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ABSTRACT 

 

 

A MIXED INTEGER PROGRAMMING METHOD FOR PARETO FRONT 

OPTIMIZATION OF DISCRETE TIME COST TRADE-OFF PROBLEM 

 

 

 

Bilir, Mert  

 

M.S., Department of Civil Engineering 

 

Supervisor: Assoc. Prof. Dr. Rifat Sönmez 

 

Co-Supervisor: Asst. Prof. Dr. S. Tankut Atan 

 

 

 

June 2015, 69 pages  

 

 

 

There is a reverse relationship between the activity durations and costs in 

construction projects.  In scheduling of construction projects, the project duration can 

be compressed (crashed) by expediting some of its activities in several ways 

including; increasing crew size, working overtime, or using alternative construction 

methods.  As a result, when duration of a critical activity is decreased, its cost 

increases and project duration decreases.  In construction projects, resources are 

usually available in discrete units.  This trade-off between time and cost is named as 

Discrete Time Cost Trade-off Problem (DTCTP) in literature.  DTCTP plays an 

important role in construction scheduling and especially during schedule 

acceleration. Inadequate analyses and results for the DTCTP lead to unrealistic 

project durations and schedule acceleration costs. Hence, development of effective 

methods for the DTCTP is crucial for not only determination of the right alternative 

for project costs, but also for setting realistic project duration and budget 

expectations. However, available software packages do not contain DTCTP analysis 

which is a drawback. 
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In the literature, there exist both exact and heuristic and meta-heuristic methods to 

solve DTCTP. However, very few researches have focused on achieving exact 

solutions for medium and large scale DTCTPs. In this study, a method based on 

mixed integer programming (MIP) is presented for mainly Pareto front optimization 

of the medium and large scale DTCTPs. Problem networks are generated to evaluate 

the performance of the proposed method. The method is mainly developed for Pareto 

Optimization, however is also tested for single criteria optimization of DTCTP.  

     

Keywords: Discrete Time-Cost Trade-off Problem, Exact Methods, Mixed Integer 

Programming, Pareto front Curve. 
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 ÖZ 

 

 

KESİKLİ ZAMAN MALİYET ÖDÜNLEŞİM PROBLEMİNİN PARETO 

FRONT OPTİMİZASYONU İÇİN DOĞRUSAL TAMSAYILI 

PROGRAMLAMA YÖNTEMİ 
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İnşaat yapım projelerinde faaliyet süreleri ve maliyetleri arasında ters bir bağlantı 

vardır.  İş programında yer alan faaliyetlerin sürelerini kısaltmak için bu faaliyete ait 

işgücü ve makine kaynaklarının arttırılması veya fazla mesai yapılması, ya da 

maliyeti yüksek yapım yöntemlerinin kullanılması gerekmektedir. Bu sebeple proje 

süresini belirleyen bir faaliyetin süresi kısaltılınca maliyeti artmakta, ancak faaliyetin 

ve projenin süresi kısalmaktadır.   İnşaat yapım projelerinde çoğu zaman süre ve 

maliyet arasındaki bu ilişki kesikli bir fonksiyon şeklindedir. Literatürde Kesikli 

Zaman Maliyet Ödünleşim Problemi (KZMÖP) olarak bilinen bu zaman-maliyet 

problemi, inşaat yapım projelerine ait iş programı oluşturulması aşamasında ve 

özellikle yapım faaliyetlerine ait iş programlarının hızlandırılması esnasında kritik 

önem taşımaktadır. Proje faaliyetleri için zaman-maliyet seçimlerinin doğru 

yapılmaması, proje maliyetlerinin artmasına sebep olmaktadır.  Bununla birlikte, 

KZMÖP’ in doğru bir şekilde analiz edilip çözülmemesi, proje sürelerinin ne kadar 

kısaltılabilineceği ve kısaltmaların hangi maliyetlerle gerçekleşeceği konularında 

gerçekçi olmayan beklentilerin oluşmasına sebebiyet verebilmektedir. Bu sebeplerle 

KZMÖP için etkin yöntemlerin geliştirilmesi, hem proje maliyetleri için doğru 
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tercihlerin yapılması açısından, hem de gerçekçi iş programları ve proje bütçesi 

beklentileri oluşturulması açısından son derece önemlidir.  Fakat mevcut bilgisayar 

programları KZMÖP analizini içermemektedir. Bu durum bir dezavantaj 

oluşturmaktadır. 

  

Literatürde KZMÖP’ ü çözmek için kesin ve sezgisel ve üst sezgisel yöntemler 

bulunmaktadır.  Fakat orta ve büyük ölçekli KZMÖP’ ü çözmeyi hedefleyen çalışma 

sayısı çok azdır.   Bu çalışmada orta ve büyük ölçekli KZMÖP’ lerin başta Pareto 

front optimizasyonu için doğrusal tamsayılı programlama bazlı bir metot 

önerilmiştir. Metodun performansını değerlendirmek için örnek problem şebekeleri 

oluşturulmuştur. Metot başlıca Pareto front optimizasyonu için geliştirilmiş olsa da 

şebekeler üzerinde tek amaçlı optimizasyon da test edilmiştir. 

 

Anahtar Kelimeler: Kesikli Zaman-Maliyet Ödünleşim Problemi, Kesin Yöntemler, 

Doğrusal Tamsayılı Programlama, Pareto front Eğrisi. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Construction projects have a certain scope, budget and schedule. These three 

elements are interdependent upon each other. Especially, throughout a construction 

project, budget and schedule have essential effects on each other. Decision makers of 

the project have a significant responsibility to prepare and conduct the project 

schedule. The schedule should be arranged in a way that planned durations, budget 

and resource usage are realized as much as possible.  

 

The project duration is mostly determined by network analysis. Critical Path Method 

(CPM) has been one of the most widely used network analyses for scheduling in 

construction industry. The logic behind this method is finding the longest activity 

duration path in the network which will be the total project duration. This path is 

called as critical path and the activities on that path are depicted as critical activities. 

By definition, CPM deals only with the durations of the activities. If a modification 

is needed for the durations, it should not be done without taking budget and resource 

availability into consideration. A modification to be committed regardless of these 

parameters would not be realistic and logical in real life construction projects. 

Furthermore, the contractor would have financial difficulties with such kind of 

problematic schedule which could be evaluated as loss of prestige by the employer 

side. Therefore, considering all mentioned elements while preparing or modifying 

the project schedule is crucial. 

 

As a general practice, it is desired to finish a construction project before or at the 

predetermined contract deadline by the contractor with minimum possible costs. 

These two objectives are adopted to be realized by both the employer and the 

contractor. Decision makers could mostly try to minimize the durations which will 
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create the possibility of decreasing some parts of the costs in the project. In 

construction projects, costs are classified in two main categories which are direct and 

indirect costs. As the name implies, direct costs are immediately related to 

production of work, product or service. Labor costs such as carpenter, iron worker, 

equipment and material costs are regarded as direct costs. On the other hand, indirect 

costs, also called as overhead costs, are not associated with any specific work item. 

Examples of indirect costs could be given as office expenses, salaries of indirect 

personnel (e.g. project manager, timekeeper). 

 

There are several ways to expedite the network activities such as increasing crew 

size, equipment or machinery amount which means increase in resources. If amount 

of resources are needed to increase to speed up some activities, direct and indirect 

costs are affected inversely from this action. While direct costs will rise due to 

procurement of new resources, since the project duration will be less than before, 

indirect costs will be decreased naturally. The aim is to finish the project before the 

deadline, there could be some problems which will postpone the project finish time. 

For example, the employer may demand changes in the scope after the project 

initialization. Another example could be resource availability problems at the 

contractor side which will increase the related activity durations. In order to avoid 

these kinds of delays, decision makers could decrease durations of the activities by 

adding extra resources. In this case, time-cost options come up with different cost 

and duration alternatives for each activity. These are called as modes in the literature. 

Moreover, reducing the durations of activities with extra resources is named as 

crashing. Evidently, while direct costs become more with crashing, indirect cost will 

decay due to duration decrease.  In other words, there is intrinsically a reverse 

relationship between the activity durations and costs in the project which is a trade-

off. This trade-off between activity durations and costs is depicted as time cost trade-

off problem (TCTP) in the literature. TCTP analysis has a major aim to squeeze the 

total project duration which will minimize the total cost. 

 

TCTP has been a hot topic in project management world since 1960s.  There is no 

doubt that it is also related to construction projects in which time and cost 
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managements have a prominent part. Most of the construction projects contain great 

number of activities by their nature. Also, these activities could have different mode 

options. Due to these facts, TCTP analysis of project networks becomes a crucial 

aspect for companies in today’s competitive construction industry. 

  

TCT problems could be linear or discrete according to relationship between time-cost 

modes of the activities. They have been both evaluated in the literature. However, 

since construction projects activities mostly have discrete time-cost modes, discrete 

version of the TCT, also called as discrete time cost trade-off problem (DTCTP) has 

been drawn more attention by researchers in the construction project management 

field.  

 

Researchers have diversified DTCT problems to three categories. They are deadline 

problem, budget problem and time cost curve, also called as Pareto front curve, 

problem. These three types will be discussed extensively by giving examples from 

the literature in Chapter 2. 

 

Several solution methods have been developed to solve DTCTP. They could be 

classified in two groups as exact methods and heuristic and meta-heuristic methods. 

As the name implies, the first one finds the global optimal solution. On the other 

hand, optimality of solutions is not certain for heuristic and meta-heuristic methods. 

They can give optimal, near-optimal solutions. Also, an output which is far away 

from the optimal solution could be handled as a result of heuristic and meta-heuristic 

procedures. Mixed integer programming (MIP), dynamic programming (DP) and 

branch-and-bound algorithm are widely known examples of exact methods in the 

literature. For heuristic and meta-heuristic procedures, Siemens’ algorithm (SAM), 

genetic algorithm, ant colony optimization algorithm and particle swarm 

optimization (PSO) algorithms could be given as examples. These procedures, their 

advantages, disadvantages and different applications will be mentioned in Chapter 2. 

 

After scanning the literature about DTCTP and proposed algorithms, it has been 

observed that the project networks used in the solutions have limited number of 
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activities. In practice, construction projects have a lot of activities. In order to make 

realistic analysis, large scale project networks are needed to be investigated for 

DTCTP. Hence, this situation could be evaluated as a missing part in the literature. 

For this reason, one of the focuses of this study will be networks with high number of 

activities. On the other hand, researchers have not shown an intense attention to 

Pareto front curve problem in the literature. Especially, there is a rare effort to solve 

this problem with exact methods such as mixed integer programming. Since Pareto 

curve presents all the non-dominated solutions in DTCTP which will be discussed 

elaborately in Chapter 2, it becomes a crucial part for the analysis of networks. 

Therefore, this thesis aims to handle not only the optimal cost solutions but also the 

time-cost curve of the problems. In this study, mixed integer programming 

methodology is used in order to obtain exact solutions. On the other hand, in spite of 

the intense scientific literature research background, software used in real life 

construction projects does not mostly contain time cost trade-off analysis which is an 

obvious deficiency for practical applications. Such a lack in the industry could cause 

time and money losses for the construction companies. Another aim of this study is 

provide an efficient DTCTP analysis especially for large scale construction projects. 

 

Considering the mentioned factors, a method based on mixed integer programming 

(MIP) is presented for the DTCTP. The method is implemented by using GUROBI 

optimizer. The software is one of the newest optimization programs when compared 

with others. An important advantage of GUROBI is that it can be used with variety 

of modelling languages. According to this situation, C# (.NET) programming 

language has been used for coding in Microsoft Visual Studio 2013 environment. 

 

The organization of the thesis is arranged as follows. In Chapter 2, a literature review 

about TCTP, its problem types and solution methods studied in the literature is 

introduced. Chapter 3 is reserved for problem network generation which will be used 

as sample networks in the models. Chapter 4 is the main body including proposed 

mixed integer programming method, DTCTP analyses and computational results. 

Finally, conclusions and remarks are given in Chapter 5. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

In this chapter, the proposed solution methods in the literature for TCTP are 

presented. As it was mentioned in the previous chapter, the methods are investigated 

in two parts which are exact methods and heuristic & meta-heuristic methods. 

 

2.1 TCTP  

 

Finishing a construction project timely is a fundamental wish of all the parties taking 

part in the project. For this desire, TCT analysis aims to compress the project 

schedule in a manner that total cost is minimized as much as possible. However, 

reducing the project duration is desirable up to a certain point at which the indirect 

cost increase suppresses the direct cost decrease. This relation is shown in Figure 2.1. 

Up to that point, total cost decreases as the project duration decays. After that level, 

additional expenses due to acceleration of some activities start to increase the total 

cost. Obviously, this case explains the trade-off between cost and duration as it was 

mentioned in Chapter 1. The main objective behind TCT analyses is expediting some 

activities with choosing the optimal crashing alternatives in order to reduce the total 

project cost (Siemens, 1971).  

 

TCT analyses have been worked more than 50 years in the literature.  Fulkerson 

(1961) and Kelley (1961) proposed basic manual solution algorithms for TCT.  

Although TCT was analyzed with linear cost functions in the first studies, then it has 

been realized that the problem should be investigated as discrete since the situation 

that the time cost modes of the activities are discrete is more common in practice 

(Vanhoucke & Debels, 2007).  
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Figure 2.1: Relationship between Project Duration and Direct & Indirect Costs 

(Hegazy, 1999) 

 

With respect to problem objective, there are three types of TCTP. These are deadline, 

budget and time-cost curve problems. Deadline problem has the objective to 

minimize the total cost according to predetermined project duration. On the other 

hand, there is an upper limit of total cost in the budget problem. Considering this 

limit, the aim is to minimize the total project duration. Thirdly, time-cost curve 

problem type is more inclusive when compared with two other types. Time-cost 

curve problem aims to find all the non-dominated solutions according to total project 

duration and total cost. Zheng et al. (2004) stated that in order that a solution is 

regarded as a non-dominated solution, there must be at least one solution as good as 

in all measures, and better in at least one of them.  In other words, all the efficient 

solutions with respect to time and cost are found out in this problem type which 

develops a Time-cost curve. This problem is also depicted as Pareto curve problem 

in the literature which was depicted by Pareto (1906). These problems have been 

widely discussed in the literature with different solution methods. 
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2.2 Solution Methods for TCTP 

 

De et al. (1997) defined discrete time cost trade problem as strongly non polynomial 

hard (NP-hard). Due to this feature, there is a strong possibility that the 

computational time required to solve the all kinds of DTCTP could be very large. 

Hence, while developing solution algorithms, this situation is needed to be taken into 

consideration seriously.  

 

The solution methods are grouped under two categories. The first one is exact 

methods solving the problems with a guaranteed optimality. Heuristic and Meta-

heuristic procedures aim to solve TCTP optimally or near-optimally in short amount 

of time. However, there is no guarantee for optimal solution in these methods. 

 

2.2.1 Exact Methods 

 

As it was depicted in the previous chapter, by definition exact procedures developed 

to solve TCT problems find the optimal solution exactly. These methods are time 

consuming due to NP-hard characteristic of DTCTP. In addition, as the scale of 

networks enlarges, the solution time increases exponentially (Moussourakis and 

Haksever, 2004). On the other hand, in spite of this disadvantage, exact methods are 

the only algorithms solutions of which could be compared with the solutions of 

heuristic and meta-heuristic algorithms due to optimality guarantee. In other words, 

quality of heuristic and meta-heuristic algorithms could only be measured by the 

results of exact methods. Therefore, there is a certain need for exact algorithms to 

solve DTCTP.  

 

In the literature, mixed integer programming (MIP), dynamic programming (DP) and 

branch-and-bound algorithms are mostly proposed as exact methods. 

 

Meyer and Shaffer (1963), Crowston and Thompson (1967), Crowston (1970), 

Harvey and Patterson (1979) are the pioneer studies solving TCT with mixed integer 

programming algorithms. 
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As a more recent study, Liu et al. (1995) solved TCT problem for a network 

comprised of seven activities in Microsoft Excel environment. Actually, a hybrid 

method combining linear and integer programming is developed in this study.  With 

the model, total time-cost curve is handled. Other than these studies, Moussourakis 

and Haksever (2004) presented a flexible mixed integer programming model for TCT 

problems. What is indicated by flexible is that with minor modifications the model 

has the capability to solve different kinds of time cost trade-off problems.  Deadline 

problem was studied with a sample 7-activity project network in the study. The 

developed model has a basic assumption that continuous parts of the cost curve are 

piecewise linear. Another literature study based on mixed integer programming to 

solve DTCTP was prepared by Sönmez and Bettemir (2012).  Actually, the authors 

used the model in order to measure the performance of a hybrid meta-heuristic 

procedure coded in Visual C++ that they developed to solve deadline problem for a 

63-activity network.  Moreover, Szmerekovsky and Venkateshan (2012) presented a 

mixed integer programming model which could solve irregular costs project 

scheduling problem (PSIC) which is also a trade-off problem. In this study, every 

activity has a cost function for different time-cost modes as it was stated in the study 

of Grigoriev and Woeginger (2004). With the proposed model, it was emphasized 

that the objective function could be adjusted both to minimize Net Present Value 

(NPV) of costs and to maximize Cash Availability (CA) which are main concerns of 

a contractor in the construction industry. In the study, networks having activities up 

to 90 are solved efficiently. 

 

Dynamic programming (DP) is another exact procedure proposed in the literature to 

solve TCT. Basically, DP has an objective of network size reduction by combining 

the activities. With this reduction, the objective function decomposes and the 

complexity level of problem decreases. Butcher (1967) is the pioneer researcher 

developing dynamic programming algorithm. Budget problem was studied in this 

research.  Robinson (1975) also presented a DP algorithm solving Budget problem. 

In this study, some assumptions and sufficient condition are defined to reduce the 

problem into One-dimensional optimization problem. However, there could be some 

network problems in which objective function is hard to be decomposed due to high 
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complexity. In this case, the author suggested solving the problem as a 

Multidimensional optimization problem. Another DP algorithm to solve DTCTP was 

developed by De et al. (1995). In this study, an extensive overview of past research 

about this subject is provided firstly.  Also, drawbacks of these studies were 

presented following this summary. Then, new DP procedure was introduced with 

correcting the algorithm of Hindelang and Muth (1979). It was stated that Hindelang-

Muth algorithm is a decentralized approach with having a cumulative cost 

distribution to the nodes in the network in the course of execution. Using modular 

decomposition, a centralized procedure was developed and applied for Pareto front 

curve problem. Also, De et al (1997) presented another DP algorithm to solve Pareto 

front curve making another correction on Hindelang-Muth algorithm by discarding 

the pseudo-polynomial insolvability. Demeulemeester et al. (1996) proposed a 

method containing two algorithms which are based on dynamic programming to 

solve time-cost curve problem for deterministic activity-on-arrow (AoA) networks. 

The first algorithm aimed to convert the problem network to a series-parallel network 

by node reduction.  In the second algorithm, computational effort of time-cost mode 

calculation formed by branch-and-bound procedure was desired to be minimized. 

Algorithms were coded in C programming software and the developed model is 

applied for project networks up to 45 activities to find time-cost curve. 

 

Also, branch-and-bound method is another procedure used for exact solution of TCT 

problems in the literature. Demeulemeester et al. (1998) suggested a branch-and-

bound model to solve DTCTP for deterministic AoA networks. A horizon-varying 

approach was suggested for complete time-cost curve problem. In the first step, 

lower boundaries were found by doing convex piecewise linear underestimations for 

DTCT curve of each activity.  Then, vertical distance indicating the quality of 

underestimation was calculated for each activity.  The activity with the largest 

vertical distance is chosen by dividing its time cost mode into two subsets. This 

procedure is called as branching. The algorithm was worked on networks having a 

scale of up to 50 activities. Furthermore, Vanhoucke et al. (2002) developed a 

branch-and-bound algorithm to solve deadline problem with time-switch constraints. 

Time-switch constraints were proposed by Yang and Chen (2000). By these 
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constraints, it was assumed that activities could only start in a time interval of a cycle 

which is specified previously. This logic is different than traditional CPM procedure. 

The cycles are defined with a rest and work windows. In work windows, the activity 

could be processed while they could not be executed in rest windows. In addition, 

there is a leading number indicating the maximum number of cycle pair iteration. 

Time-switch constraints could provide a more efficient schedule by dealing with the 

shifts of the activities in the network. The authors also claimed that with 

incorporating this phenomenon project management is improved by effective budget 

and resource management.  Based on time-switch constraints, Vanhoucke et al. 

(2002) solved a sample AoA network composed of 20 activities using a branch-and-

bound algorithm which is coded in Visual C++.  Vanhoucke (2005) improved 

another branch-and-bound algorithm to solve deadline problem showing better 

performance than Vanhoucke et al. (2002). Time-switch constraints are also used in 

this study. A different strategy for branching was utilized which ignores time switch 

constraints of some activities that causes exceeding the predetermined project 

deadline. This will prevent dealing with solutions which are not optimal. With this 

better performance, it is claimed that DTCTP in large scale project networks could 

be solved easily. 

 

Benders decomposition is another exact procedure used in the literature to solve TCT 

problems. Hazır et al. (2010) proposed a tailored Benders decomposition to solve 

realistic sizes of DTCTP. Benders (1962) developed an algorithm to decompose 

linear and mixed integer programming models which have a large scale in terms of 

decision variables and constraints. The procedure basically aims to separate the main 

problem into two sub problems. The first problem is depicted as master problem in 

which the goal is to solve a relieved version of the problem and produce trial values 

for the variables. This part also aims to specify a lower bound for the minimization 

objective. The second decomposition part is called as subproblem. The subproblem is 

the major problem containing the values of the integer variables which are transiently 

fixed by master problem. In this part, an upper bound for the minimization objective 

is determined also. Hazır et al. (2010) claimed that the budget problem has not been 

studied with Benders decomposition. With some new modifications, the model is 
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accelerated and project networks up to 136 activities were solved.  Another 

procedure based on Benders decomposition was improved by Hazır et al. (2011). 

They proposed a robust scheduling algorithm to represent the uncertainties that could 

happen in real life construction projects as much as possible. In this study, three 

models were created to solve problem with cost uncertainties. Probabilistic intervals 

were determined for the cost uncertainties. This procedure was also able to solve 

networks having 136 activities effectively. 

 

 

 

2.2.2 Heuristic and Meta-heuristic Methods 

 

Different than exact procedures, heuristic and meta-heuristic methods do not 

guarantee optimality in the solution of TCTP. However, when these algorithms 

converge, the solution time is relatively less than most of the exact methods. 

Heuristic methods are dependent on problem type whereas meta-heuristic procedures 

are not related to problem’s nature. This is the major difference between these 

concepts. 

 

One of the very first heuristic studies to solve TCT was developed by Siemens 

(1971). In the study, Siemens Approximation Method (SAM) was proposed. It was 

claimed that the algorithm is adaptable both hand and computer computations due to 

its simple and systematic structure. The model assumes the time cost trade-off curve 

as a piecewise linear curve. The objective of the algorithm is to crash critical paths in 

the network as long as the indirect cost decrease is more than the crashing cost. A 

major drawback in this procedure is determination of all critical paths which would 

be hard in large scale networks. In addition, time-cost functions are accepted as 

convex functions. It was stated that the solutions handled by SAM are equal or 

almost the same solutions with linear programming results which shows the quality 

of the algorithm. On the other hand, Goyal (1975) improved another procedure 

which was stated as alternative to SAM. In this study, effective cost slope was 

redefined by determining the activities which are not crashed adequately. Moselhi 
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(1993) was another researcher developing a heuristic procedure using schedule 

compression technique of CPM. 

In the literature, meta-heuristic procedures are currently popular with their 

applicability to solve TCT problems. One of the mostly used meta-heuristic 

procedures is genetic algorithm (GA) which was developed by Holland (1975). As 

the name implies, this algorithm was developed by an analogy based on natural 

selection and genetic reproduction. Feng et al. (1997) applied this algorithm to solve 

Pareto front curve problem of TCTP.  The normal modes and the crash modes of 

each activity are determined as two chromosomes. With the iterations and cross 

overs, the distances of the chromosomes to the convex hull are decided and the 

solution comes out accordingly.  In this study, a sample project network comprised 

of 18 activities was used which is a very popular problem in the literature of TCTP.  

Another GA model was suggested by Hegazy (1999). In this study, deadline problem 

was solved for 18-activity network which was slightly different for one activity from 

the network used in Feng et al. (1997). Meanwhile, the developed mathematical 

model was integrated with Microsoft Project scheduling software to solve problems. 

Zheng et al (2005) also proposed a GA procedure to solve Pareto curve problem. The 

authors claimed that the model brings a modified adaptive weight approach 

(MAWA) which was different than traditional weight approach. Project time and 

total cost were incorporated into a single objective function by this concept. Kandil 

and El-Rayes (2006) introduced another GA which is designed to aim large-scale 

construction projects by making parallel processing on the network. Pareto curve was 

handled for project networks up to 720 activities which is one of the biggest 

networks studied in the literature. Nonetheless, the computation time reached 137 

hours which could be regarded as a very long time for a meta-heuristic algorithm. 

Sönmez and Bettemir (2012) proposed a hybrid GA including simulated annealing 

(SA) and quantum simulated annealing (QSA) to solve DTCTP considering the  

possible insufficiencies of using only one Meta-heuristic algorithm. Maximum 

number of activities in the benchmark problems is 630 in this study. While 

developing the algorithm, it was considered that SA has an essential hill climbing 

ability which will be useful for finding the optimum value in the global space. The 



13 

 

authors emphasized the efficiency of using hybrid algorithms by benefiting from 

complementary features of the algorithms. 

 

Another Meta-heuristic procedure studied in the literature to solve TCTP is Particle 

Swarm Optimization (PSO) algorithm which is basically derived from swarm 

intelligence. Swarm intelligence could be explained as a collective behavior during 

migration. This situation inspires the researchers to develop an analogous algorithm. 

PSO was developed by Kennedy and Eberhart (1995). One of the very first 

applications of this algorithm on DTCTP was improved by Elbeltagi et al. (2005). 

Actually, the authors compared five evolutionary-based algorithms in the study 

which are PSO, GA, ant colony optimization (ACO), memetic algorithm (MA) and 

shuffled frog leaping (SFL). Out of these 5 procedures, PSO showed the best 

performance for solving 18-activity sample network created by Feng et al (1997).  

Yang (2007a) developed another PSO to study Pareto front curve problem. It was 

claimed that the proposed model is able to solve different kinds of time-cost 

functions. A real life highway project composed of 28 activities was used in order to 

measure the performance of the algorithm. A more recent study about PSO was 

utilized by Zhang and Li (2010). They developed a combined scheme based PSO to 

find out Pareto curve by determining the global best for each particle. 

 

Also, ant colony optimization (ACO) which was introduced by Colorni et al. (1992) 

is a popular meta-heuristic method used in the literature to solve TCTP. The 

algorithm was developed by inspiring coordinated interactions of ant colonies. The 

first application of this method for TCTP was done by Ng and Zheng (2008). The 

aim of this study was to find out the Pareto front curve of 18-activity network 

generated by Feng et al (1997). Xiong and Kuang (2008) developed another ACO 

procedure with integrating MAWA. MAWA improves the ability of ACO while 

searching the optimum solution. Also, this study aimed to find Pareto front curve of 

an 18-activity network. Furthermore, Afshar et al. (2009) presented an archiving 

multicolony ant algorithm to reach non-dominated solutions of the same network. A 

comparison between the proposed algorithm and the model by Zheng et al. (2005) 

was utilized. It was observed that the proposed ACO procedure demonstrates a better 
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performance. Moreover, Zhang and Ng (2012) utilized another study with ACO 

which is integrated with Microsoft Project.  

 

Vanhoucke and Debels (2007) developed a meta-heuristic algorithm which could be 

called also as a hybrid algorithm since the procedure includes some heuristic 

procedures also. The study focused time-switch constraints, work continuity 

constraints and NPV maximization in DTCTP. The quality of the meta-heuristic 

approach was measured by the exact branch-and-bound procedure proposed by 

Demeulemeester (1998).  

 

In Table 2.1 and Table 2.2, summaries of past researches about TCTP including, 

exact, heuristic and meta-heuristic methods are provided respectively in a 

chronological order. If the information about the computational time is given in these 

researches, the data is added to tables also. 
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Table 2.1: Exact Methods to Solve TCTP 

Year Author(s) Method 
Problem 

Type 

Max # of 

Activities 

Computational 

Time 
Notes 

1963 Meyer and Shaffer MIP Deadline 9 -  

1967 Crowston and Thompson MIP Deadline 8 - 
A basic mathematical MIP model is proposed to solve the 

problem called as Decision CPM 

1995 De, Dunne, Ghosh, and Wells DP 
Pareto 

front 
45 - 

An overview of past researches is given and a centralized 

approach is developed for Hindelang and Muth 

Algorithms. 

1995 Liu, Burns, and Feng 
LP/IP 

Hybrid 

Pareto 

front 
7 30 minutes 

A hybrid model in which linear programming aims to find 

lower bound for the minimum direct cost curve and integer 

programming has a goal to find the exact solutions. 

1997 De, Dunne, Ghosh, and Wells DP 
Pareto 

front  
16 - 

 A DP algorithm is developed by modifying Hindelang and 

Muth algorithm with discarding its pseudo-polynomial 

insolvability. 

1996 
Demeulemeester, Herroelen, 

and Elmaghraby 
DP 

Pareto 

front  
45 530.40 seconds 

Two DP algorithms are proposed for deterministic 

networks. 

1998 

Demeulemeester, De Reyck, 

Foubert, Herroelen, and 

Vanhoucke 

Branch-

and-Bound 

Pareto 

front  
50 200 seconds 

A branch-and-bound algorithm determining lower bound 

by convex piecewise linear underestimations. 
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Table 2.1: Exact Methods to Solve TCTP (Continued) 

Year Author(s) Method Problem Type 
Max #  

of Activities 
Computational Time Notes 

2004 
Moussourakis and 

Haksever 
MIP Deadline 7 - 

A flexible MIP model 

developed which can solve 

different time/cost functions 

with some modifications. 

2010 

Hazır, Haouari,  

and  Erel 

Benders 

Decomposition 
Budget 136 - 

With making enhancements, 

slow convergence feature of 

Benders Decomposition is 

discarded.  

2011 
Hazır, Erel, 

and Günalay 
MIP 

Cost Uncertainty 

Problem 
136 19139.61 seconds 

An MIP model is developed for 

uncertain cost parameters by 

assuming probabilistic 

intervals.  

2012 
Szmerekovsky and 

Venkateshan 
MIP 

Irregular Cost 

 Problem 
90 206 seconds 

A new MIP model is developed 

in which the objective function 

could be adaptable to 

minimization of NPV and 

maximization of CA. 
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Table 2.2: Heuristic and Meta-heuristic Methods to Solve TCTP 

Year Author(s) Method 
Problem 

Type 

Max # of  

Activities 

Computational 

 Time 
Notes 

1971 Siemens Heuristic(SAM) TCT 5 - 
A systematic heuristic approach that will expedite the 

activities with minimum possible cost. 

1997 
Feng, Liu, and 

Burns 
GA 

Pareto 

front  
18 - The first GA proposed to solve DTCTP. 

1999 Hegazy GA Deadline 18 390 seconds 
A GA which aims to minimize total cost with considering 

project-based time limitations. 

2005 

Zheng, Ng,  

and 

Kumaraswamy 

GA 
Pareto 

front  
18 - 

A GA including Niche formation is developed to prevent 

genetic drift, manage selection order, and increase diversity 

range. 

2005 

Elbeltagi, 

Hegazy, 

 and Grierson 

PSO TCT 18 10 seconds 
The prominent features of PSO are highlighted by 

comparing with four other Meta-heuristic methods. 

2006 
Kandil and El-

Rayes 
GA 

Pareto 

front  
720 137 hours 

One of the sparse studies with a large scale network. 

However, there is a solution time problem. 
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Table 2.2: Heuristic and Meta-heuristic Methods to Solve TCTP (Continued) 

Year Author(s) Method 

Problem 

Type 

Max # of 

Activitie

s 

Computational 

Time 
Notes 

2007 
Vanhoucke and 

Debels 

Hybrid(Heuristic 

and 

Meta-heuristic) 

TCT 50 1.605 seconds 

A hybrid method is developed with neighborhood search and 

diversity steps. The results of the hybrid method are 

compared with the exact procedure by Vanhoucke (2005). 

2007 Yang PSO Deadline 28 600 A PSO algorithm based on real numbers. 

2008 Ng and Zhang ACO 
Pareto 

front 
18 - 

One of the first applications of ACO on TCTP. The algorithm 

aims to solve Pareto curve. 

2008 
Xiong and 

Kuang 
ACO 

Pareto 

front 
18 - 

An ACO algorithm integrated with MAWA which enhances 

the possibility of finding optimum value. 

2009 

Afshar, Ziaraty, 

Kaveh, 

and Sharifi 

ACO 
Pareto 

front 
18 - 

In the algorithm, different ant colonies are assigned to 

different objectives. The results are evaluated between the 

colonies and objectives. 

2010 Zhang and Li PSO 
Pareto 

front 
18 205.08 seconds 

A combined scheme based PSO aiming to determine global 

best for each particle 

2012 
Sönmez and 

Bettemir 
Hybrid GA TCT 630 - A hybrid GA algorithm integrated with SA and QSA. 

2012 Zhang and Ng ACO 
Pareto 

front 
18 - 

An ACO algorithm integrated with MAWA to combine time 

and cost objectives. 



 

19 

 

After a general look to the literature, there are some points which could be criticized. 

One of the issues is the number of activities in the sample networks. Most of the 

researchers use limited number of activities. The 18-activity network which is a 

small scale network developed by Feng et al. (1997) is one of the mostly used 

networks in the studies. As the scale of the network is decreased, practical usage of 

the algorithms for construction projects becomes unrealistic. Kandil and El-Rayes 

(2006) used a network comprised of 720 activities which has a similar scale to real 

life construction projects. However, they had a problem with the computational time 

which is really long. In other words, in the existing studies it is an obvious fact that 

as the scale of the network enlarges, computational time increases for the analysis of 

TCTP.  Within the context of limitation of existing methods, this study focuses on 

generation and solving of medium and large scale DTCTP instances. 

 

Nevertheless, most of the commercial software packages do not consider TCT 

analysis. In real life construction projects, schedules prepared without the analysis 

which could cause time and money losses for both the employer and contractor. 

Actually, there are some studies in the literature aiming to integrate a model to the 

software such as MS Project but these attempts are not widely utilized in real 

construction project schedules. 

 

Among the three types of TCTP, Pareto front has an essential part since when the full 

curve is handled; all the feasible solutions come out. Having the feasible non-

dominated solutions is a very crucial issue especially for the networks with large 

scale. In the scope of this thesis, a significant devotion is made for Pareto front 

solution in the sample networks. 

 

Furthermore, it is evident that exact procedures are not popular in the last years when 

compared with heuristic and meta-heuristic procedures. The reason could be the NP-

hard feature of the DTCTP as the scale of network gets larger. However, exact 

methods have no alternative since they guarantee optimality. Mixed integer 

programming is one of the stable exact procedures. Modelling logic of MIP is 

straightforward. For these reasons, MIP is studied in this thesis. On the other hand, 
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Liu et al. (1995) is the only study aiming to solve Pareto front curve with LP/IP 

hybrid method. The hybrid method is very similar to MIP logic also. However, the 

sample 18-activity network is very limited for real life projects. Also, 

Demeulemeester et al. (1998) solved a 50-activity network for Pareto front curve 

problem. However, the size of these networks is small. In other words, there is a lack 

about medium and large scaled benchmark test instances in the literature for DTCTP. 

The developed test instances in this study are very significant for this respect. They 

could be used for future research. 

 

Within this context, a method including efficient MIP models in GUROBI optimizer 

is developed in this study.  The aim is to find optimal solution and Pareto front curve.  

Also, single objective optimization aiming to find the optimal cost of the problem 

networks is utilized with the MIP models. 
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CHAPTER 3 

 

 

PROBLEM NETWORK GENERATION 

 

 

 

3.1 Generation of Problem Instances 

 

In this chapter, benchmark problem generation is firstly explained. As it was 

mentioned, there are popular benchmark instances for DTCTP in the literature. The 

network generated by Feng et al (1997) is one of them. However, problem includes 

only 18 activities. Hence, to test the performance of the exact methods first medium 

and large scale problem instances are generated in this thesis. Initially, a random 

network generator developed by Demeulemeester et al. (2003) called as RANGEN is 

tried. However, since the study aims to solve DTCTP for large scale networks, it is 

observed that RANGEN has problems for generating high number of activities. 

Therefore, ProGen/max random network generator is chosen which is developed by 

Schwindt (1995). ProGen/max showed better performance while creating large scale 

project networks.  An interface view of ProGen/max is given in Figure 3.1. 

 

Project networks are developed with four different complexity indexes. In 

ProGen/max, complexity index is represented by Thesen restrictiveness coefficient. 

Accordingly, four different coefficients which are 0.2, 0.4, 0.6, and 0.8 have been 

chosen for networks. For these coefficients, networks are generated with 

50,100,200,500 and 1000 activities. Details of the problem sets could be seen in 

Table 3.1.  
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Figure 3.1: An Interface View of ProGen/max Programme 

 

ProGen/max is actually designed to generate problem networks for resource 

constraint project scheduling. The network generator does not create time-cost modes 

for DTCTP. Hence, it is utilized only for formation of networks. The network 

generator develops different networks with different successor and predecessor 

relationships with the defined parameters.  

 

Time-cost modes for the created networks are prepared in Microsoft Excel 2010.  

Initially, number of time cost-modes is determined by RANDBETWEEN function. 

For the time-cost modes, four intervals are chosen which are (2-5), (6-10), (11-15), 

(16-20). Determination of the modes is done according to Akkan et al. (2005). 

According to this study, duration of each time-cost mode is selected between 3 days 

and 123 days. This interval is divided to the number of modes accordingly. For 

instance, if number of modes for an activity is five: 
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Table 3.1: Parameter Inputs Entered to ProGen/max for Different Number of 

Activities 

 

Parameter/# of 

Activity 

50 

Activities 

100 

Activities 

200 

Activities 

500 

Activities 

1000 

Activities 

Minimal # of Initial 

Activities 

1 1 1 1 1 

Maximal # of Initial 

Activities 

12 20 20 20 20 

Minimal # of Terminal 

Activities 

1 1 1 1 1 

Maximal # of 

Terminal 

Activities 

12 20 20 20 20 

Maximal # of 

Predecessor 

Activities 

12 20 20 20 20 

Maximal # of 

Successor 

Activities 

12 20 20 20 20 

Degree of Redundancy  0.1 0.1 0.1 0.1 0.1 

 

 duration of 1
st
  mode is chosen between 99 days and 123 days,  

 duration of 2
nd

  mode is chosen between 75 days and 98 days,  

 duration of 3
rd

   mode is chosen between 51 days and 74 days,  

 duration of 4
th

  mode is chosen between 27 days and 50 days,  

 duration of 5
th

 mode is chosen between 3 days and 26 days  

by using RANDBETWEEN function. Also, for the 1
st
 direct cost alternative, the 

amount is determined randomly with the same function based on an acceptable 

interval for the real life construction projects which changes between 100 USD and 

50.000 USD. Costs for the remaining modes are determined according to following 

formula used by Akkan et al. (2005). 

 

                                                                      𝑐𝑘+1 = 𝑐𝑘 + 𝑠𝑘 ∗ (𝑑𝑘 − 𝑑𝑘+1)                                        (3.1) 

 Where, 

𝑐𝑘+1: 𝑐𝑜𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒 𝑘 + 1 

𝑐𝑘: 𝑐𝑜𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒  𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒 𝑘 

𝑠𝑘: 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑠𝑙𝑜𝑝𝑒 𝑣𝑎𝑙𝑢𝑒 

𝑑𝑘: 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒 𝑘 

𝑑𝑘+1: 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒 𝑘 + 1 
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Randomly generated time-cost slope value determined between 10 and 100 with 

respect to literature and general construction project activities by RANDBETWEEN 

function.  A Microsoft Excel spreadsheet view is given in Figure 3.2 in which time-

cost modes of a sample network is given. In all the created networks, there are initial 

and final dummy activities representing the start and finish of the project. Therefore, 

they do not have a duration and cost.  

 

 

 

 

Figure 3.2: Time-Cost Modes for Activities Created in Microsoft Excel 2010 

 

Afterwards, the networks created in ProGen/max and the time-cost modes prepared 

in Microsoft Excel 2010 are combined as txt file formats as shown in Figure 3.3. In 

this way, it is considered that the file will be easily read by the prepared codes. In 

this figure, the first number at the top of the file represents the number of activities in 

the problem network. If the network is created as a 50-activity network, the number 

seems 52 with the initial and final dummy activities. The file is formed of two parts. 

In the first and second parts, the first column shows the activity ID numbers. The 

second column demonstrates the number of predecessors of that activity in the first 
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part. Predecessors of the activities could be seen in the rest of the columns.  Number 

of time-cost modes is displayed in the second column of the second part. Then, 

duration (days) and costs (USD) of the associated modes are included respectively. 

 

 

 

Figure 3.3: An Example of the Created Sample Problem Networks 

 

In the figure, it stands out that the first part starts with Activity ID 1 whereas the 

second part’s first ID number is 2. This comes from the output format of 

ProGen/max which does not have any effect on the results.  

 

A crucial point of the problem networks is delay penalty in this study. Generally, 

construction projects are prone to delay. Therefore, a delay penalty is needed in order 

to approximate the model to the real cases in the construction projects. The project 

deadline and delay penalty is determined by: 
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                      𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 =
𝐶𝑃𝑀𝑀𝑎𝑥−𝐶𝑃𝑀𝑀𝑖𝑛

2
+ 𝐶𝑃𝑀𝑀𝑖𝑛                            (3.2)                                                                       

 

          𝐶𝑜𝑠𝑡 𝑜𝑓𝐷𝑒𝑙𝑎𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡 × 2           (3.3) 

 

where 

𝐶𝑃𝑀𝑀𝑎𝑥: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑃𝑀 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡𝑎𝑘𝑖𝑛𝑔 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 

 𝑚𝑜𝑑𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 

𝐶𝑃𝑀𝑀𝑖𝑛: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐶𝑃𝑀 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡𝑎𝑘𝑖𝑛𝑔 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 

 𝑚𝑜𝑑𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑎𝑓𝑡𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑑𝑒𝑙𝑎𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑖𝑠 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑝𝑎𝑖𝑑 

 

With this model, delay penalty is added to project networks.  Cost of delay penalty is 

determined as double of indirect for each network. If the project duration exceeds the 

defined deadline, delay penalty is started to be added to total cost daily. 

 

As it was mentioned, there are four different complexity indexes and 4 different 

mode intervals for project networks having 50, 100, 200, 500, and 1000 activities. 10 

instances are prepared for each set. Details of the number of sets could be seen in 

Table 3.2. Totally, 400 test instances are prepared which is a significant number 

when compared to previous benchmark instances.  In Table 3.2, it could also be seen 

that daily indirect cost is chosen as 250 USD for networks having 50 activities. For 

the rest of the networks, daily indirect cost is determined as 500 USD.  

 

Table 3.2: Number of Problem Sets Prepared for DTCTP Analyses 
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In addition to these networks, in order to utilize a comparison with the studies in the 

literature, the network developed by Feng et al. (1997) is used to evaluate 

performance of the exact methods. As it was depicted, the network is comprised of 

18 activities. In this study, a 180- activity network is formed by combining the 

original 18-activity networks consecutively for the analyses.  
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CHAPTER 4 

 

 

MIXED INTEGER PROGRAMMING MODEL AND EMPIRICAL 

ANALYSES 

 

 

 

As it was mentioned, a method based on MIP is presented for Pareto front 

optimization of DTCTP. In this chapter, the proposed MIP model is initially 

introduced. Then, a brief introduction about GUROBI software is presented. Finally, 

the proposed method for Pareto front optimization is explained. 

 

4.1 Mixed Integer Programming Model 

 

In order to minimize the total cost of the projects comprised of direct and indirect 

costs, the following model based on De et al. (1995) is proposed. 

 

4.1.1 Sets 

 

𝑃𝑑𝑗 : 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑗 

𝑆: 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑑𝑢𝑚𝑚𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠) 

 

4.1.2 Parameters 

 

𝑑𝑐𝑗𝑘: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑗 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒 𝑘  

𝑖𝑐: 𝑑𝑎𝑖𝑙𝑦 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑠𝑡 

𝑑𝑗𝑘: 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑗 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒 𝑘 

𝑚(𝑗): 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒𝑠 𝑓𝑜𝑟 𝑎𝑐𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑗 
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𝑑𝑝: 𝑑𝑎𝑖𝑙𝑦 𝑑𝑒𝑙𝑎𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑠𝑡 

 

4.2.2 Variables 

 

𝐹𝑡𝑗: 𝑓𝑖𝑛𝑖𝑠ℎ 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑗 

𝐹𝑡ℎ: 𝑓𝑖𝑛𝑖𝑠ℎ 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ℎ 

𝑥𝑗𝑘: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 1 𝑖𝑓 𝑡𝑖𝑚𝑒 − 𝑐𝑜𝑠𝑡 𝑚𝑜𝑑𝑒 𝑘 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑡𝑜 𝑟𝑒𝑎𝑙𝑖𝑧𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑗, 𝑖𝑓 𝑛𝑜𝑡 0. 

𝐷: 𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 

𝐷𝑑𝑒𝑙𝑎𝑦: 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦  

𝐷𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 : 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 

 

 

4.2.3 Model 

 

                       min ∑ ∑ 𝑑𝑐𝑗𝑘
𝑚(𝑗)
𝑘=1

𝑆
𝑗=1 𝑥𝑗𝑘 + 𝐷𝑖𝐶 + 𝑑𝑝𝐷𝑑𝑒𝑙𝑎𝑦                                         (4.1)                

Constraints 

∑ 𝑥𝑗𝑘 = 1

𝑚(𝑗)

𝑘=1

 ,          ∀𝑗 ∈  𝑆 (4.2) 

  

                          𝐹𝑡𝑗 ≥  𝐹𝑡ℎ + ∑ ∑ 𝑑𝑗𝑘

𝑚(𝑗)

𝑘=1

𝑆

𝑗=1

𝑥𝑗𝑘 , ∀ℎ ∈ 𝑃𝑑𝑗 𝑎𝑛𝑑 ∀𝑗 ∈  𝑆 (4.3) 

  

𝐷 ≥ 𝐹𝑡𝑆+1 (4.4) 
  

𝐹𝑡0 = 0 (4.5) 
  

𝐷 − 𝐷𝑑𝑒𝑙𝑎𝑦 ≤ 𝐷𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒  (4.6) 

  

𝐷 ≥ 0 (4.7) 
  

𝐷𝑑𝑒𝑙𝑎𝑦 ≥ 0 (4.8) 
  

𝑥𝑗𝑘 ∈ {0,1}, ∀𝑗 ∈  𝑆, 𝑎𝑛𝑑 ∀𝑘 ∈  𝑚(𝑗) (4.9) 

  
𝐹𝑡𝑗 ≥ 0, ∀𝑗 ∈  𝑆 (4.10) 
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Objective function (4.1) aims to minimize the total cost of the project which is equal 

to summation of direct and indirect costs. Constraint (4.2) dictates only one time-cost 

mode is chosen for each activity. For instance, if 2
nd

 mode of activity 3 is chosen in a 

sample network, 𝑥32 value is equal to 1 and 𝑥31, 𝑥33, 𝑥34,  𝑥35 are equal to 0. Since 

these values are multipliers of activity costs, only the selected time-cost mode will 

affect the total project duration. There will not be any contribution from the 

remaining unselected mode alternatives. Constraint (4.3) represents that an activity 

could not finish before the duration of the activity elapses after all of the 

predecessors of that activity are completed. Here, duration of the activity for the 

selected mode alternative will be multiplied by 1. The rest of the modes have no 

effect on finish dates. Besides, it is indicated that the project could not finish before 

the finish of final dummy activity in constraint (4.4).  In constraint (4.5), finish date 

of initial dummy activity is set to 0. In other words, it means the initial dummy 

activity has duration of 0 days. As it was mentioned before, a deadline is decided for 

each benchmark test instance. Constraint (4.6) represents the relation between the 

deadline and amount of delay. The next two constraints (4.7), (4.8) explain that the 

total project duration and amount of delay should be positive values respectively. 

(4.9) indicates that  𝑥𝑗𝑘  is a binary variable. The last constraint (4.10) shows that the 

finish dates of the activities must be larger than 0. Additionally, the dummy activities 

(activity 0 and activity S+1) have only one mode in which duration and cost are 0.  

 

4.2 Empirical Analyses and GUROBI Optimizer 

 

GUROBI optimizer is used to solve the MIP model presented. GUROBI is one of the 

powerful and fastest software for linear programming. Additionally, the optimizer 

has a very powerful library which can work with different programming languages 

such as C++, C# (.NET), Java and MATLAB. Evidently, this is a very effective 

feature for different kinds of users throughout the world.  On the website of 

GUROBI (www.gurobi.com ), free academic license is also available which is 

another reason of choice when compared with other optimization programmes in the 

market.  

http://www.gurobi.com/
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Another advantage of GUROBI is that it uses the most improved implementations of 

mathematical programming algorithms. The optimizer contains 

 Linear programming solver (LP) 

 Mixed-integer programming linear programming solver (MILP) 

 Mixed-integer quadratic programming solver (MIQP) 

 Quadratic programming solver (QP) 

 Quadratically constrained programming solver (QCP) 

 Mixed-integer quadratically constrained programming solver (MIQCP)    

 

which are commonly used mathematical programming algorithms.  Also, it is stated 

that GUROBI shows the best performance in public benchmark results of LP, MIP 

and QP problems in the website with statistics of other optimizers. 

 

Due to these reasons, GUROBI optimizer version 5.6.3 is selected to solve the 

proposed model. The coding has been done via C# (.NET) language in Microsoft 

Visual Studio 2013 environment. The analyses and solutions are utilized with a 

desktop computer running Windows 7 Professional Edition (64-bit) operating system 

having Intel Core i5 3.10 CPU GHz and 4.00 GB random access memory (RAM). 

 

4.2.1 LP Format 

 

The problem sets prepared as txt files are converted to LP formats by which 

GUROBI will read the files in an easier way. Thus, with a  C# (.NET) code the txt 

files are transformed to LP files. An LP file format example is given in Figure 4.1 

retrieved from GUROBI website. In the first row, it is seen that the objective 

function aims to maximize summation of x, y, and z decision variables. Then, 

constraints part starts with “Subject to” expression. The statements “c0, c1, qc0” at 

the beginning of the constraint only represent the number of the constraints. These 

constraints could be written without these statements.  In “Bounds” section, 

constraints for every decision variable are defined. Then, the type of decision 
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variable is defined with “Generals” expression. This means that every decision 

variable is an integer. If binary variable are needed in the model, “Binary” statement 

should be written to the file.  Finally, to finish the model “End” is put to the last row. 

A crucial issue which should be taken into consideration in LP format is that there is 

a space between every character. The solver will perceive each variable and 

multiplier according to these spaces. An LP file prepared for a 50-activity network 

could be seen in Figure 4.2. 

 

 

 

Figure 4.1: A Simple Problem Prepared in LP Format (www.gurobi.com ) 

 

 

http://www.gurobi.com/
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Figure 4.2: An LP File Prepared for a 50-activity Network 

 

In this example, number of time-cost modes change between two and five. As it is 

emphasized in Table 3.2, indirect cost for 50-activity networks is determined as 250 

USD/day. Indirect cost is added to objective function after the last mode of the last 

activity by multiplying with “DUR” variable which represents total project duration. 

In the LP file, “A2M1” expression is the binary variable (i.e. 𝑥𝑗𝑘) representing the 

first mode of the second activity in the network. The number near this expression is 

the cost value in USD for that specific time-cost mode. As it could be seen in Figure 

4.2, the objective function starts from activity 1. The reason behind this is that there 

is an initial dummy activity 0 which does not have any duration and cost. Thus, there 

is no need to put this activity to the objective function 
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Figure 4.2:  An LP File Prepared for a 50-activity Network (Continued) 

 

For final dummy activity, this case is also valid. In the constraints, as an example 

“A2” statement symbolizes the finish date of the second activity (i.e. 𝐹𝑡𝑗). In the LP 

format, since there could not be variables at both sides of the inequality, all variables 

are shown on the left hand side of the equation. For the project duration constraint, 

“DUR” variable should be larger or equal to the finish date of final dummy activity 

which is demonstrated with a constraint also.  After this constraint, decision variable 

“D” is written to LP file.  As it was mentioned, amount of duration should be 

positive. If a delay exists, the total duration is allowed to exceed the deadline via a 

soft constraint. These two criteria are represented with two constraints in LP file. 
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Afterwards, constraints for binary variables representing the selected and unselected 

time-cost modes are entered.  In addition, in order to specify that these variables are 

binary, they are defined under “Binary” heading after all the constraints. Rest of the 

decision variables are integer. Hence, “Generals” statement is used for them. Finally, 

“End” expression represents the LP model is completed for that problem. 

 

 

4.2.2 Finding Optimal Cost in Project Networks 

 

As it was mentioned, GUROBI optimizer has many mathematical programming 

based solvers. Mixed integer linear programming solver (MILP) is one of them. It 

could read LP files efficiently. In this study, DTCT analyses for the prepared 

networks have been utilized by this solver. A code is written for reading and solving 

the LP files to find optimal total cost of the project networks one by one. Besides, a 

time limit which is 600 seconds is put in the code. If the model could not find the 

desired optimal solution in 600 seconds, there will be a warning written as 

“TimeLimit is reached for problem ...” in the file. A screen view while GUROBI is 

running on the console window could be seen in Figure 4.3. Moreover, optimal 

solution output in txt format of a project network is shown in Figure. 4.4. 

 

In the output file, the value “Optimal objective” expression represents the optimal 

total cost of the project network. Then, the outputs related to selected and unselected 

time-cost modes are added. For example, 1 is printed for “A2M1” variable which 

means that first mode of the second activity is chosen for the optimal solution. 

Intrinsically, 0 is written near the remaining modes of the second activity since they 

are not selected. Furthermore, “D” variable seems as 0 in the output which means 

that total project duration does not exceed the given deadline. On the other hand, the 

project duration is 378 days which is printed near “DUR” variable in the file. In the 

last part of output, the finish dates of activities are indicated.  
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Besides, in order to follow and keep the iteration details in GUROBI optimizer, LOG 

files have been created during execution of the code. An example from a LOG file 

could be seen in Figure 4.5. 

 

 

 

Figure 4.3: A View from Console Window while GUROBI is Running 
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Figure 4.4: Output File of a-50-activity Network in txt Format 
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Figure 4.4: Output File of a-50-activity Network in txt Format (Continued) 
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Figure 4.5:  An Example LOG File Created for a 50-activity Network 

 

4.2.3 A Method to Achieve the Optimal Pareto Front 

 

Since Pareto front curve problem is more complicated than finding optimal solution, 

a method based on MIP is presented. In this method, minimum CPM duration is 

calculated by taking minimum time modes of the activities. The same procedure is 

utilized using maximum time modes. These values could be depicted as the lower 

and upper duration boundaries for the sample benchmark problems.  In other words, 

the project duration will certainly have a value between these boundaries. After 

determination of these values, the proposed model and GUROBI optimizer are used 

to find the optimal project costs for each feasible duration between the boundaries 
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one by one. Pareto front curve includes the non-dominated solutions in the network. 

Therefore, while calculating the costs, a comparison is utilized between each 

duration step and related optimal total cost.  If there is a dominated solution (i.e. 

solution having larger or equal total cost for longer project duration), it is deleted and 

is not printed to the output file.  A flowchart displaying the solution algorithm of 

Pareto front calculations could be seen in Figure 4.6.  According to the flowchart, 

initially the critical path(s) of the problem network is identified. Afterwards, 

maximum and minimum CPM durations are determined using minimum and 

maximum time-cost values of activities. Starting from the minimum CPM duration, 

the optimal cost of the benchmark problems is calculated for each duration step. 

Then, two successive optimal solutions are compared. If the solution is a non-

dominated solution, it is written to output file. Otherwise, the solution is taken out. 

This process is continued until the duration is equal to maximum CPM duration. 

Also, 600 seconds time limit is used for each network in Pareto front Curve 

calculations. 
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Figure 4.6:  Flowchart of the Proposed Solution Algorithm for Pareto front Curve 

 

4.3 Computational Results 

 

4.3.1 Single Objective Problem Optimization 

 

In this part, it is aimed to find the optimal costs of the benchmark problems which 

could be regarded as a single objective optimization problem. Details of optimal cost 
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solutions in terms of number of solved instances and CPU times are given in Table 

4.1 and Table 4.2 respectively. Since there is a 600-second time limit, when this limit 

is exceeded, the code passes to the next problem in the set. As it was mentioned 

before, there are eight different time-cost mode intervals containing 10 test instances 

for each complexity index. For optimal cost problems, networks having activities 50, 

100, 200, 500 and 1000 are tried to be solved. In Table 4.1, the amount of solved test 

instances in the given time limit could be seen. Moreover, CPU time is calculated by 

taking the average of the solution time of the sets. For optimal cost solutions, all of 

the 50-activity networks are solved. In both Table 4.1 and Table 4.2, it is obvious 

that computational time gets longer with when the number of activities in the 

network increases. In Figure 4.7-a, this issue is stated. There are three other graphs 

related to computational analyses in Figure 4.7. Chart in Figure 4.7-b is drawn for the 

relationship between the number of solved instances and number of activities in the 

networks. It is evident that number of solved instances decreases as the number of 

activities increases. Figure 4.7-c shows CPU times increase as the maximum number 

of modes in the networks rises. Four sample networks having 50 activities are chosen 

to demonstrate this situation. Actually, this is an anticipated outcome. However, 

there are some deviations in the output table which is not parallel to this case. The 

reason behind this event is that the average CPU time is only calculated for the 

solved instances. If a test instance could not be solved in 600 seconds time limit, the 

duration of that instance is not taken into consideration for calculation of CPU time. 

Finally, Figure 4.7-d represents the relationship between complexity index called as 

Thesen restrictiveness coefficient and the computational time. As it was mentioned 

before, there are four different restrictiveness coefficients which are 0.2, 0.4, 0.6 and 

0.8. In the drawn chart, four computational durations are chosen from 1000-activity 

networks. As it was expected, CPU time increases as the networks get more 

complex.  

 

As it could be seen from Table 4.2, solution durations are shorter compared to 

similar examples in the literature. For example, Hazır et al (2011) solve the 136-

activity network with an MIP algorithm in 19139.61 seconds which is even far more 

than the maximum CPU time in 1000-activity networks in this study. In addition, 
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model proposed by Szmerekovsky and Venkateshan (2012) had a CPU time of 206 

seconds to solve 90 activity network. This result could be regarded as a long time 

when compared to the solution times of the medium and large scaled benchmark 

problems in this study. 

 

Furthermore, as it was mentioned before, totally 800 test instances are generated. For 

optimal cost solutions, all the generated benchmark problems comprised of 50 and 

100 activities have been solved in the given time limit. Solution percentage of 200-

activity networks is about %80. In addition, approximately 58% of the created 500-

activity benchmark problems are solved. The rate is decreased to 45% for 1000-

activity networks. These solution rates are very significant in the given limit.



 

 

  

 

 Table 4.1:  Number of Solved Instances in Optimal Cost Solutions  

 

 

 

  

Table 4.2: Average CPU Time in Optimal Cost Solutions 
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4.3.2 Pareto Front Optimization 

 

For time-cost curve problem, networks having activities 50, 100 and 200 are studied.  

As it is seen in Table 4.2, 200-activity networks have been tried to be solved up to 10 

modes. In the given time limit, only one set could be solved for these networks. 

Hence, there is no need to try to solve networks having more than 200 activities for 

this model. However, it is still a significant progress to study 200-activity networks 

for finding Pareto front curve where the maximum activity number studied in the 

literature is 50 by Demeulemeester et al. (1998). Details of solved instances and 

average computational time of Pareto front curve solutions could be seen in Table 

4.3 and Table 4.4 respectively. 

 

Since these parameters are not independent from each other, the graphical 

representation may not always show the same disposition. They are drawn to shown 

most possible outcomes.  

 

A comparison could be done with study of Kandil and El-Rayes (2006). In this study, 

non-dominated solutions set of a 720-activity network is found in approximately 137 

hours with a genetic algorithm model using a single processor. Although it is a Meta-

heuristic procedure, the performance is worse than the proposed MIP model in this 

thesis.  Moreover, Liu et al (1995) solved a small sized network having 7 activities in 

approximately 30 minutes which is a long duration for such a network. Another 

comparison could be done with Demeulemeester et al. (1996). The proposed DP 

models solved a 45-activity network in 530.40 seconds for Pareto optimization. On 

the other hand, the solution times for 50 and 100 activity benchmark problems in this 

thesis are less than this time. Also, Demeulemeester et al. (1998) proposed a branch-

and-bound model which solves a 50-activity network in 200 seconds. This time is 

longer than most of the 50 activity networks solution time in this thesis. Exact 

procedures in the literature to solve Pareto front curve problem used networks having 

50 activities maximum whereas the method proposed in this study solved a 200 

activity network besides 50 and 100-activity networks.  Moreover, 57% of the 
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created 50-activity networks have been solved in the given time limit. For 100-

activity networks, the rate is about 52%. 

 



 

 

  

 Table 4.3: Number of Solved Instances in Pareto front Curve Solutions 

 

 

 

Table 4.4: Average CPU Time in Pareto front Curve Solutions 
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Figure 4.7: Graphical Representations Related to Computational Results 

a) b) 

c) d) 
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Other than the created networks, in order to have a common understanding with the 

literature, 18-activity network developed by Feng et al. (1997) is analyzed in this 

study. Activity on Node (AoN) diagram of the network could be seen in Figure 4.8. 

Moreover, the precedence relations and the information related to time-cost modes of 

the network are given in Table 4.5.  The sample network is consecutively combined 

10 times and a 180-activity network is handled. The created network is solved to find 

total time-cost curve and Pareto front curve. Total time-cost curve includes all 

feasible solution in the solution space. First of all, total time-cost and Pareto front 

curves are found out for zero daily indirect cost. A graphical representation of the 

Pareto front curve of the network is given in Figure 4.9. Tabulated Pareto front 

Curve solution outcomes are provided in Appendix A.  Total Time-cost curve 

solutions include the entire Pareto front curve. Hence, the excluded dominated 

solutions are given as a separate table in the Appendix B. In addition, the network is 

solved with a daily indirect cost of 200 USD for total time-cost curve. A chart 

representing the total time-cost curve is provided in Figure 4.10. With the proposed 

model in GUROBI optimizer, Pareto front curve of the 180-activity network is found 

out in 99.70 seconds. In addition, total time-cost curve of the 180-activity network 

with a daily indirect cost of 200 USD is solved in 136.61 seconds. These solution 

durations are significantly rapid when compared with the similar examples in the 

literature. The values could be compared with the solution time in Kandil and El-

Rayes (2006) also in which solution time of proposed GA for a 180-activity network 

is about four hours. Evidently, the method proposed in this study is far better than 

Kandil and El-Rayes.  

 

Besides, the optimality of the outputs is checked one by one in AIMMS optimizer. 
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Table 4.5: Information about the Network Created by Feng et al. (1997) 

 

 

 

 

 

 

Figure 4.8: AoN Diagram of the Network Created by Feng et al. (1997). 
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Figure 4.9: Pareto front Curve of the Created 180-activity Network (Zero Indirect 

Cost) 

 

 

Figure 4.10: Total Time-Cost Curve of the Created 180-activity Network (Indirect 

Cost of 200 USD) 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

This study focuses on DTCTP analyses of project networks which is a crucial issue 

in scheduling of construction projects. Although it has been researched in the 

literature, mostly small scaled benchmark problems have been studied. It is hard to 

find benchmark test instances having medium and large scales prepared for DTCTP. 

In this respect, medium and large scaled benchmark problems developed in this study 

become more significant. Since most of the real life construction projects have many 

activities, approximation to practical applications will be more efficient with the 

prepared test instances. 

 

Sample networks are generated by using ProGen/max software. Four different 

complexity indexes are determined. With these indexes test instances are created 

having 50, 100, 200, 500 and 1000 activities. The scale of these networks could be 

regarded as medium and large scales when compared the ones studied in the 

literature. In fact, research containing more than 360 activities is very rare. Also, the 

networks are created according to four different time-cost modes. With all the 

parameters, a total of 800 test instances have been constructed. Besides these 

networks, in order to create a parallel perception with the literature, the famous 18-

activity network developed by Feng et al. (1997) has been used in the analyses. 

However, since the problem is a small-scale problem, the network is joined 10 times 

in sequence and a 180-activity network is developed. The created network is solved 

for Pareto front and total time cost curves. A comparison has been done with the 

study of Kandil and El-Rayes (2006) in which a similar 180-activity network is 

studied for Pareto front optimization with GA. As a result of the comparison, it is 

seen that the solution time in this study is far shorter than Kandil and El-Rayes 

(2006). 
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Initially, an MIP model is proposed to solve single criteria optimization problem 

which aims to find optimal cost in the benchmark problems. Then, a method 

integrated with this MIP model is improved to solve Pareto front problem. The 

proposed model and method have been utilized in GUROBI optimizer version 5.6.3.  

Coding is performed via C# (.NET) language in Microsoft Visual Studio 2013.  

 

Mainly, two problems are studied in this study. In the first problem, optimal costs of 

the created sample networks are tried to be found out. Then, the aim is to reach the 

non-dominated solution sets in the solution space of the networks which is also 

called as Pareto front curve. In the literature, there is an obvious lack about studying 

Pareto front curve problem for large-scale networks. Most of the real life 

construction projects have high number of activities. Thus, in order to approximate 

the analysis to real life conditions, studying with large scale problems is essential. 

Hence, this thesis tries to compensate this insufficiency with focusing on large-scale 

networks as well as medium-sized problems. 

 

In the last years, researchers try to develop heuristic & meta-heuristic procedures 

instead of exact procedures. There is couple of reasons behind this approach. One of 

the main motivations could be the claim of the fast convergence capabilities of 

heuristic & meta-heuristic methods when compared to exact procedures. However, 

these procedures do not guarantee optimality which is a critical drawback. MIP 

models are criticized with time consumption as the scale of network gets larger while 

solving discrete time cost trade-off problems due to NP-hard feature. However, the 

comparisons in terms of CPU times done in discussions on computational results part 

show that the proposed MIP model applied in GUROBI optimizer presents better 

performance than some current Meta-heuristic approaches. Computational time is a 

very fundamental parameter in DTCTP analyses to measure the effectiveness of 

procedures.  

 

The optimality guarantee of MIP models provides a basis for performance evaluation 

of Heuristic & Meta-heuristic procedures. By means of the evaluation, success of the 

applied procedure is measured. 
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Besides optimal cost solutions, the aim of this study is to emphasize the importance 

of Pareto front curve solutions. Set of non-dominated solutions gives an inclusive 

result about DTCTP of project networks. Most of the studies in the literature focus 

on networks up to 50 activities while solving Pareto front curve problem. Even these 

studies have longer computational time than the proposed model in this study. This 

thesis tries to find the set of non-dominated solutions up to 200-activity networks 

with more reasonable CPU times. This situation makes the thesis significant in which 

large scaled networks are used as test instances to solve Pareto front curve problem. 

With this study, future research may focus on solving Pareto front curve exactly for 

large scale problem sets. 

  

With the mentioned reasons, this study highlights the effectiveness of MIP methods 

to solve DTCTP in construction projects. Also, it could be claimed that researchers 

will try work with large networks to realize practical real life applications in 

construction industry. Furthermore, the proposed model and methods could be 

improved by adding new constraints in future studies. MIP models are prone to be 

improved with small modifications which is an advantage. Additionally, parallel 

processing methods could be used to shorten the solution time of the networks.  
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APPENDIX A 

 

 

A. PARETO FRONT CURVE SOLUTION OUTPUTS OF 180-ACTIVITY 

NETWORK 

 

 

 

Table A.1:  Pareto Front Curve Solution Outputs of 180-Activity Network 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1040 1322700 1055 1261700 1070 1221700 1085 1185700 

1041 1317700 1056 1256700 1071 1216700 1086 1178700 

1042 1312700 1057 1256450 1072 1216450 1087 1178450 

1043 1307700 1058 1253700 1073 1213700 1088 1177700 

1044 1302700 1059 1248700 1074 1208700 1089 1172700 

1045 1297700 1060 1248450 1075 1208450 1090 1172450 

1046 1292700 1061 1245700 1076 1205700 1091 1171700 

1047 1287700 1062 1240700 1077 1200700 1092 1164700 

1048 1282700 1063 1240450 1078 1200450 1093 1164450 

1049 1277700 1064 1237700 1079 1199700 1094 1163700 

1050 1272700 1065 1232700 1080 1192700 1095 1158700 

1051 1272450 1066 1232450 1081 1192450 1096 1158450 

1052 1269700 1067 1229700 1082 1191700 1097 1157700 

1053 1264700 1068 1224700 1083 1186700 1098 1150700 

1054 1264450 1069 1224450 1084 1186450 1099 1150450 
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Table A.2: Pareto Front Curve Solution Outputs of 180-Activity Network 

(Continued) 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1100 1149700 1115 1115700 1130 1079700 1145 1051450 

1101 1144700 1116 1108700 1131 1074700 1146 1051200 

1102 1144450 1117 1108450 1132 1074450 1147 1050950 

1103 1143700 1118 1107700 1133 1074200 1148 1050700 

1104 1136700 1119 1102700 1134 1066700 1149 1050450 

1105 1136450 1120 1102450 1135 1066450 1150 1050200 

1106 1135700 1121 1101700 1136 1066200 1151 1049950 

1107 1130700 1122 1094700 1137 1065950 1152 1049700 

1108 1130450 1123 1094450 1138 1065700 1153 1049450 

1109 1129700 1124 1093700 1139 1065450 1154 1049200 

1110 1122700 1125 1088700 1140 1052700 1155 1048950 

1111 1122450 1126 1088450 1141 1052450 1156 1048700 

1112 1121700 1127 1088200 1142 1052200 1157 1048450 

1113 1116700 1128 1080700 1143 1051950 1158 1048200 

1114 1116450 1129 1080450 1144 1051700 1159 1047950 

 

Table A.3: Pareto Front Curve Solution Outputs of 180-Activity Network 

(Continued) 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1160 1047700 1175 1044550 1190 1041100 1205 1037950 

1161 1047650 1176 1044300 1191 1041050 1206 1037700 

1162 1047400 1177 1044050 1192 1040800 1207 1037450 

1163 1047150 1178 1043800 1193 1040550 1208 1037200 

1164 1046900 1179 1043550 1194 1040300 1209 1036950 

1165 1046750 1180 1043300 1195 1040150 1210 1036700 

1166 1046500 1181 1043250 1196 1039900 1211 1036650 

1167 1046250 1182 1043000 1197 1039650 1212 1036400 

1168 1046000 1183 1042750 1198 1039400 1213 1036150 

1169 1045750 1184 1042500 1199 1039150 1214 1035900 

1170 1045500 1185 1042350 1200 1038900 1215 1035750 

1171 1045450 1186 1042100 1201 1038850 1216 1035500 

1172 1045200 1187 1041850 1202 1038600 1217 1035250 

1173 1044950 1188 1041600 1203 1038350 1218 1035000 

1174 1044700 1189 1041350 1204 1038100 1219 1034750 
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Table A.4: Pareto Front Curve Solution Outputs of 180-Activity Network 

(Continued) 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1220 1034500 1235 1031350 1250 1027900 1270 1024450 

1221 1034450 1236 1031100 1251 1027850 1272 1024200 

1222 1034200 1237 1030850 1252 1027600 1274 1023950 

1223 1033950 1238 1030600 1253 1027350 1276 1023700 

1224 1033700 1239 1030350 1254 1027100 1278 1023450 

1225 1033550 1240 1030100 1255 1026950 1280 1023200 

1226 1033300 1241 1030050 1256 1026700 1282 1022950 

1227 1033050 1242 1029800 1257 1026450 1284 1022700 

1228 1032800 1243 1029550 1258 1026200 1286 1022450 

1229 1032550 1244 1029300 1259 1025950 1288 1022200 

1230 1032300 1245 1029150 1260 1025700 1290 1021950 

1231 1032250 1246 1028900 1262 1025450 1292 1021700 

1232 1032000 1247 1028650 1264 1025200 1294 1021450 

1233 1031750 1248 1028400 1266 1024950 1296 1021200 

1234 1031500 1249 1028150 1268 1024700 1298 1020950 

 

Table A.5: Pareto Front Curve Solution Outputs of 180-Activity Network 

(Continued) 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1300 1020700 1330 1017100 1352 1014500 1375 1012300 

1302 1020450 1331 1016950 1354 1014400 1376 1012100 

1304 1020200 1332 1016700 1355 1014300 1378 1012000 

1306 1019950 1334 1016450 1357 1014100 1379 1011900 

1308 1019700 1337 1016300 1358 1013900 1381 1011700 

1310 1019450 1338 1016100 1360 1013800 1382 1011500 

1312 1019200 1339 1015950 1361 1013700 1384 1011400 

1314 1018950 1340 1015700 1363 1013500 1385 1011300 

1316 1018700 1343 1015640 1364 1013300 1387 1011100 

1318 1018450 1344 1015500 1366 1013200 1388 1010900 

1320 1018200 1345 1015300 1367 1013100 1390 1010800 

1322 1017950 1346 1015100 1369 1012900 1391 1010700 

1324 1017700 1348 1015000 1370 1012700 1392 1010700 

1326 1017450 1349 1014900 1372 1012600 1393 1010500 

1328 1017200 1351 1014700 1373 1012500 1394 1010300 
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Table A.6: Pareto Front Curve Solution Outputs of 180-Activity Network 

(Continued) 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1396 1010200 1418 1008200 1442 1006100 1464 1004100 

1397 1010100 1419 1008100 1443 1006000 1466 1004000 

1398 1010100 1421 1007900 1445 1005800 1467 1003900 

1399 1009900 1423 1007800 1447 1005700 1469 1003700 

1400 1009700 1424 1007600 1448 1005500 1471 1003600 

1402 1009600 1426 1007500 1450 1005400 1472 1003400 

1403 1009500 1427 1007400 1451 1005300 1474 1003300 

1405 1009300 1429 1007200 1453 1005100 1475 1003200 

1407 1009200 1431 1007100 1454 1005100 1477 1003000 

1408 1009000 1432 1006900 1455 1005000 1480 1002700 

1410 1008900 1434 1006800 1456 1004800 1483 1002500 

1411 1008800 1435 1006700 1458 1004700 1486 1002300 

1413 1008600 1437 1006500 1459 1004600 1489 1002100 

1415 1008500 1439 1006400 1461 1004400 1492 1001900 

1416 1008300 1440 1006200 1463 1004300 1495 1001700 

 

Table A.7: Pareto Front Curve Solution Outputs of 180-Activity Network 

(Continued) 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1498 1001500 1526 1000300 1541 999930 1556 999550 

1501 1001300 1527 1000280 1542 999900 1557 999530 

1504 1001100 1528 1000250 1543 999880 1558 999500 

1507 1000900 1529 1000240 1544 999850 1559 999480 

1510 1000700 1530 1000200 1545 999830 1560 999450 

1513 1000640 1531 1000180 1546 999800 1561 999430 

1515 1000580 1532 1000160 1547 999780 1562 999400 

1517 1000530 1533 1000130 1548 999750 1563 999380 

1518 1000500 1534 1000100 1549 999730 1564 999350 

1520 1000450 1535 1000080 1550 999700 1565 999330 

1521 1000440 1536 1000050 1551 999680 1566 999300 

1522 1000410 1537 1000030 1552 999650 1567 999280 

1523 1000380 1538 1000000 1553 999630 1568 999250 

1524 1000360 1539 999980 1554 999600 1569 999230 

1525 1000330 1540 999950 1555 999580 1570 999200 
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Table A.8: Pareto Front Curve Solution Outputs of 180-Activity Network 

(Continued) 

 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

Duration    

(Days) 

Cost   

(USD) 

1571 999180 1586 998800 1601 998430 1640 997930 

1572 999150 1587 998780 1602 998400 1642 997880 

1573 999130 1588 998750 1603 998380 1648 997850 

1574 999100 1589 998730 1604 998350 1650 997800 

1575 999080 1590 998700 1605 998330 1656 997770 

1576 999050 1591 998680 1606 998300 1658 997720 

1577 999030 1592 998650 1607 998280 1664 997690 

1578 999000 1593 998630 1608 998250 1666 997640 

1579 998980 1594 998600 1610 998200 1672 997610 

1580 998950 1595 998580 1616 998170 1674 997560 

1581 998930 1596 998550 1618 998120 1680 997530 

1582 998900 1597 998530 1624 998090 1682 997480 

1583 998880 1598 998500 1626 998040 1690 997400 

1584 998850 1599 998480 1632 998010 

 

  

1585 998830 1600 998450 1634 997960     
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APPENDIX B 

 

 

B. DOMINATED SOLUTION OUTPUTS OF 180-ACTIVITY NETWORK 

 

 

 

Table B. 1: Dominated Solution Outputs of 180-Activity Network 

 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

1261 1025700 1291 1021950 1321 1018200 1362 1013700 

1263 1025450 1293 1021700 1323 1017950 1365 1013300 

1265 1025200 1295 1021450 1325 1017700 1368 1013100 

1267 1024950 1297 1021200 1327 1017450 1371 1012700 

1269 1024700 1299 1020950 1329 1017200 1374 1012500 

1271 1024450 1301 1020700 1333 1016700 1377 1012100 

1273 1024200 1303 1020450 1335 1016450 1380 1011900 

1275 1023950 1305 1020200 1336 1016450 1383 1011500 

1277 1023700 1307 1019950 1341 1015700 1386 1011300 

1279 1023450 1309 1019700 1342 1015700 1389 1010900 

1281 1023200 1311 1019450 1347 1015100 1392 1010700 

1283 1022950 1313 1019200 1350 1014900 1395 1010300 

1285 1022700 1315 1018950 1353 1014500 1398 1010100 

1287 1022450 1317 1018700 1356 1014300 1401 1009700 

1289 1022200 1319 1018450 1359 1013900 1404 1009500 
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Table B. 2: Dominated Solution Outputs of 180-Activity Network (Continued) 

 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

1406 1009300 1446 1005800 1482 1002700 1505 1001100 

1409 1009000 1449 1005500 1484 1002500 1506 1001100 

1412 1008800 1452 1005300 1485 1002500 1508 1000900 

1414 1008600 1454 1005100 1487 1002300 1509 1000900 

1417 1008300 1457 1004800 1488 1002300 1511 1000700 

1420 1008100 1460 1004600 1490 1002100 1512 1000700 

1422 1007900 1462 1004400 1491 1002100 1514 1000640 

1425 1007600 1465 1004100 1493 1001900 1516 1000580 

1428 1007400 1468 1003900 1494 1001900 1519 1000500 

1430 1007200 1470 1003700 1496 1001700 1609 998250 

1433 1006900 1473 1003400 1497 1001700 1611 998200 

1436 1006700 1476 1003200 1499 1001500 1612 998200 

1438 1006500 1478 1003000 1500 1001500 1613 998200 

1441 1006200 1479 1003000 1502 1001300 1614 998200 

1444 1006000 1481 1002700 1503 1001300 1615 998200 

 

 

Table B. 3: Dominated Solution Outputs of 180-Activity Network (Continued) 

 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

Duration 

(Days) 

Cost   

(USD) 

1617 998170 1637 997960 1657 997770 1677 997560 

1619 998120 1638 997960 1659 997720 1678 997560 

1620 998120 1639 997960 1660 997720 1679 997560 

1621 998120 1641 997930 1661 997720 1681 997530 

1622 998120 1643 997880 1662 997720 1683 997480 

1623 998120 1644 997880 1663 997720 1684 997480 

1625 998090 1645 997880 1665 997690 1685 997480 

1627 998040 1646 997880 1667 997640 1686 997480 

1628 998040 1647 997880 1668 997640 1687 997480 

1629 998040 1649 997850 1669 997640 1688 997480 

1630 998040 1651 997800 1670 997640 1689 997480 

1631 998040 1652 997800 1671 997640 

 

  

1633 998010 1653 997800 1673 997610 

 

  

1635 997960 1654 997800 1675 997560 

 

  

1636 997960 1655 997800 1676 997560     

 


