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ABSTRACT

AN ESCHER AWARE PATTERN ANALYSIS: SYMMETRY BEYOND
SYMMETRY GROUPS

Adanova, Venera

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Sibel Tar�

September 2015, 211 pages

Ornaments constructed by repeating a base motif, timeless and ubiquitous, link

culture, art, science and mathematics. To this date, the mathematical study of

the ornaments has been the study of discrete symmetry groups and permuta-

tions. As such, the study merely focuses on the mechanical side of repetition,

ignoring the artistic aspects (symmetry breaking strategies via intriguing choices

of form and color permutations) that make ornaments such bewildering objects.

Taking our inspiration from Escher's art, we study all aspects of ornamental

patterns not only considering the usual mathematical properties but also other

idiosyncratic features that are often more important in perception, aesthetics,

art and design and as well as in appreciating cultural heritage.

Our novelty is to replace the structure extraction problem with a content at-

tenuation or suppression problem. When content is suppressed, clues to the

repetition structure emerge. We show that based on content-suppressed im-
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ages, unit cells and fundamental regions of planar ornaments can be robustly

extracted even for ornaments with peculiar color permutations. Moreover, using

tools of deep learning, we perform key validation tests showing that our cod-

ing via content-suppression makes it possible to construct content-dependent,

subjective and more importantly continuous characterizations of the underlying

symmetry behavior.

Keywords: Symmetry, ornament, content/style, wallpaper groups, color symme-

try
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ÖZ

ESCHER TARZI BEZEMELER�N ANAL�Z�: S�METR� GRUPLARIN
ÖTES�NDE S�METR�

Adanova, Venera

Doktora, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Sibel Tar�

Eylül 2015 , 211 sayfa

Baz moti�erin tekrarlanmas� sonucunda olu³an bezemeler, zaman ve mekandan

ba§�ms�z olarak, kültür, sanat, bilim ve matemati§i ba§lamaktad�r. Bu güne

kadar, bezemelerin matematiksel modelleri ayr�k simetri gruplar�n�n ve permü-

tasyonlar ile s�n�rlanm�³t�r. Bu tür çal�³malar tekrarlanm�³ yap�lar�n mekanik

yönlerine odaklanm�³ olup, bezemelerin sanatsal yönleri (ilgi çekici form ve renk

permütasyonlar�n arac�l�§�yla simetri k�rma yöntemleri) ihmal edilmi³tir. Esc-

her'in sanat�ndan esinlenerek, biz bezemelerin sadece klasik matematiksel özel-

liklerini incelemekle s�n�rl� kalmay�p, alg�, estetik, sanat ve tasar�mda daha da

önemli olan özelliklerini ara³t�rmaktay�z.

Bizim önerdi§imiz yeni yakla³�m, yap� ç�karma problemini içerik bast�rma prob-

lemiyle de§i³tirmektir. �çeri§in bast�r�lmas� bezemelerin tekrarlama yap�s�na dair

ipuçlar� ortaya ç�kar�r. �çeri§i bast�r�lm�³ görüntüleri kullanarak tuhaf renk per-

mütasyonlar� olan düzlemsel bezemelerin bile temel bölgeleri sa§lam olarak ç�ka-
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r�labilece§ini göstermekteyiz. Üstelik, derin ö§renim araçlar�n� kullanarak, bizim

içerik bast�rma yöntemimizin simetri davran�³�n�n içeri§e ba§l�, subjektif ve daha

da önemlisi devaml� niteli§ini kurma imkan�n� verdi§ini gerçekle³tirdi§imiz de-

neylerle göstermekteyiz.

Anahtar Kelimeler: Simetri, bezeme, içerik/stil, simetri gruplar�, renk simetri
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CHAPTER 1

INTRODUCTION

Symmetry is a language of nature. It introduces order and proportionality.

People with symmetric faces are considered aesthetically pleasing, people with

symmetric bodies considered to be the ones with the right genes; even the music

is perceived as more pure and beautiful, when it is symmetric. People are used

to symmetry and tend to re�ect it in their daily life. The buildings, decorations,

furniture, vehicles, to name the few, are all symmetrical. In the scienti�c world,

the symmetry is irreplaceable in the study of crystals. It can explain violent

structures in microbiology, such as viruses. This all motivate scientists to study

symmetry.

The theory on symmetry, as we know it today, began with the group theory intro-

duced by Évariste Galois [19]. With his theory motion became a characterizing

feature of symmetry. Adopting the group theory, several researchers [59, 54, 55]

came up with the symmetry group classi�cations. Though not directly, Ga-

lois produced a language that enables to see the similarities and di�erences of

symmetries underlying visually di�erent patterns.

The symmetry is de�ned as a distance-preserving transformation (isometric op-

erations) on some object that leaves that object unchanged. If we restrict our-

selves to a single object, then there are only two isometries that can be applied

upon it: rotations and re�ections. Extending the de�nition to a multiple copies

of the same object in the plane by introducing more freedom in movement gives

four planar isometries that leave the object unchanged. Those four planar isome-

tries are known as translation, rotation, re�ection, and glide re�ection.Figs. 1.1-
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1.3 illustrate four isometries. An object has translational symmetry, when a

copy of it is moved in a certain direction by a certain distance (See Fig. 1.1).

(a) (b)

Figure 1.1: Translational symmetry. (a) Original object. (b) Translational

symmetries of original object.

Re�ection symmetry of an object can be achieved by re�ecting a copy of it

across certain axis, whereas the glide re�ection is achieved by re�ecting a copy

of an object across certain axis and then moving the re�ected copy in a certain

direction by a certain distance (Fig. 1.2).

(a) (b) (c)

Figure 1.2: Re�ectional and glide re�ectional symmetries. (a) Original object.

(b) Re�ectional symmetry. (c) Glide re�ectional symmetry.

If one chooses any point on an object and rotates a copy of it around that

point by a certain degrees, a rotational symmetry for that object is obtained.

Depending on the amount of degrees chosen to rotate, two-fold, three-fold, four-

fold or six-fold rotational symmetries are obtained (Fig. 1.3).
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(a) (b) (c) (d) (e)

Figure 1.3: Rotational symmetry. (a) Original object. (b) Two-fold rotational

symmetry. (c) Three-fold rotational symmetry. (d) Four-fold rotational symme-

try. (e) Six-fold rotational symmetry.

1.1 Tilings

If we choose some motif (tile) and repeat it in�nitely many times in two di-

rections, using aforementioned four planar isometries, we obtain a tiling (an

ornament). The plane should be �lled so that no gaps or overlaps introduced.

In Fig. 1.4 only Fig. 1.4(a) illustates a true tiling, while the second and the third

ones are not tilings due to overlaps introduced in the second one (on the second

row second tile overlaps the �rst tile), and the gaps introduced in the third one

(on the second row there is a gap between �rst and second tiles). It should be

noted that no matter what isometries being used to �ll the plane, translational

symmetry is always one of them. In other words, not all the tilings have re�ec-

tional, rotational or glide re�ectional symmetries, however, all of them contain

a translational symmetry. This is natural, since without translational symmetry

it would be impossible to repeat a motif in�nitely many times to �ll the plane.

Periodic Tilings. For a tiling to be periodic, it should have a �nite region,

which can recreate the entire tiling only by translating the copies of that region.

Also, the periodic tiling has a translational vector of a minimum length in two

di�erent directions that maps it onto itself. Consider two tilings given in Fig. 1.5.

The tiling in Fig. 1.5(a) has translational vector of minimal length in vertical

direction, but not in horizontal direction. See how the number of square tiles

increased by one each time the thin rectangle tile is encountered. Hence, this
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(a) (b) (c)

Figure 1.4: Tiling vs. non-tilings. (a) True tiling. (b) Not a tiling due to

overlaps. (c) Not a tiling due to gaps.

tiling is not periodic, while the second one is periodic.

(a) (b)

Figure 1.5: Periodic vs. non-periodic tilings. (a) Non periodic tiling. (b) Peri-

odic tiling.

Symmetries of Cultures. Ornaments are found in every culture. Various

works of anthropologists and art historians [80] reveal that di�erent cultures

prefer di�erent symmetries when creating their ornaments. They come to believe

that the preference of a culture for speci�c symmetries is not random, and that

these symmetries symbolize cultural ideas and social structures within a culture.

In [71], Shepard pointed out that the symmetry analysis can help distinguish

the subtle and varied changes of styles between art designs of di�erent cultures.

Based on this, the study of ornaments has become one of the tools to study

di�erent cultures and cultural relations.

One of the major cultural art designs lie in the walls of Alhambra palace.

There, we can observe various ornaments that are representatives of Islamic
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Art. Though being highly symmetrical structures, those ornaments are created

by non-mathematicians, who were not aware of the theories behind the symme-

try. Fig. 1.6 illustrates some of the ornaments found in Alhambra palace.

Figure 1.6: Examples of ornaments found in Alhambra palace

Beautiful examples of ornaments from modern art are found in the works of M.

C. Escher. What makes his work unique is the presence of meaning introduced

via recognizable �gures that are interlocked to form repeating patterns (See

Fig. 1.7). Accompanied with interesting color permutations, his ornaments are

the bewildering samples of visions of symmetry. Although Escher never consid-

ered himself as a mathematician, his works have been alluring scienti�c minds

for decades.

Figure 1.7: Some examples from M. C. Escher's works

1.1.1 Lattices

Each periodic tiling is associated with a lattice, which can be put on a tiling

so that all units of a lattice are repeated copies of each other. To obtain an

underlying lattice of a tiling, the easiest way would be to choose any point

in the tiling, mark its translated copies with dots and connect those dots. The

marked dots are lattice points, and each unit of the lattice is known as unit cell.

5



It is worth mentioning that, usually, the centers of highest order of rotations are

chosen as lattice points. One can reconstruct the entire tiling only by translating

the unit cell in two di�erent directions. There are only �ve types of di�erent

lattices: parallelogram, rectangular, square, rhombic, and hexagonal. Fig. 1.8

illustrates �ve lattices on di�erent tilings. For each tiling, a few red dots are

shown to represent lattice points. The simplest one of all �ve is the square

lattice, which has equal sides (a) and an angle of 90◦ between two sides. A

rectangular lattice is similar to square lattice, but the sides are not of equal

length (a, b). Another type of lattice of interesting name is a hexagonal lattice.

It represents a rhombus that is constructed by two equilateral triangles. The

name hexagon comes from the fact that for each lattice point the closest lattice

points lie on the hexagon. A rhombic lattice has equal sides (a) but the angle

between sides is other than 60◦ or 90◦. A parallelogram lattice is a rhombic

lattice with the sides of di�erent length (a, b).

Notice that the symmetries that a tiling exhibit restricts possible lattice types

that might be associated with it. For example, if a tiling has re�ectional sym-

metry, then its lattice must be rhombic, rectangular or square. A tiling with

90◦ rotational symmetry has a square lattice, while the tilings with 60◦ or 120◦

rotational symmetries have a hexagonal lattice.

1.1.2 Symmetry Group and Fundamental Domain

Given a tiling, de�ning the set of all the isometries that maps the tiling onto

itself, gives the symmetry group of the tiling. Knowing the symmetry group

of a tiling enables the recreation of the entire tiling from a small portion of it.

Such small portion is known as fundamental domain or the generating region

of a tiling. It is a smallest region on the tiling that would be enough to recreate

the entire tiling by applying all the isometries that the symmetry group of the

original tiling exhibit. The size of a fundamental domain is always a rational

part of the unit cell. Fig. 1.9 shows a tiling with two di�erent motifs, the unit cell

and the fundamental domain of the tiling. The fundamental domain is 1/4 part

of the unit cell. Another example is shown in Fig. 1.10 but this time for the tiling
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(a) (b) (c)

(d) (e)

Figure 1.8: Five lattice types. Tilings taken from [66]. (a) Parallelogram lattice.

(b) Rectangular latice. (c) Square lattice. (d) Rhombic lattice. (e) Hexagonal

lattice.

that consists of one motif of di�erent colors. This is an interesting example. The

tiling remains in the same symmetry group both when the colors are ignored

and when the colors are considered. However, the unit cell and, hence, the

fundamental domain di�er depending on whether the color is considered or not.

Top row of Fig. 1.10 (b) shows the unit cell obtained ignoring the colors, while

the bottom row illustrates the one obtained taking the colors into account. The

fundamental domains for both unit cells are given in Fig. 1.10 (c), which are

1/4 part of the unit cells. Fig. 1.10 (d) shows the results of tile recreation from

two di�erent unit cells. Observe that for the �rst case the colors interchange,

while for the second we recreate the exact copy of the original tiling. Observe

also that the fundamental domain for the �rst case contain smaller portion of a

tiling.

Note that, by translating the unit cell obtained for tilings in two di�erent direc-

tions, we can recreate the entire tiling. However, using the fundamental domain

we can recreate the entire tiling by apply all the isometries upon it that are in

the symmetry group of a tiling.
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(a) (b) (c)

Figure 1.9: Fundamental domain. (a) Two motif tiling with glide re�ections.

(b) Unit cell. (c) Fundamental domain.

(a) (b) (c) (d)

Figure 1.10: Fundamental domain. (a) A single motif tiling with four-fold rota-

tions. (b) (Top row) Unit cell obtained ignoring the colors. (Bottom row) unit

cell obtained considering the color permutation. (c) Fundamental domains. (d)

Recreation of the tiling using translational copies of the unit cell.

One might think that given a fundamental domain, constructing an entire tiling

using its symmetry group is impossible since it can be applied in in�nitely many

ways. For example, consider a triangular fundamental domain given in Fig. 1.11

(a). If the given symmetry group contains re�ections, one would think that the

re�ections can be done in many di�erent ways. One way would be to choose

some re�ection axis within the triangle as given in Fig. 1.11 (b) , and re�ect the

triangle along that axis. This situation is illustrated in Fig. 1.11 (c). Clearly,

in this manner, recreation of the original tiling would be impossible. However,
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such situations are not possible for several reasons. First, the de�nition of tiling

does not permit overlaps. Second, by doing so we obtain entirely new motif

that has a re�ection within itself as shown in Fig. 1.11 (d). Finally, to recreate a

tiling that is �lled with the new motif, we need completely di�erent fundamental

domain that is shown in Fig. 1.11 (e).

(a) (b) (c) (d) (e)

Figure 1.11: A new motif vs. funadamental domain

1.1.3 Wallpaper Groups

Recall �ve lattice types de�ned above. A lattice de�nes the underlying structure

of a tiling. When a tiling is associated with a lattice type, it means that the tiling

cannot have symmetry more than the underlying lattice has. Thus, a tiling has a

symmetry, which is less, or equals the symmetry of a lattice. This fact eases the

way of considering all possible symmetry groups a tiling can have. Considering

all possible combinations of isometries on �ve lattice types reveals that there are

only seventeen di�erent symmetry groups. This fact has been known for nearly

a century after the works published by [59, 54, 55], though the enumeration of

seventeen symmetry groups dates back long before it became publicly known.

The seventeen groups are known as Wallpaper Groups. The �rst column of

Table 1.1 enumerates the seventeen Wallpaper Groups. A notation used for

naming di�erent symmetry groups is the short version of the one in [28]. Each

letter on the symmetry group name describes the group properties. The letter p

stands for primitive cell and the letter c stands for centered cell. The primitive

cell is a unit cell with the centers of highest order of rotation at the vertices. The

centered cell is encountered only in two cases (cm and cmm symmetry groups),

and is chosen so that the re�ection axis is normal to one or both sides of the

9



cell. An example for centered cell is shown Fig. 1.8 (d), where the centered cell

is shown as an outline for the rhombic lattice. The number that comes after one

of those two letters is the highest order of rotation that the ornament exhibits.

The third and fourth letters can be m, which stands for mirror re�ection, g,

which stands for glide re�ection, and 1, which denotes no symmetry axis. The

symmetry axis for the third letter is normal to x − axis and for the forth is at

angle α to the x−axis. No symbols in the third and fourth position indicate that
the group contains no re�ection or glide re�ection. The second letter in notation

representing the highest order of rotation in a symmetry group can take only

values 1, 2, 3, 4, and 6. This restriction is introduced by the crystallographic

restriction theorem, which states that the patterns repeating in two dimension

can only exhibit 180◦, 120◦, 90◦, and 60◦ rotations. The simple proof for this

theorem can be found in [73]. Fig. 1.12 illustrates unit cells with symmetries

for seventeen Wallpaper Groups. The darker regions represent fundamental

domains.

Table1.1: Wallpaper Groups

Type Lattice
Highest
Order of
Rotation

Fundamental
Domain

p1 parallelogram 1 1 unit
p2 parallelogram 2 1/2 unit
pm rectangular 1 1/2 unit
pg rectangular 1 1/2 unit
cm rhombic 1 1/2unit
pmm rectangular 2 1/4 unit
pmg rectangular 2 1/4 unit
pgg rectangular 2 1/4 unit
cmm rhombic 2 1/4 unit
p4 square 4 1/4 unit
p4m square 4 1/8 unit
p4g square 4 1/8 unit
p3 hexagonal 3 1/3 unit
p3m1 hexagonal 3 1/6 unit
p31m hexagonal 3 1/6 unit
p6 hexagonal 6 1/6 unit

p6m hexagonal 6 1/12 unit
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Figure 1.12: Unit cell structures for 17 Wallpaper Groups. The darker regions

indicate fundamental domains.

The decision tree shown in Fig. 1.13 describes the algorithm of de�ning the

symmetry group of a tiling. One can arrive to one of the seventeen symmetry

groups each time answering to yes/no questions.

There are also other notations de�ning seventeen groups. There is an orbifold

notation, which is in one-to-one correspondence with symmetry groups. There is

also aHeesch type, where the type of a tiling is described according to the moves

done by a basic shape that �lls the plane. However, Heesch type considers only

the tilings where only a single shape is used (monohedral tilings). Escher used

his own notation to classify his tilings. Beside the symmetry group classi�cation,

there are also color symmetry groups. We will talk of them in the next section.

1.1.4 Color Symmetry

So far, we have been talking about the symmetry of �gures only. In other

words, we considered uncolored tilings. However, tilings often come with the
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Figure 1.13: Decision Tree

colors. Introducing colors in a tiling may only preserve or decrease symmetry

of an underlying tiling (a tiling where colors are ignored). In order for a tiling

to have symmetry, the coloring should be performed in a regular way. It is said

that a tiling has certain symmetry, if applying that symmetry on a tiling maps

all the motifs of one color to the same motifs of a single color. Such symmetries

are said to be consistent with colors. For two-colored tilings a mapping might

be either color reversing or color preserving, while for tilings with more colors,

reversing means mapping to the other color.

The seventeen symmetry groups described earlier are used for uncolored tilings

and are taken as base groups for further classi�cation of color symmetry groups.

There are only �nite ways of coloring a single symmetry group using n colors. See

an example for possible colorings, using two colors, of a tiling with underlying

group p4g in Fig. 1.14. The underlying tiling of the colored ones shown in

Fig. 1.14 has one center of four-fold rotation in the middle of each tile (red

square), one two-fold rotation center at the point where four tiles meet (yellow

diamond). There are mirror re�ection axes passing through the centers of two-

fold rotations, and glide re�ection axes passing through four-fold centers and

lying halfway between four-fold and two-fold rotation centers. There are only

three possible colorings with two colors for this symmetry group. In the �rst
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coloring (Fig. 1.14(a)) the four-fold rotation preserves colors, while the two-

fold rotation is color reversing. All re�ection axes are color reversing. All glide

re�ections are also color reversing. Second coloring type is shown in Fig. 1.14(b).

Notice that all three have the same symmetries as the underlying tiling has.

The di�erences come with di�erent color permutations. In the second coloring

type the four-fold rotation is color reversing, while the two-fold rotation is color

preserving. All mirror re�ections are color preserving, while all glide re�ections

are color reversing. The last type (Fig. 1.14(c)) is the same as the second one,

however, now mirror re�ections are color reversing and the glide re�ections are

color preserving. It should be noted that this type of colored tilings are called

perfectly colored tilings. A tiling is perfectly colored when all the symmetries

of underlying tiling are associated with unique color permutation [69].

(a) (b) (c)

Figure 1.14: Three possible colorings of a tiling with two colors of underlying

group p4g.

See another example for two-colored versions of a tiling with underlying symme-

try group of p6m in Fig. 1.15. Again, there are three possibilities only. Without

going into details, just by choosing a center of six-fold rotations in the middle of

hexagons (red dots), we can list the di�erences between these three. In the �rst

one, the six-fold rotation is color preserving (black triangle goes to black one,

and the gray triangle goes to gray one). There are re�ections, which are typical

for hexagons, and they are all color reversing (black triangle maps to gray one).

The second coloring contains color reversing six-fold rotations. Both color re-

versing and color preserving re�ections are encountered: vertical re�ection axes

are color preserving, and the horizontal axes are color reversing. The third one

is the same as the second coloring type, however, here horizontal re�ection axes
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are color preserving, and the vertical axes are color reversing.

(a) (b) (c)

Figure 1.15: Three possible colorings of a tiling using two colors of underlying

group p6m.

Two possible colorings for a tiling of symmetry group pmg with three colors are

illustrated in Fig. 1.16. The tiling of pmg symmetry group have two di�erent

centers of two-fold rotations (red and yellow diamonds), mirror re�ection all

parallel to each other, and a glide re�ection axes passing though the centers of

two-fold rotations and perpendicular to mirror re�ection axes. In the �rst case

none of the mirror re�ections are color preserving. Neither are the rotations.

While in the second all mirror re�ections are color preserving. One of two

rotations is partly color preserving (yellow diamond), while the other is color

reversing.

(a) (b)

Figure 1.16: Two possible colorings of a tiling with three colors of underlying

group pmg.

Considering all possible colorings using n colors for each of these seventeen

symmetry groups gives the total number of possible color symmetry groups of

n-colored tilings. Table 1.2 shows all the possibilities of coloring a tiling of
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particular symmetry group with n colors. The sum of the coloring possibilities

for a given number of color, gives the number of color symmetry groups that

are possible with n colors. The results up to n = 8 are shown. Thus. from the

results, one can see that two-colored tilings are classi�ed into 46 groups. There

are 23 groups for three-colored tilings, 96 for four-colored tilings , and so on.

The list of possible colorings of symmetry groups up to n = 60 can be found

in [79].

Table1.2: Color Symmetry Groups

Group Number of Colors

2 3 4 5 6 7 8

p1 1 1 2 1 1 1 2
p2 2 1 3 1 2 1 4
pm 5 2 10 2 11 2 16
pg 2 2 4 2 5 2 7
cm 3 2 7 2 7 2 13
pmm 5 1 13 1 9 1 21
pmg 5 2 11 2 11 2 19
pgg 2 1 11 2 11 2 19
cmm 5 1 11 1 8 1 21
p4 2 0 5 1 2 0 9
p4m 5 0 13 0 2 0 28
p4g 3 0 7 0 2 0 13
p3 0 2 1 0 1 1 0
p3m1 1 2 1 0 4 0 1
p31m 1 2 1 0 5 0 1
p6 1 2 1 0 5 1 1
p6m 3 2 2 0 11 0 3

Total 46 23 96 14 90 15 166

Two-colored tilings are studied the most and are most available in literature.

There are 46 color symmetry groups for two-colored tilings. There are also cases

when a two-colored tiling has no color symmetry. This occur when none of

the symmetries of the underlying tiling, when applied on colored tiling reverses

colors, i.e. the symmetry of the underlying tiling is preserved. Then there are

46 + 17 = 63 possibilities of coloring a tiling with two colors. The details on

these 63 possibilities of two-colored tilings is shown in [6]. The list of possible
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colorings with illustrations for two- and three-colored tilings is given in [25],

while 96 possible colorings of four-colored tilings are illustrated in [79].

There is no internationally accepted notation for the colored symmetry groups.

Moreover, the existing notations do not go beyond the three-colored tilings.

The notation of Belov and Tarkhova [7] is widely used for two-colored tilings.

Their notation is much similar to the notation used for the seventeen one-colored

symmetry groups. A prime (′) symbol is used to represent a color reversal for

corresponding symmetry operation. Thus, if a translation reverses colors, then

p′b is used if the translation is along the edge of primitive cell, while p′c is used

for the translations along a diagonal of primitive cell. When either of these

symbols used, no other symbol has a prime attached in the notation even if it

also reverses colors. m′ is used to indicate a color reversal in mirror re�ections,

and g′ is used for color reversals in glide re�ection. We revisit the example of

three two-colored versions of p4g given in Fig. 1.14. Fig. 1.17 shows primitive

cells for all three colored tilings (red square). Observe that the translation is

along the edge of primitive cell. For all three the translation does not reverse

the color. For the �rst tiling ( Fig. 1.17 (a)) the four-fold rotation preserves

colors but all re�ections (along the yellow axes indicated by yellow lines) and

glide re�ections (along the axes indicated by dotted yellow lines) reverse colors.

Then, this tiling according to notation of Belov and Tarkhova [7] belongs to

group p4g′m′. For the next two tilings the four-fold rotation reverses colors,

then the letter `4' should be primed. In the second tiling, all mirror re�ections

are color preserving while the glide re�ections are color reversing. This tiling

belongs to p4′g′m group. The last tiling belongs to group p4′gm′, since all glide

re�ections preserve colors, and all mirror re�ection reverse colors.

Coxetre [12] introduced his own �type/subtype� (T/T ∗) notation for two-colored

tilings. This notation comes from his observation that two-colored tilings are

produced by two one-color tilings of the same type. T indicates the symme-

try group of an underlying tiling (when colors ignored) and T ∗ indicates the

symmetry group of a tiling when one of the colors kept �xed and the other is

considered. Returning to our example in Fig. 1.17, we can classify the �rst tiling

as of group p4g/p4. This indicates that the underlying tiling is of group p4g, and
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it consists of two one-color tilings of group p4. The second and third tilings are

of group p4g/cmm and p4g/pgg, respectively. Notice that, in this notation, the

color reversals break the symmetry, reducing it to a tiling with lower symmetry.

The second and third tiling (Fig. 1.17 (b-c)) have four-fold rotations that reverse

colors. Hence, the subtypes of a tiling are of lower symmetry group (no four-

fold rotations). This notation describes all two-colored tilings, except for two

cases: p′b1m and p′bm. It describes both as pm/pm. [80] suggests to distinguish

these two cases by using two di�erent notations: pm/pm(m′), to indicate that

mirror re�ections reverse colors, and pm/pm(m) when no color reverses occur

from mirror re�ections.

Grünbaum and Shephard [25] have suggested their own notation for both two-

colored and three-colored tilings. They listed and illustrated all possibilities of

colorings of tiling using two and three colors. Their notation is not descriptive

of the types of symmetry the tiling exhibits. The notations used are as pg[3]1

indicating the �rst version of coloring for pg tiling using three colors. If we are

to classify the examples in Fig. 1.17, then the �rst tiling is of group p4g[2]1,

indicating the �rst version of coloring for p4g tiling using two-colors, while the

second and the third tilings are of group p4g[2]2 and p4g[2]3, respectively.

(a) (b) (c)

Figure 1.17: Three possible colorings of a tiling with two colors of underlying

group p4g.

A table comparing these three notations for two-colored tilings can be found in

Appendix A. In order to de�ne the color symmetry of a tiling using two-colors,

one can refer to a decision tree similar to the one shown in Fig. 1.18. Since it is

not possible to �t all 46 color symmetry groups in one page, we show only the

branches that de�ne the color symmetry of two-color tilings that contain six-

17



fold and three-fold rotations. Note that considering color symmetries requires

treatment of each case for n colors separately. Increase in number of colors n used

in ornaments, makes the classi�cation problem non-trivial. The problem with

more colors was mentioned by Senechal in [68, 69], where the author discusses

the di�culty of �nding unambiguous classi�cation schemes for perfectly colored

ornaments of three or more colors.

Figure 1.18: Decision Tree for Color Symmetry

1.2 Thesis Overview

1.2.1 Motivation

To this end, the only way of studying ornaments involves �nding repeating el-

ements, then, according the rules applied to repeat these elements, associating

an ornament with some prede�ned group. Being a completely mechanical ap-

proach, it leaves the artistic side of the ornaments unattended. Privileged by

artistic freedom, the artists tend to break the symmetry by introducing inter-

esting color permutations and playing with the shapes. This important factor is

being ignored by classical approach. The other limitation of classical approach,

is the abundance of notations, which are listed separately for di�erent number of
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colors being used in an ornament. Furthermore, classifying ornaments accord-

ing to their symmetry groups, give in�exible, strict, and discrete clusters. From

these clusters, we cannot infer the relations between di�erent clusters.

Consider two images given in Fig. 1.19. The �rst ornament contains two di�erent

birds that are translated in two directions to �ll the plane. The symmetry group

of this ornament is p1. The second one contains one bird in two di�erent colors

that are related by glide re�ection. Hence, its symmetry group is pg. However,

those two images are perceptually very close to each other. Close investigation

of the �rst image reveals that, if we ignore the colors, the only thing preventing

the blue bird to be the exact re�ection of the white bird is the subtle change at

their tail. While the tail of a blue bird looks downward, the tail of the white bird

looks upward. Otherwise, those two birds would be related by glide re�ection,

which would imply that two ornaments in Fig. 1.19 were created using the same

production rules. By adding a minor change to the �rst image, the artist broke

the symmetry. Finding the symmetry groups of these two ornaments, by ignoring

the colors, classi�es them into two di�erent groups (p1 and pg). If we consider

colors, then the �rst ornament contains no color symmetry, while the second one

is assigned to the group of one of the colorings of pg group. In either of the two

di�erent ways, the closeness of these two ornaments is not captured.

(a) (b)

Figure 1.19: Two quite similar ornaments produced using two di�erent repetition

rules. (a) An ornament of p1 group. Produced by translating two distant �gures,

which are almost similar. (b) An ornament of pg group. Contains only one bird

�gure of two di�erent colors. One bird of one color is a glide re�ection of a bird

of another color.

Fig. 1.20 illustrates three ornaments. An attempt to de�ne which symmetry
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groups they belong introduces complications. Are we considering the symmetry

group of underlying uncolored ornament or trying to de�ne the color symmetry

of the ornament? If the color permutations are ignored, all three belong to group

p6. This is not true, when the colors enter the scene. First two are assigned

to two di�erent groups of possible colorings using three colors of an ornament

with underlying symmetry group of p6, and the last one is assigned to one of

the groups of possible colorings using two colors of an ornament with underlying

symmetry group p6. Thus, in one way all three are always classi�ed into one

group, in another they always belong to di�erent groups. This situation brings

ambiguity. Moreover, when all three are classi�ed according to color symmetry,

they are never seen in one cluster, despite the fact that they share some common

properties.

(a) (b) (c)

Figure 1.20: Three ornaments of group p6. When color permutations are con-

sidered the ornaments in (a) and (c) contain three-fold rotations, while the

ornament in (b) contains two-fold rotations. Also observe that two ornaments

in (a) and (c) di�er in number of colors used.

An interesting example is illustrated in Fig.1.21. The underlying symmetry

group of an ornament (horseman) in Fig.1.21 (a) is pg. Enumerating possible

colorings of an ornament with underlying symmetry group pg using two col-

ors, give two groups, pg′ and p′b1g (Belov and Tarkhova notation). The �rst

group contains ornaments with color-reversing glide re�ections only, while the

latter group contains ornaments with both color-reversing and color-preserving

translations and glide re�ections. The color symmetry of the given ornament

(Fig.1.21 (a)) is pg′. However, visually it is more similar to p′b1g. We conducted

an experiment containing eight people. We �rst showed the original image given
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in Fig.1.21(a) to participants, then demonstrated three ornaments of di�erent

color symmetry groups. These three are shown in Fig.1.22 (b)-(d). The �rst one

(Fig.1.21 (b)) is of group p′b1 (a group containing only color-reversing and color-

preserving translations), the second one (Fig.1.21 (c)) is of pg′ group and the

last one (Fig.1.21 (d)) is of p′b1g group. The participants were asked to choose

the most similar ornament to the original ornament. All participants chose the

ornament shown in Fig.1.21 (d), which is of p′b1g group, as most similar one.

We assume that this visual similarity of horseman ornament to the ornament of

p′b1g group occurs due to the nature of a motif in the horseman ornament, which

contains an illusion of glide re�ection within itself. As it is shown in Fig.1.22 (a)

a motif (horseman) consist of two parts (red and green shapes), where the lower

part (shown in green) looks like a glide re�ection of the upper part (shown in

red). We have simpli�ed the ornament to a binary image in Fig.1.22 (b) in order

to get rid of details. Cut out and zoomed upper and lower parts are illustrated

in Fig.1.22 (c), while in Fig.1.22 (d) we re�ect the upper part along the x-axis.

Observe that the upper body of a man is almost related by glide re�ection to

the back leg of a horse. Also, both shapes are in V shape, where the V shape for

upper part looks upward and downward for the lower part giving an illusion of

glide re�ection. This all give an impression that the ornament is the repetition

of the upper (or lower) part of a motif with color-reversing and color-preserving

translations and rotations, which makes it similar to the ornament in Fig.1.21

(d).

(a) (b) (c) (d)

Figure 1.21: (a) Horseman ornament. (b) An ornament of p′b1. (c) An ornament

of pg′ group. (d) An ornament of p′b1g group. Although the horseman is of pg′

color symmety group, all participants marked the ornament of p′b1g group as the

most similar one to the horseman ornament.
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(a) (b) (c) (d)

Figure 1.22: (a) A single horseman motif consists of two shapes which are glide

re�ections of each other. (b) Simpli�ed horseman ornament. (c) Cut out and

zoomed upper and lower parts of a motif. (d) The upper part of a horseman

motif re�ected along the x-axis.

The examples given above suggest that we need a di�erent approach to study or-

naments. The purpose of this thesis is to provide a more �exible approach, which

would consider both symmetries and artistic intention made in an ornament, and

make it possible to measure the similarities between di�erent ornaments with

di�erent symmetries.

1.2.2 Overview of the Approach

In this thesis, we approach the study of ornaments from di�erent perspective.

We gradually suppress the content of an ornament. Since the study of sym-

metric patterns is more interested in detecting how the elements repeat rather

than the nature of the elements, we consider the explicit shapes (horses, birds,

dog, etc.) and colors (red, blue, green, etc.) used in ornaments as content. Once

the content is suppressed, what is left is the information on how di�erent nodes

in an ornament are repeated using di�erent color permutations. The content

suppression consists of two stages. First stage is a binarization stage, where the

ornament is divided into several binary masks. Each mask contains the infor-

mation on how a motif of certain color is permuted. However, the information

on exactly what colors being used is lost. At this stage, we suppress the color

information. In order to suppress the shape information, in the second stage,

we apply a linear transform on each of the masks of an ornament. The linear
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transform suppresses the peripheral regions of individual shapes and highlights

the node centers. Thus, given an image of precise shapes like dogs, birds, etc,

the linear transform outputs the repetition rules of node centers. The node

centers join based on the symmetry type that an ornament exhibit to represent

di�erent abstract structures like triangles, three-leaved roses, four-leaved roses,

hexagons, etc. For example, if an ornament contains three-fold rotations, then

the repetitions of node centers of an individual shape join to form three-leaved

roses or triangles. The content suppression process is illustrated in Fig. 1.23.

Figure 1.23: Content Suppression

The major advantage of suppressing the content of images is that it enables

to measure the similarities between ornaments with di�erent symmetries. This

allows to treat the symmetry as a continuous feature using which rather than

assigning each ornament to discrete groups we let for di�erent organizations to

emerge joining ornaments with close symmetries. In this manner, the relation-

ships of di�erent symmetry groups are inferred. Fig. 1.24 shows the main steps

of our approach. Each time we consider a group of ornaments. For each of the

ornaments the content suppressed images are computed using which the simi-

larity matrix is obtained. For visualization purposes, we then reduce the dimen-

sionality of similarity matrix using one of the existing dimensionality reduction

techniques. An ornament joins another ornament with the closest symmetries in

the current context. Thus, depending on the context the relations between or-

naments change. Emerging organizations are not necessarily in agreement with
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wallpaper group classi�cation.

Figure 1.24: Group approach

Beside the group approach described above, it is also possible to analyze orna-

ments in an individual level using the content suppressed images. Recall that

when the content of ornaments is suppressed the individual node centers are en-

hanced. Detecting the maximal values within the content suppressed images, we

�nd the repetitions of individual nodes of certain color. We then extract several

connections between the maximal nodes. These connections are further clus-

tered into groups depending on connection sizes and orientations. As a result,

each connection group de�nes certain symmetry of an ornament. Combining all

symmetries inferred from di�erent connection groups, we obtain the lattice and

de�ne the symmetry group of an ornament. Main steps for the approach are

illustrated in Fig. 1.25.

1.2.3 Contribution

This thesis introduces a novel thinking and methods to study ornaments and

symmetries in ornaments. We achieve this via:
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Figure 1.25: Single tile approach

• introducing a method to measure stylistic similarities of di�erent orna-

ments with varying symmetries.

• performing style-based clustering in a given context, which reveal relations

between di�erent symmetry groups.

• introducing a new way of �nding symmetries in an individual ornament,

without explicitly searching for repeating elements.

1.2.4 Organization

The thesis is organized as following. In Chapter 2, we review works that are

related to our work. In Chapter 3, we address the content suppression problem.

The binarization and linear transform stages are described. We then present the

content suppressed results for various ornaments. In this chapter, we retrieve

the style of ornaments. In Chapter 4, we perform style-based clustering in a

given context. Various clustering results are given, which are divided into mul-

tiple experiments. We, then, present quantitative analysis for the experiments

performed. Comparison of clustering results of di�erent levels of content sup-

pression is given in Chapter 5. Analysis of individual ornaments are done in
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Chapter 6. Finally, in Chapter 7, we summarize and conclude our work.
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CHAPTER 2

PREVIOUS WORK

The importance of symmetry in perception has been argued by several re-

searchers. One of the earliest works is by Attneave [3, 4]. He argued that

symmetric �gures are easier to reproduce than asymmetric ones because the

symmetric �gures, as they consist of repeating units, contain less information,

making them more memorable and visually pleasing as a result of their sim-

plicity due to reduced information. In [17], Eisenman and Rappaport argued

that symmetry-asymmetry dimension is important in its own right and deserve

an investigation separate than simplicity-complexity dimension. Over the years,

several researchers presented empirical evidence for the in�uence of symmetry

of shapes and/or visual compositions on visual attention, exploration and phys-

iological arousal. For example, the results in [48] indicate that people tend to

�xate �rst on the symmetry axis (suggesting that symmetry �catches the eye�),

and then proceed on visual exploration, and visual expolaration of symmetric

forms are linked to aesthetic judgements. In computational literature, symme-

try is proposed as an alternative saliency measure, i.e., interesting regions in

visual forms are de�ned as the regions with symmetry be it in form or color, e.g.

[38, 63, 27].

In the computational literature, the works on symmetry is mainly restricted to

�nding symmetry axes in a single object in 2D or 3D. Since a single object can

have only mirror re�ections and rotational symmetries, the e�ort is mainly fo-

cused on re�ections and rotations [51, 74, 36, 34, 35, 58, 65, 37, 60, 57, 61, 51,

36, 52, 39, 40], while the glide re�ection (as it requires considering of multiple
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copies of an object) is to a large extent ignored and addressed in few works

only [41, 43]. Further interestingly, a misconception by people is to associate

mirror re�ection as a synonym to symmetry [80]. This makes the mirror re�ec-

tion the most studied type of symmetry while even the rotational symmetry is

much less explored. An interesting and important work on rotational symmetry

is by Zabrodsky and Peleg [84, 85], where the continuous nature of rotational

symmetry has been brought to attention. Treating symmetry as a continuous

feature enables to compare two shapes with di�erent symmetries and to obtain

the relations between di�erent shapes.

The group theoretical approach to the study of ornaments, lists all the sym-

metries contained in an ornament. Then according to the symmetries that an

ornament contains, it is assigned to one of the prede�ned symmetry groups

(e.g. the 17 plane symmetry groups if color variations are ignored). The plane

symmetry group based classi�cation takes the form of a binary decision tree.

In the computer vision pattern recognition literature, Liu et al [44, 45, 46, 62]

addressed the classi�cation of repeated patterns according to the 17 plane sym-

metry groups. They �rst obtain the peaks of the autocorrelation function and

then connect those peaks to obtain the underlying lattice. Recall that the pos-

sible lattice types that can be associated with an ornament are restricted by

the symmetries it exhibits. For example, if an ornament has mirror re�ection,

then its lattice must be rhombic, rectangular or square. An ornament with 90◦

rotational symmetry has a square lattice, while the ornaments with 60◦ or 120◦

rotational symmetries have a hexagonal lattice. Thus, once the lattice type is

known, the number of possible symmetry groups to which an ornament can be

assigned is decreased. The next step would be to check all possible symmetries

that are associated with a given lattice type, answering several yes/no questions,

until the correct wallpaper group is identi�ed.

The most thorough work on Escher's ornaments can be found in Schattschnei-

der's book on Visions of Symmetry [67]. The author listed more than hundred

and �fty Escher ornaments and contents from Escher's notebook, together with

the symmetry groups of the ornaments according to various classi�cation sys-
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tems. According to Schattschneider, Escher's own notes indicate that as an

artist, he produced his ornaments using a layman's local view rather than fol-

lowing globally de�ned seventeen plane symmetry groups. In his early work on

Moorish ornaments [24], Grünbaum also mentioned that the scienti�c approach

to study symmetry is concerned about the global symmetry, while the artisans,

when creating their ornaments, are concerned about the local view, in which

each part of an ornament is related to its immediate neighbors in some spe-

ci�c way. Later, in his work on the symmetry groups present in Alhambra [23],

Grünbaum points out that the artist of that time had no knowledge of sym-

metry groups, and that the present approach of scientist to study ornaments is

rather irrelevant. He suggests that a new, more �exible, approach is needed,

which would be more consistent with the minds of people that created these

ornaments. In [53], the author also suggests that when studying symmetry in

ornaments, the artistic intention should be considered as much as possible.

Classifying objects based on their stylistic di�erences is a rapidly developing

approach. Recently, a �ne-grained classi�cation become of more interest. In

this type of classi�cation, rather than classifying unrelated classes, the objects

of the same class are classi�ed. Since objects of the same class have common

general features, the key point is to �nd discriminative elements on the di�erent

subclasses of the same class. Those discriminative elements represent the style

of the subclass. This type of problems are addressed in [42, 82, 8, 9, 29], where

objects of the same class are classi�ed based on style. The content-style separa-

tion problem, in general setting, is addressed by Tenenbaum and Freeman [76],

by formulating it via bilinear models.

Works classifying art images and decorations based on their style also take their

share in the recent literature [16, 49, 70, 83, 47, 20]. Authors in [16] perform

a classi�cation of geographical places according to stylistic elements which are

discriminative elements of a particular place. Yang et al [83] analyze Chinese

wash paintings and the foreign art paintings in terms of their aesthetic style

di�erences, while Liu et al [47] address stylistic di�erences for particular artists,

speci�cally for Van Gogh and Monet. Though these works aim to capture stylis-

tic similarities and di�erences between art images, their de�nition of style is not
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applicable to the study of highly symmetrical structures, the ornaments. What

de�nes style, in the mentioned works, is highly in�uenced by color, texture,

and shape; while the study of symmetry involves studying how design elements

repeat rather than the nature of design elements.

In computational literature, there is a growing interest in understanding the hu-

man creativity. This is achieved by constructing a program capable of human-

level creativity. Several researchers [33, 32, 78] address the synthesis problem

in the setting of Escheresque tiles. In [33, 32], the authors tackled the problem

of �nding the best approximation of a given arbitrary shape that tiles a plane

in order to produce Escheresque tiles with arbitrary forms. A method to trans-

form Euclidean ornaments to hyperbolic ones in order to produce hyperbolic

Escheresque tiles are proposed by von Gagern and Richter-Gebert [78].

The problem of synthesizing an artwork in a certain style is addressed in [86,

72, 2]. [72] presented an approach of shape simpli�cation to the regions of given

photographs, creating paintings similar to the works of Matisse and Kandin-

sky. [86] introduced abstract painting system named Sisley that creates abstract

paintings from photographs adding some level of ambiguity. Cubist rendering

approach is proposed by [2]. Given 3D input scenes they are synthesized into

cubist paintings with artistic e�ects.

Another area of our interest is the knowledge discovery, which is de�ned by [18]

as �The non-trivial process of identifying valid, novel, potentially useful, and

ultimately understandable patterns in data�. It contains works that seek for

alternative ways of classifying data, which would give results that are new and

interesting. Such approach can be found in the works of alternative cluster-

ing [26, 13, 14, 15, 5, 21, 22] and concept discovery problem [10, 11, 81, 30, 31].
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CHAPTER 3

CONTENT SUPPRESSION

Typically, the study of symmetries in an ornament implies an explicit search for

repetitive structures in an ornament. Based on the relations of those repetitive

structures a decision on the symmetry group of an ornament is made. A deci-

sion that is to be made is limited to some prede�ned rules, and introduces no

�exibility. Furthermore, de�ning a symmetry group of some ornament leads to

ambiguous results, raising questions like, are we talking about the color sym-

metry or just ignoring the colors; which notation do we use for classi�cation

(since there are so many of them) and why do we think it is the most appro-

priate one. Most importantly, those approaches do not consider the share of an

artist, who is the actual creator of ornaments in question. Artists tend to break

symmetries by introducing di�erent color usage or by slight change in shape

details. All those shortcomings appeal to approach the study of symmetries in

ornaments from di�erent perspective. Instead of searching for repetitive struc-

tures, we aim to see the underlying structure of an ornament. The underlying

structure de�nes the style of an ornament, implying that the ornaments with

the similar underlying structures are similar style-wise, and were created using

the same production rules. The style must re�ect not only the symmetry group,

but also the artistic intention, and color symmetry. Think of looking at the city

from above. One can see the underlying structure of the city, understanding

the order of buildings in terms of their locations. While the explicit forms and

speci�c colors of buildings are not visible, the rules by which those buildings

are organized can be inferred. Furthermore, one can see how the roof colors of

the buildings alternate throughout the city. Just like the analogy given above,
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we aim to see the underlying structure of ornaments by ignoring explicit forms

and speci�c color usage in an ornament. This leads to content-style separation

concept. Once we suppress the content of an ornament, the rest must reveal its

underlying structure, which, in fact, is a style of an ornament.

In this chapter, we de�ne what aspects of an ornament we consider as a part of

content, and what aspects we leave as a style of an ornament. Once the content

is de�ned, next we perform content suppression. We give technical details on

the content suppression stages. Finally, we give the content suppressed results

for various ornaments.

3.1 Content-Style Separation

Before starting to suppress the content of an ornament, we should decide on

what do we consider as content. An ornament consists of motifs, repetitions of

which, obeying some rules, form an entire ornament. A choice of an artist for a

precise shape as a motif should not cloud our judgment on underlying structure

of an ornament. The artist could use di�erent shapes to �ll the plane using the

same repetition rules. Thus, a shape of a motif is a part of content. However, the

information on how the artist repeated those shapes throughout the ornament

is a part of style. The artist also chooses speci�c color to �ll a motif. We

neglect the information on speci�c color choices in an ornament; however, we

care about the permutation of di�erent colors in an ornament, and consider them

as a part of style. Fig. 3.1 shows two ornaments with the same style. Observe

that the �rst one is a hand drawn ornament from Escher's collection, while the

second one is a computer-generated ornament. Hence, the types of colors used

are completely di�erent. In addition, the number of colors in two ornaments

di�er: three and �ve respectively. Furthermore, the shapes used to �ll the plane

are di�erent, while the �rst one contains recognizable �gures; the second one

contains abstract structures. Despite all those distinctions, both have the same

underlying structure. This fact shows the unimportance of precise shape and

speci�c color choice information, adding them to the content. The importance

of color permutations are shown in Fig. 3.2. Fig. 3.2(a) shows two ornaments

32



with the dots representing the center of highest order of rotation in them. Both

of them contain three colors, and both of them are of group p6 according to

symmetry group classi�cation. However, when one rotates the copies of these

ornaments around the given center of rotation point, it is possible to see that

actually the order of rotations for those two ornaments di�er. Thus, for the

ornament in �rst row, if one rotates it for 60◦ , the shapes match up, however

the colors do not match. The same goes to 120◦ rotation. Observe that both

shapes and colors of shapes match up only when the tile is rotated for 180◦ .

For the second ornament, shown in second row, a match of both shapes and

shape colors occur when one rotates it for 120◦ and 240◦. Although both of

those ornaments are considered to belong to p6 group according to symmetry

group, their color-symmetry groups di�er: �rst ornaments contains only two-

fold rotations, and the second ornament contains only three-fold rotations. This

shows that the color permutation can in�uence the underlying structure of an

ornament. Therefore, we consider the color permutation as a part of ornament

style.

Figure 3.1: Two ornaments with di�erent color types but the same production

rules. (Left) Hand-drawn ornament. (Right) Computer-generated ornament.

We take an ornament and gradually suppress the content. It contains of two

levels. The �rst level is a binarization level. At this stage, we extract several

binary masks for a given ornament that encode di�erent aspects of color usage.

The extracted binary masks have no information of speci�c colors used in an

ornament; however, they carry information of how colors were permuted in an

ornament. While we succeed to suppress the color information at binarization

level, the explicit forms of motifs still present in masks. The next aim would be

to suppress the shape information. The second level takes as input extracted

masks for an ornament, and di�uses shapes. For that purpose, we use a linear
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(a) (b) (c) (d)

Figure 3.2: Two ornaments of the underlying group p6. Green and red dots

represent the centers of rotations. (a) 60◦ rotation. For both images shapes

match but not the colors. (b) 120◦ rotation. The match on both shapes and

colors occur only for the ornament at the bottom. (c) 180◦ rotation. The match

on both shapes and colors occur only for the ornament at the top.

transform, which is a scale invariant di�usion operator. The linear transform

takes images with precise shapes and outputs images with abstract shapes like

triangles, tiskelions, swastika, crosses, hourglasses, etc. Those structures give

clues on what symmetries exhibit in a particular ornament. In addition, they

give visual similarities between di�erent tiles that are similar style-wise. For a

summary of levels we pass in a pursuit of content suppression see Fig. 3.3.

We give technical details on binarization and linear transform in the following

sections.
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Figure 3.3: An illustration of the content suppression levels.

3.2 Binarization

The �rst step of content suppression is a binarization stage. Here, given an

ornament, we extract several binary masks for it. First, the row image is con-

verted into HSV color space. We, then, for each of the three channels extract

several binary masks. The binarization process is based on thresholding method.

For each channel, we automatically de�ne n numbers of threshold values. Thus,

given an image (channel), the binarization produces �rst mask by assigning black

to regions where the corresponding values (color feature) in image is less than

the �rst threshold n1, and white to all other regions. The second mask gets

black regions where the color feature is greater than or equal to threshold n1

and less than threshold value n2. The third mask is produced by assigning black

regions where the color feature is greater than or equal to threshold n2 and less

than threshold n3. This process goes on in this manner, and the last mask gets

black regions where the color feature is greater than or equal to nn. Thus, for

each channel we obtain (n+1) masks. However, since the inverses of each mask

also contain important information, we include them too. The overall number

of masks for each channel is 2 ∗ (n+ 1). If n = 1, we obtain only two masks for

an image. The inverses of masks are not considered in this case, since two masks

are already inverses of each other. Note that, after the binarization process the

�nal number of masks equals 6 ∗ (n + 1), for all three channels of an image.
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However, not all of them will be useful. Most of the masks will be redundant.

We discard the masks that contain no information but the noise. We, then,

perform morphological operations (opening, closing) on the masks that are left.

The masks, that still contain disturbing noises after morphological operations,

are also discarded. Generally, for one of the HSV channels we get acceptable set

of binary masks that have a well captured information of color permutations.

One can also create new masks by combining di�erent masks through and/or

operations. Thus, after discarding redundant masks, and combining di�erent

masks, we obtain a new set of masks. Of course, it is desirable to have minimal

set of masks. Ideally the mask size equals to twice the number of colors that the

image contains: one mask for each color and their inverse. However, de�ning

the thresholds for binarization automatically, does not always give good results,

leading to explore more possibilities. For example, we assign n = 1, and au-

tomatically de�ne a threshold value. This value may not give good separation

of colors. Then we assign n = 2, and perform another binarization, this time

considering two threshold values. This situation increases the number of masks

for each image. For an example of binarization results for particular ornaments,

see Fig. 3.4�3.5. Observe the mask inverses in the second row of Fig. 3.5. Recall

that one mask carries permutation information of one color. Had we ignored the

mask inverses, we would lose the information on how the given color is related

to other color permutations. In the given example, keeping the mask inverses

hints on the permutation of two other colors with respect to the given color

permutation in particular mask.

Figure 3.4: Two masks obtained for two-colored ornament of group p4g.

The threshold values are obtained using Otsu's method [56]. This method

gives only one threshold at a time, since it assumes that the image contains
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Figure 3.5: Six masks obtained for a three-colored ornament of group p6.

two classes of pixels, which yield a bi-modal histogram. In order to obtain n

threshold values, we call the method recursively. Given an image, we get a

threshold value, which divides it into two regions. Then those two regions are

treated as two independent images, and the threshold value is de�ned for each

of them. Then for each image, we get two regions, which then call the same

method recursively. If n = 1, then we have only one threshold value. If n = 2,

then we will get 3 threshold values. For n = 3, we get 7 thresholds, and so

on. As one can see, the number of threshold values is more than we need. We

select only the top n e�ective ones, where the e�ectiveness is de�ned by the

threshold e�ectiveness measure in Otsu method. Otsu's method can be invoked

via graythresh() function in Matlab.

3.3 Linear Transform

The binarization stage suppresses the color information. We perform this stage

in order to avoid the choice of an artist for speci�c colors to cloud our judgment

in perceiving style of an image. The thresholded masks carry information of

shapes used in ornament and color permutations applied on it. While the latter

one is considered as a part of an ornament style, the shape information is another
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aspect of an image that we desire to get rid of. The shapes lose their forms if

we blur them using an appropriate �lter size. Hence, any di�usion �lter, e.g.

convolving the masks via Gaussian, gives the desired solution. The solution that

we desire is that after the �ltering, the image shapes are suppressed, but the

repetition rules of those shapes are highlighted. We face some di�culties with

the di�usion �lters. The �rst question that comes in mind would be how much

di�usion is required? What information in an image should be kept, and what

should be suppressed? The di�usion �lters highly rely on parameters that we will

have to deal with. Thus, our attention turns toward a shape transform recently

proposed by [75]. This transform is originally proposed for shapes. When the

transform is applied on a shape, it yields a di�use �eld, which contains both

positive and negative values. The positive regions are separated from negative

regions by an emergent zero-crossing curve that divides a shape into central

and peripheral regions. The central region takes positive values, and contains

the least deformable part of a shape. For an example see Fig. 3.6, where the

transform of dog shape is shown. Observe the blue curve separating central part

from peripheral regions. The central part of a transform takes positive values,

while the peripherals take negative values. The �eld result shown in the �gure

is the absolute value of the �eld, which we use solely for visualization purposes.

Figure 3.6: Linear transfrom computed for a dog shape. (Left) Original shape.

(Right) Linear transform. The central part is separated from peripheral regions

via the blue curve which is the zero-crossing curve.

We adapt this transform to our problem, so that it is applied to entire tile

domain. The transform suppresses the peripheral regions of individual shapes

in an ornament, after which only the central, least deformable coarse structures

of motifs remain. In this manner, we suppress the shapes, making the explicit

forms unimportant. What remains is the underlying center repetition. The
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details of our approach are as follows. Let S denote the set of pixels of tile

image and M : S → {0, 1} be a binary mask obtained via thresholding the tile

image as described above. Let us de�ne an external function g : S → R. Then,

let

f(p) =

 g(p) ifM(p) = 0

0 ifM(p) = 1
(3.1)

The shape suppressed image satis�es the following relation at any p ∈ S whose

four neighbors are denoted by pN , pS, pW , pE:

term1(p)− term2(p)− term3(p) + f(p) = 0

where

term1(p) = ω(pN) + ω(pS) + ω(pW ) + ω(pE)− 4ω(p)

term2(p) =
1
|S|

∑
q∈S

ω(q)

term3(p) =
1
|S|ω(p)

We numerically solve the linear system using an iterative scheme:

ωt+1(p) = ωt(p) +4t(p) (3.2)

4t(p) = α(termt
1(p)− termt

2(p)− termt
3(p) + f(p))

Here, α < 0.25 is a step size that ensures convergence. Initial value of ω0 is set

to 0. The iteration stops whenever 4t is less than a �xed threshold (0.001 for

all our results). In all the results we set the external function g as the distance

transform of the mask using the Matlab command bwdist(M). From now on,

we will call the results obtained from this transform as ω �eld of an image.

See Fig. 3.7 for an example of the ω �eld result for sample image. Fig. 3.7(b)

shows one of the masks of a tile in Fig. 3.7(a). Computing the ω �eld only for

foreground objects of a mask (black regions) attenuates the shape peripherals
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and highlights the node centers (Fig. 3.7(c)). When we compute the ω �eld for

the entire mask, we observe the relation between the node centers (Fig. 3.7(d)).

Observe that from the last image we have no clue on the shapes depicted in the

original image. What we see, is an underlying structure of an original image

that shows how a particular node is being repeated in a tile. For more results

on ω �eld, see the next section.

(a) (b) (c)

Figure 3.7: ω �eld computed for one of the masks of an ornament. (a) Mask.

(b) ω �eld computed only for foreground objects (black regions). (c) ω �eld

computed for entire mask.

3.4 Results for Content Suppressed Ornaments

We present ω �elds obtained for ornaments with di�erent underlying structures.

The results will show di�erent abstract structures that emerge in the ornament

�elds. Those structures represent the symmetries that the ornaments exhibit,

and help perceive similarities and di�erences in various ornaments. Let us sum-

marize what stages we pass in order to obtain content suppressed images, with

highlighted underlying structures. We pass thorough two stages: binarization

and �ltering. After the binarization stage, we have several masks for a particular

ornament. Then we compute ω �elds of those masks, and get the images where

the shapes are suppressed. For each ornament we show both the masks and the

corresponding ω �elds.

Fig. 3.8 illustrates �eld results for �ve ornaments of pure translational group.

Observe that the masks of each ornament (second column) have no information

about the speci�c colors used in ornaments. However, the number of masks gives
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a hint on the number of colors used in ornaments. Here, all ornaments contain

two colors. Hence, all �ve ornaments have two masks. Recall that, however,

the number of masks is not limited to the number of colors. Also, observe that

from the masks one can still tell what shapes are used in ornaments, like birds,

Pegasus, �shes, etc. When the ω �elds for each of the masks are computed,

the shapes are suppressed leaving only the arrangements of node centers (third

column). Since �ve ornaments in question have only translational symmetry,

the ω �elds of each ornament show translated copies of node centers. The node

centers are arranged in vertical and diagonal lines. Here, the line structures

indicate translational symmetry.

Figure 3.8: Five ornaments of pure translational group. All �ve exhibit line

structures in the transform domain.
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Another set of ornaments are given in Fig. 3.9. Those ornaments are of glide

group, �rst two of which belong to group pgg and last three belong to group pg.

The transformed results for those images exhibit zigzag structures. In the third

ornament, the glide re�ection of a motif goes to another color so that when we

extract the masks the glide re�ection is lost. That is why the ω �eld of this

ornament is expected to exhibit line structures, just like the ones that occur for

pure translational group. However, as we discussed in introductory chapter, this

ornament contains hidden glide re�ection in a horseman shape. This internal

glide re�ection adds �zigzagness� to the �eld of the ornament, distinguishing it

from the ornaments of pure translational group. We also perceive dumbbell-

like structures in the �elds of �rst image, which is of pgg group. Observe that

there are zigzag structures, but the nodes come in pairs. Those dumbbell-like

structure occur due to rotations that the ornament exhibit. The second tile is

also of pgg group; however, its rotation goes to the other color, leading to the

loss of two-fold rotations. Observe Fig. 3.10 for two-fold rotations on those �rst

two ornaments . As one can see, for the �rst ornament (Fig. 3.10(a)) after the

half-turn rotation there is a perfect match up both in shapes and colors, while

for the second ornament only shapes match.

Fig. 3.11 illustrates two three-color ornaments of p6 symmetry group. When

colors are considered each turn of a six-fold rotation leads to the same shape

of di�erent color. Thus, the maximum order of rotation that both ornaments

exhibit is two. These two ornaments are the good examples on how the color

permutation can change symmetries in an image. The ω �elds computed for both

ornaments reveal dumbbell-like structures. We have already encountered them

in the �eld of pgg ornament of previous set. These dumbbell-like structures

represent two-fold rotations and occur when two node centers join in a two-

fold rotation. Rectangular structures in the �elds of both images represent the

combination of two-fold rotations of shapes that belong to other two colors.

The ω �elds computed for four ornaments with three-fold rotations and mir-

ror re�ections are given in Fig. 3.12. The �rst column in a �gure shows the

original images, the second column shows the masks obtained for that particu-

lar ornament, and the third one contains corresponding ω �elds computed for
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Figure 3.9: Five ornaments of glide group. First two are of group pgg and the

rest are of group pg. Observe that the glide re�ectional symmetry is represented

by zigzag structures in all �ve ornaments.

the masks. First three tiles are from Escher's collection, and the last one is a

computer-generated ornament. Although �rst three ornaments have the same

number of colors in original images, the number of masks of each ornament dif-

fers (6, 8 and 12 respectively). First two ornaments from Escher's collection

belong to p3m1 group and the last one is of group p31m according to symme-

try group classi�cation. According to Escher's system, all three are of triangle

system. Last computer-generated ornament is of p3m1 symmetry group. Ob-

serve that the �ltered images for all four ornaments exhibit similar structures,
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(a)

(b)

Figure 3.10: Two-fold rotation in two ornaments of group pgg. (a) The rotation

is to the same color. (b) The rotation is to the other color.

Figure 3.11: Two ornaments of group p6. Due to color permutations the max-

imum order of rotation reduces to two. This is represented by dumbell-like

structures in the ω �elds computed for masks.
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like triangles and three-leaved roses. These rosette structures occur when the

repetitions of node centers join in a three-fold rotation. Some of the �elds also

contain hexagonal structures, which represent the arrangement of nodes of other

colors with respect to the current color. The structures emerged represent the

symmetries contained in ornaments. All four ornaments contain three-fold rota-

tions, and so do the three-leaved rose and triangle structures of the �elds. Those

ornaments also contain mirror re�ections, and so do the abstract structures of

the �eld.

Consider another set of ornaments given in Fig. 3.13. First two are two-color

ornaments of group p6, the third one is a three-color ornament, known as mari-

posas, of group p6, and the last one is a two-color ornament of group p3. Al-

though �rst three tiles are of group p6 according to symmetry group, when the

color permutations are considered, the maximum order of rotation they exhibit

is three. What makes those four ornaments similar is that they all exhibit three-

fold rotations. The di�erence between this and the previous four ornaments is

that this set contains no mirror re�ections. Observe that the ω �elds of the or-

naments reveal this distinction. All of them contain structures like three-leaved

roses just as the structures observed from the results of previous set. However,

this time the three-leaved roses are more cyclic (triskelions). This implies the

lack of mirror re�ections in the ornaments. From the ω �elds of the mariposas

masks we can also observe hexagonal structures. They represent six-fold ro-

tations, which occurs due to color permutations. The six-fold rotation in its

entirety kept in a mask inverse, since two other colors that are not representa-

tives of the current mask are considered as one colored six-fold rotation.

In Fig. 3.14, we illustrate �ve ornaments that exhibit four-fold rotational sym-

metry. The �rst four images are of group p4 and the last one is of group p4g.

From the ω �elds of �rst two images, we see how four-leaved roses replace three-

leaved roses. Here, the whole rotation is kept in one color, thus enabling the

�eld to capture the rotation in its entirety. The third ornament's ω �elds ex-

hibit cross structures, which also show that the nodes in an ornament are related

by four-fold rotations. The forth ornament contains both four-leaved roses and

square structures. Observe that the four-leaved roses are more cyclic, implying
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Figure 3.12: (a) Four ornaments with three-fold rotations and mirror re�ections.

(b) Masks obtained for each ornament. (c) ω �eld computed for each of the masks

of the ornament. All four exhibit similar abstract structures, like triangles and

three-leaved roses.

lack of mirror re�ections. The interesting result is illustrated for the last orna-

ment. There is a four-fold rotation center in the middle, which is captured by a

swastika-like structure shown in blue in the second mask of an ornament. Here,
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Figure 3.13: Four ornaments with three-fold rotations without mirror re�ections.

First three ornaments belong to p6 group. However, due to color-permutations

the maximum order of rotation they exhibit is three. All four exhibit three-

leaved roses that are more cyclic.

again the whole rotation is kept in one color. Beside the four-fold rotations,

there are also mirror re�ections in the last image. Those re�ections are repre-

sented by hour-glass-like structures. The mirror re�ections are what distinguish

�rst four images from the last one, and this di�erence is well captured by the

�eld.

Hexagonal structures prevail in the ω �elds of four ornaments given in Fig. 3.15.

All four are of group p6, and in contrast to the other ornaments of p6 group

discussed earlier, these four still exhibit six-fold rotations, even when we consider

color symmetries of the ornaments. Along with the hexagonal structures, we

can observe six-leaved roses that emerge due to six-fold rotations of some node
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around the center of rotation. The ornaments of p6 group also contain three-fold

rotation centers di�erent from the six-fold rotation centers. Therefore, it is no

wonder to see three-leaved roses or triangles in the ω �elds of those ornaments.

Observe the triskelion structures in the �eld of the third ornament in Fig. 3.15.
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Figure 3.14: Five ornaments with four-fold rotations. First four are of group

p4, while the last one is of group p4g. Four-fold rotation is represented by

four-leaved roses and squares in the transform domain. For the last ornament

four-fold rotation is represented by swastika-like structure shown in blue on the

second mask, and the hour-glass like structures represent mirror re�ections.
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Figure 3.15: Four ornaments of group p6. Even when color permutations consid-

ered the maximum order of rotation is six. All four exhibit hexagonal structures

representing six-fold rotations.
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3.5 Abstract Structures

The study of symmetry is not about the explicit forms or colors, but about the

motions that are introduced in ornaments by repeating particular nodes. It is

the motions we are concerned about, and them we are trying to capture. For

that, we perform content suppression in order to separate the content, in terms

of explicit forms and colors, from the motions that the ornament exhibit. The

content suppression process takes an image with the precise shapes like horses,

dogs, birds, as an input. Those precise shapes become unimportant in the

process, since our aim is to capture the generalized centers of shapes and their

relations only. The output is ω �eld, which contains abstract structures like

triangles, three-leaved roses, four-leaved roses, zigzag structures, swastika-like

structures, dumbbell-like structures, hourglass structures, etc, which occur due

to relations of coarse structures of nodes. Those abstract structures give clues

on what kind of symmetries the ornaments exhibits. We are also able to perceive

style-wise similarities between seemingly di�erent ornaments. For each kind of

symmetry, we observe a structure that represents it in transformed images. We

summarize which structures indicate various symmetries in an ornament.

For ornaments of pure translational group, the ω �eld of the masks for them

exhibit line structures, like shown in Fig. 3.16. Those structures show the ar-

rangement of node centers, suggesting that the nodes are related by translation

only, repeating themselves in two di�erent directions. Those line structures

might be in vertical, horizontal or diagonal forms.

Figure 3.16: Structures representing translational symmetry

Glide re�ection is a mirror re�ection followed by a translation. Due to re�ection,

the orientation of a node changes in alternating order to opposite direction. This

alternation introduces zigzag structures in the ω �elds computed for ornaments
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of glide groups (Fig. 3.17).

Figure 3.17: Structures representing glide re�ection

The ω �eld for an ornament with rotational symmetries exhibit rosette struc-

tures. The rotations of a shape join at some point. When we suppress the

boundary details keeping only the coarse structures, we see only a rotation of

some node center around that point. As a result, we obtain structures that

resemble �nite designs, which can be described in terms of rotations and re�ec-

tions. Finite designs fall into two categories: cn and dn. The �rst type is known

as cyclic group of order n, while the second is known as dihedral group of or-

der n. Cn group has n-fold rotations, but no mirror re�ections. Dn group has

both n-fold rotations and mirror re�ections. According the symmetries that the

ornament exhibit, we will see the abstract structures that are similar to either

one of this groups. While for the �nite structures n can reach the in�nity, in

our abstract structures (due to crystallographic restriction mentioned in intro-

ductory chapter) it can take values like 1, 2, 3, 4, or 6. Examples for cyclic and

dihedral groups is illustrated in Figs. 3.18-3.19.

c1 c2 c3 c4 c6

Figure 3.18: Cn Groups

For the tiles with two-fold rotations, we observe dumbbell-like or hourglass-like

structures (Fig. 3.20). Those structures occur when two nodes join at some

point due to two-fold rotation. Observe that the dumbbell-like structure on the
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d1 d2 d3 d4 d6

Figure 3.19: Dn Groups

left in Fig. 3.20 is more cyclic, indicating the absence of mirror re�ection. This

structure falls into C2 group, while other two are of group D2.

Figure 3.20: Structures representing two-fold rotation and mirror re�ections

ω �elds for the masks of the ornaments with three-fold rotations and mirror re-

�ections, introduces structures like triangles and three-leaved roses (Fig. 3.21).

From those structures, one can infer that the ornaments have three-fold rota-

tions. In addition, those structures exhibit mirror re�ections that indicate that

the ornaments also contain mirror re�ections. Notice that having both rota-

tions and mirror re�ections make this structures similar to D3 group. There

is another type of three-leaved rose structures that show three-fold rotations as

shown Fig. 3.22. They are cyclic, representing the absence of mirror re�ections

in an ornament. The abstract structures of this kind are of group C3.

Figure 3.21: Structures representing three-fold rotations with mirror re�ections

If three-leaved roses represent three-fold rotations, it would be natural to expect

four-leaved roses where four-fold rotations are encountered. However, the struc-
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Figure 3.22: Structures representing three-fold rotations without morror re�ec-

tions

tures for four-fold rotations might be in cross like forms, squares, or swastika

like structures as well (Fig. 3.23). When there are no mirror re�ections, those

structures are more cyclic. Observe that in Fig. 3.23 �rst two abstract struc-

tures resemble C4 groups due to its cyclic nature, while three others resemble

D4 groups.

Figure 3.23: Structures representing four-fold rotations

The presence of six-fold rotations in an ornament is indicated by hexagonal

structures in the ω �elds of mask images. We might also observe six-leaved

roses, as shown in Fig. 3.24. First two structures in the �gure represent D6

group while others are more of C6 group.

Figure 3.24: Structures representing six-fold rotations

The ω �elds computed for ornaments tell more than just the underlying repeti-

tion rules. The structures introduced by the �eld, enable to take into account

the continuity of symmetry. Before, we could just classify ornaments according

to some prede�ned groups. Now, we can detect how similar di�erent ornaments
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or di�erent groups are to each other. For now, we can only perceive the symme-

tries and similarities between ornament styles. What we need next is to de�ne

some method that would measure those similarities. We approach this problem

in the following chapters.

55



56



CHAPTER 4

CONSIDERING A COLLECTION OF TILES

In Chapter 3, we talked about content suppression in ornaments. As a result,

for a given ornament we obtained �ltered images with no clues on colors or

shapes that are used by artist. What remains, is the underlying structure. It

is interesting to observe how complex structures like mariposas, after �ltering

out content information, are left with simple triskelion and hexagonal struc-

tures. Furthermore, we showed that the ornaments that are created based on

same rules, exhibit similar underlying structures. Thus, after content suppres-

sion we perceive style-wise similarities and di�erences in ornaments. However,

perceiving similarities or di�erences in ornaments is not amenable to analysis.

That is why; we need to introduce a method that measures pairwise similarities

of ornaments. Had we used original ornaments for similarity measurement it

would be highly in�uenced by colors and shapes that the ornaments exhibit.

Using content suppressed images, on the other hand, gives style-wise similarities

between ornaments. We pursue this result in this thesis. Once we know how to

measure pairwise similarities, we can perform clustering of ornaments accord-

ing to their style-wise similarities. The clustering results are not necessarily

in agreement with the symmetry group classi�cation. Given a whole collection

of ornaments, we do not cluster them in one-step, identifying groups for whole

collection. Instead, we keep in mind the continuous nature of symmetry and per-

form clustering on the subset of the whole ornament collection. Those clustering

results will reveal how di�erent groups are related.

In this chapter, we will talk about context-based continuous labeling, which
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describes our approach of studying ornaments. We explain the way we compute

the pairwise similarities of ornaments, and the ways we visualize the clustering

results. Then we show the clustering results for various subsets of our dataset,

each conducted as a separate experiment.

4.1 Context-Based Continuous Labeling

The classical approach takes an ornament and labels it with some prede�ned

group. It considers neither continuous nature of the symmetry, nor artistic in-

tention for particular ornament. Recall Fig. 1.19, where two ornaments are

given: one of group p1 and one of group pg. The repetition rules for those two

ornaments are di�erent due to minor changes in the tail part of the p1 orna-

ment. Had not the artist introduced this little trick, given two ornaments would

be considered of the same symmetry group. If we look at the color symmetries

of those two ornaments then, again, both fall into di�erent groups. However,

perceptually they look similar. Labeling the ornaments according to prede�ned

groups, does not show the closeness of those two ornaments. On the other hand,

consider another example given in Fig. 3.2. It contains two ornaments of p6

group according to symmetry group. Further, considering the color symmetry,

reveals that the highest order of rotation one of them contains is two, while the

other contains three-fold rotations only. This situation introduces ambiguity.

Furthermore, according to classical approach, given a set of symmetry groups,

we know by the rules what symmetries each group contains, but we cannot say

anything about the relations between those groups. However, one symmetry

group might be very close to a second symmetry group, and be completely dif-

ferent from a third group. Introducing some kind of measurement of similarities

between various ornaments, might reveal that the groups that contain rotations

are more close to each other than those that do not contain rotations, or that the

pure translational group is closer to the glide group than the rotational group.

The same goes for ornaments that are within one group. It sees them as all

equal ornaments. For example, for ornaments that are of pg group, in some

ornaments a glide re�ection of a motif goes to the same color, while in others
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it goes to the di�erent color. This might indicate that the former ones and the

latter ones form two clusters within pg group. These relations can only be dis-

covered, when we take into account the continuous nature of symmetry. Instead

of labeling the ornaments according to some prede�ned group, we seek to see

how similar or how symmetrical the given ornaments are style-wise. In Chapter

3, we talked about retrieving the style of an ornament. In this chapter, we aim

to cluster ornaments according to their styles. The emerging groups from our

clustering results are not necessarily in agreement with symmetry group classi�-

cation. However, taking all the ornaments and clustering them would not reveal

the relations between di�erent groups. That is why; we perform the clustering

in multiple experiments. For each experiment, we consider only a subset of our

dataset. Changing the ornament set, adding one more ornament to the previous

collection, or changing the entire group of the previous collection, will reveal

relations between groups that are clustered style-based. Thus, if an ornament

in a given collection has no pair, which is of the same group, it joins the group,

which is the most similar style-wise. Moreover, the ornaments that group in one

context, might be in di�erent groups in another context. In this manner, we

perform style-based clustering, while also considering the continuous nature of

symmetry.

For the dataset, methods and experimental results see subsequent sections.

4.1.1 Dataset

The whole set of ornaments used in our experiments are given in Fig. 4.1. In most

of our experiments we use Escher's ornaments, which are listed in Fig. 4.1(a).

The �rst row contains three ornaments with three-fold rotations and mirror

re�ections. The second row consists of ornaments of group p6 according to

Wallpaper group. They are internally divided into three groups. The �rst group

ismariposas group, which consists of three three-color ornaments. The next two

ornaments are also three-color, however, the permutation of colors is di�erent.

The third group consists of three two-color ornaments. Ornaments that contain

four-fold rotations are listed in the third row. Here, �rst three ornaments are
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of group p4 and next two ornaments are of group p4g. The next group lists

six ornaments of glide group. They are also divided internally, so that �rst two

ornaments are of group pgg (two-fold rotations and glide re�ections) and last four

ornaments are of group pg (glide re�ection only). The last row lists six ornaments

of pure translational group. Beside Escher's ornaments, we use ornament sets of

computer-based creations. The �rst set is shown in Fig. 4.1(b), where one can

observe two di�erent groups. First group consists of �ve ornaments with three-

fold rotations and mirror re�ections. The second row lists ten ornaments of

group p4g. The last set consists of ornaments created by iOrnament application

[64]. First row contains a single ornament of cm group. Second row contains

two ornaments with three-fold rotations and mirror re�ections. Five ornaments

of group p4 are listed next. Five ornaments of group p6 complement the dataset.

4.1.2 Method

In order to be able to quantify how close two images are, we should use some

method that measures the similarity between them. Our method is as follows.

First, the image features are detected and described using Scale-invariant Fea-

ture Transform (SIFT) [50]. SIFT guarantees invariance to scale, rotation and

translation while computing pairwise similarities. Then the descriptor of an im-

age is matched to descriptors of other images. Number of matches between the

descriptors of images form an intermediate similarity matrix. Next, the number

of occurrences of an image in another image's �rst N (15 in our case) most

similar retrievals is calculated. The same image may appear several times since

there are several masks of one image. The results are the sum of the occurrences

of two images within each other's �rst N retrieval results. This gives our �nal

similarity matrix.

4.1.3 Visualization of Results

The similarity matrix is not informative on its own, since it cannot be visualized.

In order to visualize the similarities of images we turn to dimensionality reduc-

tion methods. In our approach two types of dimensionality reduction methods
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are used: Spectral Multidimensional Scaling (SMDS), introduced by [1], and

t-Stochastic Neighborhood Embedding technique, introduced by [77]. Those

techniques help to reduce the dimensionality of the similarity matrix, while pre-

serving between-object similarities as much as possible. In all our experiments,

the dimensions of similarity matrices are reduced to two and three dimensions.

Since two dimensions are easy to visualize, the results for it are plotted directly.

However, we do not plot the ornaments themselves. Instead, we use di�erent

shapes cut out of ornaments, each shape representing di�erent group. For exam-

ple, an ornament with four-fold rotations assigned to square shape. See Fig. 4.2

for a sample plot. There, we have triangular, circular, square and inclined rect-

angular shapes. Triangle indicates three-fold rotation, square indicate four-fold

rotation, circles indicate six-fold rotation, and inclined rectangles indicate pure

translation or glide re�ection. The edge colors on the shapes also represent

di�erent groups. For circular shapes, di�erent colors indicate distinct groups

with six-fold rotations. Inclined rectangles framed in green color represent pure

translational group, while the same shape framed in orange color represents glide

group.

Three dimensional results, on the other hand, are mapped to RGB color space.

For that, all three dimensions are normalized so that the values are between

[0,1]. Since we have three values for each dimension, those values are used to

represent RGB colors. Now, ornaments that are close to each other will represent

colors similar or close to similar to each other. Observe Fig. 4.3 for an example

illustration. The colors are not �xed for some group, in each run every group

assigned di�erent color. Note that, the ornaments within one group do not get

exactly the same color. Instead, every ornament in a group gets di�erent shades

of the same color. Getting exactly the same colors is possible only when two

ornaments are reduced to exactly same coordinates. Mapping the coordinates

to RGB color space is done solely for visualization purposes, and do not carry

any additional information.

For each experiment, we also show a confusion matrix that represents pairwise

distances of ornaments. The distances are computed from coordinates obtained

after reducing the similarity matrix to three dimensions. See Fig. 4.4(b) for
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an example of confusion matrix representation. Since the confusion matrix is

computed from three-dimensional clustering result, one can look up the order-

ing of ornaments from three-dimensional result. The ordering of ornaments in

confusion matrix is in the order shown by arrows in Fig. 4.4(a). Thus, for

this particular example, the confusion matrix shows �rst six ornaments shown

in burgundy, and then come three ornaments shown in pink, then come three

ornaments in blue, then green, and the last group is the gray group.

4.1.4 Clustering

Given a dataset we divide the clustering process into multiple experiments. Each

time a subset of the dataset is selected for clustering. In each experiment, we

add single ornament, add entire group or change one group to another. For each

experiment, once we select a collection to be clustered, we construct a similarity

matrix. The dimensionality of a similarity matrix is then reduced using one of

the techniues described above. Summary of all the steps performed in single

experiment is illustrated in Fig. 4.5.
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(a)

(b)

(c)

Figure 4.1: Dataset. Overall �fty-�ve ornaments are considered. (a) Escher's

ornaments. (b) Computer generated ornaments. (c) Computer generated orna-

ments from iOrnament database.
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Figure 4.2: An example for visualization of clustering results obtained when the

similarity matrix is reduced to two-dimensions. Triangles represent ornaments

with three-fold rotations and mirror re�ections. Circles represent p6 groups:

mariposas are framed in red circle and three two-color p6 ornaments framed

in black circle. Squares represent ornaments with four-fold rotations. Inclined

rectangles framed in green represent pure translational group.

Figure 4.3: An example for visualization of clustering results obtained when the

similarity matrix is reduced to three-dimensions. The 3D coordinate positions

obtained are mapped to RGB color space. Thus, ornaments that reside close to

each other are assigned to similar colors.
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(a) (b)

Figure 4.4: An example for confusion matrix shown on (b). The order based on

which the ornaments in confusion matrix reside is shown by arrows in (a).

Figure 4.5: Illustration summarizing the clustering process.
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4.2 Experimental Results

For the given dataset overall forty-three experiments were conducted. In this

section we give clustering results for all forty-three experiments which are il-

lustrated in Figs. 4.6-4.49. For each experiment, we show the results for both

tSNE and SMDS dimensionality reduction techniques. For each dimensionality

reduction technique, as mentioned above, we show three results: results where

the dimensions of similarity matrix are reduced to two and three dimensions,

and a confusion matrix, which is based on the three-dimensional result. The

tSNE results are illustrated �rst, and then the SMDS results are shown.

For the �rst experiment eighteen ornaments are chosen: three ornaments of

mariposas group, three ornaments of two-color p6 group, three ornaments with

three-fold rotations and mirror re�ections, six ornaments of pure translational

group, and three ornaments of p4 group from iOrnament collection. We expect

exactly these �ve groups to emerge as a clustering result. The clustering results

are illustrated in Fig. 4.6. First row contains tSNE results, while the second

row contains SMDS results. All results illustrate expected �ve groups. Observe

that, in two-dimensional results, squares representing p4 group are clustered to-

gether, triangles representing ornaments with three-fold rotations from another

group, two di�erent circle groups are grouped according to the colors on the

circle edge (red and black), and �nally slightly inclined rectangles with green

edges representing pure translational group form another group. The three-

dimensional results also give �ve di�erent main colors for the ornaments. Both

two-dimensional results reveal closeness between the three ornaments of p6 group

and a pure translational group. This closeness occurs because both groups con-

tain ornaments of two colors, indicating that the number of colors also in�uence

the style of an ornament. The closeness of these two groups is also observed

from confusion matrices. Also observe the closeness between the mariposas

group and three ornaments with three-fold rotations and mirror re�ections, for

both tSNE and SMDS results. The p4 group is isolated from all other groups,

indicating style-wise di�erence from the other groups in the collection.

For the next experiment, we replace three ornaments of p4 group of the previous
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Experiment 1.

collection, with two other ornaments of p4 group. We still expect �ve groups

to emerge as a clustering result. Observe �ve main colors in three-dimensional

results (Fig. 4.7(b) and (e)), just as we expected. While the p4 group, in the

previous experiment, stayed isolated, in the current context they are shown to

be close to a triangular group (Fig. 4.7(c) and (f)). This is mostly due to rosette

structures in the latter group, while the former group exhibits mostly square

structures when the content is suppressed. The two-dimensional result for tSNE

(Fig. 4.7(a)) gives a clear separation between the rotational groups and a pure

translational group.

Fig. 4.8 shows the connections of groups in Experiments 1 and 2. The link colors

connecting two groups are chosen to be as close as possible to the results of con-

fusion matrices. Thus, the blue links indicate strong connections while red links

indicate weak connections. Also, the bolder the link the stronger the connec-
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Experiment 2.

tion between two groups. Observe that for the �rst experiment (Fig. 4.8(a)) the

p4 group has weak connections to all other groups, while in the second exper-

iment (Fig. 4.8(b)) the p4 groups has a strong connection to rotational groups

due to four-leaved rosette structures in their ω �elds. The square structures of

the p4 group in the �rst experiment make it style-wise di�erent from all other

groups. The relation of pure translational group to other groups is similar in

both experiments.

In the next experiment, we replace the pure translational group of the previous

collection, with �ve ornaments of glide group. The glide group is further divided

into pg group, where only glide re�ection is used, and pgg group, where two-

fold rotations come along with the glide re�ection. However, in this context, we

expect those �ve to form one cluster.The clustering results are shown in Fig. 4.9.

The tSNE results (top row) give �ve groups, while the SMDS result (second
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Figure 4.8: Experiment 1 and Experiment 2: Connections.

row) give four groups clustering the two-color p6 group with two ornaments of

p4 group. Observe that the groups with two-color ornaments (glide, p4 and p6

groups) are placed close to each other. tSNE clustering result separates the

rotational groups from glide group, which is clear from confusion matrix. Two-

color rotational groups form a bridge between the glide group and the other

rotational groups.

We eliminate two ornaments of p4 group from the previous collection and see

more scattered groups to emerge (Fig. 4.10). While the confusion matrix for

SMDS result (Fig. 4.10(f)) show no relation between groups, the confusion ma-

trix for tSNE result (Fig. 4.10(c)) shows the closeness of rotational groups, and

also the two-color groups (glide and two-color p6 groups).

Next, we add two three-color ornaments of group p6 to the collection in Ex-

periment 4. Although these two ornament are of p6 group, they are style-wise

di�erent from any other p6 group in the collection. When the colors are consid-

ered, these two ornaments exhibit two-fold rotations only, while the other groups

exhibit three-fold rotations. Therefore, we expect these two ornaments to form

a group on their own. Thus, overall �ve groups are expected. See Fig. 4.11 for

clustering results. There are exactly �ve groups for two-dimensional results. We

see four major colors for three-dimensional clustering results. The green color,

in the three-dimensional tSNE result, is further divided into two. The darker
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Figure 4.9: Experiment 3.

green indicates two newly added ornaments. The purple color, in the three-

dimensional SMDS result, also has two shades, where the lighter one is assigned

to newly added ornaments. Observe the closeness of p6 groups (represented

with circular shapes) against two other groups (glide and three-fold rotational

groups), which is also clear from confusion matrix of the tSNE result.

Until now we have been choosing the collection so that each ornament has its

style-wise similar pair. In the next experiment, we add a single ornament of

pure translational group to the ornament collection of Experiment 5. Since

there are no other ornaments of pure translational group, we expect this one to

join the closest group in terms of style. From the content suppressed images from

previous chapter, we saw that pure translational group is style-wise close to glide

group. This is no wonder, both groups have no rotations, hence do not exhibit

rosette structure when the content is suppressed. Thus, we expect the newly
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Figure 4.10: Experiment 4.

added ornament of p1 group, to join the glide group. Fig. 4.12(d) and (h) show

the retrieval results for the standalone ornament for tSNE and SMDS results

respectively. Observe that the �rst closest ornaments are the ones from glide

group. Furthermore, both two-dimensional and three-dimensional results show

the ornament of p1 group (inclined rectangle framed in green) with the glide

group (inclined rectangle framed in orange). This example is an illustration for

continuous nature of symmetry. Instead of isolating this newly added ornament

by saying that it has no similar symmetry, we group it with the ornaments of

the closest symmetry.

We reduce the ornament collection from the previous experiment by eliminating

two three-color ornaments of p6 group. See the clustering results in Fig. 4.13.

Observe that the groups become more scattered. These two three-color or-

naments of group p6 are mostly similar to all groups due to their style-wise
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Figure 4.11: Experiment 5.

di�erences. Hence, they were pulling the clusters together; eliminating which,

put gaps between groups.

In the next experiment, we again replace the glide group in the previous ex-

periment, with �ve ornaments of pure translational group. Thus, taking into

account one ornament of p1 group which already was in the collection, there are

six ornaments of p1 group. The expected number of clusters to emerge is four.

See the clustering results in Fig. 4.14. Observe that the pure translational group

behaves similarly to the glide group in the previous experiments. It is separated

from rotational groups, but has some closeness to three two-color ornaments of

p6 group due to number of colors used in ornaments. The two-dimensional tSNE

result separates the rotational group from pure translational group, while the

SMDS result fails to do so.

In the ninth experiment, we add two three-color ornaments of p6 group to the
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Figure 4.12: Experiment 6.

collection of the previous experiment. Overall, �ve clusters are observed in

Fig. 4.15. Observe the two-dimensional tSNE result in Fig. 4.15(a). The newly

added ornaments pull other ornaments of rotational group, giving a clear sepa-

ration betwen the rotational groups and pure translational group.

Taking the last experiment as a base, we will consider three di�erent cases:

adding an ornament of cm group, adding an ornament of glide group, and an

ornament of p4 group. All newly added ornaments have no pairs in the collection.
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Figure 4.13: Experiment 7.

In the �rst case, we add an ornament of group cm. The symmetry group cm

introduces ornaments that contain no rotations. There are mirror re�ections

along one axis and glide re�ections in this kind of ornaments. Style-wise the

cm ornament is more close to p1 group in this collection. Thus, we expect it to

join the p1 group. This is exactly the case, as shown in Fig. 4.16. The topmost

similar ornaments in the retrieval results for both tSNE and SMDS (Fig. 4.16(d)

and (h), respectively) are the ornaments of pure translational group.
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Figure 4.14: Experiment 8.

In the second case, we add an ornament (a bird shown in white and blue) of pg

group instead. We again expect this one to join the pure translational group,

since no other ornaments of glide group exist in the collection. See the clustering

results in Fig. 4.17. Both two-dimensional and three-dimensional results classify

the pg ornament with the p1 group. Also observe the retrieval results obtained

according to distances of three-dimensional results. The ornaments of p1 group

are the closest ones to the ornament of pg group.

Finally, we add an ornament of rotational group. An ornament is chosen to

be of group for which there is no pair in the current collection. The current

collection has no ornament of p4 group. Thus, we add an ornament of p4 group,

and expect it to join the group, which is the closest to it style-wise. The closest

group is one of the groups among rotational groups. The newly added ornament

contains two colors, and since the number of colors is also part of style, we expect

75



(a) (b) (c)

(d) (e) (f)

Figure 4.15: Experiment 9.

it to join three two-color ornaments of group p6. See Fig. 4.18 for the clustering

results. In two-dimensional tSNE result ( Fig. 4.18(a)) we have �ve groups, and

the ornament of p4 group joins a group of three two-color ornaments of group

p6 just as we expected, while the two-dimensional SMDS result fails to separate

the groups properly. In three-dimensional results for both tSNE and SMDS we

have exactly �ve expected groups. Note that the ornament of p4 group joins the

p6 group only because there are no other ornaments of the same group. We add

one more ornament of p4 group to the collection in Experiment 12. We expect

it to join the previous ornament of p4 group, and these two to form a group

on their own. Observe Fig. 4.19. Six groups emerge from all clustering results,

except for the two-dimensional SMDS clustering result Fig. 4.19(d). It again

fails to separate the two-color ornaments into proper groups. Also, observe that

the two-dimensional tSNE result gives a clear separation of rotational groups

from pure translational group in Fig. 4.19(a). It is worth mentioning that the
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Figure 4.16: Experiment 10.

tSNE generally give a good separation between rotational and pure translational

groups, or rotational and glide groups, while SMDS generally cannot recognize

this distinction.

Next experiment is another illustration of style-wise closeness between glide

group and pure translational group. We have three ornaments of glide group,

two ornaments of pure translational group, and three ornaments of mariposas

group in our collection. The clustering results are shown in Fig. 4.20. We have

two major groups in two-dimensional cases. One group is mariposas group, the
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Figure 4.17: Experiment 11.

other is the glide and translational group. The closeness of those two groups

(glide and translational) can also be observed from the confusion matrices. How-

ever, internally, within this group we observe division into two. Two ornaments

of glide group form one cluster; this is also seen from the colors they are mapped

from three-dimensional cases. The third ornament joins two ornaments of pure

translational group and form another cluster. Recall that, in introductory chap-

ter we were claiming that this third ornament of glide group is perceptually

very similar to the ornament of pure translational group, which consists of two

di�erent blue and white birds. Since we consider those two ornaments style-wise

similar, the clustering results does not seem awkward.
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Figure 4.18: Experiment 12.

Up to now, all experiments have shown a style-wise closeness between pure

translational and glide groups. A single ornament of glide group joins the pure

translational group, or vice versa in the clustering results. Also, in the previous

experiment the glide group joined the pure translational group against the rota-

tional group. However, it is equally important to be able to distinguish between

those two groups. In the next experiment, we aim to see if the style-wise di�er-

ences between these two groups are captured via a collection of six ornaments,

two of which belong to pure translational group, and four are of glide group.

The clustering results give clear separation between those two groups as can be
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Figure 4.19: Experiment 13.

seen from Fig. 4.21. Observe that both tSNE and SMDS results separate the

translational group from glide group.

Consider another collection of six ornaments, where three of them belong to

pure translational group and remaining three are of glide group. Again, both

tSNE and SMDS results give precisely two groups, successfully separating the

glide group from pure translational group (Fig. 4.22).

Previous experiments reveal two big groups within the dataset: a rotational

group and a group that contains glide and pure translational groups. Just like

an ornament from pure translational group joins the glide group in the absence

of other ornaments from the same group, we expect an ornament from rotational

group to join any other rotational group against pure translational or glide group

in the absence of its own group in the given collection. The next experiment

aims to see if this is the case. Consider a collection of six ornaments: three

ornaments of pure translational group, two two-color ornaments of group p6
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Figure 4.20: Experiment 14.

and an ornament of p4 group. Since the latter one stands alone, we expect

it to join one of two groups. The p1 group contains nothing but translations,

while both p6 and p4 groups contain rotations. Thus, we expect the standalone

ornament to join the p6 group. The clustering results are shown in Fig. 4.23.

In all results the collection is divided into two groups: the rotational and pure

translational groups.

Consider another collection with six ornaments, where four of them belong to

pure translational group, one of them belong to mariposas group (p6), and the

last one is an ornament with three-fold rotations and mirror re�ections. We ex-

pect two standalone ornaments to join and form a group as a clustering result.

When the context is suppressed from images, these two standalone ornaments

get three-leaved rosette structures (the ornament of p6 group gets three-leaved

rosette structures due to color permutations), though structures have some dif-

ferences. This make them style-wise closer, against the pure translational group,
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Figure 4.21: Experiment 15.

which has no rosette structures at all. See Fig. 4.24 for clustering results for this

experiment. Observe that both two-dimensional and three-dimensional tSNE

results give two distinct groups. The confusion matrix reveals no similarity be-

tween two groups at all. SMDS results on the other hand give three groups,

separating pure translational group into two groups. Yet, the rotational orna-

ments form one group.

We add one more ornament to the previous collection. The ornament is of group

p4. Since it has no other ornament that exactly matches it style-wise, we expect

it to join the rotational group: the group with an ornament of p6 group and

an ornament with three-fold rotations. From the clustering results depicted in

Fig. 4.25 we can see that the groupings are just as we expected.

We add one more ornament to the collection of the previous experiment. Its

symmetry group is pg. We have already discussed style-wise closeness between

pure translational and glide groups. Thus, we expect the newly added orna-
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Figure 4.22: Experiment 16.

ment to join the pure translational group. The clustering results are shown in

Fig. 4.26. The two-dimensional results for both tSNE and SMDS give expected

two groups. Three-dimensional results have scattered groups assigning wide

range of color shades to ornaments. However, the confusion matrix for tSNE

result also reveals two expected groups.

Previous experiments have shown that the rotational groups are closer style-wise,

and tend to join against pure translational or glide groups. Next experiments

show how the rotational groups are classi�ed internally. The aim is to see if the

style-wise di�erences between di�erent groups are captured from the content

suppressed images.

We consider a collection of eleven ornaments: three ornaments with three-fold

rotations and mirror re�ections, three ornaments ofmariposas group, three two-

color ornaments of p6 group and two ornaments of another p6 group. Although

there are only two groups: those with three-fold rotation and those with six-fold
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Figure 4.23: Experiment 17.

rotations, there are style-wise di�erences between ornaments of p6 group. The

mariposas are three-color ornaments, where only three-fold rotation is encoun-

tered when we take into account color permutations. The next p6 group consists

of three two-color ornaments, where the color permutation also introduces only

three-fold rotations. The last group consists of two ornaments that preserve the

entire six-fold rotation in one color. As one can see, despite being considered

as one group according to symmetry group, those ornaments have style-wise

di�erences. We expect four groups to emerge from our clustering results. See

Fig. 4.27 for the four clusters. As we expected, suppressing the images enabled

to capture style-wise di�erences within p6 groups.

For the next experiment, we take larger set of rotational ornaments: three or-

naments with three-fold rotations and mirror re�ections, three ornaments of

mariposas group, three two-color ornaments of p6 group, two three-color orna-

ments of p6 group and two ornaments of group p4. We expect these �ve groups
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Figure 4.24: Experiment 18.

to emerge. Clustering results for the experiment are shown in Fig. 4.28. We

see �ve groups that we were expecting to see. The two-dimensional results give

interesting placement of groups. In two-dimensional result for tSNE the orna-

ments of p6 group are separated from ornament with three-fold rotations. The

ornaments with four-fold rotations are right in the middle of these two groups.

The order of rotation increases as one goes upward. In two-dimensional result

for SMDS the p6 groups are separated from other two groups, and the order

of rotation increases as one moves from right to left. The confusion matrix of

tSNE result illustrates a strong connection between p6 groups.

We mentioned above that two three-color ornaments of group p6 have some level

of similarity to all groups. Thus, they generally pull groups together. For the

next experiment, we eliminate these two ornaments from the previous collection.

See the clustering results in Fig. 4.29. Observe that the arrangement of groups

is now di�erent than it was in the previous experiment. The group with three-
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Figure 4.25: Experiment 19.

fold rotation and mirror re�ection become isolated. The p4 group and two p6

groups are on the other side. This is because the group with three-fold rotations

exhibit triangular structures along with three-leaved rosettes in their ω �elds,

while the other groups contain only three- or four-leaved rosette structures. Also

the number of colors used for p4 group makes it close to the group of two-color

p6 ornaments.

We further increase our collection to twenty-six ornaments, which combines Es-

cher ornaments with a large collection of non-Escher ornaments. This set con-

tains three ornaments of mariposas group, three ornaments of two-color p6

group, seven ornaments with three-fold rotations and mirror re�ections, two or-

naments of p4 group, and eleven ornaments of p4g. The clustering results for

this collection is given in Fig. 4.30. We observe six groups from two-dimensional

tSNE result and �ve groups from two-dimensional SMDS result. In both result

the group with three-fold rotations and re�ections has separated into two. They
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Figure 4.26: Experiment 20.

are separated mostly due to triangular structures in two ornaments that prevail

in them. However, from three-dimensional results one can observe that they are

mapped to color that is close to the color of their group. The same is with the

group with four-fold rotations in two-dimensional tSNE result. However, the

colored result gives four major colors. Di�erent shades of blue represent the

group with four-fold rotations and mirror re�ections. Purple is given to three

ornaments of two-color p6 group. Burgundy is assigned tomariposas group, and

there is a big group comprising di�erent shades of brown, which contains seven

ornaments with three-fold rotations and mirror re�ections. The ornaments from

p4 group preserve four-fold rotation in one color, while for most of the ornaments

of p4g group four-fold rotation is lost due to color permutation, leaving only two-

fold rotations. Of course, we should expect those two groups to be separated.

However, some ornaments, particularly an ornament with angels and demons

have both dumbbell-like structures and swastika-like structures. Thus, it pulls
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Figure 4.27: Experiment 21.

the ornaments that exhibit dumbbell-like structures, and pulls other ornaments

with four-leaved rosette structures to the group.

We add two three-color ornaments of p6 group to the previous collection. At

a �rst glance, we see four major groups from both two-dimensional and three-

dimensional results (Fig. 4.31). There is a big group consisting of ornaments

with four-fold rotations, a group of three two-color ornaments of group p6, a

mariposas group, and another big group consisting of seven ornaments with

three-fold rotations and mirror re�ections and two three-color ornaments of

group p6. The last group is further divided into three: �ve ornaments with

three-fold rotations and mirror re�ections, two ornaments with three-fold rota-

tions and mirror re�ection, and two three-color ornaments of group p6. Observe

the closeness of two groups: a group with two-color ornaments of group p6 and

the four-fold rotational group. Again, the number of colors in ornaments is

considered as part of style making this two groups similar in that aspect.
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Figure 4.28: Experiment 22.

We add one more ornament with three-fold rotations and mirror re�ections to

the previous collection. It joins the group of two ornaments with three-fold

rotations and mirror re�ections, which is separated from the main group of

ornaments with three-fold rotations (Fig. 4.32). These three ornaments stay

separate from others due to triangular structures that prevail in their content

suppressed forms and lack of rosette structures. Observe that in two-dimensional

tSNE result the ornaments with three-fold and six-fold rotations stay separate

from those with four-fold rotations.

In contrast to pure translational and glide groups, rotational group consists of

many di�erent groups. There are groups with three-fold, two-fold, four-fold, and

six-fold rotations. There are nuances even for the ornaments that are considered

to be in the same group according to symmetry group classi�cation. There are

ornaments of p6 group that preserve entire rotation in one color, ornaments

of p6 group that preserve only three-fold rotations in one color (mariposas),
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Figure 4.29: Experiment 23.

ornaments of p4 group that preserve entire rotation in one color, and those that

do not, etc. With the content suppressed images, we can see those style-wise

di�erences, and indeed, we see those groups emerge from our clustering results.

Furthermore, those groups do not stand isolated, and we can see the relations

between di�erent styles. Generally, relations between the groups are context

dependant, and the groups that are close in one experiment might fall apart

in the next experiment. Following experiments aim to show the preferences of

di�erent clusters. We will see which groups are close to each other style-wise

within rotational groups.

We consider an ornament collection of nine ornaments: three ornaments of

mariposas group (p6), three two-color ornaments of p6 group, and three or-

naments with three-fold rotations and mirror re�ections. We expect these three

groups to emerge from clustering results. Fig. 4.33 illustrates the clustering

results that show three groups we were expecting to see. Observe that in two-
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Figure 4.30: Experiment 24.

dimensional results two p6 groups are separated from the group with three-fold

rotations and mirror re�ections.

We add two three-color ornaments of group p6 to the previous collection. These

two ornaments form a group on their own, so overall four groups emerge (Fig. 4.34).

Again, observe that there is a clear separation between the p6 groups and the

group with three-fold rotations. The same separation is observed in the confu-

sion matrix for tSNE three-dimensional result.

Consider another set of ornaments, where we have �ve ornaments with three-fold

rotations and mirror re�ections and three ornaments of mariposas group. We

expect exactly these two groups to emerge. See the clustering results in Fig. 4.35.

All results show two groups that we expected to see. If we add two three-color

ornaments of group p6 to this collection, we see that it joins the mariposas
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Figure 4.31: Experiment 25.

group (Fig. 4.36). Notice how all results separate the p6 group from the group

with three-fold rotations and mirror re�ections. We add two more ornaments

with three-fold rotations and mirror re�ections to the collection. They form

a group on their own Fig. 4.37. From tSNE results we still observe a clear

separation between the p6 groups and the groups with three-fold rotations and

mirror re�ections.

However, the results shown in previous �ve experiments are not always the

case, i.e. three-fold rotational group is not always that distant from the p6

group. These two groups join when the four-fold rotational group is intro-

duced. Consider a collection of eight ornaments: three ornaments of p4g group,

three ornaments with three-fold rotation and mirror re�ections, one ornament

of mariposas group, and one two-color ornament of group p6. Two standalone
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Figure 4.32: Experiment 26.

ornaments join the three-fold rotational group, against the p4g group (Fig. 4.38).

Thus, those two standalone ornaments are style-wise more similar to three-fold

rotational group rather than the four-fold rotational group.

We continue the experiments with the next collection: three ornaments of

mariposas group, three two-color ornaments of group p6, three ornaments with

three-fold rotations and mirror re�ections, and three ornaments of p4 group

taken from iOrnament database. We expect exactly those four groups to emerge,

as a result of clustering. The clustering results are illustrated in Fig. 4.39. All

results give four groups we were expecting to see. Furthermore, observe that

the p6 groups and the group with three-fold rotations and mirror re�ections join

against the p4 group. This is more obvious from the confusion matrix, which

shows almost no connection between the p4 group and other groups.
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Figure 4.33: Experiment 27.

We consider another collection where �ve ornaments of group p4, three orna-

ments of group p6 and two ornaments of p3 group are given. All ornaments

are from iOrnament dataset. See the clustering results in Fig. 4.40. We see the

same scenario: p6 groups join the p3 group against the four-fold rotational group.

Thus, the clusters that emerge are highly dependent on context. This way of

clustering the ornaments preserves continuity of symmetry, and shows relations

between the groups. Even within the p6 groups we observe internal preferences

as shown in Fig. 4.41. Observe that the mariposas group and two three-color

ornaments of p6 group join against the group of three two-color ornaments of

group p6.

The next experiment is taken as base for subsequent seven experiments. It

contains a collection with three ornaments of mariposas group, three ornaments

with three-fold rotations and mirror re�ections, and three ornaments of group

p4g. See the clustering results in Fig. 4.42. All results contain three groups.
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Figure 4.34: Experiment 28.

Notice, also, that the mariposas group join the group with three-fold rotations

against the p4g group.

We add one more ornament of p4g group (angels and demons) to the previous

collection. In contrast to the other ornaments of p4g group, this one retains

the whole four-fold rotation in one color. However, from our clustering results

we see it joining the other p4g ornaments (See Fig. 4.43). This happens due to

dumbbell-like structures that prevail in the ω �eld of newly added ornament.

Another ornament is added to the collection of the previous experiment. This

time the newly added ornament is of pgg group. Recall that there is no other

ornament of the same group in the current collection. Thus, we expect it to

join the p4g group. The reason behind this is that the p4g group contains

two-fold rotations which are represented as dumbbell-like structures in their

transform domain. The pgg group contains two-fold rotations followed by glide

re�ection. Thus, those two-fold rotations also will be represented by dumbbell-
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Figure 4.35: Experiment 29.

like structures in their transform domain making these two groups similar in the

current context. The pgg ornament has more similarity to the p4g group than

to any other group in the current context. Fig. 4.44 show the clustering results

just as we expected. The retrieval results for most similar ornaments show the

p4g group in the �rst place both for tSNE and SMDS results (Fig. 4.44 (d) and

(h)).

For the next experiment we discard one ornament from the p4g group (angels

and demons) to see if it in�uences the clustering result. As shown in Fig. 4.45 we

still obtain the same clusters except that for tSNE result the mariposas group

becomes closer to the group with three-fold rotations and mirror re�ections,

giving overall two precise clusters.

There is one more case we need to explore using the previous ornament col-

lection. We add one ornament of pure translational group. From the previous
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Figure 4.36: Experiment 30.

experiments we saw that the pure translational group is close to the glide group.

Hence, we expect the newly added ornament to join the p4g group, where the

ornament of pgg group resides. See the clustering results in Fig. 4.46. Observe

that for all results the pure translational ornament comes with the p4g group.

Also observe from the tSNE results the retrieval for most close ornaments for

two standalone ornaments show that they �nd each other as the most close one

in the current context (Fig. 4.46 (d) and (e)).

For the following experiment we return our ornament set to the base state it

was four experiments before, i.e. collection with three ornaments of mariposas

group, three ornaments with three-fold rotations and mirror re�ections, and

three ornaments of group p4g. We add one more ornament with three-fold

rotations and mirror re�ections. It is not from Escher's collection and is of

computer-based creation, just like three other ornaments of p4g group. Now,

if we do not suppress the content of ornaments, we might get the clustering
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(d) (e) (f)

Figure 4.37: Experiment 31.

results where this newly added ornament would join the p4g group. This is

because of the colors used in ornaments. Four of them have sharp, unnatural

colors in contrast to the ones painted by Escher. However, since we do suppress

the content, we expect the newly added ornament to join the ones that have

similarity in style, i.e. three ornaments with three-fold rotations and mirror

re�ections. This is exactly what we see from both two dimensional and three

dimensional clustering results (Fig. 4.47).

Again, we take the previous collection and add one ornament of p4 group. Re-

trieval results, based on three dimensional results, for the p4 ornament are shown

in Fig. 4.48(d) and (h). As one can see, the �rst three choices of closest orna-

ments are the ones from group p4g. The newly added ornament cannot be

seen on the two-dimensional results due to occlusion, and yet it comes with the

square group. This can be further checked from three-dimensional result, where

the newly added ornament takes the color close to the colors of p4g group. Re-
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(d) (e) (f)

Figure 4.38: Experiment 32.

call that for the confusion matrix, we do not consider standalone ornaments.

Interestingly, we expected the ornament of p4 ornament to join any other group

but the p4g group. This is because the ornaments of p4g group in the collec-

tion do not preserve four-fold rotations due to color permutations and maximum

what we get from this group are dumbbell-like structures, while the ornament

we added does preserve four-fold rotations. Therefore, our expectation would

be that p4 ornament joins other groups, where rosettes introduced due to rota-

tions. The p4 ornament might join the p4g group because of the �nite nature

of our ornament, and of its small size. Because of the cut on the edges of the

ornament dumbbell-like structures occur. Nevertheless, for the next experiment

we consider another ornament of p4 group instead of previous p4 ornament,

and see if the same scenario occurs. In Fig. 4.49(d) and (h) one can see the

retrieval results for this ornament. Observe that the closest ones are the ones

with three-fold rotations and the p4g group is the least similar one to the given

ornament. In addition, in the clustering results both for two-dimensional and
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(d) (e) (f)

Figure 4.39: Experiment 33.

three-dimensional results, it joins the mariposas group.

4.2.1 Groups Hierarchy

Experiments conducted in the previous sections show the relations between dif-

ferent groups. By changing the context in every experiment, we are able to

see structural relations of di�erent groups. Fig. 4.50 illustrates the hierarchy

inferred from clustering results. Observe that the dataset we consider is sepa-

rated into two major groups, one containing the rotational groups and the other

containing pure translational and glide groups. By changing the granularity

of considered ornament set in each experiment, we further see the relations of

groups within rotational groups. We highlight the experiments that show this

relation between groups.

When rotational groups come with the pure translational group or glide group
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(a) (b) (c)

(d) (e) (f)

Figure 4.40: Experiment 34.

or both in a context, despite having stylistic di�erences they join against the

other two groups. This situation is illustrated by experiments shown in Fig. 4.51.

In the �rst experiment (Fig. 4.51(a)) there is a clear separation between the pure

translational group and rotational groups. In the second experiment (Fig. 4.51(b))

three ornaments from three distinct rotational groups join against the pure trans-

lational group. The last experiment shows that the glide and pure translational

groups join against the rotational (mariposas) group.

By changing the context we are experimenting on, we can change the granularity

in group relations. Thus, if we consider only ornaments from pure translational

and glide group, we obtain two distinct groups, while in a bigger context these

two groups tend to join. See Fig. 4.52 for experiments showing these two groups

separated.

If we eliminate pure translational and glide groups from the context, we can ob-

serve the relations between di�erent rotational groups. Within rotational groups,
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(a) (b) (c)

(d) (e) (f)

Figure 4.41: Experiment 35.

the ornaments with four-fold rotations di�er style-wise from other groups. Ex-

periments in Fig. 4.53 show that the ornaments with three-fold and six-fold

rotations are style-wise more similar and tend to join against the ornaments of

p4 or p4g groups.

While ornaments with three-fold and six-fold rotations join against the orna-

ments with four-fold rotations, eliminating p4 and p4g groups from the context

changes the group relations in clustering results. In the context, where only

ornaments with three-fold rotations and ornaments with six-fold rotations are

considered, another two major groups occur: one consisting of group with three-

fold rotations and another of six-fold rotations. Such situations are illustrated

by experiments in Fig. 4.54.

If we go further and eliminate ornaments with three-fold rotations from the

context, the set will consist of only ornaments of p6 group. As we discussed

earlier, despite being in the same symmetry group, those ornaments have stylistic
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(a) (b) (c)

(d) (e) (f)

Figure 4.42: Experiment 36.

di�erences. Thus, if only ornaments of p6 group are considered, they are divided

into several groups, each group containing the ornaments that are similar style-

wise (Fig. 4.55).

4.2.2 Quanti�cation of the Accuracy of Clustering

In our quantitative analysis, we consider forty-three experiments. We divide

them into two groups: fourteen experiments are the ones where only two clusters

are expected to emerge (like, rotation vs. pure translation, three-fold rotations

vs. six-fold rotations, etc), and twenty-nine experiments are the ones where

emerged clusters are more than two. For the experiments, we compute within

and between group average distances. The distances are computed from the

three-dimensional reduction results for both SMDS and tSNE. If there are �ve

elements in the group, in order to obtain within group distance, we compute
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(a) (b) (c)

(d) (e) (f)

Figure 4.43: Experiment 37.

the average of the distances between these �ve elements. If there are three

groups in the experiment, in order to obtain between group distances for one

group, we compute the average of distances of one group to all other groups.

For better classi�cation results, it is natural, to expect small within group and

large between group distances.

Fig. 4.56 shows within and between group average distances for fourteen two-

group experiments for both SMDS and tSNE results. The �rst column shows

which groups are being clustered in the current experiment. For example, �rst

two experiments cluster glide and pure translational groups, the third exper-

iment clusters rotational group (ornaments with six- and four-fold rotations)

against pure translational group, and so on. The numbers shown in red rep-

resent average within group distances and the blue numbers represent average

between group distances. The ratio between within and between group average

distances are shown in the middle in black. Notice that the smaller the ratio
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(h)

Figure 4.44: Experiment 38.

between within and between group distances, the better the classi�cation, since

small values imply that the groups have small within group distances and large

between group distances. The last row shows the average of values for all four-

teen experiments. Observe that the clustering results for tSNE are better than

for SMDS for two-group experiments.

The chart illustrating the ratio between within and between group average dis-

tances for all fourteen experiments is given in Fig. 4.57. Observe that for all
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(d)

Figure 4.45: Experiment 39.

experiments the clusters obtain via tSNE have smaller values than the ones

obtained via SMDS.

The rest twenty-nine experiments contain more than two groups. There are,

overall, seventeen groups that are shown in Fig. 4.58. The same group may occur

in di�erent experiments in combination with di�erent ornaments of the same

group. We separate those combinations into di�erent subgroups. For example,

see G6 group, which is further divided into three di�erent subgroups. The �rst
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(i)

(j)

Figure 4.46: Experiment 40.

one contains three commonly occurring ornaments with three-fold rotations and

mirror re�ections. The other two groups occur when one or two ornaments with
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Figure 4.47: Experiment 41.

three-fold rotations and mirror re�ections are added to the �rst subgroup. At

any given experiment, only one subgroup of the group participates.

The same group may occur in more than one experiment. For each group, we

compute the average within and between group distances in one experiment,

and then we take the average of those values obtained for all experiments in

which the given group took part. See the chart in Fig. 4.59 for average within

and between group distances for all seventeen groups for both SMDS and tSNE

results. Observe that both SMDS and tSNE have good separation of clusters,

which can be inferred from a good separation between within (green diamonds)

and between (brown squares) group distances. For both SMDS and tSNE, within

group distances lie below 0.2, and between group distances lie above 0.4. Notice

the last four groups in both charts have the highest between group distances.

Those are group G10 and three subgroups of G11 group. We infer from the

results that these four groups are well separated from all other groups in all
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Figure 4.48: Experiment 42.

experiments they took part.

Just like for two-group experiments, for experiments with more than two groups

we show the ratio between the average within and between group distances in

Fig. 4.60. While for two-group experiments there was a big di�erence between

SMDS and tSNE results (average of 0.44 and 0.25, respectively), here the av-

erage values are close (average of 0.13 and 0.14, respectively). Those results

indicate that for two-group experiments tSNE give better clusters, while for ex-
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Figure 4.49: Experiment 43.

periments with more than two groups both SMDS and tSNE give almost the

same clustering results.
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Figure 4.50: Hierarchy illustrating the relations between di�erent groups. Two

major groups are observed, the rotational groups and the pure translational and

glide groups. These are further separated into groups each time separating the

farthest group in the current context.

(a) (b) (c)

Figure 4.51: Three di�erent experiments showing that pure translational group

is stylisticly close to glide group. These two groups are always separated from

rotational groups. Rotational groups tend to join against pure translational and

glide groups.
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(a) (b)

Figure 4.52: Two experiments indicating that despite being style-wise similar,

the glide and pure translational groups are well separated.

(a) (b) (c)

Figure 4.53: Within rotational groups, the ornaments with tree-fold and six-fold

rotations tend to join against the p4 and p4g groups.

(a) (b)

Figure 4.54: Eliminating p4 and p4g groups from the context, shows di�erences

between the ornaments with three-fold rotations and the ornaments with six-fold

rotations.
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Figure 4.55: The p6 group internally is also divided into several groups. Each

group contains style-wise similar ornaments.
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Figure 4.56: Experiments containing only two groups. Numbers shown in red

represent within group average distances. Between groups average distances

shown in blue. The ratio between within and between group average distances

shown in balck. Last row shows average values for all values of the experiments.
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Figure 4.57: Experiments containing only two groups. The ratios between within

and between group average distances are plotted. For tSNE results the ratio is

below 0.4 for nearly all experiments, indicating a better separation of groups.
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Figure 4.58: Groups that took part in twenty-nine experiments with more than

two-groups.
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(a) SMDS (b) tSNE

Figure 4.59: Within vs. between group avgerage distances for experiments with

more than two groups. Observe that both SMDS and tSNE results give good

separation of di�erent groups.

Figure 4.60: The ratio between within vs. between group avgerage distances for

experiments with more than two groups. Observe that both SMDS and tSNE

give approximately similar results.
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CHAPTER 5

COMPARING DIFFERENT LEVELS

In Chapter 3, we introduced content suppression technique as a new way of

studying ornaments. We also extensively discussed the levels of content sup-

pression. Starting from original ornament, which is the �rst level, we go further

to the second level, where the binarized images, called masks, are obtained from

original ornament. At this stage, we eliminate the color information. We go fur-

ther to the third level, where we suppress shape information applying a linear

transform to the binarized images. We call the linear transform of an image, the

ω �eld of an image. Clustering images of di�erent levels give clustering results

based on di�erent factors that are featured in the given image. Thus, clustering

raw images yield results where emergence of a cluster is highly in�uenced by

colors and shapes that are present in an image. Clustering according to binary

images introduces more style based clustering, since the information on color

permutations and the number of colors, which code the style, are present in the

given images. However, the clusters to be emerged are also in�uenced by shapes,

since the content is not fully suppressed at this stage. Finally, clustering images

where the content is fully suppressed give style-based clustering. The clustering

results also show the relation between di�erent clusters depending on the given

context.

In this chapter, we analyze each level, comparing the clustering results based

on di�erent levels of content suppression. Various clustering results are given.

In order for a reader to appreciate the advantages of using content suppressed

images, we also present quantitative analysis.
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5.1 The Method

For each experiment, we show the clustering results for all levels of content

suppression. Thus, in each experiment, given a set of ornaments, we obtain

three similarity matrices: one based on raw images, one based on masks, and

one based on ω �elds of masks. The similarity matrices for masks and ω �elds

are obtained using the same method described in Chapter 4. When computing

the similarity matrix for raw images, we directly detect SIFT features from raw

images, since at this stage we do not have masks. We, then, just count the

number of matches between di�erent raw images to form a similarity matrix.

All three similarity matrices are then embedded to lower dimension for clustering

and visualization purposes. Since in Chapter 4 the tSNE clustering results shown

to give better results in this chapter we will be using only tSNE dimensionality

reduction technique. Thus, for each experiment we obtain three tSNE results

that are illustrated in �gures for comparison purposes. Fig. 5.1 gives an overview

on the levels we consider in our experiments.

We expect the tSNE results for raw images to group together ornaments with

similar shapes and color information. At this stage, no style information exists.

When the ornament similarity is measured by measuring the similarities of the

respective binary masks, we expect that the similarity measure will place or-

naments that use similar shapes as motifs and permute the colors in the same

manner. As content suppression proceeds, suppressing any shape and color in-

formation, the emerged clusters are expected to be according to style of images.
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Figure 5.1: Levels of Content Suppression. (Left) Clustering result based on

raw images. (Middle) Clustering result based on masks of the images. (Right)

Fully content suppressed images and clustering result.

5.2 Experiments

We give experimental results for seventeen selected experiments out of fourty-

three experiment set of Chapter 4. We will refer to those forty-three experiment

set in this chapter. As it was mentioned earlier, for each experiment we give

three clustering results: one based on raw images, one based on masks, and

one based on content suppressed images. The results are illustrated in Figs 5.2-

5.18. In the following experiments we compare how di�erent levels of content

suppression cluster di�erent groups, and analyze how those levels handle group

relations in their clustering results. In the next section we give quantitative

analysis for all experiments, comparing the clustering results for all three levels

of content suppression.

We begin with Experiment 5 of the experiment set, where we have a collection

of sixteen ornaments: three ornaments of mariposas groups, three two-color
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ornaments of group p6, two three-color ornaments of group p6, three ornaments

with three-fold rotations and mirror re�ections, and �ve ornaments of glide

group. We expect exactly these �ve groups to emerge as a clustering result.

When the clustering is performed on raw images, the emerged clusters (Fig. 5.2

(a)) are not meaningful. Observe that, even themariposas group, which consists

of almost the same ornaments, is separated. As soon as we begin suppressing

the content by binarizing the images, meaningful clusters begin to emerge. The

clustering result for masks, in which the color is suppressed, shows three correct

groups (Fig. 5.2 (b)). Notice that, at this stage, the images with motifs that vary

signi�cantly could not be clustered correctly. As content suppression proceeds

by suppressing also the shape information, all groups are correctly identi�ed

showing style-wise similar ornaments in one cluster (Fig. 5.2 (c)).

The next experiment is the Experiment 6 from experiment set, where we add

one more ornament to the previous collection. It belongs to pure translational

group. Since there are no other ornaments of the same group, we expect the

newly added ornament to join the glide group. The clustering result for raw

images (Fig. 5.3 (a)) groups all ornaments as one big group, except for two

small groups that stand apart. Suppressing the color information gives three

correct clusters (Fig. 5.3 (b)). For clustering results for both raw images and

masks, we cannot say anything regarding the newly added ornament, because,

in both cases, it joins the group, which could not be clustered correctly. When

the content is fully suppressed, the newly added ornament �nds the group which

is the closest to it style-wise (Fig. 5.3 (c)). Observe also in the �nal clustering

result, a group of three-color ornaments of group p6 reside very close to the glide

group. As we discussed in the previous chapter, this occurs due to similarity

in number of colors that the ornaments of both groups contain. The number of

colors that the ornaments contain also codes the style, in�uencing the relations

between the groups.

For the next experiment we choose Experiment 9 from experiment set, and

replace the glide group of �rst experiment (Experiment 5), with six ornaments

of pure translational group. We still expect �ve clusters to emerge as a clustering

result, the �fth cluster being the group of newly added pure translational group.
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.2: Experiment 5. Sixteen ornaments are considered. Five groups are

expected to emerge as a clustering result. We obtain correctly clustered groups

only when the content suppressed images are considered (c).

The clustering result for raw images (Fig. 5.4 (a)), just like in the previous

experiments, is not meaningful. Just by suppressing the color information in

ornaments, we obtain clusters with almost all groups correctly identi�ed, as

shown in Fig. 5.4 (b). Here, only the pure translational group is separated into

two. This is corrected in the �nal result (Fig. 5.4 (c)), when the content is fully

suppressed. Also, observe how the groups are placed on the plane. The y-axis

separates the rotational groups from pure translational group.

We add one more ornament to the previous collection forming Experiment 11

from experiment set. The newly added ornament is of group pg, and we expect

it to join the pure translational group, which is the closest group style-wise.
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.3: Experiment 6. Enlarging the ornament set in Fig. 5.2 with an

ornament of group p1. As expected the newly added ornament joins the glide

group, which is the closest group style-wise. The clustering results become more

re�ective of the style as we move from (a) to (c).

The expected result is seen only from the clustering result for fully content

suppressed images in Fig. 5.5 (c). In the clustering result for masks (Fig. 5.5

(b)) the pg ornament joins the group of ornaments with three-fold rotations and

mirror re�ection, most probably due to shape similarity in ornaments of this

group, while clustering of raw images carry no meaning.

We consider Experiment 10 as a next experiment, where we add an ornament of

cm group to the ornament set of Experiment 9 instead of pg ornament of previous

experiment. We again expect it to join the p1 group, since the cm group contains

no rotations. See the clustering results in Fig. 5.6. In the clustering results based
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.4: Experiment 9. Five ornaments of glide group in Fig. 5.2 are replaced

by six ornaments of pure translational group. Desired �ve groups emerge only

when the content is fully suppressed (c). Observe that the rotational groups are

separated from the pure translational group.

on raw images as well as on binary images, the newly added ornament joins the

rotational group. The ornament joins the pure translational group only when

the clustering is performed on content suppressed images. In Fig. 5.6 (c) we

again observe a separation of rotational groups from pure translational group.

We consider another scenario, and instead of the cm ornament, an ornament of

p4 group is added to the ornament set of Experiment 9. A new collection forms

Experiment 12. The ornament of p4 group contains no pair in this collection,

thus we expect it to join one of the rotational groups. Since it is a two-color

ornament, we further expect it to join the p6 group with two-color ornaments.
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.5: Experiment 11. Exdending the set in Experiment 3 with an ornament

of pg group. As expected the newly added ornament joins the pure translational

group in (c).

We observe the expected clustering result only for content suppressed images

(Fig. 5.7).

The ornament of p4 group of the previous experiment (Experiment 12) joins

the p6 group only because it has no other ornament of its own group in the

given collection. We, next, perform an Experiment 13 which contains one more

ornament of p4 group. Now, we expect the ornaments of p4 group to form a

cluster of their own, thus, forming six clusters. Fig 5.8 shows desired clusters

for both binary and content suppressed images, while the result for raw images

mixes all groups. Although the clustering result based on binary images give

the desired six groups, we cannot infer any meaning from group relations, while
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.6: Experiment 10. Exdending the set in Experiment 9 with an ornament

of cm group. As expected the newly added ornament joins the pure translational

group (c).

for the content suppressed images the rotational groups are separated from pure

translational group. This kind of relation makes more sense than the relations

inferred from binary image clustering.

Next, we present the Experiment 14, where we consider eight ornaments, three

of which are mariposas (p6), two are of pure translational group and three

of glide group. While we expect three groups to emerge, we also expect the

mariposas group to reside far from other two groups. The result for raw images

shows two major clusters (Fig. 5.9 (a)), the second is further divided into two

clusters, one containing pure translational group and the other is a glide group.

However, themariposas group is separated. For the mask images we also observe
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.7: Experiment 12. Enlarging the set in Experiment 9 with an ornament

of p4 group. Among the rotational groups, it joins the p6 group with two-color

ornaments.

three clusters, but the rotational group is not well separated from the other

two groups (Fig. 5.9 (b)). As we fully suppress the image content we obtain

three clusters, and the rotational group is well separated from other two groups

(Fig. 5.9 (c)). Observe, however, that one ornament of glide group resides within

the pure translational group. In introductory chapter, we talked about the

style-wise similarity of this ornament of glide group to the other ornament of

pure translational group (an ornament consisting of two blue and white birds

translated in two directions). Thus, seeing these two ornaments together does

not seem awkward.

While the pure translational group has style-wise similarities with the glide
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.8: Experiment 13. Adding one more ornament to the collection in

Experiment 12 introduces new group.

group, we expect these two groups to be well separated when no other groups

are considered. We aim to see how di�erent levels of content suppression handle

this situation with Experiment 16 of the experiment set, which contains of six

ornaments: three ornaments of pure translational group and three ornaments of

glide group. We present the dendrograms (clustering hierarchy) of the clustering

results for this experiment in Fig. 5.10. Observe that the orange group (glide

group) is fully separated from the green group (pure translational group) only

when the content is fully suppressed (Fig. 5.10 (c)). This result shows that

clustering results based on raw and mask images are not capable of capturing

style-wise di�erences between these style-wise very similar groups.

For the next experiment, we consider the collection set of the Experiment 17.
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.9: Experiment 14. Considering a rotational groups vs. pure and glide

groups. The content suppressed image clustering give precise separation of two

groups.

It consists of six ornaments: three ornaments of pure translational group, two

two-color ornaments of p6 group and one ornament of p4 group. Since the p4

ornament has no pair, we expect it to join two ornaments of group p6. Thus, we

expect two clusters to emerge, one translational group and one rotational group.

Fig. 5.11 illustrates the clustering results. While the clustering result for raw

images (Fig. 5.11 (a)) also shows the desired two groups, the internal relations

between the ornaments reveal that the clustering results are highly in�uenced

by the shape similarities. One of the ornaments of p6 group is considered to be

closer to an ornament of p4 group, rather than the ornament of the same group,

due to �sh shapes that the both ornaments contain. Only after suppressing the
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.10: Experiment 16. Dendrograms. Considering pure translational

group vs. glide group. Two groups are fully separated only for content sup-

pressed images.

full content, we observe the expected two clusters (Fig. 5.11 (c)). Notice that

the internal style-wise ordering also makes sense.

In subsequent seven experiments, we consider the experiments containing a col-

lection set consisting only of rotational groups. Our aim is to analyze how

di�erent levels of content suppression capture the style-wise di�erences between

various rotational groups. We start with Experiment 22 which contains an orna-

ment set consists of thirteen ornaments: three mariposas (p6), three two-color

ornaments of group p6, two three-color ornaments of group p6, two ornaments of

group p4, and three ornaments with three-fold rotations and mirror re�ections.

We hope to see exactly these �ve clusters to emerge. In the clustering result for

the raw images (Fig. 5.12 (a)) none of the groups are correctly identi�ed. As we
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.11: Experiment 17. Dendrograms. Considering pure translational

group vs. rotational groups. As expected the ornament of p4 group joins the

p6 group. Also, for the �nal result, the internal clustering is just as one would

expect, in contrast to the result given in (a).

start to suppress the content, ornaments that are style-wise close to each other

begin to merge. Three correct groups emerge after suppressing the color infor-

mation. All �ve groups emerge when both the colors and shapes are suppressed

(Fig. 5.12 (c)). Notice that the groups are located in the 2D plane in a manner

implying an increase in rotation order as one moves from right to left.

We further consider the Experiment 24, which contains a larger collection of rota-

tional groups. The collection consists of twenty-six ornaments: three ornaments

of mariposas group, three ornaments of two-color p6 group, seven ornaments

with three-fold rotations and mirror re�ections, two ornaments of p4 group and

eleven ornaments of p4g group. Again as we move from (a) to (c) in Fig. 5.13

we see the clusters that are more re�ective of the style. The clustering based on
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.12: Experiment 22. Rotational groups. The clustering result for content

suppressed images gives �ve groups each containing style-wise similar ornaments.

Also, observe the placement of ornament on 2D plane. The order of rotation

increases as we move right from left.

raw images mixes di�erent groups giving no meaning regarding the clustering

preferences. For both mask and content suppressed images, we obtain similar

groups. Note that in this experiment only by suppressing the colors we are able

to cluster ornaments according to their styles. Also, observe that for both mask

and content suppressed clustering results the four-fold rotational group is sepa-

rated from other rotational groups. This indicates that this group is style-wise

di�erent from the other groups.

The next experiment is the Experiment 25 of the set. Its collection contains two

three-color ornaments of p6 group in addition to the ornaments of the previous
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.13: Experiment 24. Considering a larger collection of rotational groups.

Only by suppressing the color we obtain the desired groups.

experiment. The ornaments are scattered and no grouping is observed for raw

images as shown in Fig. 5.14 (a). While in the previous experiment the clustering

result based on masks grouped the ornaments correctly, in the current context

it fails to discriminate the newly introduced two ornaments (Fig. 5.14 (b)).

Observe that they join the four-fold group. All groups are correctly identi�ed in

the last result containing the content suppressed images. Also, observe that the

groups with two-color ornaments are separated from the groups with ornaments

of more color.

As a next experiment, we consider Experiment 26, which contains one more

three-fold rotational ornament with mirrors in addition to the ornament set

of the previous experiment. The clustering result for raw images again scat-
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.14: Experiment 25. More rotational groups. Meaningful cluster emerge

when the content suppressed images are clustered as shown in (c). The x-

axis seems to capture color information discriminating the groups with similar

number of colors.

ters all groups, so that none of the emerging groups are correct or meaningful

(Fig. 5.15 (a)). As we begin to suppress the content by binarizing images, we

begin to obtain meaningful clusters. Two correct groups emerge from binary im-

ages (Fig. 5.15 (b)). Once we fully suppress the content information we obtain

meaningful clusters, all emerging according to style-wise similarities (Fig. 5.15

(c)). Also, observe that the group with four-fold rotations is well separated from

the rest for content suppressed images.

In the last three experiments, we focus on group relations within rotational

groups. It was shown in the previous chapter that clustering content suppressed
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(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.15: Experiment 26. More ornament of rotational groups. Beside the

meaningful clusters emerged for content suppressed images, we observe the re-

lations between rotational groups.

images capture the relations of di�erent groups. We aim to see if this is true

for other levels of content suppression. We begin with Experiment 33, which

contains twelve ornaments: three mariposas (p6), three two-color ornaments

of group p6, three ornaments with three-fold rotations and glide re�ections,

and three ornaments of p4 group. We expect exactly these four clusters to

emerge. We also expect the �rst three groups to be closer against the last group.

Although, the �rst three are of di�erent groups, due to color permutations,

the maximum order of rotations they all contain is three. In the presence of

pure translational group, all four groups are closely related due to rotations, in

contrast to pure translational group, which contains no rotations. However, in
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the current context we expect them to be separated. See Fig. 5.16 for clustering

results. The desired clusters and relations between clusters can be seen only

when the context is fully suppressed.

(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.16: Experiment 33. The correct groups and relations between the

groups are observed fo content suppressed images.

In the next experiment, we eliminate the ornaments with four-fold rotations and

consider the rest. New ornament collection forms the collection of Experiment

28, which consists of eleven ornaments: three mariposas (p6), three two-color

ornaments of group p6, two three-color ornaments of group p6 and three orna-

ments with three-fold rotations and mirror re�ections. We expect these four

clusters to emerge. Furthermore, we expect the group with three-fold rotations

and mirror re�ections to be separated from the three p6 groups. Construct-

ing a similarity matrix directly from raw images, could not capture style-wise
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di�erences between given groups (Fig. 5.17 (a)). Once we suppress the color in-

formation, we obtain all clusters correctly (Fig. 5.17 (c)). However, the relations

between the groups is not that clear since all groups are scattered on the plane.

For fully content suppressed images, all four groups are correctly identi�ed and

the relations of groups are well presented. Observe in Fig. 5.17 (c) the close-

ness of three p6 groups against the groups with three-fold rotations and mirror

re�ections.

(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.17: Experiment 28. Rotational groups. Now that there is no four-fold

rotational group, the group with three-fold rotations is separated from the p6

groups.

In the �nal experiment, we consider Experiment 31 with a collection of twelve

ornaments, seven of which are ornaments with three-fold rotations and mirror

re�ections, thee of mariposas (p6) groups and two are three-color ornaments of
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group p6. Again, we expect two major clusters to emerge, separating two p6

groups from the group with three-fold rotations and mirror re�ections. Cluster-

ing of raw images mixes all groups as shown in Fig. 5.18 (a). Clustering result

for masks gives only one correct cluster (Fig. 5.18 (b)), that is of mariposas.

For the fully content suppressed images we observe two major clusters that we

hoped to see (Fig. 5.18 (c)).

(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.18: Experiment 31. Rotational groups. As we suppress the content

style-wise close groups emerge. Also observe in (c) that the group with three-

fold rotations is separated from the p6 groups.

5.2.1 Quanti�cation of the Accuracy of Clustering

Just like in the previous chapter, we consider forty-three experiments, where

fourteen are two-group experiments and the rest twenty-nine are experiments
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with more than two groups. We compute within and between group average

distances, where the distances are computed from the three-dimensional reduc-

tion results. Since tSNE shown to give better clustering results in the previous

chapter, for all levels of content suppression we analyze only tSNE results.

Within and between group average distances for fourteen two-group experiments

are shown in Fig. 5.19. The �rst column shows which groups are being clustered

in the current experiment, the second, third and fourth columns show computed

results obtain from the clustering results of raw, binary and content suppressed

images, respectively. The numbers shown in red represent average within group

distances and the blue numbers represent average between group distances. The

ratio between within and between group average distances are shown in the

middle in black. The last row of the table gives the average values computed

from all fourteen experiments. Observe that as soon as we start to �lter out

the content, the separation between groups becomes better. See Fig. 5.20 for

comparison of the ratios between within and between group distances for all

levels of content suppression. While for raw and binary images the ratio goes

up to one and higher, for content suppressed images it is almost for all groups

below 0.4.

As we discussed in the previous chapter, the other twenty-nine experiments that

contain more than two groups consist of seventeen di�erent groups. Here, again,

for each group, we compute the average within and between group distances

in one experiment, and then take the average of those values obtained for all

experiments in which the given group took part. See the chart in Fig. 5.21 for

average within and between group distances for all seventeen groups obtained

from clustering results of raw, binary and content suppressed images. As we

start to suppress the content, the separation between di�erent groups become

more obvious, leading to small within and large between group distances.

However, seeing within and between group distances for each level of content

suppression in di�erent charts does not make the di�erences of the results for

di�erent levels obvious. In Fig. 5.22, we combine the results for all three levels of

content suppression. Thus, Fig. 5.22 (a) shows average within group distances
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Figure 5.19: Experiments containing only two groups. Numbers shown in red

represent within group average distances. Between groups average distances

shown in blue. The ratio between within and between group average distances

shown in balck. Last row shows average values for all values of the experiments.

for all three levels of content suppression. Observe that from the clustering

results of the raw images we obtain high within group distances. Furthermore, in

Fig. 5.22 (b), we see that the raw images have small between group distances for

almost all groups. Recall that our goal is to have small within groups distances

and large between group distances. As can be seen from the charts, we achieve

this goal only when we cluster fully content suppressed images.
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Figure 5.20: Experiments containing only two groups. The ratios between within

and between group average distances are plotted. For content suppressed images

the ratio for all experiments is below 0.4, indicating a good separation of groups.

(a) Raw Images (b) Binary Images

(c) Content Suppressed Images

Figure 5.21: Within vs. between group avgerage distances for experiments with

more than two groups. As we suppress the content of ornaments the average

within group distances become smaller and average between group distances

become larger, giving better separation of clusters.
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(a) Within Group Distances (b) Between Group Distances

(c) Within Group/Between Group

Figure 5.22: Within and between group average distances and the ratio of these

two for experiments with more than two groups. Observe that for content sup-

pressed images in all experiments within group average distances and the ratio

between two values are small, while between group average distances are large.
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CHAPTER 6

ISOLATED TILES

In Chapter 3, we discussed about content suppression of ornaments. As a result

of content suppression the ornaments are converted to their transform domain

where individual symmetries that the ornament exhibit is represented by ab-

stract structures. Thus, for instance, if an ornament exhibit three-fold rotations

then in their transform domain we observed three-leaved roses or triangles. Us-

ing those content suppressed images, we performed clustering experiments in

Chapter 4, each time considering a group of ornaments. In Chapter 5, we ana-

lyzed the clustering results of images at di�erent levels of content suppression.

Up to now, we reported the analysis based on the group of ornaments. In this

manner, we were able to see the relations between di�erent symmetry groups

and see how clustering results change according to the context. The important

aspect of analysis of group of ornaments is that we were able to show the contin-

uous nature of symmetry, which concerns about how similar are the symmetries

of two ornaments rather than what symmetry group they belong.

In this chapter, we are going to analyze individual ornaments. For each orna-

ment, we �nd its nodes and their connections. Clustering the connections that

an ornament exhibit reveals the symmetries present in an ornament. Knowing

the symmetries enables to �nd the unit cell for an ornament, which, on the other

hand, enables to de�ne the symmetry group of an ornament. We discuss about

the detection of ornament nodes and its connections in the following section.

We then present the analysis results.
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6.1 Extracting Information from Content Suppressed Images

In the previous chapters, we studied the ornaments in a group, observing the

relations between di�erent groups and the clustering of ornaments depending

on a context. In this chapter, we study individual ornaments. The analysis of

ornaments consists of two stages. First, we detect the centers of individual nodes

that are repeating throughout the ornament. Afterwards, using those points we

obtain di�erent connections. Analysis results show that these connections enable

to detect di�erent symmetries present in an ornament. The details of the process

are discussed in the following section.

6.1.1 Method

In order to detect node centers we use the content suppressed images for orna-

ments. Recall that, when the linear transform is applied upon the foreground

regions of the mask it reveals the node centers, and reveals the relations between

the node centers when applied on entire tile domain. Fig. 6.1 shows a three-

color ornament of group p6 and the ω �elds for its six masks computed both

for foreground objects only (Fig. 6.1(a)) and on entire tile domain(Fig. 6.1(b)).

Each mask contains the shapes of one color and in its content suppressed form;

each mask enhances node centers of one color. Using this information, in the

�rst stage, the node centers for each mask are obtained. First, we look at the

�elds computed only on foreground objects. Given a �eld for a mask, we extract

positive regions (pixel values that are bigger than zero). If the area of every

region is smaller than the twice of the average area, then we extract the centers

of the positive regions and mark them as node centers. If, on the other hand,

for any region the area is bigger or equal to twice the average area (if positive

regions of several nodes overlap), then we look at the �elds that are computed

over entire tile domain. Again, we extract positive regions and if the regions are

all of the same area then mark their centers as node centers. If still di�erent node

regions overlap then we divide the �eld into watershed regions. Each watershed

region contains one maximum value, which is in fact the center of some node.

Of course, some unnecessary nodes might occur due to noise, especially at the
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parts close to edges. To eliminate them we introduce some threshold T so that

only the nodes with maximal values above T are selected. Some necessary nodes

might be below T and, thus, not be included into the set of maximal points. To

avoid this, we calculate the average distance between obtained maximal points

and then include those points among the discarded points that lie within this

distance to any of the selected maximal point. The �nal set of maximal points

de�nes the node centers for a mask of an ornament. The node centers obtained

for six masks in Fig. 6.1 are illustrated in Fig. 6.2.

Ideally, each mask must contain one kind of shape of one color that repeats

throughout the mask with equal distances. This occurs when the color per-

mutation is regular. Mask inverses for the given ornament contain nodes with

equal distances representing similar colors (Fig. 6.2 second row). However, for

non-inverse masks we observe irregular color permutations (Fig. 6.2 top row).

Though each non-inverse mask of an ornament contains shapes of one color, the

shapes di�er. Observe that in the ornament of Fig. 6.2 there are leaves of di�er-

ent size but one color. Also, observe that the small orange (green, violet) leaves

form six-fold rotations. The larger orange (green, violet) leaves form three-fold

rotations, which are in fact six-fold rotations where orange (green, violet) leaves

interchange with green (orange, violet) or violet (orange, green) leaves. Our

aim is to further separate the masks so that each mask contains the nodes of

one kind only. In order to do so, we pass through an intermediate stage, the

second stage. In the second stage, we divide the ω �eld (computed over entire

tile domain) of the mask into regions, so that each region will represent a par-

ticular node of the mask. Note that the node centers detected in the �rst stage

and the regions to be detected in the second stage are not the same. A node

center represents central point of a shape, while a region represents central body

of the shape used in the ornament (after suppressing the peripheral regions we

are left only with central parts of the shapes). Recall that the ω �eld for an

image contains maximal values at shape centers and minimal values at shape

boundaries. Since the ornaments contain multiple copies of a shape that share

boundaries with each other, we cannot directly extract the regions from ω �elds.

However, we know that in the ω �eld the points where two shapes meet have
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(a) Fields computed on foregroud objects only.

(b) Fields computed on entire tile domain.

Figure 6.1: Three-color ornament of group p6 and ω �elds of its six masks.

Bottom rows contain mask inverses of the masks on the top row.

small values. Using this information, we iteratively �nd the minimal value big-

ger than zero in the ω �eld and set that point to zero. The iteration proceeds

until each region contains only one node center. The regions obtained for the

six mask of Fig. 6.1 are illustrated in Fig. 6.3. Once the regions are extracted,

we proceed with the third stage. For each node center of one mask, we check
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Figure 6.2: Node centers for six masks of the ornament shown in red.

if it attaches or does not attach some region of other masks. In this manner,

for each node center of a mask we obtain a vector the size of which is one less

the number of masks for an ornament. The entry of a vector is 1 if the node

center attaches the region of the mask and 0 otherwise. The node centers that

are arranged in the same manner obtain similar vectors. See an example of how

node centers for �rst mask of given ornament behave on other mask regions in

Fig. 6.4. We obtain three di�erent point sets for this mask: those having vector

[00000], those with vector [00100] and those with [00001]. Fig. 6.5 shows the

separation of node centers for three non-inverse masks of Fig. 6.2. For example,

the �rst mask shown in Fig. 6.5 (a) contains the shapes colored in orange. Using

further separation we obtain three di�erent masks where the �rst one contains

the small orange leaves arranged in six-fold rotations, the next one contains the

larger leaves where the orange leaves interchange with green leaves, and the last

one contains the interchange of orange leaves with violet leaves. This introduces

six new masks for the ornament. Thus, counting the new mask give overall

twelve masks for the ornament. Note that applying this stage to mask inverses

does not introduce new masks since the color permutations for mask inverses

are regular. This means that all node centers of one mask behave similarly on

the regions of other masks and have the same vector.

At the fourth stage, we extract the connections between the node centers of a

mask. The �rst step of this stage iteratively extracts various connections. In
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Figure 6.3: Extracted regions for the six masks of the ornament.

Figure 6.4: Behavior of the node centers for the �rst mask of the ornament on

other mask regions.

the �rst iteration, we �nd the minimal distance between two points in a mask

and then extract all connections with similar distances. In the next iteration, we

discard the connections of the previous iteration and �nd new minimal distance

between points to extract new connections, etc.. Of course, when we �nd the
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(a) (b) (c) (d)

Figure 6.5: Further separation of non-inverse masks into three masks.

minimal distance the other similar connections might not be exactly equal to

this distance. That is why we introduce a tolerance of 2 or 3 pixels. After n

iterations we obtain connections of various sizes. Note that this step is done

solely to extract di�erent connections between points. In the second step we

group these connections into m groups. Initially each connection forms a group

itself. We then iteratively join di�erent groups based on sizes and orientations.

Orientation is optional and may not be considered. The tolerance for di�erences

in distances among the connections of the same group is set to 1 pixel initially.

In each iteration, it joins the closest connections in terms of size and orientation.

If no connections join in one iteration, then the tolerance is increased by one.

The iteration stops when the number of groups is m. Connections that belong

to the same group show similar symmetries of an ornament. As an example see

Fig. 6.6 for the connections obtained for twelve masks of the ornament. For

each mask, we have shown only the �rst connection groups. First, �fth and

ninth masks in Fig. 6.6 are the mask inverses. Observe that their connections

show the lattice of an ornament. Thus, a unit cell of an ornament consists of

two equilateral triangles, which join to form a rhombus. The ornament has

hexagonal lattice. In contrast to mask inverses, non-inverse masks show the

symmetries of ornament. The second, eighth and tenth masks contain six-point
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connections that form hexagons. In this connection, the points are related by

six-fold rotation. The centers of these hexagons fall on the centers of six-fold

rotations. The rest of the masks contain three-point connections, where points

are related by three-fold rotation. The centers of triangles fall on the centers of

three-fold rotations.

Figure 6.6: Connections of twelve masks of the ornament.

The hexagon connections shown in Fig. 6.6 indicate that the ornament exhibit

six-fold rotations. However, this is not true, and we are able to infer it from

the triangular connections. The center of each hexagon is also the center of two

triangles, which are connections of di�erent masks. Since each mask contains

information on di�erent colors, we know that these two triangles represent that

there are two three-fold rotations of di�erent color. This become obvious when
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we put the connections of non-inverse masks on top of each other as shown in

Fig. 6.7. In Fig. 6.7 (a) the masks with hexagonal connections are combined.

Note that the hexagons of di�erent color represent six-fold rotations of di�erent

kind, since they come from di�erent masks. In Fig. 6.7 (b) we add the masks

with triangular connections. Observe that each hexagon contains two triangles

of di�erent colors. Also, observe that hexagons of one color contain similar

two di�erent triangles. This shows that the ornament does not exhibit six-fold

rotations. Then we do not consider the masks that have hexagonal structures

and proceed with other six masks with triangular structures. If we take any

of these masks and increase the connection groups for it, we obtain all the

symmetries of an ornament. In Fig. 6.8 we show three connection groups for a

third mask of Fig. 6.6. Observe three di�erent triangles indicating three di�erent

three-fold rotations. Fig. 6.9 (a) shows all rotation centers inferred from one

mask connections. Here, triangles represent the centers of three-fold rotations.

Since the lattice points of an ornament are the points with highest order of

rotation we connect three-fold rotation centers of same color to obtain the unit

cell. Fig. 6.9 (b) separates the unit cell and shows all connections that are

incident with unit cell. The ornament can belong to three possible symmetry

groups with the highest order of rotation of three. These are p3, p3m1 and p31m

groups. Cell structures for these three groups are shown in Fig. 6.10. The p31m

group requires only two di�erent three-fold rotation centers, while we have three

di�erent three-fold rotation centers. Then this group can be discarded. The

p3m1 group implies a re�ectional symmetry along the major diagonal of unit

cell. However, from Fig. 6.11, one can see that there is no re�ectional symmetry

along the major diagonal. If there were re�ectional symmetry, then the diagonal

axis would pass through exactly one point of the green triangle, which is not the

case. Then we discard this group, and conclude that the ornament belongs to

p3 group.

The analyses for the ornament shown above are done by considering the colors.

This means, regardless the similarity of two shapes, they considered as di�er-

ent shapes if they have di�erent colors. If, on the contrary, the symmetries of

underlying ornament, by ignoring the colors, are needed, we combine the node
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(a) (b)

Figure 6.7: Combining connections of all masks except for mask inverses reveal

that there are no six-fold rotations in the ornament.

Figure 6.8: Increasing the connection groups of one of the masks of an ornament.

(a) (b)

Figure 6.9: (a) Symmetries and unit cell of an ornament. (b) Connections that

are incident with unit cell.
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p3 p3m1 p31m

Figure 6.10: Three possible symmetry groups for an ornament. The darker

regions represent fundamental domain.

Figure 6.11: The p3m1 group implies a re�ectional symmetry along the major

diagonal of unit cell.

centers of di�erent masks and re-compute the connections going back to the

fourth stage. The mask that are combined should be non-inverses, since, as we

mentioned before, the mask inverses do not contain the information on orna-

ment symmetries. In addition, the combined masks must contain the centers of

similar nodes (i.e. of the same shape, colors are ignored). Thus, for the current

ornament we can combine the second, eighth and the tenth masks, or the other

six non-inverse masks of Fig. 6.5. We combined the node centers of latter six

masks. Fig. 6.12 shows six connection groups obtained using the stage four of

our method. The �rst connection group contains six-point connections that form

hexagons. They indicate six-fold rotations. The second connection group shows

two-point connections indicating two-fold rotations. Two similar three-fold ro-

tations are inferred from the third connection group. The centers of this two

three-fold rotation centers coincide with the center of six-fold rotation. Since

they are similar, they join to form a six-fold rotation. The fourth connection

group represents three similar two-fold rotations the centers of which coincide

with the center of six-fold rotation. Again, since they are similar, they join to

form a six-fold rotation. Last two connection groups contain three-fold rotations
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that are di�erent. Collecting all the symmetries inferred from the connections

as shown in Fig. 6.13 (a), we obtain a unit cell, and the connections that are

incident with unit cell ( Fig. 6.13 (b)). There are two possible symmetry groups

involving six-fold rotations: p6 and p6m (Fig. 6.14). The p6m groups implies

a re�ectional symmetry along the major diagonal of unit cell. However, from

Fig. 6.15 one can see that none of the points of the red triangles lie on major

diagonal of the unit cell, which would be required for re�ectional symmetry.

We discard the p6m group from possibilities. Thus, we conclude that when the

colors are ignored, the ornament belongs to p6 group.

Figure 6.12: Six connection groups obtained for the ornament when we ignore

the colors.

The overview of the whole process performed in this chapter is illustrated in

Fig. 6.16. Given an ornament, its masks and ω �elds for the masks, we detect

the node centers for each mask. Using these node centers, we extract various

connections and then group similar connections. The connections of one group

show one kind of symmetry that the ornament exhibit. We then de�ne the
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(a) (b)

Figure 6.13: (a) Symmetries and unit cell of an ornament. (b) Connections that

are incident with unit cell.

p6 p6m

Figure 6.14: Two possible symmetry groups for an ornament when colors are

ignored.

Figure 6.15: The p6m group implies a re�ectional symmetry along the major

diagonal of unit cell.

symmetries that the ornament exhibit, de�ne its lattice (unit cell) and symmetry

group based on the groups of connections obtained for an ornament. Note that

the connections for particular mask are searched in interactive process. We

are searching for speci�c symmetries in an ornament. Thus, for example, if we

see six-fold rotation from one connection, it is natural to continue searching

for two-fold and three fold-rotations, since six-fold rotation also implies these
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symmetries. We stop searching when we obtain enough information to de�ne

the symmetry group of an ornament and when new connections introduce no

new information.

Figure 6.16: Overview of the process.

6.1.2 Dataset

The set of ornaments used in this chapter are given in Fig. 6.17. Overall ten

self-generated ornaments are considered, which are created using iOrnament

application. Five ornaments out of ten are similar to Escher's ornaments that

we recreated. In contrast to the dataset used in previous chapters, this one

contains ornaments of larger size with more repetitions. The �rst row of the

dataset consists of two ornaments of pgg group. The next two ornaments are of

group p4. The third row contains two two-color ornaments of p4g group with no

color symmetry. The forth row contains ornaments with six-fold rotations. First

three of them have color symmetry. The �rst one is a two-color ornaments of p6

group. The second one is three-color ornament of p6 group, while the third one

is four-color ornament of p6 group. The last ornament is two-color ornament of
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p6m group with no color symmetry.

Figure 6.17: Dataset. Overall, ten ornaments are considered. All ornaments

are self-generated using iOrnament application. The �rst row contains two or-

naments of group pgg. The second row contains two ornaments of p4 group.

Two ornaments of the third row are of group p4g. Last row contains ornaments

with six-fold rotations. First ornament is two-color ornament of p6 group. The

second ornament is three-color ornament of p6 group, while the third one is

four-color ornament of p6 group. The last ornament is a two-color ornament of

p6m group with no color symmetry.

6.2 Results

We analyze the symmetries of nine ornaments in this section. The connections

are shown on gray images for clear visualization purposes. For each we show

the symmetries inferred from the extracted connections. We put signs on the

ornament indicating di�erent symmetries. Table 6.1 de�nes what signs are used

to show particular symmetry on the ornament. Note that the colors of signs
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change, while the shapes remain �xed.

Table6.1: Signs used to de�ne the symmetry elemets.

A center of rotation of order two

A center of rotation of order three

A center of rotation of order four

A center of rotation of order six

An axis of re�ection

An axis of glide re�ection

We begin our analyses with a two-color ornament shown in Fig. 6.18, which is

of pgg group when colors are ignored. The ornament contains two masks each

containing the information about one color. Detected node centers for each of

the masks of this particular ornament are shown in Fig. 6.19.

Figure 6.18: A two-color ornament of pgg group.

We extract two connection groups for each of the masks of an ornament as shown

in Fig. 6.20. Observe that each point of one connection group is connected to

two di�erent points. Each point is a glide re�ection of the point it is connected

to, hence the zigzag structures. If we take the centers of lines connecting two

points and connect all the centers of one zigzag structure, we obtain glide re�ec-

tion axes. By considering two connection groups of the �rst mask, we infer that
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Figure 6.19: Detected node centers for two masks of an ornament in Fig. 6.18.

there are two di�erent glide re�ection axes in the ornament and they are parallel

to each other. No other symmetries are observed. Fig. 6.21 (a) shows the glide

re�ection axes on the image. The red rectangle is formed from the closest trans-

lations of a point in two directions. Recall that by connecting the translations

of a point in two directions we obtain a lattice of an ornament. Thus, the red

rectangle in the �gure, in fact, represents the unit cell of an ornament. The only

possible symmetry group where only two di�erent glide re�ections parallel to

each other exist is pg symmetry group. The cell structure for pg group is shown

in Fig. 6.21 (b). From this, we conclude that an ornament is of pg group.

Figure 6.20: Extracted connection groups for two masks of an ornament in

Fig. 6.18. First column shows all connections extracted for a mask, and the

second and third columns show each connection group of a mask separately.
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(a) (b)

Figure 6.21: (a) Symmetries of an ornament inferred from the mask connection

groups. Connecting similarly arranged points give a rectangular lattice with

parallel glide re�ection axes. This type of unit cell indicates that the ornament

belongs to pg group. (b) Cell structure for pg group. The darker region indicates

the fundamental domain.

By considering the node centers detected for each mask for connection extraction

separately, we take into account the color symmetry of the ornament. Recall that

introducing colors reduces the symmetries of an ornament. When we ignore the

colors, the ornament in Fig. 6.18 is of group pgg. In order to see the symmetries

of an ornament when the colors are ignored we combine the node centers obtained

for two masks and then compute the connections. Four connection groups for

an ornament are extracted when the colors are ignored as shown in Fig. 6.22.

In the connections when the colors are taken into account for this particular

ornament we observed only horizontal glide re�ection axes. Now that the colors

are ignored, we observe more symmetries. The �rst and the fourth connection

groups contain connections where two points are engaged in two-fold rotation.

Each connection group contains the connections of di�erent two-fold rotations.

In both cases, one point of one color is a two-fold rotational symmetry of the

point it is connected to, which is of other color. The third connection group

contains the vertical glide re�ections, where a point of one color is connected

to the point of other color and they are glide re�ections of each other. In fact,

when the colors are taken into account, we extracted only the second connection

group of Fig. 6.22. All other connections could not be extracted because a

particular symmetry of a point goes to the other color. Fig. 6.23 (a) shows all

162



the symmetries inferred from the connections of an ornament when the colors

are ignored. We already mentioned that in the detection of ornament lattice

the points with maximal order of rotations are chosen as grid nodes. Since the

maximal order of rotation that we observe for an ornament is two, we connect

translations of any two-fold rotation centers to obtain the unit cell shown in

red. The only symmetry groups which contains two di�erent two-fold rotations

and perpendicular glide re�ections is pgg group. Observe that the structure of

unit cell for the ornament is similar to the cell structure of pgg group shown in

Fig. 6.23 (b). Thus, when the colors are ignored, the ornament belongs to pgg

group.

Figure 6.22: Extracted connection groups for an ornament in Fig. 6.18 when

the node centers of two masks are combined. First column shows all connec-

tions extracted for an ornament, and the second and third columns show each

connection group of an ornament separately.

The next ornament to be analyzed is shown in Fig. 6.24, which is also of pgg

group. Since it is a two-color ornament it contains two masks. The node centers

detected for each mask are illustrated in Fig. 6.25.

The connections (See Fig. 6.26) obtained for each mask show similar zigzag

structures that we observed on the analysis of the previous pgg ornament. How-

ever, for current ornament the glide re�ections axes are vertical. Just as in the

previous ornament, we observe two di�erent glide re�ection axes that are paral-
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(a) (b)

Figure 6.23: (a) Symmetries of an ornament inferred from the connections ob-

tained from combined node centers. Connecting two-fold rotation centers of

similar type introduces a unit cell of an ornament. This type of unit cell indi-

cates that the ornament belongs to pgg group. (b) Cell structure for pgg group.

The darker region indicates the fundamental domain.

Figure 6.24: A two-color ornament of pgg group.

Figure 6.25: Detected node centers for two masks of an ornament in Fig. 6.24.

lel to each other. All symmetries and the unit cell for the ornament are shown

in Fig. 6.27 (a). The structure of unit cell is similar to the cell structure of pg

group, inferring that this ornament also belongs to pg group when the colors are

taken into account.
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Figure 6.26: Extracted connection groups for two masks of an ornament in

Fig. 6.24. First column shows all connections extracted for a mask, and the

second and third columns show each connection group of a mask separately.

(a) (b)

Figure 6.27: (a) Symmetries of an ornament inferred from the mask connection

groups. Connecting similarly arranged points give a rectangular lattice with

parallel glide re�ection axes. This type of unit cell indicates that the ornament

belongs to pg group. (b) Cell structure for pg group. The darker region indicates

the fundamental domain.

Ignoring the colors by combining the node centers of two masks give three more

connection groups for the ornament as shown in Fig. 6.28. First and third

connection groups contain connections where each node center is connected to
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only one other point. Such connections indicate two-fold rotations. The second

connection group contains horizontal glide re�ections, which are indicated by

slightly zigzagged almost straight lines. Summarizing all the symmetries of an

ornament in Fig. 6.29(a) shows that the symmetries of this ornament is similar

to the symmetries of the previous ornament, and that the ornament is of pgg

group.

Figure 6.28: Extracted connection groups for an ornament in Fig. 6.24 when

the node centers of two masks are combined. First column shows all connec-

tions extracted for an ornament, and the second and third columns show each

connection group of an ornament separately.

Next, we analyze an ornament with di�erent symmetries. Fig. 6.30 shows an

ornament of p4 group. When we consider the colors it still belongs to p4 group.

The ornament contains two masks for which detected node centers are shown in

Fig. 6.31.

For each of the masks of an ornament in Fig. 6.30 we show four extracted connec-

tion groups in Fig. 6.32. The �rst connection group for both masks contains line

segments, each line connecting two points. These connections indicate a two-

fold rotation between two points. For both masks, the second connection group

contains square structures. Each point is connected to two di�erent points. Ob-

serve that in this manner four points connect to form square structures, which,

on the other hand, represent four-fold rotational symmetries of a point. The
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(a) (b)

Figure 6.29: (a) Symmetries of an ornament inferred from the connections ob-

tained from combined node centers. Connecting two-fold rotation centers of

similar type introduces a unit cell of an ornament. This type of unit cell indi-

cates that the ornament belongs to pgg group. (b) Cell structure for pgg group.

The darker region indicates the fundamental domain.

Figure 6.30: A two-color ornament of p4 group.

Figure 6.31: Detected node centers for two masks of an ornament in Fig. 6.30.

cross structures shown as a last connection group comprises of two similar con-

nections indicating two-fold rotations. Thus, at the center of the cross structure

two two-fold rotation centers reside. This is not surprising, since the center of

cross structure is also the center of four-fold rotation, which contains two two-
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fold rotations in it. The third connection group for both masks again contains

square structures indicating four-fold rotations. However, this four-fold rota-

tion is di�erent from the four-fold rotations of the �rst connection group of the

masks. Actually, the centers of squares of third connection group of �rst mask

coincide with the centers of squares of second connection group of second mask,

and vice versa. Analyzing all connections extracted for one mask, we conclude

that the ornament contains two di�erent four-fold rotation centers and one two-

fold rotation center ( Fig. 6.33 (a)). Connecting the translations of any of the

two four-fold rotation centers give a unit cell. Fig. 6.33 (b) illustrates the unit

cell and connections that are incident with it. There are three symmetry groups

involving four-fold rotations: p4, p4m and p4g. The cell structure for p4g group

shown in Fig. 6.34 contains only one four-fold rotation center, while the unit

cell that we extracted contains two centers. Then we do not consider p4g group

any further. The p4m group requires a mirror re�ection along the diagonals of

the unit cell. However, none of the points of red square in Fig. 6.35 lie on the

diagonals, neither the diagonal divides the square equally. Then the diagonal

does not divide the four-fold rotation center equally so that the mirror re�ection

occurs. Thus, we conclude that the ornament is of p4 group.

When we ignore the colors and compute the connections for combined node cen-

ters, we obtain four connection groups. The symmetries that we obtain ignoring

the colors are similar to the symmetries obtained by considering the colors. We

observe two di�erent four-fold rotation centers and one two-fold rotation center.

Observe that two di�erent four-fold rotation centers obtained for color symmetry

now become the translations of the same four-fold rotation center. The two-fold

rotation of color symmetry ornament now becomes four-fold rotation. Fig. 6.45

(a) shows the symmetries and the unit cell for an underlying ornament. Observe

that the lattice becomes smaller. In general, when we consider the colors the

unit cell, hence the fundamental domain is bigger than when we ignore the col-

ors. Again, the ornament can be of three possible symmetry groups: p4g, p4m

and p4. The p4g group can be discarded because it contains only one four-fold

rotation center. The p4m group, just as in the previous case, requires a mirror

re�ection along the diagonals of unit cell. The red square in the unit cell shown
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Figure 6.32: Extracted connection groups for two masks of an ornament in

Fig. 6.30. First column shows all connections extracted for a mask, and the

second and third columns show each connection group of a mask separately.

in Fig. 6.38 is not symmetrical along the diagonals. Then the ornament is still

of p4 group.

We analyze yet another ornament of p4 group, which is shown in Fig. 6.39. Just

as the previous ornament, it remains in p4 group when the colors are ignored.

The ornament contains two masks for which detected node centers are shown

in Fig. 6.40. Four connection groups extracted for two masks of the ornament (

Fig. 6.41) are the same as the connection groups of the previous ornament. This

leads to detection of the same symmetries on the ornament giving the same unit
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(a) (b)

Figure 6.33: (a) Symmetries of an ornament inferred from the mask connection

groups. Red square indicates the unit cell of an ornament. (b) Unit cell and

connections incident with it.

p4 p4m p4g

Figure 6.34: Three possible symmetry groups for an ornament.

Figure 6.35: The p4m group implies a re�ectional symmetry along the diagonals

of unit cell.

cell as for the ornament in Fig. 6.30 (See Fig. 6.42). We again have three possible

symmetry groups, p4, p4m and p4g. Since the ornament has two di�erent four-

fold rotation centers we discard the p4g group. Furthermore, Fig. 6.43 shows

that the unit cell has no re�ectional symmetry along the diagonal discarding the
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Figure 6.36: Extracted connection groups for two masks of an ornament in

Fig. 6.30 when the colors are ignored. First column shows all connections ex-

tracted for an ornament, and the second and third columns show each connection

group of an ornament separately.

(a) (b)

Figure 6.37: (a) Symmetries of an ornament inferred from the connection groups

when colors are ignored. Red square indicates the unit cell of an ornament. (b)

Unit cell and connections that each unit cell contains.

p4m group. Thus, we conclude that the ornament belongs to p4 groups when

colors are considered.

Fig. 6.44 shows four connection groups obtained by ignoring the colors. The

symmetries inferred from the connections are similar to those inferred for the

previous ornament. Also, the unit cell for the underlying ornament becomes

smaller as shown in Fig. 6.45. We again search for the symmetry group of the
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Figure 6.38: The p4m group implies a re�ectional symmetry along the diagonals

of unit cell.

Figure 6.39: Another two-color ornament of p4 group.

Figure 6.40: Detected node centers for two masks of an ornament in Fig. 6.39.

ornament among p4, p4m and p4g symmetry groups. As before p4g is discarded

immediately since it have only one four-fold rotation center, and p4m is discarded

since it is shown in Fig. 6.46 that there is no re�ectional symmetry along the

diagonal of unit cell. Thus, we de�ne the symmetry group of an ornament as p4

when colors are ignored.

Fig. 6.47 shows �rst two connection groups for one of the masks of two ornaments

of p4 group. Observe the structural similarity between the connections of two
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Figure 6.41: Extracted connection groups for two masks of an ornament in

Fig. 6.39. First column shows all connections extracted for a mask, and the

second and third columns show each connection group of a mask separately.

ornaments. Both contain small square structures indicating four-fold rotations.

Each square is connected to the neighboring square indicating two-fold rotations.

From the binary representation of connection groups, we observe two di�erent

four-fold rotation centers for both ornaments. The di�erence on the shapes

surrounding the second four-fold rotation centers is due to shape variations in

two ornaments.

The next two ornaments to be analyzed are of group p4g. Both are two-color

ornaments with no color symmetry. The �rst ornament is shown in Fig. 6.48.
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(a) (b)

Figure 6.42: (a) Symmetries of an ornament inferred from the mask connection

groups. Red square indicates the unit cell of an ornament. (b) Unit cell and

connections within the unit cell.

Figure 6.43: The p4m group implies a re�ectional symmetry along the diagonals

of unit cell.

See Fig. 6.49 for the detected node centers for two masks of the ornament.

Fig. 6.50 show three connection groups for the �rst mask and four connection

groups for the second mask of the ornament. The �rst connection group of

the �rst mask contains similar connections between two points all indicating

the same two-fold rotations. The second connection group connects the points

that are related by four-fold rotation, which is indicated by square structures.

The last connection group contains zigzag structures in two di�erent directions

right where the glide re�ection axes of an ornament lie. The �rst connection of

the second mask contains square structures indicating four-fold rotations. How-

ever, not all the centers of these squares are truly centers of four-fold rotations.

Subsequent connection groups help to discard the incorrectly detected four-fold

rotations. For example, the second connection group for this mask shows cross
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Figure 6.44: Extracted connection groups for two masks of an ornament in

Fig. 6.39 when the colors are ignored. First column shows all connections ex-

tracted for an ornament, and the second and third columns show each connection

group of an ornament separately.

(a) (b)

Figure 6.45: (a) Symmetries of an ornament inferred from the connection groups

when colors are ignored. Red square indicates the unit cell of an ornament. (b)

Unit cell and connections incident with the unit cell.

structures indicating two similar two-fold rotations on the places where the true

four-fold rotations reside. The last two connection groups show that non four-

fold rotation centers introduced by �rst connection group contain two di�erent

two-fold rotation centers. In this manner, we are able to distinguish between

correct and faulty four-fold rotation centers. The second connection group of

the second mask also indicates glide re�ections in two di�erent directions. The
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Figure 6.46: The p4m group implies a re�ectional symmetry along the diagonals

of unit cell.

(a) (b) (c)

Figure 6.47: Structural comparison of �rst two connections of two ornaments of

p4 group. (a) Original images. (b) First two connection groups of one of the

masks of the ornaments. (c) Masks of the connections.

Figure 6.48: A two-color ornament of p4g group with no color symmetry.
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Figure 6.49: Detected node centers for two masks of an ornament in Fig. 6.48.

zigzag structures are hard to see because the node centers lie almost on the same

line. Fig. 6.51 (a) shows all the symmetries detected using the connection groups

in one place. Overall, the ornament has one four-fold rotation center, one two-

fold rotation center and glide re�ection axes in two directions. This information

is enough to de�ne the symmetry group of the ornament as p4g. Note that

just by knowing that the ornament contains only one four-fold rotation center

repeated throughout is enough to classify the ornament as p4g group, because

the other symmetry groups with four-fold rotations (p4 and p4m) contain two

di�erent four-fold rotation centers.

The second two-color ornament of p4g group with no color symmetry is shown

in Fig. 6.52. It also has two masks. See Fig. 6.53 for node centers detected for

its masks.

Connection groups for the ornament masks are illustrated in Fig. 6.54. The

�rst mask contains four connection groups, while �ve connection groups are

extracted for the second one. The �rst connections group of the �rst mask

contains three-point connections where one of them is the center of other two

points. This type of connection indicates two-fold rotations. Glide re�ections

in two di�erent directions are shown in the second connection group. The third

and fourth connection groups contain square structures representing four-fold

rotations. In the third connection group the points that are the centers of four-

fold rotation are connected to four other points, while non four-fold rotational

centers are connected to six other points. The �rst connection group of the

second mask also contains square structures indicating four-fold rotations. The

second and third connection groups indicate two-fold rotations. However, ob-

serve that the connections repeat in pairs for both connection groups. This
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Figure 6.50: Extracted connection groups for two masks of an ornament in

Fig. 6.48. First column shows all connections extracted for a mask, and the

second and third columns show each connection group of a mask separately.

indicates that two-fold rotation centers do not lie on the center of lines connect-

ing two-points, but on the centers of these two pair lines. This occurs when the

two-fold rotation is not done on the individual form of the ornament but on the

combination of two forms. Thus, one connection indicates a re�ectional sym-

metry between connected points, and in pair two connections indicate two-fold

rotations. An interesting result is obtained for the forth connection group. Here,

the cross structures represent two similar two-fold rotations and there are glide

re�ections in two di�erent directions. Observe that the glide re�ection axes are
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(a) (b)

Figure 6.51: (a) Symmetries of an ornament inferred from the mask connection

groups. Red square indicates the unit cell of an ornament. This type of unit

cell indicates that the ornament belongs to p4g group. (b) Connections that fall

within one unit cell of the ornament.

Figure 6.52: A two-color ornament of p4g group with no color symmetry.

Figure 6.53: Detected node centers for two masks of an ornament in Fig. 6.52.

di�erent from the glide re�ections obtained for the �rst mask. Extracting all the

symmetries inferred from the connections of the �rst masks we obtain a lattice

similar to the lattice of the previous p4g ornament (Fig. 6.55). Since we have

only one center of four-fold rotation the ornament is of p4g group.
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Figure 6.54: Extracted connection groups for two masks of an ornament in

Fig. 6.52. First column shows all connections extracted for a mask, and the

second and third columns show each connection group of a mask separately.

Fig. 6.56 compares the structures of some of the connection groups of last p4g

group ornaments and previous two p4 group ornaments. Observe the binary

images for the connections of �rst two p4g ornaments. Both have one type
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(a) (b)

Figure 6.55: (a) Symmetries of an ornament inferred from the mask connection

groups. Red square indicates the unit cell of an ornament. (b) Connections that

fall within one unit cell of an ornament.

of square indicating one four-fold rotation center and a shape with two-fold

rotations in between these squares. This shape varies depending on the forms

used in the ornament, but regardless of the forms it contains a two-fold rotation.

Also observe that in both cases two squares incline in opposite directions. In

contrast to p4g ornaments the connections of last two p4 ornaments show two

di�erent four-fold rotation centers. However, all four have structural similarity,

showing that all are the special cases of a general case for an ornament with

four-fold rotations. Thus, both p4g group and p4 group have square shapes

separated with some kind of shape. The di�erence is that the in between shape

for p4g can only have two-fold rotation while for p4 it has both two-fold and

four-fold rotational symmetries.

We continue the analysis with a two-color ornament of p6 group shown in

Fig. 6.57. When the colors are considered the symmetry group of an ornament

reduces to p3. Detected node centers for two masks are illustrated in Fig. 6.58.

We extract three connection groups for each mask of an ornament, which are

illustrated in Fig. 6.59. Observe that all connection groups for both masks

contain triangular connections. The symmetries for this ornament can be easily

inferred. It contains three di�erent three-fold rotation centers that are obtained

by taking the central points of triangles. Marking these central points of one

mask on the ornament as in Fig. 6.60 we obtain the lattice for this ornament.

181



Figure 6.56: Structural comparisons of connections of two p4g and p4 ornaments.

Fig. 6.61 shows three possible symmetry groups that the ornament might belong.

We discard the p31m symmetry group because it requires only two three-fold
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Figure 6.57: Two-color ornament of gorup p6.

Figure 6.58: Detected node centers for two masks of an ornament in Fig. 6.57.

rotation centers while we have three. The p3m1 symmetry group has re�ectional

symmetry along the major diagonal of the unit cell. This is not true for the

ornament that we consider as shown in Fig 6.62. Thus we conclude that the

ornament is of p3 group when the colors are considered.

Due to color permutations, we do not observe six-fold rotations for this orna-

ment. The six-fold rotations of the ornament are seen when we ignore the colors

by combining the node centers of two masks and re-computing the connections.

Observe the �ve connection groups obtained in this way shown in Fig. 6.63.

The �rst connection group contains hexagonal connections the centers of which

show the centers of six-fold rotations. The second connection group connects

points related by two-fold rotations. The �fth connection group also shows three

similar two-fold rotations centered at the same point. The third and forth con-

nection groups indicate three-fold rotations via the triangular structures. The

forth connection group contains two similar three-fold rotations centered at the

same point. Summarizing the inferred symmetries on the ornament as shown in

Fig. 6.64 we obtain the unit cell and connections that fall within the unit cell.

There are two possible symmetry groups with six-fold rotations: p6 and p6m.
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Figure 6.59: Extracted connection groups for two masks of an ornament in

Fig. 6.57. First column shows all connections extracted for a mask, and the

second and third columns show each connection group of a mask separately.

Fig. 6.66 shows that the ornament does not have a re�ectional symmetry along

the major diagonal of unit cell. Then the ornament belongs to p6 group when

the colors are ignored.

We continue analyzing p6 ornaments with a four-color ornament of this group.

The ornament is shown in Fig. 6.67. Detected node centers for the �ve masks

of the ornament are shown in Fig. 6.68. The other masks are repetitions of the

given �ve masks.
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(a) (b)

Figure 6.60: (a) Symmetries of an ornament inferred from the mask connection

groups. Red rhombus indicates the unit cell of an ornament. (b) Connections

of the ornament that are incident with unit cell.

p3 p3m1 p31m

Figure 6.61: Three possible symmetry groups for an ornament.

Figure 6.62: The p3m1 group implies a re�ectional symmetry along the major

diagonal of unit cell.

The connections for masks containing only one connection group are shown in

Fig. 6.70. Presenting more connection groups for these masks does not introduce

additional information. We extract three-connection groups for second and forth

masks of the ornament that are illustrated in Fig. 6.69. All connection groups

contain triangular connections indicating three-fold rotations. Collecting all the

symmetries inferred from these two masks reduces to the symmetries inferred

from only one mask connection groups as shown in Fig. 6.69. There are three
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Figure 6.63: The entire six-fold rotation is seen when we compute connections

by combining the node centers of two masks.

(a) (b)

Figure 6.64: (a) Symmetries of an ornament inferred from the connection groups

when they are computed from combined node centers. Red rhombus indicates

the unit cell of an ornament. (b) Connections that fall within a unit cell of an

ornament.

di�erent three-fold rotation centers in the ornament. Marking all three-fold

rotation centers on the ornament (Fig. 6.71) we obtain a lattice unit of an
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p6 p6m

Figure 6.65: Two possible symmetry groups for an ornament when colors are

ignored.

Figure 6.66: The p6m group implies a re�ectional symmetry along the major

diagonal of unit cell.

Figure 6.67: A four-color ornament of p6 group.

ornament. We have three possible symmetry groups: p3, p3m1 and p31m. We

discard the p31m group since it contains only two di�erent three-fold rotation

centers. We, then, show that the ornament does not have re�ectional symmetry

along the major diagonal of the unit cell (Fig. 6.72) and conclude that the

ornament belongs to p3 group when the colors are considered.

Just like, for the other ornaments with color symmetry for this ornament we also

consider the case when the colors are ignored. Combining node centers of two

masks given in Fig. 6.69 give �ve connection groups shown in Fig. 6.73. The
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Figure 6.68: Detected node centers for �ve masks of an ornament in Fig. 6.67.

connections show that the ornament contain six-fold, three-fold and two-fold

rotations (see Fig. 6.74). If the ornament is of p6m group then it must contain

re�ectional symmetry along the major diagonal of the unit cell. Fig. 6.75 shows

that there is no re�ectional symmetry. Then the ornament is of p6 group.

Last ornament we analyze is a two-color ornament shown in Fig. 6.76. It belongs

to p6m and has no color symmetry. Two masks of the ornament with detected

points are given in Fig. 6.77.

Fig. 6.78 illustrates connection groups for the masks of the ornament. First mask

has three connection groups, and the second mask has only one connection. For

both masks, we observe hexagonal connection representing six-fold rotations.

Triangular connection representing three-fold rotations are also seen for both

mask connections. There are also cross structures that occur from the intersec-

tions of two-point connections. These represent two similar two-fold rotations.

Observe that the triangles in the connections of both masks are mirror symme-

tries of each other indicating re�ection axes passing through the points where
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Figure 6.69: Connections of two masks each with three connection groups.

Figure 6.70: Connections of other masks with only one connection group.

two triangles meet. These re�ection axes are what make this ornament di�erent

from other ornaments with six-fold rotations that we discussed so far. While

the ornament contains all the symmetries of p6 group it also contain re�ection
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(a) (b)

Figure 6.71: (a) Symmetries and unit cell of an ornament. (b) Connections

within unit cell.

Figure 6.72: The p3m1 group implies a re�ectional symmetry along the major

diagonal of unit cell.

axes which show that the ornament belongs to p6m group (see Fig.6.79).
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Figure 6.73: Extracted �ve connection groups ignoring the colors.

(a) (b)

Figure 6.74: (a) Symmetries and unit cell of an ornament when colors are ig-

nored. (b) Unit cell and connections incident with it.
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Figure 6.75: The p6m group implies a re�ectional symmetry along the major

diagonal of unit cell.

Figure 6.76: A two-color ornament of p6m group with no color symmetry.

.

Figure 6.77: Detected node centers for two masks of an ornament in Fig. 6.76
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Figure 6.78: Extracted connections for the two masks of an ornament.

(a) (b)

Figure 6.79: (a) Symmetries and unit cell of an ornament. (b) Connections that

fall within one unit cell of the ornament.
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CHAPTER 7

CONCLUSION

In this thesis, we approached the problem of studying ornaments from di�erent

perspective. We gradually suppressed the content of each ornament in terms

of colors and shapes. By suppressing colors, we ignored speci�c color choices

in the ornament, but kept the color permutation information. By suppressing

the shapes we ignored the details of speci�c forms used in an ornament, but

enhanced the node centers. As a result, for a given ornament, we obtained the

underlying structure, which showed the repetition rules of individual nodes. We

showed that, according to the symmetries that the ornament exhibit, the node

centers join to form di�erent abstract structures like three-leaved roses, triangles,

hexagons, four-leaved roses, etc. Moreover, we observed that the ornaments with

similar symmetries exhibit similar abstract structures. All abstract structures

extracted for an ornament along with the number of colors in the ornament de�ne

the style of an ornament. An important advantage that content suppressed

images give is the possibility to measure the similarities of di�erent ornaments

in terms of style.

Using the content suppressed images, we sought for an alternative way of clas-

sifying ornaments, which would give new results with a fresh insight. For that,

we performed style-based clustering of ornaments. However, we did not cluster

all ornaments at once. Instead, we divided the clustering process into multiple

experiments. For each experiment di�erent ornament set were considered. In

this manner, we observed style-wise similar ornaments to join in the given con-

text. Such context-based clustering gives information on relations of di�erent
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symmetry groups. Moreover, clustering ornaments in this manner treats the

symmetry as a continuous feature, where the information on how similar are the

symmetries of two ornaments is of more importance than what symmetries they

have. The analysis comparing the clustering results using raw images vs. con-

tent suppressed images showed that in the �rst case only the images with similar

shapes and colors are clustered together, while in the latter case ornaments that

are similar style-wise (containing similar symmetries) are clustered together.

Beside the group approach, where we analyzed the clustering solutions for dif-

ferent groups of ornaments, we also analyzed individual ornaments. We took

advantage of the content suppressed images that enhance the individual node

centers of an ornament. By suppressing the content of an ornament, we de-

tected the node centers. Subsequently, we extracted di�erent connections that

are clustered according to their sizes and orientations into di�erent connection

groups. These connections showed how di�erent nodes are related, giving infor-

mation on what symmetries are used in an ornament. Detecting the symmetries

of an ornament led to detection of unit cell, hence the fundamental region of

an ornament. The symmetries are detected for ornaments both with regular

and irregular color permutations. In addition, we showed that it is possible to

extract symmetries both when colors are ignored and when colors are taken into

account.

Analyzing the ornaments in groups gave some insight on relations of di�erent

groups. Thus, for example, we observed that the ornaments of pure translational

symmetry group are stylistically more similar to the ornaments of glide group

than any other group that we considered. The rotational groups also divide

internally. The ornaments with four-fold rotations are shown to be farthest

to the groups containing three-fold and six-fold rotations. While the latter

ones are also discriminated internally. This is in contrast to group theoretical

approach, where ornaments are classi�ed into discrete groups, giving no clues on

the relations of di�erent symmetry groups. Moreover, in the group theoretical

approach rules for de�ning the symmetry group of an ornament changes with

the number of colors contained in an ornament. In contrast, our approach, be

it analyses of group of ornaments or individual ornaments, does not distinguish
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ornaments according to the number of colors using the same algorithm for all.
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APPENDIX A

NOTATIONS FOR TWO-COLOR TILINGS

TableA.1: Notations for Two-Color Tilings.

Belov and

Tarkhova

Coxeter type-

/subtype

Grünbaum and

Shephard

p′b1 p1/p1 p1[2]

pg′ pg/p1 pg[2]1

p′b1g pg/pg pg[2]2

p′bm pm/pm(m) pm[2]3

p′b1m pm/pm(m′) pm[2]5

c′m pm/cm pm[2]2

pm′ pm/p1 pm[2]4

p′bg pm/pg pm[2]1

p′cm cm/pm cm[2]3

cm′ cm/p1 cm[2]1

p′cg cm/pg cm[2]2

p′b2 p2/p2 c2[2]2

p2′ p2/p1 c2[2]1

pgg′ pgg/pg pgg[2]1

pg′g′ pgg/p2 pgg[2]2

pm′g′ pmg/p2 pmg[2]5

pm′g pmg/pg pmg[2]2

p′bgg pmg/pgg pmg[2]3
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TableA.1: Continued.

Belov and

Tarkhova

Coxeter type-

/subtype

Grünbaum and

Shephard

pmg′ pmg/pm pmg[2]4

p′bmg pmg/pmg pmg[2]1

c′mm pmm/cmm pmm[2]3

p′bmm pmm/pmm pmm[2]1

pmm′ pmm/pm pmm[2]2

p′bgm pmm/pmg pmm[2]4

pm′m′ pmm/p2 pmm[2]5

p′cmm cmm/pmm cmm[2]5

p′cmg cmm/pmg cmm[2]3

cmm′ cmm/cm cmm[2]2

cm′m′ cmm/p2 cmm[2]4

p′cgg cmm/pgg cmm[2]1

p4′ p4/p2 p4[2]2

p′c4 p4/p4 p4[2]1

p′c4mm p4m/p4m p4m[2]5

p4′mm′ p4m/pmm p4m[2]4

p4′m′m p4m/cmm p4m[2]3

p4m′m′ p4m/p4 p4m[2]2

p′c4gm p4m/p4g p4m[2]1

p4g′m′ p4g/p4 p4g[2]1

p4′g′m p4g/cmm p4g[2]2

p4′gm′ p4g/pgg p4g[2]3

p3m′ p3m1/p3 p3m1[2]

p31m′ p31m/p3 p31m[2]

p6′ p6/p3 p6[2]

p6′m′m p6m/p31m p6m[2]1
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TableA.1: Continued.

Belov and

Tarkhova

Coxeter type-

/subtype

Grünbaum and

Shephard

p6′mm′ p6m/p3m1 p6m[2]2

p6m′m′ p6m/p6 p6m[2]3
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