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ABSTRACT 

USE OF GOLD NANOPARTICLE CONTAINING POLY (ALLYLAMINE 

HYDROCHLORIDE)/ POLY (ACRYLIC ACID) MULTILAYER FILMS AS 

SERS SUBSTRATES 

 

 

 

Kölemen, Birsu 

 

M.S., Department of Chemistry 

Supervisor: Assoc. Prof. Dr. Gülay Ertaş 

Co-supervisor: Assist. Prof. Dr. İrem Erel Göktepe 

 

March 2015, 59 pages 

 

Surface-enhanced Raman spectroscopy (SERS) is a surface sensitive vibrational 

spectroscopy technique that results in the enhancement of Raman scattering by 

molecules adsorbed on rough metal surfaces. It is a powerful, sensitive and non-

destructive technique which is used in chemical, material and life sciences including 

biosensing, catalysis, spectroelectrochemistry, criminology, single molecule SERS 

applications and many others. Nanoparticle (NP) embedded multilayer films using 

Layer by Layer (LbL) technique is one of the types of SERS substrates that have 

unique properties. Herein, pH-controllable exponentially grown (rougher) and linear 

grown (smoother) (Poly(allylamine hydrochloride)/Poly(acrylic acid)) 

polyelectrolyte-NP multilayer film systems were studied for sensing benzenethiol 

(BT) molecule (up to 10
-7

M). The effects of number of polyelectrolyte layers and 

deposition times of gold (Au) NPs on SERS signals were studied and the 

enhancements in Raman signals are similar for all the studied systems. 

Characterizations of these surfaces are made by UV-vis Spectrometer, Zeta sizer, 

Atomic Force Microscope (AFM) and Raman Spectrometer.      
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Keywords: Surface-enhanced Raman spectroscopy, Layer-by-Layer technique, 

SERS substrate, pH-controllable polyelectrolyte. 
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ÖZ 

ALTIN NANOPARÇACIK İÇEREN POLİ (ALLİLAMİN HİDROKLORÜR)/ 

POLİ (AKRİLİK ASİT) ÇOK KATMANLI FİLMLERİN YGRS ALTTAŞI 

OLARAK KULLANILMASI 

 

 

 

Kölemen, Birsu 

 

Yüksek Lisans, Kimya Bölümü 

Tez Yöneticisi: Doç.Dr. Gülay Ertaş 

Ortak Tez Yöneticisi: Yrd. Doç.Dr. İrem Erel Göktepe 

 

 Mart 2015, 59 sayfa 

 

Yüzeyde-güçlendirilmiş Raman spektroskopisi (YGRS) yüzeye hassas titreşimsel 

spektroskopi tekniği olup pürüzlü metal yüzeye tutunan moleküllerin Raman 

saçılmalarını arttırmayla sonuçlanır. Kimya, malzeme ve canlı bilimlerinde 

(biyosensör, kataliz, spektroelektrokimya, kriminoloji, tek molekül YGRS vb.) 

kullanılan güçlü, hassas ve zararsız bir tekniktir. Katman katman kaplama tekniği 

(KKK) kullanılarak hazırlanan nanoparçacık (NP) gömülü çok katmanlı filmler 

özgün özelliklere sahip bir çeşit YGRS alttaşıdırlar. pH kontrollü üssel büyüyen 

(daha pürüzlü) ve lineer büyüyen (daha düz) (Poli(allilamin hidroklorür)/Poli(akrilik 

asit)) polielektrolit-nanoparçacık çok katmanlı film sistemleri ile benzentiyol 

molekülünün 10
-7

M’a kadar kantitatif olarak Raman sinyallerinin ölçülebileceği 

gösterildi. Bu sistemler için, YGRS sinyallerine, polielektrolit katman sayısı etkisi 

ve altın (Au) NP kaplama süresi etkisi incelenmiş ve çalışılan filmlerde benzer 

sinyal artışları hesaplanmıştır. Bu sistemler, UV-görünür Bölge Spektrometresi, 

Zetasizer, Atomik Kuvvet Mikroskobu (AKM) ve Raman Spektrometresi ile 

karakterize edilmiştir.    
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Anahtar Kelimeler: Yüzeyde-güçlendirilmiş Raman spektroskopisi, Katman-

Katman Kaplama Tekniği, YGRS alttaşı, pH kontrollü polielektrolit. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

1.1 Raman Spectroscopy  

When a radiation strikes a surface, it can interact with the atoms and/or molecules in 

various ways. These particles (atoms/molecules) can absorb (UV and IR light) or 

scatter the incoming light.
1
 When light is scattered from a molecule, the scattered 

photons have the same energy as the incident photon mostly (elastically scattered 

radiation or Rayleigh scattering). However, small fraction of the scattered radiation 

have different energy (or wavelength) compared to incident radiation, which causes 

wavelength shift depending on the chemical structure of the molecule. This inelastic 

scattering is called Raman scattering as it was discovered by C. V. Raman in 1928.  

Raman shift is basically the energy difference between the incident and scattered 

light as shown by the equation below; 

ΔE = (1/λincident) - (1/ λscattered) 

where ΔE is the Raman shift in cm
-1

, λincident is the wavelength of incoming light in 

centimeters and λscattered is the wavelength of scattered light in centimeters.
2
 

 



 

2 
 

Figure 1. Elastic (Rayleigh) and inelastic (Raman) scattering. Energy levels of scattering 

processes (a), Raman and Rayleigh spectra (b). 

 

Raman scattering is mainly divided into two sub-groups, which are Stokes and anti-

Stokes scattering. When the scattered radiation is at lower frequency than the 

excitation radiation, it is called Stokes scattering. In other words, in the case of 

Stokes scattering molecule is excited from its lower vibrational energy level (V = 0) 

and relaxes back to higher energy levels at its ground state (V=1) as shown in Figure 

1. In anti-Stokes Raman, the scattered radiation is at a higher frequency than the 

source radiation. This time, excitation occurs from the higher energy levels followed 

by relaxation to lowest energy level (V=0) as shown in Figure 1. Since more 

molecules are found in the lowest energy level of ground state (V=0) than the higher 

energy levels, the intensity of anti-Stokes line is lower than the intensity of Stokes 

line. Thus, Stokes scattering is mostly measured in Raman spectroscopy.
3,4

 

1.1.1 Raman Selection Rules 

Raman scattering and infrared absorption are both results from the quantized 

vibrational changes and their spectra resemble to each other with intensity 

differences.  In contrast to IR spectroscopy, Raman spectra of aqueous samples can 

be obtained without having water interference. Additionally, glass substrate can be 

         (a) 

      (b) 
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used because it is also Raman inactive. These two complementary techniques differ 

from each other by selection rules, which make some molecules IR-active and the 

other ones Raman-active. For a molecule to be IR-active there must be a net dipole 

moment change during vibration motions. For instances, asymmetric stretching of 

CO2 has net dipole moment, which is the result of strong band in the IR spectrum of 

CO2 at 2350 cm
-1

. On the other hand, symmetric stretching of the same molecule is 

not IR-active due to the lack of permanent dipole.
5
  

For a molecule to be Raman-active, the polarizability of the molecule must change 

during the vibration motions. It is a momentary distortion of electrons (temporarily 

polarized), which creates an induced dipole that disappears upon relaxation. Thus, in 

contrast to IR, symmetric stretching of CO2 is Raman active because of change in its  

polarizability by incoming radiation.
3
  

Raman spectroscopy offers easy/simple instrumentation with a fast measurement 

time. It is a non-destructive technique. Furthermore, water has low Raman scattering 

which enables measurement of aqueous samples.
4,6,7

 Despites its advantages, it has 

smaller cross section (10
-29

-10
-32

 cm
2
) compared to fluorescence (10

-16 
cm

2
).

8-10
 The 

low intensity of Raman spectra, low intensity of excitation sources and the 

sensitivity of the detector have blocked the applications of Raman spectrometry for 

many years.  The discovery of surface enhanced Raman scattering brings a new 

sight to Raman scattering by increasing its sensitivity, which becomes useful in 

many research areas.
11

 

1.2 Surface Enhanced Raman Spectroscopy (SERS) 

SERS is quite useful for the analysis or detection of various analytes at very low 

concentrations (~10
-7 

M and less) as a result of enhanced signals, which have low 

sensitivity in Raman signals. First example of SERS was performed by Fleischmann 

et al. in 1974 for the analysis of pyridine, which adsorbed onto a roughened silver 

electrode. The Raman intensity of pyridine was enhanced by 10
5
-10

6 
factors. At that 

time, it was thought that the large surface area on the roughened metal caused that 

enhancement because there was more space on the surface for more pyridine 

molecules to adsorb.
12

 Additionally, Van Duyne et al.
13

 and Creighton et al.
14

 found 

out that there should be some enhancement mechanism behind this dramatic 
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increase in Raman signal. These mechanisms will be discussed in detail in the 

following sections. Besides, the molecules having lone pair of electrons and 

electron clouds (double bond) have strong SERS because of the strong 

electromagnetic field due to the oscillations of electrons. These molecules are 

aromatic compounds having nitrogen and oxygen group and carboxylic acids.
15

 

Although SERS is a very powerful surface technique and has many applications, it 

has few drawbacks. Firstly, the enhancement is limited to metal substrates such as 

Ag, Au and Cu which have extinctions (absorption and scattering) at visible and 

near IR regions where Raman measurements mostly occur. Ag and Au are more 

commonly used than Cu because they have better air stability.
16

 Secondly, the 

enhancement mechanisms behind SERS are not fully understood. Last but not least, 

it is difficult to produce a perfect substrate that satisfies all the needs.
17

 

1.2.1 SERS Enhancement Mechanisms 

Typically there are two suggested enhancement mechanisms, which are 

electromagnetic (primary) enhancement and chemical enhancement. The first one is 

caused by the surface plasmon resonance generated on the roughened metal surface 

and the second one is the result of the analyte chemisorption on a substrate.
18

 

1.2.1.1 Electromagnetic Mechanism (EM) 

The electromagnetic enhancement of Raman scattering is directly related with 

surface plasmons (electromagnetic waves), which are generated by valence electron 

oscillations of metal at metal-dielectric interface. If these surface plasmons are 

confined into nanosized metal structures, they are called as localized surface 

plasmons (LSPs) and their excitation is mostly utilized in SERS.
19-21

 Localized 

surface plasmon resonance (LSPR) is the excitation of surface plasmons by the 

incoming radiation. Upon irradiation of metallic clusters at their LSPRs, the 

adsorbed molecules on particular metallic structures, which are close to the surface 

are affected from the resulting electromagnetic field that causes polarization of the 

molecule. This polarization leads to a new plasmon surface field which couples with 

Raman scattered photon. Hence, the intensity of Raman signals increases.
8,22

 The 

EM neither depends on the nanoparticle-molecule interactions on the surface nor 

adsorption type of the molecule. It is related with the distance between the molecule 
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and the nanoparticle and the size of the nanoparticles. Very small nanoparticles (2 

nm) do not exhibit Raman signal enhancement.
15,23,24

 Electromagnetic enhancements 

(in log scale) of dimer versus isolated single Ag nanoparticles (NP) were compared 

in Figure 2.
25

 It shows that single nanoparticles do not contribute very much to the 

signal enhancement, whereas at highly localized regions (hot spots) in the junctions 

between two particles, very high enhancement factors emerge. A very close spacing 

between nanoparticles (hot spots) is favorable for large enhancements. When 

Raman-active molecules are between these hot spots, their Raman signals increase 

dramatically with an enhancement factor of 10
9
-10

11
. Silver nanoparticles are 

plasmonically more active than gold nanoparticles. However, gold nanoparticles (Au 

NPs) are more inert than silver nanoparticles. Hence, the choice of the convenient 

metallic nanoparticle depends on the type of analysis that is going to be performed 

by SERS.
26

 Besides, aggregation of nanoparticles affects the enhancement in Raman 

signals. For instance enhancement in Raman signal of benzenethiol molecule differs 

from each other with respect to the aggregated Au colloids with different diameters. 

46 nm particles give larger enhancements than either 146 nm or 21 nm particles.
27

 

Moreover, many researchers have reported that anions can enhance Raman 

scattering by the anion induced aggregation of metal nanoparticles. Nie and co-

workers have reported that the addition of chloride ions to silver colloid allows 

single molecule detection of Rhodamine 6G (R6G) by increasing electromagnetic 

field. Nie and co-workers also studied the relationship between excitation 

wavelength and nanoparticle size. They used 488, 568, 647 nm laser lines to excite 

LSPR of silver nanoparticles at different sizes (7 nm, 140 nm, and 190-200 nm) and 

concluded that size of the nanoparticles are related with the excitation wavelength as 

a result of the different intensities of SERS signals. Thus, enhancement from the 

nanoparticles depends on the excitation wavelength because of the different LSPR 

values of different sized nanoparticles. As the size of nanoparticles increases, 

electromagnetic enhancement increases to a certain limit.
27-32

 



 

6 
 

 

Figure 2. Electromagnetic enhancement factors (in log scale) of dimers (left and middle) 

and isolated single (right) silver nanoparticles. Copyright © 2000, American Physical 

Society. Reprinted with permission from ref (25).
25

 

 

 

1.2.1.2 Chemical Mechanism (CM)   

The chemical enhancement is due to a charge transfer between the metal and the 

adsorbed molecule. It has less contribution than EM to the Raman signal because it 

requires direct contact (at atomic levels) of the molecule and metal surface.
21,33

 CM 

contributes to the signal enhancement only 10 or 100. This small contribution 

becomes effective in combination with EM enhancement by multiplication which is 

totally 10
4
-10

7
. The enhancement factor (EF) is calculated using the following 

formula:
22,33

 

EF = (ISERSxCORD)/(IORDxCSERS)  

where; ORD: Ordinary Raman, I: Intensity, C: Concentration
24

 

The CM enhancement is not well understood but it provides important information 

such as the mechanism of interaction with the nanoparticles and the orientation of 

the adsorbate with respect to the surface. When there is a shift in SER spectrum 

compared to the corresponding Raman spectrum, this is attributed to the chemical 

enhancement mechanism.
34

 In some cases EM cannot justify the enhancement 

mechanism but CM enhancement plays major role. For instance, the enhancement in 
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N2 and CO signals are different from each other by 200 times.
22

 This difference is 

due to CM because their polarizabilities are similar and EM is chemically non-

selective. Moreover, Campion et al. showed that 30 times enhancement of 

pyromellitic dianhydride adsorbed on flattened Cu (111) surface caused by CM 

because the electromagnetic contributions of the surface is small (flat surface) and 

well-understood.
35

   

1.2.2 SERS Substrates 

It is important in SERS to have versatile substrates. An effective substrate requires 

some properties which are mainly high enhancement factor, inertness, 

reproducibility of the signal from that surface, and ease of preparation. Researchers 

have been trying to find out optimal SERS substrate for many years. Mostly 

employed substrates are Ag, Au and Cu colloidal nanoparticles since they have 

tunable LSPR values ranging from visible to near-IR regions and higher 

electromagnetic enhancement compared to other metals which is shown in Figure 

3.
16 

 

 

Figure 3. Tunable LSPRs of Cu, Au and Ag NPs. Copyright © 2012, Elsevier. Reprinted 

with permission from ref (16).
16

 

 

There have been various types of substrates used for SERS which are roughened (by 

REDOX process) metal electrodes,
36-39

 colloidal nanoparticles with desired shapes 

and sizes,
40-49 

and SERS active metal surfaces with controllable roughness and 

thicknesses by lithographic (electron beam) techniques.
19,50-54

 Although, colloidal 

nanoparticles are easily prepared and mostly applied, they usually aggregate after 

analyte addition.
26,51,55-58

 This avoids reproducibility of SER spectra. Therefore, 
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solid substrates (silicon wafer, glass, ITO coated glass etc…) with immobilized 

nanoparticles are highly preferred to address this type of aggregation problem.
59-61

 

To that end, in order to fabricate solid substrate-nanoparticle assemblies, Langmuir 

Blodgett
62-66

 and Layer by Layer
67-70

 techniques have been extensively used.     

1.2.2.1 Fabrication Methods of SERS Substrates 

Langmuir Blodgett (LB) Films: LB technique is used in the formation of one-

dimensional ordered monolayers on water surface which are then moved onto solid 

substrates.
71

 LB film deposition scheme can be seen in Figure 4. There are four steps 

in general. At first step, organic ligand is functionalized with alkyl chains for their 

organization on air/water interface. Then, a small portion of organic ligand is 

dispersed on nanoparticle (aqueous sub phase) surface. After that, an interfacial 

coordination reaction happens between the nanoparticles in the aqueous sub phase 

and the organic ligands at air/water interface. Lastly, the ultrathin coordination film 

is transferred to a flat solid substrate by immersing the substrate to the aqueous sub 

phase.
72

 The advantages of these technique are: formation of  uniform ultra-thin 

nanoparticle film with controllable individual layer thickness, controllable electrical 

and optical properties of nanoparticle and large scale production of films with low 

cost.
73

 Despite its advantages since LB films are defective and LB is not a simple 

and not a versatile technique, layer by layer (LbL) film deposition technique 

becoming more commonly used.
74

 

 

Figure 4. Langmuir Blodgett Technique. 

 

LbL films: After the pioneering studies of R. K. Iler
75

 in which multi-layers of 

oppositely charged microparticles were fabricated, Gero Decher and co-workers
76

 

introduced the formation of multilayer films using oppositely charged polymers 

(polyelectrolyte (PE)). The LbL deposition of polyelectrolytes and inorganic 

nanoparticles began very soon after the development of these films with the aim of 

producing hybrid films with controllable optical, mechanical and electronic 
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features.
77

 LbL technique enables deposition at room temperature with various layer 

thicknesses by controlling the parameters such as pH, amount of the salt, 

concentration and molecular weight of polyelectrolyte and type of the solvent. 

Various substrates such as glass, silicon wafers, quartz, and ITO coated glass can be 

used for various applications. LbL ultrathin films are used in various applications 

and areas such as biomaterials, optics, drug delivery systems, tissue regeneration, 

dental materials and contact lenses. Multilayer films with nanoparticles are used in 

fuel cells, photodetectors and water treatment devices.
78

 Layer by layer technique is 

summarized in Figure 5.
79

  

In LbL technique a charged substrate is immersed into an oppositely charged 

polyelectrolyte solution which neutralizes the surface charge and makes it reversely 

charged and then the substrate is dipped into second polyelectrolyte solution which 

neutralizes the surface charge again and then makes it oppositely charged. These 

steps continue until desired thickness of multilayers is reached. Instead of 

polyelectrolytes, other charged materials can be used in LbL film system. Although 

the main driving force is electrostatic, there are also other forces such as Van der 

Waals, hydrogen bonding, and charge transfer interaction used for LbL technique.
80

  

 

Figure 5. Layer by Layer Technique. 

1.3 Polyelectrolytes 

Polyelectrolytes are charged polymer molecules that have ionizable groups when 

dissolved in water. Natural polyelectrolytes are proteins, polysaccharides and DNA. 
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When polyelectrolytes are dissolved in water, they break into charged polymer 

groups. Polyelectrolytes are divided into two groups which are strong and weak 

based on their degree of ionization. According to the type of their charges, they are 

called as polyanion, polycation, polyacids or polybases.
81

 Strong polyelectrolyte is 

fully ionized (or charged) regardless of pH of the solution. Some examples of 

synthetic strong polyelectrolytes are poly(styrenesulfonate)(PSS), 

Poly(3,4ethylenedioxythiophene) (PEDOT), and poly(diallyldimethylammonium 

chloride) (PDADMAC).
82-85

 A weak polyelectrolyte, by contrast, has pH-dependent 

ionization (partially ionized) which depends on pKa or pKb values (at which half of 

the ionizable groups are dissociated). Some examples of synthetic weak 

polyelectrolytes are; polyethyleneimine (branched/linear)(PEI), 

poly(aniline)(PANI), poly(L-lysine)(PLYS), poly(L-glutamic acid), 

polyamidoamine (PAMAM) poly(methacrylic acid) (PMMA).
83-90

 The most 

common weak polyelectrolyte pair in PEM formation is poly(allyamine 

hydrochloride) (PAH)/ poly (acrylic acid) (PAA). For instance, different 

conformations (extended coil/flattened or random coil/loopy) can be obtained with 

the use of PAH and PAA polyelectrolytes at different pHs and the thicknesses of 

multilayers can be controlled. Articles which are related with pH-dependent LbL 

formation suggest that strong polyelectrolytes have low thickness values (10Å for a 

bilayer) whereas weak polyelectrolytes have large thickness values as a result of 

change in degrees of ionization values with respect to pH (80Å for a bilayer) (as 

shown in Figure 6).
80,91

    

 

 

      (a)PAH 6.5/PAA 6.5                   (b) PAH 2.5/PAA 2.5              (c) PAH 7.5/PAA 3.5      

         

Figure 6. (PAH/PAA) LbL films at various pHs. 
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pKa values of  PAH and PAA are 8.8 and 6.5 respectively. However, the pKa of a 

weak polyelectrolyte film is sensitive to its local ionic environment and can shift 

notably from its solution value. For instance, pKa of PAA shifts to near 3.0 when 

assembled into multilayer because of the complexation with positively charged 

polybase favors dissociation of the polyacid PAA. A large shift in pKa for polybases 

occurs when the solution pH is much different than the pKa of the polybase.
91

  

When pHs of both PAH and PAA polyelectrolytes are 6.5 (Figure 6a), PAH and 

PAA becomes fully charged like strong polyelectrolytes and this makes film 

thickness thin as a result of effective ionic crosslinking of polyelectrolyte 

multilayers (theoretically 10Å for a bilayer).
92

  

When pHs of both PAH and PAA are 2.5 (Figure 6b), PAA is only 20-30% ionized 

and PAH is fully charged. Unbalanced ionization degrees of the polymers leave 

many free carboxylic acid functional groups on PAA chain. For the neutralization of 

adsorbed cationic binding site at PAH chain, PAA chain forms many loops and tails 

because it has low anionic charge density. Very thin third layer of PAH is enough to 

equilibrate the low charge of PAA such that the free carboxylic acid groups lie on 

the previously adsorbed PAA layer diffuse into PAH outermost layer. This results in 

intermediate film thickness (theoretically 40Å for a bilayer).
92

   

When pH of PAH is 7.5 and PAA is 3.5 (Figure 6c), the ionization degree of PAA is 

very low and PAH is partially charged (less than fully ionized). The structure of the 

film resembles to the one shown in Figure 6b for the first bilayer (loop and tail 

structure) but it differs from it by the high ionization degree of PAA groups in PAH 

solution at pH 7.5. As a result of this, the amount of adsorbed PAH increases which 

causes thicker films (theoretically 80Å for a bilayer)
92

 with interpenetrated PAH 

layers into PAA chains having loop and tails. This film will be investigated more in 

the results and discussion part.
80,93

   

1.4 Nanoparticles 

The term nano is derived from “nanos” which means dwarf in Greek and it is used 

as denoting a factor of 10
-9

 (one billionth). The nanoparticles (<100 nm in size) have 

special properties such as; better electrical and heat conductivity, improved or 

hindered aggregation, and enhanced catalytic activity compared to their bulk 



 

12 
 

counterparts due to their large surface area and quantum size effect.
94-97

 Different 

shaped nanoparticles have many applications in biomedical areas such as diagnosis 

and therapy of diseases (especially cancer), imaging, drug delivery and in SERS 

because of their optical properties like surface plasmon resonance.
95

 Various anti-

cancer drugs both kill healthy and non-healthy cells. In order to increase the 

efficiency of these drugs, targeted nanoparticles can be used without giving harm to 

the healthy cells.
98,99

 Gold nanoparticles offer well-established surface 

characteristics and simple chemistry for straightforward modifications. For example, 

it is possible to conjugate targeting group drugs, DNA/RNA, smart polymers 

(piezoelectric & thermoresponsive materials, shape memory alloys) and charged 

molecules on the surface of gold nanoparticles (Figure 7).
100

  

 

Figure 7. Possible surface modifications of Au NPs. 

  

Among various nanoparticle types, gold nanoparticles have appealing features such 

as biocompatibility, non-cytotoxicity, chemically inertness and ease of 

functionalization. After the first synthesis of colloidal gold by Michael Faraday in 

1857,
101

 synthesis of gold nanoparticles has been improved and well-documented 

with different size, shape and morphologies during the last decade. There are many 

synthesis protocols for gold nanoparticles including physical (microwave 

irradiation), chemical (reduction of HAuCl4) and biological (using fungi and 

bacteria as nanofactories) methods. Chemical methods are the primary choices for 

most biomedical applications.
102-106

 Besides gold nanoparticles, these well-known 

strategies yield gold nanospheres, nanowires, nanorods and nanocages.
107-110

 

Designing strategies and controlling the shape and size of the gold nanoparticles 
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have great impact and importance on its physical properties. For instance, increase 

in the particle size causes a red-shift (higher wavelength) in the absorption 

spectrum.
111

 Furthermore, changing shape of the particle to a nanorod pushes the 

“absorption maximum” to near-IR region of the electromagnetic spectrum.
96

  

1.4.1 Synthesis of Gold Nanoparticles 

In a typical synthetic procedure, chloroauric acid (HAuCl4) is reduced to Au
0
 by 

using some well-known reducing agents (e.g., sodium borohydride, sodium citrate 

dihydrate etc.) while gold solution is boiling. In a well-established Turkevich 

method,
112

 sodium citrate is used as both reducing and capping agent. The color of 

the solution changes from yellow to wine red, which indicates the formation of gold 

nanoparticles. Murphy’s and El-Sayed’s procedures are the other well-established 

procedures for the synthesis of gold nanoparticles using Mie theory
113,114

 with seed-

mediated growth.
115,116

 The developments of Au NPs from the invention of electron 

microscope (1932) to 2011 are shown in Figure 8. Improvements in chemistry and  

physics (optics  and microscopy) provide better control of nanoparticle properties 

such as size and shape.
117

    

 

Figure 8. Golden Timeline Copyright © 2013, American Physical Society. Reprinted with 

permission from ref (117).
117
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1.5 Nanoparticle Embedded Polyelectrolyte Films  

Due to the different properties of nanoparticles from their bulk counterparts, 

nanoparticles can find applications in areas such as photoelectronics, magnetism, 

catalysis and sensing.
118-124

 For that reason, fixing nanoparticles on a solid surface 

homogeneously is important and also challenging. Mixing of nanoparticles with 

polymers mechanically is one of the simple fabrication methods but the films are not 

very homogeneous and the process is generally not very reproducible. Another 

technique is spin coating of polymer-nanoparticle mixture but it is difficult to form 

very thin films using this method.
125-127

 New assembly techniques are necessary to 

create advanced materials with outstanding properties for various applications.
128

 

For that reason, Langmuir Blodgett (LB) films with controlled thicknesses and 

organization of components (at molecular level) have been emerged. Additionally, 

LB films have been used as organic conductors and diodes because LB technique 

allows control of molecular distances and orientation of molecules which is an 

important feature for electrical conductivity.
129

 Another application of LB films is 

using them as sensors. For instance, polypyrrole molecule is deposited on selected 

surfaces by LB technique for the detection of ammonia.
130

  

Besides LB films, layer by layer deposition allows fine control of the film properties 

on various substrates by combining different species such as nanoparticles, 

nanosheets, nanoshells, nanowires with polymers.
131-133

 Dai et al. prepared a 

nanoparticle containing polymer film surface in order to use it as catalyst and 

antimicrobial coating. With this approach, a new way to prepare nanoparticles has 

emerged; nanoparticles can be distributed in/on the surface homogeneously and 

polymers avoid the aggregation of nanoparticles.
134

  Jiang et al. investigated 4-

(dimethylamino)-pyridine (DMAP) stabilized Au NPs between oppositely-charged 

polyelectrolyte (PAH/PSS) layers. The results show that stable thin films can be 

obtained with controllable optical properties.
135

 In a similar work, Au NPs and 

polyelectrolytes were fabricated with spin-assisted LbL assembly with different 

number of bilayers. Films have red-shifted plasmon resonances because of the 

difference in local dielectric field as compared to nanoparticle solution. Tunable 

plasmon resonances are beneficial for sensing applications.
136

 Another example for 

LbL film preparation was using semiconductor NPs such as HgTe for 

photoelectronic applications.
137,138
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Figure 9. Number of SERS papers as a function of time. Copyright ©   2012,Elsevier. 

Reprinted with permission from ref (16).
16 

 

1.6 Applications of SERS  

SERS is mostly employed in catalysis, chemical analysis, electronics, sensors, 

diagnostic & imaging, and biological systems. The number of publications related 

with SERS is increasing in each year as shown in Figure 9.
16

 The reason behind this 

is that SERS is an important tool for chemical and biological systems in order to 

characterize trace amount of adsorbed species as in the case of sensor applications 

without giving any harm to the species.
139-155

      

1.6.1  PE-NP Films for SERS Applications 

Nanoparticle embedded polyelectrolyte (LbL) films can also be used in SERS 

applications. Although there are not many applications, these types of films are 

important for SERS applications and are listed below.
156-158

  

Zeng et al.
156

 used triangular silver nanoparticles with a comparison of spherical 

ones for their PDDA-NP self-assembled films as a SERS substrate for Rhodamine 

6G (R6G) molecule. Silver triangle nanoparticles are interesting because of their 

tunable surface plasmon resonance (SPR) values from visible to near infrared range 

and the formation of hot spots at the triangular tips. According to electromagnetic 

enhancement theory, triangular nanoparticles which have stronger absorbance than 

spherical ones at the excitation wavelength should yield stronger enhancement in 

SERS.
25,49,159,160

 However, SERS signal of R6G molecules from spherical 

nanoparticles inside the film is larger than that of triangular ones indicated that there 
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have to be other parameters affecting the enhancement mechanism. The fact is that, 

the aggregation of spherical nanoparticles which is a leading factor for strong SERS 

effect and it is more effective when spherical ones are used.
25,161

  

The other example of SERS substrate was prepared by LbL PE-NP multilayer film 

method. Abalde-Cela et al.
157

 was prepared exponentially grown LbL film having 30 

bilayers of (PDADMAC/PAA) and then it was incorporated with Ag nanoparticles 

for the detection of environmentally significant dioxins having detection limit of 10
-

8
 M for the first time.  

                     (a) 

 

                     (b) 

 

Figure 10. LbL grown (PE/NP)n film preparation with desired number of layers (a).            

SER spectra of LbL grown PE/NP film with 1, 3, 5, 7 and 11  layers (b). Copyright © 2005, 

American Chemical Society. Reprinted with permission from ref (158)
158

. 

The other example is the study of Hu et al.
158

 where gold nanorods were used with 

PSS alternatively for the assembly of LbL multilayered films in order to probe 4-

aminothiophenol molecule (4-ATP). The preparation of LbL film (Fig. 10a) and 
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SER spectra of different number of layers for the probe molecule (Fig. 10b) are 

shown. As the number of nanorod layers increases, SERS signal of 4-ATP molecule 

also increases. 

1.7 Aim of the Study 

In this study, the aim is to prepare two different kinds of SERS substrates which are 

composed of oppositely charged polyelectrolytes incorporated with Au NPs.  PAH 

and PAA polyelectrolytes are chosen for the LbL growth. Since, they are weak 

polyelectrolytes; the film growth can be controlled with pH. According to the 

different thicknesses of the films at different pH values, they are classified as linear 

or exponentially grown films. The effect of the type of polyelectrolyte films, Au NP 

deposition times and layer number of polyelectrolytes on SERS signals of 1.0 x 10
-5

 

M BT will be investigated. For the characterization of polyelectrolyte films; UV-vis 

and AFM measurements will be performed.  
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CHAPTER 2 

 

 

2 EXPERIMENTAL PART 

 

 

 

2.1 Materials  

 PAH (Mw = 58,000) (Cat. No: 283223) PAA (Mw = 1,800) (Cat. No: 323667), gold 

(III) chloride hydrate (99.999%)(Cat. No: 254169) and trisodium citrate dihydrate 

(Cat. No: W302600) were purchased from Sigma-Aldrich. The structures of PAH 

and PAA are given in Figure 11. Tris (hydroxymethyl) aminomethane hydrochloride 

(Tris HCl) buffer was purchased from Scharlau. Benzenethiol was purchased from 

SAFC. Ethanol was purchased from J.T. Baker. All chemicals were used as received 

without any purification.  

 

                           (a)                   (b) 

 
Figure 11. Chemical structures of PAH (a) and PAA (b).  

 

2.2 Polyelectrolyte Multilayer Formation: LbL Technique 

Glass slides were soaked in concentrated sulfuric acid for 85 minutes and rinsed 

with copious amount of distilled and deionized (DI) water (18MΩ-cm Millipore 

Milli-Q) and dried under nitrogen gas. After that the slides were soaked in 0.25 M 

sodium hydroxide solution for 10 minutes and rinsed with copious amount of 

distilled and deionized (DI) water (18MΩ-cm Millipore Milli-Q) and dried under 

nitrogen gas. 10 mM (according to repeating unit MW) PAH solution with a pH of 



 

20 
 

~5.0 was prepared in 10 mM Tris HCl buffer and 10 mM (according to repeating 

unit MW) PAA solution with a pH of ~4.0 was prepared in DI water. For linear 

grown system, pH of PAH and PAA solution were adjusted to 6.5 by adding 

sufficient amount of 0.1 or 1.0 M NaOH. For exponentially grown system, pH of 

PAH solution was adjusted to 7.5 by adding 0.1 or 1.0 M NaOH and pH of PAA 

solution was adjusted to 3.5 by adding 0.1 or 1.0 M HCl. Negatively charged glass 

slides were dipped into first positively charged PAH solution, rinsed 2 times (each 1 

minute) with 10mM Tris HCl buffer and dried under nitrogen gas. Tris HCl buffer 

(working range pH: 7-9) was used instead of DI water because it is hard to adjust pH 

of DI water to 7.5 for PAH solution. Then the slides were dipped into negatively 

charged PAA solution for 10 minutes, rinsed 2 times (each 1 minute) with DI water 

and dried under nitrogen gas. Schematic representation of adsorbed Au NPs on 

(PAH/PAA)n multilayer films can be seen in Fig. 12. Polyelectrolyte and rinsing 

solutions were changed at every 3 bilayers (6 layers) and their pHs were controlled 

and adjusted again with 0.1 and/or 1.0 M HCl or NaOH if necessary. LbL film 

deposition continued until the desired number of layers was obtained. Multilayer 

films having 9, 29, 39, 49 numbers of layers were prepared.  

 

Figure 12. Schematic representation of  adsorbed Au NPs on  (PAH/PAA)n multilayer films. 

2.3 Synthesis of Au Nanoparticles   

All glass wares were cleaned in 3.0 M nitric acid and rinsed with DI water. 

Spherical gold nanoparticles having LSPR maximum at ~520 nm were synthesized 

by Turkevich method.
112
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A stock solution of 5.0x10
-3 

M gold (III) chloride hydrate was prepared in DI water 

and stored at dark. An intermediate gold standard solution with a 5.0 x 10
-4 

M was 

prepared to synthesize Au NP. 1.0% (w/w) sodium citrate solution was prepared as a 

reducing and capping agent. On a magnetic stirrer, gold solution was heated to boil. 

5.0 mL of 1.0% (w/w) sodium citrate solution was added to the boiling solution and 

after that the solution was stirred and heated 15 minutes more. The color of the 

solution turned from pale yellow to ruby red which indicates the formation of gold 

nanoparticles. The formation reaction of gold nanoparticles is shown as 

follows:
162,163

 

 2HAuCl4+3C6H8O7(Citric acid) 2Au+3C5H6O5(3-ketoglutaric acid)+8HCl+ 

3CO2 

2.4 Coating of Polyelectrolyte Films with Au NPs 

Multilayers were dipped into 15.0 mL Au NP solution with 2, 6 or 12 hour 

deposition times. After the Au NP deposition step, the films were rinsed with DI 

water.  Before SERS measurements, the prepared SERS substrates were dipped into 

1.0x10
-5 

M benzenethiol solution for 2 hours.   

2.5 Characterization Techniques 

Ellipsometry: The LbL film growth of polyelectrolyte multilayers (up to 100 nm) 

was followed by PHE-102 ellipsometer.  

UV-vis Spectroscopy: For the LSPR measurements of Au nanoparticles, Varian Cary 

100 Bio UV-Vis Spectrometer was used.  

Dynamic Light Scattering (DLS) and Zeta Potential:  Hydrodynamic size and zeta 

potential of Au nanoparticles were measured using Malvern Zetasizer Nano-ZS. 

Average hydrodynamic size of Au nanoparticles was acquired by DLS technique. 

Zeta potential data were gathered from electrophoretic mobility values using 

Smoluchowski approximation.  

Atomic Force Microscopy (AFM): The roughness, thickness and 2D/3D images of 

the multilayers with and without gold were measured using Veeco MultiMode V 

instrument in tapping mode at METU Central Laboratory.  
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Raman Spectroscopy:  Horiba LABRAM Raman spectrometer at Chemistry 

Department, Bilkent University was used to record the SER spectra of the analyte 

molecules. The instrument calibration was checked with with silicon wafer before 

each measurement. 632 nm He-Ne excitation laser operated at 2.50 mW power. Slit 

size of 200 μm and confocal hole size of 1100 μm were used.  Data were collected 

using 50x objective (spot size ~1), 600 g/mm grating with a resolution of 2-3 cm
-1 

with 25s acquisition time and each spectrum was taken 4 times and then averaged. 

For SERS mapping, Bruker Senterra Raman spectrometer at Restoration 

Department, METU was used with a 785 nm laser operated at 1 mW power and a 

resolution of 9-10 cm
-1

. 30x25 data points (total surface area: 120x88µm 
2
) were 

collected with lens using 5 s integration time and the signal on each point averaged 

twice. The baseline is substracted from the Raman spectra using Origin program. 

The same instrument with 100 s integration time and 2 accumulations was used to 

get SER spectra for the prepared substrates without the probe molcule.  
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CHAPTER 3 

 

 

3 RESULTS AND DISCUSSION 
 

 

In this part, characterization of spherical gold nanoparticles (Au NPs) and Au NP-

absorbed linear and exponentially grown multilayer films of (PAH/PAA)n as SERS 

substrates are discussed. 

3.1 Characterization of Spherical Au NPs 

Gold nanoparticles have characteristic optical properties in the visible region of the 

electromagnetic spectrum because of localized surface plasmon resonances (LSPR) 

of their free electrons.
164

 The extinction spectra of Au nanospheres are calculated by 

Mie theory and nanospheres which are smaller than 100 nm have LSPR peaks at the 

green part of the visible region.
165

 Gold nanoparticles of diameter 3 nm and below 

are too small to have a plasmon band.
117

  

In Fig. 13 LSPR band of gold nanoparticles synthesized in this study using 

Turkevich Method at ca. 518 nm is shown. This method produces gold colloids with 

a size of 20 nm  2 nm. The size can be tuned by the amount of reductant (sodium 

citrate) i.e. higher concentration of sodium citrate relative to gold chloride solution 

produces smaller nanoparticles down to 12 nm and lower concentration of sodium 

citrate relative to gold chloride solution produces larger nanoparticles up to 150 

nm.
166

 For further demonstration of size distribution we performed DLS 

measurement. The average size of Au NPs was found to be 11.9  0.6 nm (5% RSD, 

averaged from 6 measurements). For the charge of Au NPs, Zeta potential 

measurements were performed in which citrate capped Au NPs have -36.8  1.3 (4% 

RSD, averaged from 6 measurements). These results are consistent with literature 

values.
167,168

 Average hydrodynamic size distribution and zeta potential of gold 

nanoparticles are given in Figs. 14 and 15, respectively.
112
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Figure 13. UV-Vis spectrum of Au NPs.  

 

 

           Figure 14. Hydrodynamic size distributions of Au NPs by Dynamic Light Scattering 

method for 6 measurements. 

 

Figure 15. Zeta potentials of Au NPs for 6 measurements. 
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3.2 The Multilayer Films of (PAH/PAA)n  

Oppositely charged weak polyelectrolytes were deposited alternatively by 

electrostatic interactions using LbL assembly method. Nanoscale control of the film 

thickness depends on parameters such as the type and molecular weight of the 

polyelectrolytes, pH and ionic strength.
169-173

 Two systems with different growth 

profiles were investigated throughout this study, i.e. linear and exponentially grown 

multilayer films. 

For pH 3.5/7.5 PAA/PAH multilayers (exponential growth), with PAA (pKa= 3.0), 

has low ionization, whereas PAH (pKa= 8.8) is partially protonated.
173

 After the two 

layers, deposited PAA becomes fully ionized in PAH solution at pH 7.5 (third 

layer). Thus, large amount of PAH chains were attracted from the solution to pair up 

with the previous PAA layer. As the amount of PAH chains is high the outermost 

PAH layer becomes thick and covers the underlying PAA chains. Highly 

interpenetrated multilayer structures with thick outmost layer are obtained.
174,175

 

Although exponential growth mechanism is not well-understood, there are some 

mechanisms suggested to explain and understand the growth. Initially, it was stated 

that increase in the film roughness should be responsible for such a behavior but 

thicknesses up to micrometers cannot be explained only with roughness 

phenomenon.
175

 Later, Elbert and co-workers
174

 suggested that the exponential 

growth is the result of the complexation of oppositely charged polyelectrolytes on 

the film. For instance in one example, poly(L-lysine) (PLL) / hyaluronic acid (HA) 

film formation was analyzed. It was observed that, PLL (polycation) diffuses “in” 

and “out” of the film in the course of growth. Diffused out PLL chains form 

complexes with polyanion HA at the outer layer of the film. Thus, the thickness of 

the outmost layer is directly related with the amount of PLL chains which diffuse 

out in the presence of HA. This build-up process was also studied by another group 

in which fluorescent molecules were used in order further to clarify the 

mechanism.
175

 Fluorescent dye conjugated polyelectrolytes, which was monitored 

via confocal laser scanning microscopy, clearly showed “in” and “out” diffusion 

process.  

 For pH 6.5/6.5 PAA/PAH (linear growth) a zipped and smooth structure with 

interpenetrated layers of neighboring polyelectrolytes is obtained as a result of fully 
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charged polyelectrolyte pairs. Each polyelectrolyte deposition step over-

compensates the charge of the previous polyelectrolyte. 
77,80,175-177

 Fig. 16 shows the 

general chemical structure of aligned polyelectrolytes, consisting of a repeating 

carbon backbone with  amine (NH2/ NH3
+
) and carboxyl (COOH/COO

-
) functional 

groups for PAH and PAA respectively.
178

  

 

Figure 16. Functional groups of PAH (pH= 6.5), PAA (pH= 4.0) polyelectrolytes.  

 

3.3 Multilayer Growth  

Growth of polyelectrolyte films was followed by ellipsometer, by measuring the 

thicknesses of the film after each layer deposition. Layer growth of exponentially 

grown (PAH/PAA)n film is shown in Fig. 17. Note that the exponentially grown film 

thickness reaches up to 100 nm for 12 layers (data not shown) as can be understood 

from the exponential increase of the line. Due to the instrument limitations, the film 

thickness upper than 100 nm could not be measured.  
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Figure 17. Thickness values of the exponential grown (PAH/PAA)n multilayer films.. 
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3.4 UV-vis Spectroscopy of Citrate Capped Au NPs on (PAH/PAA)n Films 

with Different Deposition Periods for Exponentially and Linear Grown 

Systems  

UV-vis spectra of absorbed Au NPs on (PAH/PAA)n films with various deposition 

periods were measured. A red shift is observed when Au NPs are absorbed into the 

films compared to Au NPs in solution. Au NPs in the films have different dielectric 

properties as a result of their strong interactions with polyelectrolyte layers and with 

each other. These interactions are responsible for collective oscillations of electrons 

and thus surface plasmon resonances (SPR) of Au NPs. A red shift of SPR is an 

expected phenomenon when Au NPs approach to each other due to polyelectrolyte-

Au NP interactions. Furthermore, increasing the number of polyelectrolyte layers 

causes a change in interactions of Au NPs with each other and polyelectrolyte layers 

and causes change in Au NPs LSPR band with more red shift in SPR.
136

 Optical 

properties of nanoparticles are sensitive to size, shape, concentration, agglomeration 

and so on. Kelly et al. carried out a theoretical study and discussed the influence of 

size, shape and dielectric environment on the optical properties of Ag NPs. They 

have reported that SPR shifted to red when the shape of a spherical nanoparticle 

became flattened or increased in size as a result of increased electromagnetic 

effects.
28

  

Fig. 18a represents the absorbance of citrate capped Au NPs having 12 h deposition 

time as a function of number of layers for exponentially grown films. Increasing n 

from 9 to 29 resulted in increased plasmon resonance with a red shift in the 

absorption peak. For other layers (n = 39 and 49) plasmon resonance of Au 

nanoparticle can be also seen but n = 39 has a decrease in absorption. It may be 

because of a defect on the surface of the film. For 6 h and 2 h Au NP deposition 

times, absorbance of Au NPs (Figs. 18b and 18c) were lower (except n = 9) as 

compared to 12 h deposition time.  
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Figure 18. UV-vis absorption spectra of Au NPs absorbed on exponentially grown 

(PAH/PAA)n multilayer films with increasing number of layers (L). Deposition time of Au 

NPs (a) 12h (b) 6 h (c) 2 h.  
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Figure 19. UV-vis absorption spectra of Au NPs absorbed on linear grown (PAH/PAA)n 

multilayer films with increasing number of layers. Deposition time of Au NPs (a) 12h (b) 6 

h (c) 2 h. 
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UV-Vis spectra of Au NPs deposited on linear grown films with 12 h deposition 

time were measured (Figure 19a). As the number of layer increases from 9 to 29, the 

LSPR peak of Au NPs became narrower and the maxima of the peak increased. The 

broader peak for n = 9 proves the greater size of Au NPs with a red shift of the 

absorption maxima. The agglomeration of Au NPs can be seen from AFM images in 

Fig. 26. For 6 h and 2 h deposition times (Figures 19b and 19c), absorption of Au 

NPs decreases which is a result of the low coverage of the film with Au NPs.  

3.5 AFM Measurements 

3.5.1 AFM of Exponential System 

First, 2D and 3D AFM images of (PAH/PAA)n (n = 9,29) multilayers were studied 

(Figs. 20 and 21). As seen in these figures, the surface roughness increased as the 

number of layers deposited at the surface increased. Note that the roughness (Ra) 

values were recorded from 25x25 µm
2
 images. For n = 29 two scan sizes were given 

for the better representation of loop-rich conformation of this layer. The reason for 

increasing surface roughness can be explained by: i) increased surface area and 

amount of deposited particles on the surface by increase in number of layers and /or 

ii) loop and tail structure of exponential films as the number of layer increases. 

Since the thickness and roughness values of (PAH/PAA)29 are high to measure using 

AFM, the layers higher than n = 29 were not characterized by AFM. 

 

                          (a)                                                                         (b) 

 

Figure 20. 2D (a) and 3D (b) images of (PAH/ PAA)9 exponential system without Au NPs. 

    Ra= 1.52 nm 

   Thickness=  69±4 nm 
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                            (a)                                                                                 (b)                  

 

Figure 21. 2D (a) and 3D (b) images of (PAH/ PAA)29 exponential system without Au 

NPs. The loop and tail structure of (PAH/PAA)29 can be seen for both small (5x5m
2
) and 

large (25x25m
2
) surface area. 

 

We then analyzed the surface morphology of the films having Au NPs (Deposition 

time=12 h) (Figs. 22 and 23). The roughness value of (PAH/PAA)29 with Au NP was 

lower than that of the (PAH/PAA)29 without Au NPs. This may be because Au NPs 

fill the loose multilayer structure of the exponentially grown films resulting in lower 

surface roughness. Similar phenomenon was not observed for 9L film. This is 

probably due to stratified structure of the 9L film than that of 29L resulting in 

absorption of Au NPs at the surface rather than absorption by the multilayer matrix 

as observed in 29L films. 

 

 

 

Ra= 423 nm 

Thickness= 1268 nm 
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(a)                                                               (b) 

 

Figure 22. 2D (a) and 3D (b) images of (PAH/ PAA)9 exponential system with Au NPs. 

 

(a)                                                              (b) 
 

 

Figure 23. 2D (a) and 3D (b) images of (PAH/ PAA)29 exponential system with Au NPs.  

Ra= 107 nm 

Ra= 19.2  nm 
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3.5.2 AFM of Linear System  

2D and 3D AFM images of (PAH/PAA)n (n = 9, 29) were measured with and 

without Au NPs (12 h deposition). Roughness and thickness values increased for 

(PAH/PAA)n multilayers as the number of polyelectrolyte layers increased (Figs. 24 

and 25) but it is not much significant as compared to exponentially grown system 

(Figs. 20 and 21).  

(a)                                                                          (b) 

 

Figure 24. 2D (a) and 3D (b) images of (PAH/PAA)9 linear system without Au NPs. 

 

(a)                                                                            (b) 

 

 

Figure 25. 2D (a) and 3D (b) images of (PAH/PAA)29 linear system without Au NPs. 

 

Ra= 0.93 nm 

Thickness= 4 nm 

Ra= 1.82 nm 

Thickness= 40±4 nm 
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Moreover, the roughness values increased for both n = 9 and n = 29 (Figs. 26 and 

27) with Au NPs which is similar to exponential 9L film (Fig. 22). 9L film follows a 

different trend and this is also observed in UV-vis spectrum of linear grown 9L 

which has it’s a broader absorbance peak with a red shift compared to other layers 

(Fig. 19a). This difference is probably due to tightly packed aggregated Au NPs on 

the surface which also causes higher SERS signals (discussed later).  

 

                           (a)                                                                        (b) 

 

Figure 26. 2D (a) and 3D (b) images of (PAH/PAA)9 linear system with Au NPs. 

 

                            (a)                                                                        (b) 

 

                                                                           

Figure 27. 2D (a) and 3D (b) images of (PAH/PAA)29 linear system with Au NPs. 

Ra= 8.66 nm 

Ra=  9 nm 
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Linear grown films having 39 and 49 layers were also measured. Roughness and 

thickness values increased as the number of layers increase for both without (Figs. 

28 and 29) and with (Figs. 30 and 31) Au NP coated multilayer films.  

 

(a)                                                            (b) 

 

       Figure 28. 2D (a) and 3D (b) images of (PAH/PAA)39 linear system without Au NPs. 

 

 

(a)                                                                       (b) 
 

 

Figure 29. 2D (a) and 3D (b) images of (PAH/PAA)49 linear system without Au NPs. 

 

 

 

 

Ra=  3.7 nm 

Thickness= 223±5 nm 

Ra=  8.8 nm 

Thickness= 603±7 nm 
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(a)                                                          (b) 
 

 

Figure 30. 2D (a) and 3D (b) images of (PAH/PAA)39 linear system with Au NPs.                  

 

                               

(a)                                                           (b)                  

 

Figure 31. 2D (a) and 3D (b) images of (PAH/PAA)49 linear system with Au NPs. 

 

3.6 SERS of Citrate Capped Au NPs Containing (PAH/PAA)n Films with 

Different Deposition Periods for Exponentially and Linear Grown 

Systems  

SER spectra of 1.0x10
-5

 M BT molecule on linear and exponentially grown films 

with Au NPs were measured. The effects of the type of PE films (linear or 

exponentially grown), the number of polyelectrolyte layers and depostion times of 

Au NPs on SERS signals were investigated. SER spectrum of BT molecule showed 

Ra= 9.68  nm 

Ra= 17.6 nm 
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characteristic vibrational features at Raman lines of 423 cm 
−1

, 693 cm 
−1

, 999 cm 
-1

, 

1024 cm 
−1

, 1075 cm 
−1

 and 1575 cm 
−1

. These lines correspond to C-S stretching 

mode, C-H out-of -plane deformation mode, C–C–C in-plane ring-breathing mode, 

in-plane C–H bending mode, in-plane ring-breathing mode coupled with the C–S 

stretching mode and the C–C stretching mode bonds of the molecule, respectively.
19

 

For exponentially grown films, 12 h (Fig. 32a), 6 h (Fig. 32b), 2 h (Fig. 32c) 

deposition periods of Au NPs were examined to investigate the effect of number of 

layers on SERS signals of 1.0x10
-5

 M BT. For 12 h Au NP deposition, the SERS 

signal increased as the number of layers increased from n = 9 to n = 29. As shown in 

Fig. 18a, the absorbance of Au NPs increased from n = 9 to n = 29. As the number 

of Au NPs increases, SERS signals also increase. However, in 2 and 6 h Au NP 

deposition times, there is not a direct relationship between number of layers, SERS 

intensity and deposition periods. Exponentially grown systems are reported to be 

better SERS substrates because Au NPs can interact both with the last layer of the 

multilayer film and the inside part of the film by the affinity of Au NPs to amine and 

carboxylic acid groups of polyelectrolytes as a result of the loop-rich structure of the 

film having high diffusivity. This can allow the assembly of probe molecules onto or 

inside the film because of larger deposition of Au NPs inside and on the surface of 

the film (hot spots).
157
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Figure 32. SER spectra of 1.0 x 10
-5 

M BT molecule on Au NP containing exponentially 

grown (PAH/PAA)n  multilayer films with different Au-NP deposition times ((a) 12h (b) 6 h 

(c) 2 h). Spectra are shifted vertically for clarity. 

 

For linear grown system, 12 h, 6 h and 2 h deposition times of Au NPs were 

examined to understand the effect of number of layers on SERS signals of 1.0x10
-5

 

M BT (shown in Figs. 33 and 34). For 12 h and 6 h Au NPs deposition, there is a 

10x increase in SERS signals of 1.0 x 10
-5

 M BT for (PAH/PAA)9 multilayer film 
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compared to other layers. This may be because of the formation of hot spots at the 

Au NP agglomerates. As the deposition time of Au NPs increases, SERS signals 

increase for 9L films. For the other layers, there are not significant increases in 

SERS signals as a function of the deposition time of Au NPs.  

     

Figure 33.  SER spectra of 1.0 x 10
-5 

M BT molecule on Au NP containing linear grown 

(PAH/PAA)9  multilayer films with different Au-NP deposition times ((a) 12h (b) 6 h (c) 2 

h). Spectra are shifted vertically for clarity. 
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Figure 34. SER spectra of 1.0 x 10
-5 

M BT molecule on Au NP containing linear grown 

(PAH/PAA)n  multilayer films with different Au-NP deposition times ((a) 12h (b) 6 h (c) 2 

h). Spectra are shifted vertically for clarity. 
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As can be seen from Fig. 35, the blank signals from linear (PAH/PAA)29 film (blue) 

or (PAH/PAA)29 film coated with Au NPs (black) are negligible compared to SERS 

signal from BT molecules on the surface of Au nanoparticles containing linear 

(PAH/PAA)29 film (red). These measurements were performed in order to show 

there is no signal coming neither from polyelectrolyte multilayer nor polyelectrolyte 

multilayer with Au NPs. For the other multilayer films prepared in this study, no 

Raman signals were measured from multilayered films with and without Au NPs.  A 

peak near 1500 cm
-1

 is due to glass emission. 

 

Figure 35. SER of linear (PAH/PAA)29 film with 12h Au NP deposition (black), with Au 

NP and BT molecule (red) and without Au NP and BT molecule (blue). All spectra were 

taken using 785 nm laser. Spectra are shifted vertically for clarity.  

 

3.6.1 Reproducibility of SERS Signals  

SERS signals from different points of substrates for exponentially (Fig. 36) and 

linear grown (PAH/PAA)n films (Fig. 37) were taken and one of them is shown in 

below for comparison of the signal reproducibility of linear and exponential 

systems.  
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Figure 36. SER spactra of 1.0 x 10
-5

 M BT on exponentially grown (PAH/PAA)29  films 

with 12h Au NP deposition.  
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Figure 37. SER spactra of 1.0 x 10
-5

 BT on linear grown (PAH/PAA)29  films with 12h Au 

NP deposition.  
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3.6.2 Enhancements of Raman Signals for Different Concentrations of BT 

versus Neat Raman Signal 

To show the limit of quantitation of BT molecule on Au NP coated multilayered 

films, Raman spectrum of BT was taken from the concentrated solution (~10 M) as 

shown in Fig. 38. The SER spectra of BT molecule having concentrations between 

1.0 x 10
-5

 M and 1.0 x 10
-7

 M are shown in the same figure. The Raman spectrum of 

10 M BT is included for comparison purposes. The high sensitivity of the SERS 

substrates allowed the spectra to be measured at a concentration level of 1.0 x 10
-6

 

M. The quantitation limit achieved was 1.0 x 10
-6

 M.  
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Figure 38.  Raman spectrum of neat BT molecule and SER spectra of 10
-5

, 10
-6

 and 10
-7

 M 

BT on linear (PAH/PAA)29 film with 12h Au NP deposition.  

 

3.7 SERS Maps on Linear and Exponentially Grown Films  

Many spectra can be obtained with SERS map tool for a selected area (120x88 µm
2
). 

Spacing between each data point was ~4 µm. In Figs. 39, 40, 41 and 42 SER spectra 

were gathered for 9, 29, 39 and 49 layer expo films, respectively and SER spectra 

are shown for 9 (Fig. 43) and 29 (Fig. 44) layer linear films, respectively. Each point 

represents the intensity of the spectrum (with respect to the most intense point) taken 

from a point on the films. For exponential system the signal intensities deviate from 
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each other with ca. 40% RSD on 120x88 µm surface area except for 39 layer which 

showed ~80% RSD. This can be related to the high roughness values of 

exponentially grown films or related with Au NPs that are diffused through the 

pores of exponentially grown films. On the other hand, for linear system (n = 29), 

the nanoparticle distribution on the surface was more homogeneous which leads 

similar signal intensities on the surface with less than 20% RSD for 29 layer (Fig. 

44). 

 

Figure 39. 3D SERS map of 1.0 x 10
-5

 M BT on Au NP containing (12 h deposition time) 

exponentially grown (PAH/PAA)9 film. 

 

Figure 40. 3D SERS map of 1.0 x 10
-5

 M BT on Au NP containing (12 h deposition time) 

exponentially grown (PAH/PAA)29 film . 
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Figure 41. 3D SERS map of 1.0 x 10
-5

 M BT on Au NP containing (12 h deposition time) 

exponentially grown (PAH/PAA)39 film.  

 

 

 

Figure 42. 3D SERS map of 1.0 x 10
-5

 M BT on Au NP containing (12 h deposition time) 

exponentially grown (PAH/PAA)49 film. 
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Figure 43. 3D SERS map of of 1.0 x 10
-5

 M BT on Au NP containing (12 h deposition 

time)  linear grown (PAH/PAA)9 film. 

 

 

 

Figure 44. 3D SERS map of 1.0 x 10
-5

 M BT on Au NP containing (12 h deposition time) 

linear grown (PAH/PAA)29 film. 
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CHAPTER 4 

 
 

4 CONCLUSIONS 
 
 

 
 

In this study, linear and exponentially grown films containing Au NPs were 

prepared as SERS substrates. The important parameter for our systems was pH and 

the pH of the medium was changed to prepare different film morphologies. 

Roughness values of exponentially grown systems were larger than linear grown 

system without Au NPs. Multilayer films containing gold nanoparticles were 

immersed for 2 h in aqueous solutions containing BT in concentrations ranging from 

10
-5

 M down to 10
-7

 M.  From the SERS map data, the signals of linear system were 

more reproducible than (except 9L) exponentially grown systems. The effect of 

number of layers and deposition times of Au NPs is not significantly different than 

each other considering enhancement in Raman signals except for 9L films. Both 

systems showed enhancements for 1.0x10
-5

 M BT molecule with minor differences 

except linear system of (PAH/PAA)9 with a large enhancement for all Au NP 

deposition times.  
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