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ABSTRACT

ON LOCALIZATION AND TRACKING USING RECEIVED SIGNAL
STRENGTH MEASUREMENTS

Yılmaz, Alptekin

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Ali Özgür Yılmaz

Co-Supervisor : Assoc. Prof. Dr. Umut Orguner

February 2015, 129 pages

In this study, first, some received signal strength (RSS) based localization techniques,

including maximum likelihood estimation (MLE), multidimensional scaling (MDS)

and weighted least squares (WLS), are investigated and compared to each other via a

simulation study within the perspective of a collaborative localization scenario. MLE

using RSS measurement model, called RSS-MLE is known in the literature to be

significantly biased. An important observation of this work is that the aforemen-

tioned bias can be clearly reduced in some collaborative localization scenarios when

the non-connectivity information is incorporated into maximum likelihood (ML) cost

function. We refer to the ML algorithm including the non-connectivity information

as hybrid RSS-MLE (h-RSS-MLE).

In order to support the reduced bias observation and determine the conditions in which

h-RSS-MLE can mitigate the bias, we derive an analytical expression for the bias of

the ML estimator based on a second order Taylor series expansion of MLE cost func-

tion by incorporating connectivity constraints into the problem. Since this analysis

v



gives results which do not match the simulation results in a 2-D scenario, we also

derive another expression based on a Taylor series expansion of the RSS measure-

ments. The latter analysis is validated under some 2-D non-collaborative localization

scenarios through a simulation study for MLE optimized by a grid-search.

Finally, we make simulations as well as an experimental study to compare the local-

ization algorithms with some conventional tracking methods including Kalman filters

and a particle filter. It is observed in the experiments that the tracking methods can

increase the accuracy about one meter compared to the localization algorithms for a

non-collaborative case.

Keywords: Localization, tracking, received signal strength, maximum likelihood esti-

mation, non-connectivity information, bias analysis, Taylor series expansion, Cramér-

Rao lower bound, Kalman filter, particle filter, grid-search.
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ÖZ

ALINAN SİNYAL GÜCÜ ÖLÇÜMLERİNİ KULLANAN KONUMLANDIRMA
VE TAKİP ÜZERİNE

Yılmaz, Alptekin

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ali Özgür Yılmaz

Ortak Tez Yöneticisi : Assoc. Prof. Dr. Umut Orguner

Şubat 2015, 129 sayfa

Bu çalışmada ilk olarak, en yüksek benzerlik kestirimini (MLE), çok boyutsal se-

viyelendirmeyi (MDS) ve ağırlıklandırılmış en küçük kareleri (WLS) içeren, alınan

sinyal gücüne (RSS) dayanan bazı konumlandırma teknikleri araştırılmakta ve işbir-

likçi bir konumlandırma senaryosu bakış açısı içerisinde yapılan bir benzetim çalış-

ması yoluyla birbirleriyle karşılaştırılmaktadır. RSS-MLE olarak adlandırılan RSS

ölçüm modelini kullanan MLE, literatürde ciddi derecede yönelimli olarak bilinir. Bu

çalışmanın önemli bir gözlemi, bazı işbirlikçi konumlandırma senaryolarında, bağ-

lantısızlık bilgisinin en yüksek benzerlik (ML) maliyet fonksiyonuna dahil edildiği

durumda, bahsedilen yönelimin açıkça azaltılabildiğidir. Bağlantısızlık bilgisini içe-

ren ML algoritmasını, melez RSS-MLE (h-RSS-MLE) olarak anıyoruz.

Azaltılan yönelim gözlemini desteklemek ve h-RSS-MLE’nin yönelimi düşürebile-

ceği durumları belirlemek için, probleme bağlantı kısıtını dahil ederek, ML kestiri-

minin yönelimi için, MLE maliyet fonksiyonunun ikinci derece Taylor seri açılımına

dayanan bir analitik ifade türetiyoruz. Bu analiz, bir 2-D senaryosundaki benzetim
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sonuçlarıyla uyuşmadığı için, biz ayrıca RSS ölçümlerinin Taylor seri açılımına da-

yanan başka bir ifade türetiyoruz. Son analiz, işbirlikçi olmayan bazı 2-D konumlan-

dırma senaryoları altında, ızgara arama ile çözülen MLE için yapılan bir benzetim

çalışmasıyla doğrulanmaktadır.

Son olarak, konumlandırma algoritmalarını, Kalman süzgeçlerini ve bir parçacık süz-

gecini içeren bazı geleneksel takip yöntemleriyle karşılaştırmak için, deneysel bir ça-

lışmayla birlikte benzetimler yapmaktayız. Konumlandırma algoritmalarıyla karşılaş-

tırıldığında, takip yöntemlerinin işbirlikçi olmayan bir durum için, bir metre civarında

doğruluğu artırabildiği deneylerde gözlenmektedir.

Anahtar Kelimeler: Konumlandırma, takip, alınan sinyal gücü, en yüksek benzerlik

kestirimi, bağlantısızlık bilgisi, yönelim analizi, Taylor seri açılımı, Cramér-Rao alt

sınırı, Kalman süzgeci, parçacık süzgeci, ızgara arama.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSN) have emerged in many applications for monitoring,

controlling and tracking in daily life. WSN is a network which consists of units which

are capable of sensing the physical quantities, e.g., temperature, motion, humidity

and also have ability to communicate with each other in a centralized or peer-to-peer

manner [3]. In WSN, sensing the data without location information of the sensor

is meaningless and the location information of the units we call nodes or sensors

can also be beneficial to improve the performance of wireless networks for network

planning, network adaptation, load balancing and cognitive radio applications [16,

29, 51]. Therefore localization and tracking attracts much attention in industry and

academia.

Localization is the process which extracts the position knowledge of an object from

noisy observations, i.e., measurements, observed by sensors in the network. This pro-

cess is exactly an estimation problem. In tracking concept, the only difference is that

the dynamics of the environment, e.g., predicted motion parameters of the object or

change of measurement parameters related to environment so called channel, is in-

volved in the estimation problem as done in Kalman filter [24]. Global Positioning

System (GPS) is the most widely used system for positioning and localization espe-

cially in outdoor environments, however GPS is not applicable in indoor case due to

non-line-of-sight (NLOS) propagation. Since there are various obstacles in indoor

environments such as walls, some equipments influencing the electromagnetic wave

propagation which result in less trustable observations in estimation problem. To get

more comprehensive understanding about indoor radio propagation channel, [21] can
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be a good reference. Due to the unavailability of GPS, the ubiquitous use of the wire-

less systems particularly in the last decade has made the use of RF signals in indoor

environment a viable approach in determining real-time location and tracking. Since

RF signals are already present in almost all media of interest, researchers both in in-

dustry and academia have developed many different techniques based on RF signals

in order to get the position of the objects.

RF signals can include position-related information of a source or destination node in

miscellaneous ways. The ones which we call as measurement techniques, so called

metrics, are time of arrival (TOA), time difference of arrival (TDOA), angle of ar-

rival (AOA) and received signal strength (RSS). Each of these metrics has its own

advantages and disadvantages [16, 19, 30, 50]. For instance, TOA is more complex

than the other techniques in the sense of hardware, because it requires perfect time

synchronization, but more accurate results can be observed with TOA. AOA can offer

less accuracy than TOA, actually moderate in most applications, but negative aspect

of AOA is that precise angle measurements need array antennas [19, 30, 50]. Among

a multitude of measurement metrics, the use of RSS is a very popular choice with

low complexity, no extra hardware and cost of devices, since almost all wireless de-

vices have the capability to measure and report it outside directly [16]. Despite the

low complexity of RSS techniques, it is not so reliable, since it suffers from deeply

varying fading characteristics of the multipath radio channels that cause significant

errors in location estimation. Detailed information for some positioning systems uti-

lizing the aforementioned measurement techniques can be found in [19, 30, 31, 50].

Sometimes different measurement schemes are fused in order to obtain better local-

ization or tracking performance. For example, [28] proposes a procedure where RSS

measurements are utilized to correct TDOA estimation when multipath effect of the

channel is dominant, otherwise they are not considered in tracking algorithm.

As expressed before, the localization methods based on RSS metric are so prominent

due to its low complexity. Localization errors are relatively higher than in TOA or

AOA, since there exists higher nonlinear relation between RSS metric and the posi-

tion of the target to be estimated and RSS metric is highly affected by time and spatial

variation of a radio channel which is called fading [15,45]. Some methods can be fol-

lowed as mentioned in [7, 11, 35, 49] to reduce high variation of radio environment
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which decrease the precision of the position information of the node in RSS readings.

The methods generally consider diversity concept in wireless communications by us-

ing the fact that RSS readings are independent in different time, frequency, antenna

orientations, wave polarization and number of the antennas in the wireless systems.

Different techniques exist to combine RSS readings with the purpose of increasing

total signal-to-noise ratio (SNR) which can be found in [15, 45]. The most intuitive

way of stabilising RSS readings is to take average over RSS readings from statistically

independent resources, e.g., frequency, time or space, as expressed in [35, 49].

Localization approaches are generally divided into two parts: non-collaborative and

collaborative localization. In non-collaborative localization, measurements consid-

ered in the algorithm are between only anchors (i.e., reference node whose posi-

tions are priorly known) and blindfolded nodes (i.e., agents whose positions unknown

namely to be estimated). In other words, the measurements between blindfolded ones

are not utilized in the estimation problem, while these inter-blindfolded nodes mea-

surements are considered in the collaborative approach in addition to anchor related

information. It is stated in [34] that more position unknown nodes, i.e., blindfolded

nodes, can improve accuracy or performance of the localization techniques, even

though the number of the unknown parameters to be estimated increases. Patwari

et. al. proves this statement by comparing Cramér-Rao lower bound (CRLB) values

in [34]. It is also reported in [50] that the number of anchors and anchor placement

also affect the performance of the localization systems. More detailed information

related to the comparison of collaborative and non-collaborative schemes can be ob-

tained from [30, 33, 34, 47, 50].

As all other positioning systems, RSS based ones require two phases: Calibration and

localization phases. In the calibration phase, the signal strength values are measured

at some locations and then some channel parameters, which are necessary in the lo-

calization phase, are estimated according to them [10, 30, 50]. The measurements

are taken to estimate the location of the target node by utilizing channel parameters

which are found in the calibration phase. Finally, it should be noted that the localiza-

tion methods having high immunity to calibration errors are desired.

Based on the RSS metric, localization methods can also be classified according to
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how the RSS metric is utilized in algorithm. These are fingerprinting, range-based

and range-free techniques. In fingerprinting approach, the measurements are taken

during the calibration phase at different points of the observation area, which are

called fingerprints or landmarks in fingerprinting literature [16], stored and used in the

localization phase. The unknown position of the target node is estimated by finding

the closest fingerprint which is collected in calibration, to measured one in localiza-

tion phase. It requires obviously good calibration, i.e., large number of measurement

campaigns in the calibration phase, to estimate the unknown position accurately [10].

Range-based techniques consider the fact that RSS values decay with increase of

inter-node distances. An analytical propagation model is assumed in solving the es-

timation problem. Finally, range-free localization utilizes connectivity information

with respect to RSS threshold power or deployment distribution of the nodes, which

is stated in [10]. Three aforementioned methods are also compared in terms of perfor-

mance of calibration and localization phases in [10]. It is said in [10] that range-based

method is the best among the three approaches. Additionally, the fingerprinting meth-

ods give good results relatively, although it needs better calibration for localization.

There exists studies [13,14] which compare connectivity and range-based methods in

terms of CRLB in the literature. Giorgetti et. al. show that there is a critical number

of connected nodes depending on RSS threshold value in which range-based local-

ization is better than connectivity based one. He also gives an optimal number of

connections which results in maximum connectivity based information with regard to

Fisher Information in [14].

Maximum likelihood estimation (MLE) [29,34,36], multidimensional scaling (MDS)

[6, 9, 29], weighted least squares algorithm (WLS), multilateration [30, 50] and it-

erative multilateration (IM) [42] are some of localization methods in the literature.

Localization problems, algorithms, strategies and factors affecting the localization

performance are surveyed in various articles [18, 19, 30, 31, 33, 50]. MLE and MDS

are two commonly used methods in range-based RSS localization, especially in col-

laborative localization as in [27, 29, 48]. Being asymtotically unbiased and efficient

makes MLE special and the conventional estimation technique [46]. Two types of

maximum likelihood (ML) cost functions were proposed in the literature. In one line

of work [29, 34], the cost function is composed only of the terms in the likelihood
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function corresponding to the connected nodes (i.e., nodes with which a communica-

tion link is established). We call the resulting MLE algorithm with this type of ML

cost function as RSS-MLE. On the other hand, the complete likelihood function for

the problem contains also the terms corresponding to the unconnected nodes. These

additional terms serve to incorporate into estimation problem the information that the

blindfolded sensor is so far from the corresponding nodes that no connection is es-

tablished. This type of ML cost function was proposed and used in [36]. We call the

resulting MLE algorithm for this case the hybrid RSS-MLE (h-RSS-MLE) algorithm

meaning that both connected and unconnected nodes are present in ML cost func-

tion. It can be also said that h-RSS-MLE fuses the measurements coming from range

and connectivity based information. It is also mentioned in [27, 29, 48] that RSS-

MLE cost function has multiple extremum points which requires good initialization.

Therefore, a grid-search method to optimize the cost function can be utilized instead

of gradient based algorithms, e.g., steepest descent, Quasi-Newton methods etc., The

main drawback is that it has much higher algorithmic complexity than gradient based

ones, though it guarantees the global optimum, especially when the number of un-

known parameters increases in the estimation problem. In this study, we call the ML

cost functions corresponding to RSS-MLE and h-RSS-MLE optimized by grid-search

method within predefined constraints as maximum likelihood estimation using finite

search space (FSS-MLE) and h-FSS-MLE respectively. A method to reduce com-

plexity of grid-search method for RSS-MLE case is proposed in [38].

The overall performance of RSS based localization methods can be enhanced by ap-

plying some tracking algorithms. This is because an adaptive filter approach, e.g.,

Kalman filter, which is mostly preferred in real-time or off-line tracking scenarios,

has an accumulative nature because of its measurement update and prediction up-

date phase using some dynamic process (motion) model and measurement model

together. The performance can also be enhanced by using some inertial measure-

ment unit (IMU), e.g., accelerometer, gyroscope, beside the inter-node measurements

in tracking approach. The aforementioned situations for getting higher accuracy in

positioning are analyzed in a theoretical information based approach, so called Equiv-

alent Fisher information (EFI) in [43].

Another important issue in RSS based estimation is that bias of the estimation causes
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undesired errors which cannot be easily compensated. Although it is possible that

mean squared error (MSE) of a biased estimator is lower than the minimum variance

unbiased (MVU) estimator as emphasized in [25], the bias of an estimator is not usu-

ally desirable. RSS-MLE is known to be significantly biased in most of localization

scenarios in the literature as stated in [9,29,34]. For this reason, an analytical bias ex-

pression can be a beneficial tool to predict system performance or mitigate unwanted

bias terms in localization and tracking algorithms. There exists some attempts to find

analytical bias formula for MLE based localization techniques among researchers in

localization. [50] and [44] offer a method based on Taylor series approximation of

the cost function which takes zero value at estimated points around true location of

the target. By considering the methods in aforementioned articles, [41] provides an

analytical expression for AOA, TOA and TDOA based MLE and [40] proposes a way

of reducing bias in tracking algorithm by utilizing the bias expressions given in [41].

To our best knowledge, an analytical expression of bias does not exist for RSS based

MLE in literature.

As mentioned before, owing to the fact that RSS techniques have low complexity

and range-based localization promises more accurate results than the others, we con-

sider RSS range based localization and tracking as the topic in this thesis. We first

compare some collaborative localization methods, namely, RSS-MLE, h-RSS-MLE,

WLS and MDS in a uniform grid deployment of nodes in a square area. It is seen that

initialization of the MLE with WLS and MDS approaches, improves the RSS-MLE

performance [29]. Additionally it is observed that adaptive neighborhood selection

method proposed in [9] reduces the bias considerably for RSS-MLE. As a result, by

considering the simulation results, we conclude that RSS-MLE is the best estimator

among other estimators and h-RSS-MLE can be approximately unbiased without uti-

lizing adaptive neighborhood selection (for the aforementioned sensor deployment).

To our best knowledge, this bias-reducing effect of h-RSS-MLE has not been reported

in the literature before.

In order to investigate the bias-reducing effect of h-RSS-MLE further, we put an ef-

fort into deriving an analytical bias formula for both RSS-MLE and h-RSS-MLE. An

analytical expression for bias under connectivity constraints, which is also applicable

for no connectivity constraint, i.e., no RSS threshold power, is derived by following
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the same methodology as [41]. This analytical expression is validated via a simulation

study conducted on a 1-D example. However it is also observed in the simulations that

this analytical approach is not valid for the 2-D case, probably due to the high non-

linearity of the assumed RSS propagation model. In order to overcome this difficulty,

we made a Taylor series approximation of RSS distance measurements around true

distance values to be able to give another analytical bias formula for RSS-MLE which

is applicable for grid-search based optimization. It is seen that this new bias formula

is valid in some simulation results at high SNR. Finally we compare some existing

tracking algorithms with MLE in a non-collaborative case, using both simulated and

real data, under different connectivity constraints. In the experimental study using

real data, it is observed that the tracking algorithms, particularly the particle filter,

improves the localization accuracy about one meter.

The rest of this thesis is organized as follows. In Chapter 2, the general localization

problem related to RSS measurements is defined and some existing RSS range based

localization methods are compared with some simulation results. Tracking algorithms

are described and compared to MLE localization via both a simulation study and ex-

periments in Chapter 3. Chapter 4 and 5 present the derivation and validation of the

aforementioned analytical bias formulae along with simulation studies. We conclude

the thesis with conclusion and future work in Chapter 6. Additionally some useful

mathematical derivations and tools related to the study including some algorithms,

RSS-MLE and h-RSS-MLE cost functions, CRLB and some useful expressions uti-

lized in analytical bias formulas can be found in Appendices.
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CHAPTER 2

LOCALIZATION

In this chapter, RSS measurement model and some localization techniques based on

this model, e.g., MDS, MLE and WLS, are presented and compared via simulation

studies. Simulation study includes both collaborative and non-collaborative localiza-

tion scenarios. Furthermore, two variants of MLE cost functions are introduced and

analyzed via the simulation study. In some scenarios, it is observed that one of them

having extra information in it, has ability to mitigate bias, but not in all.

2.1 Problem Definition

Consider a network which consists of n blindfolded and m anchor nodes, namely

N = n +m nodes. The position of the blindfolded node (BN) is unknown and to be

estimated, while anchor nodes (AN) have knowledge about their coordinates. In our

study, the aim is to estimate the location of BN based on the pairwise RSS measure-

ments among the nodes. In non-collaborative location estimation, RSS measurements

are only made among BN and AN. However RSS measurements among all sensors

are taken into account in collaborative location estimation, and then coordinates of all

blind nodes are calculated together in the algorithm. It is known that pairwise RSS

measurements are related to distance between connected nodes due to the path loss

model [29], [15]. The path loss model [15] we used is given as follows:

Pij = P0 − 10α log10
dij
d0

+ vij (2.1)

for 1 ≤ i ≤ N , 1 ≤ j ≤ N and i 6= j, where P0 is RSS measured at reference distance

d0 in dBm, dij is the Euclidean distance between node i and node j and α is the path
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loss exponent. Pij is the received power in dBm for the signal transmitted from node i

to node j. Independent, identically distributed (IID) random variables vij ∼ N (0, σ2
v)

are defined as log-normal shadowing effects of multipath environments. Path loss

exponent α and σv depend on the channel characteristics. In the literature, pairwise

measurements are considered as reciprocal, i.e, Pij = Pji [29], [34]. For given Pij

in (2.1) and d0 , 1, the MLE of distance between the node i and j is given in [34]

(distance measurements corresponding to RSS measurements) as

δij = 10(P0−Pij)/10α (2.2)

Derivation of this formula can be found in Appendix A. The MLE of distances can

be used as measured parameters in the localization algorithm [34]. As it is seen, log-

arithm of measured distance has normal distribution with mean log dij and standard

deviation σ = (σv log 10)/10α namely log δij ∼ N (log dij, σ). In our simulations

when the received power Pij at node i is larger than Pthr (RSS threshold of device),

it can be said that connectivity between node i and j is obtained, in other words

RSS measurement is obtained. By using the δij measurements and connectivity in-

formation of the nodes, coordinates of the blindfolded sensors are estimated by an

appropriate estimation rule.

2.2 Multidimensional Scaling (MDS)

MDS is a method that analyzes measurements of similarity or dissimilarity among the

pairs of objects as distances between points of a low dimensional multidimensional

space [6]. MDS is widely used in psychology, sociology and marketing. MDS can

be used to solve localization problem [27, 29]. Configuration matrix for MDS can be

written as

X = [r1, r2, · · · , rN] (2.3)

where ri = [xi1, xi2, · · · , xiM] is the coordinates of the ith node in M dimensional

space. Configuration matrix can be partitioned as X =
[

XT
BN, X

T
AN

]T
where XBN,

XAN are configuration matrices of blindfolded nodes and anchor nodes respectively.

MDS cost function (raw stress) is given in [6, 29] as

CMDS(X) =
N−1
∑

i=1

N
∑

j=i+1

wij (dij(X)− δij)
2 (2.4)
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where dij(X) = ‖ri − rj‖ and δij is dissimilarity, and weights wij:

wij =











1, if δij is observed (δij 6 dthr)

0, otherwise
(2.5)

where dthr is the threshold distance (dthr is related to RSS threshold value Pthr in

our problem). MDS solution can be obtained by minimizing the MDS cost function

in (2.4). This minimization can be done by using Scaling by Majorizing a Convex

Function (SMACOF) [6, 29] or gradient based methods such as Quasi-Newton or

trust-region methods. These gradient based minimization methods can be found in

MATLAB Optimization Toolbox. Minimization by SMACOF algorithm is easier

than gradient based methods [6]. SMACOF algorithm can be seen in Appendix B. In

MDS anchor nodes are also considered as unknown parameters. These are estimated

together with blindfolded nodes by minimizing the cost function in (2.4). Procrustes

similarity transformation is used to get same coordinate system as anchor nodes [6,

29]. Procrustes transformation can be made by minimizing the cost function:

L(s, t,T) = Tr

{

[

XAN −
(

sX̂ANT+ 1tT
)]T [

XAN −
(

sX̂ANT+ 1tT
)]

}

(2.6)

where T is the reflection matrix such that TTT = I (I: identity matrix), 1 is a vector

of all ones, t is a translation vector, s is scaling factor, XAN is the known configuration

of anchor nodes and X̂AN is the configuration of MDS solution of anchor nodes. Then

by using T, s and t obtained by minimizing (2.6). Final configuration matrix of MDS

solution of blindfolded nodes X̂BN is transformed into the same coordinate system as

XAN. This transformation can be made by using the information of T, s and t. This

can be seen in the following expression

XBN-trans = sX̂BNT+ 1tT (2.7)

XBN-trans is the desired configuration matrix of blindfolded nodes in our localization

problem. An implementation of Procrustes transformation can be found in MATLAB

Statistics Toolbox.

2.3 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation is an estimation method that maximizes the a priori

likelihood function. MLE has an advantage of being asymptotically efficient and
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unbiased [46]. MLE cost function using RSS measurements is given in [29, 34, 36]

and the derivation of the MLE cost function can be found in Appendix A. MLE of

configuration matrix of blindfolded nodes in 2-D can be obtained by minimizing MLE

cost function as follows

CRSS-MLE(X) =

n
∑

i=1

N
∑

j=i+1

wij (log dij − log δij)
2 (2.8)

where n is the number of blindfolded nodes, N = n + m is total number of nodes

in the network. Configuration matrix X = [r1, r2, · · · , rN ]T, ri = [xi, yi]
T in 2-D

space, wij is connectivity parameter which is indicated in (2.5). δij is the pairwise

distance measurement parameter between node i and j. As we mentioned in the

introduction, we call the MLE cost function which is composed only of terms in the

likelihood function corresponding to the connected nodes (i.e., wij = 1) as RSS-

MLE in (2.8). Another MLE cost function which we call as h-RSS-MLE, utilizes

the information of non-connectivity of the nodes in the cost function. Actually this

information is that nodes are so far from the corresponding nodes that no connection

is established. h-RSS-MLE cost function can be written as follows [36]

Ch-RSS-MLE(X) =

n
∑

i=1

N
∑

j=i+1

1

2

(

10α

σv log 10

)2

wij (log dij − log δij)
2

− (1− wij) logQ(tij) (2.9)

where Q(.) is the Q-function; tij = (P0 − Pthr − 10α log10 dij) /σv and Pthr is (con-

nectivity) threshold power for the nodes. Note that the second term on the right hand

side of (2.9) represents the information that there is no connection between ith and

jth nodes. By means of this additional term, even though no RSS measurement is

collected from corresponding node, its existence is represented in the h-RSS-MLE

cost function to provide the information that ith node is probably far from the corre-

sponding jth node. Another important point to notice is that when one replace Q(tij)

by unity (or equivalently logQ(tij) by zero), h-RSS-MLE cost function reduces into

RSS-MLE cost function in (2.8). ML estimation rule for localization of the blind-

folded nodes is defined as an optimization problem given as

X̂MLE = argmin
X

CRSS-MLE,h-RSS-MLE (2.10)
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where X is the unknown configuration matrix (position matrix) for the blindfolded

nodes and X̂ is its estimate. Minimization of MLE cost functions in (2.8) and (2.9)

can be made generally through gradient based algorithms. However as it can be seen,

MLE cost functions are neither quasi-convex nor convex [48], i.e., it has many local

optima beside the global optima. Therefore it is possible to obtain a solution at any lo-

cal optima by selecting an initial value for optimization. Solution at any local optima

except at global one causes some extra error. Especially when the number of nodes

increases, possibility of this problem increases. Hence, in general, another estima-

tion rule can be utilized for finding an initial value for the ML optimization problem,

such as MDS or multilateration. It is said that MLE cost function is more suitable to

our statistical problem than MDS cost function in [29]. It is also stated in [29] that

when the variance of pairwise distance measurements are constant, MDS solution is

asymptotically efficient as the MLE solution. However statistical parameters of δijs

are not constant with respect to positions. Mean and variance of pairwise measured

distances δijs are

E(δij) = dij exp

(

σ2

2

)

(2.11)

var(δij) = d2ij
[

exp(σ2)− 1
]

exp(σ2) (2.12)

Suitable weight assignments are proposed in [29] as follows, according to the statis-

tics given above

wij =











1
d2ij

, if δij is observed (δij 6 dthr)

0, otherwise
(2.13)

or

wij =











1
dij

, if δij is observed (δij 6 dthr)

0, otherwise
(2.14)

Actually MDS solution with weights inversely proportional to d2ij is asymptotically

efficient. But d2ijs are not available to us. Instead of these, δ2ijs are used in the al-

gorithms. Other weight assignments in (2.14) can be used to compensate undesired

bias resulting from the weight assignments in (2.13). Additionally, an approximation

can be made to see which weight assignment of MDS solution can reduce to MLE
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solution. The approximation is given by [6].

CRSS-MLE =
n
∑

i=1

N
∑

j=i+1

log2 (dij/δij)

≈
n
∑

i=1

N
∑

j=i+1

(1− dij/δij)
2

= CMDS(X) (2.15)

In addition to gradient optimization of both ML cost functions (RSS-MLE or h-RSS-

MLE), a grid-search method can be utilized in the optimization problem. The most

important property of grid-search optimization is that it does not require an initial-

ization. Therefore it can guarantee the global solution of an optimization problem.

However it can be ultimately complex compared to the gradient methods. Addition-

ally, gradient methods and grid-search can give different results although they use

the same ML cost function. Therefore we call RSS-MLE cost function optimized by

grid-search as FSS-MLE in this thesis (or h-FSS-MLE where the non-connectivity

information is used like in h-RSS-MLE).

2.4 Weighted Least Squares (WLS)

In this section, we present weighted least squares method for the localization problem.

The WLS cost function is given in (2.16).

CWLS =
n
∑

i=1

N
∑

j=i+1

wij (dij − δij)
2 (2.16)

The WLS method has actually the same cost function as MDS method, except the

fact that the position of the anchors is also estimated in MDS together with the un-

known ones. The WLS method does not require a Procrustes transformation, since

the position of the anchors is assumed to be known in the WLS cost function.

2.5 Simulation Results

In this section, first, we compare RSS-MLE and other some existing localization al-

gorithms introduced in previous sections for uniform-grid deployment of the nodes
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and four anchors on the corners in 80 m × 80 m observation area via simulation. Ac-

tually the simulation environment does totally fit the scenario created in [29]. Second,

another simulation is made to emphasize the reduced bias of h-RSS-MLE in the same

simulation environment.

2.5.1 Comparison of the Performance of RSS-MLE and the Other Methods

We have the same scenario as in [29] for simulation, which can be seen in Figure

2.1. The anchors are given on the corners and the others are blindfolded nodes. The

simulation parameters are in Table 2.1. 200 Monte Carlo (MC) simulations are per-

Table2.1: Simulation Parameters for Collaborative Localization

Simulation Parameters Value
Area of node field 80 m × 80 m
Number of grids 8

Path loss exponent α 3
Standard deviation σv 6 dB

RSS threshold power Pthr -80 dBm
First meter RSS power P0 -30 dBm

formed to obtain the location estimation bias, standard deviation (STD) and root-

mean square error (RMSE) values for MLE, weighted MDS, weighted LS, hybrid

WLS-MLE (WLS-MLE) and hybrid MDS-MLE (MDS-MLE) methods with perfor-

mance criteria in Appendix D. MDS-MLE means that output of MDS estimation

is given to MLE algorithms as initial values in the optimization problem. In sim-

ulations, MDS cost functions with different weights were solved through different

optimization methods such as BFGS Quasi-Newton and SMACOF algorithm with

random initialization. Note that we have 128 unknowns (2 × number of all nodes)

in this scenario in MDS algorithm with optimization methods SMACOF and BFGS

Quasi-Newton algorithm. For WLS-MLE method, three different weighted LS so-

lution (2 × n unknowns) by BFGS Quasi-Newton (120 unknowns in this scenario)

are utilized as initial values for BFGS Quasi-Newton optimization method solving

the MLE cost function in (2.8) while three weighted MDS solutions by SMACOF
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Figure 2.1: Location of the nodes in 80 m × 80 m: Position of each blindfolded
sensor (+), position of the anchors (N)

algorithm (128 unknowns) and BFGS Quasi-Newton (128 unknowns) are utilized as

initial values for MLE. It is observed that MLE with MDS and WLS perform better

than MLE with random initialization. It has been also seen that they converge to the

solution faster [29]. Finally after obtaining the results, the adaptive neighborhood

selection method proposed in [9] is used to compensate the bias. The weights W1,

W2 and W3 for MDS and WLS are in (2.5), (2.13) and (2.14) respectively. CRLB

is calculated according to the formula given in Appendix C. The performance results

related to bias, RMSE, STD and time complexity for MDS with different weight as-

signments by SMACOF algorithm and RSS-MLE are given in Table 2.2, while the

results can be seen in Table 2.3 when MDS cost function is solved by Quasi-Newton

method instead of SMACOF algorithm. Table 2.3 compares the performance of WLS

and MLE. Additionally the performance results of these localization techniques with

adaptive neighborhood selection method are presented in Table 2.5, 2.6 and 2.7. It

should also be noted that a computer equipped with a Intel Core i5 1.7 GHz central

processing unit and 6 GB RAM is utilized in the simulations. Furthermore, we don’t

focus on maximizing the performance of the codes in MATLAB for simulations.
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Table2.2: 2-D Collaborative Localization Results for MDSs by SMACOF Algorithm
and MLE by BFGS Quasi-Newton

Method Bias (m) STD (m) RMSE (m) Time on Average (s)
MDS(W1) 21.7663 23.9773 32.3834 1.0586
MDS(W2) 17.6229 16.8188 24.3606 0.7163
MDS(W3) 16.73 17.8697 24.4789 0.7122

MLE 19.0465 19.4004 27.1872 24.3456
MDS(W1)-MLE 16.6652 18.8002 25.1233 6.5557
MDS(W2)-MLE 11.3479 13.5890 17.7042 4.7416
MDS(W3)-MLE 12.0078 14.4785 18.81 3.7957

CRLB-MLE - 5.15 - -

Table2.3: 2-D Collaborative Localization Results for WLSs by BFGS Quasi-Newton
and MLE by BFGS Quasi-Newton

Method Bias (m) STD (m) RMSE (m) Time on Average (s)
WLS(W1) 11.7366 8.0843 14.2515 2.1485
WLS(W2) 11.9283 6.5738 13.6198 1.7025
WLS(W3) 11.3405 5.9033 12.7850 1.5697

MLE 19.9465 19.4004 27.1872 24.3456
WLS(W1)-MLE 8.3849 8.276 11.7813 4.2297
WLS(W2)-MLE 7.4662 6.4234 9.849 3.0712
WLS(W3)-MLE 7.5093 6.4534 9.9025 2.6938

CRLB-MLE - 5.15 - -

Table2.4: 2-D Collaborative Localization Results for MDSs by BFGS Quasi-Newton
and MLE by BFGS Quasi-Newton

Method Bias (m) STD (m) RMSE (m) Time on Average (s)
MDS(W1) 22.129 24.9344 33.3379 3.2352
MDS(W2) 19.306 18.3796 26.6538 3.0345
MDS(W3) 17.6232 19.0976 25.9865 2.8116

MLE 19.0465 19.4004 27.1872 24.3456
MDS(W1)-MLE 16.441 18.3894 24.6673 7.1516
MDS(W2)-MLE 13.15789 15.6514 20.4473 5.5433
MDS(W3)-MLE 13.0356 15.4419 20.2084 4.2263

CRLB-MLE - 5.15 - -
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Table2.5: 2-D Collaborative Localization Results for MDSs by SMACOF Algorithm
and MLE by BFGS Quasi-Newton with Adaptive Neighborhood Selection Method

Method Bias (m) STD (m) RMSE (m) Time on Average (s)
MDS(W1) 1.8714 24.3344 24.4062 1.3164
MDS(W2) 10.2272 12.6829 16.2916 0.9263
MDS(W3) 4.9499 13.4284 14.3116 0.8558

MLE 8.1616 24.6939 26.0077 39.5641
MDS(W1)-MLE 8.2168 26.3152 27.5682 18.9578
MDS(W2)-MLE 2.4415 14.6201 14.8226 12.8603
MDS(W3)-MLE 2.9773 16.42 16.6878 11.7802

CRLB-MLE - 5.15 - -

Table2.6: 2-D Collaborative Localization Results for WLSs by BFGS Quasi-Newton
and MLE by BFGS Quasi-Newton with Adaptive Neighborhood Selection Method

Method Bias (m) STD (m) RMSE (m) Time on Average (s)
WLS(W1) 3.0538 9.8341 10.2973 2.9919
WLS(W2) 8.0826 6.5599 10.4096 2.7522
WLS(W3) 3.4405 5.6101 6.5811 2.3142

MLE 8.1616 24.6939 26.0077 39.5641
WLS(W1)-MLE 0.655 6.1358 6.1706 10.309
WLS(W2)-MLE 0.5633 5.7112 5.7389 7.4268
WLS(W3)-MLE 0.6323 5.7095 5.7444 6.9280

CRLB-MLE - 5.15 - -

Table2.7: 2-D Collaborative Localization Results for MDSs by BFGS Quasi-Newton
and MLE by BFGS Quasi-Newton with Adaptive Neighborhood Selection Method

Method Bias (m) STD (m) RMSE (m) Time on Average (s)
MDS(W1) 2.1859 26.1138 26.2052 4.5996
MDS(W2) 11.0131 15.4119 18.9424 4.6819
MDS(W3) 4.9662 14.579 15.4016 3.8832

MLE 8.1616 24.6939 26.0077 39.5641
MDS(W1)-MLE 6.3971 23.0444 23.9159 22.1396
MDS(W2)-MLE 4.3325 19.355 19.834 17.6155
MDS(W3)-MLE 3.1946 16.8319 17.1324 16.228

CRLB-MLE - 5.15 - -
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Cumulative distribution functions (CDF) of position estimation errors of MDS by

SMACOF, MLE and MDS-MLEs are given in Figure 2.2, while cumulative distribu-

tion functions of estimation errors of MDS by Quasi-Newton, MLE and MDS-MLEs

can be seen in Figure 2.4. Figure 2.3 compares distribution functions of position esti-

mation errors of WLS, MLE and WLS-MLEs. Furthermore the distribution functions

of estimation errors of aforesaid localization techniques with adaptive neighborhood

selection method can be found in Figures 2.5, 2.6 and 2.7.
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Figure 2.2: CDF of position estimation errors of MDSs by SMACOF algorithm (left)
and MDS-MLE (right) without adaptive neighborhood selection method
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Figure 2.3: CDF of position estimation errors of WLSs by BFGS Quasi-Newton (left)
and WLS-MLE (right) without adaptive neighborhood selection method
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Figure 2.4: CDF of position estimation errors of MDSs by BFGS Quasi-Newton (left)
and MDS-MLE (right) without adaptive neighborhood selection method
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Figure 2.5: CDF of position estimation errors of MDSs by SMACOF algorithm (left)
and MDS-MLE (right) with adaptive neighborhood selection method
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Figure 2.6: CDF of position estimation errors of WLSs by BFGS Quasi-Newton (left)
and WLS-MLE (right) with adaptive neighborhood selection method
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Figure 2.7: CDF of position estimation errors of MDSs by BFGS Quasi-Newton (left)
and MDS-MLE (right) with adaptive neighborhood selection method

Based on simulation results, WLS(W3) and WLS(W3)-MLE with adaptive neigh-

borhood selection method have the best results. To obtain better understanding for

the performance of the localization methods, a pictorial representation of the error

performance, namely 1-σ error ellipses, bias and CRLB ellipses can be provided for

each blindfolded node. For that, error ellipses, CRLB and bias of each blindfolded

node, whose position is found by WLS(W3) without adaptive neighborhood selection

method and with it, can be seen in Figures 2.8 and 2.9 respectively. Moreover a pic-

ture related to the error performance of WLS(W3)-MLE without adaptive neighbor-

hood selection method is given in Figure 2.10. Figure 2.11 gives the error ellipses and

bias of each node by WLS(W3)-MLE with adaptive neighborhood selection method.

22



−50 −40 −30 −20 −10 0 10 20 30 40 50

−50

−40

−30

−20

−10

0

10

20

30

40

50

x (m)

y 
(m

)

Figure 2.8: 2-D collaborative WLS(W3) localization without adaptive neighborhood
selection met.: True position of each blindfolded sensor (+), mean of estimate of each
blindfolded node (•), the CRB on the 1-sigma error ellipse (—), 1-sigma error ellipse
(−−−) and (N) points the anchor location
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Figure 2.9: 2-D collaborative WLS(W3) localization with adaptive neighborhood se-
lection met.: True position of each blindfolded sensor (+), mean of estimate of each
blindfolded node (•), the CRB on the 1-sigma error ellipse (—), 1-sigma error ellipse
(−−−) and (N) points the anchor location
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Figure 2.10: 2-D collaborative WLS(W3)-MLE localization without adaptive neigh-
borhood selection met.: True position of each blindfolded sensor (+), mean of esti-
mate of each blindfolded node (•), the CRB on the 1-sigma error ellipse (—), 1-sigma
error ellipse (−−−) and (N) points the anchor location
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Figure 2.11: 2-D collaborative WLS(W3)-MLE localization with adaptive neighbor-
hood selection met.: True position of each blindfolded sensor (+), mean of estimate
of each blindfolded node (•), the CRB on the 1-sigma error ellipse (—), 1-sigma error
ellipse (−−−) and (N) points the anchor location
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It can be observed in Figures 2.9 and 2.11 that the bias is reduced by the utilization

of the adaptive neighborhood selection method. Furthermore it can also be seen that

nodes at the center of the field have 1-σ error ellipse being very close to the CRLB.

Error ellipses of the nodes in the corner of the field have a correlation between x and

y positions.

2.5.2 Comparison of the Performance of RSS-MLE and h-RSS-MLE

A collaborative localization scenario is considered with four anchors placed at corners

of a 80 m × 80 m area and sixty blindfolded nodes which are placed on a uniform

grid as in [29], which is same as in Figure 2.1. A total of 200 MC simulation runs

are made. Channel parameters are given in Table 2.1 and the same as in the Section

2.5.1. However the optimization is initialized with true position values of blindfolded

nodes in order to get rid of the local optima problem. The results are illustrated

in Figures 2.12 and 2.13 where we provide a pictorial presentation of the bias, the

RMSE performance and in Table 2.8 where numerical results are presented. The bias

statistics provided in Table 2.8 makes it evident that the average bias of RSS-MLE is

more than 15 times larger than that of h-RSS-MLE. Moreover, the variance of h-RSS-

MLE is a little smaller than that of RSS-MLE which leads to the fact that RMSE of

h-RSS-MLE is significantly lower than RSS-MLE.

Table2.8: 2-D Collaborative Localization Results for RSS-MLE and h-RSS-MLE

Estimation Method Overall Bias (m) STD (m) RMSE (m)
RSS-MLE 7.09 5.59 9.02

h-RSS-MLE 0.38 5.31 5.32
CRB for RSS-MLE - 5.15 -

CRB for h-RSS-MLE - 4.77 -

The incorporation of the non-connectivity information into the ML cost is, on the

average, expected to let the ML estimator know the fact that a blindfolded sensor is

far from the anchors with which connectivity could not be achieved. Therefore, the

addition of these terms would have the effect of pushing the estimate away from the
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Figure 2.12: 2-D collaborative RSS-MLE localization: True position of each blind-
folded sensor (+), mean of estimate of each blindfolded node (•), the CRB on the
1-sigma error ellipse (—), 1-sigma error ellipse (−−−) and (N) points the anchor
location
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Figure 2.13: 2-D collaborative h-RSS-MLE localization: True position of each blind-
folded sensor (+), mean of estimate of each blindfolded node (•), the CRB on the
1-sigma error ellipse (—), 1-sigma error ellipse (−−−) and (N) points the anchor
location
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unconnected anchors. Our simulation results show on the average that the estimates

of RSS-MLE, which does not use the non-connectivity terms in its cost function, are

biased towards the possibly unconnected anchors. As the number of unconnected

anchors increase, so does the bias as clearly shown in Figures 2.12 and 2.13 with

bias increasing towards the edges of the region of interest. Hence, the addition of the

non-connectivity terms into the cost function of h-RSS-MLE compensates for these

undesirable effects. To our best knowledge, this compensation effect has not been

reported in the literature before.

The reduction of bias has critical importance especially for tracking applications.

Kalman filtering methods used in target tracking could, in theory, reduce the high

variance in the measurements by using “averaging in time”. However a significant

bias in the measurements would always appear in Kalman filter estimates if not com-

pensated. Hence reducing the bias has utmost importance for accurate dynamic esti-

mation.

It should be noted that we have observed that h-RSS-MLE definitely reduces the

bias in collaborative localization only for a uniform-grid deployment scenario of the

nodes as in Figure 2.1. Therefore one non-collaborative simulation environment must

be created to confirm the advantage of h-RSS-MLE over RSS-MLE. The related pa-

rameters are enlisted in Table 2.9. Besides RSS-MLE and h-RSS-MLE, we evaluated

Table2.9: Simulation Parameters for Non-Collaborative Localization

Simulation Parameters Value
Area of node field 10 m × 10 m
Number of anchors 4

Path loss exponent α 3
Standard deviation σv 6 dB

RSS threshold power Pthr -65 dBm
First meter RSS power P0 -30 dBm

Number of MC Run 2000

FSS-MLE and h-FSS-MLE in the simulation study to reach the global solution of the

ML cost functions. For that, we searched the solution for ML cost functions in two
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different search spaces which are 10 m × 10 m and 100 m × 100 m respectively. We

suppose that FSS-MLE or h-FSS-MLE will be the same as RSS-MLE or h-RSS-MLE

when the area of search space is large enough. That is the reason why we chose 100

m × 100 m as the area of search space for simulations addition to 10 m × 10 m.

We also would like to see the difference between localization techniques, FSS-MLE

and RSS-MLE (or h-FSS-MLE and h-RSS-MLE), by choosing these search spaces.

Anchors are located on the corners of 10 m × 10 m area and their coordinates are

(0,0), (0,10), (10,0) and (10,10). Blindfolded nodes are placed inside the area of 10

m × 10 m. The placement of nodes are given in Figure 2.14 as follows
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Figure 2.14: Location of the nodes in 10 m × 10 m: Position of each blindfolded
sensor (+), position of the anchors (N)

For each numbered node (blindfolded node), a MC simulation is made to obtain bias

and RMSE values of FSS-MLE and h-FSS-MLE techniques having different areas

of search space. Figures 2.15, 2.16 and 2.17 present the bias of FSS-MLE and h-

FSS-MLE. Furthermore RMSE performance of FSS-MLE and h-FSS-MLE is given

in Figure 2.18.
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Figure 2.15: Bias performance of non-collaborative FSS-MLE and h-FSS-MLE lo-
calization of blindfolded nodes given in Figure 2.14 in x-axis: FSS-MLE (grid-1)
(-+), FSS-MLE (grid-2) (-N), h-FSS-MLE (grid-1) (-+), h-FSS-MLE (grid-2) (-N)
where grid-1: 10 m × 10 m and grid-2: 100 m × 100 m
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Figure 2.16: Bias performance of non-collaborative FSS-MLE and h-FSS-MLE local-
ization of blindfolded nodes given in Figure 2.14 in y-axis: FSS-MLE (grid-1) (-+),
FSS-MLE (grid-2) (-N), h-FSS-MLE (grid-1)(-+), h-FSS-MLE (grid-2) (-N) where
grid-1: 10 m × 10 m and grid-2: 100 m × 100 m
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Figure 2.17: Bias performance of non-collaborative FSS-MLE and h-FSS-MLE lo-
calization of blindfolded nodes given in Figure 2.14 in distance: FSS-MLE (grid-1)
(-+), FSS-MLE (grid-2) (-N), h-FSS-MLE (grid-1) (-+), h-FSS-MLE (grid-2) (-N)
where grid-1: 10 m × 10 m and grid-2: 100 m × 100 m
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Figure 2.18: RMSE performance of non-collaborative FSS-MLE and h-FSS-MLE
localization of blindfolded nodes given in Figure 2.14: FSS-MLE (grid-1) (-+), FSS-
MLE (grid-2) (-N), h-FSS-MLE (grid-1) (-+), h-FSS-MLE (grid-2) (-N), CRB (RSS-
MLE) (-�), CRB (h-RSS-MLE) (-�) where grid-1: 10 m × 10 m and grid-2: 100 m
× 100 m
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As it is seen in the bias curves (Figures 2.15, 2.16 and 2.17), bias reduction property

of h-RSS-MLE in 2-D collaborative localization with uniform grid placement sce-

nario of nodes given in previous section cannot be observed in non-collaborative sce-

narios. Namely the non-connectivity information between related blindfolded node

and anchors does not always help maximum likelihood estimator reduce the bias and

RMSE, although h-RSS-MLE gives an information about the unconnected anchor,

e.g., a peak value in cost function around the related anchor. A picture that character-

izes this relation is given in Figure 2.19.

Figure 2.19: Comparison of RSS-MLE (left) and h-RSS-MLE (right) cost functions
obtained in one realization: Blindfolded node at (3,5) (•) and estimated position of
blindfolded node (•)

It is important to state that the anchors on (0,0), (0,10) and (10,10) are connected to

the blindfolded node. Due to the fact that the cost function has a maximum point
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around the position of the anchors as reported in [38], we can state that an uncon-

nected anchor with the information of probability of non-connectivity is treated like

a pseudo-anchor by looking at Figure 2.19. Our expectation would be that h-RSS-

MLE is always better than RSS-MLE in this situation, since more anchor-related

information is fused in its cost function. However additional information coming

from unconnected anchors does sometimes worsen the estimator as given in Figure

2.19 in non-collaborative localization. Additionally it can be said that FSS-MLE (or

h-FSS-MLE) can give different results depending on search space, when we compare

the results in Figures 2.15-2.18. Due to that, it can be also said that FSS-MLE can be

considered as a maximum a posteriori (MAP) estimator including a prior knowledge

about the position to be estimated, i.e., finite search space.
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CHAPTER 3

TRACKING

In this chapter, some tracking methods based on RSS measurements are introduced

and their performances are compared to each other in simulation and experimental

study.

In tracking, the purpose is to estimate the dynamic state (e.g., position, velocity) of an

observed object by considering some dynamic and sensor models. The state model

including the kinematic model and the measurement model is given in (3.1). Some

conventional tracking methods exist in the literature [4, 18] (e.g., Kalman filter (KF),

the extended Kalman filter (EKF) and particle filter (PF)). All of these approaches try

to find the estimate of state xk|k as indicated in (3.2). Consider the model below

xk+1 =f(xk) + wk

yk =h(xk) + vk (3.1)

where

• xk ∈ R
nx is the state with the initial state x0 ∼ p(x0);

• yk ∈ R
ny is the measurement;

• wk ∈ R
nx is the white process noise with a known distribution p(w) indepen-

dent from xk;

• vk ∈ R
ny is the white measurement noise with a known distribution p(v) inde-

pendent from xk.
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The aim is to find the posterior density of the state p(xk|y1:k) where

y1:k , {y1, y1, . . . , yk}.

Then state estimate x̂k|k can be found as

x̂MMSE
k|k =E [xk|y1:k] (3.2)

3.1 Kalman Filter (KF)

Consider the linear model below:

xk+1 =Axk + wk

yk =Cxk + vk (3.3)

with wk ∼ N (wk; 0, Q), vk ∼ N (vk; 0, R) and x0 ∼ N (x0; x̂0|0, P0|0). By consid-

ering the linearity of measurement and process models above and Gaussian measure-

ment and process noises, it can be shown that all posterior densities and likelihood

functions are Gaussian.

• p(xk|y1:k−1) = N (xk; x̂k|k−1, Pk|k−1)

• p(yk|y1:k−1) = N (yk; ŷk|k−1, Sk|k−1)

• p(xk|y1:k) = N (xk; x̂k|k, Pk|k)

• p(yk|xk) = N (yk;Cxk, R)

• p(xk|xk−1) = N (xk;Axk−1, Q)

It is known that the sufficient statistics is the mean and covariance in Gaussian densi-

ties. Therefore infinite dimensional estimation problem turns into a finite dimensional

estimation problem. Kalman filter (KF) is optimum under the assumption of indepen-

dent Gaussian noise and the linearity of the model [18]. Kalman filter algorithm can

be seen in Table 3.1 which is directly taken from [32].
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Table3.1: Kalman Filter [32]

• Start with x̂0|0, P0|0, set k = 1.

• For each k:

– Prediction Update
x̂k|k−1 =Ax̂k−1|k−1

Pk|k−1 =APk−1|k−1A
T +Q

– Measurement Update
x̂k|k =x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k =Pk|k−1 −KkSk|k−1K
T
k

where
ŷk|k−1 =Cx̂k|k−1

Sk|k−1 =CPk|k−1C
T +R

Kk =Pk|k−1C
TS−1

k|k−1

3.2 Extended Kalman Filter (EKF)

Many important real world applications involve models which are nonlinear and non-

Gaussian, so Kalman filter cannot be applied directly. A very common approach is

the linearization of the state space model (Taylor series expansion) to apply Kalman

filter. This filter is called extended Kalman filter (EKF) [4, 18]. If the nonlinear-

ity of the model is mild, EKF can give good results. The algorithm can be found

in Table 3.2 which has been totally taken from [32]. Additionally, two versions of

extended Kalman filter [5], i.e., serial and parallel EKF, can be formed according to

EKF algorithm in Table 3.2. These variants of EKF are provided in Table 3.3 and

Table 3.4 respectively. In parallel EKF, all measurements are processed together si-

multaneously by augmenting them in a measurement vector. On the other hand, the

measurements are sorted according to their strength and iteratively processed in se-

rial EKF. In addition to extended Kalman filtering, another tracking method using the

Gaussian assumption for posterior density is unscented Kalman filter (UKF) in non-
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Table3.2: Extended Kalman Filter [32]

• Start with x̂0|0, P0|0, set k = 1.

• For each k

– Prediction Update
x̂k|k−1 =f(x̂k−1|k−1)

Pk|k−1 =FPk−1|k−1F
T +Q

where F = ∂f
∂xk−1

|xk−1=x̂k−1|k−1
.

– Measurement Update
x̂k|k =x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k =Pk|k−1 −KkSk|k−1K
T
k

where
ŷk|k−1 =h(x̂k|k−1) Sk|k−1 = HPk|k−1H

T +R

Kk =Pk|k−1H
TS−1

k|k−1

with H = ∂h
∂xk
|xk=x̂k|k−1

.

linear estimation problems [23]. This filter approximates the posterior density as in

EKF as Gaussian, but this approximation is made through deterministically chosen

sigma points with corresponding weights from the posterior density. The main idea

is to calculate the first and second order statistics from a nonlinear function of deter-

ministically chosen sigma points (samples). It can be more suitable than EKF due to

some limitations stated in [23]. Finally these two filters, EKF and UKF, do generally

work well in the case of mild nonlinearities and relatively low uncertainties.
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Table3.3: Serial Extended Kalman Filter

• Start with x̂0|0, P0|0, set k = 1.

• For each k

– Prediction Update
x̂k|k−1 =f(x̂k−1|k−1)

Pk|k−1 =FPk−1|k−1F
T +Q

where F = ∂f
∂xk−1

|xk−1=x̂k−1|k−1
.

– Sort the measurements such that yk = [ ymax · · · ymin ]

– set i = 1, while i 6 N do

∗ Measurement Update
x̂k|k−1 =x̂k|k−1 +Kk(yk,i − ŷk|k−1)

Pk|k−1 =Pk|k−1 −KkSk|k−1K
T
k

where
ŷk|k−1 =hi(x̂k|k−1)

Sk|k−1 =HiPk|k−1H
T
i +R

Kk =Pk|k−1H
T
i S

−1
k|k−1

with Hi =
∂hi

∂xk
|xk=x̂k|k−1

which is linearized matrix for ith anchor corresponding to the
measurement yk,i
end while

x̂k|k = x̂k|k−1

Pk|k = Pk|k−1
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Table3.4: Parallel Extended Kalman Filter

• Start with x̂0|0, P0|0, set k = 1.

• For each k

– Prediction Update
x̂k|k−1 =f(x̂k−1|k−1)

Pk|k−1 =FPk−1|k−1F
T +Q

where F = ∂f
∂xk−1

|xk−1=x̂k−1|k−1

– h = [ h1 h2 · · · hN ]T for N number of measurements

– yk = [ y1 y2 · · · yN ]T: measurement vector

– Measurement Update
x̂k|k =x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k =Pk|k−1 −KkSk|k−1K
T
k

where
ŷk|k−1 =h(x̂k|k−1) Sk|k−1 = HPk|k−1H

T +R

Kk =Pk|k−1H
TS−1

k|k−1

with H = ∂h
∂xk
|xk=x̂k|k−1

.
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3.3 Particle Filter (PF)

The particle filter method tries to approximate the original posterior density of state

xk given measurements y1:k , {y1, y1, . . . , yk}. As in unscented Kalman filtering, it

utilizes the samples of the posterior density, but these samples are chosen randomly.

These samples are called particles in the literature. Although many variants of particle

filters exist, we use the SIR (Sequential Importance Resampling) particle filter. It is

stated that particle filter has more immunity to nonlinearities of models than EKF

and UKF. More information about particle filters can be obtained in [17, 20]. The

algorithm can be found in Table 3.5. Note that it has been taken from [32].

• Resampling: The weights in a particle filter converges to all zero except for a

single nonzero weight without resampling [17]. The resampling process deletes

the particles with relatively small weights and generate new particle from the

particles having high weights. The process is repeated in each iteration of SIR

particle filter. At the end of resampling, all particle weights become identical.

Note that we applied multinomial resampling algorithm which is presented in

[17] for our tracking problem in the simulation and experimental study.
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Table3.5: SIR Particle Filter [32]

• Start with x
(i)
0|0 ∼ p(x0), π

(i)
0|0 = 1/N for i = 1, . . . , N , set k = 1.

• For each k

– Prediction Update

∗ Sample process noise w(i)
k−1 ∼ p(wk−1).

∗ Set the predicted particles and weights as

x
(i)
k|k−1 =f

(

x
(i)
k−1|k−1

)

+ w
(i)
k−1 π

(i)
k|k−1 = π

(i)
k−1|k−1

for i = 1, . . . , N .
∗ Obtain the predicted state estimate x̂k|k−1 and its covariance Pk|k−1

as

x̂k|k−1 =

N
∑

i=1

π
(i)
k|k−1x

(i)
k|k−1

Pk|k−1 =

N
∑

i=1

π
(i)
k|k−1

(

x
(i)
k|k−1 − x̂k|k−1

)(

x
(i)
k|k−1 − x̂k|k−1

)T

– Measurement Update

∗ Set the estimated particles and weights as

x
(i)
k|k =x

(i)
k|k−1

π
(i)
k|k =

π̃
(i)
k|k

∑N
i=1 π̃

(i)
k|k

for i = 1, . . . , N where

π̃
(i)
k|k =π

(i)
k|k−1p

(

yk

∣

∣

∣
x
(i)
k|k

)

∗ Obtain the state estimate x̂k|k and its covariance Pk|k as

x̂k|k =

N
∑

i=1

π
(i)
k|kx

(i)
k|k

Pk|k =
N
∑

i=1

π
(i)
k|k

(

x
(i)
k|k − x̂k|k

)(

x
(i)
k|k − x̂k|k

)T
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3.4 Simulation Results

The anchors and blindfolded node trajectory can be seen in Figure 3.1. The blind-

folded node trajectory is generated by a random-walk model. 1000 MC simulation

runs are made to find bias and RMSE values of static localization and filters. The

filters are KF, serial and parallel EKFs and SIR particle filter. For static localization,

non-collaborative MLE cost function is solved through grid-search as the optimiza-

tion method, since it is important for MLE not to be affected by the local optima

problem, which plays a critical role in performance. In KF, the output values of static

localization are used as measurement. CRLBs at the estimate position are utilized as

measurement covariance. RSS values are our measurements in EKF and SIR PF. Ad-

ditionally, connectivity according to Pthr is considered in all filters. The simulation

parameters are given in Table 3.6. The measurement model is in (2.1) which is h(.)

Table3.6: Simulation Parameters for Non-Collaborative Tracking

Simulation Parameters Value
Path loss exponent α 3
Standard deviation σ 6 dB

RSS threshold power Pthr -63,-80 dBm
First meter RSS power P0 -30 dBm

in (3.1). We have a linear process model given in .

xk =





I2 T I2

02 I2



xk−1 +





T 2

2
I2

T I2



wk (3.4)

where I2 and 02 are identity and zero matrices with 2 x 2 respectively, T is sampling

period and wk is process noise which is assumed to be N (wk; 0,Q). Filters are

initialized as follows

x̂0|0 =
[

x̂RSS-MLE,h-RSS-MLE 0 0
]

(3.5)

P0|0 =





CRLB|x̂RSS-MLE,h-RSS-MLE 02

02 0.252I2



 (3.6)
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Figure 3.1: True trajectory and positions of the anchors

For Kalman filter, measurement noise covariance :

R = CRLB|x̂RSS-MLE,h-RSS-MLE (3.7)

For other filters, measurement noise covariance :

R = σ2Im (3.8)

where m is the number of anchors. The process noise covariance is

Q = 0.32I2 (3.9)

Figures 3.2 and 3.3 give the bias results for different Pthr (-63, -80 dBm). Further-

more, Figures 3.4 and 3.5 present the RMSE performance of the filters for Pthr (-63,

-80 dBm). The cumulative distribution functions of RMSE values of the filters av-

eraged over time can be seen in Figures 3.6 and 3.7 for different threshold power

values. It is seen in the performance figures of the algorithms that bias performance

of the filters is not so good as static localization. But filters surpass the static local-

ization methods in RMSE sense, PF is especially the best as expected. We observed
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Figure 3.2: Bias comparison of non-collaborative tracking methods: Pthr = −63
dBm, 4 anchors (RSS-MLE: blue, h-RSS-MLE: red)
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Figure 3.3: Bias comparison of non-collaborative tracking methods: Pthr = −80
dBm, 4 anchors (RSS-MLE: blue, h-RSS-MLE: red)
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Figure 3.4: RMSE comparison of non-collaborative tracking methods: Pthr = −63
dBm, 4 anchors (RSS-MLE: blue, h-RSS-MLE: red)
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Figure 3.5: RMSE comparison of non-collaborative tracking methods: Pthr = −80
dBm, 4 anchors (RSS-MLE: blue, h-RSS-MLE: red)
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Figure 3.6: CDFs of RMSE averaged over time of non-collaborative localization and
tracking methods: Pthr = −63 dBm, 4 anchors, (RSS-MLE: solid line, h-RSS-MLE:
dashed line)
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Figure 3.7: CDFs of RMSE averaged over time of non-collaborative localization and
tracking methods: Pthr = −80 dBm, 4 anchors, (RSS-MLE: solid line, h-RSS-MLE:
dashed line)
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h-RSS-MLE does not reduce the bias for this non-collaborative scenario. Further-

more, RMSE of h-RSS-MLE is not less than RSS-MLE, although h-RSS-MLE has

additional extra non-connectivity information in its cost function.

3.5 Experimental Study

Very often, the models considered in design and calculations does not fit the real

world. Therefore some experimental studies are performed to see the real perfor-

mance of the localization and tracking algorithms. We performed an experiment for

tracking and localization by using Xbee Series 2 based devices. Our experiment

consists of two phases: Calibration phase and measurement phase. In calibration

phase, RSS measurements are processed under the assumption that the position of

the nodes is known, to estimate channel parameters. RSS values are obtained to per-

form localization and tracking algorithms by using estimated channel parameters in

measurement phase. Details about specification of the devices which we used in the

experiment, are given in Section 3.5.1. Calibration phase and experimental results are

presented in Sections 3.5.2 and 3.5.3 respectively.

3.5.1 Experimental Setup

Arduino Uno R3 boards are used as wireless sensor nodes in testbed implementations.

Arduino Uno R3 board specifications are provided in Table 3.7 [1, 2]. ATmega328

microcontrollers are the control units of the sensor nodes. To enable wireless commu-

nication between sensor nodes, each board is extended using Arduino Wireless Shield

equipped with an Xbee Series 2 RF module and 2GB SD card. The transmit power

and the receiver sensitivity of a module are, respectively, 3 dBm and -100 dBm. Xbee

modules with PCB antenna are used in experiments. For the power supplies, AC/DC

adapter DC 12V, 1.5A are used.

Digi’s Xbee Series 2 radio modules use the Zigbee Protocol. The modules operate

within one of the sixteen channels in the ISM 2.4 GHz frequency band. There are two

types of modes of the Xbee, AT mode and API mode. API supports communication

with the Xbee modules in a frame-based way. In fact, a control unit sends data frames
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Table3.7: Arduino Uno R3 Board Specifications

Microcontroller ATmega328
Operating Voltage 5 V

Input Voltage (recommended) 7-12 V
Input Voltage (limits) 6-20 V

Digital I/O Pins 14
(of which 6 provide PWM output)

Analog Input Pins 6
DC Current per I/0 Pin 40 mA

DC Current per 3.3 V pin 50 mA
Flash Memory 32 KB (ATmega328) of which

0.5 KB used by bootloader
SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)
Clock Speed 16 MHz

containing destination address and transmission data to the transmitter Xbee module

together with transmission options. In experiments, we used broadcast messages for

the communication between blindfolded node and anchors. The RSS measurements

are logged in SD cards which are on the anchors.

3.5.2 Calibration Phase

Calibration is made to find the channel parameters, i.e., path loss exponent α, σ and

P0 which are used in the aforementioned localization and tracking algorithms. In the

calibration phase, the nodes are placed as indicated in Figure 3.8, and the position

coordinates of the nodes are assumed to be known. Our environment is a typical class

environment which consists of tables, and there is no obstruction between the receiver

and transmitters. It is located in in Middle East Technical University (METU), De-

partment of Electrical and Electronics Engineering, Block A. The name of the class

is EA-201. By considering the path loss model in (2.1), the estimate of path loss

exponent α and first-meter reference power P0 is found as follows.




P̂0

α̂



 =
(

HTH
)−1

HTP (3.10)

where
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• P =
[

P1 P2 · · · Pm

]T

: measurement vector.

• H =
[

1 −10 log10 d
]

• 1: vector of ones.

Note that positions of the nodes are assumed to be known in (3.10), and least squares

(LS) estimation in (3.10) is optimum (unbiased and minimum variance which achieves

CRLB) under linearity of model and Gaussianity assumption [22]. For more informa-

tion about the estimation procedure of the path loss exponent and first-meter power,

the reference [8] offers some methods. Estimated path loss model, which is found
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Figure 3.8: Node deployment for calibration measurement campaign

by using (3.10), is given in Figure 3.9 according to measurement campaign in Fig-

ure 3.8. Path loss exponent estimate α̂ = 1.75, first-meter power P̂0 = −46 dBm

and σ̂v = 5.47 dB. Actually α̂ is within the range of path loss exponent values for

unobstructed indoor environment, which is expressed in the literature [50].
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Figure 3.9: Estimated path loss model and RSS samples

3.5.3 Experimental Results

The anchors are deployed on the corners of a 5 m × 11 m area, such that the first,

the second, the third and the fourth anchors are at (0,0), (0,11), (5,11) and (5,0) co-

ordinates respectively. The blindfolded node is moved on the specific trajectory and

RSS values are sent by transmitter (blindfolded node) in each 2 seconds. To enhance

the experimental performance of the localization and tracking techniques, 5 samples

or measurements are taken in each step of walk (i.e., waiting 10 s in each point). Ad-

ditionally, α is set to 2.5, since we observed that tracking results with α = 2.5 are

much better than one with α = 1.75. The parameters σv and P0 are taken as 6 dB and

-46 dBm respectively in our implementations. Obtaining better results with a channel

parameter which is different from the calibrated one is possible, since the path loss

model in (2.1) may not sometimes match the RSS measurements in real world [39].

Filter initializations, measurement noise covariances are taken into account as de-

scribed in Section 3.4. Process noise covariance is set to the value Q = 0.0052I2 in

our implementations. The RSS values in anchors are given in Figure 3.10.
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Figure 3.10: RSS values read by anchors when blindfolded node is on specific trajec-
tory in the experiment

By processing these RSS values, various tracking, static localization estimates and

their error performances are presented in Figures 3.11-3.16. The static localization

method used in the experiment is selected to be non-collaborative RSS-MLE solved

by grid-search as in Section 3.4. The RMSE values of the methods are 3.68, 2.13,

2.02, 2.02 and 2.00 meters for RSS-MLE, KF, serial EKF, parallel EKF and PF re-

spectively. According to estimated trajectory of tracking algorithms and localization,

it can be concluded that tracking algorithms can improve the localization accuracy

about one meter for related trajectory.
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Figure 3.11: Performance of static localization (RSS-MLE) with experimental data:
215 RSS observations, P0 = −46 dBm, σv = 6 dB, α = 2.5
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Figure 3.12: Performance of parallel extended Kalman filter with experimental data:
215 RSS observations, P0 = −46 dBm, σv = 6 dB, α = 2.5
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Figure 3.13: Performance of serial extended Kalman filter with experimental data:
215 RSS observations, P0 = −46 dBm, σv = 6 dB, α = 2.5
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Figure 3.14: Performance of Kalman filter with experimental data: 215 RSS observa-
tions, P0 = −46 dBm, σv = 6 dB, α = 2.5
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Figure 3.15: Performance of SIR particle filter (10000 particles) with experimental
data: 215 RSS observations, P0 = −46 dBm, σv = 6 dB, α = 2.5
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CHAPTER 4

AN ANALYTICAL BIAS ANALYSIS OF MLE BASED ON

TAYLOR SERIES EXPANSION OF MLE COST FUNCTION

In Chapter 2, it has been seen that h-RSS-MLE has a reduced bias compared to RSS-

MLE. In order to understand the reason, in this chapter, following a similar method-

ology to that of [41] and assuming random connectivity events as in [14], we derive

an analytical bias formula for h-RSS-MLE which covers RSS-MLE as a special case.

An investigation of the bias can also be useful to see analytically in which deployment

of nodes the reduction in bias is observed. Additionally an analytical bias expression

which can also be considered as bias prediction can help mitigate the bias of an esti-

mator and can be seen as a benchmark for performance of MLE localization. At the

end of this chapter, we present a simulation study in 1-D and 2-D non-collaborative

localization examples to compare bias values via both simulations and theoretical

expressions.

4.1 Derivation of the Analytical Bias Formula for MLE based on RSS Range

Measurements

Consider the measurement model below.

yi = fi(x) + vi (4.1)

for i = 1, . . . , m where

• x ∈ R
n is the unknown parameter vector to be estimated;

55



• yi ∈ R is the measurement vector;

• fi(·) is a twice differentiable, in general, nonlinear function;

• vi ∼ N (vi; 0, σ
2) is the Gaussian measurement noise. We assume that vi and

vj are independent when i 6= j.

In general, the measurements might not be obtained if there are connectivity con-

straints. We model the connectivity event related to the ith measurement as a Bernoulli

random variable wi, with wi = 1 meaning that yi is collected and wi = 0 oth-

erwise. The distribution of wi is specified by logP (wi = 0) = gi(x) where gi(·),
i = 1, . . . , m is assumed to be a twice differentiable nonlinear function. It should be

noted that in general wi is correlated with yi. The ML estimation of x then involves

the following optimization problem.

x̂ = argmin
x

J(x) (4.2)

where

J(x) ,

m
∑

i=1

wi

2σ2
(yi − fi(x))

2 − (1− wi)gi(x) (4.3)

Notice that the cost function in (4.3) is in the same form as the cost function which

is derived according to the likelihood function in Appendix A. The gradient of J(·)
denoted by h(x) , ∇xJ(x) is given as

h(x) =

m
∑

i=1

−wi

σ2
(yi − fi(x))∇xfi(x)− (1− wi)∇xgi(x) (4.4)

=
m
∑

i=1

−wi

σ2
vi∇xfi(x)− (1− wi)∇xgi(x). (4.5)

The solution of the ML problem lies at a point x̂ when the condition h(x̂) = 0 is

satisfied. We now write a second order Taylor series approximation for the vector

valued function h(·) around x:

0 = h(x̂) ≈ h(x) + ∆x
xJ(x)(x̂− x)

+
1

2

n
∑

i=1

(x̂− x)T∆x
xhi(x)(x̂− x)ei (4.6)
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where hi(·) stands for the ith component of h(·), ∆x
x denotes the Hessian operator and

ei ∈ R
n is a vector filled all with zeros except for its ith element which is unity. The

Hessian of J(·) is given as

∆x
xJ(x) =

m
∑

i=1

−wi

σ2
(yi − fi(x))∆

x
xfi(x)

+
wi

σ2
∇xfi(x)∇T

xfi(x)− (1− wi)∆
x
xgi(x),

=

m
∑

i=1

−wi

σ2
vi∆

x
xfi(x)

+
wi

σ2
∇xfi(x)∇T

xfi(x)− (1− wi)∆
x
xgi(x). (4.7)

We now expand (∆x
xJ(x))

−1 in a first-order Taylor series expansion [37] with respect

to vi and wi around vi = 0 and wi = w̄i , E[wi]:

(∆x
xJ(x))

−1 ≈ A−1 −A−1BA−1 −A−1CA−1 (4.8)

where

A ,

m
∑

i=1

w̄i

σ2
∇xfi(x)∇T

xfi(x)− (1− w̄i)∆
x
xgi(x), (4.9)

B ,
m
∑

i=1

−w̄i

σ2
vi∆

x
xfi(x), (4.10)

C ,

m
∑

i=1

(

1

σ2
∇xfi(x)∇T

xfi(x) + ∆x
xgi(x)

)

(wi − w̄i). (4.11)

Now if we extract x̂ − x from the equation above and take the expectation, a bias

expression can be obtained from Taylor series expansion of the cost function in (4.6)

as

E(x̂− x) = −
(

E1 +
E2

2

)

(4.12)

where

E1 ,E
[

(∆x
xJ(x))

−1
h(x)

]

,

E2 ,E

[

(∆x
xJ(x))

−1
n
∑

i=1

ei tr
[

∆x
xhi(x)(x̂− x)(x̂− x)T

]

]

. (4.13)
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To take the expectations in (4.13), some more approximations are necessary. By using

the approximation in (4.8), E1 can be written as

E1 ,E
[

(∆x
xJ(x))

−1
h(x)

]

≈E
[(

A−1 −A−1BA−1 −A−1CA−1
)

h(x)
]

,

=A−1E[h(x)]− E
[

A−1BA−1h(x)
]

−E
[

A−1CA−1h(x)
]

=
m
∑

i=1

−E[wivi]

σ2
A−1∇xfi(x)− (1− w̄i)A

−1∇xgi(x)

−
m
∑

j=1

m
∑

i=1

w̄j

σ2

E[wivivj ]

σ2
A−1∆x

xfj(x)A
−1∇xfi(x)

+
w̄j

σ2
E[(1− wi)vj]A

−1∆x
xfj(x)A

−1∇xgi(x)

+

m
∑

j=1

m
∑

i=1

A−1Mj(x)A
−1∇xfi(x)

E[(wj − w̄j)wivi]

σ2

+
m
∑

j=1

m
∑

i=1

A−1Mj(x)A
−1∇xgi(x)E[(wj − w̄j)(1− wi)] (4.14)

where

Mj(x) ,

(

1

σ2
∇xfj(x)∇T

xfj(x) + ∆x
xgj(x)

)

. (4.15)

All the double summation arguments above are equal to zero when i 6= j due to

the expectations, which reduces them into single summations. Moreover since wi ∈
{0, 1}, the following equations hold.

(wi − w̄i)wi =(1− w̄i)wi,

(wi − w̄i)(1− wi) =− w̄i(1− wi). (4.16)

Substituting the new expressions into (4.14), we get

E1 =

m
∑

i=1

−E[wivi]

σ2
A−1AA−1∇xfi(x)− (1− w̄i)A

−1AA−1∇xgi(x)

− w̄i

σ2

E[wiv
2
i ]

σ2
A−1∆x

xfi(x)A
−1∇xfi(x)

+
w̄i

σ2
E[wivi]A

−1∆x
xfi(x)A

−1∇xgi(x)

+A−1Mi(x)A
−1∇xfi(x)(1− w̄i)

E[wivi]

σ2

−A−1Mi(x)A
−1∇xgi(x)w̄i(1− w̄i)

=

m
∑

i=1

A−1Σ
f
i A

−1∇xfi(x) +A−1Σ
g
iA

−1∇xgi(x) (4.17)
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where

Σ
f
i ,− E[wivi]

σ2
A− w̄i

σ2

E[wiv
2
i ]

σ2
∆x

xfi(x)

+ (1− w̄i)
E[wivi]

σ2
Mi(x), (4.18)

Σ
g
i ,− (1− w̄i)A+

w̄i

σ2
E[wivi]∆

x
xfi(x)

− w̄i(1− w̄i)Mi(x) (4.19)

E2 in (4.13) can be calculated as

E2 ,E

[

(∆x
xJ(x))

−1
n
∑

i=1

ei tr
[

∆x
xhi(x)(x̂− x)(x̂− x)T

]

]

≈A−1
n
∑

i=1

ei tr [E (∆x
xhi(x))CRLB(x)] (4.20)

where we made the following approximations.

[∆x
xJ(x)]

−1 ≈A−1,

E [∆x
xhi(x] (x̂− x)(x̂− x)T) ≈E [∆x

xhi(x)]E
[

(x̂− x)(x̂− x)T)
]

,

E
[

(x̂− x)(x̂− x)T)
]

≈CRLB(x). (4.21)

4.2 Bias Formulae for 1-D RSS Localization

In this section, we apply the results of the bias analysis presented in Section 4.1 to a 1-

D RSS-based localization problem. For this purpose we make the following specific

definitions.

• yi , Pi ∈ R is the received signal strength measurement from the ith anchor

node;

• x ∈ R is the unknown location of the blindfolded node to be estimated;

• pi ∈ R is the known location of the ith anchor node;

• di , |x−pi| is the distance between the the blindfolded node and the ith anchor

node;

• fi(x) , P0 − 5α log10 d
2
i is the measurement function
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for i = 1, . . . , m. Note that we do not write the quantity 5α log10 ((x− pi)
2) in the

common form 10α log10 |x− pi| in order to avoid differentiability issues.

The connectivity event is modeled as wi , I(yi ≥ Pthr) where Pthr is the lowest

detectable RSS. The event {yi ≥ Pthr} is equivalent to the event {vi ≥ Pthr − P0 + 5α

log10 ((x− pi)
2)} and hence wi = I(vi ≥ ti(x)) where ti(x) , Pthr−fi(x). It is also

noted that gi(x) , logP (wi = 0) = log Φ
(

ti(x)
σ

)

. We now calculate the derivatives:

∇xfi(x) =−
10α

log 10(x− pi)
= − 1

β(x− pi)
(4.22)

∆x
xfi(x) =

10α

log 10(x− pi)2
=

1

β(x− pi)2
(4.23)

∇xgi(x) =
ηi(x)

βσ(x− pi)Φ
(

ti(x)
σ

) (4.24)

∆x
xgi(x) =−

ηi(x)
[

ti(x)Φ
(

ti(x)
σ

)

+ βσΦ
(

ti(x)
σ

)

+ ηi(x)
]

β2σ2(x− pi)2Φ2
(

ti(x)
σ

) (4.25)

where β , log 10
10α

and ηi(x) , N
(

ti(x)
σ

; 0, 1
)

. We have the following expected values

in Appendix E.

w̄i =1− Φ

(

ti(x)

σ

)

,

E[wivi] =σηi(x),

E[wiv
2
i ] =σti(x)ηi(x) + σ2w̄i. (4.26)

4.2.1 1-D Bias Expression for Hybrid RSS-MLE

The h-RSS-MLE cost function is given in Chapter 2, in (2.9). The quantities Σf
i and

Σg
i can be calculated as follows.

Σf
i =− ηi(x)

σ
A− w̄i

σ2

(

w̄i +
ti(x)ηi(x)

σ

)

∆x
xfi(x)

+ (1− w̄i)
ηi(x)

σ
Mi(x), (4.27)

Σg
i =− (1− w̄i)A+

w̄i

σ
η(x)∆x

xfi(x)− w̄i(1− w̄i)Mi(x) (4.28)

where

A =
m
∑

i=1

w̄i

σ2
∇xfi(x)∇T

x fi(x)− (1− w̄i)∆
x
xgi(x). (4.29)
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With Σf
i , Σg

i and A given above, the expectation E1 can be calculated using (4.17).

Finally E2 is calculated as in (4.20) using the CRLB expression given as follows

CRLB =

[

m
∑

i=1

w̄i σ + ηi(x)ti(x) + ηi(x)
2(1− w̄i)

−1σ

σ3 β2 (x− pi)
2

]−1

(4.30)

The final bias expression can be found as in (4.12).

4.2.2 1-D Bias Expression for RSS-MLE

RSS-MLE cost function is stated in Chapter 2, equation (2.8). Note that RSS-MLE

cost function can be obtained from h-RSS-MLE cost function by setting gi(x) =

0, ∀x. Hence by setting gi(·) and all of its derivatives to zero in Section 4.2.1, we get

Σf
i =− ηi(x)

σ
A− w̄i

σ2

(

w̄i +
ti(x)ηi(x)

σ

)

∆x
xfi(x)

+ (1− w̄i)
ηi(x)

σ

(

1

σ2
∇xfi(x)∇T

x fi(x)

)

(4.31)

E1 =
m
∑

i=1

A−1Σf
i A

−1∇xfi(x) (4.32)

where

A =

m
∑

i=1

w̄i

σ2
∇xfi(x)∇T

x fi(x) (4.33)

Finally E2 is calculated as in (4.20) using approximate CRLB expression because of

random connectivity events in Appendix C, equation (C.20) given as follows

CRLB =

[

m
∑

i=1

w̄i − σ β η(x)

σ2 β2 (x− pi)
2

]−1

(4.34)

Then the final bias expression can be found as in (4.12).

4.3 Simulation Results

4.3.1 1-D Example

We consider three anchors which are placed at 0, 35 and 70 m and a single blindfolded

node which has fixed unknown position x in the interval [0,70] m for 1-D example.
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The simulation results are obtained for 24 uniformly separated x values in the inter-

val [0,70] m and for each x value, 2000 MC simulation runs are made. The BFGS

Quasi-Newton method in MATLAB is used as optimization algorithm. The optimiza-

tion algorithm is initialized with the true position of the blindfolded node in order

for results not to be affected by local optima. Channel parameters are given in Table

4.1. The bias and RMSE values of both algorithms (RSS-MLE and h-RSS-MLE) are

presented in Figures 4.1 and 4.2 respectively. As evident from Figure 4.1, the theo-

retical and simulated bias values are very similar for both algorithms which validates

analytical bias derivations for 1-D noncollaborative localization made in Section 4.2.

The bias of RSS-MLE can reach almost twice that of h-RSS-MLE for some blind-

folded node positions. Moreover, the RMSE of RSS-MLE observed in Figure 4.2 are

slightly higher than those of h-RSS-MLE which makes us conclude that variance of

the estimates of h-RSS-MLE are also lower than that of RSS-MLE.

Table4.1: Simulation Parameters for 1-D Localization

Simulation Parameters Value
Path loss exponent α 3
Standard deviation σ 6 dB

RSS threshold power Pthr -80 dBm
First meter RSS power P0 -30 dBm
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4.3.2 2-D Example

We placed four anchors on the corners of 10 m × 10 m area for 2-D simulation,

namely at (0,0), (0,10), (10,0) and (10,10) respectively. The simulation parameters

are given in Table 4.2. RSS-MLE and h-RSS-MLE cost functions at different thresh-

Table4.2: Simulation Parameters for 2-D Localization

Simulation Parameters Value
Path loss exponent α 3
Standard deviation σ logspace(1,-1,10) dB

RSS threshold power Pthr -65,-80 dBm
First meter RSS power P0 -30 dBm

Number of MC Runs 2000

old power (-65, -80 dBm) are solved by using grid-search (FSS-MLE, h-FSS-MLE)

with search area of 100x100 m2. The figures which compare 2-D bias results for

threshold power -65 dBm between simulation and analytical formula according to the

simulation parameters given in Table 4.2 at some position coordinates of the blind-

folded node are presented in Figures 4.3-4.6. Moreover analytical and simulation

results are compared at some position coordinates of the blindfolded node for thresh-

old power -80 dBm in Figures 4.7-4.10.

64



10
−1

10
0

10
1

−12

−10

−8

−6

−4

−2

0

2

1/σ

bi
as

 (
m

) 
in

 x
 a

xi
s

 

 

RSS−MLE (MC)
RSS−MLE (analy.)
h−RSS−MLE (MC)
h−RSS−MLE (analy.)
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MLE and h-RSS-MLE in y-direction for blindfolded node at (1,1) and Pthr = −80
dBm

67



10
−1

10
0

10
1

−3

−2.5

−2

−1.5

−1

−0.5

0

1/σ

bi
as

 (
m

) 
in

 x
 a

xi
s

 

 

RSS−MLE (MC)
RSS−MLE (analy.)
h−RSS−MLE (MC)
h−RSS−MLE (analy.)
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dBm
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Figure 4.10: Comparison between 2-D analytical and simulation bias results of RSS-
MLE and h-RSS-MLE in y-direction for blindfolded node at (3,1) and Pthr = −80
dBm
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The figures which give information about 2-D bias characteristics of non-collaborative

localization show that MC simulation results come closer to the analytical bias for-

mula at high SNR 1. However the bias values are too low in this situation, nearly

unbiased. So we have to report that we cannot verify that the our bias formula given

in Chapter 4 gives accurate prediction in 2-D localization for bias of MLEs com-

pared to results obtained through simulation due to probably high nonlinearity of

RSS-distance model. We conclude that an approach which is based on Taylor se-

ries expansion of MLE cost function as in [41] to find bias analytically is not a good

choice in RSS-MLE localization of 2-D case.

1 SNR cannot be actually defined in RSS localization problem due to multiplicative noise in linear domain.
But we mean low distance values or low standard deviation of shadowing effect with high SNR
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CHAPTER 5

AN ANALYTICAL BIAS ANALYSIS OF MLE BASED ON

TAYLOR SERIES EXPANSION OF RSS MEASUREMENTS

We have derived an analytical bias formula by following similar methodology to [41],

which is based on Taylor series expansion of the MLE cost function in previous chap-

ter. We said that this formula is not applicable to 2-D RSS localization problem,

since it has high nonlinearities and CRLB might not be a good approximation for

MSE of the estimator in the related analytical expression. Therefore we propose a

new method to derive an analytical bias formula based on Taylor series expansion of

RSS measurements themselves instead of the cost function. It can be said that the

newly-proposed bias formula is valid for FSS-MLE at some cases. Furthermore it

can be also extended to the case that search space goes to infinity, i.e., FSS-MLE be-

comes identical to RSS-MLE. However it is observed that our proposed bias formula

becomes the same as the previous one surprisingly, although two analytical expres-

sions has different approaches, when search space is so large. Moreover it should be

stated that we could not put connectivity constraints in this case. An effort to remedy

this problem may be a future study.

In this chapter, newly proposed analytical bias for FSS-MLE is introduced and veri-

fied via simulation studies on a 2-D example.
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5.1 Derivation of the Analytical Bias Formula for FSS-MLE based on RSS

Range Measurements

MLE cost function gives a nonlinear least squares type cost. We therefore linearize

the measurement to obtain the performance of least squares. Consider measurement

below

y = P0 − 10α log10 d+ v (5.1)

where v ∼ N (v; 0, σ2). For given a measurement y, we can calculate the ML estimate

d̂ML of d as follows.

d̂ML , 10
P0−y

10α (5.2)

It is easy to see that

d̂ML = d 10−v/10α (5.3)

≈
√

(x̂− x)2 + (ŷ − y)2 (5.4)

Note that we will call d̂ML as δ in the rest of this document. It is easy to see that

log δ ∼ N (log d; 0, σ2
ML) with σML = (σ log 10) /(10α).

To find the bias expression, the easiest method is to write Taylor series expansion of

measurements around the true values. The second-order Taylor series approximation

of N log-distance measurements will be that

log δ ≈ logd+Aθ̃ +
1

2













tr
{

H1θ̃θ̃
T
}

...

tr
{

HN θ̃θ̃
T
}













(5.5)

where

• θ = [x, y]T: Position vector

• δ = [δ1, δ2, · · · , δN ]T: Distance measurement vector

• d = [d1, d2, · · · , dN ]: True inter-node distances

• θ̃ = θ̂ − θ: Difference between estimated and true position vector

• Hi = ∆θ̂
θ̂
log δi: Hessian matrix of related measurement
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• A =
[

∇θ̂ log δ1 ∇θ̂ log δ2 · · · ∇θ̂ log δN

]T

: Jacobian matrix

Therefore the estimate θ̂ can be approximated as follows

θ̂ = θ +A+(log δ − logd)− 0.5A+
[

tr
{

H1θ̃θ̃
T
}

· · · tr
{

HN θ̃θ̃
T
} ]T

= θ + v̄ − 0.5
[

tr
{

Mxθ̃θ̃
T
}

tr
{

Myθ̃θ̃
T
} ]T

(5.6)

where A+ is pseudo inverse of A, namelyA+ =
(

ATA
)−1

AT, Mx =
∑N

i=1A1,iHi,

Mx =
∑N

i=1A2,iHi and v̄ ∼ N (v̄; 0,Σ) with Σ = A+σ2
ML (A

+)
T.

Then θ̃θ̃T terms can be approximated by first order expansion, namely θ̃θ̃T ≈ v̄v̄T.

Consequently

θ̂ = θ + v̄ − 0.5
[

tr
{

Mxv̄v̄
T
}

tr
{

Myv̄v̄
T
}

]T

(5.7)

In this part, θ̂ is constrained by lower bound θmin and upper bound θmax depending on

the search space in FSS-MLE. Bias can be found from (5.7) by calculating the mean

and correlation matrix of v̄ as follows

E
{

θ̂
}

− θ = E {v̄} − 0.5
[

tr
{

Mx E
(

v̄v̄T
)}

tr
{

My E
(

v̄v̄T
)}

]T

(5.8)

The bounds should be considered at calculating first and second order statistics of v̄

in FSS-MLE. However considering (5.7), it is hard to find in which region integral

should be taken in calculation of first and second moment of v̄. So we will pro-

pose two methods to calculate the bias in (5.8). These methods are presented in the

following parts.

5.1.1 Method 1

In this method, we will determine the integral region from first-order approximation

(i.e., θ̂ = θ + v̄). This mapping is given as follows

x̂ =



























xmin, for x+ vx 6 xmin

x+ vx, for xmin < x+ vx < xmax

xmax, for x+ vx > xmax

(5.9)
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and

ŷ =



























ymin, for y + vy 6 ymin

y + vy, for ymin < y + vy < ymax

ymax, for y + vy > ymax

(5.10)

Because of the mapping above, random variable v̄ so called measurement error is also

constrained as follows

v′x =



























xmin − x, for vx 6 xmin − x

vx, for xmin − x < vx < xmax − x

xmax − x, for vx > xmax − x

(5.11)

and

v′y =



























ymin − y, for vy 6 ymin − y

vy, for ymin − y < vy < ymax − y

ymax − y, for vy > ymax − y

(5.12)

By considering mapping above, 9 regions should be examined to calculate first and

second order statistics of v̄′ , [v′x, v
′
y]

T(truncated Gaussian random variable). The

conditional first and second moments can be calculated as indicated in Appendix F.

These regions are that

• C(1) = {vx, vy : xmin − x < vx < xmax − x, ymin − y < vy < ymax − y}

• C(2) = {vx, vy : vx 6 xmin − x, ymin < vy < ymax − y}

• C(3) = {vx, vy : vx > xmax − x, ymin − y < vy < ymax − y}

• C(4) = {vx, vy : xmin − x < vx < xmax − x, vy > ymax − y}

• C(5) = {vx, vy : xmin − x < vx < xmax − x, vy 6 ymin − y}

• C(6) = {vx, vy : vx > xmax − x, vy > ymax − y}

• C(7) = {vx, vy : vx 6 xmin − x, vy > ymax − y}
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• C(8) = {vx, vy : vx > xmax − x, vy 6 ymin − y}

• C(9) = {vx, vy : vx 6 xmin − x, vy 6 ymin − y}

The first and second order statistics of v̄′:

E {v̄′} =
9
∑

i=1

E
{

v̄′|C(i)
}

P (C(i)) (5.13)

E
{

v̄′v̄′T
}

=

9
∑

i=1

E
{

v̄′v̄′T|C(i)
}

P (C(i)) (5.14)

Finally, we substitute (5.13) and (5.14) to the expression (5.8) directly to find the bias

of the estimator. The resulting bias is as follows

E
{

θ̂
}

− θ = E {v̄′} − 0.5
[

tr
{

Mx E
(

v̄′v̄′T
)}

tr
{

My E
(

v̄′v̄′T
)}

]T

(5.15)

5.1.2 Method 2

In this method, we first calculate E
{

v̄′v̄′T
}

utilizing the equations given in Appendix

F according to constraints (5.11) and (5.12). Then we form a new constraints on v

such that

v′′x =



























x′
min, for vx 6 x′

min

vx, for x′
min < vx < x′

max

x′
max, for vx > x′

max

(5.16)

and

v′′y =



























y′min, for vy 6 y′min

vy, for y′min < vy < y′max

y′max, for vy > y′max

(5.17)

where x′
min = xmin−x+0.5 tr

{

Mx E
(

v̄′v̄′T
)}

, x′
max = xmax−x+0.5 tr

{

Mx E
(

v̄′v̄′T
)}

,

y′min = ymin−y+0.5 tr
{

My E
(

v̄′v̄′T
)}

and y′max = ymax−x+0.5 tr
{

My E
(

v̄′v̄′T
)}
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We calculate E {v̄′′} due to constraints (5.16) and (5.17). Finally, we substitute re-

sulting first and second moments, E {v̄′′} and E
{

v̄′v̄′T
}

respectively to (5.8) to find

the bias of the estimator. The bias will be that

E
{

θ̂
}

− θ = E {v̄′′} − 0.5
[

tr
{

Mx E
(

v̄′v̄′T
)}

tr
{

My E
(

v̄′v̄′T
)}

]T

(5.18)

5.2 Simulation Results

In this section, Method 1 and 2, which are proposed to calculate the bias of FSS-MLE

in Section 5.1, are analyzed via a simulation study. They are also compared to bias

formula based on Taylor series expansion of RSS-MLE cost function itself in Chapter

4, the previous one, with infinite finite search space. For simulation, we deployed the

anchors in coordinates (0,0), (10,0), (0,10) and (10,10). Moreover, one blindfolded

node is placed in various locations of observation area of 10 m × 10 m. Because

of the fact that a connectivity constraint with respect to a threshold power cannot be

put into the second formula, we did not attach connectivity events to our simulations

here. Hence we assume fully connected nodes. Additionally, we implemented FSS-

MLE localization with two different search space area. The first is 10 m × 10 m

(grid1 in the simulations), while the other is 40 m × 40 m (grid2 in simulations). To

see the validity of the analytical formula, we compare the simulation results with the

analytical one (Method 1 and 2) for some values of standard deviation of shadowing

effect in the channel, since there is no one metric combining all uncertainty metrics

together to our best knowledge. These uncertainty metrics can be path loss exponent,

standard deviation of shadowing effect, distance to observer, reference power in RSS

based localization problem. We made a MC simulation with 10000 runs to obtain

a comparison between analytical bias formulas and simulation results for α = 3,

P0 = −30 dBm and some values of standard deviation of shadowing effect. The bias

pictures for FSS-MLE (grid1) showing the performance of Method 1 are presented

for standard deviation 6.15, 3.79 and 2.97 dB in Figures 5.1, 5.3 and 5.5. The bias

pictures showing the performance of Method 2 for standard deviation 6.15, 3.79 and

2.97 dB can also be found in Figures 5.2, 5.4 and 5.6 respectively. It should be also

noted that the results related to only the first quarter of observation area are provided

in these related figures.
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Figure 5.1: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 1 at σ = 6.15 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid1) localization
(MC)(.-), Method 1 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.2: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 2 at σ = 6.15 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid1) localization
(MC)(.-), Method 2 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.3: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 1 at σ = 3.79 dB for different location of blindfolded
nodes: True position of blindfolded node (N), Mean of FSS-MLE (grid1) localization
(MC)(.-), Method 1 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.4: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 2 at σ = 3.79 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid1) localization
(MC)(.-), Method 2 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.5: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 1 at σ = 2.97 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid1) localization
(MC)(.-), Method 1 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.6: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 2 at σ = 2.97 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid1) localization
(MC)(.-), Method 2 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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When Figures 5.1-5.6 are examined, it can be observed that Method 2 has better match

to simulation results than Method 1 especially at lower values of standard deviation.

The predicted bias values, in FSS-MLE (grid1) for maximum 10 meter distance to

anchor, are acceptable when the standard deviation σ = 3.79 dB is considered, a rel-

atively high uncertainty. Additionally it is also beneficial to see the characteristics of

our bias formula along with simulation results. Therefore the bias figures with respect

to varying σ’s at some position coordinates of the blindfolded node are provided in

Figures 5.7-5.10.
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Figure 5.7: Comparison between simulation and analytical bias in x-direction at point
(1,1) wrt 1/σ’s: FSS-MLE (grid1), Method 1 (analy.), Method 2 (analy.), MC expec-
tation of eqn. (6.8)
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Figure 5.8: Comparison between simulation and analytical bias in y-direction at point
(1,1) wrt 1/σ’s: FSS-MLE (grid1), Method 1 (analy.), Method 2 (analy.), MC expec-
tation of eqn. (6.8)
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Figure 5.9: Comparison between simulation and analytical bias in x-direction at point
(3,1) wrt 1/σ’s: FSS-MLE (grid1), Method 1 (analy.), Method 2 (analy.), MC expec-
tation of eqn. (6.8)
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Figure 5.10: Comparison between simulation and analytical bias in y-direction at
point (3,1) wrt 1/σ’s: FSS-MLE (grid1), Method 1 (analy.), Method 2 (analy.), MC
expectation of eqn. (6.8)

As mentioned before, it is known that FSS-MLE converges to RSS-MLE when the

area of search space is large enough. The question here is: Does Method 1 or 2 still

have good prediction of bias at considerably high standard deviation values? Can

this formula be applicable for RSS-MLE like FSS-MLE at some search space too?

The answer of these questions is surprisingly "no". It was intuitively expectable for

us that the analytical bias formula could validate at larger search spaces for FSS-

MLE localization, but the following figures tell the other way. The bias figures for

FSS-MLE (grid2) showing the performance of Method 1 and 2 for different standard

deviation values are presented in Figures 5.11-5.16. Additionally the bias figures

with respect to varying σ’s at some position coordinates of the blindfolded node are

provided in Figures 5.17-5.20.
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Figure 5.11: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 1 at σ = 6.15 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid2) localization
(MC)(.-), Method 1 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.12: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 2 at σ = 6.15 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid2) localization
(MC)(.-), Method 2 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.13: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 1 at σ = 3.79 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid2) localization
(MC)(.-), Method 1 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.14: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 2 at σ = 3.79 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid2) localization
(MC)(.-), Method 2 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.15: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 1 at σ = 2.97 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid2) localization
(MC)(.-), Method 1 (analy.) (+-), MC expectation of eqn (6.8) (×-)

90



0 1 2 3 4 5 6
0

1

2

3

4

5

6

x (m)

y 
(m

)

Figure 5.16: Comparison between mean of 2-D non-collaborative FSS-MLE localiza-
tion by simulation and Method 2 at σ = 2.97 dB for different location of blindfolded
nodes: True position of blindfolded node (N), mean of FSS-MLE (grid2) localization
(MC)(.-), Method 2 (analy.) (+-), MC expectation of eqn (6.8) (×-)
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Figure 5.17: Comparison between simulation and analytical bias in x-direction at
point (1,1) wrt 1/σ’s: FSS-MLE (grid2), Method 1 (analy.), Method 2 (analy.), MC
expectation of eqn (6.8)
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Figure 5.18: Comparison between simulation and analytical bias in y-direction at
point (1,1) wrt 1/σ’s: FSS-MLE (grid2), Method 1 (analy.), Method 2 (analy.), MC
expectation of eqn (6.8)
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Figure 5.19: Comparison between simulation and analytical bias in x-direction at
point (3,1) wrt 1/σ’s: FSS-MLE (grid2), Method 1 (analy.), Method 2 (analy.), MC
expectation of eqn (6.8)
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Figure 5.20: Comparison between simulation and analytical bias in y-direction at
point (3,1) wrt 1/σ’s: FSS-MLE (grid2), Method 1 (analy.), Method 2 (analy.), MC
expectation of eqn (6.8)
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From bias related figures for FSS-MLE (grid2), it is not possible to give an accurate

prediction for bias with second formula, namely Method 1 and 2, in the situation

that the area of search space is so large. However comparing the first bias formula

in Chapter 4 with second formula in this chapter may give information about unex-

plained conditions. For that, we would like to compare these analytical bias formulas

derived from different approaches. The figures related to this are shown in Figures

5.21-5.24.
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Figure 5.21: Comparison between simulation and analytical bias in x-direction at
point (1,1) wrt 1/σ’s: RSS-MLE (gradient based, MC), RSS-MLE (based on the cost
func., analy.), FSS-MLE with infinite search space (Method 1-2, analy.), FSS-MLE
grid1 (MC), FSS-MLE grid1 (Method 2, analy.), FSS-MLE grid2 (MC), FSS-MLE
grid2 (Method 2, analy.)
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Figure 5.22: Comparison between simulation and analytical bias in y-direction at
point (1,1) wrt 1/σ’s: RSS-MLE (gradient based, MC), RSS-MLE (based on the cost
func., analy.), FSS-MLE with infinite search space (Method 1-2, analy.), FSS-MLE
grid1 (MC), FSS-MLE grid1 (Method 2, analy.), FSS-MLE grid2 (MC), FSS-MLE
grid2 (Method 2, analy.)
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Figure 5.23: Comparison between simulation and analytical bias in x-direction at
point (3,1) wrt 1/σ’s: RSS-MLE (gradient based, MC), RSS-MLE (based on the cost
func., analy.), FSS-MLE with infinite search space (Method 1-2, analy.), FSS-MLE
grid1 (MC), FSS-MLE grid1 (Method 2, analy.), FSS-MLE grid2 (MC), FSS-MLE
grid2 (Method 2, analy.)
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Figure 5.24: Comparison between simulation and analytical bias in y-direction at
point (3,1) wrt 1/σ’s: RSS-MLE (gradient based, MC), RSS-MLE (based on the cost
func., analy.), FSS-MLE with infinite search space (Method 1-2, analy.), FSS-MLE
grid1 (MC), FSS-MLE grid1 (Method 2, analy.), FSS-MLE grid2 (MC), FSS-MLE
grid2 (Method 2, analy.)

It is seen from figures above that there is no significant difference between FSS-MLE

(grid-2) and RSS-MLE at points (1,1) and (3,1). In addition to this, two analytical

bias expressions introduced in this thesis are the same unexpectedly despite differ-

ent approaches. This is because the approximation of estimate covariance in (5.14)

becomes equal to CRLB which is used for approximation for related covariance as

the search space goes to infinity. As a result, the bias calculation we propose is not

applicable for RSS-MLE, but applicable for some scenarios of FSS-MLE. The con-

nectivity constraint can be added into this bias formula, but this requires a future study

to be conducted.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, RSS based localization methods are discussed in wireless sensor net-

works. It is observed that gradient based algorithms which are utilized in MLE cost

function is prone to local optima of MLE cost function when the random initialization

is used. Therefore it is necessary to supply initial values to the algorithm near local

minimum points of the cost function to obtain better results than the solution with ran-

dom initialization. Therefore MDS and WLS solution with different weights are used

as initialization to MLE method. We solve MDS cost function with Quasi-Newton

and SMACOF algorithm in which anchors are taken as unknown in the cost function.

Then Procrustes transformation is applied to estimate configuration being output of

the algorithm in which anchors are taken as unknown parameters. Additionally, we

solve WLS cost function on distance measurements in which anchors are known in

the function, it gives the best results to compare with three methods (MLE, MDS with

Quasi-Newton and MDS with SMACOF).

We also apply adaptive neighborhood selection method given in [9] for reducing the

bias of neighbor nodes. When we apply the adaptive neighborhood selection method

to the algorithms and use the WLS cost function optimized through Quasi-Newton

algorithm, the MLE solution with the WLS method which is given to the MLE method

as initial value has estimate variance which is very close to CRLB and approximately

zero bias for specific collaborative scenarios in Section 2.5.1.

h-RSS-MLE and RSS-MLE localization methods are also compared to each other in

some scenarios including collaborative and non-collaborative cases. It is observed

that h-RSS-MLE mitigates the bias significantly in uniform deployment of blind-
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folded nodes in collaborative localization because of the information that h-RSS-

MLE has additional probability of non-connectivities of the nodes in its cost function.

However, this effect cannot be totally observed in a non-collaborative localization

scenario.

Secondly, we implemented conventional tracking algorithms and static localization

which is RSS-MLE and h-RSS-MLE optimized through grid-search method for non-

collaborative scenario in simulations. It can be observed that particle filter has the

best performance among them, but its disadvantage is that it is computationally to

expensive. Additionally we performed an experiment for the non-collaborative case.

It was observed that tracking algorithms are better than static localization methods,

since they have the property of time-averaging or improving estimates iteratively by

using both a dynamic motion model and a measurement model.

Finally we obtained analytical bias expressions for h-RSS-MLE to understand its

bias reducing property. We derived an analytical bias formula for both RSS-MLE

and h-RSS-MLE by following a similar methodology with [41] and putting connec-

tivity constraints into the problem. It can be said that the analytical formula which

is derived by using Taylor series expansion of the cost function is suitable for 1-D

non-collaborative case. However we could not confirm the derived formula with sim-

ulation results for the 2-D case. The reason of non-validation of the analytical formula

may be higher non-linearities of the 2-D case. Consequently, we can say that the ap-

proach to derive bias formula introduced in [41] may not be convenient for MLE or

its hybrid version based on RSS measurements.

In addition to this, we derived another analytical expression for the bias of FSS-

MLE by utilizing Taylor series expansion of RSS distance measurements themselves

instead of Taylor series expansion of the cost function with assumption of fully con-

nected nodes. The bias formula holds at some standard deviations of channel mea-

surements in FSS-MLE localization. However if we expand the area of search space

in grid-search for FSS-MLE cost function, FSS-MLE becomes equivalent to RSS-

MLE, and the bias formula for FSS-MLE in Chapter 5 converges surprisingly to the

formula for RSS-MLE in Chapter 4, although the derivation of these analytical ex-

pressions makes use of different approaches. We think, the reason of this is that
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approximate covariance used in bias formula for FSS-MLE in Chapter 5 becomes

identical to CRLB which is used in Chapter 4. We have eventually an analytical bias

formula of FSS-MLE which can be used as benchmark in some situations.

As a future work, collaborative tracking and localization methods can be compared

via simulation studies and experimental work. We anticipate that collaborative track-

ing can have higher accuracy than collaborative localization, non-collaborative lo-

calization and tracking. Moreover, incorporating intra-node measurements (e.g., ac-

celerometer, gyroscope) and hybrid measurement techniques (e.g., TOA-RSS) into

the localization and tracking problem can be another future work, since these mea-

surements can improve the results considerably. Finally, range based positioning tech-

niques can be compared with fingerprinting based one via an experimental study in

future.
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APPENDIX A

DERIVATION OF MLE COST FUNCTION

Consider the measurement model below.

yij = f(dij) + vij (A.1)

for i = 1, . . . , n, j = i+ 1, . . . , N and i 6= j where

• dij , ‖xi−xj‖ is Euclidean distance between ith and jth node, and xi,xj ∈ R
m

is the m-dimensional position vector of ith and jth nodes respectively.

• yij ∈ R is the measurement vector;

• f(·) is a twice differentiable, in general nonlinear function;

• vij ∼ N (vij; 0, σ
2) is the Gaussian measurement noise. We assume that vij’s

are independent.

In general, the measurements might not be obtained if there are connectivity con-

straints. We model the connectivity event related to yij as a Bernoulli random variable

wij , with wij = 1 meaning that yij is collected and wij = 0 otherwise.

The likelihood function of one measurement event:

p(yij;xi,xj) =











N (yij; f(dij), σ
2), if yij ≥ ythr

Pr(wij = 0), otherwise
(A.2)

where Pr(wij = 0) = Pr(yij < ythr) = Φ(
t(dij )

σ
), t(dij) = ythr − f(dij) and Φ(·)

is the standard normal CDF. One can write the following estimation problem for dij

105



when RSS measurement is observed, namely when wij = 1

δij , d̂ij =argmax
dij

p(yij;xi,xj)

= argmax
dij

N (yij; f(dij), σ
2)

= argmax
dij

logN (yij; f(dij), σ
2) (A.3)

where δij is also used as a distance measurement in ML based localization. It is

known that yij = Pij , f(dij) = P0 − 10α log10(dij/d0) and yyhr = Pthr in the

RSS measurement model. Assume that d0 = 1 in this problem. Then the distance

measurement δij can be found as

δij =argmax
dij

{

log
1

√

2πσ2
v

−
(

Pij − P̄ij

)2

2σ2
v

}

=argmin
dij

(

Pij − P̄ij

)2
(A.4)

where P̄ij = P0−10α log10 dij . So derivative of term in (A.4) with respect to distance

dij at the estimate must be zero

∂ (Pij − P0 + 10α log10 dij)
2

∂dij
|dij=δij =0

2
(

Pij − P0 + 10α log10 d̂ij

)

(

10α

δij log 10

)

=0

Pij − P0 + 10α log10 δij =0 (A.5)

From equation in (A.5), the distance measurement can be found as

δij = 10
P0−Pij

10α (A.6)

Considering independent measurements, the likelihood function of the set of mea-

surements is written as follows

p(y;X) =
∏

i,j∈S(i,j)

N (yij; f(dij), σ
2)

∏

i,j∈S̄(i,j)

Φ

(

t(dij)

σ

)

(A.7)

where S(i, j) = {i, j : wij = 1} and X = [x1, x2, . . . , xn] is the configuration ma-

trix including the position of the blindfolded nodes to be estimated. The logarithm of
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the function in (A.7):

log p(y;X) =
∑

i,j

wij logN (yij; f(dij), σ
2)

+ (1− wij) log Φ

(

t(dij)

σ

)

+ C

=
∑

i,j

−wij

2σ2
(yij − f(dij))

2 + (1− wij) log Φ

(

t(dij)

σ

)

+ C (A.8)

where C is a constant and independent of X. ML estimation rule is given as follows

X̂ =argmax
X

log p(y;X)

= argmax
X

∑

i,j

−wij

2σ2
(yij − f(dij))

2 + (1− wij) log Φ

(

t(dij)

σ

)

+ C

=argmin
X

∑

i,j

wij

2σ2
(yij − f(dij))

2 − (1− wij) log Φ

(

t(dij)

σ

)

(A.9)

ML cost function using the distance measurements δij can be deduced from (A.9) as

Ch-RSS-MLE =
∑

i,j

1

2

(

10α

σ log 10

)2

wij (log δij − log dij)
2

− (1− wij) log Φ

(

t(dij)

σ

)

(A.10)

Additionally one can utilize some portion of the log-likelihood function, i.e., only

observed distance measurements such that δij is observed when wij = 1, in (A.8) as

was done in [29,34]. The resulting ML cost function will be called as RSS-MLE and

is given as

CRSS-MLE =
∑

i,j

wij (log δij − log dij)
2 (A.11)

Obviously, it can be seen that there is no un(connectivity) related information in

(A.11).
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APPENDIX B

SMACOF ALGORITHM AND ADAPTIVE NEIGHBORHOOD

SELECTION METHOD

B.1 SMACOF Algorithm

MDS cost function in (2.4) can be optimized by SMACOF algorithm. SMACOF al-

gorithm can be found in [6]. Solving the cost function with gradient based methods

can be harder than with SMACOF, especially when the number of unknown parame-

ters in the cost function is too many. SMACOF algorithm uses a majorized function

instead of the original one for the solution. Iterative majorization in SMACOF al-

gorithm generates a monotically nonincreasing sequence of function values if the

original function is bounded from below. The main idea of majorization is to replace

iteratively the original function f(x) by auxiliary function g(x, z) where z is some

fixed supporting point. Iterative majorization has some requirements:

• g(x, z) must be simpler to minimize than f(x)

• f(x) 6 g(x, z)

• f(z) = g(z, z)

MDS cost function can be divided into some parts as follows

CMDS(X) =
N−1
∑

i=1

N
∑

j=i+1

wij(dij − δij)
2

=
∑

i<y

wijδ
2
ij +

∑

i<j

wijd
2
ij − 2

∑

i<j

wijδijdij

= Σ2 + L2(X)− 2ρ(X) (B.1)
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The first term is constant, the second and the third are to be majorized. Principles of

majorization can be found in [6]. The second term can be written in explicit form as

follows

L2(X) = wij Tr
{(

XTAi,jX
)}

= Tr

{

XT

(

∑

i<j

wijAij

)

X

}

= Tr
{

XTVX
}

(B.2)

where Aij has aii = ajj = 1, aij = aji = −1 and the other elements are zero.

X is the configuration or coordinate matrix of all nodes (i.e., blindfolded nodes and

anchors). V has vij = −wij if i 6= j and vii =
∑N

j=1,j 6=iwij otherwise. The third term

of MDS cost function can be majorized by Cauchy-Schwarz inequality as follows

−ρ(X) = −
∑

i<j

(wijδij)dij(X)

6 −Tr

{

XT

(

∑

i<j

bijAij

)

Z

}

= −Tr
{

XTB(Z)Z
}

(B.3)

Equality occurs if X = Z and elements of B(Z) are given as

bij =

{

−wijδij
dij(Z)

, if i 6= j, dij(Z) 6= 0

bii = −
N
∑

j=1,i 6=j

bij (B.4)

To find the local minimum of X, derivative of the cost function must be equated to

zero at the local minimum.

CMDS(X) = Σ2 + L2(X)− 2ρ(X)

6 Σ2 + Tr
{

XTVX
}

− 2Tr
{

XTB(Z)Z
}

= H(X,Z) (B.5)

∇H(X,Z) = 2VX− 2B(Z)Z

= 0 (B.6)

From (B.6), it can be seen that

VX = B(Z)Z (B.7)
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Algorithm 1 Pseudo Code for SMACOF Algorithm

Z← X[0] where X[0] is random or non-random initial value for algorithm

k ← 0, ǫ← a very small positive value

Compute CMDS(X
[0])

CMDS(X
[−1])← CMDS(X

[0])

while k = 0 or CMDS(X
[k−1])− CMDS(X

[k]) > ǫ do

k ← k + 1

X[k]← V+B(Z)Z

Compute CMDS(X
[k])

Z← X[k]

end while

V−1 doesn’t exist, since V is not full rank matrix. Therefore pseudo inverse of V is

given by

V+ =
(

V + 11T
)−1 −N−211T (B.8)

where 1 is a vector of ones and N is the number of all nodes.

Then the solution at the local minimum is given as

Xu = V+B(Z)Z (B.9)

Note that the derivation of SMACOF algorithm has been totally taken from [6].

B.2 Adaptive Neighborhood Selection Method

• In the first step, run the algorithm with a connectivity matrix based on the avail-

able range measurements (i.e., wij = 0 if δij > δthr)

• In the second step, compute a new connectivity matrix from the estimate con-

figuration which is the output of the first run. Then run the algorithm again with

the same measurements δij as in the first run, new connectivity matrix formed

at the beginning of the second run and the estimated configuration from the first

run as initialization to the second run.

This method is proposed by [9].
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APPENDIX C

DERIVATION OF CRAMÉR-RAO LOWER BOUND FOR

H-RSS-MLE AND RSS-MLE UNDER CONNECTIVITY

CONSTRAINTS

Consider the measurement model below

Pij = f(dij) + vij (C.1)

for i = 1, ..., n, and j = i+ 1, ..., N where

• Pij: Received power (dBm) in ith sensor when jth transmits

• f(dij) = P0 − 10α log10 dij

• vij ∼ N (vij , 0, σ
2) represents the Gaussian noise

• P0: First-meter reference power (dBm)

• dij: Euclidean distance between ith and jth sensor

• α: Path loss exponent

• n: Number of the blindfolded sensors

• N : Total number of sensors including reference ones also

The log-likelihood function can be written due to total observation for maximum

likelihood estimator based on RSS measurements in (C.1).

log p(P; θ) =
∑

i,j

(1− wij) log Φ

(

tij
σ

)

− wij

2

(

10α

σ log 10

)2(

log
dij
δij

)2

(C.2)

where
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• P = [P12, P13, · · · , P1N , · · · , Pn1, · · · , Pnn−1, Pnn+1, · · · , PnN ]

• wij ∼ Bern
(

1− Φ
(

tij
σ

))

: Connectivity which can be 1 or 0

• tij = (Pthr − f(dij))

• Pthr: Threshold power (dBm)

• θ = [x1, x2, · · · , xn, y1, y2, · · · , yn] is unknown position vector to be esti-

mated in 2-D case

• Φ(.): Standard normal CDF

The right hand side of (C.2) can be divided into two parts which are given as

I(1) =− 1

2

(

10α

σ log 10

)2
∑

i,j

wij

(

log
dij
δij

)2

(C.3)

I(2) =
∑

i,j

(1− wij) log Φ

(

tij
σ

)

(C.4)

Fisher Information Matrix (FIM) of First Term:

The elements of FIM can be written as follows:

f
(1)
kl =















−∑j E

{

∂2I
(1)
kj

∂θ2
k

}

if k = l

− E

{

∂2I
(1)
kl

∂θk∂θl

}

if k 6= l
(C.5)

where I
(1)
kj = −wij

2

(

10α
σ log 10

)2

(log dij − log δij)
2. The diagonal elements of FIM can

be written as

f
(1)
kk =

1

2

(

10α

σ log 10

)2
∑

j

E

[

wkj
∂2

∂θ2k
log

(

dkj
δkj

)2
]

=

(

10α

σ log 10

)2
∑

j

E

{

wkj

(

1

d2kj

∂dkj
∂θk

∂dkj
∂θk

)

+wkj log
dkj
δkj

(

1

dkj

∂2dkj
∂θ2k

− 1

d2kj

∂dkj
∂θk

∂dkj
∂θk

)}

=

(

10α

σ log 10

)2
∑

j

E (wkj)

d2kj

∂dkj
∂θk

∂dkj
∂θk

+ E

(

wkj log
dkj
δkj

)

(

1

dkj

∂2dkj
∂θ2k

− 1

d2kj

∂dkj
∂θk

∂dkj
∂θk

)

(C.6)
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where log δkj ∼ N (log δkj; log dkj, σ
2
v) and σv = σlog10/10α. The expected values

in (C.6) are given as

E(wkj) =1− Φ

(

tkj
σ

)

(C.7)

E [wkj(log dkj − log δkj)] =
log 10

10α
σN

(

tkj
σ
; 0, 1

)

(C.8)

Substituting (C.7) and (C.8) into (C.6), the diagonal elements we get as

f
(1)
kk =a2

∑

j

1− Φ (tkj/σ)

d2kj

∂dkj
∂θk

∂dkj
∂θk

+
N (tkj/σ; 0, 1)

a

(

1

dkj

∂2dkj
∂θ2k

− 1

d2kj

∂dkj
∂θk

∂dkj
∂θk

)

(C.9)

and the elements except diagonals are given as follows

f
(1)
kl =a2

[

1− Φ (tkl/σ)

d2kl

∂dkl
∂θk

∂dkl
∂θl

+
N (tkl/σ; 0, 1)

a

(

1

dkl

∂2dkl
∂θk∂θl

− 1

d2kl

∂dkl
∂θk

∂dkl
∂θl

)]

(C.10)

where a = 10α/ (σ log 10). To obtain FIM along the x and y coordinates separately,

one can write FIM in a block form which is given as follows

F =











Fxx Fxy

Fxy
T Fyy











(C.11)

Each block of FIM should be found. The only parameters that can change according
to the blocks are the derivatives wrt x and y which can be seen in the following. FIM
elements (C.9) and (C.10), FIM from I(1) is calculated as follows

[Fxx]
(1)
kk =

∑

j

a2 (xk − xj)
2

d4kj

[

1− Φ

(

tkj
σ

)

−
2N (tkj/σ; 0, 1)

a

]

+
aN (tkj/σ; 0, 1)

d2kj
(C.12)

[Fxx]
(1)
kl =a2 (xk − xl)

2

d4kl

[

Φ

(

tkl
σ

)

− 1 +
2N (tkl/σ; 0, 1)

a

]

−
aN (tkl/σ; 0, 1)

d2kl
(C.13)

[Fyy]
(1)
kk =

∑

j

a2 (yk − yj)
2

d4kj

[

1− Φ

(

tkj
σ

)

−
2N (tkj/σ; 0, 1)

a

]

+
aN (tkj/σ; 0, 1)

d2kj
(C.14)

[Fyy]
(1)
kl =a2 (yk − yl)

2

d4kl

[

Φ

(

tkl
σ

)

− 1 +
2N (tkl/σ; 0, 1)

a

]

−
aN (tkl/σ; 0, 1)

d2kl
(C.15)

[Fxy]
(1)
kk =a2

∑

j

(xk − xj)(yk − yj)

d4kj

[

1− Φ

(

tkj
σ

)

−
2N (tkl/σ; 0, 1)

a

]

(C.16)

[Fxy]
(1)
kl =a2 (xk − xl)(yk − yl)

d4kl

[

Φ

(

tkl
σ

)

− 1 +
2N (tkl/σ; 0, 1)

a

]

(C.17)
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The elements of FIM coming from the first part of likelihood function, i.e., I(1), are

given in (C.17) and FIM in block form in (C.11). CRLB cannot be defined for RSS-

MLE when the connectivity wij is random, since the regularity condition given in [26]

does not hold in this case.

The regularity condition is written for the first part of likelihood function which is

actually I(1), i.e., cost function of RSS-MLE given in (2.8) as follows

E

[

∂I(1)

∂θk

]

= 0 (C.18)

To check this statement above, take the derivative of RSS-MLE related part of likeli-

hood function shown in (C.2) as

E

[

∂I(1)

∂θk

]

=
1

2
a2
∑

j

E

{

2wkj log
dkj
δkj

∂dkj
∂θk

}

6=0 (C.19)

So CRLB of RSS-MLE cannot be defined for random connectivity event. But we can

still approximate the CRLB or MSE for RSS-MLE as

CRLB ≃ (F(1))−1 (C.20)

Note that we use this approximate CRLB given in (C.20) for RSS-MLE in its an-

alytical bias expression presented in Chapter 4 and tracking simulations in Chapter

3.

Additionally CRLB can be written for RSS-MLE when the connectivity is modelled

as deterministic parameter such that

wkj =











1, if dkj 6 dthr

0, otherwise
(C.21)

With deterministic connectivity, take the expectation of (C.6) for both x and y coordi-

nates, namely find the expression in (C.5). Then the elements of FIM for RSS-MLE
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which were firstly derived by Patwari et. al. in [34] is that

[Fxx]
(RSS)
kk =a2

∑

j

wkj
(xk − xj)

2

d4kj
(C.22)

[Fxx]
(RSS)
kl =− a2wkl

(xk − xl)
2

d4kl
(C.23)

[Fyy]
(RSS)
kk =a2

∑

j

wkj
(yk − yj)

2

d4kj
(C.24)

[Fyy]
(RSS)
kl =− a2wkl

(yk − yl)
2

d4kl
(C.25)

[Fxy]
(RSS)
kk =a2

∑

j

wkj
(xk − xj)(yk − yj)

d4kj
(C.26)

[Fxy]
(RSS)
kl =− a2wkl

(xk − xl)(yk − yl)

d4kl
(C.27)

Then CRLB for RSS-MLE is given as follows

CRLB(RSS) =
(

F(RSS)
)−1

(C.28)

Fisher Information Matrix of the Second Term:

The second term I(2) corresponds to (un)connectivity information part of the total

likelihood function, i.e., h-RSS-MLE.

The second term of total likelihood function (C.2) is given as

I(2) =
∑

i,j

(1− wij) log Φ

(

tkl
σ

)

(C.29)

Fisher information matrix of the second term can be written as follows

f
(2)
kk =−

∑

j

E(1− wkj)





∂2 log Φ
(

tkj
σ

)

∂θk





=−
∑

j

E (1− wkj)

[

∂2Φkj

∂θ2k

1

Φ2
kj

− 1

Φ2
kj

∂Φkj

∂θk

∂Φkj

∂θk

]

(C.30)

where E (1− wkj) = Φkj , Φkj , Φ (tkj/σ),Nkj , N (tkj/σ; 0, 1),
∂Φkj

∂θk
= Nkja

∂dkj
∂θk

,
∂2Φkj

∂θ2
k

= Nkj
∂2dkj
∂θ2

k

− [Nkjtkja
2/σ +Nkja]

∂dkj
∂θk

∂dkj
∂θk

. The diagonal elements are given

as

f
(2)
kk =−

∑

j

Nkja
∂2Φkj

∂θ2k
− ∂Φkj

∂θk

∂Φkj

∂θk

(Nkjtkja
2

σ
+Nkja+ Φ−1

kj N 2
kja

2

)

(C.31)
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Other elements except the diagonal elements are given as

f
(2)
kl = −Nkla

∂2Φkl

∂θk∂θl
+

∂Φkl

∂θk

∂Φkl

∂θl

(Nkltkla
2

σ
+Nkla+ Φ−1

kl N 2
kla

2

)

(C.32)

The elements of FIM of 2nd term along the x-y positions are given as

[Fxx]
(2)
kk =

∑

j

(xk − xj)
2

d4kj

(Nkjtkja
2

σ
+ 2Nkja + Φ−1

kj N 2
kja

2

)

− Nkja

d2kj
(C.33)

[Fxx]
(2)
kl =

Nkla

d2kl
− (xk − xl)

2

d4kl

(Nkltkla
2

σ
+ 2Nkla + Φ−1

kl N 2
kla

2

)

(C.34)

[Fyy]
(2)
kk =

∑

j

(yk − yj)
2

d4kj

(Nkjtkja
2

σ
+ 2Nkja+ Φ−1

kj N 2
kja

2

)

− Nkja

d2kj
(C.35)

[Fyy]
(2)
kl =

Nkla

d2kl
− (yk − yl)

2

d4kl

(Nkltkla
2

σ
+ 2Nkla+ Φ−1

kl N 2
kla

2

)

(C.36)

[Fxy]
(2)
kk =

∑

j

(xk − xj)(yk − yj)

d4kj

(Nkjtkja
2

σ
+ 2Nkja+ Φ−1

kj N 2
kja

2

)

(C.37)

[Fxy]
(2)
kl =− (xk − xl)(xk − xl)

d4kl

(Nkltkla
2

σ
+ 2Nkla+ Φ−1

kl N 2
kla

2

)

(C.38)

FIM of h-RSS-MLE can then be given as follows

Fh-RSS-MLE = F(1) + F(2) (C.39)

Hence FIM of h-RSS-MLE is given as

[Fxx]kk =
∑

j

a2
(xk − xj)

2

d4kj

(

1− Φkj +
Nkjtkj

σ
+ Φ−1

kj N 2
kj

)

(C.40)

[Fxx]kl =− a2
(xk − xl)

2

d4kl

(

1− Φkl +
Nkltkl
σ

+ Φ−1
kl N 2

kl

)

(C.41)

[Fyy]kk =
∑

j

a2
(yk − yj)

2

d4kj

(

1− Φkj +
Nkjtkj

σ
+ Φ−1

kj N 2
kj

)

(C.42)

[Fyy]kl =− a2
(yk − yl)

2

d4kl

(

1− Φkl +
Nkltkl
σ

+ Φ−1
kl N 2

kl

)

(C.43)

[Fxy]kk =
∑

j

a2
(xk − xj)(yk − yj)

d4kj

(

1− Φkj +
Nkjtkj

σ
+ Φ−1

kj N 2
kj

)

(C.44)

[Fxy]kl =− a2
(xk − xl)(yk − yl)

d4kl

(

1− Φkl +
Nkltkl
σ

+ Φ−1
kl N 2

kl

)

(C.45)

and CRLB of h-RSS-MLE is given as follows

CRLBh-RSS-MLE = Fh-RSS-MLE
−1 (C.46)
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APPENDIX D

ON PERFORMANCE CRITERIA OF LOCALIZATION

SYSTEMS

The true position and position estimate configuration can be shown as X̂i = [x̂i, ŷi]
T

X̂BN =
[

X̂1, X̂2, · · · , X̂n

]

, Xi = [xi, yi]
T, XBN = [X1, X2, · · · , Xn] where X̂i

and Xi are the estimated and true 2-D configuration matrix of the ith blindfolded

node respectively, X̂BN and XBN are the estimated and true configuration matrix of

all blindfolded nodes in the network respectively and n is the number of blindfolded

nodes. Estimation error, bias, variance and MSE value of 2-D position estimator are

defined in [29] as follows

Estimation error:

e
(

X̂i

)

= ‖X̂i −Xi‖ (D.1)

e
(

X̂BN

)

=

√

√

√

√

1

n

n
∑

i=1

e2(X̂i) (D.2)

Bias of 2-D localization:

b
(

X̂i

)

= ‖E[X̂i]−Xi‖ (D.3)

b
(

X̂BN

)

=

√

√

√

√

1

n

n
∑

i=1

b2(X̂i) (D.4)

Variance of 2-D localization:

var
(

X̂i

)

= var(x̂i) + var(ŷi) (D.5)

var
(

X̂BN

)

=
1

n

n
∑

i=1

var(X̂i) (D.6)
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Mean squared error (MSE) of 2-D localization:

MSE
(

X̂i

)

= var(X̂i) + b2(X̂i) (D.7)

MSE
(

X̂BN

)

= var(X̂BN) + b2(X̂BN) (D.8)
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APPENDIX E

SOME ELEMENTARY EXPECTED VALUES

We here take some elementary expected values used in some chapters. Let x ∼
N (x;µ, σ2) be scalar Gaussian random variable. We are going to calculate the fol-

lowing expected values: E(I(x ≥ t)), E(I(x ≥ t)x), E(I(x ≥ t)x2) where I(A)

denotes the indicator function for the argument event A and t ∈ R is a threshold.

E.1 Calculation of E(I(x ≥ t))

E(I(x ≥ t)) =

∫ ∞

t

N (x;µ, σ2)dx = Q

(

t− µ

σ

)

= 1− Φ

(

t− µ

σ

)

(E.1)
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E.2 Calculation of E(I(x ≥ t)x)

E(I(x ≥ t)x) =

∫ ∞

t

xN (x;µ, σ2)dx

=
1√
2πσ

∫ ∞

t

x exp

(

− 1

2σ2
(x− µ)2

)

dx

=
1√
2πσ

∫ ∞

t

(x− µ) exp

(

− 1

2σ2
(x− µ)2

)

dx

+ µ

∫ ∞

t

N (x;µ, σ2)dx

=− 1√
2πσ

σ2 exp

(

− 1

2σ2
(x− µ)2

)
∣

∣

∣

∣

∞

t

+ µQ

(

t− µ

σ

)

=σN
(

t− µ

σ
; 0, 1

)

+ µ

[

1− Φ

(

t− µ

σ

)]

(E.2)

E.3 Calculation of E(I(x ≥ t)x2)

E(I(x ≥ t)x2) =

∫ ∞

t

x2N (x;µ, σ2)dx

=
1√
2πσ

∫ ∞

t

x2 exp

(

− 1

2σ2
(x− µ)2

)

dx

=
1√
2πσ

∫ ∞

t

(x− µ)2 exp

(

− 1

2σ2
(x− µ)2

)

dx

+
2µ√
2πσ

∫ ∞

t

x exp

(

− 1

2σ2
(x− µ)2

)

dx

− µ2

√
2πσ

∫ ∞

t

exp

(

− 1

2σ2
(x− µ)2

)

dx (E.3)

We now use integration by parts on the first integral by defining

u , x− µ dv , (x− µ) exp

(

− 1

2σ2
(x− µ)2

)

(E.4)

which gives

du = dx v = −σ2 exp

(

− 1

2σ2
(x− µ)2

)

. (E.5)
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We can now the calculate the result of the first integral as
∫ ∞

t

(x− µ)2 exp

(

− 1

2σ2
(x− µ)2

)

dx = uv|∞t −
∫ ∞

t

vdu

= −σ2(x− µ) exp

(

− 1

2σ2
(x− µ)2

)
∣

∣

∣

∣

∞

t

+ σ2

∫ ∞

t

exp

(

− 1

2σ2
(x− µ)2

)

dx

=σ2(t− µ) exp

(

− 1

2σ2
(t− µ)2

)

+ σ2

∫ ∞

t

exp

(

− 1

2σ2
(x− µ)2

)

dx

(E.6)

Substituting this result back, we get

E(I(x ≥ t)x2) =σ(t− µ)N
(

t− µ

σ
; 0, 1

)

+ σ2

∫ ∞

t

N
(

x;µ, σ2
)

dx

+ 2µ

∫ ∞

t

xN (x;µ, σ2)dx− µ2

∫ ∞

t

N (x;µ, σ2)dx

=σ(t− µ)N
(

t− µ

σ
; 0, 1

)

+ σ2Q

(

t− µ

σ

)

+ 2µσN
(

t− µ

σ
; 0, 1

)

+ 2µ2Q

(

t− µ

σ

)

− µ2Q

(

t− µ

σ

)

=σ(t+ µ)N
(

t− µ

σ
; 0, 1

)

+ (σ2 + µ2)

[

1− Φ

(

t− µ

σ

)]

(E.7)
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APPENDIX F

FIRST AND SECOND MOMENTS OF TRUNCATED

MULTIVARIATE GAUSSIAN RANDOM VARIABLES

Suppose that X = (X1, X2, · · ·XN)
T is a multivariate Gaussian random vector hav-

ing a mean µ and covariance Σ (i.e., X ∼ N (µ,Σ)) in a region (a < x < b) where

a = (a1, a2, · · · , aN) and b = (b1, b2, · · · , bN). To find the first and second moment

of X, we utilize the moment generating function of N-dimensional Gaussian random

variable. The probability density function (PDF) of the N-dimensional Gaussian ran-

dom variable is given as follows

fX(x) =
1

(2π)N/2|Σ|1/2 exp
(

−1
2
(x− µ)TΣ−1(x− µ)

)

(F.1)

Then PDF of the truncated multivariate Gaussian random variable which we call

fX′(x) in (a < x < b) can be written as follows

fX′(x) =











fX(x)
α

, for a < x < b

0, otherwise
(F.2)

where α = P (a < x < b) The moment generating function of an N-dimensional

truncated random variable X is defined as

M(t) = E
{

et
TX
}

=

∫ b

a

et
TxfX′(x)dx (F.3)

For simplicity µ , 0. The moment generating function of truncated multivariate

Gaussian random variable is given as

M(t) =
1

α(2π)N/2|Σ|1/2
∫ b

a

exp

{

−1
2

[

XTΣ−1X− 2tTX
]

}

(F.4)

Substituting −1
2

[

XTΣ−1X− 2tTX
]

with 1
2
tTΣt − 1

2
(X − γ)TΣ−1(X − γ) where

γ = Σt.
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The moment generating function can be written as

M(t) =
eL

α(2π)N/2|Σ|1/2
∫ b

a

exp

{

−1
2

[

(X− γ)TΣ−1(X− γ)
]

}

dx (F.5)

where L = 1
2
tTΣt.

(F.5) can also be reduced as follows

M(t) =
eL

α(2π)N/2|Σ|1/2
∫ b−γ

a−γ

exp

{

−1
2
XTΣ−1X

}

dx

= eLFα (F.6)

where

Fα =
1

α(2π)N/2|Σ|1/2
∫ b−γ

a−γ

exp

{

−1
2
XTΣ−1X

}

dx (F.7)

First and second moments can be found by taking derivative of the moment generating

function in (F.6) with respect to ti as

∂M(t)

∂ti
= eL

∂Fα

∂ti
+ Fα

∂eL

∂ti
(F.8)

In the equation above, we have

∂eL

∂ti
= eL

N
∑

i=1

σ2
i,ktk (F.9)

and
∂Fα

∂ti
=

∂

∂ti

∫ b∗1

a∗1

∫ b∗2

a∗2

· · ·
∫ b∗N

a∗
N

Fαdx (F.10)

where a∗i = ai −
∑N

i=1 σ
2
i,ktk, b∗i = bi −

∑N
i=1 σ

2
i,ktk and σ2

i,k = [Σ]i,k

By Leibniz’s Rule, (F.10) will be

∂Fα

∂ti
=

N
∑

i=1

σ2
i,k [fk(a

∗
k)− fk(b

∗
k)] (F.11)

where

fk(xk) =

∫ b∗1

a∗1

· · ·
∫ b∗

k−1

a∗
k−1

∫ b∗
k+1

a∗
k+1

· · ·
∫ b∗N

a∗
N

fX′(x)dx−k (F.12)

and x−k = (x1, x2, · · · , xk−1, xk+1, · · · , xN)

At tk = 0, for all k = 1, 2, · · · , tN , a∗i = ai and b∗i = bi. Therefore fi(xi) = fxi
(xi)

(ith marginal density) at ti = 0. As a result the first moment is given as

EXi =
∂M(t)

∂ti

∣

∣

∣

t=0

=

N
∑

i=1

σ2
i,k [fxk

(ak)− fxk
(bk)] (F.13)

126



To find the second moment, we take the derivative of (F.8) as follows

∂2M(t)

∂tj∂ti
= eL

∂2Fα

∂tj∂ti
+

∂Fα

∂ti

∂eL

∂tj
+ Fα

∂2eL

∂tj∂ti
+

∂eL

∂ti

∂Fα

∂tj
(F.14)

and
∂2eL

∂tj∂ti
= eLσ2

i,j + C(t) (F.15)

where C(0) = 0.

The partial derivative of (F.11) with respect to tj is given as

∂2Fα

∂tj∂ti
=

N
∑

i=1

(

σ2
i,k

∂fk(a
∗
k)

∂tj

)

−
N
∑

i=1

(

σ2
i,k

∂fk(b
∗
k)

∂tj

)

(F.16)

and the partial derivative of fk(a∗k) can be written as follows

∂fk(a
∗
k)

∂tj
=

∂

∂tj

∫ b∗1

a∗1

· · ·
∫ b∗

k−1

a∗
k−1

∫ b∗
k+1

a∗
k+1

· · ·
∫ b∗N

a∗
N

fX′
−k
(x−k, a

∗
k)dx

=
σ2
j,ka

∗
kfk(a

∗
k)

σ2
k,k

+
∑

q 6=k

(

σ2
j,q −

σ2
k,qσ

2
j,k

σ2
k,k

)

[

fk,q(a
∗
k, a

∗
q)− fk,q(b

∗
k, b

∗
q)
]

(F.17)

where

fk,q(xk, xq) =

∫ b∗1

a∗1

· · ·
∫ b∗

k−1

a∗
k−1

∫ b∗
k+1

a∗
k+1

· · ·
∫ b∗q−1

a∗q−1

∫ b∗q+1

a∗q+1

· · ·
∫ b∗N

a∗
N

fX′(x)dx−k,−q (F.18)

Note that for all tk = 0, the term (F.18) converts to bivariate marginal PDF of X, i.e.,

fXk,Xq
(xk, xq). Substituting (F.15),(F.16) and (F.17) to (F.14), evaluating at t = 0, we

get

E {XiXj} =
∂2M(t)

∂tjti

∣

∣

∣

t=0

= σ2
i,j +

N
∑

i=1

σ2
i,k

σ2
j,k [akfk(ak)− bkfk(bk)]

σ2
k,k

+
N
∑

i=1

σ2
i,k

∑

q 6=k

(

σ2
j,q −

σ2
k,qσ

2
j,k

σ2
k,k

)

[

fXk,Xq
(ak, aq)− fXk,Xq

(ak, bq)

−fXk ,Xq
(bk, aq) + fXk,Xq

(bk, bq)
]

(F.19)

The first and second moments of Xi have been calculated for µ = 0 so far. The

formulation can be generalized for an arbitrary µ in a simple way. The first moment

of an arbitrary Yi is given as

E {Yi} = E {Xi}+ µi (F.20)
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and the covariance will be the same as X’s, i.e.,

Cov(Y) = Cov(X) (F.21)

We should emphasize that the derivation related to finding first and second moments

of truncated Gaussian random vector has been taken from [12].

2-D Example

Assume that V = [Vx, Vy]
T has Gaussian distribution (i.e., V ∼ N (v; 0,Σ)) in

a region C such that C = {vx, vy : ax < vx < bx, ay < vy < by}. For this random

variable. The mean and covariance values are given according to previous section as

follows

E {Vx} = Σvxvx [fVx
(ax)− fVx

(bx)] + Σvxvy

[

fVy
(ay)− fVy

(by)
]

(F.22)

E {Vy} = Σvyvy

[

fVy
(ay)− fVy

(by)
]

+ Σvxvy [fVx
(ax)− fVx

(bx)] (F.23)

and the covariance:

E
{

V 2
x

}

= Σvxvx + Σvxvx [axfVx
(ax)− bxfVx

(bx)] +
(Σvxvy)

2

Σvyvy

[

ayfVy
(ay)− byfVy

(by)
]

+
Σvxvy

Σvyvy

|Σ|
[

fVxVy
(ax, ay)− fVxVy

(bx, ay)− fVxVy
(ax, by) + fVxVy

(bx, by)
]

(F.24)

E
{

V 2
y

}

= Σvyvy + Σvyvy

[

ayfVy
(ay)− byfVy

(by)
]

+
(Σvxvy)

2

Σvxvx

[axfVx
(ax)− bxfVx

(bx)]

+
Σvxvy

Σvxvx

|Σ|
[

fVxVy
(ax, ay)− fVxVy

(bx, ay)− fVxVy
(ax, by) + fVxVy

(bx, by)
]

(F.25)

E {VxVy} = Σvxvy + Σvxvy

[

ayfVy
(ay)− byfVy

(by)
]

+ Σvxvy [axfVx
(ax)− bxfVx

(bx)]

+ |Σ|
[

fVxVy
(ax, ay)− fVxVy

(ax, by)− fVxVy
(bx, ay) + fVxVy

(bx, by)
]

(F.26)
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where

fVx
(vx) =

∫ by

ay

N (v; 0,Σ)

P (C) dvy

=
N (vx; 0,Σvxvx)

P (C)

[

Φ

(

Σvxvxby − Σvxvyvx
√

Σvxvx |Σ|

)

− Φ

(

Σvxvxay − Σvxvyvx
√

Σvxvx|Σ|

)]

(F.27)

fVy
(vy) =

∫ bx

ax

N (v; 0,Σ)

P (C) dvx

=
N (vy; 0,Σvyvy)

P (C)

[

Φ

(

Σvyvybx − Σvxvyvy
√

Σvyvy |Σ|

)

− Φ

(

Σvyvyax − Σvxvyvy
√

Σvyvy |Σ|

)]

(F.28)

fVx
(vx) and fVy

(vy) are marginal PDFs, fVx,Vy
(vx, vy) = N (v; 0,Σ)/P (C) is the joint

PDF of the truncated Gaussian random vector.
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