
DATA ABSTRACTION METHOD FOR MODEL CHECKING OF REAL-TIME
SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA DURSUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2015

Approval of the thesis:

DATA ABSTRACTION METHOD FOR MODEL CHECKING OF REAL-TIME
SYSTEMS

submitted by MUSTAFA DURSUN in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Electrical and Electronics Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Semih Bilgen
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Engineering Department, METU

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Department, METU

Prof. Dr. Ali Doğru
Computer Engineering Department, METU

Assoc. Prof. Dr. Umut Orguner
Electrical and Electronics Engineering Department, METU

Assist. Prof. Dr. Ö. Özgür Tanrıöver
Computer Engineering Department, Ankara University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MUSTAFA DURSUN

Signature :

iv

ABSTRACT

DATA ABSTRACTION METHOD FOR MODEL CHECKING OF REAL-TIME
SYSTEMS

Dursun, Mustafa
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Semih Bilgen

February 2015, 56 pages

Model checking consists of automatic techniques for verifying whether a specified
formal property holds for a specific state in a given finite-state model of a system.
A major limitation of model checking arises in modeling infinite state systems. This
limitation is the main obstacle for model checking of real time systems, due to the
need for verifying real time constraints and the necessity of considering infinite data
domains. Timed automata models are used to successfully cater for temporal behavior
in modeling real time constraints. Abstracting infinite data sets with finite represen-
tations is mandatory for feasibility of model checking. In this study, we present an
abstraction method for data which is collectively produced by a set of concurrent,
asynchronous and periodic tasks in a real time system. The proposed method maps
the infinite data domain to a finite one by taking temporal dependencies into account,
and models the data with a finite state automaton. Proof of concept is provided with a
case study that implements the proposed technique on a multi-sensor data aggregation
problem.

Keywords: Formal Verification, Model checking, Data Abstraction, Timed Automata

v

ÖZ

GERÇEK ZAMANLI SİSTEMLERİN MODEL DENETİMİ İÇİN VERİ
SOYUTLAMA YÖNTEMİ

Dursun, Mustafa
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Semih Bilgen

Şubat 2015 , 56 sayfa

Model irdeleme, sonlu durum sistemlerinin doğrulanmasında, sistem modeli ve bi-
çimsel özellikler kullanılarak belli bir durumda belli bir özelliğin geçerli olup ol-
madığının sistematik biçimde irdelenmesini sağlayan otomatik teknikleri içerir. Mo-
del irdelemenin başlıca sınırlaması sonsuz durumlu sistemlerin modellenmesinde or-
taya çıkmaktadır. Bu sınırlama, gerçek zaman kısıtlamalarının doğrulanması ve son-
suz veri tanım kümelerinin göz önünde bulundurulması zorunluluğundan dolayı, mo-
del irdelemenin gerçek zamanlı sistemlerde uygulanabilmesi için esas engeldir. Za-
manlı otomatlar zamansal davranış üzerindeki gerçek zaman kısıtlarının modellenme-
sinde başarıyla kullanılmaktadır. Sonsuz veri kümelerinin soyutlanarak sonlu betim-
lenmesi model irdelemenin uygulanabilirliği bakımından zorunludur. Bu çalışmada,
eşzamanlı, asenkron ve periyodik bir görev kümesi tarafından müşterek olarak üre-
tilen veri için bir soyutlama yöntemi sunulmaktadır. Önerilen yöntem ile, üretilen
verilerin zamansal bağımlılıkları dikkate alınarak sonsuz bir veri tanım kümesi sonlu
bir veri tanım kümesi ile eşlenmekte, ve veri bir sonlu durum otomatı ile modellen-
mektedir. Önerilen yöntemin uygulanabilirliği, çok algılayıcı bir sistemde veri bütün-
leştirme problemi üzerinde gösterilmiştir.

Anahtar Kelimeler: Biçimsel Doğrulama, Model İrdeleme, Veri Soyutlama, Zamanlı

vi

Otomatlar

vii

To my wife Eda, and my son Kemal

viii

ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Semih Bilgen for his constant support
and guidance. It was a great honor to work with him for the last twelve years and
our cooperation influenced my academical and world view highly. I also would like
to thank Professor Lui Sha for his support and guidance on my stay at University of
Illinois at Urbana Champaign. While away from my home, he not only supported
me on my research but also provided that I feel welcome. He also motivated and
influenced me highly in scientific context.

A lot of people influenced and supported this work scientifically and their contribution
were most valuable for me. Members of my thesis committee Professor Ali Doğru
and Assoc. Prof. Cüneyt Bazlamçcı always gave valuable feedback for the progress
of this work, and were not hesitant to warn me of the shortcomings or risks of my
work. Assoc. Prof. Umut Orguner also provided valuable feedback for the case study
of this research.

I would like to thank my superiors at ASELSAN for their support and tolerating me
time for the Phd. studies

My family also provided invaluable support for this work. I am grateful to my mother,
Hatice Çifter, and especially my wife,Eda Altuntaş, she always make me feel loved
and cared.

ix

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 The Objective of the Study, Research Questions and Scope
of the Study . 3

1.2 Organization of the Document 4

2 LITERATURE SURVEY . 5

2.1 Real-Time Systems . 5

2.2 Formal Verification and Model Checking 6

2.3 Model Checking of Real-Time Systems 9

x

3 DATA ABSTRACTION METHOD 11

3.1 Reference System Model 11

3.2 Data Abstraction Mapping 21

3.3 Data Abstraction Algorithm 26

4 CASE STUDY: MULTI SENSOR TRACK TO TRACK DATA FU-
SION . 29

4.1 Multi Sensor Data Fusion and Out of Sequence Track Problem 29

4.2 Abstraction of Central Track Data 36

5 CONCLUSION . 41

5.1 Contributions . 42

5.2 Limitations and Future Work 43

REFERENCES . 45

APPENDICES

A DATA ABSTRACTION ALGORITHM PROCEDURES 49

CURRICULUM VITAE . 55

xi

LIST OF FIGURES

FIGURES

Figure 3.1 Example of two periodic tasks without any release time jitter 13

Figure 3.2 Example of two periodic tasks with release time jitter 13

Figure 3.3 Example of two periodic tasks with release time jitter 22

Figure 3.4 Abstract Central Estimation State Diagram 23

Figure 4.1 Track to Track Data Fusion System 30

Figure 4.2 Track-to-Track Fusion . 31

Figure 4.3 RMSE for cases 1, 2, and 3 . 34

Figure 4.4 RMSE for cases 1, 2, and 4 . 35

Figure 4.5 Trace of P(k) for cases 1, 2, and 3 35

Figure 4.6 Trace of P(k) for cases 1, 2, and 4 36

Figure 4.7 Task Automaton Aτn . 37

Figure 4.8 Central Track Automaton (P1 = P2) 38

Figure 4.9 Central Track Automaton (P1 = P2 = P3) 39

xii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 GLOBAL RESULT FINITE STATE AUTOMATON CREATER . . . 27

xiii

LIST OF ABBREVIATIONS

ACTL Action Computation Tree Logic

CTL Computation Tree Logic

IMF Information Matrix Fusion

LTL Linear Temporal Logic

MSDF Multi Sensor Data Fusion

OOST Out of Sequence Track

TA Timed Automata

TCTL Timed Computation Tree Logic

xiv

CHAPTER 1

INTRODUCTION

Formal verification aims to prove or disprove the correctness of the design of a system

described in a mathematical formalism according to a property or a set of properties.

Formal verification with model checking techniques are based on models describ-

ing the system behavior in a mathematically precise and unambiguous manner, and

formalizing the property to be checked [1]. Given a finite-state model of a system

and a formal property, model checking aims to systematically determine whether this

property holds for (a given state in) that model [1]. Prerequisites of model checking

are formal specification of the system behavior with a finite state model, and formal

specification of the properties to be checked with a property specification language.

A model checking technique explores the mathematical model of the system exhaus-

tively, and checks all explored states of the system model in order to prove that a

given property is satisfied. The applicability of model checking is limited by the

requirement that system behavior be modeled by a finite number of states.

In a real-time system the correctness of system behavior depends not only on the cor-

rectness of the output, but also the time at which the output is produced [3]. A task

is the primary unit of computation in a real-time system. A task performs compu-

tation on inputs to produce computational results conveyed to the physical world as

system outputs or to other tasks as inputs. The computation time of a task is finite and

response time is the elapsed time from the task release time to the finishing time of

computation [4]. Computational results of a task depend on the temporal constraints

on the task such as the response time and specified deadlines. Therefore, both data

and temporal characteristics have to be specified in the formal model of a real time

1

system to apply model checking. Real-time constraints and multivalued data vari-

ables over an infinite domain [7] necessitate the use of finite abstract system models

for model checking, which obstructs the applicability of model checking for real time

systems. Therefore, specification of time and data in the system model necessitates

abstraction to construct finite abstract system model.

Modeling the timeliness of a system is possible with timed modeling formalisms,

which are augmented with clocks to express timeliness. The problem of infiniteness

caused by specification of time has two aspects. Firstly, specification of time has to

be finite and progress of time must be restricted by some conditions [14]. Since real-

time systems have bounded response time, period, computation time and deadline, it

is possible to restrict progress of time in system model with bounded and finite clock

variable values. Secondly, even if the progress of time is restricted in the system

model, exploring global states of system by taking timeliness into account may cause

infiniteness. Timed automata [9], a well-accepted model for representing and ana-

lyzing real-time systems, presents a solution to this problem by using region graph

construction [10]. Region graph construction abstracts behaviors of timed automata

by constructing a finite automaton, region automaton.

The problem of infiniteness caused by specification of data over infinite domain in

the system model requires data abstraction [11]. Data abstraction maps the concrete

data values to abstract data values over a finite domain according to an abstraction

mapping. In real time systems data values depend on the real time constraints of the

system, therefore data has to be abstracted according to the temporal dependencies.

These dependencies are complex when concurrency and asynchrony exist

Real time systems are usually highly concurrent and asynchronous, and some com-

putational results are collectively produced by a set of concurrent, asynchronous and

periodic tasks, which process input data from different sources via a common opera-

tion. Due to concurrency and asynchrony, out of order execution of tasks is possible.

If collective execution of the task set is not order independent, out of order execution

of tasks lead to the out of sequence processing of input data, hence task functional-

ity may be severely degraded. For reliable model checking, the finite state system

model must correctly represent such temporal characteristics of concurrent and asyn-

2

chronous tasks over infinite data domains.

1.1 The Objective of the Study, Research Questions and Scope of the Study

The objective of this study is to propose a data abstraction method for infinite domain

data collectively generated by a set of concurrent, asynchronous and periodic tasks in

a real time system. Hence, the two fundamental research questions to be addressed

are:

1. Determination of an abstract set of data values;

2. Constructing a mapping between concrete data values and the determined ab-

stract data set, preserving model characteristics for model checking.

The proposed method abstracts data from an infinite concrete domain according to a

categorization of “usefulness”. Hence the abstract data domain consists of two values;

acceptable and erroneous. While acceptable data value represents no degradation in

usefulness of data generated by a set of multiple concurrent producers, that is, compu-

tational results of a concurrent set of tasks, erroneous data value represents degraded

usefulness of the produced data. To determine the usefulness of the computational

result of a task set, characteristics of the common operations that the set of tasks set

perform to generate the computational result is important. If the common operation

of the task set is not order independent, than the process sequences of the input data

in the task set affect usefulness of the computational result. Concurrency and asyn-

chrony of the task set lead to the possibility of out of sequence data processing, which

causes degradation in the usefulness of the computational result. On the other hand,

having mechanisms to provide resiliency against out of sequence data processing to

eliminate the degradation in the usefulness of computational result is a requirement

of real time systems [6]. In this study, we restrict the scope of the abstraction method

to systems that have mechanisms to eliminate degradation in the usefulness of com-

putational results when in sequence input data is processed in correct sequence. In

this respect, abstraction method maps concrete data domain to abstract data domain

according to the execution order of tasks and thereby input data process sequences.

3

While out of sequence process of input data causes erroneous data value, acceptable

data value is acquired by in sequence process of input data.

Using execution order of tasks in the abstraction mapping enables removing absolute

time and input data values from the system model. On the other hand, this map-

ping requires specification of execution orders of tasks, thereby input data process

sequences, according to the abstract data values in the system model. Therefore, a

relation between abstract data values and input data process sequence has to be de-

fined according to the common operation characteristic that is performed by the task

set. Since the computational result is produced by periodic real time tasks and com-

mon operation has mechanisms to eliminate degradation in usefulness, it is possible

to specify execution orders of tasks with finite states and transitions according to the

abstraction mapping. Data abstraction method abstracts the computational result data

with finite state automaton whose states represents the usefulness of computational

result and input data process sequences according to the usefulness of computational

result.

1.2 Organization of the Document

The remainder of this dissertation is organized as follows: Chapter 2 briefly reviews

the relevant literature. Chapter 3 describes the reference system model and sequen-

tialization of concurrency in the system model into the input data process sequences in

the first section. The proposed data abstraction mapping and algorithm is introduced

in the section of Chapter 3. That chapter also presents a rigorous analysis of certain

properties of and relations between the constituents of the proposed method. Chapter

4 is devoted to a case study that illustrates implementation of the proposed abstraction

technique in the context of a multi-sensor data aggregation problem. Finally, Chapter

5 concludes the dissertation and summarizes the contributions and limitations of this

research. Possibilities for further study are also provided in this chapter.

After the bibliography, three appendices which consist of (A) data abstraction algo-

rithm procedures are presented.

4

CHAPTER 2

LITERATURE SURVEY

2.1 Real-Time Systems

A real-time system is a computer system whose correctness depends not only on the

output, but also the time at which the output is produced [3]. Real-time systems

are inherently concurrent because they have to model the parallelism that exists in

the real-world objects that they are monitoring and controlling [5]. Many real-time

systems are reactive to control factories, plants, transportation systems, cars, and a

wide variety of everyday objects. To achieve this, a real-time system collects data

and produces results about the state of controlled object, then generates actuation

commands according to the produced results to control the state of controlled object.

The state of controlled object is defined by state variables.

A real-time system is usually modeled as a set of concurrent tasks [4]. Each task rep-

resents a computation that needs to be performed according to a set of resources and

timing constraints [4]. A task is described by timing parameters. Release time is the

time instant at which a task becomes ready for execution [3]. Computation time is the

time necessary to complete task’s computation without any interruption. Completion

or finishing time is the time instant at which the task’s computation is completed. Re-

sponse time is the length of time from release time to the completion time. Deadline

is the time instant by which computation of a task is required to be completed. The

tasks in a real time system have different types such as periodic, sporadic and aperi-

odic. The tasks which are executed repeatedly at regular intervals can be modeled as

periodic tasks. On the other hand, tasks responding external events can be modeled

5

as sporadic or aperiodic. A periodic task is characterized as a sequence of jobs. A job

is a task instance scheduled and executed in each period on different data.

In many real-time systems, tasks communicate via shared data. Producer and con-

sumer tasks are synchronized if they are constrained to execute in a particular order.

On the other hand, if there is no constraint about the execution orders of tasks, each

producer task places the data generated by it in a shared address space to be used by

the consumer task at any time [3].

The behavior and outputs of a real-time system depends on the accuracy of the com-

puted state variable values of controlled objects. The increasing jitter in release times

and variation in execution times of the tasks computing state variables defers the com-

putation of state variable values, and causes usage of old values of state variable by

consumer tasks. Moreover, the asynchrony and concurrency of consumer tasks may

result in out of order executions, which causes update of state variables with older

information. In these situation, the accuracy of state variables degrades. For hard

real time systems, the degradation in the accuracy of state variables causes failures.

In contrast, in soft real time systems the degradation in the accuracy can be tolerated

according to the usefulness of state variables. However, this situation requires taking

the usefulness of state variables into account for the system behavior.

2.2 Formal Verification and Model Checking

Formal verification consists in proving or disproving the correctness of the design

of a system described in a mathematical formalism [1]. Model checking [2] is a

collection of automatic techniques for verifying finite-state concurrent systems that,

given a finite-state model of a system and a formal property, systematically checks

whether this property holds for (a given state in) that model [1]. Formal verification

with model checking techniques are based on models describing the system behavior

in a mathematically precise and unambiguous manner, and formalizing the property

to be checked [1]. A model checking technique explores the mathematical model of

the system exhaustively, and checks all explored states of the system model in order

to prove that it satisfies a given property.

6

There are two prerequisites of model checking: Formal specification of the system be-

havior with a formal model, and formal specification of the properties to be checked

with a property specification language. Formal modeling of system behavior is a

challenging task and decisive about the success of formal verification. The system

models are mostly expressed using finite-state automata, consisting of a finite set of

states and a set of transitions [1]. Some of the most important modeling formalisms

are guarded command language [16], and process algebra [17, 18]. In addition to the

modeling of the system behavior, the properties that are to be verified has to be spec-

ified in a formal logic. Temporal logic is a formal logic which has a a high degree of

expressiveness for reactive and concurrent systems [27]. The main operators of tem-

poral logic are eventually and always. Temporal logic enables to specify reachability,

liveliness, safety, and fairness properties. Temporal logic has two main classifica-

tions: Linear temporal logic (LTL) [28], Computation Tree Logic (CTL) [46] and

CTL* [47], which subsumes both LTL and CTL. LTL is based on a linear-time per-

spective; a computation is viewed as a linear sequence with only one possible state at

each moment of time. On the other hand, CTL is based on branching-time perspec-

tive; a computation is viewed as a tree sequence with many possible states at each

moment of time. Basic temporal modalities of temporal logic include eventually, 3,

and always, � operators. LTL adds two basic temporal operators next, O, and until,

U . CTL includes additional temporal operators to allow the expression of branching;

existential quantifier, ∃, and a universal quantifier, ∀.

Model checking technique is basically an algorithmic approach in which the prop-

erties of system are checked if they are satisfied in all states of the system model.

Different property specification languages and modeling formalisms requires differ-

ent model checking algorithms. The main and common obstacle of model checking

is state explosion problem. The number of states of a system model can be enormous

[15] because of concurrency and asynchrony. For a system consisting of multiple

processes with finite states without any synchronization, the number of global states

is the product of state numbers of all processes. State explosion problem is an im-

portant issue in model checking of asynchronous and concurrent systems. Moreover,

software and hardware systems are data-dependent, and contains multivalued vari-

ables. Specification of multivalued variables in a system model increases the number

7

of global states exponentially if the variables are bounded and causes state explosion

problem. Finally, specification of time for the verification of timed systems are more

complex than verification of untimed systems, resulting state explosion problem. To

avoid the state explosion problem several methods are developed for model checking

algorithms. Symbolic model checking with binary decision diagrams (BDD) [29] is

a method to fight with state explosion problem by representing the system states with

binary decision diagram instead of a transition system. Another method is the partial

order reduction, which tackle with the state space explosion in concurrent systems

with asynchronous components. The concurrency and asynchrony makes different

execution orderings of transitions possible. On the other hand, if transitions are in-

dependent different orderings does not affect the outcome. Partial order reduction

method observes the independence of transitions and ignores the transitions which

gives the same outcome. Counterexample-guided abstraction refinement [30] is an-

other method for tackling the state explosion problem. Abstraction is another method

of reducing the size of state space of the system model to tackle the state explosion

problem. Abstraction takes a model and replaces the states of system model with

abstract states according to an abstraction mapping and constructs an abstract model.

Existential abstraction [31], computes an upper approximation of the original model.

When a specification in the temporal logic is true in the abstract model, it will also be

true in the concrete design. However, if the specification is false in the abstract model,

the counterexample may be the result of some behavior in the approximation which

is not present in the original model. When this happens, it is necessary to refine the

abstraction so that the behavior which caused the erroneous counterexample is elim-

inated. The main contribution of [9] is an efficient automatic refinement technique

which uses information obtained from erroneous counterexamples. The refinement

algorithm keeps the size of the abstract state space small due to the use of abstraction

functions which distinguish many degrees of abstraction for each program variable.

Bounded model checking [32] is another method, which exploits fast Boolean satis-

fiability (SAT) solvers to search for counterexamples of bounded length [15].

8

2.3 Model Checking of Real-Time Systems

For model checking of real time systems, the timed modeling formalisms are nec-

essary to formalize the timeliness of a system, and they are augmented with clocks

to express timeliness. Some of the most important modeling formalisms for timed

systems are timed process algebra [19], time petri nets (TPN) [21], and timed (TA)

[8, 9]. TPN is very useful for modelling of a wide range of real-time systems in-

cluding work-flow processes, scheduling problems and others [22]. In TPN, each

transition is associated with a clock that records the time lapse since it was last en-

abled. On the other hand, unbounded TPN are too expressive and are hence unsuitable

for automatic verification, which means that most of the verification approaches are

limited to bounded nets [22]. Timed automata (TA) [8, 9] are a well-accepted model

for representing and analyzing real-time systems. TA are as expressive as bounded

Petri net based models. TA forms an extension of finite automata with dense time

clocks and enables one to specify real-time systems. A combination of an easily un-

derstandable syntax and semantics together with the support for C-like constructs and

data structures makes TA a widely applicable and successful approach to modeling

and verification of time dependent systems [22].

Timed automata are now widely used to model real-time systems. To specify proper-

ties of timed automata, the most used branching-time temporal logic is TCTL, Timed

Computation Tree Logic (TCTL) [9, 12]. TCTL is a real-time variant of CTL aimed

to express properties of timed automata. The main difficulty of the TCTL model-

checking problem is that a transition system with uncountably many states has to be

analyzed [1]. To solve this problem, region graph construction [10] is widely used.

Region graph construction constructs the region automaton, which is finite and suit-

able to apply ordinary model checking techniques. On the other hand, the number

of states of the region automaton can increase exponentially. Model checking of

timed automata is supported by tools like Kronos [23], UPPAAL [24], RED [25], and

CMC [26]. These tools support timed automata, TCTL, and construction of region

automata. They treat clock variables differently from discrete state variables and use

specialized data structures to represent clock regions in order to suppress exponential

increase in the number of states of the region automaton [13]. On the other hand,

9

some of these tools, such as KRONOS, does not allow variables, which makes tool

unsuitable for data operations.

10

CHAPTER 3

DATA ABSTRACTION METHOD

3.1 Reference System Model

In this study we consider real-time systems that consist of concurrent periodic real-

time tasks.In this study we consider real-time systems that consist of concurrent peri-

odic real-time tasks. A task, τi is a tuple 〈Ii, Ti, φi, Pi, Ci〉, where I is a task identifier,

T is a bounded procedure, P is the period, φ is the release offset of the task with re-

spect to the minimum release time of the task set, and C is the worst case execution

time of the task. A task periodically executes T , and each periodic execution of a task

is called a job (J ji), where J ji denotes execution of τi in the jth period. A task is a

sequence of jobs, τi = {J ji }∞j=0.

A task set T is the set of N periodic real-time tasks, which are related through a

collectively performed system function to produce a computational result in its pro-

cedure T . A task set is a concurrent composition of the tasks and jobs belonging to

tasks. Therefore, it is possible to express a task set as a composition of N tasks:

T = {J j1}∞j=0||{J
j
2}∞j=0||...||{J

j
N}
∞
j=0 (3.1)

The execution orders of jobs in a task set depend on the period and release offset of

the tasks. To involve the temporal properties, we define the task set as a sequence

of jobs by using unit impulse as described in expressions 3.2, where k represents the

involvement of temporal properties. A member of the sequence in the nth index or

11

order is represented as Tn(k).

T (k) =J0
1 δ(k − φ1) + J1

1 δ(k − P1 − φ1) + J2
1 δ(k − 2P1 − φ1) + ...

+ J0
2 δ(k − φ2) + J1

2 δ(k − P2 − φ2) + J2
2 δ(k − 2P2 − φ2) + ...

...

+ J0
Nδ(k − φN) + J1

Nδ(k − PN − φN) + J2
Nδ(k − 2PN − φN) + ...

(3.2)

T (k) =
N∑
i=1

∞∑
j=0

J ji δ(k − jPi − φi) (3.3)

In many systems jobs exhibit release time jitter over some range [3]. Release time

jitter may cause different execution orders of jobs in a task set. In the task set, a job

(J ji) of a task (τi) becomes enabled at time jPi + φi. On the other hand, release time

jitter may delay the execution of J ji until the next period of the task, i.e. release time

jitter (rji,j) of each job of τi has a range [0, Pi − Ci], leading to multiple execution

sequences of jobs. Expression 3.4 describes the task set as a sequence of jobs when

release time of jobs is jittered, where rj ′i,j represents an exact value for release time

jitter of J ji .

T ′(k) =
N∑
i=1

∞∑
j=0

J ji δ(k − jPi − φi − rj
′

i,j) (3.4)

Figure 3.1 and Figure 3.2 show the execution order of the jobs in a task set, T1,

consisting of two tasks, τ1 and τ2 in a duration [t0, t0 + φ1 + 3P1). The periods of

tasks are equal and φ1 is smaller than φ2. Figure 3.1 shows the execution of jobs

when the release time is not jittered in the task set. The execution sequence of jobs is

J0
1 , J

0
2 , J

1
1 , J

1
2 , J

2
1 , J

2
2 . On the other hand, Figure 3.2 shows the execution orders of the

jobs when the release time is jittered in the task set. The release time jitter of all jobs

is zero except from the release time jitter of second job of τ1, rj1,1 is between φ2−φ1

and P1 − C1. The release time jitter of j1,1 causes a different execution sequence

of jobs; J0
1 , j

0
2 , J

1
2 , J

1
1 , J

2
1 , J

2
2 . With all possible release time jitter values, there exist

eight different execution sequences of jobs in the duration [t0, t0 + φ1 + 3P1).

12

τ1

τ2

φ1

φ2

P1 P1

P2 P2

Figure 3.1: Example of two periodic tasks without any release time jitter

τ1

τ2

φ1

φ2

P1 P1

P2 P2

rj1,1

Figure 3.2: Example of two periodic tasks with release time jitter

Each task in the task set periodically updates the computational result data by pro-

cessing its input data according to T . In each period of a task a new input data value

is validated and the computational result data is updated with a new input data value.

To distinguish the input data values with respect to the jobs in the task set, we define

the input data as input data entity, which is a tuple 〈I, v, t〉, where I is the task ID, v

is data value and t is the timestamp. The input data entity of τi generated in the jth

period is described by

lji = 〈Ii, vji , jPi + φi〉 (3.5)

where vji is the input data value validated at time φi + jPi.

The input data domain of a task i, Lτi , is the set of all input data entities, which are

processed to update computational result data in the context of the task, τi. The input

data domain of a task set is thus the union of input data domains of each task in the

task set:

L = L1 ∪ L2 ∪ ... ∪ LN (3.6)

Each input data entity (lji) is processed in the procedure T ji in job J ji . Input data

entities are processed according to the execution sequence of jobs in the task set.

Therefore, different execution orders of jobs caused by release time jitter causes dif-

ferent input data process sequences. Expression 3.7 describes an input data process

13

sequence of the task set in the time interval [0,∞) for specific release time jitters.

ςT (k) =
N∑
i=1

∞∑
j=0

lji δ(k − jPi − φi − rj
′

i,j) (3.7)

An input data process sequence in a time interval, ∆T = [T1, T2] as:

ς∆T (k) =
N∑
i=1

bT2/Pic∑
j=bT1/Pic

lji δ(k − jPi − φi − rj
′

i,j) (3.8)

The ordered input data process sequence is the list of input data entities in domain L

with an order according to the timestamp of each input data entity. To obtain ordered

input data process sequence, the release time jitter should be omitted:

γT (k) =
N∑
i=1

∞∑
j=0

lji δ(k − jPi − φi) (3.9)

An ordered input data process sequence in a time interval, ∆T = [T1, T2] is expressed

as:

γ∆T (k) =
N∑
i=1

bT2/Pic∑
j=bT1/Pic

lji δ(k − jPi − φi) (3.10)

Hyperperiod (H) of a task set is the least common multiple of the periods of tasks in

the task set. Hyperperiod Interval (∆Hi) is the time interval described as:

∆Hh = [φmin + (h− 1)×H,φmin + h×H) (3.11)

where φmin is the minimum task offset, min({φi}Ni=1). It is possible to describe

ordered input data process sequences by using hyperperiod intervals. Equation 3.12

describes an ordered input data process sequence in the hth hyperperiod interval.

γ∆Hh(k) =
N∑
i=1

b(φmin+h×H)/Pic−1∑
j=b(φmin+(h−1)×H)/Pic

lji δ(k − jPi − φi) (3.12)

where h > 0. The ordered input data process sequence in successive hyperperiods

from the first hyperperiod to the Mth hyperperiod:

γ∆HM
1 (k) =

N∑
i=1

b(φmin+M×H)/Pic−1∑
j=bφmin/Pic

lji δ(k − jPi − φi) (3.13)

14

Definition 1. An input data process sequence domain, Lς(k)(k), is the set of input

data entities whose elements are the member of input data process sequence ς(k).

Input data process sequences in domain L have various relations that reflect the rela-

tion between input data process sequence domains and orders of the input data entities

in the input data process sequences. Definition 2 defines the equality relation.

Definition 2. Two input data process sequences, ς1(k) and ς2(k), are equal ifLς1n(k)(k) =

Lς2n(k)(k) and the process order of each input data entities are same in both sequences,

i.e. ς1
n(k) = ς2

n(k).

Definition 3. Two input data process sequences, ς1(k) and ς2(k), are similar (∼) if

Lς1(k)(k) = Lς2(k)(k) and the process order of input data entities are different.

Another relation is k-shift congruency between input data entities and input data pro-

cess sequences which implies that two input data entities are processed in the context

of the same task in different periods.

Definition 4. Let lji and lmi be two input data entities, H be hyperperiod of task set

and suppose that M ∈ N. If m is congruent to j mod MH/Pi, i.e. m− j = MH/Pi,

then lmi is congruent to lji shift MH , lmi ≡ lji shift MH .

K-shift congruency between two input data process sequences describes that the pro-

cess orders of input data entities in the sequences are same with respect to the task

context to which they belong by abstracting the absolute time. Definition 5 defines

the k-shift congruence relation between two input data process sequences.

Definition 5. Let ς1(k) and ς2(k) be two input data process sequences described by

expressions

ς1(k) =
N∑
i=1

bT2/Pic∑
j=bT1/Pic

lji δ(k − jPi − φi − rj
′

i,j) (3.14)

ς2(k) =
N∑
i=1

b(T2+MH)/Pic∑
j=b(T1+MH)/Pic

lji δ(k − jPi − φi − rj
′

i,j) (3.15)

where |ς1(k)| = |ς2(k)| andH is the hyperperiod. Suppose that l1n(k) is lji . If for each

nth member of l1n(k) = lji , l
2
n(k) is equal to lj+MH/Pi

i , then ς2(k) is congruent to ς1(k)

shift MH , ς2(k) ≡ ς1(k) shift MH or ς2(k) ≡ ς1(k −MH).

15

Proposition 1. If ς1
n(k) and ς2

n(k) are two input data process sequences that ς2(k) ≡
ς1(k) shift MH , then Lς2(k) is congruent to Lς1(k) shift MH , Lς2(k) ≡ Lς1(k)

shift MH .

Proof. Let lji be a member of ς1
n(k). For each member,lji , of ς1

n(k), lj+nH/Pi

i is a

member of ς2
n(k). Therefore for each element of ς1

n(k), there exist a k-shift congruent

element of ς2
n(k).

Definition 6. ς1
n(k), ς2

n(k) and ς3
n(k) are three input data process sequences. If ς2

n(k) is

congruent to ς1
n(k) shiftMH (ς2(k) ≡ ς1(k−MH)) and ς3

n(k) is similar with ς2
n(k),

ς3(k) ∼ ς2(k), than ς3
n(k) similar congruent to ς1

n(k) shiftMH , ς3(k) ∼= ς1(k−MH).

Due to jitter, as expressed in Equation 3.7, input data entities can be processed in

different orders. The main reason of multiple input data process sequences is inter-

leaving between input data entities because of release time jitter of tasks. An input

data entity, processed in a task context, may interleave with other input data entities,

which are processed in other tasks’ context. Definition 7 defines the interleaving set

of an input data entity.

Definition 7. Interleaving Set of an input data entity (Ilji (k)) is the set of input data

entities that are possible to interleave with the input data entity of interest. The inter-

leaving set of an input data entity lji is described by equation

Ilji
(k) = {lnm |lnm ∈ L,m 6= i,

nPm + φm + rjm,max > jPi + φi if lnm.t ≤ lji .t,

jPi + φi + rji,max > nPm + φm if lji .t < lnm.t}

(3.16)

where rji,max is the maximum release time jitter.

Proposition 2. Let lji and lj+MH/Pi

i be input data entities. Assume that each elements

of Ilji (k) is an element of L, then L
l
j+MH/Pi
i

(k) is congruent to Ilji (k) with shift MH ,

i.e. I
l
j+MH/Pi
i

(k) ≡ Ilji
(k −MH) shift MH .

Proof. Let lba be an element of Ilji (k).

16

For the case lba.t < lji .t:

bPa + φa + rja,max > jPi + φi

bPa + φa + rja,max + nH > jPi + φi +MH

(b+MH/Pa)Pa + φa + rja,max > (j +MH/Pi)Pi + φi

Thus, lb+MH/Pa
a ∈ I

l
j+MH/Pi
i

(k)

For the case lba.t > lji .t:

jPi + φi + rji,max > bPa + φa

jPi + φi + rji,max +MH > bPa + φa +MH

(j +MH/Pi)Pi + φi + rji,max > (b+MH/Pa)Pa + φa

Thus, lb+MH/Pa
a ∈ I

l
j+MH/Pi
i

(k)

Proposition 3. Two similar input data process sequences, ς1(k) and ς2(k), have the

same interleaving set.

Proof.

Iς1(k)(k) =
N⋃
n=1

Iς1n(k)(k)− Lς1(k)(k) =
N⋃
n=1

Iς2n(k)(k)− Lς2(k)(k)

= Iς2(k)(k)

Proposition 4. Assume that ς1(k) and ς2(k) are input data process sequences that are

described in Equation 3.14 and Equation 3.15. Assume also that T1 is large enough

that each elements of Iς1(k)(k) is an element of L. If ς2(k) ≡ ς1(k − MH), then

Iς2(k)(k) is congruent to Iς1(k)(k) shift MH , i.e. Iς2(k)(k) ≡ Iς1(k)(k) shift MH .

Proof.

Iς2(k)(k) =
N⋃
n=1

Iς2n(k)(k)− Lς2(k)(k) ≡
N⋃
n=1

Iς1n(k)(k − nH)− Lς1(k)(k − nH)

≡ Iς1(k)(k)

17

Definition 8. The complement of an input data process sequence domain, denoted

Lς(k)(k) , is the set which are not elements of Lς(k)(k) in domain L.

Proposition 5. Let ς1(k) be an input data process sequence similar with γ∆HM
1 (k),

and ς2(k) be an input data process sequence similar with γ∆HM+N
1 (k). Lς2(k)(k) is

congruent to Lς1(k)(k) shift NH .

Proof. Let ς1(k) and ς2(k) be an input data process sequences as described by

ς1(k) =
N∑
i=1

∞∑
j=bφmin+M×H/Pic

lji δ(k − jPi − φi)

ς2(k) =
N∑
i=1

∞∑
j=bφmin+(M+N)×H/Pic

lji δ(k − jPi − φi)

(3.17)

Since ς2(k) is congruent to ς1(k) shift H , Lς2(k)(k) is congruent to Lς1(k)(k) shift

NH . On the other hand Lς2(k)(k) = Lς2(k)(k) and Lς1(k)(k) = Lς1(k)(k), therefore

Lς2(k)(k) is congruent to Lς1(k)(k) shift NH .

Definition 9. ςε(k) is an empty input data process sequence. Lςε(k)(k) is an empty

set and Lςε(k)(k) is equal to L. Lς1(k)(k) is congruent to Lςε(k)(k) shift MH .

Proposition 6. Suppose that ς1
n(k) and ς2(k) are input data process sequences that

are described by equations

ς1(k) =
N∑
i=1

bT/Pic∑
j=0

lji δ(k − jPi − φi − rj
′

i,j) (3.18)

ς2(k) =
N∑
i=1

b(T+nH)/Pic∑
j=0

lji δ(k − jPi − φi − rj
′

i,j) (3.19)

Assume that ς2(k) is similar with an input data process sequence described by

ς2(k) ∼ ς4(k) =
M∑
h=1

ς∆Hh(k).ς3(k) = ς∆HM
1 (k).ς3(k) (3.20)

If ς3(k) ≡ ς1(k −MH), then Iς3(k)(k)− L∆HM
1

(k) ≡ Iς1(k)(k −MH).

Proof. Let lj+MH/Pb
a is a member of ς3(k). If lb+MH/Pb

a is a member of Iς3(k)(k)

and lj+MH/Pb
a .t < l

j+MH/Pi

i .t, then lba is a member of ς1(k). On the other hand, if

18

l
j+MH/Pb
a ∈ L∆HM−1

1
(k), then (b + MH/Pa)Pa + φa < φmin + MH . Thus, lba /∈ L

because bPa + φa < φmin is not true.

Definition 10. min is a function that describes the input data entity having minimum

timestamp in a set of input data entities, such as interleaving set (I) or domain of an

input data process sequence (L).

min{S} : S → lji | l
j
i ∈ S,∀lba.t ∈ S : lji .t ≤ lba.t

Definition 11. Successor Input Data Entity Set (S) of an input data process sequence,

ς(k), is the set of input data entities that may possibly be processed after ς(k). The

possible input data entities that are not processed by ς(k) that may possibly be pro-

cessed after ς(k).

The set of input data entities that are not processed by ς(k) is Lς(k)(k).

On the other hand Sς(k)(k) is a subset of Lς(k)(k) according to some restrictions:

The first restriction is that the input data entities belonging to the same task context

are processed sequentially. Therefore, Sς(k)(k) cannot consist of multiple input data

entities belonging to a task. The second restriction is about the release time jitter.

Let lji be an input data entity. An input data entity, lba having a timestamp greater

than φi + jPi + rji,max cannot be processed if lji does not processed. In other words

Sς(k)(k) cannot consist of two input data entities like lji and lba. With respect to these

restrictions successor set of an input data process sequence is described by equation

Sς(k)(k) = min{Lς(k)(k)} ∪ (Imin{Lς(k)(k)}(k)− Lς(k)(k)) (3.21)

The successor set of an empty input data process sequence, ςε(k) = ε, is the union

of interleaving set of the input data entity which has the least time stamp, l01, and the

related input data entity.

Sςε(k)(k) = min{L} ∪ Imin{L}(k) = I(l01) ∪ l01 (3.22)

Proposition 7. Two similar input data process sequences, ς1(k) and ς2(k), have the

same successor input data entity set.

19

Proof.

Sς1(k)(k) = min{Lς1(k)(k)} ∪ (Imin{Lς1(k)(k)}(k)− Lς1(k)(k))

= min{Lς2(k)(k)} ∪ (Imin{Lς2(k)(k)}(k)− Lς2(k)(k))

= Sς2(k)(k)

Proposition 8. Suppose that ς1
n(k) and ς2(k) are input data process sequences that are

described in Proposition 6. If ς3(k) ∼= ς1(k−MH), then Sς2(k)(k) ∼= Sς1(k)(k−MH).

Proof.

Sς2(k)(k) = Sς4(k)(k) = min{Lς4(k)(k)} ∪ (Imin{Lς4(k)(k)}(k)− Lς4(k)(k))

= min{Lς1(k)(k −MH)}∪

(Imin{Lς1(k)(k−MH)}(k)− L∆HM
1

(k) ∪ Lς3(k)(k))

= min{Lς1(k)(k −MH)} ∪ (Imin{Lς1(k)(k)}(k −MH)− Lς3(k)(k))

= min{Lς1(k)(k −MH)}∪

(Imin{Lς1(k)(k)}(k −MH)− Lς1(k)(k −MH))

= Sς1(k)(k −MH)

Proposition 9. If ς2 is an input data process sequence that is similar with an input

data process sequence ς∆H1(k).ς3(k), then there is an input data process sequence

ς1(k) such that ς3(k) ≡ ς1(k −H).

Proof. Sς∆H1 (k)(k) ≡ Sςε(k)(k − H) according to Proposition 8. For an input data

entity lji , which is element of Sςε(k)(k), there is an input data entity lj+H/Pi

i , which is

element of Sς∆H1 (k)(k). Let ς1(k)
′ be {lji}. Then ς3(k)

′ is {lj+H/Pi

i }, which is con-

gruent to ς1(k −H)
′ shift H , i.e. ς3(k)

′ ≡ ς1(k −H)
′ . Therefore, Sς∆H1 (k).ς3(k)′ (k)

is congruent to Sς1(k)′ (k) shift H according to Proposition 8. Iteratively for all suc-

cessive input data process sequences ς∆H1(k) and ςε(k) are congruent to each other

with H shift.

20

3.2 Data Abstraction Mapping

The computational result produced by concurrent tasks is updated by processing an

input data entity (lji) according to the common functional operation of the task set.

The functional operation uses present the computational result and input data entity

to update the computational result data value according to the relation:

f(gn−1, l
j
i) = gn−1 ◦ lji : gn−1

Ψ(lji)
−−−→ gn (3.23)

where gn and gn−1 are updated and present computational result data values, respec-

tively, lji is the processed input data entity, ◦ dentoes the functional operation, and

Ψ(lji) is the process of input data entity. Input data entities, which are members of an

input data process sequence ς(k), are processed iteratively. Equation 3.24 describes

the update of computational result data by processing input data entities of input data

process sequence ς(k).

f(gn−1, ςn(k).ςn+1(k).ςn+2(k)) = gn+2 ⇒

gn := gn−1 ◦ ςn(k)

gn+1 := gn ◦ ςn+1(k)

gn+2 := gn+1 ◦ ςn+2(k)

(3.24)

According to Equation 3.24, the computational result data value updates can be de-

scribed as transitions described as:

gn−1
Ψ(ς(k))−−−−→ gn+2 = gn−1

Ψ(ςn(k))−−−−−→ gn
Ψ(ςn+1(k))−−−−−−→ gn+1

Ψ(ςn+2(k))−−−−−−→ gn+2 (3.25)

If the functional operation is not order independent, processing an input data entity in

different orders results in different computational result data values depending on the

process order of input data entity in the execution sequence. The input data process

order dependency of computational result data changes with respect to the character-

istic of functional operation. In this study we focus on the functional operations that

are order dependent with confluence.

Definition 12. Let ς1(k) be an ordered input data process sequence in the time interval

∆T = [0, T], whose length is N . Suppose that ς2(k) is a process sequence which is

similar to ς1(k), but the orders of input data entities are different except the N th

21

member. In other words, Lς1(k)(k) = Lς2(k)(k), ς1
n(k) 6= ς2

n(k) for n < N , and

ς1
N(k) = ς2

N(k).

A functional operation is order dependent with confluence, if f(g0, π
ς1(k)(M)) 6=

f(g0, π
ς2(k)(M)) for each M < N , and f(g0, ς

1(k)) = f(g0, ς
2(k)).

If the functional operation of the task set is order dependent with confluence, pro-

cessing an out of order input data item results in different computational result data

values from the computational result data value obtained when input data is processed

in order; that is, usefulness of computational data is degraded. Figure 3.3 illustrates

order dependency with confluence on the system configuration defined in Figure 3.1

and Figure 3.2. While the input data generation sequence is {l01, l02, l11, l12, l21, l22}, the

processed input data sequence is {l01, l02, l12, l11, l21, l22}, where l11.t < l12.t. Therefore,

f(gk−1, l
0
1.l

0
2.l

1
2.l

2
1) and f(gk−1, l

0
1.l

0
2.l

1
2.l

2
1) result in different computational result data

values, such as |g3 − g
′
3| > 0, and |g4 − g

′
4| > 0.

g0

g1

g2

g3

g4

g
′
3

g
′
4

g5

Ψ(l01)

Ψ(l02)

Ψ(l11)

Ψ(l12)

Ψ(l21)

Ψ(l12)

Ψ(l11)

Ψ(l21)

Figure 3.3: Example of two periodic tasks with release time jitter

We define an abstraction method to represent the computational result with finite

states, while the transitions between states represent the process sequence of input

data entities, by abstracting data value and time. The abstract input data entity is

equal to input data entity’s ID, i.e, Al(lji) = lji .Ii to preserve information.

Al(Ψ(lji)) = Ψ(Al(lji)) = Ψ(lji .Ii) (3.26)

Abstract computational result state comprises information about whether the current

22

values of computational result data are erroneous, and the previously processed in-

put data entities which are abstracted from data value and time. If ς(k) is an input

data process sequence of size N , the computational result gi obtained by processing

ς(k) is f(ginit, ς(k)). The output function of a state, λ, determines the output of the

state as accurate and erroneous depending on the processing orders of input data as

described by Equation 3.27. Figure 3.4 shows the state transitions between accurate

and erroneous states.

λ :

 A(gi) 7→ α if ςN(k) is in order

A(gi) 7→ ε else ςN(k) is out of order
(3.27)

Definition 13. Let ς(k) be an input data process sequence with a size N . Let L<(lji)

be a set of input data entities which have a smaller timestamp than lji .t, L>(lji) be a

set of input data entities which have a greater timestamp than lji .t, and LN−1
ς(k) (k) is

equal to Lς(k)(k)− ςN(k).

ςN(k) is in order if LN−1
ς(k) (k) ⊃ L<(ςn(k)) and LN−1

ς(k) (k) ∩ L>(ςn(k)) = ∅.

Erroneous

State

Accurate

State

in order process

out of order process

in order

process

out of order

process

Figure 3.4: Abstract Central Estimation State Diagram

According to the abstraction of computational result data value to computational re-

sult data state, the output in a computational result state indicates the input data pro-

cess order. Therefore, the input data process order semantics are described by the

output. On the other hand, the processed input data entities are still important for de-

termining computational result state, because the next states of a computational result

state depend on the processed input data entities. If gn is a computational result that

is equal to f(ginit, ς(k)), the abstract state of gn, (A(gn)), consists of two attributes:

output, O, and the abstracted processed input data entity set, Lς(k)(k) as described by

equation

A(gi) = 〈O,Al(Lς(k)(k))〉 (3.28)

23

where O ∈ {α, ε}, and Al(Lς(k)(k)) is a multiset of lji .Ii for each lji which is element

of Lς(k)(k).

Definition 14. Let gn be a computational result which is equal to f(ginit, ς(k)). As-

sume that the successor input data set of ς(k) is Sς(k)(k). The successor computational

result set of gn, Post(gn), is

Post(gn) =
⋃

Sς(k)(k)

f(gn, l
j
i) lji ∈ Sς(k)(k) (3.29)

Proposition 10. Assume that ς1(k) and ς2(k) are two similar input data process se-

quences, ς1(k) ∼ ς2(k). ς1(k) and ς2(k) have the same the successor set, Sς1(k)(k) =

Sς2(k)(k) = S, according to Proposition 7. For each lji we have g′1 ∈ Post(f(ginit,

ς1(k))) and g′2 ∈ Post(f(ginit, ς
2(k))) such that g′1 ∈ Post(f(ginit, ς

1(k)lji)) and

g′2 ∈ Post(f(ginit, ς
2(k)lji)), where lji ∈ S, A(g′1).O = A(g′2).O

Proof. Let g1 and g2 be computational results such that g1 = f(ginit, ς
1(k)) and

g2 = f(ginit, ς
2(k)). For each element g′1 ∈ Post(g1), there exists an element

g′2 ∈ Post(g2) such that g′1 = f(g1, l
j
i) and g′2 = f(g2, l

j
i), where lji ∈ S. Let ς1(k)′ be

an input data sequence equals to ς1(k).lji , and ς2(k)′ be an input data sequence equals

to ς2(k).lji . If Lς1(k)(k) ⊃ L<(lji) and Lς1(k)(k)∩L>(lji) = ∅, then Lς2(k)(k) ⊃ L<(lji)

and Lς2(k)(k) ∩ L>(lji) = ∅. Therefore, A(f(g1, l
j
i)).O = A(f(g2, l

j
i)).O for each

lji ∈ S.

Proposition 11. Assume that ς1(k) and ς2(k) are two input data process sequences;

that is ς2(k) ∼ ς∆HM
1 (k).ς3(k), where ς3(k) ≡ ς1(k −MH). Sς2(k)(k) is congruent

to Sς1(k)(k) shift MH according to Proposition 8. For each pair of elements g′1 ∈
Post(f(ginit, ς

1(k))) and g′2 ∈ Post(f(ginit, ς
2(k))) such that g′1 = f(ginit, ς

1(k).lji)

and g′2 = f(ginit, ς
2(k).l

j+MH/Pi

i), where lji ∈ Sς1(k)(k) and

l
j+MH/Pi

i ∈ Sς2(k)(k), A(g′1).O = A(g′2).O

Proof. Let g1 and g2 be computational results such that g1 = f(ginit, ς
1(k)) and

g2 = f(ginit, ς
2(k)). For each element g′1 ∈ Post(g1), there exists an element g′2 ∈

Post(g2) such that g′1 = f(g1, l
j
i) and g′2 = f(g2, l

j+MH/Pi

i), where lji ∈ Sς1(k)(k)

and lj+MH/Pi

i ∈ Sς2(k)(k). Let ς1(k)′ be an input data sequence equals to ς1(k).lji ,

and ς2(k)′ be an input data sequence equals to ς2(k).lji . If Lς1(k)(k) ⊃ L<(lji) and

24

Lς1(k)(k) ∩ L>(lji) = ∅, then (L
ς∆HM

1 (k)
(k) ∪ Lς1(k−MH)(k)) ⊃ L<(l

j+MH/Pi

i) and

(L
ς∆HM

1 (k)
(k)∪Lς1(k)(k−MH)) ∩L>(l

j+MH/Pi

i) = ∅. Therefore,A(f(g1, l
j
i)).O =

A(f(g2, l
j+MH/Pi

i)).O for each lji ∈ Sς1(k)(k) and lj+MH/Pi

i ∈ Sς2(k)(k).

Definition 15. Let ge and gf be two computational results such as ge = f(ginit, ς
e(k))

and gf = f(ginit, ς
f (k)). Assume that lba is an element of Sςe(k)(k) and ldc is an element

of Sςf (k)(k), where lba. The abstract computational result states ge and gf are equal if

1. A(ge).O = A(gf).O

2. Al(Sςe(k)(k)) = Al(Sςf (k)(k))

3. A(f(ge, l
b
a)).O = A(f(gf , l

d
c)).O for each elements lba ∈ Sςe(k)(k) and ldc ∈

Sςf (k)(k), where Al(lba) = Al(ldc)

Lemma 1. Assume that ς1(k) and ς2(k) are two input data process sequences. Let g1

be equal to f(ginit, ς
1(k)), and g2 be equal to f(ginit, ς

2(k)). If ς1(k) and ς2(k) are

similar, ς1(k) ∼ ς2(k), then A(Post(g1)) = A(Post(g2))

Proof. Suppose that g′1 ∈ Post(f(ginit, ς
1(k))) and g′2 ∈ Post(f(ginit, ς

2(k))) such

that g′1 = f(ginit, ς
1(k).lji) and g′2 = f(ginit, ς

2(k).lji), where lji ∈ S. A(g′1).O =

A(g′2).O according to Proposition 10. Let ς1(k)′ be an input data sequence equals to

ς1(k).lji , and ς2(k)′ be an input data sequence equals to ς2(k).lji . Since ς1(k) ∼ ς2(k),

ς1(k)′ is similar to ς2(k)′, and Sς1(k)′(k) = Sς2(k)′(k) = S ′.

Thus, Al(Sς1(k)′(k)) = Al(Sς2(k)′(k)). According to Proposition 10, A(f(g′1, l
b
a)).O

= A(f(g′2, l
b
a)).O for each lba ∈ S ′. Therefore, A(Post(g1)) = A(Post(g2)).

Lemma 2. Suppose that ς1(k) and ς2(k) are two input data process sequences; that

is ς2(k) ∼ ς∆HM
1 (k).ς3(k). Let g1 be equal to f(ginit, ς

1(k)), and g2 be equal to

f(ginit, ς
2(k)). If ς3(k) ≡ ς1(k −MH), then A(Post(g1)) = A(Post(g2)).

Proof. Suppose that g′1 ∈ Post(f(ginit, ς
1(k))) and g′2 ∈ Post(f(ginit, ς

2(k))) such

that g′1 = f(ginit, ς
1(k).lji) and g′2 = f(ginit, ς

2(k).l
j+MH/Pi

i), where lji ∈ Sς1(k)(k)

and lj+MH/Pi

i ∈ Sς2(k)(k). A(g′1).O = A(g′2).O according to Proposition 11. Let

ς1(k)′ be an input data sequence equals to ς1(k).lji , and ς2(k)′ be an input data

sequence equals to ς2(k).l
j+MH/Pi

i . ς2(k)′ is similar with ς∆HM
1 (k).ς3(k)′, where

25

ς3(k)′ = ς3(k).l
j+MH/Pi

i . Since ς3(k) ≡ ς1(k −MH), ς3(k)′ is congruent to ς1(k −
MH)′, and Sς2(k)′(k) ≡ Sς1(k)′(k − MH). Thus, Al(Sς1(k)′(k)) = Al(Sς2(k)′(k)).

According to Proposition 11, A(f(g′1, l
b
a)).O = A(f(g′2, l

b+MH/Pa
a)).O for each lba ∈

Sς1(k)′(k) and lb+MH/Pa
a ∈ Sς2(k)′(k). Therefore, A(Post(g1)) = A(Post(g2)).

Theorem 1. A task set has finite abstract computational result states according to the

proposed abstraction method, if functional operation is order dependent with conflu-

ence.

Proof. Let ς2(k) be an input data process sequence, and lji be a member of ς2(k),

where lji .t > φmin+2H . The members of ς∆H1(k) have to be processed before lji . Let

lba be a member of ς∆H1(k). lba can be processed at a later time φa + (H/Pa− 1)Pa +

rja,max, which is equal to φa + H according to the restriction of maximum release

time jitter of a task is the period of the related task. As the relation φa − φmin < H

holds, all members of ς∆H1(k) are guaranteed to be processed before lji . Therefore,

ς2(k) is similar with an input data process sequence like ς∆H1(k).ς3(k). According

to Proposition 9 there exists an input data process sequence ς1(k), which ς3(k) is

congruent to ς1(k) shift H . Let g2 be equal to f(ginit, ς
2(k)), and g1 be equal to

f(ginit, ς
1(k)). According to Lemma 2, the abstract successor state set of g2 is equal

to the abstract successor state set of g1, i.e. A(Post(g1)) = A(Post(g2)). Therefore,

the task set has finite abstract result states.

Corollary 1. All finite abstract computational result states of a task set can be ob-

tained in a time interval [0, φmin + 2H].

3.3 Data Abstraction Algorithm

In this section we present an algorithm that constructs a finite state automaton of

computational result data of a task set in accordance with the abstraction method

presented above. The input of the algorithm is a task set in which each task is defined

with a ternary structure whose attributes are task ID, task period, P , and offset of the

task, φ. An automaton is a seven-tuple M = (Q,Σ, Λ, δ, q0, λ) in which Q is the

finite set of states, Σ is the finite set of transition actions, δ : Q× Σ 7→ Q is the finite

26

set of transition actions, q0 is the initial state, Λ is set of state output propositions,

and λ : Q 7→ Λ is the state output labeling function. For the automaton representing

a computational result data, a transition action corresponds to the processing of an

input data item by a task in the task set. According to the abstraction described

in Equation 3.26, the set of transition actions is the task IDs in the task set, Σ =

{τ1.id, τ2.id, ..., τN .id}. The set of state output propositions is Λ = {α, ε} according

to Equation 3.27.

Algorithm 1: GLOBAL RESULT FINITE STATE AUTOMATON CREATER

DataStructure: task(ID, P, φ)

DataStructure: Input Data Entity l = (ID, TaskID, t)

DataStructure: State(ID, ς(k), output, Post)

DataStructure: SuccState(l, State)

DataStructure: Node(ID, ς(k), l, children)

Input: Task Set T = {τ1, τ2, . . . , τN}
Output: Finite State Automaton (Σ, Q, q0, δ, F)

∆E = FindExaminationTimeWindow(T);

L∆E = CreateLocalDataEntityDomain(T ,∆E);

root = new Node(0, null, l(0, 0, 0), null);

CreateProcessGraph(root,L∆E);

StateinitState = CreateState(root);

StateSpace.add(initState);

CreateStateSpace(StateSpace, root);

(Σ, Λ,Q, q0, δ, λ) =

CreateFiniteStateAutomaton(initState, StateSpace);

The algorithm first determines the time window, denoted ∆E, to create and exam-

ine all possible input data process sequences in the examination window. Secondly,

input data entity domain in the examination time window, L∆E , is determined. After-

wards, a process graph is constructed and all possible input data process sequences

are explored. By examining the input data process sequences, abstracted states of all

possible computational results are obtained and the state space is generated. Finally,

the algorithm constructs a finite state automaton, M = (Σ, Λ,Q, q0, δ, λ). The com-

27

putational result automaton has no final state. Algorithm 1 constructs an automaton

for computational result.

The examination time window, ∆E, is determined according to Corollary 1 which

stipulates that it is possible to determine all computational result states in two hy-

perperiod intervals. All Procedures mentioned in this section hereafter are presented

in the Appendix to this dissertation. Procedure 1 describes ∆E. After determina-

tion of ∆E, the algorithm constructs the input data entity domain at as described

in Procedure 2. By using the input data entity domain in ∆E, the process graph is

created with respect to L∆E . In the process graph an edge is labeled by an input

data entity, and a node represents a computational result state obtained by process-

ing the input data entity that is the label on an incoming edge. A path to a node

represents an input data process sequence. The process graph is constructed using

the Node data structure. Each node has a unique ID, input data process sequence,

incoming edge label, and outgoing children nodes attributes. The construction of a

process graph starts with a reference node. The initial reference node is described

as Node(0, null, l(0, 0, 0), null) in Algorithm 1. In Procedure 4, the successor input

data entity set is determined according to Equation 3.21. For each input data entity

element of a successor input data entity set, a new node is created by assigning the

attribute values. Procedure 4 describes the creation of a process graph.

By using the process graph all possible input data process sequences can be described

within ∆E. The described algorithm constructs the state space of computational re-

sult by defining a state for each node as described in Procedure 3. A state is repre-

sented by a State data structure in the algorithm. Each state has a unique ID, input

data process sequence, abstract output, and successor state (Post) attributes. The

output attribute of a state is determined according to the output function described in

Equation 3.27. Each state in the state space corresponds to an abstract state of compu-

tational result according to the abstraction method. The algorithm does not add a state

to the state space, if there already exists an equivalent state. Equivalence of states are

examined in Procedure 6 according to Definition 15. State space construction is de-

scribed by Procedure 5. Finally, the algorithm constructs the finite state automaton as

described in Procedure 7.

28

CHAPTER 4

CASE STUDY: MULTI SENSOR TRACK TO TRACK DATA

FUSION

4.1 Multi Sensor Data Fusion and Out of Sequence Track Problem

Multi sensor data fusion (MSDF) corresponds to the process of combining informa-

tion from different sensors to provide a robust and complete description of objects or

events on an observed environment. Combining the outputs of multiple sensors that

can observe different signatures in the environment usually provides more accurate

information than using a single sensor. Normally, to increase the sorts of information

that can be sensed, an MSDF system often consists of dissimilar sensors. Moreover,

for the same number of resources, sensors with different data rates (asynchronous

sensors) can provide better coverage than synchronous sensors [33]. In a centralized

fusion architecture there is a single data fusion node to aggregate all sensory data [35].

In many practical situations, because of communication constraints, each local sensor

has its own information processing unit and outputs tracking reports rather than raw

measurements to the fusion node [34], in a configuration referred as a track to track

data fusion system. The central fusion node produces a system track by aggregating

sensory local tracks.

A multi sensor track to track data fusion system consists of:

1. A collection of sensors that generate local tracks,

2. An central processing component, supervisory controller, to aggregate sensory

local tracks, manage sensors and possibly actuators,

29

3. A high-speed communication network to enable the process.

Figure 4.1 depicts a sample track to track data fusion system architecture. A sen-

sor Si makes observations, Yi, and generates tracks that consist of estimation, X̂i,

and error covariance matrix of the estimation Pi. Kalman Filtering (KF) [36] is the

most commonly used technique in target tracking to generate local tracks from sensor

observations [37]. At the supervisory controller, low-level data processing is imple-

mented. Low-level data processing involves data association, data alignment, sensor

registration, and the position and ID fusion [38]. At the end of low-level data process-

ing, the supervisory controller aggregates local tracks by using a track to track fusion

algorithm and updates central system tracks. The supervisory controller manages

sensors to start or stop tracking of a specified target.

Figure 4.1: Track to Track Data Fusion System

In an MSDF system each sensor operates with its own clock, and may generate tracks

at a different rate than the others because of its signature characteristics and process-

ing speed. Moreover, the communication network may lead to different communica-

tion delays for different sensor tracks. Therefore, the MSDF system has to consider

the coordination between sensors and cater for parameters such as different sampling

rates and communication delays [45]. Communication delay in the transmission of

a local track from sensors to the fusion center may result in the reception of sensory

tracks out of sequence; that is, there may be no guarantee that sensory tracks are fused

in the order they have originated [39]. This incident is known as the out-of-sequence

30

track (OOST) problem. OOST problem corresponds to a situation in which a central

track is already updated up to a given time and then, a track from a "late" sensor

arrives with an earlier time stamp [40]. In order to tackle the delayed and OOST

problem, algorithmic solutions have been proposed [39, 40, 41, 42, 43, 44]. These

solutions aim to aggregate sensory track estimations sequentially, thereby guarantee-

ing the consistency of central track estimation. However, fusion of out of sequence

tracks cause increase in the central track estimation error until an in order local track

is aggregated.

x̂2

x̂1

x̂c

k1 k2 k3 k4 k5 k6 k7 k8

kc1 kc2 kc3 kc4 kc5 kc7kc6 kc8

Ω1
Ω2

(a) Case 1

x̂2
x̂1

x̂c

k1 k2 k3 k4 k5 k6 k7 k8

kc1 kc2 kc3 kc4 kc5 kc7kc6 kc8

(b) Case 2

x̂2
x̂1

x̂c

k1 k2 k3 k4 k5 k6 k7 k8

kc1 kc2 kc3 kc4kc5 kc7kc6 kc8

(c) Case 3

x̂2
x̂1

x̂c

k1 k2 k3 k4 k5 k6 k7 k8

kc1 kc2 kc3 kc4kc5 kc7 k
c
6 kc8

(d) Case 4

Figure 4.2: Track-to-Track Fusion

In order to illustrate the effect of OOST on central track estimation error, a sim-

ple system consisting of two sensors and a data fusion center is simulated with four

different system configurations. The sensors observe the environment and generate

periodical tracks. The periods of sensors P1, and P2 are equal to each other. Each

31

sensor starts the tracking process with different offsets, Ω1, and Ω2. Sensors’ offsets

are caused by track command communication delays. The phase difference between

sensor periods, ϕ12 = Ω2−Ω1, is equal to P/2. In the first case, the supervisory con-

troller receives and aggregates the sensor tracks without any communication delay

τk = τ 1
k = τ 2

k = 0, for all k as seen in Figure 4.2.a. In the second case the supervi-

sory controller receives and aggregates the sensor tracks with a communication delay

P/10, τk = τ 1
k = τ 2

k > 0 for all k as seen in Figure 4.2.b. The third case treats

the OOST scenario. The supervisory controller receives and aggregates the sensory

tracks with communication delay P/10 for all k except k22 = 211. The track report

of Sensor 2, generated at k22, is received and aggregates with a time delay 3P/4 after

the track generated at a later time, k21, as seen in Figure 4.2.c. In the forth case, illus-

trated in Figure 4.2.d, two successive tracks of sensor 2, generated at k22 = 211 and

k24 = 231 are out of sequence.

In the simulation the target moves in two dimensions according to Equation 4.1 where

F is the system matrix, and W (k) is the zero-mean Gaussian white noise with co-

variance Q, in which Q = q ∗ I , I is a 4x4 dimension identity matrix, and X(k)

is the target state vector, which consists of [xx(k) xy(k) ẋx(k) ẋy(k)]T where

[xx(k), xy(k)], and [ẋx(k), ẋy(k)] represent position and velocity in the X and Y di-

rections, respectively.

X(k + 1) = FX(k) +W (k), W = N(0, Q) (4.1)

The target state vector is generated for time instances, {k}Nk=1 according to Equation

4.1, and parameters, in which the system matrix is

F =

1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1

where ∆T = 0.05. The initial state vector x[0] = [10 10 1 0]T , and error co-

variance factor q = 1.

A sensor imakes observations, Yi(k), periodically by using target state vector accord-

32

ing to equation

Yi(k) = HX(k) + Vi(k), V = N(0, Ri) (4.2)

where H is the measurement matrix, X(k) is the target state vector, and Vi(k) is

the zero-mean white Gaussian measurement noise with covariance Ri, where Ri =

ri ∗ I , and I is a 2x2 identity matrix. Sensors derive estimates from observations,

using a Kalman Filter and generate tracks, consisting of sensor estimation, X̂i(k),

and covariance matrix, Pi(k) according to Equation 4.3.

X̂i(k), Pi(k) = KF (X̂i(k − 1), Pi(k − 1), Yi(k), F,H,Q,Ri) (4.3)

In the simulation, the sensors make observations with the same period, T = 20, but

with a phase difference between observation periods, where ϕ12 = 10. The parame-

ters used in Equation 4.2 and Equation 4.3 denote the measurement matrix

H =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

and the error covariance factor r1 = 1.5, and r2 = 1.1.

The supervisory controller updates its central estimation from the input provided by

the sensory tracks. The asynchronous and OOST reports are aggregated by using

Information Matrix Fusion (IMF) algorithm [44] in order to update central tracks.

Equations 4.4 and 4.5 below, respectively, describe how the supervisory controller

updates central track covariance and state vector.

Pc(k|k) = (Pc(k|k − 1)−1 + (Pi(k|k))−1 − (Pi(k|k − 1))−1)−1 (4.4)

X̂c(k|k) = Pc(k|k)(Pc(k|k − 1)−1X̂c(k|k − 1)+

Pi(k|k)−1X̂i(k|k)− Pi(k|k − 1)−1X̂i(k|k − 1))
(4.5)

where the prediction of state vector and track covariance are gathered by:

X̂c(k|k − 1) = F (k)X̂c(k − 1|k − 1)

Pc(k|k − 1) = F (k)Pc(k − 1|k − 1)F T (k) +Q(k)

33

In order to evaluate the effect of delayed and out of sequence track reports, the root

mean square error (RMSE) and trace of central error covariance matrix are calculated

according to expressions 4.6 and 4.7 below, respectively. X i
p(k) denotes the true

target position state, and X̂ i
c,p(k) denotes central estimation of target position at time

k for simulation run i.

RMSE(k) =

√√√√ 1

M

M∑
i=1

‖X i
p(k)− X̂ i

c,p(k)‖2 (4.6)

trace{P (k)} in position =
2∑
i=1

P (k)ii (4.7)

Figure 4.3 shows RMSE in position of central estimation in the first three cases for

250 simulation runs, and Figure 4.4 shows RMSE of central estimation in the first,

second and fourth cases for 250 simulation runs. RMSE in case 1 is less than the

RMSE in case 2. The occurrence of OOST causes an increase in the RMSE. The

increase in RMSE continues if the successive out of sequence track reports are fused .

The increase in RMSE continues until an in sequence track report is fused. Figures 4.5

and 4.6 show the trace of central error covariance which is consistent with RMSE

behavior.

Figure 4.3: RMSE for cases 1, 2, and 3

34

Figure 4.4: RMSE for cases 1, 2, and 4

Figure 4.5: Trace of P(k) for cases 1, 2, and 3

Simulation results show that data fusion with communication delay in track report

transmission and OOST problem are properly handled by the IMF algorithm. Even

though fusion of an OOST report may cause an increase in the central estimation

error, the IMF algorithm bounds the increase when the in sequence track is fused.

However, from the point of view of modeling, the deviation in the estimation error

originating from the OOST problem is important and should be properly handled for

formal verification.

35

Figure 4.6: Trace of P(k) for cases 1, 2, and 4

4.2 Abstraction of Central Track Data

Formal verification of MSDF system via model checking requires modeling both the

control behavior and data. MSDF system contains local and central track data over

infinite domains. Moreover, the OOST problem causes degradation in the usefulness

of central track data in MSDF systems and affects the control behavior. Therefore,

representation of central track data with finite states is necessary for model checking

by taking the OOST problem into account. To represent OOST problem properly in

the system model, temporal behavior of the system should be represented. Temporal

behavior of the system consists of sensor periods, phase difference between sensor

periods and transmission delay of tracks from sensors to the supervisory controller.

For finite state representation of the central track we apply the proposed abstraction

method proposed in Chapter 3. The system to be modeled consists of a parallel col-

lection of central track automaton and task automata:

ACT ||Aτ1 ||Aτ2|| · · · ||AτN (4.8)

Each task in the task set is dedicated to a sensor in the MSDF system that will

aggregate and compute central track from the local tracks received from sensors.

36

The periods and phases of sensors are represented in the automaton correspond-

ing to each task. The communication delay between a sensor and the supervisory

controller is represented by release time jitter in the task automaton. A task au-

tomaton is defined with a template Aτ (intiID, int iOffset, int iRTJitterMin,

int iRTJitterMax, int iPeriod), where the iOffset parameter defines the offset

of the task, the iRTJitterMin and iRTJitterMax parameters define the release

time jitter range, and the iPeriod parameter defines the period of the task. Figure 4.7

illustrates the behavior of the timed task automata.

clkOffset <= iOffset

clkJitter <= iRTJitterMax

clkPeriod <= iPeriod

clkOffset = 0

clkOffset >= iOffset

clkPeriod = 0

clkJitter = 0

clkJitter >= iRTJitterMin

f [iID]!

clkPeriod >= iPeriod

clkPeriod = 0

Figure 4.7: Task Automaton Aτn

The timed task automaton, Aτ , uses three clock variables to represent the timing

requirements about offset, release time jitter and period. These clock variables are

clkOffset, clkRTJitter, and clkPeriod, respectively. At the beginning Aτ starts

to wait the offset time. When the offset time is reached Aτ starts its periodic process

to update the central track. In the periodic cycle, Aτ generates f [iID] action by

taking the release time jitter into account. f [ID]! represents the action generation of

processing local track and update of central track.

Central track automaton, ACT , models central track data over infinite domain with

finite states according to the abstraction method presented in Chapter 3. The cen-

tral track automaton covers all possible fusion orders of local tracks related with a

37

target, and represents conformable and anomalous error states for central track esti-

mation. Each action of update of central track is represented by f [ID]?. Figure 4.8

depicts the central track automaton that models the central track data in a system con-

figuration in which the target is tracked by 2 sensors, which are asynchronous with

ϕ = P/2, having the same report generation periods, P , and the worst case commu-

nication delay for both sensors is P . In this configuration there are two task automata

Aτ (0, 0, 0, P, P) and Aτ (1, P/2, 0, P, P). The central track automaton consists of 6

abstract states, Q = {q0, q1, ..., q6}, where q0 is the initial state. The finite set of tran-

sition actions is {f [0], f [1]}. While the states q1, q4 are labeled as the conformable

state output, states q0, q2, q3, q6 are labeled as the anomalous state output.

q0

q1

q2

q3

q4

q6

f [0]?

f [1]?

f [0]?

f [0]?

f [1]?

f [0]?

f [1]?

f [0]?

f [1]?

f [1]?

Figure 4.8: Central Track Automaton (P1 = P2)

Figure 4.9 shows the central track automaton in a larger system configuration in which

a target is tracked by 3 sensors, which are asynchronous with ϕ = P/3, having

the same report generation periods, P , and the worst case communication delay for

all sensors is . In this configuration there are three task automata Aτ (0, 0, 0, P, P),

Aτ (1, P/3, 0, P, P), and Aτ (2, 2P/3, 0, P, P). The central track automaton consists

of 15 abstract states, Q = {q0, q1, ..., q14}, where q0 is the initial state. The finite set

of transition actions is {f [0], f [1], f [2]}. While the states q1, q2, q3are labeled as the

conformable state output, all other states are labeled as the anomalous state output.

Central tracks, which are estimations of the state of a tracked target, effects the be-

havior of a MSDF system. However, target state and estimations have very large or

38

q1

q0q4q5

q6q7q8q9

q10q11q12

q13q14

q3

q2

f [0]?

f [1]?
f [1]?

f [1]?

f [1]?f [2]?

f [2]?

f [0]?

f [1]?

f [1]?

f [0]? f [2]?

f [1]?f [1]?

f [1]?

f [0]?

f [2]?
f [2]?

f [0]?f [1]?
f [0]?

f [2]?

f [0]?
f [1]?

f [2]?f [2]?

f [0]?
f [1]?

f [0]?f [1]?f [0]?f [1]?

f [1]?

Figure 4.9: Central Track Automaton (P1 = P2 = P3)

infinite data domains, and OOST problem causes additional expansion in the central

track data domain by increasing the error in the central track estimation. Therefore,

modeling local and central tracks with an abstraction by taking the OOST problem

into account is necessary to apply model checking. The presented abstraction method

is applied to represent the central tracks with abstraction in the system model. The in-

crease in the estimation error because of OOST problem is addressed as degradation

in the usefulness of central track estimation. The distributed sensor deployment is

modeled as concurrent tasks automata, in which the communication delays between

sensors and supervisory controller are represented with release time offset and jitter

properties. Two different system configurations with varying number of sensors are

inspected in the case study. The sensors are configured as having the same period

and different release time offset to obtain most complex configuration. Abstraction of

39

the central track in the first configuration with 2 sensors results in an abstract central

track automaton with 6 states and 10 transitions. Abstraction of the central track in

the second configuration with 3 sensors results in an abstract central track automa-

ton with 15 states and 29 transitions. The number of states and transitions in the

abstract central track automata shows that the presented abstraction method enables

enables to modeling the central track with finite states and transitions by preserving

the representation of increase in the estimation error.

40

CHAPTER 5

CONCLUSION

In this study we have presented a data abstraction method for infinite domain data

produced by a set of concurrent, asynchronous and periodic tasks collectively in a

real time system. We developed the presented method according to two research

questions:

1. Determination of an abstract set of data values;

2. Constructing a mapping between concrete data values and the determined ab-

stract data set, preserving model characteristics for model checking.

The first question has been answered in terms of the real time properties of the task

set, and a finite abstract data domain has been identified with respect to the usefulness

of the computational result. The concrete data domain is abstracted according to the

degradation in the usefulness of result. The abstract data domain contains two data

values, which represent whether the usefulness is degraded or not.

To answer the second question, the concurrency and asynchrony in the real time sys-

tem under consideration are investigated and sequentialization of the execution of

concurrent tasks in the task set are identified by taking the asynchrony into account.

According to the sequentialization of concurrency, rules to derive all possible input

data process sequences in the task set are derived. Characteristics of the common op-

eration of the task set, which cause degradation in usefulness of computational results

when out of sequence input data is processed, and eliminates that degradation when

in sequence input data is processed, have been formally defined. According to the

41

input data process sequences and functional operation characteristics, mapping rules

of concrete data values to abstract data values have been formulated and the finiteness

of the domain of abstract data values has been proved.

In agreement with the definition of the abstract data domain and the data abstraction

mapping, an algorithm has been developed to construct that mapping. The algorithm

constructs a labeled abstract data automaton according to the defined system proper-

ties.

To evaluate the contributions of this study, a case study has been conducted. In the

case study, a multi sensor track to track data fusion system, which contains rich data,

has been investigated and formal finite state models of data abstraction have been

presented for two different system configurations.

Below, we summarize the contributions and limitations of this research, derive con-

clusions from the study and suggest future research directions based on the findings.

5.1 Contributions

The main contribution of this study is a data abstraction method that enables formal

modeling of infinite domain data which has been produced by a periodic, concurrent

and asynchronous task set. In this respect the formal definitions of the dependen-

cies on the temporal behavior of the system, and proofs about the finiteness of the

abstraction mapping have been presented.

Moreover, proposed data abstraction method contributes to avoiding the state explo-

sion problem [15] even if the domain is finite, in two ways: State explosion problem

refers to the enormous increase in the population of the global state space of a sys-

tem model and is a serious drawback of model checking. The main reason for the

state explosion problem is concurrency and asynchrony in the system model. The

first contribution of the present study to the reduction of the state explosion problem

is achieved by reducing the number of global states by bounding the concrete data

domain using abstraction. The second contribution is achieved by representing the

asynchronous communication channels of a distribution system with a set of task au-

42

tomata. Modeling asynchronous communication channels increases the number of

global states in the system model, because it requires modeling additional queues

and clocks to represent delays in asynchronous communication. Task automata uses

release time offset and jitter to represent asynchronous communication properties.

Finally, a practical but rather valuable contribution is that specification of abstract

data with finite state automata enables using model checking tools that do not allow

variables to specify data.

5.2 Limitations and Future Work

The presented abstraction method is suitable for real time systems in which a compu-

tational result is produced by periodic tasks. The abstraction of computational result

data produced by aperiodic and sporadic tasks are not handled in this study.

Also, the operation common to all members of the task set has to have mechanisms to

cope with out of sequence data processing. In this study, we deal with the operations

that eliminate the degradation in usefulness when in sequence data is processed to

enable finiteness in the abstraction mapping. Other types of mechanisms are out of

the scope of this study. As the short term future work, this research can be enriched

with developing a mapping method for other types of mechanisms.

Furthermore, even if the presented abstraction method contributes to tackling the state

explosion problem, it still remains vulnerable to it. The increasing number of tasks in

the task set possibly cause higher levels of interleaving between task executions, and

possible input data process sequences. Hence, the number of global states increases

exponentially with the increasing number of tasks in the task set. The case study

carried out in Chapter 4 exposes this situation with the two system configurations

with different numbers of tasks. Developing architectural system design patterns to

bound the asynchronous data interactions to reduce the state space and the system

complexity in the system behavior might be performed as another future work.

Currently we are able to abstract the concrete data domain of computational result

with a binary abstract data domain; that represent whether the usefulness is degraded

43

or not.

44

REFERENCES

[1] C. Baier, K. Joost-Pieter. Principles of model checking. Vol. 26202649. Cam-
bridge: MIT press, 2008.

[2] E. M. Clarke, O. Grumberg, D.Peled. Model Checking. MIT Press,1999.

[3] J.W.S. Liu. Real-Time Systems. Prentice Hall,2000

[4] G.C.Buttazzo, G. Lipari, L. Abeni, M. Caccamo. Soft Real-Time Systems: Pre-
dictability vs. Efficiency. Springer, 2005

[5] A. Burns , A. Wellings. Concurrent and Real-Time Programming in Ada. Cam-
bridge University Press, New York, NY, 2007

[6] M. Stonebraker, U.Çetintemel, S. Zdonik. The 8 requirements of real-time stream
processing. ACM SIGMOD Record, 34(4), 42-47, 2005.

[7] J. Esparza. An automata-theoretic approach to software verification. In Develop-
ments in Language Theory, volume 2710 of LNCS, page 21. Springer, 2003.

[8] R. Alur , D. L. Dill. The theory of timed automata. Real-Time: Theory in Practice.
volume 600 of Lecture Notes in Computer Science, pages 45–73, Springer Berlin
Heidelberg, 1992.

[9] R. Alur , D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[10] R. Alur, C. Courcoubetis, D. L. Dill. Model-Checking for Real- Time Systems.
In Proc. of the 5th Annual IEEE Symposium on Logic in Com- puter Science,
1990.

[11] J. Dingel, T. Filkorn. Model Checking for infinite state systems using data ab-
straction, assumption-commitment style reasoning and theorem proving. In Com-
puter Aided Verification, pp. 54-69. Springer Berlin Heidelberg, 1995.

[12] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111 (2), 193–244, 1994.

[13] E. M. Clarke, L. Flavio, T. Muralidhar. An abstraction technique for real-
time verification. Next Generation Design and Verification Methodologies for Dis-
tributed Embedded Control Systems, Springer Netherlands, 1-17, 2007.

45

[14] N. Bogunovic, P. Edgar. Model checking procedures for infinite state systems.
Engineering of Computer Based Systems, 2006, ECBS 2006, 13th Annual IEEE
International Symposium and Workshop on. IEEE, 2006.

[15] E. M. Clarke, W. Klieber, M. Novacek , P. Zuliani. Model Checking and The
State Space Explosion Problem, 2005

[16] E. W. Dijkstra. Guarded Commands, Nondeterminency, and Formal Derivation
of Programs. Programming Languages, 1975

[17] R. Milner. Communication and Concurrency. Prentice-Hall International, En-
glewood Cliffs, 1989

[18] C.A.R.Hoare. Communicating Sequential Circuits. Prentice-Hall International,
1985

[19] G. M. Reed, A. W. Roscoe. A timed model for communicating sequential pro-
cesses. In Lecture Notes in Computer Science, Automata, Languages, and Pro-
gramming. Heidelberg, Germany: Springer-Verlag, 1986, vol. 226, pp. 314–323

[20] C. A.Petri. Kommunikation mit Automaten. PhD thesis, Institut fur Instru-
mentelle Mathematik, Bonn, 1962

[21] P.M. Merlin, D.J. Farber. Recoverability of communication protocols – impli-
cations of a theorical study. IEEE Transactions on Communications, 24, 53–70,
1976.

[22] J. Srba. Comparing the expressiveness of timed automata and timed extensions
of Petri nets. In Formal Modeling and Analysis of Timed Systems. pp. 15-32,
Springer Berlin Heidelberg, 2008.

[23] S. Yovine. KRONOS: a verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer, 1(1-2):123–133, December
1997.

[24] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL—a tool
suite for automatic verification of real-time systems. In Lecture Notes in Com-
puter Science, Hybrid Control Systems. Heidelberg, Germany: Springer-Verlag,
vol. 1066, pp. 232–243, 1996.

[25] F. Wang. RED: Model-Checker for Timed Automata with Clock-Restriction Di-
agram. In Proc. of Workshop on Real-Time Tools, 2001.

[26] F. Laroussinie, K. G. Larsen. CMC: a tool for compositional model-checking
of real-time systems. In Proc. IFIP TC6/WG6.1 Joint Int. Conf. Formal Descrip-
tion Techniques and Protocol Specification, Testing, and Verification, pp. 439–456,
1998.

46

[27] E. A. Emerson. The beginning of model checking: A personal perspective.
Springer Berlin Heidelberg, 2008. 27-45.

[28] A. Pnueli. The temporal logic of programs. In 18th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 46–67. IEEE Computer Society Press,
1977.

[29] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, pages 35(8):677–691, 1986.

[30] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic Model Checking. J. ACM, 50(5):752-
794,2003.

[31] E.M. Clarke, O. Grimberg,D. E. Long, Model Checking and Abstrac-
tion,ACM Transactions on Programming Languages and System (TOPLAS),
16(5):1512–1542, September 1994.

[32] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifying Safety Properties of
a Power PC Microprocessor Using Symbolic Model Checking without BDDs. In
CAV, 1999.

[33] A. T. Alouani, J. E. Gray, D. H. McCabe. Theory of distributed estimation using
multiple asynchronous sensors. Aerospace and Electronic Systems, IEEE Trans-
actions on, 41(2), 717-722, 2005.

[34] T. Yuan, Y. Bar-Shalom, X. Tian. Heterogeneous track-to-track fusion. In Infor-
mation Fusion (FUSION), 2011 Proceedings of the 14th International Conference
on (pp. 1-8), IEEE,2011, July.

[35] M. E.Liggins, C. Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, S. Thomopou-
los. Distributed fusion architectures and algorithms for target tracking. Proceed-
ings of the IEEE, 85(1), 95-107,1997.

[36] R. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Trans. ASME, J. Basic Eng., no. 82, pp. 34-45, 1960.

[37] Y. Bar-Shalom, X. R. Li. Multitarget-Multisensor Tracking: Principles and
Techniques. YBS Publishing, Storrs, CT ,1995.

[38] A. Gad, M. Farooq, Data Fusion Architecture for Maritime Surveillance. Pro-
ceedings of the Fifth International Conference on Information Fusion, 2002.

[39] S. Challa, J. A. Legg, X. Wang. Track-To-Track Fusion Of Out-Of-Sequence
Tracks. Proceedings of the Fifth International Conference on Information Fusion
,2002.

47

[40] A. Novoselsky, S.E. Sklarz, M. Dorfan. Track to track Fusion using Out-of-
Sequence Track Information. Proceedings of the Fifth International Conference on
Information Fusion, 2002.

[41] X. Tian and Y. Bar-Shalom. The optimal algorithm for asynchronous track-to-
track fusion. In Proceedings of SPIE Conference on Signal and Data Processing of
Small Targets, 7698-46 ,2010.

[42] X. Tian , Y. Bar-Shalom. Algorithms for asynchronous track-to-track fusion.
Journal of Advances in Information Fusion, vol. 5, no. 2, pp. 128-138, 2010.

[43] X. Tian , Y. Bar-Shalom. On Algorithms for Asynchronous Track-to-Track Fu-
sion. 13th Conference on Information Fusion, Edinburgh, Scotland, pp. 1-8, 2010.

[44] M. Aeberhard, A. Rauch, M. Rabiega, N. Kaempchen,T. Bertram. Track-to-
Track Fusion with Asynchronous Sensors and Out-of-Sequence Tracks using In-
formation Matrix Fusion for Advanced Driver Assistance Systems. Intelligent Ve-
hicles Symposium (IV), 2012.

[45] Z. Kejun, S. Jianbo. A New Method for Asynchronous Multisensor Information
Fusion. Lecture Notes in Computer Science Volume 3238, pp 410-423, 2004.

[46] E. M. Clarke, E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Logic of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer-Verlag, 1981

[47] E. M. Clarke, E. A. Emerson, A.P. Sistla. Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach.
In POPL, pages 117-126, 1983

[48] Y-W.Hsieh, P. L. Steven. Model abstraction for formal verification. In Proceed-
ings of the conference on Design, automation and test in Europe, pp. 140-147.
IEEE Computer Society, 1998.

[49] D. Kroening, A. S. Sanjit. Formal verification at higher levels of abstraction. In
Proceedings of the 2007 IEEE/ACM international conference on Computer-aided
design, pp. 572-578. IEEE Press, 2007.

[50] E. M. Clarke, A. Biere and R. Raimi and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[51] S. Graf, S. Hassen. Construction of abstract state graphs with PVS. In Computer
aided verification, pp. 72-83. Springer Berlin Heidelberg, 1997.

48

APPENDIX A

DATA ABSTRACTION ALGORITHM PROCEDURES

Procedure 1: FindExaminationTimeWindow
ArgumentIn: Task Set T = {τ1, τ2, . . . , τN}
Return: Examination Time Window ∆E

HyperPeriod = LCM({Pi}Ni=1);

∆E = 2×HyperPeriod;

return ∆E;

Procedure 2: CreateLocalDataEntityDomain
ArgumentIn: Task Set T = {τ1, τ2, . . . , τN}
ArgumentIn: Examination Time Window ∆E

Return: Domain L∆E

ID = 0;

for i : 1 to N do

t = τi.φ;

while t is in∆E do

L∆E.add(l(ID, τi.I, t));

ID + +;

t+ = τi.P ;

end

end

return L∆E;

49

Procedure 3: CreateState
ArgumentIn: Process Graph node n

Return: State state

Data: Set of Input Data Entities L<(l) and L>(l)

State state = State(stateId, null, 0, null);

if n.ς(k) 6= null then

state.ς(k) = n.ς(k);

N = state.ς(k).size;

LN−1
ς(k) (k) = Lς(k)(k)− n.l;

foreach element l of L∆E do

if l.t < n.l.t then

L<(n.l).add(l);

end

if l.t > n.l.t then

L>(n.l).add(l);

end

end

if LN−1
ς(k) (k) ⊃ L<(n.l) & LN−1

ς(k) (k) ∩ L>(n.l) = ∅ then

state.output = α;

else

state.output = ε;

end

end

return state;

50

Procedure 4: CreateProcessGraph
ArgumentInOut: Reference Node refNode

ArgumentIn: Domain L∆E

Data: Lς(k)(k) and Successor Input Data Entity Set S

foreach element l of L∆E do

if l /∈ refNode.ς(k) then

Lς(k)(k).add(l);

end

end

if Lς(k)(k).size > 0 then

lmin = min(Lς(k)(k));

S.add(lmin);

foreach element l of set Lς(k)(k) except lmin do

if (l.t < lmin.t)&(l.t+ l.P > lmin.t) then

S.add(l);

end

if (l.t ≥ lmin.t)&(lmin.t+ lmin.P > l.t) then

S.add(l);

end

end

end

foreach element l of set S do

if ∀node ∈ RefNode.children; l.ID 6= childNode.l.ID then

childNode = new Node(nodeID, refNode.ς(k).l, l, null));

refNode.setChild(childNode);

end

end

if refNode.Children.size > 0 then

foreach node element of refNode.Children do

CreateProcessGraph(node,L∆E);

end

end

51

Procedure 5: CreateStateSpace creates the state space
ArgumentInOut: StateSpace Sp

ArgumentIn: Reference State refState

ArgumentIn: Process Graph node n

foreach element chNode of n.children do

State state = CreateState(chNode);

State eqState =

FindEquivalentStateInStateSpace(Sp, state);

if eqState == null then

refState.Post.add(new SuccState(chNode.l, state));

S.add(state);

stateId+ +;

CreateStateSpace(Sp, state, chNode);

else

refState.Post.add(new SuccState(chNode.l, eqState));

end

end

52

Procedure 6: FindEquivalentStateInStateSpace creates the state space
ArgumentIn: StateSpace Sp

ArgumentIn: State state

Return: State eqState

eqState = null;

bool EqStateExists;

foreach element st of Sp do

foreach element succState of state.Post do

EqStateExists = false;

foreach element succSt of st.Post do

if succState.l.TaskID = succSt.l.TaskID then

if succState.state.output = succSt.state.output then

EqStateExists = true;

break;

end

end

end

if EqStateExists == false then

break;

end

end

if EqStateExists == true then

eqState = st;

break;

end

end

return eqState;

53

Procedure 7: CreateFiniteStateAutomaton
ArgumentIn: Initial State initState

ArgumentIn: StateSpace Sp

Return: Finite State Automaton (Σ, Λ,Q, q0, δ, λ)

q0 = initState.stateId;

foreach element τ of task set T do

Σ.add(τ.ID);

end

Λ = {α, ε};
foreach State state element of StateSpace S do

Q.add(state.stateId);

λ.add(new λ(state.stateId→ state.output);

foreach next state nextState element of State state do
δ.add(new δ((state.stateId, SuccState.l.TaskID)→
SuccState.state.stateId));

end

end

54

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Dursun, Mustafa

Nationality: Turkish (TC)

Date and Place of Birth: 09/03/1980, Ankara

Marital Status: Marital Status

Phone: 5363356991

Fax: -

EDUCATION

Degree Institution Year of Graduation

M.S. METU EE 2006

B.S. METU EE 2003

High School Ankara Atatürk Anadolu Lisesi 1998

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2010- ASELSAN Inc. 1 Software Engineer

2010-2012 UIUC Computer Science Department Visiting Scholar

2002-2010 ASELSAN Inc. 1 Software Engineer

55

PUBLICATIONS

M. Tekkalmaz, Ö. Kaya, M. Dursun, T. Sarı Tekkalmaz, A. Doğru. Görev Kritik ve

Gömülü Sistemler için Hata Yönetimi Kılavuz Mimarisi: T5D. UYMK, 2008.

M. Tekkalmaz, E. Gürler, M. Dursun. Görev Kritik ve Gömülü Sistemler için T5D

Uyumlu Bir Hata Yönetimi Altyapısı Tasarımı ve Gerçeklemesi. UYMS, 2009.

M. Dursun. Gömülü Yazılımlar için Model-Tabanlı Bir Bilesen Referans Modeli

(UML-CM). UYMS, 2010.

M. Dursun. A Lightweight Automated Test Framework based on UML Testing Profile

for Component Testing. OMG Workshop, 2010.

M. Dursun, P.L. Wu, C. Kim, L. Sha. A Bounded Asynchronous Design of Command

and Control Cyber-Physical Systems for Complexity Reduction. Technical Report.

2012.

M. Dursun, Ö. Kızılay. Zaman Tetikli Almaç Planlayıcı Yazılım Bile¸seni Tasarımı.

UYMS, 2014.

M.Dursun, S. Bilgen. Data Abstraction in Real Time Systems for Model Checking.

Submitted to Jornal of Systems and Software, 2015.

56

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	The Objective of the Study, Research Questions and Scope of the Study
	Organization of the Document

	LITERATURE SURVEY
	Real-Time Systems
	Formal Verification and Model Checking
	Model Checking of Real-Time Systems

	DATA ABSTRACTION METHOD
	Reference System Model
	Data Abstraction Mapping
	Data Abstraction Algorithm

	CASE STUDY: MULTI SENSOR TRACK TO TRACK DATA FUSION
	Multi Sensor Data Fusion and Out of Sequence Track Problem
	Abstraction of Central Track Data

	CONCLUSION
	Contributions
	Limitations and Future Work

	REFERENCES
	APPENDICES
	Data Abstraction Algorithm Procedures
	CURRICULUM VITAE

