
k+1R

−1
k+1Hk+1

}
(4.18)

where Hk+1 is the Jacobian of h(xk+1) evaluated at the true value of xk+1 and Rk+1

is the corresponding measurement noise covariance.

Let

∧22,b
k (xk+1)

4
= HT

k+1R
−1
k+1Hk+1 (4.19)
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then the equation (4.18) can be represented as simply form

D22,b
k = E

{
∧22,b
k (xk+1)

}
=

∫ ∫
∧22,b
k (xk+1)p(xk+1, yk+1)dxk+1

dyk+1

=

∫
∧22,b
k (xk+1)

(∫
p(xk+1, yk+1)dyk+1

)
dxk+1

=

∫
∧22,b
k (xk+1)p(xk+1)dxk+1

.

(4.20)

The expectation is taken with respect to the xk only, since the bound is independent

of the measurement sequence. In order to solve the expectation we can use Monte

Carlo integration. So we need samples (namely particles) from the density p(xk+1)

for the MC integration. In the case of target tracking, we generate N trajectories

X i
k = [xi0, x

i
1, ..., x

i
k] , i = 1, 2, ..N according to the state space model.

With the assumption of the state of ith trajectory at the time k + 1 is a dirac delta

function located in x̂ik+1, then the empirical estimate of p(xk+1) is given as follows

p̂(xk+1) =
1

N

N∑
i=1

δ(xk+1 − x̂ik+1). (4.21)

Substituting this estimated density into (4.20) and by using the sifting Property of the

delta function we have

D22,b
k = E

{
∧22,b
k (xk+1)

}
=

∫
∧22,b
k (xk+1)p(xk+1)dxk+1

=
1

N

N∑
i=1

∧22,b
k (xk+1)δ(xk+1 − x̂ik+1)

=
1

N

N∑
i=1

∧22,b
k (x̂ik+1).

(4.22)

Now we are able to calculate the approximate posterior CRLB by Monte Carlo inte-

gration method.
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4.1.2 Simulation Results

For the state vector given in (3.10), the position PCRLB at the time k given as

PCRLB =
√
J−1
k (1, 1) + J−1

k (4, 4) (4.23)

where J−1
k (1, 1) and J−1

k (4, 4) are the elements of the J−1
k related to positions at x and

y axis respectively. The initial information matrix J0 depends on the p(xo) as given

in (4.11) and for the Gaussian case J0 = P−1
0|0 where P0|0 is the initial covariance that

was used in section 3.

For computing PCRLBs for the non-linear system, the same values of the measure-

ment noise covariances of the RSS RRSS and the acceleration RACC , the process

noise covariance Q , initial values x̂0|0 and P0|0 in Section 3 are used. Also, for the

linear case the same measurement models and covariance matrix of the estimated lo-

cations by MLE in section 3 are used. We made 500 MC realizations for the same

parameters in order to obtain simulation results .

For Kalman filter, system models (state and measurement) are both linear, hence the

computation of the PCRLB is independent from the xk. For the RSS/IMU fusion

case, the equations for the recursive computation of the PCRLB for the linear and

non-linear cases are given in Table 4.1.
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TABLE 4.1: Computation of the PCRLBs for the sensor fusion case

Start from k=0, for each k

D11
k = ATkQ

−1
k Ak

D12
k = (D21

k )T = −ATkQ−1
k

• For the linear case

if RSS measurement available at time k

D22
k = Q−1

k +HT
RSS−MLE,k+1R

−1
RSS−MLE,k+1HRSS−MLE,k+1

else

D22
k = Q−1

k +HT
ACC,k+1R

−1
ACC,k+1HACC,k+1

• For the non-linear case with the SMC approximation

if RSS measurement available at time k

D22
l = Q−1

k + Ep(xk+1,yk+1)

{
HT
RSS,k+1R

−1
RSS,k+1HRSS,k+1

}
else

D22
k = Q−1

k +HT
ACC,k+1R

−1
ACC,k+1HACC,k+1

where HRSS,k+1 is the Jacobian of h(xk+1), HRSS−MLE,k+1 is the measurement ma-

trix of the linear model for the estimated locations from the RSS measurements by

MLE and RRSS−MLE,k+1 is the measurement covariance matrix for the estimated lo-

cations from the RSS measurements by MLE.

Figures 4.1-4.4 shows the PCRLBs for the RSS based and RSS+IMU fusion based

tracking systems where the blindfolded node follows the constant acceleration model

exactly.

• In Figure 4.1, posterior CRLBs are given for the RSS standard deviations 6,5,4

and 3 dB respectively for non-linear measurement models. As seen, the bound

goes under to 1 meter position error for 3 dB RSS standard deviation for ONLY

RSS case. In sensor fusion, the bound is decreased to 0.5 meter for 3 dB σRSS.

• For linear measurement case, position estimates by MLE are considered as a

measurement, PCRLBs with different RSS standard deviations are shown in

Figure 4.2. The results are similar to non-linear case and the bound is near 1

meter while using only the RSS measurements with 3 dB standard deviation.

Also sensor fusion is bounded with 0.5 meter for this value of standard devia-
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tion.

• Precision of the acceleration data is also affecting the bounds for sensor fusion.

Figure 4.3 PCRLBs for different σACC for non-linear measurement case. Av-

erage of the bounds are 0.96 m and 0.85 m for the standard deviations 0.15

m/s2 and 0.005 m/s2 respectively. Since the standard deviation of the process

noise is 0.0048 in our system, change of the PCRLB is not remarkable when

the standard deviation of the acceleration drops below the value 0.0048 m/s2.

Lower bounds are possible for the systems with low process noises. In Figure

4.4, the PCRLBs for the linear system are given according to different σACC

values. Likewise the non-linear system, average of the bounds are 0.94 m and

0.83 m for the standard deviations 0.15 m/s2 and 0.005 m/s2 respectively.

• For Monte Carlo integration, 500 trajectories are generated that exactly follow

the constant acceleration model given in 3.11. Each trajectory begins at any

point which is selected arbitrarily in the area shown in Figure 3.1. A trajectory

eventually leaves the area that is encircled by the anchor nodes after spending

some time in that area. RSS measurements are dominant during the time spent

in the encircled area. However when the blindfolded node leaves the encircled

area, the acceleration measurements become dominant because of the increas-

ing distances between blindfolded node and the anchors. As seen in the Figures

4.1-4.2, PCRLBs of the ONLY RSS cases deteriorate after some time. For our

problem the deterioration occurs after spending approximately 3.5 seconds in

the trajectory.

44



Figure 4.1: Position SMC-PCRLBs for different σRSS values

Figure 4.2: Position PCRLBs for different σRSS values
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Figure 4.3: Position SMC-PCRLBs for RSS/IMU fusion case and for different σACC

values

Figure 4.4: Position PCRLBs for Linear RSS/IMU fusion case and for different

σACC values
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CHAPTER 5

EXPERIMENTAL STUDY

5.1 Sensor Nodes

A sensor node in a WSN is usually required to be capable of sensing, processing the

data and communicate with the other nodes in the network. In our study we used

Arduino Uno R3 boards for the data processing, 2GB SD card for the memory ap-

plications and Xbee Series 2 RF modules which is mounted on the Arduino Wireless

Shield to obtain a mesh network. Components of the sensor node are shown in Figure

5.1.

Figure 5.1: Complete Sensor Node
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The Arduino Uno R3 boards are used as development boards based on the Atmega328

microcontroller, it is relatively easy to develop some applications consisting of elec-

tronics and coding on these boards. The specifications of the Arduino Uno R3 are

enlisted in Table 5.1.

TABLE 5.1: Arduino Uno R3 Specifications

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/OPin 40mA

DC Current per 3.3V pin 50mA

Flash Memory 32 KB

SRAM 2KB(ATmega328)

EEPROM 1KB(ATmega328)

Clock Speed 16 MHz

Since the usage of WSNs spreads to great variety of areas, different protocols are

developed to build a network consisting of the sensor nodes. One of the most com-

mon protocols is Zigbee with low cost and low power consumption advantages. Xbee

Series 2 RF modules which re used in this thesis use this protocol. Zigbee provides

a short range wireless solution based on the mesh topology and it uses 2.4 GHz fre-

quency band all over the world but there are some Xbee modules working in different

frequencies like 868 Mhz and 900 Mhz as well.

Besides a communication between two modules, the Xbees enable star and mesh

networks constellations. Each sensor node has a role in the network defined by Zigbee

protocol and these roles are coordinator, router and end device. Each network can

have only one coordinator which establishes the network and also stores the network

information. The coordinator cannot be battery-powered. The routers are used as

a relay in the network and can connect with the coordinator and the other devices.
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The router also cannot be battery-powered since it must store the packets for the end

devices. Lastly, end devices are usually used for the sensing and they are battery-

powered. They can sleep for a certain time of period. A sample network topology

is given in Figure 5.2. The transmit power of the Xbee is 2mW, i.e., 3 dBm, and the

sensitivity of the receiver is -100 dBm.

Figure 5.2: The Sample Zigbee Topology

Communication between the Arduino and the Xbee is established through a logic

level asynchronous serial port. Both the Xbee and the Arduino have Universal Asyn-

chronous Receiver/Transmitter Interface (UART) and with the same configuration of

each UART, these devices communicate through a serial port. Pin connections of

the Xbee and Arduino are shown in Figure 5.3. In our work, baud rate is 9600 bps,

payload is 8 bits, before and after any byte 0 and 1 is sent respectively for synchro-

nization.

Figure 5.3: System Data Flow Diagram of Xbee and Microcontrollers

There are two serial communication modes of the Xbee, one of them is Transpar-

ent Mode (AT mode) and the other one is Application Programmable Interface (API)

mode [46]. When operating in the AT mode, all information received from serial port

of the Xbee is adjoined one after the other for wireless communication. In the case

that the Xbee module cannot transmit instantly when it is busy with receiving a wire-
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less packet, the UART data is saved in the buffer reserved for serial information. RF

transmission of the serial data starts after Packetization Timeout (R0) is over or the

maximum number of bytes in a packet (100 bytes) is received. In this mode, configu-

ration of the Xbee (such as destination address, sleep time, I/O pins etc.) can be done

by user via XCTU software or the host microcontroller by sending AT commands

through the serial port. Digi’s XCTU is a free software to interact with RF modules

through a graphical interface which is easy to use.

Alternative to default Transparent Mode, the API mode enables arrangement of the

network capabilities of the RF module from host application. API mode supports

a frame based communication for all data entering or leaving the RF module. The

host microcontroller sends a frame containing destination address, payload (data to

be send) and all other transmission settings. On the receiver side, when the packet

is received, receiver Xbee sends information frame by frame to the host control unit

consist ofsender address, RSS of the last packet and actual content. Also Xbee series

2 modules save the RSS measurement of the last received packet and allow reaching

this information with a DB command (AT) sent to the module. API mode enables

to change destination address, communication channel and some other transmission

options without entering the command mode.

In this work, we established a network containing 5 sensor nodes, one of them is

coordinator (blindfolded), the others (anchors) are routers and all nodes operated in

the API mode. The blindfolded node send a broadcast message and the anchors save

the RSS value of the last received packet to the SD card which is mounted on the

Arduino Wireless Shield SD extension. The destination address for the broadcast is

0xFFFF.

5.2 Estimation of the Channel Parameters

In order to estimate channel parameters which are path loss exponent α, first meter

power P0 and the standard deviation of RSS σRSS , we used Least Square (LS) es-

timation. LS aims to determine optimum values for variables that ensure the sum

of the squared residuals between the observations and measurement predictions are
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minimum. This is also known as fitting a line through the data. In [47], milimeter-

wave propagation characteristics are discussed and PLE is estimated as the best fit

minimum mean square error (MMSE) over a large amount of data.

We took the measurements in the communication laboratory of Gazi University which

is located at Technology Faculty. The laboratory consists of the obstacles such as

tables and computers. The measurements are taken at 24 fixed points shown in Figure

5.4. The blindfolded node sent 30 packets at each point and the all anchors saved the

RSS values. Total number of the measurements used in parameter estimation is 3360.

Figure 5.4: The Measurement Points for the Parameter Estimation

Considering the RSS measurement model given in equation 2.2, the Least Square

estimation is made for the parameters PLE (α) and P0 in a matrix form. The solution

51



is expressed as

P̂0

α̂

 = (HTH)−1HTP (5.1)

where P = [P1 P2 .. Pm]
T is the measurement vector, H =

[
1 −10 log d

]
where

1 is vector of ones and d is the vector of distances. The collected measurements and

estimated path loss model is shown in Figure 5.4, the estimated path loss is given in

Figure 5.5. P0 estimate is −52 dBm, the path loss exponent estimate is α = 1.8 and

σRSS estimate is 5.8 dB.

Figure 5.5: Estimated Path Loss

5.3 Antenna Performances of RSSI

RSSI based indoor localization and tracking systems use a great variety of antennas

and antenna performance is crucial for the accuracy of the system. In the WSNs,
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small antennas with non-isotropic gain patterns are usually used due to the necessity

of the tiny and inexpensive devices. For the Xbee radio modules, chip antenna and

wire antennas are available and in [48] different experiments are performed in order

to analyze antenna performances. It is shown that anchor antennas should be at least

1 meter above from the ground for stable measurements. Also it is concluded that the

antenna patterns are not isotropic and variance of the chip antenna is higher than the

wire one. In [49], RSS based localization technique MLE, proximity based ECOLO-

CATION and finger printing algorithms’ performances are compared experimentally

for antenna orientations. Rather than a Xbee, CC2430 [50] radios work on 2.4 Ghz

are used as a sensor node. Experiments are performed for the horizontal and vertical

antenna orientations by taking measurements from various locations and using differ-

ent frequencies. It is shown that antenna orientation has a great impact on RSS and

RSS based localization

In our study, the antenna pattern analysis was done experimentally where anchor and

the blindfolded node was placed one meter above the ground and the distance between

the blindfolded node and the anchor was set to 2 m. The orientation of the anchor was

fixed and 100 measurements were taken for each orientation of the blindfolded node.

Later, these measurements were averaged. As shown in the Figure 5.6, radiation

pattern of the chip antenna is not isotropic and variance of the RSS is substantial.
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Figure 5.6: RSSI vs Antenna Orientation

5.4 Experimental Tracking

For the experimental study, we used a 7.6 m × 9.2 m area of the communication

laboratory. We deployed the anchors at the corners of the area, anchor 1 at the point

(0,0), anchor 2 at the point (7.6,0), anchor 3 at the point (7.6,9.2) and anchor 4 at the

point (0,9.2). Our experimental trajectory was the same trajectory that was used in

the simulation part. The blindfolded node followed the trajectory and sent a broadcast

message with a packet number as a payload each 2 seconds. The anchors saved the

RSS values of the each packet on the 2GB SD card. The RSS values obtained are

shown in Figure 5.7. For the implementation of the algorithms, estimated channel

parameters were used and the process noise was also the same as the one used in the

simulation section. Experimental results of the tracking algorithms for both ONLY

RSS and RSS+IMU cases are illustrated in the Figures 5.8-5.11.
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Figure 5.7: Experimental RSS measurements

• Estimated positions obtained by MLE algorithm with experimental data are

given in Figure 5.8. The RMSE of the static localization is 3.16 m.

• In Figure 5.9, the performance of the serial EKF with the experimental RSS

measurements and simulated acceleration data is shown. The RMSE value of

the ONLY RSS case is 1.93 m where the sensor fusion decreased the error to

1.54 m. Parallel EKF performance is also shown in Figure 5.10 and the RMSE

values are 1.78 m and 1.52 m for ONLY RSS and sensor fusion respectively.

Lastly, KF is executed to estimate trajectory of the blindfolded node and results

are presented in Figure 5.11. The RMSE values are 2.04 m and 1.85 m for the

ONLY RSS and RSS/IMU fusion cases respectively.

• As a conclusion, static localization performance can be enhanced the tracking

filters to reach accuracy 1 m and sensor fusion decreases the the error approxi-

mately by 15% experimentally.
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Figure 5.8: Estimated static locations from the RSS observations by using MLE, P0

= -52 dBm , σRSS = 6 dB , α = 1.8

Figure 5.9: Performance of the Serial EKF for the both ONLY RSS and RSS/IMU

fusion cases with the experimental RSS measurements and simulated acceleration

measurements, P0 = -52 dBm , σRSS = 6 dB , α = 1.8
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Figure 5.10: Performance of the Parallel EKF for the both ONLY RSS and RSS/IMU

fusion cases with the experimental RSS measurements and simulated acceleration

measurements, P0 = -52 dBm , σRSS = 6 dB , α = 1.8

Figure 5.11: Performance of the KF for the both ONLY RSS and RSS/IMU fusion

cases with the experimental RSS measurements and simulated acceleration measure-

ments, P0 = -52 dBm , σRSS = 6 dB , α = 1.8
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CHAPTER 6

CONCLUSION

In this thesis, we first studied the performance of the RSS based localization and

tracking algorithms (MLE, KF, Serial EKF, Parallel EKF) for indoor environments

in WSN through various simulations. It has been shown that tracking enhances the

accuracy of static localization and processing the RSS measurements serially (Serial

EKF) gives a little advantage.

Later, we discussed the RSS/IMU sensor fusion for target tracking to improve ac-

curacy of RSS based tracking by using EKF and KF as fusion algorithms. In the

proposed method, position estimation starts with the raw acceleration data and when-

ever an RSS measurement is available, estimated location is updated. It was observed

that sensor fusion scheme mitigates the effects of fluctuations from RSSI and over-

comes the drift problem from the IMU. The average performance enhancement of

tracking by sensor fusion is around 30%. Channel parameters and IMU precision are

key parameters and they deeply affect the estimated trajectory. It is shown that 1 me-

ter RMSE is reachable with RSS measurements under the condition that variance of

RSS is 3 dB. Decreasing the accelerometer noise standard deviation to 0.0075 m/s2

also pulls down the fusion case’s error below 1 meter.

The derivation of a theoretical bound in terms of MSE for a single target tracking in

WSN was investigated for the ONLY RSS and RSS/IMU fusion scenarios in Chap-

ter 4. A nearly constant acceleration model was used and an approximation to the

posterior Cramer-Rao Bound was derived by sequential Monte Carlo integration for

non-linear measurement model of RSS. Since the channel parameters, sensor preci-

sion and posterior density of the state are key factors in the derivation of the bound, we
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compared PCRLBs for several RSS and accelerometer noise variances. This PCRLB

can be used as a benchmark for channel and sensor selection in target tracking appli-

cations.

Finally, WSN and testbed are implemented by using Xbee S2 RF modules and Ar-

duino Uno R3 boards to experimentally investigate tracking algorithms. Channel pa-

rameters were estimated in the calibration phase yet it was observed that different PLE

gave better performance rather than the estimated one. It has been experimentally ob-

served that filters surpass the performance of localization in the sense of RMSE. In

addition, sensor fusion scheme decreases the error approximately 15%. Also varia-

tion of RSS values with respect to antenna type and orientation is discussed in Chapter

5. Radiation pattern of the chip antenna is not isotropic and antenna orientation has a

great impact on RSS.

As a future work, comparison of sensor fusion and only RSS scenarios may be done

experimentally with the proper IMU and RF modules. Also estimating channel pa-

rameters dynamically and refinement of movement models by target orientation esti-

mation from the IMU (gyroscope, magnetometer and acceleration) can be examined

to increase tracking accuracy. Sensor selection algorithms can be implemented for

different data sources by using the PCRLB for indoor positioning systems.
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[45] Petr Tichavskỳ, Carlos H Muravchik, and Arye Nehorai. Posterior Cramér-Rao
bounds for discrete-time nonlinear filtering. Signal Processing, IEEE Transac-
tions on, 46(5):1386–1396, 1998.

[46] http://www.digi.com/products/xbee-rf-solutions/
modules/xbee-zigbee. [Last accessed November 2015].

[47] Wideband millimeter-wave propagation measurements and channel models for
future wireless communication system design. IEEE Transactions on Commu-
nications, 63(9):3029–3056, 2015.

[48] Meriç Koray Karakurt. An experimental investigation on indoor RSSI-based
localization. Master’s thesis, Middle East Technical University, 2013.

[49] PJM Havinga et al. RSS-based localization with different antenna orientations.
In Telecommunication Networks and Applications Conference (ATNAC), 2010
Australasian, pages 13–18. IEEE, 2010.

[50] Cc2430 datasheet. http://www.ti.com/lit/ds/symlink/cc2430.
pdf. [Last accessed on November 2015].

64

http://www.digi.com/products/xbee-rf-solutions/modules/xbee-zigbee
http://www.digi.com/products/xbee-rf-solutions/modules/xbee-zigbee
http://www.ti.com/lit/ds/symlink/cc2430.pdf
http://www.ti.com/lit/ds/symlink/cc2430.pdf

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	SYSTEM MODELS
	Wireless Localization
	Measurement Types
	Angle of Arrival (AOA)
	Time of Arrival (TOA)
	Received Signal Strength Indicator (RSSI)

	Basic Static Localization Algorithms
	Maximum Likelihood Estimation
	Multidimensional Scaling Algorithms
	Trilateration and Multilateration


	TRACKING ALGORITHMS
	Problem Statement
	Kinematic Models For Target Tracking
	(Nearly) Constant Velocity Model
	(Nearly) Constant Acceleration Model

	Kalman Filters
	 Kalman Filter
	Extended Kalman Filter
	Unscented Kalman Filter

	Sensor Fusion
	IMU Measurement Model

	Simulation Results
	Effects of the Measurement Variances
	Effects of the Path Loss Exponent


	POSTERIOR CRAMER RAO BOUND FOR FILTERING
	Posterior Cramer Rao Lower Bound For Filtering
	Monte Carlo Approximation for the PCRLB
	Simulation Results 


	EXPERIMENTAL STUDY
	Sensor Nodes
	Estimation of the Channel Parameters
	Antenna Performances of RSSI
	Experimental Tracking

	CONCLUSION
	REFERENCES

