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ABSTRACT 

DEPTH INTEGRATED EQUATIONS APPLIED TO LONGITUDINAL 

DISCONTINUITIES ON THE CHANNEL BED 

 

 

 

Maral Razmand 

 

M.S., Department of Civil Engineering 

Supervisor: Prof. Dr. İsmail Aydın 

 

September 2015, 54 pages 

 

Depth integrated equations can be solved over large domains to provide flood 

inundation maps. In urban and rural areas however, there may be numerous natural 

or artificial bottom boundary discontinuities in the form of rapid variations in the bed 

elevation. Such discontinuities cause abrupt changes in the source terms of the 

governing equations and can significantly affect stability and accuracy of the 

numerical solution. A 1D code is developed for shallow water equations using HLL 

approximate Riemann solver. It is applied to a dam-break case until the steady state 

is reached between two end boundaries and volume conserving boundary conditions 

has been searched. Channel beds with step-like discontinuities were also studied. It is 

found that bed slopes greater than 1 can cause spurious water surface oscillations in 

the numerical solution.        

 

Keywords: Shallow Water Equations, Depth-Averaged Equations, Riemann Solver, 

Flood Waves 
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ÖZ 

DERİNLIK İNTEGRALLİ DENKLEMLERİN KANAL TABANININDA 

BOYUNA SÜREKSİZLİKLERE UYGULANMASI 

 

 

 

Maral Razmand 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. İsmail Aydın 

 

Eylül 2015, 54 sayfa 

 

Derinlik integralli denklemler taşkın haritaları hazırlamak amacıyla büyük alanlar 

üzerinde çözülebilir. Bununla beraber, kırsal ve kentsel alanlarda yatak seviyesinde 

ani değişiklikler oluşturacak şekilde çok sayıda doğal veya yapay düzensizlikler 

olabilir. Bu tür süreksizlikler akım denklemlerinin kaynak terimlerinde hızlı 

değişimlere neden olur ve sayısal çözümün stabilitesini ve hassasiyetini belirgin 

şekilde etkileyebilir. HLL Yaklaşık Riemann Çözücüsü kullanılarak sığ su 

denklemleri için bir 1B kod geliştirilmiştir. Bu kod, iki uç sınır arasında kararlı 

duruma ulaşılıncaya kadar baraj yıkılma durumuna uygulanmış ve hacim koruyan 

sınır koşulları araştırılmıştır. Bunun yanı sıra, basamak benzeri süreksizlikler 

barındıran kanal tabanları da çalışılmıştır. 1’den büyük olan yatak eğimlerinin, 

sayısal çözümde gerçek olmayan su yüzeyi salınımlarına neden olabileceği 

saptanmıştır. 

 

Anahtar Kelimeler: Sığ Su Denklemleri, Derinlik Entegreli Denklemler, Riemann 

Çözücü, Taşkın Dalgası 
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      CHAPTER 1 

1. INTRODUCTION 

1.1 General Description of the Problem 

One of the most popular areas of interest for mathematicians and scientists is to 

model and simulate the behavior of flow over an arbitrary surface under specific 

circumstances. Over the years, by improvements in computing technology, such 

models have been progressed significantly. As an example, tsunamis, wind waves, 

ocean tide, flood, dam breaks and open channel flows around obstacles are the 

subjects of this sort of studies. Despite the fact that the above mentioned phenomena 

happen regularly in our lives, the governing equations for those events are 

mathematically complicated to be solved directly. Correspondingly, utilization of 

approximate solutions are more common and practical. A typical example for this 

approach is the usage of depth integrated system of nonlinear partial differential 

equations namely, Shallow Water Equations (SWE). 

All of these environmental events follow the basic physical conservation laws such 

as mass, momentum and energy conservation. Hydraulic engineering is one of the 

fields of science which deals with water flow in either open or closed systems.   

The SWE can be obtained by applying the two basic conservation laws namely, mass 

and momentum conservation on an appropriately chosen control volume of the 

problem domain. The main assumption in this derivation is the nonexistent variation 

of flow velocity in vertical direction which leads to the hydrostatic pressure 

distribution being accepted. Since the variations over the vertical is eliminated, 

numerical solution is simplified significantly. Pressure solution is not required. 

Despite the fact that the shallow water equations are simplified by eliminating the 

third dimension, their solution contain main physical characteristics of the flow and 

can give very useful information about 2D horizontal plane for many engineering 

applications. The water surface waves in open channel flows, for example, can be 

represented precisely.   
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One of the most important features of shallow water equations is their ability to deal 

with discontinuous solutions. Adopting proper shock capturing numerical methods 

would aid the numerical approach to solve the equations in the case of shock waves 

and discontinuities both in solution or flow domain. It must be noted that the depth 

of flow should be at least 5 to 6 times smaller than the lateral extent of the flow to 

justify the shallowness assumption.  

 

SWE can describe 2D flows over horizontal domains without any violation of the 

assumptions in the derivation. However, when SWE applied to flow domains with 

large bottom slope, with curvature or flow domains with 3D obstructions, the 

solutions will be only approximate since hydrostatic pressure distribution 

assumption, in such cases, is violated. The source terms due to bed slope can be large 

and dominant in the governing equations which may cause unrealistic solutions for 

the water depth and horizontal velocity components. 

1.2 Objectives of the Study 

In most of the studies available in literature, homogeneous form of SWE has been 

studied and reported. The main goal in this study is to investigate solutions of SWE 

over domains with discontinuities in bed elevations. Although the bed slope is 

presented as a source term it can be treated in different forms in the numerical 

solution. In this particular study, the effect of bottom slope, discontinuity in 

geometry as a step on the bed level, and variable slopes will be investigated. 

Idealized 1D dam break analysis will be conducted in a limited domain from initial 

hydrostatic case to final hydrostatic case after sudden dam failure. Appropriate 

boundary conditions will also be investigated. 

In the first chapter, general information and the main idea behind this study has been 

given. In the second chapter, firstly the governing equations will be introduced, then 

their characteristics and the main assumptions will be discussed. After basic 

concepts, available numerical solution schemes are introduced.  

In Chapter 3, the numerical solution method adopted to the present problem, 

discretization of the equations with initial and boundary condition, is described in a 
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more detailed manner. At the last section of this chapter stability criteria is 

presented. 

Chapter 4 is reserved to present results of all test cases that have been studied where 

available analytical and numerical solutions are compared. Finally, reached 

conclusions in this study and recommendations for future works are presented in 

Chapter 5.  
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CHAPTER 2 

2. SHALLOW WATER EQUATIONS AND METHODS OF NUMERICAL 

SOLUTION 

2.1 Depth Averaged Shallow Water Equations 

In general fluid flow is governed by Navier-Stokes equations. Basically the Reynolds 

Averaged Navier-Stokes (RANS) equations (Versteeg & Malalasekera, 2007) for 3D 

incompressible turbulent flows can be written as 
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In these equations wvu ,,  are the velocity components in x, y, z directions 

respectively, p is pressure,
ji, is the combination of viscous and turbulent stresses in 

ij – plane,  is the fluid density and g is acceleration due to gravity which is assumed 

to be 9.81 m2/s in this study. It should be noted that overbar indicates time averaged 

values in these equations.  Here, equation (2.1) represents the continuity equation, 

conserving the mass, and the equations (2.2) ~ (2.4) are the momentum conservation 

equations.   

Numerical methods for 3D equations are very costly in large computational domains. 

Therefore, simplifying the equations to 2D or 1D would be more practical.  In most 

real life cases, the flow is considered to be shallow which means the flow depth is 

small compared to its width. Such flows are modelled with Depth Averaged Shallow 

Water Equations (SWE) which can be derived by averaging the Reynolds equations 
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(2.1) ~ (2.4) over water depth. In this derivation the velocity component in z-

direction (w) is considered to be significantly smaller than the other two components 

(u, v). In other words, the vertical acceleration is neglected and therefore a 

hydrostatic pressure distribution occurs which has linear relationship with flow 

depth. Thus, in the solution procedure there is no need to solve an equation for 

pressure. A basic sketch of a shallow free surface flow and related parameters is 

shown in Figure 2-1. 

 

 

Figure 2-1 Free surface flow sketch 

 

In this figure bed level shown as b(x,y), is considered with positive elevation in z 

direction. The depth of free surface flow over this bed level is shown by h which is a 

function of x, y and t. The water surface boundary can be defined as the summation 

of the bottom boundary and flow depth.  

The SWE of an incompressible and inviscid fluid in two dimensions is given by the 

following system of partial differential equations, 

 0)()(  yxt hvhuh  (2.5) 

 xyxt ghbhuvghhuhu  )()
2

1
()( 22

 
(2.6) 
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yyxt ghbghhvhuvhv  )

2

1
()()( 22  

(2.7) 

   

In this system of equations, (2.5) show the conservation of mass, (2.6) and (2.7) 

show the conservation of momentum in x and y- directions, respectively.  

Now, the vector form of above equations can be written as 

 )()()( USUGUFU yxt 
 

(2.8) 

 

This equation consists of three main vectors, namely vector of conserved variables 

(U), flux vectors (F(U) and G(U)) and source term vector S(U), all of which are 

described as 
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The source vector may include many additional parameters such as boundary 

resistance, gravity force, Coriolis forces and wind forces. In this thesis, particularly, 

1D SWE are studied and the source term will contain only the bottom slope,
x

z
S




0 , 

as gravity component, and the friction slope,
3/4

2

h

uun
S f  , as the boundary resistance. 

Here, n represents the Manning’s roughness parameter. In view of equation (2.8) by 

dropping the parameters related to y-component, the 1D form of the SWE is given as 
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where the vectors U, F and S in open form are 
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It is noteworthy that the SWE are hyperbolic and non-linear equations. With the 

assumption of a continuous and differentiable solution for equation (2.13), the flux 

term, xUF )( , can be expressed as
x

U

U

UF
UUFUF xx
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))(()( ' .  Therefore, 

equation (2.13) can be rewritten as  

 )())((' USUUFU xt   (2.17) 

And then in open form one gets 
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In the above equation the term 
U

F
UF




)(' is the Jacobian matrix of )(UF .  In order 

to satisfy hyperbolic characteristic of the SWE (2.13), the coefficient matrix )(' UF  

should be diagonalizable. (Godlewski & Raviart, 1996) 

Thus, for any positive flow depth h, the eigenvalues of the Jacobian are real numbers 

and can be obtained as follow 

 ghu 1  (2.19) 

 ghu 2  (2.20) 



9 

 

Important hyperbolic feature of SWE is that it allows information to travel as waves 

between one point to another in the flow system. This information is transported with 

a constant speed which is equal to eigenvalues in equations (2.19) and (2.20). Later 

on, these eigenvalues will represent the wave speeds which are vital in the solution 

procedure.  

 

2.2 Numerical Schemes for 1D Depth Averaged Shallow Water Equations 

2.2.1 Finite Volume Methods 

The main goal in this study is to be able to deal with discontinuous solutions caused 

by non-linear fluxes (Alcrudo & Garcia-Navarro, 1993). Therefore, modelling the 

problem with SWE would be appropriate since the most important feature of these 

equations is the ability to cope with the discontinuities. However, the analytical 

solutions for these type of equations are restricted to very special cases, as a result, 

developing an appropriate numerical solution is essential. 

During the last decades, Finite Difference (FDM) and Finite Element (FEM) 

methods are widely used for the solution of SWE. However, these methods produce 

unrealistic oscillations at discontinuities. Also, FDM do not conserve mass and 

require additional techniques to handle these discontinuities. Similarly, FEM 

conserves mass overall the domain but not in finite elements containing 

discontinuity. Therefore, recently numerical methods based on Finite Volume 

Methods (FVM) are being preferred, since FVM uses the integral form of the 

conservation equations on the solution domain which has been divided into finite 

number of cells called control volumes. In other words, mass and momentum are 

conserved in each control volume even when there is a discontinuity. Additionally, 

the flux variables can simply be simply evaluated at each cell interface by 

interpolating the mid-point values of neighboring cells.   

In this thesis, for the solution of 1D SWE, Harten Lax and Van Leer (HLL) approach 

based on FVM will be utilized (Toro, 2001).  It is obvious that in one dimension the 

domain is going to be divided into finite number of line segments (control volumes 

in 1D) of the form ],[ 2/12/1  ii xx .  
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Therefore, the first attempt to discretize the 1D shallow water equations is the 

integration of the governing equations defined in (2.13),  over each line segment. 

This leads to the finite volume integral equation below 
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Now, along each line segment, constant variation is assumed for the conserved 

variables. It means that for all ],[ 2/12/1  ii xxx ,  

 )(),(),( tUtxUtxU ii   (2.22) 

in other words, 
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and similarly 

 )())(()),(( tStUStxUS ii   (2.24) 

 

 where xi is the midpoint of the interval ],[ 2/12/1  ii xx , i.e.  
2

2/12/1  
 ii

i

xx
x  and ix  

is the length of the ith  interval.   

Thus, the integral equation above can be simplified as follow 
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and a further simplification using Fundamental Theorem of Calculus for the flux 

term results in  
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Then, the discretization in time direction is made by integrating equation (2.26) in 

time intervals ],[ 1nn tt  of lengths t , i.e. 
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                (2.27) 

Now, by using the following integral averages in time for the flux terms located at 

the computational cell boundary, 
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one can rewrite the integral equation (2.27) as  
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Hence, the finite volume discretization of equation (2.13), can be arranged as follow 

in order to give an explicit solution for  iU    at the time level 
1 ntt ,  
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1
 (2.30) 

In the above equation n
iU represents the spatial average of the conserved variable at 

the mid-point xi of each computational cell and time level  nt  and n
iF 2/1 represents 

the time averaged flux values located at cell boundaries (interfaces) at a time step nt .  

The principle of the finite volume method in 1D can be represented as a simple 

sketch in Figure 2-2  . In this figure, white dots represent the grid points and the line 

segments that are being divided by these dots are considered to be the control 

volumes. The midpoint of the computation cell is shown with black dots are control 

points. The conserved variables are computed for the midpoint and the flux terms are 

evaluated for the interface of the cell. As it is shown in Figure 2-2  , all the values are 

calculated in both spatial and time domains. These steps are very important in terms 

of accuracy, which will be discussed in more details in the following sections.  
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Figure 2-2  FVM solution sketch 

 

In order to determine any of the variables in cell midpoint, a boundary condition 

should be specified. In this particular study upwind discretization scheme has been 

used which is one of the most stable discretization scheme in available numerical 

methods (Hussaini, Van Leer, & Van Rosendale, 1997). Primarily, this method 

calculates the value of each parameter at the midpoint of the cell using the upstream 

boundary value which has been evaluated from neighbor upstream cell indicating 

that the values are being calculated in the direction of the flow.    

 

2.2.2 Approximate Riemann Solvers 

The discontinuities appear on the solution of SWE, can be defined by the concept of 

Riemann Problem. The Riemann problem is a one dimensional initial value problem 

which has been introduced to solve a set of conservation laws described by 

hyperbolic equations. This problem can be considered as a generalization of the dam 

break problem.  It shows the initial values of the problem which are discontinuous at 

distance x.  The Riemann problem can be shown as 

 0)(  UFU xt  (2.31) 
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There are numerous methods available in the literature to solve Riemann Problem 

which can be either exact or approximate. Being complex and time consuming and 

having high computational cost are some of the Exact Riemann solvers drawbacks. 

Approximate Riemann solvers on the other hand, are easier to conduct as well as 

being cheaper and faster compared to the exact solutions. According to Toro, (Toro, 

2001) approximate Riemann solvers can save up to 20 % in cost compared to exact 

solution. Aside from these advantages the correctness and accuracy of the method is 

the most important criteria, since the approximate Riemann solvers give quite 

accurate results, consequently, these methods have become more popular and 

preferable by researchers. Some of the most popular approximate Riemann solvers 

are Godunov’s method with Roe averaging, Osher’s method, HLL and Weighted 

Average Flux (WAF).  

The general structure of Riemann problem solution can be represented in x-t plane. 

The solution consists of several waves each of which represent a distinct real number 

of eigenvalues and as it was mentioned before, they have an important role in the 

transportation of the discontinuity between computational cells.  

These waves may occur as shock waves, rarefactions and shear wave. A general 

view of the speeds and possible locations of these waves can be seen in Figure 2-3 

and they can be classified with the superscripts L, R and *. Here, L  and R  will be 

either shock waves or rarefactions and in the area between these two waves, called as 

the star region, there may occur shear waves, * , showing the discontinuity location. 

The shear wave itself has the speed of u and in order to define the speeds of wave 

propagation ( L  and R ), a parameter named Celerity is described  

 

 
ghc   (2.33) 

Note that this equation is only valid for SWE when the ratio of water depth to wave 

length is less than 0.05 (Sorensen, 1993).  
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Figure 2-3 The solution of Riemann problem 

It is well known that, a good example for Riemann problem is the classic 1D dam 

break problem which can be seen geometrically in Figure 2-4 in detail. When the 

transition is smooth and increasing in the opposite direction of the flow, the wave is 

known as a rarefaction. On the other hand, if the characteristic family decreases in 

the flow direction abruptly, the separating wave is called as a shock wave. There are 

several possible combinations of these shocks or waves which depend on the initial 

condition of the problem. The solutions for the regions at the left of L and right of 

R  remains the same as the initial condition given in equation (2.32), since the 

characteristic information has not being reached those areas yet (Toro, 2001). 
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Figure 2-4 A geometrical sketch of dam break problem  

All the available numerical methods are generally based on solving the Riemann 

problem at interfaces between control volumes. In the solution procedure, the 

conserved variables are assumed to be constant along each line segment. Thus, this 

may produce discontinuity between cells. In order to overcome these discontinuities, 

the numerical method should take into account the flow direction while 

approximating the interface flux values. In other words, this upwind feature of the 

method will allow discontinuous solutions. However, the flux approximation at 

interfaces makes the difference between these methods (Toro, 2009). For instance, 

the Godunov's Upwind Method solves the Riemann problem at each interface by 

making use of Roe’s averages for the flux approximation. A general description of 

this method is shown in Figure 2-5. First, in part (a) the computation of flux values 

are shown at each cell interface, second the assumption of piecewise constant data 

construction is presented and in (c) the local Riemann problem at each interface can 

be seen. 
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Figure 2-5 Godunov's upwind method for 1D flow: (a) Control volume in x-t space, (b) 

Integral averages giving piecewise constant data,(c)  Structure of the solution of Riemann 

problem at interfaces (Toro, 2001)    

 

A special case of dam break problem is considered (Figure 2-4) where there is only 

water accumulated behind the gate but the bed is dry at the front, which means the 

value for hR is equal to zero. In this case, the two eigenvalues will overlap, making 

the SWE not hyperbolic anymore. Thus the method will lose its shock capturing 

ability. In literature there exists two well-known approximate Riemann solvers 

which are able to solve the dry bed case problem directly. These two methods are 

HLL and Weighted Average Flux (WAF) scheme (Zoppou & Roberts, 2003). In this 

thesis, HLL approximate Riemann solver is preferred for simplicity in 1D solutions. 
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2.2.3 HLL Approach 

First order HLL approximate Riemann solver was introduced by Harten Lax and van 

Leer in 1983 (Toro, 2009). This approximate Riemann solver only considers the 

fastest waves, namely 
L and 

R , as an estimation for the smallest and largest wave 

speeds in the solution of the Riemann problem (Figure 2-6) (Murawski, Murawski, & 

Stpiczynski, 2012). At the interface, i+1/2, for the left (L) and right (R) states of the 

conserved variables, the following assumptions are made  

 n
i

L UU   ,  n
i

R UU 1  (2.34) 

with the corresponding flux values 

  )( RL UFF  , )( RR UFF   (2.35) 

 

Note that, here, the intermediate waves, such as shear waves or contact 

discontinuities are omitted based on this approach and thus a two wave Riemann 

solution is achieved.  

 

Figure 2-6  Two-wave Riemann solution structure for HLL method (Toro, 2001) 

 

The HLL approximation used in the computation of flux values appearing in the 

discretized equation (2.30) has the following form (Toro, 2001) 
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Here, without loss of generality, the HLL flux treatment is described for the interface 

at i+1/2 location.  

As stated, the presented HLL method is first order accurate with the assumptions 

(2.34) and (2.35) in which the right and left state contributions only come from the 

two adjacent cells,  i and i+1. In order to increase the order of accuracy, the MUSCL 

– Hancock scheme (Toro, 2001) is made use of in space and time. Further, for the 

expected oscillations at discontinuities, the MUSCL – Hancock scheme process is 

improved by using a Total Variation Diminishing (TVD) approach based on limiting 

the slopes of conserved variables.  

Note that, in HLL approach shear waves are ignored. However, in literature, there 

exists a modified version of it called HLLC scheme, which also covers the shear 

waves and the contact discontinuities. Thus, the HLLC solver structure implies a 

three wave Riemann solution as in Figure 2-7 and it is more suitable for 2D problems. 

 

Figure 2-7  Three-wave Riemann solution structure for HLLC method (Toro, 2001) 

 

In this thesis, the HLL solution of one dimensional problems and their applications 

will be considered. A detailed interpretation about the improvement of HLL 

approach with TVD and MUSCL – Hancock is given in sections 2.2.4 and 2.2.5. 
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2.2.4 MUSCL – Hancock Approach (Variable Extrapolation Approach) 

The ideal numerical method is the one giving the solutions with higher accuracy and 

lower error. Van Leer introduced the MUSCL (Monotone Upstream-Centered 

Scheme) or Variable Extrapolation approach in order to modify the first order 

schemes (Van Leer, 1977). Later on, the original MUSCL method was modified by 

Steve Hancock, a fluid mechanics graduate student of UC Berkeley University, in 

which one achieves second order accuracy in both space and time (Van Leer, 2006). 

 The MUSCL-Hancock method involves three steps; data reconstruction, the 

boundary value evaluation and determination of flux values at interfaces using 

approximate Riemann solver. 

Firstly, a piecewise linear reconstruction of conserved variables in computational 

cell, i, is considered, (Figure 2-8). Here the piecewise linear function )(xU i  will 

replace the previously assumed piecewise constant data
n
iU . 

 
i
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ii U

x

xx
UxU 






)(
)(  ,  xx  ,0  (2.37) 

In this equation, 
x

U i




 is the slope of )(xU i in the computational cell, i, and xi, shows 

the midpoint of the cell. As the second step, the necessary right and left contributions 

for interface values are given with equations (2.38) 
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R
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 (2.38) 

These boundary extrapolated values, are used in the solution of local Riemann 

problem at every discontinuous point. 
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 Figure 2-8  Piecewise linear MUSCL reconstruction of data in a single cell, i (Toro, 2009) 

Now, writing iU in a more general form, would result in an equation which 

includes differentiable extrapolations at the cell interfaces  

 
 1/2i1/2-ii U)1(U)1(

2

1
U    (2.39) 

where 

 ,U 11/2i
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i

n
i UU    n

i
n
i UU 11/2iU    (2.40) 

and ω is a free parameter between [-1,1].  

Next, the extrapolated conserved variables at cell interfaces, such as at i+1/2, are 

obtained as follow (Figure 2-9  ) 
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Figure 2-9  MUSCL-Hancock method representation (Zoppou & Roberts, 2003) 

For the last step of MUSCL-Hancock approach, the values for interface fluxes is 

obtained according to HLL approximate Riemann solver given in equation (2.36). 

More detailed information about the application of this approach during the 

discretization process in order to have higher order accuracy in time, will be given in 

chapter 3. 

As it was mentioned, these higher order extensions would result in spurious 

oscillations at the cell interfaces. Thus, to overcome this deficiency, TVD limitation 

will be applied on MUSCL approach, which is going to be discussed in the next 

section.  

2.2.5 High-Resolution Schemes 

As stated, there exist two main deficiencies regarding the basic first order numerical 

methods; inaccuracies due to their low order of accuracy and unrealistic oscillations 

at discontinuities. However, by making use of MUSCL-Hancock extrapolation 

method, the order of accuracy for the numerical scheme can be increased. 

Additionally, total variation diminishing schemes have been developed specifically 

to eliminate the unwanted oscillations. TVD is actually a property which is applied 

to discretization of SWE to treat these oscillations by adding or subtracting artificial 

dissipative amount in the flow direction (Versteeg & Malalasekera, 2007).  

Considering a discrete solution as shown in Figure 2-10, the total variation can be 

defined as follow 
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342312)( UUUUUUUTV   (2.43) 

 

Figure 2-10 Explanation of total variation concept 

The role of TVD can be defined in this concept, where with monotonicity-preserving 

property the total variation of this discrete solution would be diminished with time.  

According to Sweby (1984) there are some conditions where the scheme should be 

met for it to be TVD and these conditions are defined in terms of two parameters r 

and ψ. The parameter r is a ratio of upwind difference to local difference of the 

conserved variable and ψ is called the limiting function which does the diminishing 

of the oscillations and is a function of a common parameter (r).  

In recent years a number of limiters have been proposed in the literature and the 

most commonly used ones are shown in Table 2-1 . 

Table 2-1 Slope limiter functions (Versteeg & Malalasekera, 2007) 

Name Limiter Function ψ (r) Source 
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Lien and Leschziner 

(1993) 

The graph of these limiter are visualized in Figure 2-11 for  8,0r  . One of the 

important criteria for a stable TVD scheme introduced by Sweby is that for a limiter 

function to be 2nd order accurate, it should pass through point (1,1). As it is shown in 

Figure 2-11, all the mentioned limiters are passing through this point which states 

their 2nd order accuracy. Moreover, the only smooth limiter functions in this figure 

are Van Leer and Van Albada and the other limiters have piecewise structure. In the 

acceptable TVD region, which is shown by gray filling, the lower limit is Min-Mod 

and the upper limit is shown by SUPERBEE limiter functions. This shows that the 

Min-Mod limiter function is the most dissipative among these functions (Murillo & 

Garcia-Navarro, 2012). The generalization of SUPERBEE and Min-Mod limiter is 

named as Sweby’s limiter and an additional parameter has been defined here as β. 

For β values between 1 and 2 these limiters stay in TVD region. All these limiter 

functions have different characteristics which may affect the results of the numerical 

method. 

 

 

Figure 2-11  Limiter function comparison (Versteeg & Malalasekera, 2007)  
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As previously stated, in order to eliminate the unrealistic oscillations, the 

reconstructed slopes in MUSCL approach are limited with a slope limiter function. 

(Anastasiou & Chan, 1997). By applying one of the limiter functions above, the 

values of conserved variables at the interface i+1/2, become 
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Then, these boundary values are used in computing the flux terms at the interface of 

the cell (Alias, Liang, & Kesserwani, 2011). In the next chapter, a general view of 

discretization of 1D SWE with the application of TVD based MUSCL-Hancock is 

given and the algorithm of the scheme is discussed in detail. 
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CHAPTER 3 

3. NUMERICAL METHOD ADOPTED TO PRESENT PROBLEM 

3.1 Discretization of the 1D SWE Equations using HLL Numerical Scheme 

Let us recall the one dimensional shallow water equation (equation (2.13)) 
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with the following open form described in equations (2.14) ~ (2.16) 
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and also recall the general FVM discretization (equation (2.30)) derived in Section 

2.2.1 for 1D SWE  
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This formula is first order in time and space but it turns out to be second order 

accurate in space when the flux terms are approximated by the HLL approach,  

nHLLn

ii
FF ,

2/12/1 
 (equation(2.36)), in which the conserved variables are reconstructed 

by using a TVD version of MUSCL-Hancock extrapolation . Accordingly, the finite 

volume statement above can be rewritten as in equation (3.1) within the HLL flux 

approximations in order to gain the shock capturing property and higher order 

accuracy 
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Equation (3.1) is second order in space as the fluxes are obtained at mid points 

between the computational grid nodes. Now, second order accuracy also in time is 

achieved by splitting the solution into two time steps. At first, a half time step 2/t   
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is used, called Predictor Step, where all the dependent variables at time level   
2/1nt  

are determined from the values at the time level 
nt . Then, a full time step (Δt) is 

used, called the Corrector Step, again all the parameters are being calculated using 

the predictor step values. This Predictor-Corrector algorithm was suggested in 

MUSCL-Hancock approach (Alcrudo & Garcia-Navarro, 1993) and is stated from 

Equation (3.1) as 

The Predictor Step  
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The Corrector Step 
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It should be noted that the superscript shown next to the variables indicates the time 

step or it determines which side of the computed cell the variable is located at 

(right/left) and the subscript indicates the spatial location of the evaluated parameter.  

In the solution, the right and left approximations of the interface values of variables 

are required which can be obtained by using MUSCL approach. However, the 

variations of any dependent variable may give spurious oscillations in the solution. 

To avoid unphysical oscillations and keep stability of numerical solution limiter 

function will be used as slope limiters for dependent variables. As it was explained 

in section 2.2.4, slope limiter is a function of a parameter named (r). The parameter, 

r is the ratio of upwind difference to central difference and functions as a switch to 

determine the flow direction. The velocity component in x-direction for the right face 

of the ith cell (Figure 3.1 )vis calculated by averaging   

 2/)( 1 ii

Interface

i uuu  (3.4) 

The characteristic wave speed for the face of the cell can be obtained by finding the 

interface water depth and celerity 
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 2/)( 1 ii

Interface

i hhh  (3.5) 

 Interface
i

Interface
i ghc   (3.6) 

Then, the wind direction is 

 Interface

i

Interface

ii cuWD   (3.7) 

  If WD>0  

 21   iiupwind hhU  (3.8) 

 1 iiLocal hhU  (3.9) 

If WD<0   

 1 iiupwind hhU  (3.10) 

 iiLocal hhU  1  (3.11) 

The parameter r is then obtained from 
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i
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U
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 (3.12) 

Using the r ratio and one of the slope limiter functions from Table 2-1 , limited 

variations of flow quantities can be evaluate  
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where ψ is the limiter function. Using the interface values obtained, one can 

determine the interface fluxes for HLL method using equation (2.36) (Alias, Liang, 

& Kesserwani, 2011).  

Considering the grid system shown in Figure 3.1 , the above general algorithm should 

be repeated for continuity and momentum equation separately. Writing these 

equations individually, we get 
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Figure 3.1 The grid system in 1D solution 

 Continuity Equation  
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 Momentum Equation 
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As it was mentioned before, all the variables will be computed in two half time step. 

In the predictor step the values will be determined by using the previous full time 

step values, and in the corrector step, results of predictor step will be used. This loop 

would repeat and the values will be updated till the desired condition has been 

reached.  

Calculating the slope limiters and intermediate boundary extrapolated values for both 

continuity and momentum at predictor step would be as follow 

Continuity  )()()( 1 h
n
i

n
i

n
i rhhh    (3.18) 

Momentum )()()( 1 q
n
i

n
i

n
i rqqq    (3.19) 

Next, the intermediate values at computation cells would be determined again for 

both equations as below 

Continuity 
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Momentum  
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It should be noted that, the main parameters in this problem are h and huq   , thus, 

the value of velocity can be simply calculated from 
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Next step is to evaluate the flux terms for both continuity and momentum equation 

separately according to the speed of wave in the computational cell.  

For each wave region (left, right and star), there exists a distinct flux equation. 

According to Toro (Zia & Banihashemi, 2008), in order to use the HLL method 

correctly it is essential to identify the proper wave. In order to do so, firstly, the 

values of velocity and depth at the star region, 
*u and *h , are computed from 

equations below 
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Here 
kh  and 

ku  represent the initial values for a local Riemann problem with k=L, 

R.  

Although there are lots of possibilities for the combination of these waves, Toro 

suggests the following three general cases are sufficient for covering majority of 
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possibilities (Zia & Banihashemi, 2008). These cases include, shock wave, 

rarefaction and the special case of dry bed. Wave speeds for each case can be 

obtained as follow 

 

- In case of shock  
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Here, q represents the unit discharge value and it can be defined as follow 
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- In case of rarefaction wave 
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(3.30) 

- In case of dry bed (which is out of the scope of this study but is included in 

the code for further studies) 

 

 RRL ghu 2  for 0Lh  

LLR ghu 2   for  0Rh  

 

(3.31) 

The values for intermediate fluxes at the face of the cell would be defined as follow 

 

 Flux terms for continuity equation: 
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 Flux term for momentum equation: 
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The last step is to calculate the value of conserved variables for predictor step 
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All these steps should be repeated with the new values of the variables obtained from 

predictor step  
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3.2 Initial and Boundary Conditions 

Initial condition for all the cases that have been studied so far in this thesis, is two 

different stationary water levels with an imaginary gate in between. On the left side 

of the gate the water level is high and on the right hand side of the gate the water 

level is low. At first, the variable q is equal to zero everywhere since there is no flow 

at t=0.  

Boundary conditions play an important role in the result of the solution of any 

problem. In all of the cases, the domain is divided into M control volumes (line 

segments). In order to define appropriate boundary conditions three ghost cells are 

added to M, namely i=0, M+1 and M+2. (Figure 3.1 At the wall boundaries a normal 

reflective boundary condition is imposed. For the velocity 

 
10 uu   (3.42) 

 
MM uu 1

 (3.43) 

 
12   MM uu  (3.44) 

Having the midpoint velocity in two consecutive computational cell equal with 

opposite sign is another way to imply the velocity at the interface of the cell as zero. 

This type of boundary condition is known as Neumann type boundary condition, in 

which the normal gradient of the variable is being introduced to the solution. For 

water depth the boundary condition would become 

 xShh  1,010
 (3.45) 

 xShh MMM  ,01
 (3.46) 

 xShh MMM   1,012
 (3.47) 

 

By applying this condition to both sides of the closed domain, although there were 

no inflow/outflows, a decrease/increase in total volume of flow was observed. The 

problem with this condition is that Neumann type boundary condition cannot be 

applied on both sides at the same time. Therefore, one of the parameters should be 

fixed at one end. Considering the fact that the total volume should remain constant, a 



33 

 

specific boundary condition has been applied on one of the walls. Calculating the 

initial volume of fluid in the closed domain, and equating this value to the computed 

volume at the end of each corrector step, the value for water depth is calculated for 

the last cell in the domain.  
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The fixed value of water depth at the end wall is calculated from 
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Using equation (3.50) the value for water depth can be updated for the last 

computational cell, then applying the boundary condition shown in equations (3.45) 

~ (3.47) would give accurate results. The ghost cell values for q can be simply 

calculated by the equation below 

 huq   (3.51) 

 

3.3 Stability Criteria 

All of the numerical methods may introduce some computational errors. For a 

numerical method to be considered appropriate and stable, errors occurring in the 

algorithm should not have major effect on the final result, meaning it should not 

grow throughout the solution. It is crucial to observe whether the method is stable or 

not. The stability condition for the 2D SWE is proposed as (Alcrudo & Garcia-

Navarro, 1993) 
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(3.52) 

where Δx, shows the distance between midpoints of computational cells and c is 

celerity. For the present 1D solution, it is adopted as  
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where CFL (Courant-Friedrichs-Levy) number is fixed as 0.9 after a series of 

numerical tests.  Time step size (Δt) was calculated for each cell at every time step 

and the minimum value was used in the solution. 
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CHAPTER 4 

4. NUMERICAL SOLUTIONS FOR THE TEST CASES 

4.1 1D Dam Break Problem with Analytical Solutions 

The developed code firstly tested for a generic 1D dam break problem for which 

analytical solutions are available. Analytical solutions give the time dependent water 

surface profile and depth averaged velocity for inviscid flow over a horizontal bed 

for a limited range of the physical domain. Initially hydrostatic water held behind a 

vertical wall is released by sudden removal of the vertical wall. Then all kind of 

surface waves can be observed depending on the initial water depths on upstream 

and downstream of the wall.  

Numerical solutions for the same conditions are obtained and compared to the 

analytical solutions to verify capabilities of the mathematical model and the 

numerical solution technique adopted here. The analytical solution of the test case 

(Stoker, 1957), (Wu, Huang, & Zheng, 1999) , (Zoppou & Roberts, 2003) is defined 

in Table 4-1 . The channel is 2000 m long with an imaginary wall (dam) located at the 

midpoint of the channel (at x=1000 m).  There are different stationary water levels at 

the left and right hand side of the wall and as initial condition the velocity is set to 

zero everywhere. By removal of the imaginary wall, a discontinuity is introduced to 

the flow at t=0 seconds. The aim in this test case is to observe the development of 

shock waves and rarefactions that will move to upstream and downstream at t=50 

seconds.  The results of this comparison have been shown in Figure 4-1 for 

supercritical case and Figure 4-2 for subcritical case. The computational results 

satisfactorily fit the analytical solutions. It is noteworthy that different limiters were 

tested and results were not affected significantly. 
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Table 4-1 Analytical solution for dam break problem in a wide frictionless open channel 

(Zoppou & Roberts, 2003) 

Range Dependent Variable 
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Here the term R , represents the shock speed and can be obtained by nonlinear 

equation below 
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Figure 4-1 Comparison between numerical and analytical solution for 1D dam break test 

case at T=50sec, mesh size,Δx=2.00 m , HL=10.00 m and HR=0.10 m (supercritical flow), 

results obtained via HLL method. 
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Figure 4-2 Comparison between numerical and analytical solution for 1D Dam Break test 

case at T=50sec, mesh size,Δx=2.00 m , HL=10.00 m and HR=5.00 m (subcritical flow), 

results obtained via HLL method. 

 

 

4.2 1D Dam Break Problem in a Closed Domain with Various Bed Slopes  

In the second test case the bottom slope is considered in addition to flow conditions 

of the first test case.  However, there are no analytical solutions available for this 

case. A schematic description of the flow domain is shown in Fig.4.1. The initial 

condition in this test case is similar to classical dam break problem, the only 

difference is varying h values which are due to the sloped bed.  
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Figure 4-3 Dam break with various slope grid system 

 

The main goal in this study is to observe the effects of some computational flow 

domain parameters on HLL method. One of the most important parameter that was 

focused on is the slope of the channel bed. In real life, considering a flood in an 

urban area, an obstacle like a building or a vertical wall can appear to cause a sudden 

change in bed slope and setting it to infinity. In order to focus on this problem, 

specific test cases have been defined and studied.  

The numerical solution of 1D dam break problem does not require long processing 

times but animation of water surface deformation in a laptop computer may become 

troublesome when there are large number of data points in the domain. To facilitate 

video animations in a laptop computer the channel length is reduced to 1000 m and 

the wall is located at 500 m. Thus 50% savings in computer memory and increased 

animation speeds were achieved.   

 

4.2.1 Effect of Mesh Size in the Solution 

One of the most important parameters in every simulation based on numerical 

methods is the size of the control volumes namely, mesh size. Thus, in order to see 

the role of mesh size on the solution, one of the cases has been studied for different 
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mesh sizes, Δx=1.0, 5.0 and 10.0 m. Water surface profiles at t=1000 s are shown in 

Figure 4-4, Figure 4-5 and Figure 4-6. For Δx=5. and 10. m cases surface profiles have 

some sharp variations which do not describe a water wave. When Δx=1.0 m such 

sharp variations disappear and a smooth water wave is observed.  In rest of the study 

mesh sizes were chosen as 1 m or less. 

 

Figure 4-4 Mesh size comparison, S0=0.4, Δx=1.0 m 

 

Figure 4-5 Mesh size comparison, S0=0.4, Δx=5.0 m 
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Figure 4-6 Mesh size comparison, S0=0.4, Δx=10.0 m 

 

4.2.2 Effect of Bed Slope on the Solution 

In this case different slopes from 0 to 1 have been studied for the same initial 

conditions. The total length of the domain is 1000 m, and the mesh size has been 

selected as 1m. An imaginary gate has been located at x=500 m. A CFL number of 

0.9 has been set in order to achieve the stability throughout the solution.  

When the slope is large, a part of the channel can dry up at certain instances of the 

wave motion in the computational domain. Present algorithm cannot deal with 

negative water depths and therefore it is necessary to keep the whole computational 

domain all over the simulation time wet. Therefore, initial water depths in the 

computational domain are increased to provide positive water depth at all instants of 

simulation. 

Solutions were repeated with different bed slopes starting from S0=0. Computations 

were continued from the initial steady state to final steady state which is a horizontal 

water surface between the two end boundaries. The maximum bed slope on which 

the dam break problem can be solved is 1. For slopes more than this value, method 

develops unrealistic waves which cannot be treated by slope limiters. Some 

instantaneous water surface profiles of this simulation are shown in Figure 4-7 . In 

this case, S0=1.0 , it takes 5000 seconds to reach to final steady state. 
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Figure 4-7 Instantaneous water surface profiles of test case simulation to investigate the 

effect of bed slope on the solution, S0=1.0 , WSL=1050 (m), WSR=1040 (m), Δx=1.0 m, (a) 

T=0 s (initial condition), (b) T=1 s 

 

(a) 

(b) 
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Figure 4-7(continued) Instantaneous water surface profiles of test case simulation to 

investigate the effect of bed slope on the solution, S0=1.0, WSL=1050 (m), WSR=1040 (m), 

Δx=1.0 m, (c) T=10 s , (d) T=30 s 

 

(c ) 

(d) 
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Figure 4-7(continued) Instantaneous water surface profiles of test case simulation to 

investigate the effect of bed slope on the solution, S0=1.0, WSL=1050 (m), WSR=1040 (m), 

Δx=1.0 m, (e) T=50 s , (f) T=100 s 

(e) 

(f) 
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Figure 4-7(continued) Instantaneous water surface profiles of test case simulation to 

investigate the effect of bed slope on the solution, S0=1.0, WSL=1050 (m), WSR=1040 (m), 

Δx=1.0 m, (g) T=3000 s , (h) T=4999 s 

 

4.3 1D Dam Break Problem over a Step in a Closed Domain  

In real life applications SWE may be solved in domains containing obstructions to 

flow. Flow around a completely submerged bed level discontinuity such as a 

prismatic step on the bed may disturb the flow and the numerical solution can 

sometimes be unrealistic. This test case of 1D dam break problem involves such a 

submerged step on the horizontal bed at the downstream of the imaginary dam 

(Figure 4-8). The wave motion over the step is investigated for various bed slope 

(g) 

(h) 
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evaluation algorithms. Depending on the grid resolution and location of the step, the 

bed slope may get different values at both ends of the step. For very fine mesh, at the 

upstream and downstream vertical faces of the step, the bed slope may be evaluated 

as very large (approaching infinity). Obviously, such a large value would dominate 

the other terms in the momentum equation and solution would fail. The bed slope in 

such cases should be calculated differently to alleviate the numerical problems due to 

large source term. 

Modeling a vertical step in the numerical solution of SWE is physically not 

consistent with the assumptions made in the derivation of SWE. Therefore, one 

approach is to smooth the bed slope over the computational grid by a suitable 

technique. However, there should be certain criteria set to describe when and how 

much smoothing is necessary and appropriate.   

 

Figure 4-8 Dam break problem over a step on the bed 

 

In calculating the bed slope, bed elevations at two neighboring grid points are used. 

Therefore, mesh size is a computational parameter that affects the slope computation 

(Figure 4-9). Bed slope (at the face of a step on the bed) is underestimated (smoothed) 

for large mesh sizes and this yields that the results would be more accurate as the 

mesh is refined. However, this can be a source of numerical instability or other 

computational problems such as spurious oscillations of the water depth. 
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Numerical tests are conducted to observe the water surface deformations as function 

of the bed slope computed at both ends of the totally submerged prismatic block on 

the bed. In this test case, mesh size was fixed as 0.5m. Then, block face angle was 

changed (0<α<90) and water surface profiles were observed. It is observed for steep 

slopes of the block face there is an unphysical jump in water depth just above the 

two ends of it. To investigate the relationship between this spurious oscillations and 

other flow parameters, a series of tests have been conducted. The amplitude of these 

surface oscillation is defined by ‘A’ (Figure 4-10).  The ratio of A to the step height, 

Hs is plotted against face angle α in Figure 4-11. In all the cases the mesh size is 0.5 m 

and the total length of the domain is 500 m. Min-mod type limiter has been used and 

a total run time of 7000 seconds was considered. The imaginary gate is placed at 

x=100 m. The water level difference between two sides of the gates has been studied 

for two cases, 5 and 10 m. The other varying parameter is the height of the bottom 

step which has been studied for two cases of 5 and 10m. Test results parameters are 

summarized in Table 4-2  . 

 

 

Figure 4-9 Bottom slope grid generation according to edge angle 

 

α 
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Figure 4-10 Wave formation around the geometry discontinuity at T=7000 sec 

Table 4-2  General information of test case 

Variable Name Value 

Hstep 5          (m) 

HR 10        (m) 

Hw 20        (m) 

WSL 45        (m) 

WSR 35        (m) 

T 7000   (sec) 

Δx 0.5      (m) 

α 45⁰ 

Ldomain 500     (m) 

LStep 50       (m) 

Wave Amplitude (A) 
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Figure 4-11 Relation between ratio of wave amplitude near discontinuity to step height and 

step edge angle 

As seen in Figure 4-11 the unphysical surface oscillations are increasing with the face 

angle α as expected. Computations were repeated for different step heights, Hs, and 

for different water level difference, HR. Results are independent of HR but slightly 

dependent on Hs. In any case, α is the critical parameter. When α is less than 400 

surface oscillations to step height ratio is less than 0.05 which is considered as 

negligible. However, for α>500 there is rapid growth of surface oscillations which 

may cause unrealistic spill of water to surroundings. 
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CHAPTER 5 

5. CONCLUSIONS AND RECOMMENDATIONS 

Shallow Water Equations are applied over channels with discontinuities in the bed 

elevation. HLL approximate Riemann solver is adopted to solve the SWE. Computer 

code was verified by comparing the numerical solutions to available analytical 

solutions. Two specific test cases involving 1D dam break problem has been studied. 

The first case is a 1D dam break on a sloping bed with two wall boundaries at both 

ends. Water surface waves are observed from initial hydrostatic case to final 

hydrostatic case after development and diminishing of the dam break flow. Purpose 

of this test was to investigate appropriate boundary conditions while observing 

global volume conservation in the computational domain. It is found that 

simultaneous implication of ‘no flow’ boundary condition at both ends of the 

solution domain causes sources or sinks in the solution with continuous loss or 

increase of fluid volume. No relation with this erroneous behavior and the bed slope 

was found. The problem was solved by converting one of the boundary conditions to 

a constant water depth which is updated after each computational time step to 

conserve total fluid volume in the computational domain. 

The second case is a dam break problem with totally submerged prismatic step 

located on the bed. When any water wave propagates over the step, a sharp wave-

like non-physical deformation occurs above the corners of the step on the water 

surface. The surface deformations are caused by sudden changes in the bed slope due 

to front and back faces of the step. Depending on mesh size and location of step 

faces, the computed bed slope can be very large, approaching infinity for adequately 

fine mesh. Then large source term in the momentum equation becomes dominant and 

cause such non-physical oscillations. There is no cure for large slopes. The solution 

is to limit the bed slope to reasonable values to eliminate artificial water surface 

oscillations. It was shown that bed slopes above 1 should be avoided.    

The existing slope limiters in the literature were put into test and despite the fact that 

no significant difference was spotted, some of the obtained results were detected as 
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being more dissipative in nature compared to the others. Based on the literature 

recommendations, the Min-Mod type slope limiter was chosen. 

Present results were obtained with HLL approximate Riemann solver. It may be 

interesting to repeat present tests with some other Riemann solvers. 
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