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ABSTRACT 

A PROBABILISTIC AND INTERACTIVE APPROACH 

TO MULTIPLE CRITERIA SORTING 

Mutlu, Sinem 

     M.S., Department of Industrial Engineering 

     Supervisor     : Prof. Dr. Murat Köksalan 

     Co-Supervisor: Prof. Dr. Yasemin Serin 

 

June 2015, 94 pages 
 
 

In this thesis, we develop a method in order to assign alternatives that are evaluated 

by multiple criteria into preference ordered classes probabilistically. Our motivation 

is that; when there are large sets of alternatives, placement could be realized in a fast 

and effective way based on a reasonable misclassification ratio. We assume that the 

underlying utility function of Decision Maker (DM) is additive. We first ask DM to 

place reference alternatives into the classes. We develop an interactive probabilistic 

sorting approach that calculates the probability of each alternative being in each 

class. If all the alternatives can be placed into a class at the same time by evaluating 

probabilities, the procedure ends, if not DM is asked to place an unassigned 

alternative into a class and the procedure is repeated by utilizing this new 

information. The procedure ends when all the alternatives are placed. 

We test the performance of the algorithms on four different problems.  The 

performance of algorithm is evaluated by number of misclassified alternatives, 

expected number of misclassified alternatives, and number of alternatives that are 

asked to the DM for placement. 

Keywords: Multiple Criteria Decision Making, Probabilistic Sorting, Interactive 

Methods. 
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ÖZ 

ÇOK ÖLÇÜTLÜ SIRALAMA PROBLEMLERİNE OLASILIKSAL  

VE  

ETKİLEŞİMLİ YAKLAŞIMLAR 

Mutlu, Sinem 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Murat Köksalan 
Ortak Tez Yöneticisi: Prof. Dr. Yasemin Serin 

 

                                                       Haziran 2015, 94 sayfa 
 
 
 

Bu tezde, çok ölçütle değerlendirilen alternatifleri sıralı sınıflara yerleştirmek 

amacıyla bir yöntem geliştirmeye çalıştık. Motivasyonumuz, makul bir hata payıyla 

çok büyük setlerden oluşan alternatiflerin hızlı ve etkili bir şekilde 

yerleştirilebilmesiydi. Karar vericinin eklemeli bir fayda fonksiyonuna sahip olduğu 

varsayılmıştır. İlk adımda karar vericiden referans alternatifleri sınıflara 

yerleştirmesini istiyoruz. Her alternatifin her sınıfta bulunma olasılığını hesaplayan 

etkileşimli ve olasılıksal bir yaklaşım geliştirdik. Hesaplanan olasılıklarla tüm 

alternatifler sınıflara aynı anda yerleşebiliyorsa yöntem sona erer. Eğer tüm 

sınıflardaki alternatifler aynı anda yerleştirilemiyorsa karar vericiden bir alternatifi 

uygun sınıfa ataması istenir. Yeni elde edilen bilgi ile alternatifler tekrar sınıfa 

yerleştirilmeye çalışılır. Yöntem, tüm alternatifler yerleşince sona erer. 

 

Algoritmanın performansı dört farklı problem üzerinde test edilmiştir. Algoritmanın 

performansı, yanlış sınıflandırılan alternatiflerin sayısı, beklenen yanlış sınıflandırma 

sayısı ve Karar verici tarafından yerleştirilen alternatiflerin sayısıdır. 

 

Anahtar Kelimeler: Çok Amaçlı Karar Verme, Olasılıksal Sıralama, Etkileşimli 

Yöntemler



  

vii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

To My Parents



  

viii 

 

ACKNOWLEDGMENTS 

I would like to thank my supervisors Prof. Dr. Murat Köksalan and Prof. Dr.Yasemin 

Serin for their guidance and comments throughout this study.  

I am also grateful to Gökhan Ceyhan who is always with me when I need him and 

who always makes me happy. 

I would like to thank my mother Türkan Mutlu, my father Niyazi Mutlu and my 

brother Sinan Mutlu for their faith in me throughout my life. 

  



  

ix 

 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................... v 

ÖZ ............................................................................................................................. vi 

ACKNOWLEDGMENTS ....................................................................................... viii 

TABLE OF CONTENTS .......................................................................................... ix 

LIST OF TABLES .................................................................................................... xi 

LIST OF FIGURES ................................................................................................ xiv 

CHAPTERS 
 

1. INTRODUCTION ................................................................................................. 1 

2. LITERATURE REVIEW ON MULTI-CRITERIA SORTING PROBLEMS ..... 4 

3. BACKGROUND AND SOLUTION APPROACH ............................................ 15 

3.1.  Multi-criteria Sorting Problem .................................................................. 15 

3.2.  UTADIS Method ...................................................................................... 16 

3.3.  Interactive Methods .................................................................................. 20 

3.3.1. An Interactive Sorting Method for Additive Utility Functions by 

Köksalan and Özpeynirci [8] ............................................................................. 20 

3.3.2.   Interactive Probabilistic Sorting Methods for Additive Utility 

Functions ........................................................................................................... 23 

4. EXPERIMENTS AND RESULTS ...................................................................... 59 

4.1. Financial Times Ranking MBA Programs Data Application .................... 61 

4.2.  Random Data Generation ......................................................................... 63 

4.3. U.S. News Report Data ............................................................................. 64 

4.4.  TÜBİTAK Entrepreneur and Innovator University Index 2014 

Ranking ................................................................................................................. 67 



  

x 

 

4.5. Comparison of Approaches in .section 3.3.3.9. Probability Distributions .... 68 

4.5.1.   Financial Times Ranking MBA Programs Data Application ................ 70 

4.5.2. Random Data Generation....................................................................... 73 

4.5.3. U.S. News Best Hospital Data ............................................................... 76 

4.5.4. TÜBİTAK Entrepreneur and Innovator Universities Ranking .............. 79 

4.6. Observations on the Results ........................................................................... 82 

4.6.1. Comparison of Two Algorithms .............................................................. 82 

4.6.2. Effect of 𝑤𝑖𝑝 Values Generated from Different Probability 

Distributions ...................................................................................................... 83 

4.6.3. The Relationship between 𝑈𝑖 − 𝑢𝑘 Differences and Probabilities 

throughout the Algorithm .................................................................................. 85 

4.6.4. Mixed Integer Models ............................................................................. 86 

4.6.5. Number of Questions Placed by the DM at the Beginning of the 

Algorithm .......................................................................................................... 87 

4.6.6. Comparison of Two Algorithms in terms of Misclassified 

Alternatives ....................................................................................................... 87 

4.6.7. Number of Misclassifications in Different Classes ................................. 88 

4.6.8. Comparison of Number of Questions for Different Alternative 

Selection Methods to Ask the DM .................................................................... 88 

4.6.9. Comparison with Buğdacı et al. [18] for Financial Times Data Set. ...... 88 

4.6.10. Comparison of Performance Measures for Different Experiments. ...... 89 

5. CONCLUSION .................................................................................................... 90 

REFERENCES ........................................................................................................ 92 

  
 

  



  

xi 

 

LIST OF TABLES 

TABLES 

 

Table 3.1: Possible Values of 𝑎, 𝑏, 𝑎′, 𝑏′ ................................................................... 46 

Table 4.1: 𝑤𝑖𝑝 values Corresponding Underlying Utility of the DM for 

Financial Times Data ................................................................................................. 62 

Table 4.2: Criteria of US News Report Best Hospitals in Cancer ............................ 65 

Table 4.3: 𝑤𝑖𝑝 values Corresponding Underlying Utility of the DM for US 

News Report Data ...................................................................................................... 66 

Table 4.4: Criteria of TÜBİTAK Entrepreneur and Innovator University Index 2014 

Ranking ...................................................................................................................... 67 

Table 4.5:𝑤𝑖𝑝 values Corresponding Underlying Utility of the DM for US 

News Report Data ...................................................................................................... 68 

Table 4.6: Results for Financial Times Ranking MBA Programs Data 

Application by Algorithm 1 with Uniform Distribution ............................................ 70 

Table 4.7: Results for Financial Times Ranking MBA Programs Data 

Application by Algorithm 1 with Triangular Distribution. ........................................ 70 

Table 4.8: Results for Financial Times Ranking MBA Programs Data 

Application by Algorithm 1 with Trapezoidal Distribution ....................................... 71 

Table 4.9: Results for Financial Times Ranking MBA Programs Data 

Application by Algorithm 2 with Uniform Distribution ............................................ 71 

Table 4.10: Results for Financial Times Ranking MBA Programs Data 

Application by Algorithm 2 with Triangular Distribution ......................................... 72 

Table 4.11: Results for Financial Times Ranking MBA Programs Data 

Application by Algorithm 2 with Trapezoidal Distribution ....................................... 72 

Table 4.12: Results for Random Data Generation by Algorithm 1 with 

Uniform Distribution .................................................................................................. 73 

Table 4.13: Results for Random Data Generation by Algorithm 1 with 

Triangular Distribution............................................................................................... 73 



  

xii 

 

Table 4.14: Results for Random Data Generation by Algorithm 1 with 

Trapezoidal Distribution ............................................................................................ 74 

Table 4.15: Results for Random Data Generation by Algorithm 2 with 

Uniform Distribution .................................................................................................. 74 

Table 4.16: Results for Random Data Generation by Algorithm 2 with 

Triangular Distribution............................................................................................... 75 

Table 4.17: Results for Random Data Generation by Algorithm 2 with 

Trapezoidal Distribution ............................................................................................ 75 

Table 4.18: Results for U.S. News Best Hospital Data by Algorithm 1 with 

Uniform Distribution .................................................................................................. 76 

Table 4.19: Results for U.S. News Best Hospital Data by Algorithm 1 with 

Triangular Distribution............................................................................................... 76 

Table 4.20: Results for U.S. News Best Hospital Data by Algorithm 1 with 

Trapezoidal Distribution ............................................................................................ 77 

Table 4.21: Results for U.S. News Best Hospital Data by Algorithm 2 with 

Uniform Distribution .................................................................................................. 77 

Table 4.22: Results for U.S. News Best Hospital Data by Algorithm 2 with 

Triangular Distribution............................................................................................... 78 

Table 4.23: Results for U.S. News Best Hospital Data by Algorithm 2 with 

Trapezoidal Distribution ............................................................................................ 78 

Table 4.24: Results for TÜBİTAK Entrepreneur and Innovator Universities 

Ranking Data by Algorithm 1 with Uniform Distribution ......................................... 79 

Table 4.25: Results for TÜBİTAK Entrepreneur and Innovator Universities 

Ranking Data by Algorithm 1 with Triangular Distribution ...................................... 79 

Table 4.26: Results for TÜBİTAK Entrepreneur and Innovator Universities 

Ranking Data by Algorithm 1 with Trapezoidal Distribution ................................... 80 

Table 4.27: Results for TÜBİTAK Entrepreneur and Innovator Universities 

Ranking Data by Algorithm 2 with Uniform Distribution ......................................... 80 

Table 4.28: Results for TÜBİTAK Entrepreneur and Innovator Universities Ranking 

Data by Algorithm 1 with Triangular Distribution .................................................... 81 



  

xiii 

 

Table 4.29: Results for TÜBİTAK Entrepreneur and Innovator Universities 

Ranking Data by Algorithm 1 with Trapezoidal Distribution ................................... 81 

Table 4.30: Results for Financial Times Ranking Data Application by 

Algorithm 2 with Trapezoidal Distribution and 𝑤𝑖𝑝 Values Generated by 

Uniform Distribution .................................................................................................. 83 

Table 4.31: Results for Financial Times Ranking Data Application by 

Algorithm 2 with Trapezoidal Distribution and  𝑤𝑖𝑝 Values Generated by 

Exponential Distribution ............................................................................................ 84 

Table 4.32: Results for Financial Times Ranking Data Application by 

Algorithm 2 with Trapezoidal Distribution and  𝑤𝑖𝑝Values Generated by Normal 

Distribution ................................................................................................................ 84 

Table 4.33: Results for Buğdacı et al. [18] for Financial Times Ranking MBA 

Programs Data Application with Normal Distribution .............................................. 89 

 

  



  

xiv 

 

LIST OF FIGURES 

FIGURES 
 

Figure 3.1: Trapezoidal Distribution ......................................................................... 37 

Figure 3.2: Positions of 𝑎, 𝑏, 𝑐, 𝑑 and 0 ..................................................................... 39 

Figure 4.1: The Marginal Utilities on Each Criterion ............................................... 62 

Figure 4.2: The Marginal Utilities on Each Criterion ............................................... 66 

Figure 4.3: The Marginal Utilities on Each Criterion ............................................... 68 

Figure 4.4: The Comparison of Actual Utility-Utility Threshold Difference and 

Min-Max Differences ................................................................................................. 85 

Figure 4.5: Change in Probabilities at each iteration ................................................ 86 

 



  

1 

 

CHAPTER 1 

INTRODUCTION 

Multi-criteria problems that consider a set of discrete alternatives which are evaluated 

by many criteria can be examined under different categories. Choice problems try to 

find the best alternative or a set of good alternatives. Ranking problems on the other 

hand, try to order alternatives from best to the worst. Classification and sorting 

problems try to place alternatives into a set of classes. The difference between 

classification and sorting problems is in the way they define the classes. In sorting 

problems classes are preference ordered, whereas they are nominal in classification 

problems. 

Multi criteria sorting problems aim to place a discrete set of alternatives into the 

preference ordered classes. Placing alternatives into preference ordered classes can be 

encountered in many different situations in practice such as placing students applying 

for graduate programs into accepted, rejected or wait-listed classes, classifying 

academic programs, categorizing countries into different risk groups, deciding on credit 

applications of bank customers according to their credit risk groups and selecting 

students for different types of scholarship programs. 

Multi criteria sorting methods can be analyzed under three main categories: utility 

function-based methods, outranking-based methods and interactive methods that are 

based on either outranking or utility function-based methods and require the decision 

maker input throughout the solution process. 

A well-known method for partitioning alternatives into the categories is the estimated 

utility function method. The estimated utility function represents the preferences of the 
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decision maker (DM). Once the utility value of an alternative is specified, the 

alternatives can be sorted from best to the worst. Then, by using some reference 

alternatives whose preferences are previously provided by the DM and by considering 

the threshold values of different classes, alternatives can be assigned to the correct 

classes. Typically, in order to estimate the utility function many parameters are needed 

to be estimated. The reliability of these parameters is very important since they indicate 

the form of the utility function, in other words the preference structure of the DM.  

Another well-known class for multi-criteria sorting problems is the outranking-based 

approaches. The outranking relation is a binary relation that provides the outranking 

degree of an alternative over another alternative. The outranking relation can result in 

the conclusion that an alternative outranks the other in a pairwise comparison. This 

means that there are enough arguments to conclude that the alternative is at least as 

good as the one it is compared with, while there is no strong argument to refuse this 

situation. Sometimes incomparability may also arise if an alternative has an 

outstanding value in some criteria but have a very low performance in another.  

In both of these methods, in order to sort the alternatives lots of parameters are needed 

to be estimated. The reliabilities of both approaches depend on how well these 

parameters are estimated. Interactive methods on the other hand, obtain preference 

information from DM during the solution process. Throughout the process the DM is 

presented with improved solutions based on his/her responses. This facilitates a 

learning process for the DM both about the extent of available solutions’ preferences 

and trade-offs. 

We develop a probabilistic and interactive approach in order to sort alternatives. We 

develop two different solution approaches in order to place alternatives into preference 

ordered classes. We have tested the performance of our algorithm by utilizing different 

probability distributions and different data sets. 
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In Chapter 2, we review the literature developed for multi-criteria sorting problems. 

We consider the estimated utility function-based, outranking-based and interactive 

methods in the literature. In Chapter 3 we present the solution approach we developed 

which is an interactive and probabilistic approach. We present our experiments and 

their results in Chapter 4. We conclude in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW ON MULTI-CRITERIA SORTING PROBLEMS 

In this chapter, we briefly review the literature on multi-criteria sorting problems. We 

review the literature on outranking-based sorting methods; estimated utility function-

based sorting methods and interactive sorting methods. 

The UTA (UTilitès Additives) method is developed by Jacquet-Lagrèze and Siskos [1]. 

The method aims to estimate additive utility functions in order to obtain as consistent 

as possible rankings based on a reference set of alternatives. It estimates one or more 

additive utility functions from a given reference set of alternatives which are already 

assigned to classes by the DM. Then based on this additive utility function, it tries to 

rank alternatives from best to the worst. Hence, the type of problem the UTA method 

deals with is a ranking problem.  

The UTADIS method (UTilities Additives DIScriminates) is derived from the UTA 

method. The method is developed first by Devaud et al. (see Kosmido et al. [4]). 

Different variations are proposed by Jacquet Lagreze and Siskos, and Zopounidis and 

Doumpos. (see for instance Zopounidis and Doumpos [10]). It provides the sorting of 

alternatives through an additive utility function. It utilizes the structure of the UTA 

method for sorting the alternatives into the preference ordered classes rather than 

ranking them.  The marginal utility functions are piecewise linear. While defining the 

piecewise linear marginal utility functions, range of each criterion is divided into 

subintervals. The utility values of each subinterval on each criterion are estimated 

based on a reference set in such a way that the possible misclassification errors for the 

reference set of the DM is minimized.  Using the piecewise linear marginal utility 

functions on each criterion, the global utility for each alternative is tried to be 

http://dblp.kbs.uni-hannover.de/dblp/Visualization.action;jsessionid=A6E7B409110164B86CFDC52F84B5E263?authorName=Eric+Jacquet-Lagr%C3%A8ze
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estimated through a linear interpolation. Sorting is done by comparing the global utility 

of each alternative with utility thresholds corresponding to the lower bound of each 

class. 

Köksalan and Ulu [5] develop an interactive approach for multi-criteria sorting 

problems assuming an underlying linear utility function of the DM. There are some 

alternatives which are already classified by the DM. In order to find the true class (or 

possible class ranges) of the remaining alternatives, dominance relations are checked 

first. Then to narrow down the possible classes an alternative can be placed, convex 

dominance relationships are utilized. After that, to compare the relative utilities of 

unplaced alternatives with the placed ones, a weight space reduction technique is 

utilized. If no feasible weights are found, then the class range obtained is tighter. 

Parameters of the linear utility function are based on past preferences of the DM. The 

algorithm is applied for the problem of placing students who applied to the master’s 

degree program of the Industrial Engineering Department, Middle East Technical 

University. 

Ulu and Köksalan [6] propose another interactive method that considers distributing 

alternatives into acceptable and unacceptable sets. They develop interactive procedures 

to deal with this problem when the DM’s underlying utility function is linear, quasi-

concave and general monotone. For the linear utility function case, in order to decide 

whether an alternative is acceptable or not they utilize the dominance relationships, 

convex domination and weight space reduction techniques as well as previous 

preferences of DM. They define five classes namely; “acceptable”, “barely 

acceptable”, “unacceptable”, “not in the acceptable set” (either barely acceptable or 

unacceptable) and “not in the unacceptable set” (either barely acceptable or 

acceptable). Then, they ask the DM to place some alternatives into these sets initially. 

For quasi-concave function case they use dominance relationships in addition to 

properties of a quasi-concave utility function. They propose and use the idea that 
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convex combinations of acceptable alternatives are also acceptable by using the 

property of the quasi-concave utility function. They use the idea that alternatives that 

are inefficient with respect to the convex cones (see Korhonen et al. [7]). For the 

general monotone case they propose using dominance relations. 

Köksalan and Özpeynirci [8] demonstrate that the UTADIS method and its variations 

may misclassify many alternatives even if the DM places many of the alternatives into 

the classes directly. They argue that it is because of the fact that UTADIS estimates 

many parameters of an additive utility function and places alternatives based on these 

parameters which result in many alternative optimal solutions. Hence, classification of 

alternatives depends on which alternative optimal solution is selected. They propose an 

interactive method which guarantees to classify all alternatives correctly. In contrast to 

UTADIS, they do not estimate the values of the parameters. They try to partition 

alternatives into classes by utilizing underlying an additive utility function of the DM 

and by using past preferences. The algorithm ends when all alternatives are classified. 

In order to demonstrate that the procedure works well, they use the data set of ranking 

global MBA programs by “Financial Times.” In addition, they utilize several randomly 

generated problems. 

Soylu [11] develops a Tchebycheff utility function-based approach for multi criteria 

sorting problems.  By using a Tchebycheff utility function, all the efficient alternatives 

could be found even if they are not on the convex part of the efficient frontier. Like in 

the UTADIS method some reference alternatives are assigned into the classes and the 

remaining alternatives are placed into the classes by comparing their utilities with these 

reference alternatives. These comparisons are made based on a Tchbeycheff utility 

function. In the algorithm, if the weights are not specified by the DM, then each 

alternative selects its own weight which makes that alternative closest to the ideal 

point. The aim of this procedure is to place each alternative to the best possible class.  
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Ishizaka et al. [12] proposes a method called AHPSort that is used for classifying 

alternatives into preference-ordered categories. They argue that AHPSort method 

requires much fewer comparisons than classical AHP, which facilitates decision 

making within large scale problems. In order to place each alternative into the correct 

class, the profiles of classes are defined. This is done either by defining a local limiting 

profile (minimum performance needed on each criterion to belong to a class) or with a 

local central profile which is defined by a representative alternative belonging to that 

class. Then by using eigenvalue method of AHP, importance of each criterion is found. 

By utilizing these values global priority of each alternative is calculated. In order to 

assign alternatives into the classes these global priorities are compared with limiting 

profiles or central profiles. In order to control the validity of the method, it is 

demonstrated for a real case of supplier selection problem. 

Köksalan et al. [9] propose a model to “flexibly rank” alternatives defined by multiple-

criteria into preference-ordered classes by using mixed integer programming. They 

suggest sorting (which they call as flexible ranking) is more suitable for many problem 

types compared to ranking. In order to rank the alternatives flexibly, they consider a 

linear aggregation method. They develop a procedure that places the alternatives into 

distinct classes that are “sufficiently” different. Although they consider a linear 

aggregation model, they permit changes in criterion weights in pre-defined ranges. The 

difference of this model is that, unlike the similar procedures that heavily involve the 

DM, it is based on “reasonable” weight ranges that can express preferences of many 

distinct parties. They develop a mathematical model in order to assign best possible 

weight to each alternative. Then, they modify and apply this model to the problem of 

ranking MBA programs based on FT Global MBA program rankings. 

Zopounidis and Doumpos [2] make a literature review on multi-criteria classification 

and sorting methods. They examine multi criteria sorting problems under four 

categories: outranking-based approaches, estimated utility function-based approaches, 
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rough set approaches and neural networks. They mention different methods from 

literature for each of the categories. They explain how these methods work as well as 

model development techniques for different kinds of models. Finally, they give 

information about developed decision support systems and real-world applications. 

Köksalan et al [3] develop an outranking-based multi-criteria sorting method to assign 

alternatives into preference–ordered classes. Instead of using explicit reference 

profiles, they ask the DM to place reference alternatives to each category. In order to 

place unassigned alternatives into categories, they compare them with these reference 

alternatives. They assume that preference and indifference thresholds are known but 

criteria weights are unknown. The method tries to place the alternatives by eliminating 

circles. A circuit occurs when two alternatives in different categories outrank each 

other. The approach is demonstrated for the evaluation problem of MBA programs and 

a problem from the banking sector. 

Mousseau et al. [15] explain ELECTRE TRI method based on the studies of Yu and 

Roy & Bouyssou. ELECTRE TRI uses outranking relations in order to assign 

alternatives into classes. It builds an outranking relation S in order to justify or reject 

the claim that aSbh (a is at least as good as bh) ELECTRE TRI places the alternatives 

into the predefined classes. An alternative is placed into a class based on the 

comparison of the alternative’s value on each criterion with reference profiles defining 

the limits of a class. To compare an alternative a with a reference profile, bh, partial 

concordance indices, are calculated first by using indifference and preference 

thresholds. Then, global concordance indices are computed. Global concordance 

reveals the extent to which a and bh are concordant with the assertion that “a outranks 

bh” (“bh outranks a”, respectively). After this step partial discordance index, which 

reveals the extent of opposition of criterion to the assertion “a outranks bh” is 

calculated. (“bh outranks a”, respectively.) The criterion opposes a veto if the 

difference is greater than veto threshold. 
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Finally, the credibility index of the outranking relation is calculated. The degree of the 

credibility of the outranking relation reveals the extent to which “a outranks bh” (“bh 

outranks a,” respectively) according to global concordance and discordance index. 

The outranking relation S is made by means of a ⋋-cut which is called a cutting level. 

⋋ is considered as the smallest value of the credibility index compatible with the 

assertion that “a outranks bh. Then there are two possible assignment procedures: 

optimistic procedure and pessimistic procedure. Alternatives are assigned to the classes 

based on these procedures. 

Mousseau et al. [15] also develop software called ELECTRE TRI Assistant. They 

provide explanations about how to use this software. It estimates the parameters based 

on the past assignment preferences of the DM.  It allows user to give his/her 

preferences about the weight and the cutting level by giving limits or providing 

comparisons. They state that in the next version they will include similar features for 

reference profiles and thresholds as well. For estimation, it applies a nonlinear 

programming based on pessimistic procedure without veto from assignment examples. 

The aim of the program is to find parameters that lead credibility indices that are 

substantially far from the cutting level. That is, the model tries to maximize the 

minimum distance. 

 Mousseau et al. [15] consider that the nonlinear program of ELECTRE TRI can be 

solved as a linear program if reference profiles and threshold values are provided. 

Hence, they only take into consideration inferring weights vector which makes the 

problem to be solved linear. The objective of the model is to find assignment which is 

as consistent as possible with the assignment examples given by the DM. Hence, the 

objective functions of NLP and LP are same. They argue that as the objective function 

value increases the model becomes more stable. In order to control whether the model 

can find inconsistencies, they assign some alternatives into wrong classes and they 
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conclude that the model demonstrates a good ability. In addition they try some 

different objectives but they conclude that his does not bring significant improvement.  

Zopounidis and Doumpos [13] develop a system called FINCLASS (FINancial 

CLASSification) which incorporates UTADIS method and its three variants in order to 

classify the alternatives (firms) into the classes. Furthermore, the financial/credit 

analyst can decide competitive level between the alternatives of the same class with 

regard to their global utility values via UTADIS method or any of its variants. The 

FINCLASS system integrates preference disaggregation system of MCDA approach 

with decision support systems in order to provide financial/credit analysts with a tool 

to study financial classification decision problems. Current form of FINCLASS is 

oriented towards the analysis and assessment of corporate performance and viability, in 

addition to credit risk evaluation. They use the data of previous years as a reference set 

in UTADIS and estimate the parameters of the model. They utilize these parameters in 

order to classify the alternatives of current year. With FINCLASS a wide range of 

financial classification problems can be studied, namely bankruptcy risk evaluation, 

credit granting, and assessment of corporate performance. Furthermore, the system 

could be adapted to study some other classification topics such as country risk 

assessment, and portfolio selection and management 

Diakoulaki et al. [14] use the UTADIS method in order to sort 14 countries to 3 classes 

by means of their energy intensities which is defined as energy consumption per unit 

output. 13 factors are decided to be effective for reaching a desired level of energy 

efficiency. The objective in this study is to observe the relative importance of criteria 

and its change as time passes. They try to specify most important factors that affect 

energy efficiency. 

Dehnokhlaji et al. [16] assume that the underlying utility function of the DM is quasi-

concave. They extend Prasad et al.’s model [22] in order to obtain a strict partial order 
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for a set of alternatives evaluated by multiple criteria. Based on underlying preference 

information, the model will classify the alternatives with respect to the cone and the 

polyhedron defined based on a preference subset. Alternatives are classified with 

respect to vertex of the cone as: surely better, surely worse or possibly better/worse 

than the vertex. The last situation provides a measure about the related alternative’s 

closeness to being dominated by the cone and the amount that dominates the part of the 

polyhedron. In order to classify the alternative heuristically two threshold values are 

defined that measures how much alternatives better or worse beyond the thresholds. 

Hokkanen et al. [19] propose use of SMAA (Stochastic multi-objective acceptability 

analysis) as a decision support system for multi-criteria alternatives and multiple 

decision makers. They try to find the weight space based on the underlying utility 

function of the decision maker. They try to find favorable weight vectors that make the 

utility of an alternative better than the alternative it is compared with. In this method 

decision makers do not directly involved in the procedure. They calculate an 

acceptability index; in order find the probability of that alternative being the best based 

on its calculated favorable weight and central weight. The alternatives are chosen 

based on this acceptability index. They represent the use of SMAA technique for both 

deterministic and stochastic cases.  In the stochastic case, they also calculate a 

confidence factor in order to measure the accuracy of the criteria data. 

Dias et al. [20] propose a new method called SMAA-TRI for multi-criteria sorting 

problems. SMAA-TRI utilizes SMAA in order to evaluate the stability of some 

parameters used in ELECTRE-TRI. Hence, SMAA-TRI is a combination of 

ELECTRE-TRI and SMAA methods. SMAA-TRI makes use of ELLECTRE-TRI with 

arbitrarily distributed weights, cutting level and class profiles. The other variables are 

assumed to be deterministic and known. In order to calculate the share of each 

alternative, namely acceptability index from a finite set of arbitrarily distributed 

parameter values, Monte Carlo simulation is utilized. 
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Kadziński and Tervonen [21] consider the use of SMAA-TRI method for general 

monotone utility functions. SMAA-TRI method applies the SMAA procedure to the 

ELECTRE-TRI method. The method utilizes Monte Carlo Simulation to calculate 

acceptability indices by which alternatives are assigned to the classes. They examine 

both threshold-based and example-based sorting procedures.  In the threshold based 

approach, preference model of the DM is represented by an additive utility function 

and a vector of thresholds which describes the lower and upper bounds of classes. In 

contrast, in the example based approach classes are defined with the example 

alternatives that are already placed into the classes. 

 Kadziński and Slowiński [23] develop a method called DIS-CARD for multi-criteria 

sorting problems. The method aims to assign a specified number of alternatives to each 

class or unions of some classes. The method uses ordinal regression procedure to 

represent preferences of DM based on some reference alternatives.  They develop a 

mathematical model that takes into account both the preference information and the 

cardinality constraints of the classes. They implement the model on an additive value 

function and on an outranking based relation. They generate different constraints for 

both of the approaches. They illustrate the method in order to sort a company’s 

international sales managers into four classes. 

Rough set approach is claimed to be useful for problems with inconsistencies such as 

sorting problems. However the original rough set approach cannot be directly applied 

to the sorting problems. The first change proposed by Greco et al. [24] is change of the 

data table by a pairwise comparison table. In addition, discernibility relation was 

needed to be changed by dominance relation. At the end, the sorting problem will end 

with a set of decision rules that represent the preference model. 

Dias and Mousseu [25] present software for multi-criteria sorting problems: IRIS 

(Interactive Robustness analysis and parameters’ Inference for multi-criteria Sorting 

http://scholar.google.com/citations?user=1pNY3kgAAAAJ&hl=pl
http://scholar.google.com/citations?user=1pNY3kgAAAAJ&hl=pl
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problems). The method is based on ELECTRE TRI method. They assume that 

reference profiles and class thresholds are known. It does not require the DM to specify 

any precise value for the parameters needed for the ELECTRE TRI method. DM 

interactively denotes some reference alternatives or constraints on the parameter 

values. DM may accept the sorting suggested by the method or continue by adding 

more constraints. If the constraints defined by the DM are inconsistent, IRIS presents 

ways in order to get rid of this inconsistency. They represent the user interface for all 

of the iterations on an example problem. 

Larichev and Moshkovich [26] propose a sorting method based on dominance 

relationships. They check the dominance situation between assigned and unassigned 

alternatives. The scale of each criterion is verbal and can be updated according to the 

preferences of the DM.) 

Zopounidis and Doumpos [27] present a system called PREFDIS (PREFerence 

DIScrimination) for multi-criteria sorting problems. The system is based on UTADIS, 

UTADIS I, UTADIS II and UTADIS III. DM can prefer the model that meets his/her 

preferences best. During the process DM can change marginal utilities. They illustrate 

their system on two examples.  

Brans and Vincke [17] propose PROMETHEE methods for outranking based relations 

for ranking problems. PROMETHEE I, provides a partial ranking and PROMETHEE 

II provides a total ranking for a set of alternatives. The basic idea of the method is to 

extend the notion of criterion where the classical notion refers to preference and 

indifference relations. For some of the criteria, intransitivity of the difference relation 

is utilized, for others indifference relation can be turned into preference relation. In 

order to extend the criterion a preference function is introduced that provides the 

relation between each alternative in pairwise comparison. They propose use of six 

types of preference functions for six different criterion types. 
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Buğdacı et al. [18] propose an interactive probabilistic sorting method based on the 

probability of an alternative being in each class and restricting incorrect assignments 

below a previously determined threshold value. They assume that the DM has an 

additive utility function and marginal utility of each alternative on each criterion is 

piecewise linear. Initially, the DM is needed to place an alternative into a class. Then 

by using this information and the class information of already assigned alternatives, the 

probability of belonging to each class, for the unassigned alternatives is calculated. 

Then alternatives are either assigned probabilistically (by comparing their probability 

of being in each class with a threshold value) or exactly. If there are any remaining 

unassigned alternatives, they ask the DM to place another chosen alternative into a 

class and the probabilities are updated accordingly. Then the remaining alternatives are 

tried to be assigned. The algorithm terminates when all alternatives are assigned into 

classes. In order to reduce the number of classes an alternative may belong to, they 

solve two linear programs. One of them minimizes and the other maximizes the 

difference between the utility of an alternative and the threshold of a class. Hence, the 

optimal solutions of these models provide the worst and best possible classes 

respectively. The assignment to a class is realized if the probability of making an 

incorrect assignment is sufficiently small. This acceptable error level is a parameter 

and can be specified by the user. Therefore, the approach can also be used as an exact 

sorting algorithm if the acceptable error probability is zero.  

We also develop an interactive and probabilistic sorting method. Like Buğdacı et al. 

we assume that the underlying utility function on DM is additive which is the only 

common point of two methods. However, the way we calculate the probability of 

belonging each class is different. In addition, we solve fewer linear models in order to 

calculate the probabilities which make the method more effective.  The assignment 

procedure and the selection method for the alternative to ask the DM are different. 
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CHAPTER 3 

BACKGROUND AND SOLUTION APPROACH 

In this chapter, we first introduce the multi-criteria sorting problem.  Later we explain 

three different multi-criteria sorting methods that we based our study on.  The first is 

the UTADIS method. The second is an interactive sorting that is based on the UTADIS 

method. The third is developed by using the ideas in the second method and it employs 

a probabilistic approach in order to assign the alternatives into the classes. Lastly, we 

introduce the procedure proposed in the present study. 

3.1. Multi-criteria Sorting Problem 

We consider a set 𝐴 of 𝑚 alternatives 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} evaluated by 𝑛 criteria. The 

alternatives are to be placed into q preference classes 𝐶1, 𝐶2, … , 𝐶𝑞 where 𝐶1 is the most 

and 𝐶𝑞 is the least-preferred class. 

Let 𝑔𝑖(𝑎𝑗)  be the score of alternative 𝑎𝑗 on criterion 𝑖,  𝑢𝑖[𝑔𝑖(𝑎𝑗)]  be the marginal 

utility of alternative 𝑎𝑗 on criterion 𝑖 and  𝑈[𝑔(𝑎𝑗)]  be the global utility of 

alternative 𝑎𝑗. We assume that the marginal utility 𝑢𝑖[𝑔𝑖(𝑎𝑗)] is piecewise linear 

for 𝑖 = 1,2, … , 𝑛.  For criterion  𝑖, piecewise linear utility is defined as follows:  Range 

of criterion 𝑖 is divided into 𝑏𝑖 subintervals  [𝑔𝑖
𝑝, 𝑔𝑖

𝑝+1], 𝑝 ∈ {1,2, … , 𝑏𝑖}. The 

contribution of subinterval [𝑔𝑖
𝑝, 𝑔𝑖

𝑝+1]  of criterion i to the marginal utility 𝑢𝑖[𝑔𝑖(𝑎𝑗)]  

is 𝑤𝑖𝑝; that is, 𝑤𝑖𝑝 = 𝑢𝑖[𝑔𝑖
𝑝]− 𝑢𝑖[𝑔𝑖

𝑝+1] ≥ 0, 𝑝 ∈ {1,2, … , 𝑏𝑖}  Let 𝑟𝑗𝑖 satisfy 𝑔
𝑖

𝑟𝑗𝑖 ≤

𝑔𝑖(𝑎𝑗) ≤ 𝑔𝑖
𝑟𝑗𝑖+1 for 𝑟𝑗𝑖 = 1, 2, … , 𝑏𝑖 ,  𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … ,𝑚. Then, the 

marginal utility of alternative 𝑎𝑗 on criterion  𝑖, 𝑢𝑖[𝑔𝑖(𝑎𝑗)] can be written as: 
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𝑢𝑖[𝑔𝑖(𝑎𝑗)] =  ∑ 𝑤𝑖𝑝 +
𝑔𝑖(𝑎𝑗) − 𝑔𝑖

𝑟𝑗𝑖

𝑔
𝑖

𝑟𝑗𝑖+1 − 𝑔
𝑖

𝑟𝑗𝑖

𝑟𝑗𝑖−1

𝑝=1

𝑤𝑖𝑟𝑗𝑖 

We assume also that the global utility function is obtained by 

𝑈[𝑔(𝑎𝑗)] = ∑𝑢𝑖[𝑔𝑖(𝑎𝑗)]

𝑛

𝑖=1

 

which can also be represented as 

𝑈[𝑔(𝑎𝑗)] =∑[ ∑ 𝑤𝑖𝑝 +
𝑔𝑖(𝑎𝑗) − 𝑔𝑖

𝑟𝑗𝑖

𝑔
𝑖

𝑟𝑗𝑖+1 − 𝑔
𝑖

𝑟𝑗𝑖
𝑤𝑖𝑟𝑗𝑖

 𝑟𝑗𝑖−1

𝑝=1

]

𝑛

𝑖=1

 

Since the utility function of the DM is unknown, 𝑤𝑖𝑝 values are unknown.  We also 

assume that the DM has some unknown class thresholds that separate his/her 

preference classes. These thresholds are also unknown to the DM although he/she can 

classify the alternatives when asked. Let 𝑢𝑘 be the class threshold between  𝐶𝑘 and 

 𝐶𝑘−1 for 𝑗 = 1,2, … , 𝑞. Then; 

𝑈[𝑔(𝑎𝑗)]  ≥  𝑢1  ⇒  𝑎𝑗  𝐶1 

𝑢𝑘 ≤ 𝑈[𝑔(𝑎𝑗)]  ≤  𝑢𝑘−1  ⇒ 𝑎𝑗  𝐶𝑘 for k = 2,…,q-1 

𝑈[𝑔(𝑎𝑗)]  ≤  𝑢𝑞−1  ⇒ 𝑎𝑗  𝐶𝑞 

3.2. UTADIS Method 

UTADIS method is a utility function-based multi-criteria sorting method developed 

first by Devaud et al. [4]. Different variations and examples are presented by Jacquet 

Lagreze and Siskos and Zopounidis and Doumpos [10]. The method assumes that the 
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underlying utility function of the DM is additive and marginal utilities are piecewise 

linear. It tries to estimate marginal utilities of each criterion first. Then, the global 

utility function, which is a weighted sum of marginal utilities, and the class thresholds 

separating different classes are estimated. The estimation is based on some initial 

assignments made by the DM. These initial assignments are used as reference points 

for the method. While introducing the method the notation of Zopounidis and 

Doumpos [10] is utilized. 

UTADIS estimates the additive utility function using the information from the 

alternatives that are already assigned to the classes by the DM initially. In order to 

estimate the utility function, a linear program is constructed that minimizes the 

maximum misclassification errors of alternatives that are placed by the DM. There are 

two kinds of possible misclassification errors: upper bound violation and lower bound 

violation. If an alternative that is placed into class  𝐶𝑘 by the DM is placed into  𝐶𝑘+1 

by the estimated utility function (violates class threshold 𝑢𝑘), then this is a lower 

bound violation. On the other hand, if an alternative that is placed into class  𝐶𝑘 by the 

DM is placed into  𝐶𝑘−1 by the estimated additive utility function (violates class 

threshold 𝑢𝑘−1), then this is an upper bound violation. 

The possible violations are measured by: 

𝜎𝑗
+ = max  {0, 𝑢𝑘 −  𝑈[𝑔(𝑎𝑗)]},       ∀𝑎𝑗 ∈  𝐶𝑘  

𝜎𝑗
− = max  {0, 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘−1},       ∀𝑎𝑗 ∈  𝐶𝑘  

where 𝜎𝑗
+ is the amount of lower bound violation and 𝜎𝑗

− is the amount of upper bound 

violation of the alternative 𝑎𝑗 ∈  𝐶𝑘. 

In other words, 𝜎𝑗
+ > 0  denotes that the actual class of misclassified alternative 𝑎𝑗 is 

class 𝐶𝑘 instead of class  𝐶𝑘+1. In order for alternative 𝑎𝑗 to be placed in class  𝐶𝑘, its 
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global utility should be increased by 𝑢𝑘 − 𝑈[𝑔(𝑎𝑗)]. If 𝜎𝑗
− > 0 then this denotes that 

the actual class of misclassified alternative 𝑎𝑗 is class 𝐶𝑘 instead of class  𝐶𝑘−1.  In 

order for alternative 𝑎𝑗 to be placed in class   𝐶𝑘, its global utility should be decreased 

by 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘−1. 

The linear program P1 that estimates the coefficients, 𝑤𝑖𝑝, of the utility function and 

the class thresholds, 𝑢𝑘, is given below: 

(P1): 𝑀𝑖𝑛 𝑓

= ∑[
∑ (𝜎𝑗

+ + 𝜎𝑗
−)∀𝑎𝑗∈𝐶𝑘

|𝐶𝑘|
]

𝑞

𝑘=1

                                                                                       

s. t. 

𝑈[𝑔(𝑎𝑗)] = ∑ ( ∑ 𝑤𝑖𝑝 +
𝑔𝑖(𝑎𝑗) − 𝑔𝑖

𝑟𝑗𝑖

𝑔
𝑖

𝑟𝑗𝑖+1 − 𝑔
𝑖

𝑟𝑗𝑖

𝑟𝑗𝑖−1

𝑝=1

𝑛

𝑖=1

𝑤𝑖𝑟𝑗𝑖)            ∀𝑎𝑗 ∈ 𝐴                       (1)   

𝑈[𝑔(𝑎𝑗)] − 𝑢1+ 𝜎𝑗
+   ≥  𝛿1    ∀𝑎𝑗 ∈ 𝐶1                                                                       (2)   

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘+ 𝜎𝑗
+   ≥  𝛿1                        ∀𝑎𝑗 ∈ 𝐶𝑘 , 𝑘 =  2,3, … , 𝑞 − 1                (3)   

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘−1+ 𝜎𝑗
−   ≤  −𝛿2     

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑞−1+ 𝜎𝑗
−  ≤ −𝛿2       ∀𝑎𝑗 ∈ 𝐶𝑞                                                              (4)  

∑∑
𝑤𝑖𝑝 = 1           𝑖 = 1,2, … , 𝑛         𝑝 = 1,2, … , 𝑏𝑖−1                                     (5)

 

𝑏𝑖−1

𝑝=1

𝑛

𝑖=1

   

𝑢𝑘 − 𝑢𝑘+1 ≥ 𝑠        ∀𝑘 = 1,2, … , 𝑞 − 2                                                                      (6)   
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𝑤𝑖𝑝  ≥ 0             ∀𝑖 = 1, … , 𝑛      ∀𝑝 = 1, … , 𝑏𝑖−1 

𝜎𝑗
+ ≥ 0 ,   𝜎𝑗

−  ≥ 0       ∀𝑗 = 1,… ,𝑚 

𝛿1   , 𝛿2   , 𝑠 𝑎𝑟𝑒 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

This LP minimizes a weighted sum of classification errors σ
+
 and σ

-
. The weights are 

determined according to the size of the class, |𝐶𝑘 | where 𝑘 =  1,2, … , 𝑞.  It is assumed 

that the number of reference alternatives for each class that are placed by the DM are 

close to each other.   

Constraint (1) represents the DM’s additive utility function 𝑈[𝑔(𝑎𝑗)]. 

Constraints (2)-(4) describe classification errors, 𝜎𝑗
+and 𝜎𝑗

−, defined before. 

Constraint (5) normalizes the additive utility function to [0, 1] interval. 

Constraint (6) guarantees the ordering of classes by making sure that lower bound 𝑢𝑘 

of class 𝐶𝑘  is higher than lower bound 𝑢𝑘+1 of class  𝐶𝑘+1 . 

Zopounidis and Doumpos [10] proposed a post optimality analysis. The optimal 

solution gives a placement of the alternatives some of which are possibly misclassified.  

After the optimal objective function value is found a post optimality analysis is needed 

to be employed since there are alternative optimal solutions in most of the cases. 

During the post optimality step, criteria weights  ∑ 𝑤𝑖𝑝 
𝑏𝑖−1
𝑝=1 , 𝑖 = 1,2, … , 𝑛 and the 

utility thresholds  𝑢𝑘, 𝑘 =  1,2, … , 𝑞 − 1, are tried to be maximized which may result in 

𝑛 + 𝑞 − 1 alternative optimal or near optimal solutions. The first 𝑛 solutions maximize 

the importance of each criterion 𝑔1(𝑎𝑗), 𝑔2(𝑎𝑗), … , 𝑔𝑛(𝑎𝑗) and the remaining 𝑞 −

1 solutions maximize utility thresholds  𝑢1, 𝑢2, … , 𝑢𝑞−1. The final additive utility 

function is formed from the average of all above.  
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3.3. Interactive Methods 

3.3.1. An Interactive Sorting Method for Additive Utility Functions by Köksalan 

and Özpeynirci [8] 

Köksalan and Özpeynirci [8] show that UTADIS method may misclassify many 

alternatives even if a significant amount of preference information is taken from the 

DM. They argue that the reason for high number of misclassifications in UTADIS 

method is the high number of parameters needed to be estimated in order to form the 

additive utility function. Classification of alternatives depends on which alternative 

optimal solution is selected. The method of Köksalan and Özpeynirci [8] requires from 

DM to place some alternatives into the classes iteratively. It guarantees to place all the 

alternatives into the classes correctly for a DM whose preferences are consistent with 

an additive utility function. 

In order to show that a lot of alternative solutions are obtained with the UTADIS 

method they have made experiments with the original method and with different 

secondary objectives while preserving the main objective of minimizing 

misclassification of alternatives. Furthermore, they work on variations of the original 

UTADIS by adding some constraints on the possible values of parameters. They make 

the experiments on a three-class example with 30 reference alternatives out of 81 

alternatives. 

Köksalan and Özpeynirci [8] adopt the linear approach developed by Köksalan and Ulu 

[5] to a more general case of additive utility function. The aim of the method is to ask 

only small number of alternatives to the DM while warranting sorting all the 

alternatives correctly. Instead of estimating the parameters, the method tries to place 

alternatives into the classes by introducing the preferences of the DM to the model. 

They solve an integer programming model for each alternative in order to find the 

possible classes for that alternative. If the worst and best possible classes of an 
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alternative are the same, then the alternative is placed to that class. If there is more than 

one possible class for an alternative, then they show the possible classes to the DM, 

and ask DM to place the alternative. After an alternative is placed by the DM, the 

procedure repeats until all the alternatives are placed.  

Let A be the set of alternatives that will be classified and let 𝐶0 be the set of 

alternatives that are not assigned to any classes yet. Let 𝐶𝑟 represent the set of 

alternatives that are known to be in class 𝐶𝑘 for 𝑘 =  1,2, … , 𝑞. Suppose 𝑎𝑗 ∈ 𝐶0. Let 

𝐶𝑗
𝑤 be the worst and 𝐶𝑗

𝐵 be the best category 𝑎𝑗 can be placed in. 

They use the notation presented in UTADIS. They define the binary variable 𝑥𝑗𝑘 to 

represent the assigned class of an alternative; 

 

𝑥𝑗𝑘 = {
 1 if alternative 𝑎𝑗  is assigned to class 𝑘         

 0 otherwise                                                            
 

 

The model 𝐼𝑃1𝑎,𝑡 represented below controls whether the worst class that the 

alternative 𝑎𝑗 can be placed in is class t. 

(𝐼𝑃1𝑎,𝑡):    Max ε 

s.t.   

U[g(𝑎𝑗)]  =∑[ ∑ 𝑤𝑖𝑝 +
𝑔𝑖(𝑎𝑗) − 𝑔𝑖

𝑟𝑗𝑖

𝑔
𝑖

𝑟𝑗𝑖+1 − 𝑔
𝑖

𝑟𝑗𝑖
𝑤𝑖𝑟𝑗𝑖

 𝑟𝑗𝑖−1

𝑝=1

]

𝑛

𝑖=1

                 ∀𝑎𝑗 ∈ 𝐴 

𝑢𝑘 ≤  U[g(𝑎𝑗)]  + 𝑀(1 − 𝑥𝑗𝑘)  + ε                   𝑘 = 1,2, … , 𝑞 − 1        ∀𝑎𝑗 ∈ 𝐶0 − {𝑎𝑗} 

 𝑢𝑘−1  ≥  U[g(𝑎𝑗)] − 𝑀(1 − 𝑥𝑗𝑘) + ε               𝑘 = 2,… , 𝑞                   ∀𝑎𝑗 ∈ 𝐶0 − {𝑎𝑗} 

 ∑∑𝑤𝑖𝑝 = 1                                                       𝑖 = 1,2, … , 𝑛         𝑝 = 1,2, … , 𝑏𝑖−1 

𝑏𝑖−1

𝑝=1

𝑛

𝑖=1
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𝑢𝑘 − 𝑢𝑘+1 ≥ 𝑠                                                                               𝑘 = 1,2, … , 𝑞 − 2               

∑𝑥𝑗𝑘 = 1                                                                                           ∀𝑎𝑗 ∈ 𝐶0 − {𝑎𝑗}               

𝑞

𝑘=1

 

𝑢1 ≤  U[g(𝑎𝑗)]                                                                                                ∀𝑎𝑗 ∈ 𝐶1 

 𝑢𝑘 ≤  U[g(𝑎𝑗)]   ≤   𝑢𝑘−1 − ε                           𝑘 = 2, … , 𝑞 − 1            ∀𝑎𝑗 ∈ 𝐶𝑘 

U[g(𝑎𝑗)]   ≤   𝑢𝑞−1 − ε                                                                                  ∀𝑎𝑗 ∈ 𝐶𝑞 

U[g(𝑎𝑗)]   ≤   𝑢𝑡 − ε                                                                                      ∀𝑎𝑗 ∈ 𝐶𝑞 

ε ≥ 0                                  

𝑤𝑖𝑝  ≥ 0                    i = 1,2, … , n         p = 1,2, … , 𝑏𝑖 

𝑥𝑗𝑘  ∈ {0,1}              ∀𝑎𝑗 ∈ 𝐶0 − {𝑎𝑗}   𝑘 =  1,2, … , 𝑞  

They argue that if 𝐼𝑃1𝑎,𝑡 is infeasible than the worst class of alternative  𝑎𝑗 is t. That is  

𝐶𝑗
𝑤 is t. If constraint U[g(𝑎𝑗)]  ≤   𝑢𝑡 − ε     is altered with U[g(𝑎𝑗)]  ≥  𝑢𝑡−1 then 

model 𝐼𝑃2𝑎,𝑡 is formed. This model checks whether the best class of alternative 𝑎𝑗 is t. 

They also solve the LP relaxations of the models 𝐼𝑃1𝑎,𝑡 and 𝐼𝑃2𝑎,𝑡  which are formed 

by relaxing the binary variable 𝑥𝑗𝑘. Integer models are stronger than the linear models 

since there can be feasible solutions for LP which may not be feasible for IP. On the 

other hand, it is easier to solve a linear problem. Therefore, for the large problem sizes, 

initially solving LP and solving the IP only if LP is feasible will be a reasonable 

solution approach. 

They solve 𝐼𝑃1𝑎,𝑡 for a selected alternative. If  𝐼𝑃1𝑎,𝑡 is infeasible then the worst class 

the alternative can be assigned is class 1. If it is feasible for class 1, then 𝐼𝑃1𝑎,𝑡 is 

solved till t=q or until an infeasible result is obtained. If it is feasible for all t, then they 

conclude that the worst class of the alternative is q. After that, by starting with the 

worst class of alternative, 𝐼𝑃2𝑎,𝑡 is solved until an infeasible solution is obtained to 
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determine the best possible class for alternative. If  𝐼𝑃2𝑎,𝑡 is feasible for all t, then the 

best possible class of the alternative is class 1. If the best and worst class of an 

alternative is the same, the alternative is placed to that class. Otherwise, the DM is 

asked to place the alternative to one of the classes between its worst and best class. 

They also suggest a variation in case DM does not want to place the alternative to a 

single category. The algorithm ends when all the alternatives are assigned to a 

category. 

They make an experiment with the example they use while testing the UTADIS 

method. They use a real data set that is published by Financial Times. They make the 

experiment with 81 MBA programs. They try to place he programs into three 

categories. They present the results according to the number of narrowed-down classes. 

For the case there is no information about 𝑤𝑖𝑝 and  𝑢𝑘 the algorithm places 31 of the 

alternatives out of 81 (38% of all alternatives). If they assume that they have 

information about range of parameters these values improve. In order to test the 

performance of alternative they solve some additional problems with 50, 100 

alternatives and 3 to 5 classes. 

3.3.2. Interactive Probabilistic Sorting Methods for Additive Utility Functions 

3.3.2.1. Problem Setting 

In this section overview of two different interactive probabilistic procedures are 

presented. The first method is proposed by Buğdacı et al. [18]. The second method is 

the procedure that we develop. In this section, we give of the common problem setting 

of these methods.  

It is assumed that the DM has an unknown additive utility function and marginal utility 

of each alternative on each criterion is piecewise linear. In addition, the utility 

thresholds that partition different classes are unknown. If an alternative is placed in a 
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different class than it really belongs to “a misclassification” occurs. In order to assign 

alternatives into the classes, probability of an alternative to be placed in each class is 

calculated. In order to calculate these probabilities linear models are solved. 

Misclassification threshold determined by the DM represents the maximum acceptable 

error level. If the threshold is 0, then DM does not allow any misclassifications. An 

alternative is placed into a class if the probability of being in that class greater than the 

acceptable misclassification threshold; that is, if the probability of an incorrect 

assignment is acceptably small. As the value of misclassification threshold increases, 

the number of misclassified alternatives is expected to increase as well.  

Initially, the DM is needed to place an alternative into a class. Then by using this 

information, for each of the unassigned alternatives, the probability of belonging to 

each class is calculated. Then alternatives are either assigned probabilistically (by 

comparing their probability of being in each class with misclassification threshold 

value) or exactly (with probability one). If there are some unassigned alternatives, then 

the DM is asked to place another alternative into a class and the probabilities are 

updated accordingly. Then the remaining alternatives are tried to be assigned. The 

algorithm terminates when all alternatives are assigned into classes.  

At an iteration of the algorithm, 𝐶0 refers to the set of alternatives that are not assigned 

to any classes yet, 𝐶𝑘 refers to the set of alternatives which are known to be in class k, 

 𝐶𝑟 = 𝐶1 ∪ 𝐶2  ∪ … ∪ 𝐶𝑞 refers to the set of alternatives which are placed into a class 

at the current iteration; that is, A= 𝐶𝑟 ∪ 𝐶0. The algorithm starts with  𝐶𝑟 = Ø. DM is 

asked to place an alternative 𝑗′ into a class. Then  𝐶𝑟 = {𝑗′} while 𝐶0 = 𝐴 − {𝑗′}. By 

using the class information of alternatives in 𝐶𝑟 , alternatives in  𝐶0  are assigned to 

appropriate classes either exactly or probabilistically. The assigned alternatives are 

removed from 𝐶0 and placed to the set they are assigned at the end of the iteration. If 

there are unassigned alternatives at the end of the iteration, the DM is asked to place a 
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selected alternative to a class. The selection of this alternative will be discussed later. 

Utilizing this new class information, the remaining alternatives are tried to be assigned 

iteratively. The algorithm terminates when every alternative is assigned to a class.  

Alternatives are placed into the classes by comparing global utility values with utility 

thresholds that separate consecutive classes. Parameters of the utility function and 

utility thresholds are unknown. The class information of alternatives in  𝐶𝑟 and 

previous placements by the DM are utilized in order to assign remaining alternatives. 

In all of the iterations, alternatives should satisfy constraints (7) to (12). Using the 

notation of Zopounidis and Doumpos [10], a feasible set for the unknown utility 

thresholds and the utility function parameters is defined by (7) - (12) at every iteration. 

𝑈[𝑔(𝑎𝑗)] = ∑ ( ∑ 𝑤𝑖𝑝 +
𝑔𝑖(𝑎𝑗) − 𝑔𝑖

𝑟𝑗𝑖

𝑔
𝑖

𝑟𝑗𝑖+1 − 𝑔
𝑖

𝑟𝑗𝑖

𝑟𝑗𝑖−1

𝑝=1

𝑛

𝑖=1

𝑤𝑖𝑟𝑗𝑖)                                      (7)                 

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘   ≥  0                  ∀𝑎𝑗 ∈ 𝐶𝑘                                                      (8)                 

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘−1+ ≤  −𝛿               ∀𝑎𝑗 ∈ 𝐶𝑘     𝑘 = 2,3, … , 𝑞 − 1                (9)   

∑∑𝑤𝑖𝑝 = 1               𝑖 = 1,2, … , 𝑛         𝑝 = 1,2, … , 𝑏𝑖−1                      (10) 

𝑏𝑖−1

𝑝=1

𝑛

𝑖=1

 

𝑢𝑘 − 𝑢𝑘+1 ≥ 𝑠                ∀𝑘 = 1,2, … , 𝑞 − 2                                                  (11) 

𝑤𝑖𝑝  ≥ 0                           ∀𝑖 = 1,2, … , 𝑛      ∀𝑝 = 1,2… , 𝑏𝑖−1                    (12) 

Constraint (7) defines the global utility of each alternative. Constraints (8) and (9) are 

written for the alternatives that are already placed by the decision maker or placed with 

certainty and indicate respectively that an alternative in class 𝐶𝑘, should have greater 

utility than the threshold 𝑢𝑘 (which is the lower bound of class 𝐶𝑘) and should be 
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smaller than 𝑢𝑘−1(which is upper bound of class 𝐶𝑘). Constraint (10) implies that 

subintervals of utility values of all alternatives should sum up to 1. Constraint (11) 

indicates that the upper utility threshold of a class must be greater than its lower utility 

threshold. Finally, constraint (12) implies nonnegative weights for each utility 

subinterval. 

In order to place alternatives into the classes linear programs are solved to calculate the 

probability of each alternative being in each class. 

Every iteration starts with selecting an alternative and asking the DM to place it.  This 

means that a constraint of type (8) and a constraint of type (9) are added to the above 

set of constraints. Solutions of some linear programs with appropriate objectives under 

constraints (7) - (12) give us information about the ranges of the unknown parameters 

at the current iteration.  Using these ranges, we come up with some estimators of these 

unknown parameters.  With additional assumptions about the distributions of these 

estimators, we compute the probability of each alternative being in each class.  In the 

next iteration, new constraints of type (8) and (9) are added to this linear program.  The 

new optimal solution possibly changes the parameters of these distributions.  So, the 

probabilities are re-calculated. 

The approaches of Buğdacı et al. [18] and our approach in this study differ in the 

following aspects: 

1. The estimated parameters, hence, the estimators and the assumed distributions. 

2. The selection method of the alternative to ask the DM to be placed. 

3. The stopping condition of the algorithm. 
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3.3.3.1. Parameter estimation and probability computation in Buğdacı et al. [18] 

At every iteration, the unknown parameters are estimated using the current information 

obtained by the solutions of six linear programs. The first model aims to minimize the 

difference between utility value of alternative 𝑎𝑗   and utility threshold 𝑢𝑘 and the 

second model tries to maximize this difference. The third and fourth models minimize 

and maximize possible  𝑤𝑖𝑝 values respectively. Finally, the fifth and sixth models 

minimize and maximize the range of class threshold 𝑢𝑘 values. The linear programs 

and the random variables used for probability calculations are explained throughout 

this section. 

𝐿𝑃1
𝑗,𝑘
:min  𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 

𝑠. 𝑡.  

   𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (7) 𝑡𝑜 (12). 

 

𝐿𝑃2
𝑗,𝑘
:max  𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 

𝑠. 𝑡.  

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (7) 𝑡𝑜 (12). 

Let the optimal objective value of 𝐿𝑃1
𝑗,𝑘

 for alternative 𝑎𝑗 and class threshold 𝑢𝑘 be 

 𝑜𝑏𝑗1
∗ (𝑗, 𝑘) and the optimal objective value of  𝐿𝑃2

𝑗,𝑘
 be 𝑜𝑏𝑗2

∗ (𝑗, 𝑘). 

If  𝑜𝑏𝑗1
∗ (𝑗, 𝑘′) ≥ 0 for 𝑢𝑘 then  𝑜𝑏𝑗1

∗ (𝑗, 𝑘)  ≥ 0 for k =𝑘′+1, 𝑘′+2,…,q-1 and there is 

no need to solve the minimization problem for k= 𝑘′+1, 𝑘′+2,…,q-1.  It is also true that 

if  𝑜𝑏𝑗1
∗ (𝑡, 𝑘′) ≥ 0 then  𝑜𝑏𝑗2

∗ (𝑡, 𝑘′) ≥ 0 and there is also no need to solve the 

maximization problem for k= 𝑘′+1, 𝑘′+2,…,q-1. 
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If the objective value of maximization problem is negative for alternative 𝑎𝑗 and utility 

threshold 𝑢𝑘, then the best class of a1ternative 𝑎𝑗 is k+1. If  𝑜𝑏𝑗2
∗ (𝑗, 𝑘′) < 0, there is 

no need to solve 𝐿𝑃2
𝑗,𝑘

 for alternative 𝑎𝑗 and class threshold 𝑢𝑘  for k=1,2,…, 𝑘′-1. 

There is also no need to solve the minimization problem for k=1,2,…, 𝑘′. 

In order to assign the alternatives into the classes without asking the DM, the estimated 

utility of each alternative as well as the thresholds between the classes are necessary.  

Both the utility value of the alternative and utility thresholds should be estimated. 

These unknown quantities are estimated by some estimators obtained from the linear 

programs with feasible region (7)-(12) as follows:  For each parameter, a range is 

obtained by minimizing and maximizing it over the feasible set of the current iteration.  

Then the midpoint of this range is used as the estimator of the parameter.  A 

distribution for this estimator is assumed and the probability of an alternative being in 

each class is computed. 

In order to estimate the utility of an alternative, 𝑤𝑖𝑝 values are estimated first and they 

are used to estimate the utilities using (7). The ranges for 𝑤𝑖𝑝 values are obtained 

solving the following linear programs: 

𝐿𝑃3
𝑖,𝑝:min  𝑤𝑖𝑝 

𝑠. 𝑡.  

Constraints (7) 𝑡𝑜 (12) 

𝐿𝑃4
𝑖,𝑝:max  𝑤𝑖𝑝 

𝑠. 𝑡.  

Constraints (7) 𝑡𝑜 (12) 
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Ranges for the threshold values are estimated in the same manner: 

𝐿𝑃5
𝑘: min 𝑢𝑘 

𝑠. 𝑡.  

Constraints (7) 𝑡𝑜 (12) 

𝐿𝑃6
𝑘: max  𝑢𝑘 

𝑠. 𝑡.  

Constraints (7)𝑡𝑜 (12) 

Assume that the optimal objective value of 𝐿𝑃3
𝑖,𝑝

 is  𝑊𝑖𝑝 and the optimal objective 

value of 𝐿𝑃4
𝑖,𝑝

 is 𝑊𝑖𝑝. These upper and lower bounds on  𝑤𝑖𝑝 can be considered as 

random variables since they are determined by the current set of placed alternatives 

and that they could change if the current set of placed alternatives were different.  An 

estimator of  𝑤𝑖𝑝 at the current iteration is 

 𝑊̂𝑖𝑝 =
 𝑊𝑖𝑝 +  𝑊𝑖𝑝

2
. 

If  𝑊̂𝑖𝑝 is assumed to be uniformly distributed in that interval [ 𝑊𝑖𝑝,  𝑊𝑖𝑝] then its 

variance is estimated as: 

 𝑉(𝑊̂𝑖𝑝) =
( 𝑊𝑖𝑝 − 𝑊𝑖𝑝)

2

12
 

It is further assumed that  𝑊̂𝑖𝑝 values are independent for  ∀𝑖 = 1,2, … , 𝑛 and ∀𝑝 =

1,2… , 𝑏𝑖−1.   

As a result, the utility of the alternative 𝑎𝑗 can be estimated as: 
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𝑈̂[𝑔(𝑎𝑗)] =∑∑ 𝑧𝑖𝑝(𝑎𝑗)𝑊̂𝑖𝑝

𝑏𝑖

𝑝=1

𝑛

𝑖=1

 

where 𝑧𝑖𝑝(𝑎𝑗) represents : 

𝑧𝑖𝑝(𝑎𝑗) =

{
 
 

 
 

1                      𝑖𝑓 𝑝 < 𝑟𝑗𝑖

𝑔𝑖(𝑎𝑗) − 𝑔𝑖
𝑟𝑗𝑖

𝑔
𝑖

𝑟𝑗𝑖+1 − 𝑔
𝑖

𝑟𝑗𝑖
   𝑖𝑓 𝑝 = 𝑟𝑗𝑖     

0                      𝑖𝑓 𝑝 > 𝑟𝑗𝑖

 

 

Buğdacı et al. [18] argued that the unbiased estimator of utility 𝑈̂[𝑔(𝑎𝑗)] is normally 

distributed, assuming that  ∑ 𝑏𝑖
𝑛
𝑖=1  is large enough due to the Central Limit Theorem. 

As a result of independence of the estimator of  𝑊̂𝑖𝑝 and the normality of 𝑈̂[𝑔(𝑎𝑗)], the 

variance of unbiased estimator of utility is estimated as: 

𝑉[̂𝑈̂[𝑔(𝑎𝑗)]] =∑∑𝑧𝑖𝑝(𝑎𝑗)
2
 𝑉(𝑊̂𝑖𝑝

𝑏𝑖

𝑝=1

𝑛

𝑖=1

) 

In order to specify the distribution of 𝑈̂[𝑔(𝑎𝑗)], it is conditioned on 𝑌 = 1 where 

𝑌 = ∑ ∑  𝑊̂𝑖𝑝
𝑏𝑖
𝑝=1

𝑛
𝑖=1 .  Due to Central Limit Theorem, 𝑌 is assumed to have a normal 

distribution. 

𝐸[𝑌] =∑∑ 𝑤𝑖𝑝

𝑏𝑖

𝑝=1

𝑛

𝑖=1
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𝑉̂[𝑌] =∑∑ 𝑉̂(𝑊̂𝑖𝑝)

𝑏𝑖

𝑝=1

𝑛

𝑖=1

 

Since the distributions of 𝑈̂[𝑔(𝑎𝑗)] and 𝑌 are normal, their joint distribution is 

bivariate normal.  The marginal variances and means are already estimated. In order to 

estimate the mean and variance of bivariate distribution firstly covariance and as a 

result correlation coefficient are calculated. The mean and variance of the bivariate 

normal distribution are as follows: 

𝐸[(𝑈̂[𝑔(𝑎𝑗)] |𝑌 = 1)] = 𝐸[𝑈̂[𝑔(𝑎𝑗)] − 𝜌
𝑉(𝑈̂[𝑔(𝑎𝑗)])

𝑉(𝑌)
(1 − 𝐸(𝑌)) 

𝑉[(𝑈̂[𝑔(𝑎𝑗)] |𝑌 = 1)] = (1 − 𝜌2)𝑉(𝑌) 

The estimators for class thresholds are found by utilizing linear programs 𝐿𝑃5
𝑘 and 𝐿𝑃6

𝑘. 

Assume that the optimal objective value of 𝐿𝑃5
𝑘 is  𝑢𝑘 and the optimal objective value 

of 𝐿𝑃6
𝑘 is  𝑢𝑘. An unbiased estimator of  𝑢𝑘 at the current iteration can be: 

 𝑢̂𝑘 =
 𝑢𝑘  +  𝑢𝑘

2
 

The distribution of  𝑢̂𝑘 is assumed to be normal and the variance is assumed to cover 6 

standard deviations. 

 𝑉(𝑢̂𝑘) =
( 𝑢𝑘 − 𝑢𝑘)

2

36
 

It is further assumed that  𝑊̂𝑖𝑝 and  𝑢̂𝑘 are independent for ∀i =1,2, …, n, ∀p =1,2, 

…, 𝑏𝑖 and k= 1,2,…,q. 
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 𝐷𝑘𝑗 = (𝑈̂[𝑔(𝑎𝑗)] |𝑌 = 1) − 𝑢̂𝑘 is an unbiased estimator of  𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘. Let 𝑑𝑘𝑗 

be the current estimate for 𝐷𝑘𝑗. 

To assign alternatives into the classes, probabilities are calculated as follows: 

𝑝(𝑗, 𝑘): 𝑃̂([(𝑈̂[𝑔(𝑎𝑗)] |𝑌 = 1) − 𝑢̂𝑘]  | 𝑜𝑏𝑗1
∗ (𝑗, 𝑘) ≤ [(𝑈̂[𝑔(𝑎𝑗)] |𝑌 = 1) − 𝑢̂𝑘] ≤ 𝑜𝑏𝑗2

∗ (𝑗, 𝑘) ) 

If this probability is sufficiently large, then we assume 𝑈[𝑔(𝑎𝑗)] > 𝑢𝑘. Whether the 

probability is sufficiently large is decided by a predetermined critical probability 

value, τ. If τ = 0, alternatives are placed without any error. If τ > 0, alternatives are 

placed into the classes probabilistically. 

If  𝑝(j, 1) ≥ (1 − τ), then 𝑎𝑗 is assigned to 𝐶1. 

If  𝑝(j, k) ≥ (1 − τ),   𝑝(j, k − 1) ≤ 𝜏. It is assigned to 𝐶𝑘. 

If  𝑝(j, q − 1) ≤ τ then 𝑎𝑗 is assigned to 𝐶𝑞. 

After alternatives are assigned exactly or probabilistically, they ask the DM to place 

the alternative about whose class we have the least information. Therefore, they choose 

this alternative whose calculated probabilities are closest to 0. The algorithm continues 

till all the alternatives are placed. 

3.3.3.2. Parameter estimation and probability computation in our study 

In order to assign an alternative into a class, we need to find out between which class 

thresholds its utility value falls. Alternatives are placed into the classes as follows: 

If 𝑈[𝑔(𝑎𝑗)] ≥ 𝑢1, then 𝑎𝑗 is in class 𝐶1. 

If 𝑢𝑘 ≤ 𝑈[𝑔(𝑎𝑗)] < 𝑢𝑘−1, then 𝑎𝑗  is in class 𝐶𝑘 for 𝑘 = 2,… , 𝑞 − 1 
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If 𝑈[𝑔(𝑎𝑗)] < 𝑢𝑞−1, then 𝑎𝑗 is in class 𝐶𝑞. 

However, neither utility values nor class thresholds are known. Therefore, we generate 

an estimator only for 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘, the utility of the alternative 𝑎𝑗  and the threshold 

of class k, class threshold differences and compute the probability of above events 

using the assumed distribution of the estimator. 

One of the most important differences of this study from the study of Buğdacı et al. 

[18] is what we estimate and which distribution we use for the estimators. In their 

algorithm they solve three minimization and three maximization problems in order to 

find the minimum and maximum values of 𝑤𝑖𝑝, 𝑢𝑘  and 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 . They assume 

a distribution between the maximum and minimum range of 𝑤𝑖𝑝 values in order to find 

an unbiased estimator for the utility value of each alternative. Then they use these 

values in order to form the utilities of each alternative. They also solve separate models 

in order to estimate the class threshold value. Finally, in order to shrink the possible 

ranges that 𝑈[𝑔(𝑎𝑗)]  and 𝑢𝑘 may take; they solve the linear models that minimize and 

maximize the difference between the alternative and the class threshold. 

We now introduce how we generate the random variables; 

At every iteration, we solve a minimization and a maximization problem for the 

difference of the utility of each alternative and each class threshold 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘. 

Then, we consider the estimator of this unknown difference. We assume a distribution 

for the estimator over the range. Finally, we compute the probability that 𝑈[𝑔(𝑎𝑗)] −

 𝑢𝑘 > 0 using distribution parameters at the current iteration. Alternatives are placed 

into the classes by comparing these values with misclassification thresholds and make 

the assignments according to the procedures of the algorithm we use. In addition the 

positivity/negativity of these estimators will also give an idea about the possible classes 
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of the alternatives. Since, to place an alternative into a class its utility value should be 

greater than or equal to the class threshold value. 

Now we present the computations in detail.  Suppose 𝑎𝑗 ∈ 𝐶0. To compare the utility of 

each alternative with each class threshold, the following two models are solved for 

each unassigned alternative 𝑎𝑗 and each class threshold  𝑢𝑘. 

LP𝑎,1 

max  𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 

𝑠. 𝑡.  

𝑈[𝑔(𝑎𝑗)] =∑[∑ 𝑤𝑖𝑝 +
𝑔𝑖(𝑎𝑗) − 𝑔𝑖

𝑟𝑗𝑖

𝑔
𝑖

𝑟𝑗𝑖+1 − 𝑔
𝑖

𝑟𝑗𝑖
𝑤𝑖𝑟𝑗𝑖

𝑟𝑗𝑖−1

𝑝=1

]

𝑛

𝑖=1

     ∀𝑎𝑗 ∈ 𝐴                         (13) 

  

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 ≥ 0                   ∀ 𝑎𝑗 ∈ 𝐶𝑟   𝑘 = 1, 2, … , 𝑞 − 1                          (14)              

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘−1 ≤ −𝛿            ∀ 𝑎𝑗 ∈ 𝐶𝑟   𝑘 =  2 ,3 , … , 𝑞                             (15)  

∑∑ 𝑤𝑖𝑝 = 1

𝑏𝑖−1

𝑝=1

                         𝑖 = 1,2, … , 𝑛         𝑝 = 1,2, … , 𝑏𝑖−1                (16)

𝑛

𝑖=1

 

  

𝑢𝑘 − 𝑢𝑘+1 ≥ 𝑠                            ∀𝑘 = 1, 2, … , 𝑞 − 2                                          (17) 

 

𝑤𝑖𝑝 ≥ 0                            ∀𝑖 = 1, 2, … , 𝑛       ∀𝑝 = 1, 2, … , 𝑏𝑖                           (18) 
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LP𝑎,2 

min  𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 

𝑠. 𝑡.  

(13) - (18) 

Let the optimal objective value of 𝐿𝑃𝑎,1 be 𝑜𝑏𝑗 ∗𝑎,1 and the optimal objective value of 

𝐿𝑃𝑎,2 be 𝑜𝑏𝑗 ∗𝑎,2. 

If 𝑜𝑏𝑗 ∗𝑎,1 < 0 is satisfied for an alternative-class threshold pair then  𝑜𝑏𝑗 ∗𝑎,2 < 0 for 

the same pair. 

Obtaining a negative objective value in the maximization problem LP𝑎,1 implies that 

the utility of alternative does not satisfy the threshold of the class it is compared with, 

even at its maximum possible value. Hence the best possible class for that alternative 

to be placed in is k-1. 

Obtaining a positive objective value in the minimization problem LP3,2 implies that the 

utility of the alternative satisfies the threshold of the class it is compared with even at 

its minimum possible value. Hence the worst possible class for that alternative to be 

placed is class k. 

3.3.3.3. Probability computation under different distributions 

Consider the programs we present in the previous section. 

LP𝑎,1 

max  𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 

𝑠. 𝑡.  

(13)- (18) 
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LP𝑎,2 

max  𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 

𝑠. 𝑡.  

(13)- (18) 

 

Let the optimal objective value of 𝐿𝑃𝑎,1 be 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 and the optimal objective 

value of  𝐿𝑃𝑎,2 be 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘. These values are assumed to be observations of a 

random variable since new constraints of type (14) and (15) are added to the model 

representing the placement done by the DM at the current iteration and different 

alternatives asked to the DM may result in different optimal solutions. We assume that 

the random estimator 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘
̂  of 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 has a certain distribution in the 

interval [𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘, 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘] and compute the probability 

that 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘
̂ ≥0. . We consider trapezoidal, uniform and triangular distributions 

as three alternatives.  

3.3.3.3.1. Trapezoidal Distribution 

To calculate the probability of each alternative being in each class, we fit a trapezoidal 

distribution for the maximum difference between the utility value of an alternative and 

class threshold of each class and the minimum difference between the utility value of 

an alternative and class threshold of each class, i.e. for alternative 𝑎𝑗 and class 𝐶𝑘 we 

assume a trapezoidal distribution over [𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘, 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘]. 

We assume a symmetric trapezoidal distribution.  The assumptions that we have made 

and the calculation method is represented below. The notation that we use is 

represented in the figure below. 
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  Figure 3.1. Trapezoidal Distribution 

 

For t ≥ 2 (For t =2 it transforms into triangular distribution) 

𝑎 −
2𝑎

𝑡
. ℎ + ℎ .

𝑎

𝑡
= 1 

ℎ =
𝑡

𝑎(𝑡 − 1)
 

For our calculations we assume t = 3 and utilize a symmetric trapezoidal distribution. 

The calculation of probabilities is shown below: 

 

ℎ 

𝑎 −
2𝑎

𝑡
 

𝑎

𝑡
 

𝑎

𝑡
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Let x = 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 . and y=𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 

{
 
 
 
 

 
 
 
 
1                                                    𝑖𝑓        𝑥 ≥ 𝑎                                                            

1 −
𝑡2𝑥2

2𝑡(𝑦 − 𝑥)2
                          𝑖𝑓       𝑥 ≤ 0  and   𝑡𝑥 +

𝑦 − 𝑥

𝑡
   ≥ 0                  

1 −
𝑥 − 𝑦 − 2𝑡𝑥

2(𝑦 − 𝑥)(𝑡 − 1)
                 𝑖𝑓       𝑡𝑥 +

𝑦 − 𝑥

𝑡
 ≤ 0 and 

𝑦(𝑡 − 1) + 𝑥

𝑡
> 0

𝑡2𝑦2

2(𝑡 − 1)(𝑦 − 𝑥)2
                      𝑖𝑓        𝑦 > 0 and 

𝑦(𝑡 − 1) + 𝑥

𝑡
 ≤ 0                 

 0                                                   𝑖𝑓       𝑦 ≤  0                                                            

 

3.3.3.3.2. Uniform Distribution 

We now assume that the difference between utility of each alternative and utility 

threshold for each class is distributed uniformly between its maximum and minimum 

values.  

In order to calculate the probability 𝑝(𝑗, 𝑘)= 𝑃̂ = [𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘  ≥ 0] 

let x =𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 and y=𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘]. 

𝑝(𝑗, 𝑘) =

{
 

 
1                                                        𝑖𝑓 𝑥 > 0
(𝑦 − 0)

(𝑦 − 𝑥)
                     𝑖𝑓 𝑥 ≤ 0, 𝑦 > 0

0                                                        𝑖𝑓 𝑦 ≤ 0

   

We show that when we assume a uniform distribution the maximum difference 

increases and the minimum difference decreases. Hence, the values coincide at some 

point and it is guaranteed that all alternatives are assigned to a class. 

In Figure 3.2., the relations between maximum and minimum differences of utilities 

and class thresholds for a three category case are represented with respect to the 

different positions of “0”where: 
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𝑎 = 𝑀𝑖𝑛(𝑈[𝑔(𝑎𝑗)] − 𝑢1) 

𝑏 = 𝑀𝑖𝑛(𝑈[𝑔(𝑎𝑗)] − 𝑢2) 

𝑐 = 𝑀𝑎𝑥(𝑈[𝑔(𝑎𝑗)] − 𝑢1) 

𝑑 = 𝑀𝑎𝑥(𝑈[𝑔(𝑎𝑗)] − 𝑢2) 

and the numbered areas are used in order to represent possible positions of zero. 

 

 

 

 

 

Figure 3.2. Positions of 𝒂, 𝒃, 𝒄, 𝒅 and 0 

 

In addition, the following probabilities are defined: 

𝑝(𝑗, 1) =  𝑃 (𝑈[𝑔(𝑎𝑗)] − 𝑢1 ≥
̂ 0)  

𝑝(𝑗, 2) = 𝑃 (𝑈[𝑔(𝑎𝑗)] − 𝑢2
̂ ≥ 0)   

𝑝(𝑗, 3) = 𝑃  (𝑈[𝑔(𝑎𝑗)] − 𝑢2
̂  ≤ 0)   

Before presenting the propositions the change of probabilities with respect to five 

possible places of “0” is represented below: 

 

 

 

 

d 
c b a 

5 4 3 2 1 

Max U – u1 

 

Max U – u2 Min U – u2 Min U – u1 
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Property 1: If position of 0 is         then, 

 𝑎 and 𝑏 are both greater than zero. Since the minimum possible value for 𝑈[𝑔(𝑎𝑗)] −

𝑢1 is 0, it is for sure that 𝑃 (𝑈[𝑔(𝑎𝑗)] − 𝑢1 ≥
̂ 0) = 1. Hence, 𝑎𝑗 is placed into class 1 

exactly. 

Property 2: If position of 0 is          then, 

𝑏 is greater than zero. Since the minimum possible value for 𝑈[𝑔(𝑎𝑗)] − 𝑢2 is 0, it is 

for sure that 𝑃 (𝑈[𝑔(𝑎𝑗)] − 𝑢2 ≥
̂ 0) = 1. Hence, 𝑎𝑗 is placed into class 2 exactly. 

Property 3: If position of 0 is          then,  

aj could be placed in one of the three classes with probabilities 𝑝(𝑗, 1) > 0,  𝑝(𝑗, 2) >

0 and   𝑝(𝑗, 3) > 0 

Property 4: If position of 0 is          then, 

𝑐 is less than zero. Since the maximum possible value for 𝑈[𝑔(𝑎𝑗)] − 𝑢1 ≤ 0, it is for 

sure that 𝑃 (𝑈[𝑔(𝑎𝑗)] − 𝑢1 ≥
̂ 0) = 0. Hence, 𝑎𝑗 is placed into either class 2 or class 3 

with 𝑝(𝑗, 2) > 0 and   𝑝(𝑗, 3) > 0 

Property 5: If position of 0 is          then, 

𝑎 and 𝑑 are both less than zero. Since the maximum possible value for 𝑈[𝑔(𝑎𝑗)] −

𝑢2  ≤ 0, it is for sure that 𝑃 (𝑈[𝑔(𝑎𝑗)] − 𝑢1 ≥
̂ 0) = 0. Hence, 𝑎𝑗 is placed into class 3 

exactly. 

Proposition 1:   Given  𝑑′ > 𝑑, where the position of “0” is given as 

𝑑 = 𝑀𝑎𝑥(𝑈[𝑔(𝑎𝑗)] − 𝑢2) 

1 

2 

3 

4 

5 

3 
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𝑑′ = 𝑀𝑎𝑥(𝑈[𝑔(𝑎𝑘)] − 𝑢2) 

𝑃 (𝑈[𝑔(𝑎𝑗)] − 𝑢2 ≥
̂ 0)  >  𝑃 (𝑈[𝑔(𝑎𝑘)] − 𝑢2 ≥̂ 0) 

Proof: 

P̂ ( 𝑈[𝑔(𝑎𝑘)] >  u2) −  P̂ ( 𝑈[𝑔(𝑎𝑗)] >  u2) =
𝑑′

𝑑′ − 𝑏
− 

𝑑

𝑑 − 𝑏
  

=
𝑑𝑑′ − 𝑑′𝑏 − 𝑑𝑑′ + 𝑏𝑑 

(𝑑 − 𝑏)(𝑐 − 𝑎)
 ≥ 0 

□ 

Proposition 2:  Given  𝑎′ < 𝑎, where the position of “0” is given as  

𝑎 = 𝑀𝑖𝑛(𝑈[𝑔(𝑎𝑗)] − 𝑢1) 

𝑎′ = 𝑀𝑖𝑛(𝑈[𝑔(𝑎𝑘)] − 𝑢1) 

𝑃̂(𝑈[𝑔(𝑎𝑘)] − 𝑢1 ≥ 0)  >  P̂ (𝑈[𝑔(𝑎𝑗)] − 𝑢1 ≤ 0)   

Proof: 

P ̂( 𝑈[𝑔(𝑎𝑘)] >  u1) −  P̂ ( 𝑈[𝑔(𝑎𝑗)] >  u1) =
𝑐

𝑐 − 𝑎′
− 

𝑐

𝑐 − 𝑎
  

=
−𝑎𝑐 + 𝑎′𝑐

(𝑐 − 𝑎′)(𝑐 − 𝑎)
 ≤ 0 

□ 

Proposition 3:  Given that the position of “0” is given as    

P̂ ( U >  u2) −  P̂ ( U >  u1)  ≥ 0  

 

3 

3 
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Proof: 

P̂ ( U >  u2) =
𝑑

𝑑 − 𝑏
 

P ̂( U >  u1) =
𝑐

𝑐 − 𝑎
 

P̂ ( U >  u2) −  P̂ ( U >  u1) =
𝑑

𝑑 − 𝑏
− 

𝑐

𝑐 − 𝑎
  

=
𝑑𝑐 − 𝑎𝑑 + 𝑑𝑐 − 𝑏𝑐 

(𝑑 − 𝑏)(𝑐 − 𝑎)
  

=
2𝑑𝑐 − 𝑎𝑑 − 𝑏𝑐

(𝑑 − 𝑏)(𝑐 − 𝑎)
 ≥ 0  

□ 

3.3.3.3.3. Triangular Distribution 

If the differences between maximum and minimum utility value of an alternative and 

utility threshold of each class are independent, then this difference is either in 

triangular or trapezoidal form. 

Let x = max  (𝑈𝑖 − 𝑢𝑘) and  𝑦 = min  (𝑈𝑖 − 𝑢𝑘) 

𝑃[𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘
̂  ≥ 0] is found as follows: 

𝑝(𝑗, 𝑘) =

{
 
 
 

 
 
 
1                                            if x > 0                              

1 − 2
x2

(y − x)2
                   if x ≤ 0,

x + y

2
> 0  

2
y2

(y − x)2 
                           if  

x + y

2
≤ 0, y > 0

 0                                            if  y ≤ 0                            
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Proposition 4: 

Given 𝑢1 > 𝑢2  

Max (𝑈 − 𝑢1) < Max (𝑈 − 𝑢2) 

Min (𝑈 − 𝑢1) < Max (𝑈 − 𝑢2) 

Proof: 

Suppose that X and Y are random variables. X refers to maximum or minimum 

possible values for (𝑈 − 𝑢1) and Y refers to maximum or minimum possible values for 

(𝑈 − 𝑢2). Y is obtained from X by shifting the interval of X [a,b] to [a’, b’]  as shown 

below.  The ranges of both variables are defined below by (1). Both the lower and the 

upper bound of Y is greater than the lower and upper bound of X respectively which is 

represented in (2) 

X ∈ [a, b]        Y ∈ [a′, b′]        (1) 

𝑎′ > 𝑎        𝑏 >  𝑎         𝑏′ > 𝑏       𝑏′ > 𝑎′          (2)   

Y =
𝑋 + 𝐴

𝐵
                  a′ =

𝑎 + 𝐴

𝐵
                b′ =

𝑏 + 𝐴

𝐵
 

B =
𝑏 − 𝑎

𝑏′ − 𝑎′
                𝐴 = 𝑎′ (

𝑏 − 𝑎

𝑏′ − 𝑎′
 ) − 𝑎           

It is assumed that 𝐴 and 𝐵 is greater than 0 for the cases we consider. 

Since, 𝑏 >  𝑎 and 𝑏′ > 𝑎′   B > 0 is always satisfied. 

In order for 𝐴 > 0 to be satisfied 𝑎′𝑏 − 𝑎𝑏′ > 0 should be satisfied. 

All possible values for 𝑎, 𝑏, 𝑎′, 𝑏′ are represented in the table below. 
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Due to the relations between 𝑎, 𝑏, 𝑎′ and 𝑏′ provided in (2), cases 3, 4, 7, 8, 9, 10, 11, 

14 and 16 (see Table 1) are not possible. In addition, we will calculate the probabilities 

for the intervals at least one of which include 0. If none of the intervals include 0, then 

the corresponding alternatives will not be placed probabilistically but they are placed 

exactly. Hence we do not need to examine cases 1, 6 and 13 (see Table 1) 

For the cases 2, 5 and 12 we will show that 𝐴 > 0  is satisfied. (It is already shown that 

𝐵 > 0  is satisfied for all 𝑎, 𝑏, 𝑎′, 𝑏′ 

Case 2:  

𝑎 < 0,  𝑎′ > 0,  𝑎′ > 𝑎 

𝑏 > 0,  𝑏′ > 0 , 𝑏′ > 𝑏 

In order for 𝐴 > 0  to be satisfied 𝑎′𝑏 − 𝑎𝑏′ > 0 should be satisfied. 

For Case 2,  

𝑎′𝑏 > 0 and  −𝑎𝑏′ > 0  

Hence, 𝐴 > 0 is always satisfied. 

Case 5:  

𝑎 < 0,  𝑎′ < 0,  𝑎′ > 𝑎 

𝑏 > 0,  𝑏′ > 0, 𝑏′ > 𝑏 

In order for 𝐴 > 0  to be satisfied 𝑎′𝑏 − 𝑎𝑏′ > 0 should be satisfied. 

For Case 5,  
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𝑎′𝑏 < 0 and  −𝑎𝑏′ > 0 

Since |−𝑎𝑏′| >  |𝑎′𝑏|  𝐴 > 0 is always satisfied. 

Case 12:  

𝑎 < 0,  𝑎′ < 0, 𝑎′ > 𝑎 

𝑏 < 0,  𝑏′ > 0, 𝑏′ > 𝑏 

In order for 𝐴 > 0 to be satisfied 𝑎′𝑏 − 𝑎𝑏′ > 0 should be satisfied. 

For Case 5,  

𝑎′𝑏 > 0  and  −𝑎𝑏′ > 0 

Hence, 𝐴 > 0  is always satisfied. 

Therefore, 𝐴 > 0 is satisfied for all possible cases. 
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Table 3.1: Possible Values of 𝑎, 𝑏, 𝑎′, 𝑏′ 

 

Cases 𝑎 𝑏 𝑎′ 𝑏′ Positivity Suitability 

Case 1 - - - -   
Since none of the intervals include zero, probability will not 

be calculated. 

Case 2 - + + +   Positivity of A should be examined 

Case 3 - + - - x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 4 - + + - x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 5 - + - +   Positivity of A should be examined 

Case 6 - - + +   
Since none of the intervals include zero, probability will not 

be calculated 

Case 7 - - + - x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 8 + + - - x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 9 + - - + x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 10 + - + - x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 11 + - + + x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 12 - - - +   Positivity of A should be examined 

Case 13 + + + +   
Since none of the intervals include zero, probability will not 

be calculated 

Case 14 + + + - x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 15 + + - + x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 

Case 16 + + - - x 
Lower and upper limits do not satisfy the relationship 

between a, b , a’, b’ 
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In the light of this information, we claim that the cumulative distribution function of 

every Y value is below that of every X value. 

𝐹𝑌(𝑦) = 𝑃 (𝑌 ≤ 𝑦) = 𝑃(
𝑥 + 𝑎′

𝑏 − 𝑎
𝑏′ − 𝑎′

− 𝑎

𝑏 − 𝑎
𝑏′ − 𝑎′

 ≤ 𝑦) 

 

                  𝑃 (𝑋 ≤  
𝑏 − 𝑎

𝑏′ − 𝑎′
𝑦 − 𝑎

𝑏 − 𝑎

𝑏′ − 𝑎′
+ 𝑎 ≤ 𝑦) 

                  𝐹𝑋 (
𝑏 − 𝑎

𝑏′ − 𝑎′
𝑦 − 𝑎

𝑏 − 𝑎

𝑏′ − 𝑎′
+ 𝑎) 

                  𝐹𝑌(0) =  𝐹𝑋  (−𝑎
𝑏 − 𝑎

𝑏′ − 𝑎′
+ 𝑎) =  𝐹𝑋(−𝐴) ≤  𝐹𝑋(0) 

                  𝐹𝑌(𝑦) ≤ 𝐹𝑋(𝑦) 

□ 

It is hard to say that one distribution is better over the other. It depends on the 

data set. However, as a general trend we expect that the probability of being in the 

middle is higher than probability of being at the extremes of the allowable ranges. 

Therefore, we suggest using Trapezoidal Distribution. 

3.3.3.4. Computation of the probabilities and assigning alternatives into classes 

Up to this point, we computed the probability that alternative 𝑎𝑗 is in class 𝐶𝑘 for all 

𝑗 = 1,2, … ,𝑚  and  𝑘 = 1,2, … , 𝑞.  After probabilities are calculated alternatives are 

placed into the best, the intermediate or the worst classes. 

The method that we use to calculate probabilities for assigning alternatives into the 

classes is also different from Buğdacı et al. [18]. In order to place the alternatives into 

the intermediate classes they compare the utility of being in a better or worse class 

separately. We calculate the probability of being in an intermediate class in a different 
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manner. The details are explained below using the notation 𝑝(𝑗, 𝑘) = 𝑃̂[𝑈[𝑔(𝑎𝑗)] −

𝑢𝑘  ≥ 0]: 

-Probability that the alternative 𝑎𝑗 is in the best class 𝐶1 is 𝑝(𝑗, 1). 

- Probability that the alternative 𝑎𝑗 is in an intermediate class 𝐶𝑘 is 

𝑃̂[𝑢𝑘 ≤ 𝑈[𝑔(𝑎𝑗)] ≤ 𝑢𝑘−1 ] = 𝑃̂[𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘  ≥ 0]- 𝑃̂[𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘−1  ≥ 0] 

= 𝑝(𝑗, 𝑘) − 𝑝(𝑗, 𝑘 − 1). 

- Probability that the alternative 𝑎𝑗 is in the worst class 𝐶𝑞 is 1 − 𝑝(𝑗, 𝑞 − 1).  

Alternatives are placed into the classes if the probability of an alternative being 

wrongly placed into a class is less than the misclassification threshold th. By 

decreasing misclassification threshold th to 0, alternatives can be placed into their true 

classes with probability one without any misclassification. If 𝑝(𝑗, 𝑘) = 1, alternative  

𝑎𝑗 is better than class threshold 𝑢𝑘 for all set of possible parameters. On the other hand 

if 𝑝(𝑗, 𝑘) = 0, then alternative  𝑎𝑗 is worse than class threshold 𝑢𝑘 for all set of 

possible parameters. 

Alternatives can be placed exactly with 𝑝(𝑗, 𝑘) = 1 𝑜𝑟 𝑝(𝑗, 𝑘) = 0 if the following 

conditions are satisfied. 

If 𝑝(𝑗, 1) = 1, then 𝑎𝑗  is in 𝐶1. Since 𝐶1 is the best possible class an alternative can be 

placed in and alternative 𝑎𝑗 is warranted to be better than 𝑢1 for all set of possible 

parameters. 

If 𝑝(𝑗, 𝑘) = 1  and  𝑝(𝑗, 𝑘 − 1) = 0, then 𝑎𝑗 is in 𝐶𝑘. Since 𝑎𝑗  is warranted to be better 

than 𝑢𝑘−1 and there is no set or parameters that make 𝑎𝑗 worse than 𝑢𝑘 . 
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If 𝑝(𝑗, 𝑞 − 1) = 0, then 𝑎𝑗  is in 𝐶𝑞 . Since 𝐶𝑞 is the worst class an alternative can be 

placed and the probability for alternative  𝑎𝑗 to be in a better class is 0, it is warranted 

to be in 𝐶𝑞. 

3.3.3.5. Selection of Alternatives to Ask the Decision Maker in Buğdacı et al. [18] 

They select the alternative whose probability of being in a class is closest to 0.5. 

Buğdacı et al. [18] proposed the following method for selection of alternatives to select 

the alternative that is asked to the DM. 𝑑𝑗,𝑘  represents the difference between 𝑝(𝑗, 𝑘) 

and 0.5. 𝑎𝑗
𝑠

 represents the alternative selected.  

𝑑𝑗,𝑘 = min
𝑘
|𝑝(𝑗, 𝑘) − 0.5| 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑞 − 1 

𝑎𝑗
𝑠 = {argmin

𝑖
 𝑑𝑗,𝑘}        ∀ 𝑘 = 1,2, … , 𝑞 − 1,         ∀𝑎𝑖

𝑠 ∈  𝐶0  

They suggest that the closest probability value to 0.5 is the one we have the least 

information above. This method fails to compare the overall probability. It just 

compares the probabilities of classes on the edge with 0.5, failing to analyze middle 

classes. 

Hence, we worked on several methods in order to select the alternative that we ask the 

DM to place. Our aim is to ask the most “ambiguous” alternative or the alternative 

whose placement provides “valuable” information. In that manner, we are going to ask 

the alternative that we have least information about. By doing so we expect to ask for 

fewer alternatives compared to asking the DM to place an alternative into a class 

randomly. We explain all the methods we use briefly below: 
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Method 1: Asking the Alternative whose successive probabilities are close to 0.5 

For each 𝑎𝑗 ∈ 𝐶0 we compare the absolute difference between probability of an 

alternative to be placed in successive classes and 0.5. If the probability that utility of an 

alternative exceeds class threshold for two adjacent classes is close to 0.5, then the 

class that alternative will be placed is very unclear. By selecting the alternative about 

which we have less information we aim to ask fewer number of questions to the DM. 

Let 

𝑝(𝑗, 𝑘) = Probability that utility value of alternative  aj is greater than threshold 𝑢𝑘  

𝑑𝑗,𝑘 = |𝑝(𝑗, 𝑘) − 0.5| 

𝑑𝑗,𝑘+1 = |𝑝(𝑗, 𝑘 + 1) − 0.5| 

𝑎𝑗
𝑠 = {min

𝑖
(|𝑑𝑘|, |𝑑𝑘+1|) }        ∀ 𝑘 = 1,2, … , 𝑞 − 1,         ∀𝑎𝑗

𝑠 ∈  𝐶0  

Method 2:  Asking the alternative if all class probabilities are close to 0.5 

We suggest that to place an alternative into a class, not only the probability of adjacent 

classes but also for all possible classes we may not have enough information. Hence 

we also suggest whether the probability that utility of an alternative exceeds class 

threshold for all classes is close to 0.5. For instance for a three class case the 

probabilities of 0.33 for all three classes will be the most unclear case. To consider this 

case, we select the alternative 𝑎𝑖
𝑠

 as follows:  

𝑑𝑗,𝑘,𝑘+1,..,𝑞 = (|(𝑝(𝑗, 𝑘) − 0.5)|, |(𝑝(𝑗, 𝑘 + 1) − 0.5)|,… , |(𝑝(𝑗, 𝑞) − 0.5)|) 

𝑎𝑗
𝑠 = min

𝑗
(𝑑𝑗,𝑘,𝑘+1,..,𝑞)             ∀𝑎𝑗

𝑠 ∈  𝐶0  
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Method 3: Asking the Alternative whose minimum distance to 1 is Maximum 

If 𝑝(𝑗, 𝑘) = 1  we know that alternative 𝑎𝑖 is placed to class k exactly. Furthermore, if 

𝑝(𝑗, 𝑘) = 0  we know that alternative 𝑎𝑖 is not placed to class k exactly. However, if 

0 <  𝑝(𝑗, 𝑘) < 1, then alternatives are placed probabilistically. Since, our aim is to ask 

the alternative for which we have the least information we ask the alternative whose 

probability of exceeding a class threshold is not close to 1.  Hence, we minimize the 

maximum distance from 1 as follows: 

𝑎𝑗
𝑠 = min (max

𝑗
(𝑑𝑗,𝑘 = (1 − 𝑝(𝑗, 𝑘))))                                                  ∀𝑎𝑗

𝑠 ∈  𝐶0    

3.3.3.6. Stopping Condition Comparison 

We utilize the notation of Buğdacı et al. [18] for our algorithm. We changed the 

algorithm proposed in several ways to improve the results.  There are two versions of 

the algorithm. Buğdacı et al. [18] proposed the first one. We developed the second 

version. This constitutes the third difference between two studies. 

In both versions, an iteration starts by asking DM to place an alternative. Then, we try 

to place as many alternatives as possible into classes either with certainty (with 

probability 1) or with some positive probability. Initially, we ask the DM to place at 

least one alternative. By using this information we try to assign the remaining 

alternatives into the classes either with certainty (with probability 1) or 

probabilistically (with a probability less than 1). We place the alternatives by 

comparing these probabilities with a predetermined critical probability value 

(maximum acceptable misclassification level). If there are still alternatives that are not 

placed then the next iteration starts.  In the first version, once an alternative is placed in 

a class, it stays in that class in the remaining iterations.  The algorithm stops when all 

the alternatives are placed. In the second version, the alternatives are also placed into 

the classes iteratively but the alternatives that are placed probabilistically can change 
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class in the following iterations. Clearly, the alternatives placed by the DM or the 

alternatives placed with certainty stay in the same class during the iterations. If all the 

alternatives cannot be placed into a class in an iteration, the DM is asked to place 

another alternative into a class and probabilities are recalculated. The procedure 

continues until all the alternatives can be placed into classes either exactly or 

probabilistically at the same time. With this approach we expect to make fewer 

misclassifications but possibly more iterations compared to Method 1. 

3.3.3.7. Calculating the Expected Number of Misclassifications 

In order to evaluate the performance of algorithms we calculated the expected number 

of misclassifications and compared them with the realized number of 

misclassifications. Expected number of misclassifications is calculated as follows: 

For each alternative that is not placed by the DM, we first calculate the probability that 

the alternative is not in the class it is actually placed by the algorithm. Let 𝑘𝑖   be the 

class number that the alternative 𝑎𝑗 is assigned by the algorithm and 𝑝(𝑖, 𝑘𝑖) =

P̂ (𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘𝑖 ≥ 0)  be the probability of alternative 𝑎𝑖 to the class it is placed.  

Then, 

Probability of misclassification of alternative 𝑎𝑖 = 1 − 𝑝(𝑖, 𝑘𝑖)  

E[Number of misclassifications] =∑ (1 − 𝑝(𝑖, 𝑘𝑖))𝑖 .      

3.3.3.8. Placing Alternatives by Solving Minimization and Maximization Problems 

as Mixed Integer Programs 

There is a third method to decrease the possible classes for alternatives. In order to 

achieve this, maximization and minimization objectives in LP𝑎,1 and LP𝑎,2  are solved 

as 𝐼𝑃(𝑎,𝑗)
1  and 𝐼𝑃(𝑎,𝑗)

2 . In addition to the constraints (13)-(18), we add constraints (19)-

(23) with binary variables 𝑧𝑙, 𝑝𝑙 , 𝑡𝑙 and solve the model as a mixed integer program. 
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These binary variables force each alternative to be placed in the same class for both 

minimization and maximization case. By doing so we aim to decrease the possible 

classes of the alternatives in the first place if the utility values in both models are 

between the same class thresholds. 

 𝐼𝑃(𝑎,𝑗)
1   

[Max ( 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘)] 

              and 

𝐼𝑃(𝑎,𝑗)
2   

[Min ( 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘)] 

  

𝑈[𝑔(𝑎𝑙)]  − 𝑢𝑘 + 10𝑧𝑙  ≤ 9.99  

  𝑈[𝑔(𝑎𝑙)]  − 𝑢𝑘+1 − 10𝑧𝑙  ≥ −10
 

  }      (19) Constraints for placing class 2 

𝑈[𝑔(𝑎𝑙)]  − 𝑢1 − 10𝑝𝑙  ≥ −10                 (20) Constraints for placing class 1 

 

𝑈[𝑔(𝑎𝑙)]  − 𝑢2 + 10𝑡𝑙  ≤ 9.99                (21) Constraints for placing class 3 

𝑧𝑙 + 𝑝𝑙 + 𝑡𝑙 = 1                                            (22) 

𝑧𝑙, 𝑝𝑙, 𝑡𝑙 ∈ {0,1}                                              (23) 

However, these models do not improve the results very much. Since, it is harder to 

solve integer problems we continue with the linear programs throughout the study. 
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3.3.3.9. The Algorithms 

In order to place the alternatives into the classes we have developed two algorithms. 

The first algorithm places an alternative into a class whenever it satisfies the class 

threshold to be placed in that class. The second algorithm, on the other hand places the 

alternatives into the classes if all the alternatives can be placed at the same time, 

otherwise none of the alternatives will be assigned. 

Below, we present the steps of both of our algorithms. 

Algorithm 1: Placing Alternatives when They Satisfy the Misclassification 

Threshold 

Step 0: Ask the DM to place an alternative selected by him/her from a set of 

alternatives  𝑎1, 𝑎2, … , 𝑎𝑚 to place in a class. Let k be the index for class thresholds 

and  𝐶1, 𝐶2, … , 𝐶𝑞 be the set of available classes. Put the alternative that is placed by the 

DM to 𝐶𝑟. Put the alternatives whose classes are unknown to 𝐶0. Let h represent the 

number of alternatives assigned. 

Step 1: Set k=1 and h=1. Go to step 2. 

Step 2: Solve 𝐿𝑃𝑎,1 (𝑗, 𝑘) for each 𝑎𝑗 ∈  𝐶0 and for each 𝑢𝑘. 

Step 3: Solve 𝐿𝑃𝑎,2 (𝑗, 𝑘) for each 𝑎𝑗 ∈  𝐶0 and for each 𝑢𝑘. 

Step 4: Find 𝑝(𝑗, 𝑘) by utilizing the optimal objective values 𝑜𝑏𝑗 ∗𝑎,1 and 𝑜𝑏𝑗 ∗𝑎,2 and 

by utilizing random variables [𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘, 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘]. Go to Step 5. 

Step 5: If 𝑝(𝑗, 1) ≥ (1- 𝛿) place 𝑎𝑗 into 𝐶1. Set h=h+1 

If 𝑝(𝑗, 𝑘) ≥ (1- 𝛿) and 𝑝(𝑗, 𝑘 − 1) ≤ 𝛿 assign alternative 𝑎𝑗 into 𝐶𝑘. Set h=h+1. 
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If 𝑝(𝑗, 𝑞)  ≤ th assign alternative 𝑎𝑗 into 𝐶𝑞. Set h=h+1. 

Step 6: If |𝐶𝑜| = 0, go to Step 7 

 If |𝐶𝑜| > 0, and h > 0 go to Step 2.  

If |𝐶𝑜| > 0, and h = 0 find 𝑎𝑗
𝑠 and present the DM the possible classes of  𝑎𝑗

𝑠 . Ask the 

DM to place the alternative in one of the presented classes.  

If |𝐶𝑜| > 0 go to Step 2. If |𝐶𝑜| = 0, go to Step 7. 

Step 7: Present alternatives in 𝐶𝑘 to the DM 

Algorithm 2: Placing Alternatives when They All Satisfy the Misclassification 

Threshold 

Step 0: Ask the DM to place an alternative selected by him/her from a set of 

alternatives  𝑎1, 𝑎2, … , 𝑎𝑚 to place in a class. Let k be the index for class thresholds 

and  𝐶1, 𝐶2, … , 𝐶𝑞 be the set of available classes. Put the alternative that is placed by the 

DM to 𝐶𝑟. Put the alternatives whose classes are unknown to 𝐶0. Let h represent the 

number of alternatives assigned. 

Step 1: Set k=1 and h=1. Go to step 2. 

Step 2: Solve 𝐿𝑃𝑎,1 (𝑗, 𝑘) for each 𝑎𝑗 ∈  𝐶0 and for each 𝑢𝑘. 

Step 3: Solve 𝐿𝑃𝑎,2 (𝑗, 𝑘) for each 𝑎𝑗 ∈  𝐶0 and for each 𝑢𝑘. 

Step 4: Find 𝑝(𝑗, 𝑘) by utilizing the optimal objective values 𝑜𝑏𝑗 ∗𝑎,1 and 𝑜𝑏𝑗 ∗𝑎,2 and 

by utilizing random variables [𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘, 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘]. Go to Step 5. 
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Step 5: If all the alternatives satisfy the thresholds defined below, alternatives are 

placed to the respective classes. If at least one alternative cannot be placed, then none 

of the alternatives are assigned into the classes. 

If 𝑝(𝑗, 1)  ≥  (1 − 𝛿)   place 𝑎𝑗 into 𝐶1. Set h=h+1 

If 𝑝(𝑗, 𝑘) −  𝑝(𝑗, 𝑘 − 1) ≥  (1 − 𝛿)  assign alternative 𝑎𝑗 into 𝐶𝑘. Set h=h+1. 

If 𝑝(𝑗, 𝑞 − 1)  ≤  𝛿  assign alternative 𝑎𝑗 into 𝐶𝑞. Set h=h+1. 

Step 6: If |𝐶𝑜| = 0, go to Step 7 

If |𝐶𝑜| > 0 find 𝑎𝑗
𝑠 and ask the DM to place the alternative into one of the presented 

classes. If |𝐶𝑜| > 0 go to step 2. If |𝐶𝑜| = 0, go to Step 7. 

Step 7: Present alternatives in 𝐶𝑘 to the DM 

3.3.3.9. Comparison of Our Method with Buğdacı et al. [18] 

We develop a new interactive probabilistic method because we think that the model 

can be improved for the following:  

1. The linear models 

2. Probability calculation and estimated random variables 

3. The selection method of the alternative to ask the DM  

4. The stopping condition of the algorithm.  

The first difference between our method and Buğdacı et al. [18] is the number of linear 

models solved. In their method they solve six different models that minimize and 

maximize the range of values for 𝑤𝑖𝑝,  𝑢𝑘 and 𝑈[𝑔(𝑎𝑗)]] − 𝑢𝑘. Instead of trying to find 
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range of utilities and class threshold separately and narrowing down the possible range 

of values by finding the range of their difference, we directly find the range 

for𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 difference. Therefore we only solve two linear models compared to 

six models solved in Buğdacı et al.[18]. Solving fewer number of linear models makes 

our model more effective. 

As a second difference, since the models solved are different, the random variables 

used for probability calculations are also different. They use different random variables 

for  𝑤𝑖𝑝 and 𝑢𝑘. Then based on properties of 𝑤𝑖𝑝 they develop a different random 

variable for 𝑈[𝑔(𝑎𝑗)]. Then, they calculate the probable values for utility and class 

threshold separately and compare these values to place alternatives into the classes. In 

our method we directly generate a random variable for the utility value and class 

threshold differences and fit the suitable probabilistic distribution directly this value.  

Since, the probabilities are calculated for only one random variable for our method, we 

can conclude that it is more effective in probability calculations. 

Another difference in terms of probabilities is for the placement of alternatives into the 

middle classes. In Buğdacı et al. [18], the probability of an alternative being in a 

middle class is compared with upper and lower bound of the class separately. 

However, this method fails to compare the overall probability. In order to deal with it 

we define the probability of belonging to a middle class in a different manner as 

explained in Section 3.3.3.4. 

For the alternatives, that are selected to ask DM for placement should be the one that 

we have least information. As explained in Section 3.3.3.5. in Buğdacı et al.[18] 

overall probabilities are failed to be compared for middle classes. Therefore, we use 

the probability calculation method that we previously explain and we compare the class 

thresholds of only successive classes for all combinations. Since this is the most 

ambiguous case for placement. 
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The final difference is in terms of the stopping condition for algorithm. We think that if 

alternatives are placed into the classes only if all the alternatives satisfy the condition, 

then misclassification is expected to decrease to some extent. Since alternatives that are 

placed in a different class than it belongs to can be placed into the correct class at the 

end of the algorithm. However, this algorithm is expected to continue longer compared 

to model of Buğdacı et al.[18]. 

The first experiment that is mentioned in Section 4.1., is also performed by Buğdacı et 

al. Therefore, we compare the results for this experiment with Buğdacı et al.[18]i. 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

We have developed two probabilistic and interactive multi-criteria sorting algorithms in 

order to assign alternatives in the preference ordered classes. We made several 

experiments in order to test the performances of both algorithms. In order to calculate the 

probability of alternatives to be placed in each of the classes we fit uniform, symmetric 

triangular and symmetric trapezoidal distributions. 

In all our experiments we need to simulate the DM by an underlying utility function  and 

the utility values that separate the preference classes. The additive utility function of the 

DM is defined by 𝑤𝑖𝑝 values. The class borders are 𝑢𝑘 values. 𝑤𝑖𝑝  represents the utility 

values of subintervals p on each criterion i.  In order to form the underlying utility 

function of the DM we randomly generate a set of 𝑤𝑖𝑝  and 𝑢𝑘  values. When DM is asked 

to place an alternative, its utility is computed according to (1) using these 𝑤𝑖𝑝 values and 

it is placed into a class comparing with  𝑢𝑘 values.  

Firstly, we utilized our algorithm on a data set that is developed by Köksalan and 

Özpeynirci [8]. They have used the top MBA programs data by Financial Times. 

Rankings of top 100 global MBA programs are published by Financial Times every year. 

The ranking is made through three main criteria, namely: “alumni career progress”, 

“diversity” and “idea generation”. Köksalan et al. [9] use the data published in 2005 and 

produce numerical scores for 81 of the MBA programs. Köksalan and Özpeynirci utilize 

these data in order to sort these 81 MBA programs based on three main criteria. They try 

to sort these MBA programs into 3 classes.  



  

60 

 

Secondly, we utilized our algorithm on a data set that is published by TÜBİTAK. 

Rankings of top 50 universities based on their development index are tried to be 

classified.  Since the data for all criteria are in continuous scale, we use this data set 

directly. There are 5 main criteria which consist of 23 sub-criteria. The five main criteria 

are  namely; “scientific and technological research”, “intellectual properties”, 

“collaboration, cooperation and interaction”, “entrepreneurship and innovation culture” 

and “economical contribution and commercialization”. We try to sort alternatives into 3 

classes. 

Thirdly, we have generated 500 random alternatives and try to sort them into five classes. 

While generating the criteria values we have utilized the range of Financial Times for 

each criterion.  

Lastly, we implemented our algorithm on a data set that is published by US News Report 

in 2014. They try to rank the hospitals that are best in cancer treatment. We utilize this 

data in order to sort the hospitals into five preference ordered classes based on three main 

criteria, namely: “outcome”, “process” and “structure” 

We evaluate the performance of our algorithms based on three performance measures; 

namely, number of misclassified alternatives, expected number of misclassified 

alternatives and number of alternatives placed by the DM. We test the performance of 

both algorithms for different misclassification thresholds. Misclassification thresholds 

measure the extent of erroneous classification the DM tolerates. If the misclassification 

threshold is 0, alternatives are placed into the classes exactly, in other words, no 

misclassification is allowed. When the misclassification threshold is small, we expect few 

misclassifications (both expected and realized), on the contrary, we expect to ask DM 

more alternatives to place into the classes. As the misclassification threshold increases, 

the information required from the DM decreases, on the other hand the number of 

misclassified alternatives increases. However, we expect that the number of misclassified 

http://tureng.com/search/erroneous
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alternatives do not exceed the misclassification threshold. Since the algorithms are 

probabilistic, we may result in unexpected results due to randomness. 

In order to compare the results across different data sets we calculate percentage of 

alternatives that are placed by DM over all alternatives and percentage of misclassified 

alternatives over the algorithms that are placed by the DM. 

In addition to placing alternatives to the classes, the number of possible classes that an 

alternative can be placed is tried to be decreased in order to ease decision making process 

for the DM. Even if we cannot place an alternative into a class we may present the DM a 

narrowed set of possible classes. 

For all of the experiments we try to place the alternatives to the classes by utilizing both 

Algorithm 1 and Algorithm 2. The results, the observations following these results and the 

performance measures are represented in this section. 

4.1.Financial Times Ranking MBA Programs Data Application 

There are 81 MBA programs based on 2005 data of Financial Times. The alternatives are 

sorted into three classes. The rankings of MBA programs are based on 20 criteria. 12 of 

them are continuous and the remaining 8 are based on ranked data. In order to sort the 

alternatives, all criteria should be continuous. Köksalan et al. [9] develop a score 

estimation model and generate continuous data for the entire ranked criteria by preserving 

the ranking relations both in alternative and in criterion level. We have used this data set 

generated by Köksalan et al. [9]. There are three main criteria all of which are divided into 

three subintervals. The values of the parameters that we utilize for the underlying utility 

function of the decision maker are as follows: 𝑢𝑘 = {0.65, 0.40} k =  1, 2  𝑤𝑖𝑝  values for 

i = 1, 2, 3 and p = 1, 2, and 3 is represented in the Table 4.1 below: 
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i 
p 

Table 4.1: 𝑤𝑖𝑝 values Corresponding Underlying Utility of the DM for Financial Times 

Data 
 

1 2 3 

1 0.06 0.18 0.06 

2 0.24 0.12 0.04 

3 0.06 0.09 0.15 

 

The marginal utility function that corresponds to preference structure of DM on each 

criterion is represented in Figure 4.1. 

 
               Figure 4.1: The Marginal Utilities on Each Criterion 

 

The global utility of each alternative is calculated based on the marginal utilities as 

represented in Figure 4.1. Based on the underlying utilities, 15 of the alternatives are 

in  𝐶1, 47 of the alternatives are in 𝐶2 and the remaining 19 of the alternatives are in 𝐶3. 

We run our algorithms for eleven different misclassification thresholds changing from 0 

to 0.5. When the misclassification threshold is zero alternatives are placed into the classes 
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exactly with probability 1. Therefore, none of the alternatives are misclassified. As the 

threshold increases the number of misclassified alternatives is expected to increase as 

well. However, when the probability threshold is small, fewer number of alternatives are 

misclassified and DM is expected to place more alternatives into the classes. On the 

contrary, when the threshold is large DM allow more misclassification. Hence, few 

classification questions are asked to the DM and more number of misclassification is 

allowed. Since the process is random we can get unexpected results. In other words high 

misclassification thresholds may result in few questions asked and few alternatives 

misclassified and vice versa for the low misclassification thresholds. 

For some of the alternatives even it cannot be placed into a class exactly the algorithms 

can reduce the possible number of classes an alternative can be placed. This process 

makes the classification easier for the DM since fewer possible classes are presented to 

the DM.  

We used the data set for both of the algorithms and for three different distributions. 

4.2. Random Data Generation 

We have generated 500 random alternatives. We try to place alternatives into five 

preference ordered classes. For the underlying utility function of the DM we have utilized 

the parameter values that we have used for sorting MBA Programs data by Financial 

Times. Hence, the marginal utilities, the global utility function and as a result the 

preference structure of the DM are same as Financial Times MBA Programs Sorting Data. 

The values of class thresholds are as follows: 𝑢𝑘 = {0.85, 0.70, 0,6, 0,4}, k =  1, 2,3,4 

With regard to underlying utility function of the DM, 22 of the alternatives are in class 1, 

136 of the alternatives are in class 2, 155 of the alternatives are in class 3, 138 of the 

alternatives are in class 4 and the remaining 49 of the alternatives are in class 5. 
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We have analyzed our algorithm based on the expected number of misclassified 

alternatives, number of misclassified alternatives and number of questions asked to the 

DM in order to place the alternatives into the classes.  

The algorithm is run for eleven misclassification thresholds changing from 0 to 0.5. Like 

Financial Time Data, we expect few misclassification and more questions when the 

misclassification threshold is small. On the contrary, we expect few questions and more 

misclassification as the misclassification increases.  

With this experiment we want to show that our algorithm works well with more data and 

more number of classes. 

4.3.U.S. News Report Data 

We have utilized the data that is published by US News & World on Top Ranked 

Hospitals in cancer specialty. There is information about 900 hospitals and they rank 50 

of the top scoring hospitals.  In order for a hospital to be included in the analysis it is 

required that at least 249 inpatients are treated in 2010, 2011 and 2012. Each hospital in 

the list evaluated based on 12 criteria. In the end each hospital receives an overall score 

changing from 0 to 100. The criteria they use in order to rank the hospitals are based on 

three main dimensions of healthcare, namely; structure, process and outcomes. 

Structural dimension includes criteria that are directly related with patient care such as 

hospital volume, intensity of nurse staffing, technology (e.g. nurse magnet technology) 

and some measurable features that characterize hospital environment.  

Process dimension is based mainly on reputation of hospital for advancing and assisting 

highly qualified and technological care. The score on reputation relies on the average 

responses of most recent three surveys in 2011, 2012 and 2013 by board certified 

physicians whose field is cancer for the Best Hospital Rankings.  It also shares partial 

weight for patient safety criteria with the outcome dimension. 
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Outcome dimension is represented mostly by survival, namely; risk adjusted mortality 

rates. In addition, as mentioned above it shares partial weight for patient safety with 

process dimension. 

Table 4.2: Criteria of US News Report Best Hospitals in Cancer 

 

Dimension Criteria Weight 
Total Weight of 

Dimensions 

Structure Nurse Magnet Recognition 0.060 

0.300 Structure Cancer Patient Volume 0.120 

Structure Nurse Staffing 0.120 

Process 
Success in Keeping Patients 
Safe 

0.025 
0.350 

Process Reputation with Specialists 0.325 

Outcome Survival 0.325 
0.350 

Outcome 
Success in Keeping Patients 
Safe 

0.025 

 Some of the criteria are continuous and some of the criteria are ranked. In order to utilize 

the data set we use the score estimation model of Köksalan et al. [9] We try to sort 818 

hospitals into five preference ordered classes. We have utilized the data set for cancer 

specialty 2013-2014 data set. In Table 4.2., the weights of all main dimensions and the 

weight of criteria that constitute these dimensions are represented. 

There are three main criteria all of which are divided into three subintervals. The values of 

the parameters that we utilize for the underlying utility function of the decision maker are 

as follows: 𝑢𝑘 = {0.40, 0.25, 0.20, 0.175} k =  1, 2,3 ,4  𝑤𝑖𝑝  values for i = 1, 2, 3 and p 

= 1, 2, and 3 is represented in Table 4.3. 
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p 

Table 4.3: 𝑤𝑖𝑝 values Corresponding Underlying Utility of the DM for US News Report 

Data 

 

 

The marginal utility function that corresponds to preference structure of DM on each 

criterion is represented in Figure 4.2.  

 

Figure 4.2: The Marginal Utilities on Each Criterion 

The global utility of each alternative is calculated based on the marginal utilities as 

represented in Figure 4.2. Based on the underlying utilities, 39 of the alternatives are in 

class1, 303 of the alternatives are in class 2, 198 of the alternatives are in class 3, 62 of the 

alternatives are in class 4 and the remaining 209 of the alternatives are in class 5.  

Criterion 1 

Criterion 2 

Criterion 3 

0

0,1

0,2

0,3

0,4

0 10 20 30 40

ui[gi(a)] 

gi(a) 
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1 2 3 

1 0.04 0.09 0.11 

2 0.1 0.15 0.2 

3 0.06 0.06 0.18 
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4.4.  TÜBİTAK Entrepreneur and Innovator University Index 2014 Ranking 

Since 2012, TÜBİTAK decides on 50 most entrepreneur and innovator universities. In 

2014, 144 universities are evaluated which have at least 50 academicians. TÜBİTAK 

ranks only the first 50 and publishes the data set only for these universities. Ranking is 

based on 5 main criteria which consists of 23 sub criteria. The first main criterion is 

competence in scientific and technological research. It includes sub criteria such as 

number of publications, number of citation and number of PhD graduates.  The second 

one is intellectual properties which are mainly based on number of different kind of 

patents. The third one is collaboration, cooperation and interaction that mainly constitutes 

of criteria related with university and industry cooperation. The fourth one is 

entrepreneurship and innovation culture and the last one is economical contribution and 

commercialization. In Table 4.4. , the weights of each criterion are provided.  

Table 4.4: Criteria of TÜBİTAK Entrepreneur and Innovator University Index 

2014 Ranking 

 

Criteria Weight 

Scientific and technological research 0.20 

Intellectual properties 0.15 

Collaboration, cooperation and interaction 0.25 

Entrepreneurship and innovation culture 0.15 

Economical contribution and commercialization 0.25 

 

There are five main criteria all of which are divided into three subintervals. The values of 

the parameters that we utilize for the underlying utility function of the decision maker are 

as follows: 𝑢𝑘 = {0.65, 0.40} k =  1, 2  𝑤𝑖𝑝  values for i = 1, 2, 3, 4, 5 and p = 1, 2, and 3 

is represented in Table 4.5. 
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p 

Table 4.5: 𝑤𝑖𝑝 values Corresponding Underlying Utility of the DM for US News 

Report Data 

i 
 

1 2 3 

1 0.02 0.03 0.04 

2 0.05 0.07 0.07 

3 0.03 0.03 0.05 

4 0.01 0.02 0.06 

5 0.03 0.20 0.30 

 

The marginal utility function that corresponds to preference structure of DM on each 

criterion is represented in Figure 4.3.  

 

Figure 4.3: The Marginal Utilities on Each Criterion 

4.5. Comparison of Approaches in .section 3.3.3.9. Probability Distributions 

In order to sort the alternatives from best to the worst we have proposed two algorithms. 

In the first one, utility of alternatives are compared with class thresholds. If the utility of 

an alternative is greater than the class threshold, alternative is placed into that class. If 

none of the alternatives are placed in a run we ask the DM to place a selected alternative 

into a class 
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In the second algorithm on the other hand, alternatives are placed into the class if the 

utility of all alternatives are greater than any of the class thresholds. If this condition is not 

provided we ask DM to place a selected alternative into a class. Then, we try to place the 

remaining alternatives into a class all together again. This procedure continues till all the 

alternatives are placed into the classes. 

Although it is hard to place the alternatives into the classes with the second algorithm, we 

expect fewer misclassifications. Since, we place the alternatives at the same time; the 

number of misclassified alternatives will decrease throughout the process. For instance, if 

an alternative is on the boundary of a class threshold but it can verifies the class threshold 

of one lower class it will be placed by the algorithm that places the alternatives one by 

one. On the other hand if all the alternatives are placed together the alternatives on the 

boundary have a higher chance to be placed into the correct classes. 

We fit different distributions to difference between utilities and class thresholds for all 

experiments we have made in order to observe how different distributions affect our 

performance measures, namely expected number of misclassification, number of 

misclassification, and number of alternatives asked to the DM to be placed. We fit 

uniform, triangular and trapezoid distributions for each utility and class threshold 

difference for both of the algorithms. 

In the following part, we will introduce the experiments we have made with the all 

probability distributions and all possible placement techniques we utilize for selecting the 

alternative to ask the DM as mentioned in Chapter 3. We present the results for each case 

from Table 4.6. to Table 4.29. 
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4.5.1.   Financial Times Ranking MBA Programs Data Application  

4.5.1.1. Algorithm-1: Placing alternatives one by one 

Table 4.6: Results for Financial Times Ranking MBA Programs Data Application by 

Algorithm 1 with Uniform Distribution 

 

 UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives  

(%) 

Questions 

asked 

(%) 

t=0.00 38 0 0 0 46.91 

t=0.05 37 0 0.75 0 45.67 

t=0.10 32 0 2.65 0 39.50 

t=0.15 28 4 4.39 7.55 34.57 

t=0.20 23 7 7.51 12.07 28.40 

t=0.25 20 8 9.99 13.11 24.69 

t=0.30 17 9 12.74 14.06 20.99 

t=0.35 15 17 16.12 25.76 18.52 

t=0.40 12 20 19.56 28.99 14.81 

t=0.45 10 29 23.62 40.85 12.35 

t=0.50 19 19 25.35 30.65 23.46 

Table 4.7: Results for Financial Times Ranking MBA Programs Data Application by 

Algorithm 1 with Triangular Distribution. 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives  

(%) 

Questions 

asked 

(%) 

t=0.00 41 0 0 0 50.61 

t=0.05 30 2 1,08 3.92 37.03 

t=0.10 25 6 2,96 10.71 30.86 

t=0.15 20 6 5,03 9.83 24.69 

t=0.20 16 13 7,19 20.00 19.75 

t=0.25 16 15 8,76 23.08 19.75 

t=0.30 10 20 12,63 28.17 12.35 

t=0.35 10 24 14,92 33.80 12.35 

t=0.40 8 29 18,55 39.73 9.88 

t=0.45 7 33 19,69 44.59 8.64 

t=0.50 5 34 21,28 44.74 6.17 
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Table 4.8: Results for Financial Times Ranking MBA Programs Data Application by 

Algorithm 1 with Trapezoidal Distribution 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives (%) 

Questions 

asked 

(%) 

t=0.00 42 0 0 0 51.85 

t=0.05 32 3 1.11 6.12 39.51 

t=0.10 23 5 2.85 8.62 28.40 

t=0.15 21 8 5,21 13.33 25.93 

t=0.20 19 10 6.85 16.12 23.46 

t=0.25 15 18 9.32 27.27 18.52 

t=0.30 12 23 12.28 33.33 14.81 

t=0.35 10 25 15.68 35.21 12.34 

t=0.40 11 31 17.30 44.29 13.58 

t=0.45 7 32 21.12 43.24 8.64 

t=0.50 6 34 22.24 45.33 7.41 

 

4.5.1.2. Algorithm-2: Placing all the alternatives together 

Table 4.9: Results for Financial Times Ranking MBA Programs Data Application by 

Algorithm 2 with Uniform Distribution 

UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 38 0 0 0 46.91 

t=0.05 37 0 0.05 0 45.67 

t=0.10 36 0 0.12 0 44.44 

t=0.15 36 0 0.12 0 44.44 

t=0.20 36 0 0.12 0 44.44 

t=0.25 33 0 0.90 0 40.74 

t=0.30 29 1 1.95 1.92 35.80 

t=0.35 29 1 2.83 1.92 35.80 

t=0.40 29 1 2.83 1.92 35.80 

t=0.45 16 10 10.61 15.38 19.75 

t=0.50 19 8 7.33 12.90 23.45 
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Table 4.10: Results for Financial Times Ranking MBA Programs Data Application by 

Algorithm 2 with Triangular Distribution 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives  

(%) 

Questions 

asked 

(%) 

t=0.00 41 0 0 0 50.62 

t=0.05 38 0 0.08 0 46.91 

t=0.10 36 0 0.26 0 44.44 

t=0.15 33 0 0.61 0 40.74 

t=0.20 27 4 1.32 7.41 33.33 

t=0.25 26 4 1.40 7.27 33.00 

t=0.30 23 5 2.39 8.62 28.40 

t=0.35 25 4 1.69 7.14 30.86 

t=0.40 25 4 1.69 7.14 30.86 

t=0.45 20 8 4.65 13.11 24.69 

t=0.50 10 11 11.07 15.49 12.35 

 

Table 4.11: Results for Financial Times Ranking MBA Programs Data Application by 

Algorithm 2 with Trapezoidal Distribution 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 42 0 0 0 51.85 

t=0.05 39 0 0.03 0 48.15 

t=0.10 37 0 0.17 0 45.68 

t=0.15 32 0 0.78 0 39.51 

t=0.20 32 0 0.78 0 39.51 

t=0.25 27 3 1.58 5.56 33.33 

t=0.30 25 4 1.87 7.14 30.86 

t=0.35 24 4 2.20 7.02 29.63 

t=0.40 15 9 8.68 13.64 18.52 

t=0.45 14 10 9.13 14.93 17.28 

t=0.50 12 10 11.06 14.49 14.81 
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4.5.2.Random Data Generation 

4.5.2.1. Algorithm-1: Placing alternatives one by one 

Table 4.12: Results for Random Data Generation by Algorithm 1 with Uniform 

Distribution 

 UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 82 0 0.00 0 16.40 

t=0.05 78 0 5.21 0 15.60 

t=0.10 76 0 16.38 0 15.20 

t=0.15 74 0 32.50 0 14.80 

t=0.20 79 4 51.04 0.001 15.80 

t=0.25 65 16 72.36 3.76 13.00 

t=0.30 51 43 88.93 10.02 10.20 

t=0.35 39 73 113.96 15.84 7.80 

t=0.40 38 133 143.45 28.79 7.60 

t=0.45 29 187 164.60 39.70 5.80 

t=0.50 15 231 196.53 47.63 3.00 

Table 4.13: Results for Random Data Generation by Algorithm 1 with Triangular 

Distribution 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 84 0 0,00 0 16.80 

t=0.05 73 1 9,68 0 14.60 

t=0.10 64 14 23,85 3.21 12.80 

t=0.15 56 29 41,54 6.53 11.20 

t=0.20 51 46 56,54 10.24 10.20 

t=0.25 35 76 73,22 16.34 7.00 

t=0.30 32 106 92,86 22.65 6.40 

t=0.35 25 135 111,50 28.42 5.00 

t=0.40 22 150 129,12 31.38 4.40 

t=0.45 16 205 154,83 42.36 3.20 

t=0.50 14 251 171,42 51.65 2.80 
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Table 4.14: Results for Random Data Generation by Algorithm 1 with Trapezoidal 

Distribution 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 88 0 0.00 0 17.60 

t=0.05 84 0 10.24 0 16.80 

t=0.10 70 10 25.44 2.33 14.00 

t=0.15 60 36 39.51 8.18 12.00 

t=0.20 54 70 60.38 15.70 10.80 

t=0.25 42 112 80.18 24.45 8.40 

t=0.30 34 148 95.85 31.76 6.80 

t=0.35 23 189 116.35 39.79 4.60 

t=0.40 19 210 134.12 43.66 3.80 

t=0.45 19 205 153.98 42.62 3.80 

t=0.50 13 214 169.26 43.94 2.60 

 

4.5.2.2. Algorithm-2: Placing all the alternatives together 

Table 4.15: Results for Random Data Generation by Algorithm 2 with Uniform 

Distribution 

UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 82 0 0.00 0 16.40 

t=0.05 79 0 0.09 0 15.80 

t=0.10 77 0 0.26 0 15.40 

t=0.15 76 0 2.94 0 15.20 

t=0.20 72 0 1.45 0 14.40 

t=0.25 72 0 1.20 0 14.40 

t=0.30 72 0 1.20 0 14.40 

t=0.35 66 2 5.10 0 13.20 

t=0.40 59 7 19.39 1.59 11.80 

t=0.45 55 10 21.91 2.25 11.00 

t=0.50 33 36 82.07 7.71 6.60 
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Table 4.16: Results for Random Data Generation by Algorithm 2 with Triangular 

Distribution 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 84 0 0.00 0 16.80 

t=0.05 77 0 0.10 0 15.40 

t=0.10 74 0 0.43 0 14.80 

t=0.15 72 0 0.09 0 14.40 

t=0.20 71 0 0.74 0 14.20 

t=0.25 70 1 1.28 0 14.00 

t=0.30 59 9 2.30 2.04 11.80 

t=0.35 49 17 13.18 3.77 9.80 

t=0.40 49 17 21.12 3.77 9.80 

t=0.45 44 29 30.17 6.36 8.80 

t=0.50 50 11 15.14 2.44 10.00 

 

Table 4.17: Results for Random Data Generation by Algorithm 2 with Trapezoidal 

Distribution 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 88 0 0.00 0 17.60 

t=0.05 84 0 0.05 0 16.80 

t=0.10 82 0 0.22 0 16.40 

t=0.15 82 0 0.22 0 16.40 

t=0.20 79 0 0.96 0 15.80 

t=0.25 75 1 2.34 0 15.00 

t=0.30 73 1 2.86 0 14.60 

t=0.35 61 11 17.77 2.51 12.20 

t=0.40 57 10 17.47 2.26 11.40 

t=0.45 57 11 18.21 2.48 11.40 

t=0.50 62 10 10.35 2.28 12.40 
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4.5.3.U.S. News Best Hospital Data 

 

4.5.3.1. Algorithm-1: Placing alternatives one by one 

Table 4.18: Results for U.S. News Best Hospital Data by Algorithm 1 with Uniform 

Distribution 

 UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 83 0 0.00 0 10.23 

t=0.05 78 27 5.35 3.68 9.62 

t=0.10 73 48 17.36 6.50 9.00 

t=0.15 62 79 34.10 10.55 7.64 

t=0.20 60 116 64.86 15.45 7.40 

t=0.25 51 77 70.49 10.13 6.29 

t=0.30 42 164 111.49 21.33 5.18 

t=0.35 28 220 155.67 29.00 3.45 

t=0.40 22 404 192.57 51.20 2.71 

t=0.45 22 352 233.01 44.61 2.71 

t=0.50 17 363 262.50 45.72 2.10 

Table 4.19: Results for U.S. News Best Hospital Data by Algorithm 1 with Triangular 

Distribution 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 76 0 0.00 0 9.37 

t=0.05 53 50 8.97 6.60 6.53 

t=0.10 45 86 24.10 11.23 5.55 

t=0.15 41 137 41.29 17.79 5.06 

t=0.20 30 214 62.36 27.40 3.70 

t=0.25 25 284 81.23 36.13 3.08 

t=0.30 21 336 111.22 42.53 2.59 

t=0.35 20 363 124.69 45.89 2.47 

t=0.40 10 415 155.05 51.81 1.23 

t=0.45 9 397 163.38 49.50 1.11 

t=0.50 7 411 214.19 51.12 0.01 
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Table 4.20: Results for U.S. News Best Hospital Data by Algorithm 1 with Trapezoidal 

Distribution 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 74 0 0.00 0 9.12 

t=0.05 57 53 9.79 7.03 7.03 

t=0.10 47 115 23.69 15.05 14.18 

t=0.15 41 162 38.41 21.04 5.55 

t=0.20 31 313 53.25 40.13 3.82 

t=0.25 26 365 72.37 46.50 3.21 

t=0.30 21 392 91.40 49.62 2.59 

t=0.35 19 383 121.41 48.36 2.34 

t=0.40 18 288 107.82 36.32 2.22 

t=0.45 14 267 220.14 33.50 1.73 

t=0.50 10 293 266.42 36.58 1.23 

 

4.5.3.2. Algorithm-2: Placing all the alternatives together 

Table 4.21: Results for U.S. News Best Hospital Data by Algorithm 2 with Uniform 

Distribution 

UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 83 0 0.00 0 10.23 

t=0.05 83 0 0.00 0 10.23 

t=0.10 81 0 0.20 0 9.99 

t=0.15 80 0 0.34 0 9.86 

t=0.20 81 0 0.20 0 9.99 

t=0.25 72 5 2.79 0.68 8.88 

t=0.30 71 6 3.18 0.81 8.75 

t=0.35 68 12 9.43 1.62 8.38 

t=0.40 70 7 3.48 9.45 8.63 

t=0.45 50 56 37.14 7.36 6.17 

t=0.50 53 34 26.54 4.49 6.53 
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Table 4.22: Results for U.S. News Best Hospital Data by Algorithm 2 with Triangular 

Distribution 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 76 0 0.00 0 9.37 

t=0.05 75 0 0.00 0 9.25 

t=0.10 67 5 0.87 0.67 8.26 

t=0.15 65 6 1.85 0.80 8.01 

t=0.20 64 7 2.05 0.94 7.89 

t=0.25 61 8 3.61 1.07 9.86 

t=0.30 57 13 6.05 1.72 7.03 

t=0.35 61 9 3.50 1.20 7.52 

t=0.40 43 53 18.23 6.90 5.30 

t=0.45 42 48 17.71 6.24 5.18 

t=0.50 47 31 13.89 4.06 5.80 

Table 4.23: Results for U.S. News Best Hospital Data by Algorithm 2 with Trapezoidal 

Distribution 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 74 0 0.00 0 9.12 

t=0.05 71 0 0.04 0 8.75 

t=0.10 72 0 0.01 0 8.88 

t=0.15 72 0 0.01 0 8.88 

t=0.20 58 8 3.39 1.06 7.15 

t=0.25 63 6 1.54 0.80 7.77 

t=0.30 63 6 1.54 0.80 7.77 

t=0.35 56 8 4.47 1.06 6.91 

t=0.40 50 18 10.68 2.37 6.17 

t=0.45 46 30 15.25 3.70 3.70 

t=0.50 33 49 42.03 6.04 4.32 
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4.5.4.TÜBİTAK Entrepreneur and Innovator Universities Ranking 

4.5.4.1. Algorithm-1: Placing alternatives one by one 

Table 4.24: Results for TÜBİTAK Entrepreneur and Innovator Universities Ranking Data 

by Algorithm 1 with Uniform Distribution 

 UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 30 0 0.00 0 60 

t=0.05 26 0 0.35 0 52 

t=0.10 26 0 0.88 0 52 

t=0.15 24 0 1.61 0 48 

t=0.20 22 1 2.57 3.57 44 

t=0.25 20 2 3.32 6.67 40 

t=0.30 18 2 4.63 6.25 .36 

t=0.35 15 2 6.72 5.71 30 

t=0.40 14 6 8.17 16.67 .28 

t=0.45 13 7 9.54 18.92 26 

t=0.50 9 10 14.86 24.39 18 

Table 4.25: Results for TÜBİTAK Entrepreneur and Innovator Universities Ranking Data 

by Algorithm 1 with Triangular Distribution 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 31 0 0.00 0 62 

t=0.05 24 1 0.49 3.85 48 

t=0.10 22 1 1.34 3.57 44 

t=0.15 17 2 2.15 6.06 34 

t=0.20 16 2 2.97 5.88 32 

t=0.25 16 2 4.48 5.88 32 

t=0.30 14 3 5.76 8.33 .28 

t=0.35 9 4 7.74 9.75 .18 

t=0.40 9 5 8.98 12.20 18 

t=0.45 9 5 9.44 12.20 18 

t=0.50 8 10 12.09 23.81 .16 
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Table 4.26: Results for TÜBİTAK Entrepreneur and Innovator Universities Ranking Data 

by Algorithm 1 with Trapezoidal Distribution 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 32 0 0.00 0 64 

t=0.05 23 0 0.38 0 46 

t=0.10 19 1 1.52 3.22 38 

t=0.15 18 1 2.40 3.13 36 

t=0.20 15 2 3.39 5.71 30 

t=0.25 14 3 4.44 8.33 28 

t=0.30 13 3 5.69 8.11 26 

t=0.35 10 4 7.89 10.00 20 

t=0.40 9 5 9.83 12.00 18 

t=0.45 8 5 10.73 11.90 16 

t=0.50 7 10 13.14 23.26 14 

 

4.5.4.2. Algorithm-2: Placing all the alternatives together 

Table 4.27: Results for TÜBİTAK Entrepreneur and Innovator Universities Ranking Data 

by Algorithm 2 with Uniform Distribution 

UNIFORM DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 30 0 0.00 0 60 

t=0.05 26 0 0.09 0 52 

t=0.10 26 0 0.41 0 52 

t=0.15 24 0 0.41 0 48 

t=0.20 24 0 1.20 0 48 

t=0.25 22 0 2.54 0 44 

t=0.30 18 2 2.54 6.25 36 

t=0.35 18 2 2.54 6.25 36 

t=0.40 18 2 2.54 6.25 36 

t=0.45 18 2 2.54 6.25 36 

t=0.50 15 4 4.40 11.43 30 
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Table 4.28: Results for TÜBİTAK Entrepreneur and Innovator Universities Ranking Data 

by Algorithm 1 with Triangular Distribution 

 

TRIANGULAR DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 31 0 0.00 0 62 

t=0.05 26 0 0.03 0 52 

t=0.10 23 0 0.24 0 46 

t=0.15 20 2 0.83 6.67 40 

t=0.20 19 2 1.09 6.45 38 

t=0.25 18 2 1.37 6.25 36 

t=0.30 16 2 1.93 5.88 32 

t=0.35 14 2 2.99 5.56 28 

t=0.40 14 2 2.99 5.56 28 

t=0.45 14 2 3.07 5.56 28 

t=0.50 11 3 5.37 7.69 22 

 

Table 4.29: Results for TÜBİTAK Entrepreneur and Innovator Universities Ranking Data 

by Algorithm 1 with Trapezoidal Distribution 

 

TRAPEZOIDAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 32 0 0.00 0 64 

t=0.05 24 0 0.10 0 48 

t=0.10 22 0 0.24 0 44 

t=0.15 21 0 0.36 0 .42 

t=0.20 21 0 0.36 0 42 

t=0.25 16 2 2.30 8.33 .32 

t=0.30 16 2 2.30 8.33 .32 

t=0.35 14 2 2.94 7.69 28 

t=0.40 14 2 2.94 7.69 28 

t=0.45 13 2 4.35 7.41 .26 

t=0.50 13 2 4.35 7.41 .26 
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4.6. Observations on the Results 

4.6.1. Comparison of Two Algorithms  

Both of the algorithms performed nearly the same when the misclassification threshold is 

zero for all of the experiments. As the misclassification threshold increases, number of 

questions asked to the DM for placement decreases, on the other hand the number of 

misclassified alternatives increases. (There can be some exceptions due to randomness) 

When we place the alternatives one by one, the number of misclassification increases 

more compared with the algorithm that places all the alternatives together. On the 

contrary, the number of questions asked to the DM will be less in Algorithm 1 compared 

to Algorithm 2. 

In both of the algorithms and all the experiments, expected number of misclassification 

and number of misclassification is 0 when the misclassification threshold is zero. As the 

misclassification threshold increases, both expected number of misclassified alternatives 

and number of misclassified alternatives increase. 

In order to assign alternatives into the classes we compare the utility of alternatives with 

class thresholds. The difference between the algorithms is as follows: In the first 

algorithm we assign the alterative whenever its utility value is greater than a class 

threshold, on the other hand, for the second algorithm we wait until all the alternatives 

verifies class threshold of at least one class. When the probability is calculated as 0, it 

implies that there could not be found any feasible solution that makes utility of that 

alternative greater than that class threshold. Hence, alternative cannot be placed into that 

class. On the other hand, if the probability threshold is 1, the utility of alternative is 

greater than the class threshold for certain and there is no feasible solution that makes the 

utility of this alternative worse than the class threshold it exceeds. 
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4.6.2. Effect of 𝒘𝒊𝒑 Values Generated from Different Probability Distributions 

In all our experiments we need to simulate the DM by an underlying utility function and 

the utility values that separate the preference classes. The additive utility function of the 

DM is defined by 𝑤𝑖𝑝 values. The class borders are 𝑢𝑘 values. 𝑤𝑖𝑝  represents the utility 

values of subintervals p on each criterion i. In order to form the underlying utility function 

of the DM we randomly generate a set of 𝑤𝑖𝑝  and 𝑢𝑘 values. In order to eliminate the 

effect of  𝑤𝑖𝑝 values on the performance of the algorithm, we have randomly generated 

 𝑤𝑖𝑝 values by using uniform, normal and exponential distributions. We have tested the 

performance of both algorithms by constructing the underlying utility of the DM from 

these by results on Financial Times MBA Ranking Data. The results for each distribution 

and algorithm are represented from Table 4.30 to Table 4.32. As it can be observed from 

the tables none of the performance measures change dramatically for the different 

distribution of   𝑤𝑖𝑝 values. Therefore, we conclude that there is no bias to select random 

 𝑤𝑖𝑝 values in order to form the underlying utility function of DM. 

Table 4.30: Results for Financial Times Ranking Data Application by Algorithm 2 with 

Trapezoidal Distribution and  𝑤𝑖𝑝 Values Generated by Uniform Distribution 

 

UNIFORM  𝒘𝒊𝒑 VALUES 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 37 0 0.00 0 45.68 

t=0.05 35 0 0.02 0 43.21 

t=0.10 35 0 0.02 0 43.21 

t=0.15 33 0 0.37 0 40.74 

t=0.20 31 0 1.78 0 38.27 

t=0.25 28 0 1.62 0 34.57 

t=0.30 27 0 2.43 0 33.33 

t=0.35 23 1 0.78 1.72 28.40 

t=0.40 20 2 0.78 3.28 24.69 

t=0.45 17 3 6.32 4.69 20.99 

t=0.50 10 7 9.56 9.86 12.35 
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Table 4.31: Results for Financial Times Ranking Data Application by Algorithm 2 with 

Trapezoidal Distribution and  𝑤𝑖𝑝 Values Generated by Exponential Distribution 

 

EXPONENTIAL  𝒘𝒊𝒑 VALUES 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 41 0 0.00 0 50.62 

t=0.05 35 0 0.12 0 43.21 

t=0.10 35 0 0.12 0 43.21 

t=0.15 33 0 0.40 0 40.74 

t=0.20 33 0 0.37 0 40.74 

t=0.25 33 0 0.37 0 40.74 

t=0.30 27 1 1.87 2.08 33.33 

t=0.35 27 1 1.87 1.85 33.33 

t=0.40 21 4 3.90 7.41 25.93 

t=0.45 18 7 6.01 11.11 22.22 

t=0.50 14 9 8.29 20.90 17.28 

Table 4.32: Results for Financial Times Ranking Data Application by Algorithm 2 with 

Trapezoidal Distribution and  𝑤𝑖𝑝 Values Generated by Normal Distribution 

 

NORMAL  𝒘𝒊𝒑 VALUES 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Expected Number of 

Misclassification 

Misclassified 

Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 34 0 0.00 0 41.98 

t=0.05 27 0 0.02 0 33.33 

t=0.10 27 0 0.02 0 33.33 

t=0.15 24 0 0.37 0 29.63 

t=0.20 21 0 1.78 0 25.93 

t=0.25 20 1 1.62 1.64 24.69 

t=0.30 19 1 2.43 1.61 23.46 

t=0.35 22 2 2.47 3.39 27.16 

t=0.40 22 2 2.47 3.39 27.16 

t=0.45 13 4 6.32 19.12 16.05 

t=0.50 10 9 9.56 12.68 12.35 
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4.6.3. The Relationship between 𝑼𝒊 − 𝒖𝒌 Differences and Probabilities throughout 

the Algorithm 

As already mentioned in the Algorithms in section 3, we try to fit a distribution to 

maximum and minimum 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘 differences and we try to assign alternatives into 

the classes according to the positivity and negativity condition of these differences.  

As more and more alternatives are placed into the classes we expect that the minimum 

difference between 𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘  increases and the maximum difference between 

𝑈[𝑔(𝑎𝑗)] − 𝑢𝑘  decreases.  Since the maximum value decreases and minimum value 

increases, the possible range of values narrow down. Hence, we can place all the 

alternatives. We have tested this lemma on Financial Times MBA Ranking Data with 

Algorithm 2. The results for the data set with trapezoidal distribution are represented in 

Figure 4.4. As it is seen in Figure 4.4, as the number of iterartions increases the minimum 

and maximum values approach to actual difference. Hence, it is guaranteed that all the 

alternatives are placed into the classes. 

 

Figure 4.4: The Comparison of Actual Utility-Utility Threshold Difference and Min-Max 

Differences 
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As it can be seen from Figure 4.5., probability of being assigned to Class 1 approaches to 

1 and probability to be placed in Class 2 approaches to 0.  For this example, the actual 

class of alternative is class 1 based on the underlying utility function of DM. Hence 

throughout the iterations probability of being placed into the actual class increases 

whereas probability of being placed to other classes decreases. 

 

 
 

Figure 4.5: Change in Probabilities at each iteration 

4.6.4. Mixed Integer Models  

We normally do not limit the possible classes an alternative can be placed when we solve 

linear models. However as we have mentioned in Section 3.3.3.8, we can restrict the 

classes alternatives can be placed while solving the minimization and maximization 

models. By solving the models with the additional binary variables we force each 

alternative to be placed only one class. Hence, at each iteration the corresponding 

probability values are calculated for each utility and class threshold difference. Then, a 

class is selected for each alternative if it satisfies the conditions. We have tested MIP 

model by using Financial times MBA Ranking Data.   
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The integer model does not improve the results very much. Since solving integer models 

are harder than solving linear models we continue with linear models. However, the 

integer models can be enhanced to obtain better solutions as a further research area. 

4.6.5. Number of Questions Placed by the DM at the Beginning of the Algorithm 

We normally start the algorithm by asking the DM to place an alternative into each class. 

In order to start the algorithm we need to ask at least one alternative to the DM. If none of 

the alternatives are placed at the beginning, then we have no information about the 

preference structure of the DM. Hence, there will be no limit on minimum and maximum 

difference between utility and class threshold and the solution of these models are going 

to be unbounded. In order to enhance the solution process, we ask DM to place an 

alternative into each of the classes. However, it is possible to start just asking the class of 

one alternative. We have also solved the models by starting one placed alternative and 

utilizing Financial times MBA Ranking Data. If the algorithm starts with one alternative 

placed by the DM, then the number of misclassification is greater than the case where the 

DM place an alternative into each of the classes. 

4.6.6. Comparison of Two Algorithms in terms of Misclassified Alternatives 

We have compared both algorithms in terms of misclassified alternatives. We have 

already mentioned that we make less number of misclassifications with the second 

algorithm, since it places all alternatives at once. In addition, we expect that some of the 

alternatives will change classes while more and more alternatives can be placed to classes 

since the information the algorithm get increases.  In order to observe these results we 

utilized the experiments represented in Part 4. We observed that when the second 

algorithm is used, alternatives that are placed in an incorrect class at the first iteration 

could be assigned to the correct class at the last iteration. Therefore, the number of 

misclassified alternatives is smaller when the second algorithm is used. 
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4.6.7. Number of Misclassifications in Different Classes 

We expect that it is easier to place alternatives into the best and worst classes. In order to 

place the alternatives to the best or worst class we need to compare only one class 

threshold. On the other hand, while placing alternatives into the middle classes we need to 

compare utility of each alternative with two class thresholds. In addition, most of the 

alternatives fall into middle classes with respect to the underlying utility function of the 

DM. Some are close to upper bound of the class and some are close to lower bound. 

Hence, range of alternatives that are going to be placed into a class is larger. 

4.6.8. Comparison of Number of Questions for Different Alternative Selection 

Methods to Ask the DM 

We have mentioned three different alternative selection methods in order to select the 

most ambiguous alternative and to ask its class to the DM. In order to show how effective 

this method is we compared the number of alternatives asked to the DM for placement 

when we select the alternative the alternative to ask the class to the DM. 

4.6.9. Comparison with Buğdacı et al. [18] for Financial Times Data Set. 

The results for Buğdacı et al. data set is provided in Table 4.33.  As we compare the 

results with Table 4.9, 4.10 and 4.11, it can be observed that the number of misclassified 

alternatives are fewer in our method as expected. Due to the structure of the algorithm, 

number of questions increases, but it is still a reasonable number compared to decrease in 

the number of misclassified alternatives. 
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Table 4.33: Results for Buğdacı et al. [18] for Financial Times Ranking MBA Programs 

Data Application with Normal Distribution 

 

NORMAL DISTRIBUTION 

Threshold 
Questions 

asked 

Number of 

Misclassification 

Misclassified Alternatives 

(%) 

Questions 

asked 

(%) 

t=0.00 37 0 0 45.68 

t=0.05 36 0 0 44.44 

t=0.10 33 0 0 40.74 

t=0.15 32 0 0 40.74 

t=0.20 31 0 0 38.27 

t=0.25 26 1 1.82 34.57 

t=0.30 20 4 0 33.33 

t=0.35 15 11 16.67 28.40 

t=0.40 11 16 22.86 24.69 

t=0.45 8 22 30.14 20.99 

t=0.50 3 39 0.50 12.35 

4.6.10. Comparison of Performance Measures for Different Experiments. 

As we compare the performance measures for from Table 4.6 to 4.29, we observe that the 

higher the number of alternatives, the easier it is to place the alternatives into the classes. 

The percentage of information required from the DM is the least when there are many 

alternatives. For larger data sets, more information is collected about the preferences of 

the DM. For the experiments that have similar number of alternatives, the percentage of 

misclassified alternative and percentage of information obtained from the DM  are 

similar.  
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CHAPTER 5 

CONCLUSION 

We developed two interactive methods for multi-criteria sorting problems. The methods 

try to place alternatives into the preference ordered classes probabilistically. Alternatives 

are placed into the classes by comparing the probabilities with misclassification 

thresholds which represent the maximum acceptable error level. The assignment is 

realized if the probability of making an incorrect assignment is acceptably small. If 

misclassification threshold is given as zero, alternatives are placed into the classes 

exactly. 

We assumed that the unknown underlying utility function of the DM is additive. In 

addition, marginal utility of each alternative on each criterion is piecewise linear. We try 

to place alternatives into the classes based on different probability distributions. We 

generate unbiased estimators by using trapezoidal, uniform and triangular distributions. 

In order to evaluate the algorithms different data sets are utilized. The methods are firstly 

implemented on a data set that is published by Financial Times in order to sort the best 

MBA Programs (2009). This data set is utilized for sorting purposes by Köksalan and 

Özpeynirci (2009). Each alternative is composed of three criteria and they are tries to be 

placed into three preference algorithm. To test the performance of alternatives with 

different number of classes, 500 random data are generated and they are tried to be placed 

into five preference ordered classes. In addition, the data set that is published by US News 

Report that ranks Best Hospital in Cancer is arranged for sorting purposes. Hospitals are 

tried to be placed into five preference ordered classes. Finally, the data set that is 

published by TÜBİTAK in order to rank the 50 innovative and entrepreneur universities 

in Turkey. Each alternative consist of five criteria and tried to be placed into three 

preference ordered classes. 

http://tureng.com/search/entrepreneur
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We tested the performance of the methods by number of alternatives that are 

misclassified, expected number of misclassification, and amount of information obtained 

from the DM on different data sets. 

In the first algorithm, linear models that maximize and minimize the differences between 

utility and class thresholds are solved. Then, we fit a probability distribution between the 

minimum and maximum difference. If the calculated misclassification probability is 

acceptably small alternative is placed into the class. If none of the alternatives can be 

placed DM is asked to place an alternative. The algorithm terminates when all the 

alternatives are placed. 

In the second algorithm, there is no difference in terms of probability calculation. 

However, if alternatives cannot be placed into the classes at the same time, none of the 

alternatives are assigned into the classes. 

We suggest asking the DM the class of alternative about which we have least information. 

In order to do that, we ask the alternative whose probability of being placed into the 

successive classes is closest 0.5. 

We suggest that in the second algorithm both the realized and expected number of 

misclassification is smaller. Since alternatives are placed after more number of iterations, 

their probability will approach the actual value.  

An interesting research could be trying to decrease misclassification by defining 

misclassification degree of alternatives. Misclassification degree is defined by the 

measure for how many classes further or before an alternative is placed rather than the 

class it belongs to. It is a worse case for example for an alternative whose actual class is 

𝐶1  is placed into 𝐶5 compared with being place to 𝐶2. Therefore, the algorithm can be re-

evaluated by such a performance measure.  
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