
 
 

COMPUTER CODE DEVELOPMENT FOR NUMERICAL SOLUTION OF 
DEPTH INTEGRATED SHALLOW WATER EQUATIONS TO STUDY FLOOD 

WAVES 
 

 

 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 
 
 

BEHİYE NİLAY İŞCEN 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

CIVIL ENGINEERING 
 

 

 

 

 

FEBRUARY 2015 

 



  

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  

 
 

Approval of the thesis: 
 
 

COMPUTER CODE DEVELOPMENT FOR NUMERICAL SOLUTION OF 

DEPTH INTEGRATED SHALLOW WATER EQUATIONS TO STUDY 

FLOOD WAVES 

 

 

submitted by BEHİYE NİLAY İŞCEN in partial fulfillment of the requirements for 
the degree of Master of Science in Civil Engineering Department, Middle East 

Technical University by, 
 

Prof. Dr. Gülbin Dural Ünver 
Dean, Graduate School of Natural and Applied Sciences   ___________________

    

Prof. Dr. Ahmet Cevdet Yalçıner 
Head of Department, Civil Engineering     ___________________ 

    

Prof. Dr. İsmail Aydın 
Supervisor, Civil Engineering Department, METU   ___________________

  

Examining Committee Members: 

 

Prof. Dr. Nuray Tokyay  
Civil Engineering Department, METU                 ____________________ 

  
Prof. Dr. İsmail Aydın 
Civil Engineering Department, METU                   ____________________ 
 
Prof. Dr. A. Burcu Altan Sakarya  
Civil Engineering Department, METU                   ____________________ 
 
Assoc. Prof. Dr. Mete Köken 
Civil Engineering Department, METU                   ____________________ 

 
Assist. Prof. Dr. Nuray Öktem 
Mathematics Department, ÇOMU               ____________________ 

         

       

      Date:      02.02.2015

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 

 
 
 
 

Name, Last name: Behiye Nilay İŞCEN 
 

 
                                                                        Signature       : 

 
 
 
 
 
 

 
iv 



  

v 
 
 

ABSTRACT 

 

 
COMPUTER CODE DEVELOPMENT FOR NUMERICAL SOLUTION OF 

DEPTH INTEGRATED SHALLOW WATER EQUATIONS TO STUDY FLOOD 
WAVES 

 

 

 
İşcen, Behiye Nilay 

 
M.S., Department of Civil Engineering 

Supervisor: Prof. Dr. İsmail Aydın 
 

February 2015, 77 pages 
 

Floods are the most common natural risks to human beings because the most populated 

areas in the world are vulnerable to flood disasters. Floods are likely to become 

increasingly severe and more frequent due to climate change, population growth, 

change of land use, irrigation, deforestation and urban development inside the flood 

plains. Inundation risk assessment primarily requires numerical solution to a 

mathematical model, which appropriately describes hydraulics of flood waves over 

terrains including natural river beds to highly populated urban areas. This thesis aims 

the development and the validation of a computer code to solve the depth integrated 

shallow water equations for flow around a rectangular obstacle in a prismatic channel. 

A high-resolution shock capturing solution algorithm is implemented to investigate all 

possible flow cases. Boundary conditions for various flow configurations are 

considered. Conservativeness, grid adaptivity and computational stability are 

investigated features of the code developed. 

Keywords: Shallow Water Equations, Depth-Averaged Equations, Riemann Solver, 

Flood Waves 
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ÖZ 

 

TAŞKIN DALGALARINI ÇALIŞMAK AMACIYLA DERİNLİK ENTEGRELİ 
SIĞ SU DENKLEMLERİNİN NÜMERİK ÇÖZÜMÜ İÇİN BİLGİSAYAR KODU 

GELİŞTİRİLMESİ 

 

 

 
İşcen, Behiye Nilay 

 
Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. İsmail Aydın 
 

Şubat 2015, 77 sayfa 

 

Dünyada nüfusun en kalabalık olduğu bölglerin sel felaketlerine karşı savunmasız 

yerler olması nedeniyle sel baskınları en çok karşılaşılan doğal afetlerdir. İklim 

değişikliği, nüfus artışı, arazi kullanımında değişim, sulama, ormansızlaşma ve taşkın 

havzalarındaki kentsel yerleşim, sel felaketlerinin giderek daha şiddetli ve daha sık 

görülmesine sebep olmaktadır. Sel risk değerlendirmesi, öncelikli olarak, taşkın 

dalgalarının doğal nehir yataklarından, nüfus yoğunluğu fazla olan kentsel alanlara 

kadar olan arazi üzerinde hidrolik davranışını tanımlayan matematiksel bir modelin 

sayısal çözümüne ihtiyaç duyar. Bu tez, prizmatik kanal içerisindeki dikdörtgen 

biçimli bir engelin etrafında gelişen akım için derinlik entegreli sığ su denklemlerini 

çözmek amaçlı bir bilgisayar kodu geliştirilmesi ve bunun doğrulamasını 

amaçlamaktadır. Olası tüm akım durumlarını araştırmak için, yüksek çözünürlüklü şok 

yakalayan bir algoritma uygulanmaktadır. Çeşitli akım konfigürasyonları için sınır 

koşulları dikkate alınmaktadır. Geliştirilen programın korunumu sağlaması, çözüm ağı 

adaptasyonu ve hesaplama kararlılığı incelenmektedir. 

Anahtar Kelimeler: Sığ Su Denklemleri, Derinlik Entegreli Denklemler, Riemann 

Çözücü, Taşkın Dalgası 
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“All that is gold does not glitter, 

Not all those who wander are lost; 

The old that is strong does not wither, 

Deep roots are not reached by the frost.” 

 

— J.R.R. Tolkien 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Introduction and General Description of the Problem 

Most of the environmental problems and the related physical phenomena are the 

subjects of mathematical models based on depth-averaged equations. A variety of 

these mathematical models use the depth-averaged shallow water equations to 

understand and solve the gravity induced water flows. Sea currents, tides in oceans, 

flood waves in rivers, atmospheric flows, channel flows, wave breaking are a few 

examples of a wide variety of physical phenomenon modeled with shallow water 

equations. 

Fundamental physical laws, which base the continuum hypothesis, have an undeniable 

importance in hydraulics. Using the continuum hypothesis, the governing equations 

are found by applying mass and momentum conservation principles to a control 

volume that continuum hypothesis agrees. Governing equations of free surface flows 

are defined with three dimensional Navier-Stokes equations with the assumption of 

Newtonian, viscous and incompressible fluid. They form a hyperbolic system of 

nonlinear conservation laws. Due to their complexity, they have no analytical solution. 

For the computational fluid flow studies, it is also difficult and expensive to implement 

Navier-Stokes equations numerically in free surface flow problems. Additionally, 

working in three dimensional approach requires complicated discretization methods 

and meshing. Therefore, three dimensional Navier-Stokes equations are simplified to 
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two dimensional depth-averaged shallow water equations with the assumption that 

horizontal domain is noticeably larger than the vertical domain of the problem. 

Starting from the 19th century, the shallow water equations started to gain importance 

and become an indispensable tool for modeling. Although these equations can 

basically describe a simplified version of complex environmental problems, they can 

still cover most of the essential characteristics, which can affect fluid motion in open 

channels. Despite its considerable simplicity compared to three dimensional Navier-

Stokes equations, the two dimensional depth-averaged shallow water equations have 

no analytical solution either. They are solved by approximate methods. Analytical 

solutions are available for only a few one-dimensional cases.  

The solution of shallow water equations are challenging because they include 

discontinuous solutions even though the initial data is smooth. These discontinuities 

like shock waves (surges and trans-critical flows in channels) result in undesired 

failings of numerical methods. Therefore, shock-capturing methods are utilized to 

solve two dimensional shallow water equations in flow fields involving discontinuities 

in the flow variables.  

In this study finite volume method is utilized to discretize the governing equations 

since the finite volume approach is designed based on conservation of mass, 

momentum and energy, and higher order and shock capturing schemes are easily 

implemented to finite volume based numerical algorithms. For the numerical flux 

calculation, approximate Riemann solver of Roe (Roe, 1981) is utilized which is a 

Godunov type upwind method. Since the method is first order accurate in space and 

time, accuracy of the scheme is increased from first order to second order by applying 

Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) approach 

(van Leer, 1979) and the monotonicity of the scheme is ensured by using slope limiting 

functions. Finally, the second order, high resolution Godunov type finite volume 

scheme is obtained to utilize for the solution of the two dimensional depth-averaged 

shallow water equations. 
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1.2. Objectives of the Study 

The aim of this study is to develop a computer code that can solve the two dimensional 

depth-averaged shallow water equations governing the free surface fluid flow with 

discontinuous flow variables such as water depth. Flow around a rectangular block 

located in a prismatic channel is considered as a special test case to validate the code. 

Capabilities of the code are presented examining various flow configurations with 

different types of boundary conditions. Computational features such as stability, 

conservativeness, grid resolution requirements and efficiency of adopted algorithms 

are also illustrated.  

First chapter introduces the thesis and its objectives. In Chapter 2, governing equations 

of the modeled fluid flow are presented, and the numerical schemes available in 

literature for the solution of these equations are reviewed. In Chapter 3, the numerical 

solution method adopted to the present problem is described. Additionally, the 

discretization procedure and the implementation of the boundary conditions are 

explained, and the numerical error definition is given. Chapter 3 mainly describes the 

numerical method adopted to the present problem. The discretization procedure is 

given in detail and the chapter is completed with a brief discussion of the stability 

criteria and the implementation of boundary conditions. In Chapter 4, results of the 

one-dimensional numerical model is compared with the analytical solution available 

in literature to validate the shock-capturing ability of the numerical scheme used. Then, 

the results of the two dimensional numerical model are presented comparatively for 

different flow states. Convergence and the numerical accuracy of the problem are 

discussed. Finally, the thesis is completed with the important remarks and the 

recommendations for further studies. 

 

 

 

 

 



  

4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

5 
 

CHAPTER 2 

 

 

DERIVATION OF GOVERNING EQUATIONS 

 

 

 

2.1. Depth-Averaged Shallow Water Equations 

Three dimensional Reynolds Averaged Navier-Stokes (RANS) equations (Versteeg & 

Malalasekera, 2007) govern the turbulent movement of the incompressible fluid, and 

are written as, 

 

𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
= −

1

𝜌

𝜕�̅�

𝜕𝑥
+
1

𝜌
(
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

)                (2.1) 

𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
= −

1

𝜌

𝜕�̅�

𝜕𝑦
+
1

𝜌
(
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
)                 (2.2) 

𝜕�̅�

𝜕𝑡
+ �̅�

𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
= −𝑔 −

1

𝜌

𝜕�̅�

𝜕𝑧
+
1

𝜌
(
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜏𝑧𝑧
𝜕𝑧

)          (2.3) 

𝜕�̅�

𝜕𝑥
+
𝜕�̅�

𝜕𝑦
+
𝜕�̅�

𝜕𝑧
= 0                                                    (2.4) 

 

In the above equations, u, v and w are the velocity components in x, y and z directions, 

respectively, p is the pressure and over bar indicates time averaged point values of the 

flow variables. The stress terms representing combined viscous and turbulent stresses 

are defined by τij. g is the gravitational acceleration and ρ is the fluid density. 

Numerical solution of 3D RANS for large-scale free surface flow problems may 
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become very expensive when advanced turbulence models are used. Another 

important issue is the determination of location of the free surface which is a difficult 

task introducing additional complexities in terms of turbulence modelling and 

therefore requiring extra computation time. 

In many hydraulic engineering problems the flow depth is small compared to 

horizontal extent and variation of flow quantities over the vertical extent has less 

significance in the analysis and design processes. Thus, determination of water depth, 

bottom friction and horizontal components of depth-averaged velocity may be 

sufficient for many engineering purposes. Such a simplified solution may be obtained 

from depth-averaged equations valid for shallow flows. The two dimensional depth-

averaged flow equations are obtained by averaging three dimensional RANS equations 

over the flow depth. A definition sketch showing integration domain in a vertical plane 

is shown in Figure 2.1 where b defines the bottom elevation, h is the water depth and 

s represents the surface elevation. 

 

 

Figure 2.1.Vertical plane of integration of RANS 

 

 

x 

z 

z=s(x,y,t)=b(x,y)+h(x,y,t) 

z=b(x,y) 
 

 

h(x,y,t) 

b(x,y) 



  

7 
 

2.1.1. Derivation of the Governing Equations 

Four basic steps are followed to complete derivation of the equations. Firstly, the 

hydrostatic balance relation is obtained. Since horizontal length scale is assumed much 

larger than the vertical length scale, many terms can be neglected in momentum 

equation in z-direction leading an ordinary differential equation for the pressure.  

0 = −𝑔 −
1

𝜌

𝜕�̅�

𝜕𝑧
                                                                (2.5) 

Integration over the vertical axis from the bed to the free surface gives the hydrostatic 

pressure distribution  

𝜕�̅�

𝜕𝑧
= −𝜌𝑔                                                                 (2.6) 

𝜕�̅� = −𝜌𝑔𝜕𝑧                                                                  (2.7) 

∫ 𝜕�̅� = −∫ 𝜌𝑔𝜕𝑧
𝑠

𝑧

�̅�

𝑝𝑠

                                                                 (2.8) 

�̅� − 𝑝𝑠 = −(𝜌𝑔𝑧 − 𝜌𝑔𝑠)                                                                 (2.9) 

�̅� = 𝑝𝑠 + 𝜌𝑔𝑠 − 𝜌𝑔𝑧                                                                 (2.10) 

where ps is the pressure on the free surface, s is the elevation of the free surface which 

can be a function of horizontal coordinates x and y and time, t. 

 

For the integration of continuity equation (2.4) and horizontal components of the 

momentum equations (2.1) and (2.2) the Leibniz integral rule (Flanders, 1973) given 

below is utilized.  

∫
𝜕𝑓

𝜕𝑥

𝐵(𝑥,𝑦,𝑡)

𝐴(𝑥,𝑦)

𝑑𝑧 =
𝜕

𝜕𝑥
∫ 𝑓 𝑑𝑧

𝐵

𝐴

− 𝑓𝑧=𝐵
𝜕𝐵

𝜕𝑥
+ 𝑓𝑧=𝐴

𝜕𝐴

𝜕𝑥
                    (2.11) 
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2.1.2. Conservation of Mass 

Consider the Reynolds averaged continuity equation (2.4), 
𝜕�̅�

𝜕𝑥
+
𝜕�̅�

𝜕𝑦
+
𝜕�̅�

𝜕𝑧
= 0                                                (2.12) 

which can be vertically integrated from bottom to the free surface as 

∫
𝜕�̅�

𝜕𝑥

𝑠

𝑏

𝑑𝑧 + ∫
𝜕�̅�

𝜕𝑦

𝑠

𝑏

𝑑𝑧 + ∫
𝜕�̅�

𝜕𝑧

𝑠

𝑏

𝑑𝑧 = 0                                (2.13) 

Now, by using Leibniz integral rule (Equation 2.11), Equation 2.13 can be rewritten 

as 

(
𝜕

𝜕𝑥
∫ �̅� 𝑑𝑧

𝑠

𝑏

− �̅�𝑠
𝜕𝑠

𝜕𝑥
+ �̅�𝑏

𝜕𝑏

𝜕𝑥
) + (

𝜕

𝜕𝑦
∫ �̅� 𝑑𝑧

𝑠

𝑏

− �̅�𝑠
𝜕𝑠

𝜕𝑦
+ �̅�𝑏

𝜕𝑏

𝜕𝑦
) + (�̅�𝑠 − �̅�𝑏)

= 0                                                                                                            (2.14) 

Kinematic boundary conditions (Toro, 2001) are applied  

�̅�𝑠 =
𝐷𝑠

𝐷𝑡
=
𝜕𝑠

𝜕𝑡
+ �̅�𝑠

𝜕𝑠

𝜕𝑥
+ �̅�𝑠

𝜕𝑠

𝜕𝑦
                                         (2.15) 

�̅�𝑏 =
𝐷𝑏

𝐷𝑡
=
𝜕𝑏

𝜕𝑡
+ �̅�𝑏

𝜕𝑏

𝜕𝑥
+ �̅�𝑏

𝜕𝑏

𝜕𝑦
                                       (2.16) 

Then, Equation (2.14) is rearranged such that 

𝜕

𝜕𝑥
∫ �̅� 𝑑𝑧

𝑠

𝑏

+
𝜕

𝜕𝑦
∫ �̅� 𝑑𝑧

𝑠

𝑏

− (�̅�𝑠
𝜕𝑠

𝜕𝑥
+ �̅�𝑠

𝜕𝑠

𝜕𝑦
− �̅�𝑠) + (�̅�𝑏

𝜕𝑏

𝜕𝑥
+ �̅�𝑏

𝜕𝑏

𝜕𝑦
− �̅�𝑏)

= 0                                                                                                            (2.17) 

In Equation (2.17), the first integral term ∫ �̅� 𝑑𝑧
𝑠

𝑏
 represents the flux, 𝑞𝑥. Similarly, the 

second integral term ∫ �̅� 𝑑𝑧
𝑠

𝑏
 is the flux, 𝑞𝑦, in y-direction. The third term expresses 

the temporal change of the water surface elevation which equals to − 𝜕𝑠

𝜕𝑡
. The last term 

can also be written as temporal change of bed elevation, − 𝜕𝑏

𝜕𝑡
  which is equal to zero 

since the bed boundary is assumed to be fixed.  
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Therefore, Equation (2.17) is reduced to 

𝜕𝑠

𝜕𝑡
+
𝜕𝑞𝑥
𝜕𝑥

+
𝜕𝑞𝑦

𝜕𝑦
= 0                                                (2.18) 

Also, the change of water surface is decomposed such that 

𝜕𝑠

𝜕𝑡
=
𝜕(𝑏 + ℎ)

𝜕𝑡
=
𝜕𝑏

𝜕𝑡
+
𝜕ℎ

𝜕𝑡
=
𝜕ℎ

𝜕𝑡
                                         (2.19) 

Finally, the following depth-averaged continuity equation is achieved 

𝜕ℎ

𝜕𝑡
+
𝜕(ℎ�̃�)

𝜕𝑥
+
𝜕(ℎ�̃�)

𝜕𝑦
= 0                                                 (2.20) 

where �̃� and �̃� are vertically averaged horizontal velocity components. 

 

2.1.3. Conservation of Momentum 

In the momentum equation in x-direction (Equation 2.1) firstly, the time derivative and 

the advection terms are vertically integrated 

𝐼 = ∫
𝜕�̅�

𝜕𝑡

𝑠

𝑏

𝑑𝑧 + ∫
𝜕�̅�2

𝜕𝑥

𝑠

𝑏

𝑑𝑧 + ∫
𝜕𝑢𝑣̅̅̅̅

𝜕𝑦

𝑠

𝑏

𝑑𝑧 + ∫
𝜕𝑢𝑤̅̅ ̅̅

𝜕𝑧

𝑠

𝑏

𝑑𝑧                       (2.21) 

Again, Leibniz integral rule is applied to each integral term in Equation (2.21) 

𝐼 = (
𝜕

𝜕𝑡
∫ �̅� 𝑑𝑧

𝑠

𝑏

− �̅�𝑠
𝜕𝑠

𝜕𝑡
+ �̅�𝑏

𝜕𝑏

𝜕𝑡
) + (

𝜕

𝜕𝑥
∫ �̅�2 𝑑𝑧

𝑠

𝑏

− �̅�𝑠
2
𝜕𝑠

𝜕𝑥
+ �̅�𝑏

2
𝜕𝑏

𝜕𝑥
)

+ (
𝜕

𝜕𝑦
∫  𝑢𝑣̅̅̅̅ 𝑑𝑧

𝑠

𝑏

− 𝑢𝑣̅̅̅̅ 𝑠
𝜕𝑠

𝜕𝑦
+ 𝑢𝑣̅̅̅̅ 𝑏

𝜕𝑏

𝜕𝑦
) + (𝑢𝑤̅̅ ̅̅ 𝑠) − (𝑢𝑤̅̅ ̅̅ 𝑏)             (2.22) 

Then, I can be arranged as 

𝐼 =
𝜕

𝜕𝑡
∫ �̅� 𝑑𝑧

𝑠

𝑏

+
𝜕

𝜕𝑥
∫ �̅�2 𝑑𝑧

𝑠

𝑏

+
𝜕

𝜕𝑦
∫  𝑢𝑣̅̅̅̅ 𝑑𝑧

𝑠

𝑏

− [�̅�𝑠 (
𝜕𝑠

𝜕𝑡
+ �̅�𝑠

𝜕𝑠

𝜕𝑥
+ �̅�𝑠

𝜕𝑠

𝜕𝑦
− �̅�𝑠)]

+ [�̅�𝑏 (
𝜕𝑏

𝜕𝑡
+ �̅�𝑏

𝜕𝑏

𝜕𝑥
+ �̅�𝑏

𝜕𝑏

𝜕𝑦
− �̅�𝑏)]                                                  (2.23) 
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By substituting the kinematic boundary conditions given in Equations (2.15) and 

(2.16), the last two terms are eliminated in Equation (2.23) and finally the equation 

(2.21) is reduced to vertically integrated form below. 

𝐼 =
𝜕

𝜕𝑡
∫ �̅� 𝑑𝑧

𝑠

𝑏

+
𝜕

𝜕𝑥
∫ �̅�2 𝑑𝑧

𝑠

𝑏

+
𝜕

𝜕𝑦
∫  𝑢𝑣̅̅̅̅ 𝑑𝑧

𝑠

𝑏

                      (2.24) 

 

Secondly, the pressure term is integrated from bottom to the free surface 

𝐼𝐼 = −∫
1

𝜌

𝜕�̅�

𝜕𝑥
 𝑑𝑧

𝑠

𝑏

                                                       (2.25) 

where the hydrostatic pressure, �̅� is previously stated in Equation (2.10). 

After differentiating Equation (2.10) with respect to x and dividing by g as follows 

−
1

𝜌

𝜕�̅�

𝜕𝑥
= −

1

𝜌

𝜕𝑝𝑠
𝜕𝑥

− 𝑔
𝜕𝑠

𝜕𝑥
                                             (2.26) 

Neglecting the free surface pressure, 𝑝𝑠 leads 

−
1

𝜌

𝜕�̅�

𝜕𝑥
= −𝑔

𝜕𝑠

𝜕𝑥
                                             (2.27) 

The vertical averaging continues with the following steps. 

𝐼𝐼 = −∫
1

𝜌

𝜕�̅�

𝜕𝑥
 𝑑𝑧

𝑠

𝑏

= −∫ 𝑔
𝜕𝑠

𝜕𝑥
 𝑑𝑧

𝑠

𝑏

                                        (2.28) 

= −𝑔 [
𝜕

𝜕𝑥
∫ 𝑠 𝑑𝑧

𝑠

𝑏

− 𝑠
𝜕𝑠

𝜕𝑥
+ 𝑠

𝜕𝑏

𝜕𝑥
]                                         (2.29) 

= −𝑔 [
𝜕(𝑠ℎ)

𝜕𝑥
− 𝑠

𝜕𝑠

𝜕𝑥
+ 𝑠

𝜕𝑏

𝜕𝑥
]                                         (2.30) 

= −𝑔 [𝑠
𝜕ℎ

𝜕𝑥
+ ℎ

𝜕𝑠

𝜕𝑥
− 𝑠

𝜕(𝑠 − 𝑏)

𝜕𝑥
]                                         (2.31) 

= −𝑔 [𝑠
𝜕ℎ

𝜕𝑥
+ ℎ

𝜕𝑠

𝜕𝑥
− 𝑠

𝜕ℎ

𝜕𝑥
]                                         (2.32) 
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and finally, Equation (2.25) becomes 

𝐼𝐼 = −𝑔ℎ
𝜕𝑠

𝜕𝑥
                                                               (2.33) 

 

The third and the last terms of the momentum equation in x-direction are the viscous 

terms given in vertically integrated form below. 

𝐼𝐼𝐼 =
1

𝜌
[∫

𝜕𝜏𝑥𝑥
𝜕𝑥

 𝑑𝑧
𝑠

𝑏

+∫
𝜕𝜏𝑦𝑥

𝜕𝑦
 𝑑𝑧

𝑠

𝑏

+∫
𝜕𝜏𝑧𝑥
𝜕𝑧

 𝑑𝑧
𝑠

𝑏

]                 (2.34) 

Integrating each term from bottom to the surface yields 

𝐼𝐼𝐼 =
1

𝜌
[(

𝜕

𝜕𝑥
∫ 𝜏𝑥𝑥 𝑑𝑧

𝑠

𝑏

− 𝜏𝑥𝑥,𝑠
𝜕𝑠

𝜕𝑥
+ 𝜏𝑥𝑥,𝑏

𝜕𝑏

𝜕𝑥
)

+ (
𝜕

𝜕𝑦
∫ 𝜏𝑦𝑥 𝑑𝑧

𝑠

𝑏

− 𝜏𝑦𝑥,𝑠
𝜕𝑠

𝜕𝑦
+ 𝜏𝑦𝑥,𝑏

𝜕𝑏

𝜕𝑦
) + (𝜏𝑧𝑥,𝑠 − 𝜏𝑧𝑥,𝑏)]         (2.35) 

which can be rearranged such that 

𝐼𝐼𝐼 =
1

𝜌

𝜕

𝜕𝑥
∫ 𝜏𝑥𝑥 𝑑𝑧

𝑠

𝑏

+
1

𝜌

𝜕

𝜕𝑦
∫ 𝜏𝑦𝑥 𝑑𝑧

𝑠

𝑏

−
1

𝜌
(𝜏𝑥𝑥,𝑠

𝜕𝑠

𝜕𝑥
+ 𝜏𝑦𝑥,𝑠

𝜕𝑠

𝜕𝑦
− 𝜏𝑧𝑥,𝑠)

+
1

𝜌
(𝜏𝑥𝑥,𝑏

𝜕𝑏

𝜕𝑥
+ 𝜏𝑦𝑥,𝑏

𝜕𝑏

𝜕𝑦
− 𝜏𝑧𝑥,𝑏)                                                       (2.36) 

Dynamic boundary conditions on the bottom (Equation 2.37) and on the water surface 

(Equation 2.38) are implemented (Toro, 2001) 

𝜏𝑥,𝑠 = −𝜏𝑥𝑥,𝑠
𝜕𝑠

𝜕𝑥
− 𝜏𝑦𝑥,𝑠

𝜕𝑠

𝜕𝑦
+ 𝜏𝑧𝑥,𝑠                                         (2.37) 

𝜏𝑥,𝑏 = 𝜏𝑥𝑥,𝑏
𝜕𝑏

𝜕𝑥
+ 𝜏𝑦𝑥,𝑏

𝜕𝑏

𝜕𝑦
− 𝜏𝑧𝑥,𝑏                                         (2.38) 

and the final version of the vertically integrated viscous terms are obtained. 

𝐼𝐼𝐼 =
1

𝜌

𝜕

𝜕𝑥
∫ 𝜏𝑥𝑥 𝑑𝑧

𝑠

𝑏

+
1

𝜌

𝜕

𝜕𝑦
∫ 𝜏𝑦𝑥 𝑑𝑧

𝑠

𝑏

−
1

𝜌
(−𝜏𝑥,𝑠) +

1

𝜌
(𝜏𝑥,𝑏)                (2.39) 

𝐼𝐼𝐼 =
1

𝜌

𝜕

𝜕𝑥
∫ 𝜏𝑥𝑥 𝑑𝑧

𝑠

𝑏

+
1

𝜌

𝜕

𝜕𝑦
∫ 𝜏𝑦𝑥 𝑑𝑧

𝑠

𝑏

+
1

𝜌
(𝜏𝑥,𝑠 + 𝜏𝑥,𝑏)                (2.40) 
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2.1.4. Further Assumptions and Boundary Conditions 

In the depth averaging process which is illustrated in Figure 2.2, the following 

treatment is done to decompose the variables of the vertical field into a depth-averaged 

variable and a fluctuation part, in analogy to Reynolds-averaging such that 

�̅� = �̃� + �̂�                                                                      (2.41) 

 

Figure 2.2. Depth-averaging variables  

 

Depth-averaging is defined such that 

∫ �̅� 𝑑𝑧
𝑠

𝑏

= �̃�ℎ                                                                          (2.42) 

∫ �̅� 𝑑𝑧
𝑠

𝑏

= �̃�ℎ                                                                          (2.43) 

where 

�̅�(𝑥, 𝑦, 𝑧, 𝑡) = �̃�(𝑥, 𝑦, 𝑡) + �̂�(𝑥, 𝑦, 𝑧, 𝑡)                                        (2.44) 

�̅�(𝑥, 𝑦, 𝑧, 𝑡) = �̃�(𝑥, 𝑦, 𝑡) + 𝑣(𝑥, 𝑦, 𝑧, 𝑡)                                        (2.45) 

 

and the definition implies that 

∫ �̂� 𝑑𝑧
𝑠

𝑏

= 0   𝑎𝑛𝑑  ∫ 𝑣 𝑑𝑧
𝑠

𝑏

= 0                                        (2.46) 

�̅� 

𝒖  

𝒖  
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The vertical averaging of the derivative and the advection terms were previously 

obtained such that 

𝐼 =
𝜕

𝜕𝑡
∫ �̅� 𝑑𝑧

𝑠

𝑏

+
𝜕

𝜕𝑥
∫ �̅�2 𝑑𝑧

𝑠

𝑏

+
𝜕

𝜕𝑦
∫  𝑢𝑣̅̅̅̅ 𝑑𝑧

𝑠

𝑏

                                        (2.47) 

Second and the third terms are integrated using the variable decomposition and the 

depth averaging procedure stated above 

∫ �̅�2 𝑑𝑧
𝑠

𝑏

= ∫ (�̃� + �̂�)2 𝑑𝑧
𝑠

𝑏

= ∫ (�̃�2 + 2�̃��̂� + �̂�2)
𝑠

𝑏

𝑑𝑧

= �̃�2∫ 𝑑𝑧
𝑠

𝑏

+ 2�̃�∫ �̂�𝑑𝑧
𝑠

𝑏

+∫ �̂�2𝑑𝑧
𝑠

𝑏

                                                  (2.48) 

 

∫ �̅�2 𝑑𝑧
𝑠

𝑏

= �̃�2ℎ + ∫ �̂�2𝑑𝑧
𝑠

𝑏

                                                                                            (2.49) 

𝜕

𝜕𝑦
∫  𝑢𝑣̅̅̅̅ 𝑑𝑧

𝑠

𝑏

= ∫ (�̃��̃� + �̃�𝑣 + �̂��̃� + �̂�𝑣)
𝑠

𝑏

𝑑𝑧                                                              (2.50) 

𝜕

𝜕𝑦
∫  𝑢𝑣̅̅̅̅ 𝑑𝑧

𝑠

𝑏

= �̃��̃�ℎ + ∫ (�̂�𝑣)
𝑠

𝑏

𝑑𝑧                                                                                 (2.51) 

 

Equation (2.47) becomes 

𝐼 =
𝜕

𝜕𝑡
(�̃�ℎ) + [

𝜕

𝜕𝑥
(�̃�2ℎ) +

𝜕

𝜕𝑥
∫ �̂�2𝑑𝑧

𝑠

𝑏

] + [
𝜕

𝜕𝑦
(�̃��̃�ℎ) +

𝜕

𝜕𝑦
∫ (�̂��̂�)

𝑠

𝑏

𝑑𝑧]           (2.52) 

where, 

𝜕

𝜕𝑡
(�̃�ℎ) = �̃�

𝜕ℎ

𝜕𝑡
+ ℎ

𝜕�̃�

𝜕𝑡
= �̃�

𝜕(𝑠 − 𝑏)

𝜕𝑡
+ ℎ

𝜕�̃�

𝜕𝑡
= �̃�

𝜕𝑠

𝜕𝑡
+ ℎ

𝜕�̃�

𝜕𝑡
                               (2.53) 

𝜕

𝜕𝑥
(�̃�2ℎ) = �̃�

𝜕ℎ�̃�

𝜕𝑥
+ ℎ�̃�

𝜕�̃�

𝜕𝑥
                                                                                           (2.54) 

𝜕

𝜕𝑦
(�̃��̃�ℎ) = �̃�

𝜕ℎ�̃�

𝜕𝑦
+ ℎ�̃�

𝜕�̃�

𝜕𝑦
                                                                                           (2.55) 
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All integrated (averaged) expressions are substituted, and the depth-averaged 

momentum equation in x-direction is obtained 

 

ℎ
𝜕�̃�

𝜕𝑡
+  ℎ�̃�

𝜕�̃�

𝜕𝑥
+ ℎ�̃�

𝜕�̃�

𝜕𝑦
+ �̃� [

𝜕𝑠

𝜕𝑡
+
𝜕(ℎ�̃�)

𝜕𝑥
+
𝜕(ℎ�̃�)

𝜕𝑦
] 

= −𝑔ℎ
𝜕𝑠

𝜕𝑥
+

𝜕

𝜕𝑥
∫ (

𝜏𝑥𝑥
𝜌

− �̂�2)  𝑑𝑧
𝑠

𝑏

+
𝜕

𝜕𝑦
∫ (

𝜏𝑦𝑥

𝜌
− �̂�𝑣)  𝑑𝑧

𝑠

𝑏

+ (
𝜏𝑥,𝑠
𝜌

−
𝜏𝑥,𝑏
𝜌
)     (2.56) 

 

The equation is rearranged by neglecting the higher order terms �̂�2 and �̂�𝑣, and it is 

rewritten by omitting the over bar on the dependent variables considering that all 

dependent variables in the equations are now depth-averaged. 

 

ℎ
𝜕𝑢

𝜕𝑡
+  ℎ𝑢

𝜕𝑢

𝜕𝑥
+ ℎ𝑣

𝜕𝑢

𝜕𝑦
 

= −𝑔ℎ
𝜕𝑠

𝜕𝑥
+

𝜕

𝜕𝑥
(
ℎ𝜏𝑥𝑥
𝜌

) +
𝜕

𝜕𝑦
(
ℎ𝜏𝑦𝑥

𝜌
) + (

𝜏𝑥,𝑠
𝜌

−
𝜏𝑥,𝑏
𝜌
)                                             (2.57) 

 

Similar procedures are applied to derive depth-averaged momentum equation in y-

direction. In conclusion, two dimensional, depth-averaged shallow flow equations in 

conservative form are 

 

𝜕ℎ

𝜕𝑡
+ 

𝜕ℎ𝑢

𝜕𝑥
+
𝜕ℎ𝑣

𝜕𝑦
= 0                                                                                                      (2.58) 

𝜕ℎ𝑢

𝜕𝑡
+ 

𝜕ℎ𝑢𝑢

𝜕𝑥
+
𝜕ℎ𝑢𝑣

𝜕𝑦
= −𝑔ℎ

𝜕𝑠

𝜕𝑥
+

𝜕

𝜕𝑥
(
ℎ𝜏𝑥𝑥
𝜌

) +
𝜕

𝜕𝑦
(
ℎ𝜏𝑦𝑥

𝜌
) + (

𝜏𝑥,𝑠
𝜌

−
𝜏𝑥,𝑏
𝜌
)    (2.59) 

𝜕ℎ𝑣

𝜕𝑡
+ 

𝜕ℎ𝑢𝑣

𝜕𝑥
+
𝜕ℎ𝑣𝑣

𝜕𝑦
= −𝑔ℎ

𝜕𝑠

𝜕𝑦
+

𝜕

𝜕𝑥
(
ℎ𝜏𝑥𝑦

𝜌
) +

𝜕

𝜕𝑦
(
ℎ𝜏𝑦𝑦

𝜌
) + (

𝜏𝑦,𝑠

𝜌
−
𝜏𝑦,𝑏

𝜌
)   (2.60) 
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The pressure term −𝑔ℎ 𝜕𝑠

𝜕𝑥
 is treated such that 

−𝑔ℎ
𝜕𝑠

𝜕𝑥
= −𝑔ℎ

𝜕(𝑏 + ℎ)

𝜕𝑥
= −𝑔ℎ

𝜕𝑏

𝜕𝑥
− 𝑔ℎ

𝜕ℎ

𝜕𝑥
                               (2.61) 

where  

𝜕𝑏

𝜕𝑥
=  𝑆0,𝑥                                                                 (2.62)  

Then, 

−𝑔ℎ
𝜕𝑠

𝜕𝑥
= −𝑔ℎ𝑆0,𝑥 − 𝑔

𝜕

𝜕𝑥
(
1

2
ℎ2)                               (2.63) 

Similarly,  

−𝑔ℎ
𝜕𝑠

𝜕𝑦
= −𝑔ℎ𝑆0,𝑦 − 𝑔

𝜕

𝜕𝑦
(
1

2
ℎ2)                               (2.64) 

𝑆0,𝑥 and 𝑆0,𝑦 are the bed slopes in x and y directions, respectively. 

Bottom shear stresses in x and y directions, 𝜏𝑥,𝑏 and 𝜏𝑦,𝑏 are written in terms of a 

friction coefficient, 𝑐𝑓 

𝜏𝑥,𝑏 = 𝜌𝑐𝑓𝑢√𝑢2 + 𝑣2                                                (2.65) 

𝜏𝑦,𝑏 = 𝜌𝑐𝑓𝑣√𝑢2 + 𝑣2                                                (2.66) 

where 𝑐𝑓 =
𝑔𝑛2

ℎ1 3⁄   

Kinematic bottom shear stress, − 𝜏𝑥,𝑏

𝜌
  is rewritten in terms of friction slope 

−
𝜏𝑥,𝑏
𝜌

= −
𝜌𝑐𝑓𝑢√𝑢2 + 𝑣2

𝜌
= −(

𝑔𝑛2

ℎ1 3⁄
)𝑢√𝑢2 + 𝑣2 ∗

ℎ

ℎ
= −𝑔ℎ𝑆𝑓,𝑥                   (2.67) 

and similarly, 

−
𝜏𝑦,𝑏

𝜌
= −𝑔ℎ𝑆𝑓,𝑦                                                                                                              (2.68) 

where 𝑆𝑓,𝑥 and 𝑆𝑓,𝑦 are the friction slopes in x and y directions, respectively. 
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Then, the governing momentum equations become, 

 
𝜕ℎ𝑢

𝜕𝑡
+ 

𝜕ℎ𝑢𝑢

𝜕𝑥
+
𝜕ℎ𝑢𝑣

𝜕𝑦
 

= −𝑔ℎ𝑆0,𝑥 +
𝜕

𝜕𝑥
(
ℎ

𝜌
𝜏𝑥𝑥) +

𝜕

𝜕𝑦
(
ℎ

𝜌
𝜏𝑦𝑥) + (

𝜏𝑥,𝑠
𝜌

− 𝑔ℎ𝑆𝑓,𝑥 − 𝑔
𝜕

𝜕𝑥
(
1

2
ℎ2))          (2.69) 

𝜕ℎ𝑢

𝜕𝑡
+ 

𝜕ℎ𝑢𝑣

𝜕𝑥
+
𝜕ℎ𝑣𝑣

𝜕𝑦
 

= −𝑔ℎ𝑆0,𝑦 +
𝜕

𝜕𝑥
(
ℎ

𝜌
𝜏𝑥𝑦) +

𝜕

𝜕𝑦
(
ℎ

𝜌
𝜏𝑦𝑦) + (

𝜏𝑦,𝑠

𝜌
− 𝑔ℎ𝑆𝑓,𝑦 − 𝑔

𝜕

𝜕𝑦
(
1

2
ℎ2))         (2.70) 

 

If the surface friction is neglected and only bottom friction is taken into account, the 

equations are written as: 

 
𝜕ℎ

𝜕𝑡
+ 

𝜕ℎ𝑢

𝜕𝑥
+
𝜕ℎ𝑣

𝜕𝑦
= 0                                                                                                      (2.71) 

 

𝜕ℎ𝑢

𝜕𝑡
+ 

𝜕(ℎ𝑢2 + 1
2
𝑔ℎ2)

𝜕𝑥
+
𝜕ℎ𝑢𝑣

𝜕𝑦

= −𝑔ℎ(𝑆0,𝑥 + 𝑆𝑓,𝑥) +
𝜕

𝜕𝑥
(
ℎ

𝜌
𝜏𝑥𝑥) +

𝜕

𝜕𝑦
(
ℎ

𝜌
𝜏𝑦𝑥)                            (2.72) 

𝜕ℎ𝑣

𝜕𝑡
+
𝜕ℎ𝑢𝑣

𝜕𝑥
+
𝜕(ℎ𝑣2 + 1

2
𝑔ℎ2)

𝜕𝑦

= −𝑔ℎ(𝑆0,𝑦 + 𝑆𝑓,𝑦) +
𝜕

𝜕𝑥
(
ℎ

𝜌
𝜏𝑥𝑦) +

𝜕

𝜕𝑦
(
ℎ

𝜌
𝜏𝑦𝑦)                            (2.73) 
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To allow compact presentations, the depth-averaged flow equations are written in 

vector form. 
𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
= 𝑆                                                 (2.74) 

 

E and G represent total fluxes in x and y directions, respectively and they are given by 

 

𝐸 = 𝐸𝐶 − 𝐸𝐷     &    𝐺 = 𝐺𝐶 − 𝐺𝐷                                        (2.75)  

 

where EC and GC  are the convective flux vectors in x and y directions, respectively, 

ED and GD are the diffusive flux vectors in x and y directions, respectively. The 

variables U, EC, ED, GC, GD, and S are defined in matrix forms as follows 

𝑈 = [
ℎ
ℎ𝑢
ℎ𝑣

]     

𝐸𝐶 = [

ℎ𝑢

ℎ𝑢2 +
1

2
𝑔ℎ2

ℎ𝑢𝑣

] 𝐸𝐷 =

[
 
 
 
 

0
ℎ

𝜌
𝜏𝑥𝑥

ℎ

𝜌
𝜏𝑥𝑦]

 
 
 
 

 

𝐺𝐶 = [

ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 +
1

2
𝑔ℎ2

] 𝐺𝐷 =

[
 
 
 
 

0
ℎ

𝜌
𝜏𝑦𝑥

ℎ

𝜌
𝜏𝑦𝑦]

 
 
 
 

 

𝑆 = [

0
−𝑔ℎ(𝑆0,𝑥 + 𝑆𝑓,𝑥)

−𝑔ℎ(𝑆0,𝑦 + 𝑆𝑓,𝑦)

]                                             (2.76) 
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Assuming that the flow is homogeneous, incompressible, inviscid, two dimensional 

with hydrostatic pressure distribution and absence of wind forces, the governing flow 

equations become 

 
𝜕ℎ

𝜕𝑡
+ 

𝜕ℎ𝑢

𝜕𝑥
+
𝜕ℎ𝑣

𝜕𝑦
= 0                                                     (2.77) 

𝜕ℎ𝑢

𝜕𝑡
+ 

𝜕(ℎ𝑢2 + 1
2
𝑔ℎ2)

𝜕𝑥
+
𝜕ℎ𝑢𝑣

𝜕𝑦
= −𝑔ℎ(𝑆0,𝑥 + 𝑆𝑓,𝑥)                         (2.78) 

𝜕ℎ𝑣

𝜕𝑡
+
𝜕ℎ𝑢𝑣

𝜕𝑥
+
𝜕(ℎ𝑣2 + 1

2
𝑔ℎ2)

𝜕𝑦
= −𝑔ℎ(𝑆0,𝑦 + 𝑆𝑓,𝑦)                         (2.79) 

 

Under these assumptions, Equation (2.74) is rewritten such that E and G represent only 

convective fluxes EC and GC, respectively, and the variables U, E, G and S become  

 

𝑈 = [
ℎ
ℎ𝑢
ℎ𝑣

]   𝐸 = [

ℎ𝑢

ℎ𝑢2 +
1

2
𝑔ℎ2

ℎ𝑢𝑣

]   𝐺 = [

ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 +
1

2
𝑔ℎ2

]   𝑆 = [

0
−𝑔ℎ(𝑆0,𝑥 + 𝑆𝑓,𝑥)

−𝑔ℎ(𝑆0,𝑦 + 𝑆𝑓,𝑦)

]   (2.80) 
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2.2. Numerical Schemes for 2D Depth-Averaged Shallow Water 

Equations 

 

2.2.1. Finite Volume Methods 

For the standard finite difference approaches, finite differences are utilized to 

approximate derivatives. However, especially around discontinuities, the discretized 

approximations to differential equations do not work as expected. Accordingly, these 

approaches or methods cannot properly succeed near discontinuities. 

Moreover, hyperbolic systems are more vulnerable to various discontinuities. In the 

cases where hyperbolic system of equations are needed to be solved, finite volume 

methods can be accepted as more appropriate and convenient approaches compared to 

other solutions like utilizing the point wise approximations at grid points.  

Formulation for finite volume methods focuses on subdividing the spatial domains to 

relatively small “finite volumes”, meaning the grid cells. By doing this, this method 

approximates the average values for the solution of every discrete cell. By means of 

the fluxes through the sides of each grid cell, these averaged values are recalculated 

for each time step. However, defining appropriate numerical flux functions, which can 

represent the physical fluxes acceptably, is quite essential and sometimes can be 

problematic. 

 

2.2.2. Upwind Schemes 

Hyperbolic partial differential equations represent propagation problems. In nature, 

many flow problems have hyperbolic characteristics. In a hyperbolic problem, former 

property of a point considerably affects the flow condition by affecting instant property 

of another point. It means that the information about the solution or a disturbance 

propagates. Upwind schemes include the direction where the information is 

transmitted in numerical flow field by incorporating a finite difference approach. 

Accordingly, upwind methods are utilized to define more accurate numerical flux 

functions. 
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2.2.3. Riemann Problem 

The Riemann problem is a one-dimensional initial value problem for the nonlinear 

system of hyperbolic conservation laws. It has a piecewise initial data which is 

discontinuous across distance x. 

𝑢𝑡 + 𝑓𝑥(𝑢) = 0                                                                  (2.81) 

𝑢0 = 𝑢(𝑥, 0) = {
𝑢𝐿      𝑖𝑓  𝑥 < 0
𝑢𝑅      𝑖𝑓  𝑥 > 0

 

The solution structure of the general Riemann problem is defined with a set of waves, 

namely: shock waves, contact discontinuities (shear waves) and rarefaction waves, and 

the constant states 𝑢𝐿 and 𝑢𝑅 separated by the waves present in the solution. L and R 

stands for left and right, respectively. 

 

Figure 2.3. Structure of the solution of the Riemann problem (Toro, 2009) 
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As it is illustrated in Figure 2.3, these three waves are associated with three 

eigenvectors. The wave associated with the 𝜆2 field is a contact discontinuity and those 

associated with 𝜆1 and 𝜆3 is either rarefaction or shock waves. The middle wave 

associated with the 𝜆2 is a contact discontinuity, and it moves at a speed of 𝑢. The left 

and right waves associated with 𝜆1 and 𝜆3 are either rarefaction waves or shock waves 

having speeds 𝑢 − 𝑐 or 𝑢 + 𝑐, respectively. 

Rarefaction waves are the regions of the solution where the variable 𝑢 and the wave 

speed smoothly vary between two states 𝑢𝐿 and 𝑢𝑅 (George, 2004). They are both 

continuous across the rarefaction wave. Shock waves, on the other hand, are 

characterized by a discontinuity in both the variable 𝑢 and the wave speed. Neither the 

variable 𝑢 nor the wave speed is continuous across a shock wave. Since 𝑢𝐿 and 𝑢𝑅 

have different values on both sides of the shock, the solution is considered as 

discontinuous. Both states 𝑢𝐿 and 𝑢𝑅 are identical in the case of a contact discontinuity. 

The wave is a contact discontinuity when the conserved variable 𝑢 jumps 

discontinuously across the wave while the wave speed is continuous across the wave 

(Guinot, 2010). When the dam-break problem is considered as an example, the wave 

pattern which is a combination of rarefaction and shock waves can be illustrated by 

Figure 2.4. Figure shows that the solution of dam-break problem consist of a 

rarefaction wave propagating upstream and a shock wave moving downstream. 
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Figure 2.4. Definition sketch for dam-break problem (Guinot, 2010) 

 

By definition, the Riemann problem is one-dimensional. However, it is also very 

commonly utilized when solving the multidimensional problems. Riemann problem 

can be solved in order to compute the numerical flux through cell interface in a finite 

volume grid and to update the cell quantities. Particularly, Godunov type methods 

based on Riemann problem solution capture and control the shock waves and the 

contact discontinuities that may emerge in the solution. 

 

2.2.4. Godunov’s Method 

Godunov’s method changes the course of computational fluid dynamics by eliminating 

the many deficiencies, which struggles earlier numerical methods. The Godunov’s 

scheme that is based on a first order upwind method solves nonlinear system of 

conservation laws, and aims to give the most accurate solution around discontinuities.  

Exact or the approximate solution of the Riemann problem is the common element of 

Godunov type methods. The method solves Riemann problem for each time step and 

at each cell interface. 
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Figure 2.5. Godunov’s scheme and the local Riemann problem 

 

The Godunov method can be written in conservative form (Toro, 2009) 

𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 +
Δ𝑡

Δ𝑥
[𝐹𝑖+1/2 − 𝐹𝑖−1/2]                                        (2.82) 

where the numerical fluxes are given by 

𝐹𝑖+1/2 = 𝐹 (𝑈𝑖+1/2(0))                                        (2.83) 

𝐹𝑖−1/2 = 𝐹 (𝑈𝑖−1/2(0))                                        (2.84) 

where 𝑈𝑖+1/2(0) is the solution of the Riemann problem 𝑅𝑃(𝑈𝑖𝑛, 𝑈𝑖+1𝑛 ) along the t-

axis, and similarly 𝑈𝑖−1/2(0) is the solution of the Riemann problem 𝑅𝑃(𝑈𝑖−1𝑛 , 𝑈𝑖
𝑛) 

along the t-axis and both evaluated at x/t=0. 

 

Discrete 
solution 

xj+2 
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xj-1 xj-1/2 xj xj+1/2 xj+1 xj+3/2 xj+2 

un
j un

j+1 un
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tn
 

un
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Contact Discontinuity Shock 

xj-1 xj xj+1 

Continuous 
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2.2.5. Approximate Riemann Solvers 

From computational point of view, it is relatively expensive to use exact Riemann 

solution for non-linear problems (Toro, 2009). Therefore, approximate Riemann 

solutions became preferable considering their less computational cost, easier 

application and accuracy. Approximate solutions of the Riemann problem are derived 

from solution to linear Riemann problem. The object of all kind of approximate solvers 

is to estimate the Godunov flux at cell interfaces. The most widely used approximate 

solvers are HLL, HLLC, Roe’s and Osher’s approximate Riemann solvers (Toro, 

2009). 

 

2.2.6. Roe’s Approximate Riemann Solver 

Roe’s method is an accurate and accordingly widely applied method in the field of 

computational fluid dynamics. The method successfully captures stationary shocks 

and contact discontinuities. The idea behind Roe’s solution is to convert the nonlinear 

hyperbolic system of equations to an equivalent linear system. 

For two dimensional case, numerical flux for the interface (i+1/2, j) has the form 

(Alcrudo & Garcia-Navarro, 1993) 

𝐹𝑖+1/2,𝑗
∗ =

1

2
[𝐹𝑅

𝑛 + 𝐹𝐿
𝑛 − |𝐴𝑖+1/2,𝑗|(𝑈𝑅 − 𝑈𝐿)]                          (2.85) 

where 𝐴𝑖+1/2,𝑗 is the Jacobian matrix of the flux F, and 𝑈𝑅 , 𝑈𝐿 are the left and right 

states of the conservative variables. 

𝐴𝑖+1/2,𝑗 =
𝜕(𝐹 ∙ 𝑛)

𝜕𝑈
= [

0 𝑛𝑥 𝑛𝑦
(𝑐2−𝑢2)𝑛𝑥 − 𝑢𝑣𝑛𝑦 2𝑢𝑛𝑥 − 𝑣𝑛𝑦 𝑢𝑛𝑦

−𝑢𝑣𝑛𝑥 + (𝑐2−𝑣2)𝑛𝑦 𝑣𝑛𝑥 𝑢𝑛𝑥 + 2𝑣𝑛𝑦

]   (2.86) 

where 𝑛𝑥 , 𝑛𝑦 are the unit normal vectors. 

In order to obtain an equivalent linear system of equations, Roe matrix Ã 

corresponding to the interface between two cells is constructed. Variables 𝑢, 𝑣, 𝑐 of the 

Jacobian matrix 𝐴𝑖+1/2,𝑗 are replaced by so-called Roe averages �̃�, �̃�, �̃�.  
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Roe-averaged quantities of the velocities and the celerity are calculated as follows 

(Roe, 1981) 

�̃� =
𝑢𝑅√ℎ𝑅 + 𝑢𝐿√ℎ𝐿

√ℎ𝑅 +√ℎ𝐿
         �̃� =

𝑣𝑅√ℎ𝑅 + 𝑣𝐿√ℎ𝐿

√ℎ𝑅 +√ℎ𝐿
         �̃� = √

𝑔(ℎ𝑅 + ℎ𝐿)

2
          (2.87) 

 

The eigenvalues of Roe matrix Ã are, 

�̃�1 = �̃�𝑛𝑥 + �̃�𝑛𝑦 + �̃� 

�̃�2 = �̃�𝑛𝑥 + �̃�𝑛𝑦 

�̃�3 = �̃�𝑛𝑥 + �̃�𝑛𝑦 − �̃�                                              (2.88) 

and the corresponding eigenvectors are 

�̃�1 = (

1
�̃� + �̃�𝑛𝑥
�̃� + �̃�𝑛𝑦

)                �̃�2 = (

0
−�̃�𝑛𝑦
�̃�𝑛𝑥

)                �̃�3 = (

1
�̃� − �̃�𝑛𝑥
�̃� − �̃�𝑛𝑦

)                 (2.89) 

 

In two dimensional space, numerical intercell flux of Roe’s scheme on a linear system 

is 

𝐹(𝑈𝑅 , 𝑈𝐿) =
1

2
[𝐹(𝑈𝑅) + 𝐹(𝑈𝐿) − |�̃�|(𝑈𝑅 −𝑈𝐿)]                              (2.90) 

and at cell interface (i+1/2,j), it is defined as 

𝐹𝑖+1/2,𝑗
∗ =

1

2
[𝐹𝑅

𝑛 + 𝐹𝐿
𝑛 −∑�̃�𝑘|�̃�𝑘|�̃�𝑘

3

𝑘=1

]                               (2.91) 

where �̃�𝑘 are the wave strengths defined as 

�̃�1,3 =
∆ℎ

2
±

1

2�̃�
[∆(ℎ𝑢)𝑛𝑥 + ∆(ℎ𝑣)𝑛𝑦 − (�̃�𝑛𝑥 + �̃�𝑛𝑦)∆ℎ]                   (2.92) 

�̃�2 =
1

�̃�
{[∆(ℎ𝑣) − �̃�∆ℎ]𝑛𝑥 − [∆(ℎ𝑢) − �̃�∆ℎ]𝑛𝑦}                            (2.93) 
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The wave strengths are dependent to the jumps in the intermediate states of the 

conserved variables  

∆𝑈 = 𝑈𝑅 − 𝑈𝐿 = (

∆ℎ = ℎ𝑅 − ℎ𝐿  
∆ℎ𝑢 = ℎ𝑢𝑅 − ℎ𝑢𝐿
∆ℎ𝑣 = ℎ𝑣𝑅 − ℎ𝑣𝐿

)                                       (2.94) 

More detailed information about Roe’s scheme is given in Chapter 3. 

 

2.2.7. Higher-Order and High-Resolution (Total Variation Diminishing) 

Schemes 

As it is stated before, Godunov’s scheme has first-order accuracy and similar to other 

first-order methods, it suffers from inaccuracies due to numerical diffusion. High order 

accuracy and absence of unphysical oscillations are conflicting necessities in 

numerical approaches. High order schemes may come up with oscillatory solutions. 

On the other hand, although unphysical oscillations do not show up in monotone 

methods, they lead at most to first order accurate solutions. 

There are nonlinear methods like TVD, namely, total variation diminishing methods 

that brings both higher-order accuracy and non-oscillatory behavior requirements 

together. TVD methods ensure that the total variation of the numerical solution is not 

increasing with time. Flux limiter and the slope limiter approaches are the basis for 

TVD methods (Toro, 2009). 

 

2.2.8. MUSCL-type High-Order Schemes 

The development of high order methods can be achieved via MUSCL approach. By 

means of MUSCL approach which is introduced by van Leer, first order upwind 

method of Godunov can be enhanced to second or even third order accuracy. As stated 

earlier, false oscillations surely will occur as a result of these higher order extensions. 

Therefore, by utilizing some TVD constraints into MUSCL approach, non-linear high 

order schemes are developed. Thus, the difficulty in satisfying two conflicting 

necessities is overcome.  
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Piecewise linear reconstruction is defined first for simple one-dimensional case. 

𝑢𝑖(𝑥) = 𝑢𝑖
𝑛 +

(𝑥 − 𝑥𝑖)

∆𝑥
∆𝑢𝑖     , 𝑥 ∈ [0, ∆𝑥]                                 (2.95) 

where ∆𝑢𝑖/∆𝑥 is the slope of 𝑢𝑖(𝑥), 𝑥𝑖 is the location of the cell center equal to ∆𝑥/2. 

The value of 𝑢𝑖(𝑥) at the left boundary is extrapolated such that (Toro, 2009) 

𝑢𝑖
𝐿 = 𝑢𝑖(0) = 𝑢𝑖

𝑛 −
1

2
∆𝑢𝑖                                           (2.96) 

Similarly, the right boundary value which is still within the cell i 

𝑢𝑖
𝑅 = 𝑢𝑖(∆𝑥) = 𝑢𝑖

𝑛 +
1

2
∆𝑢𝑖                                             (2.97) 

 

Figure 2.6. Piece-wise linear MUSCL reconstruction of data in a single cell (i), 

with the boundary extrapolated values uL and uR (Toro, 2009) 

∆𝑢𝑖 may be expressed with a more general equation which also accounts for the 

different variable extrapolations at the cell interface utilizing a parameter w 

∆𝑢𝑖 =
1

2
[(1 + 𝑤)∆𝑢𝑖−1/2 + (1 − 𝑤)∆𝑢𝑖+1/2]                                           (2.98) 

∆𝑢𝑖+1/2 = 𝑢𝑖+1
𝑛 − 𝑢𝑖

𝑛                                           (2.99) 

∆𝑢𝑖−1/2 = 𝑢𝑖
𝑛 − 𝑢𝑖−1

𝑛                                          (2.100) 

 

Δx/2 
0 

Δx 

un
i 

uR 

uL 

ui(x) 

x 
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Figure 2.7. Piece-wise linear MUSCL representation (Hirsch, 1990) 

 

The two dimensional methodology based on MUSCL data reconstruction and more 

detailed information about variable extrapolation will be given in the Chapter 3. 

In order to avoid oscillations, the reconstructed slopes in MUSCL approach are limited 

with a slope limiter function that guarantees new extreme cannot be produced in the 

solution (Anastasiou and Chan, 1997). Moreover, the slope limiter function works 

correctly for both shock and smooth regions while not allowing oscillations near 

discontinuities and staying inactive in smooth sections. 

 

2.2.9. Slope Limiter Approach 

As previously stated, the idea behind slope limiting is to limit physically unrealistic 

values due to shocks, discontinuities or the sharp changes in the solution domain. 

Applying a limiter function, intermediate states of variables at the interface (i+1/2) 

become 

𝑢𝑅 = 𝑢𝑖+1
𝑛 −

1

2
𝜑(𝑟𝑖+1/2)∆𝑢𝑖+1                                           (2.101) 

𝑢𝐿 = 𝑢𝑖
𝑛 +

1

2
𝜑(𝑟𝑖+1/2)∆𝑢𝑖                                                   (2.102) 

i-1 
i-1/2 

i i+1 
i+1/2 i+3/2 

Ui-1 

Ui 

Ui+1 

UR
i+1/2 UL

i+1/2 

x 

UR
i-1/2 

UL
i-1/2 
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The limiter 𝜑 is a function of 𝑟 which is the ratio of upwind difference to local 

difference of variables. There are numerous limiter functions defined in literature. 

Some of the most commonly used limiter functions are Superbee, van Leer, van 

Albada and Minmod limiters (Versteeg & Malalasekera, 2007). 

 

𝜑𝑠𝑢𝑝𝑒𝑟𝑏𝑒𝑒(𝑟) = 𝑚𝑎𝑥[0,𝑚𝑖𝑛(2𝑟, 1),𝑚𝑖𝑛(𝑟, 2)]                                                   (2.103) 

𝜑𝑣𝑎𝑛𝐿𝑒𝑒𝑟(𝑟) =
𝑟 + |𝑟|

1 + |𝑟|
                                                   (2.104) 

𝜑𝑣𝑎𝑛𝐴𝑙𝑏𝑎𝑑𝑎(𝑟) =
𝑟2 + 𝑟

𝑟2 + 1
                                                   (2.105) 

𝜑𝑚𝑖𝑛𝑚𝑜𝑑(𝑟) = 𝑚𝑎𝑥[0,𝑚𝑖𝑛(1, 𝑟)]                                                   (2.106) 

 

  

Figure 2.8. Limiter functions in φ,r diagram (Versteeg & Malalasekera, 2007) 
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2.2.10. Boundary Conditions 

Numerical modelling of fluid flow is highly dependent on the correct implementation 

of boundary conditions. False or weak implementation of boundary conditions leads 

to both convergence and accuracy problems in the solution. The more physical 

conditions of flow field are applied, the more precise solutions are obtained. 

In the following section, wall boundary, symmetry boundary, inflow/outflow 

boundary and periodic boundary conditions will be discussed. 

 

2.2.11. Wall Boundary Condition 

Steady-state inviscid flow solutions have slip boundary or slip velocity conditions 

applied on solid walls. Slip boundary condition implies nonzero tangential velocity 

while velocity normal to the wall is zero, and consequently, at the boundary velocity 

is parallel to the surface. In other words, Neumann type boundary condition is applied 

on the wall boundaries that imposes zero derivative for the velocity normal to the 

surface. Having zero normal velocity results in zero flux normal to the wall boundary 

meaning that there is no flow across the wall. While mass flux equals zero, hydrostatic 

pressure term is left as nonzero in the calculation of momentum fluxes. 

 

2.2.12. Symmetry Boundary Condition 

Similar to the implementation of wall boundary conditions, at a symmetry boundary 

no flow and no mass flux across the boundary conditions are implemented by setting 

normal velocity to zero. 

 

2.2.13. Inflow/Outflow Boundary Condition 

As mentioned previously, boundary conditions should also reflect the physical 

characteristics of the flow. In the view of such consideration, inflow/outflow boundary 

treatment is carried out according to the state of flow that is whether the flow is 

subcritical or supercritical. As Brufau and Garcia-Navarro (2000) stated, for two 



  

31 
 

dimensional subcritical flows, boundary conditions for two variables must be imposed 

for inflow boundaries, while one is required at the outflow. On the other hand, for 

supercritical flows, imposition of three variables is required at inflow and none of the 

variables at outflow. 

 

2.2.14. Periodic Boundary Condition 

Periodic boundary condition is applied when the flow domain repeats itself with 

identical geometry. Periodic boundary condition can be easily imposed by copying 

inflow boundary interior computational cells to outside of the outflow boundary (in 

the ghost cells) and by copying outflow boundary interior computational cells to the 

upstream of inflow boundary (in the ghost cells). 
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CHAPTER 3 

 

 

NUMERICAL SOLUTION METHOD ADOPTED TO PRESENT 

PROBLEM 

 

 

 

3.1. Equations and their characteristics 

The governing equations of depth-averaged flow are previously derived from Navier-

Stokes equations. For the two dimensional inviscid flow, differential equations are 

given by 

 

𝜕𝑈

𝜕𝑡
+ ∇𝐹 = 𝑆                                                             (3.1) 

F ∙ n = E𝑛𝑥 + G𝑛𝑦                                                    (3.2) 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
= 𝑆                                                    (3.3) 

 

where U is the vector of conservation variables, E and G are the vectors of the 

convection fluxes in x and y directions, respectively. S is the vector of sources of 

momentum in which the bed slope and the bed friction along x and y directions are 

taken into account. As it is stated previously in this work, viscous terms are not 

included in the equations. Diffusion of momentum by viscous and turbulence effects 

is neglected.  
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The vector of conserved variables is 

𝑈 = (
ℎ
ℎ𝑢
ℎ𝑣

)                                                             (3.4)    

The flux components are 

    𝐸 = (
ℎ𝑢

ℎ𝑢2 + 𝑔ℎ2 2⁄

ℎ𝑢𝑣

)  𝐺 = (
ℎ𝑣
ℎ𝑣𝑢

ℎ𝑣2 + 𝑔ℎ2 2⁄
)                              (3.5)       

and the source vector is 

 𝑆 = (

0
−𝑔ℎ(𝑆0,𝑥 + 𝑆𝑓,𝑥)

−𝑔ℎ(𝑆0,𝑦 + 𝑆𝑓,𝑦)

)                                                      (3.6) 

 

The system of nonlinear partial differential equations can also be expressed in the 

equivalent non-conservative form. (Alcrudo & Garcia-Navarro ,1993) 

 

𝜕𝑈

𝜕𝑡
+ 𝐴

𝜕𝑈

𝜕𝑥
+ 𝐵

𝜕𝑈

𝜕𝑦
= 𝑆                                                      (3.7) 

Then, the Jacobian matrices of the fluxes are 

𝐴 =
𝜕𝐸

𝜕𝑈
= [

0 1 0
𝑐2−𝑢2 2𝑢 0
−𝑢𝑣 𝑣 𝑢

]                  𝐵 =
𝜕𝐺

𝜕𝑈
= [

0 0 1
−𝑢𝑣 −𝑣 𝑢
𝑐2−𝑣2 0 2𝑣

]       (3.8) 

The respective eigenvalues, which are a representation of the characteristic speeds, can 

be obtained as 

𝐴 {
�̃�1 = 𝑢 + 𝑐
�̃�2 = 𝑢        
�̃�3 = 𝑢 − 𝑐

                                     𝐵 {
�̃�1 = 𝑣 + 𝑐
�̃�2 = 𝑣        
�̃�3 = 𝑣 − 𝑐

                                   (3.9) 

and the corresponding eigenvectors are 

𝐴{

𝑒1 = (1, 𝑢 + 𝑐, 𝑣)

𝑒2 = (0,0, 𝑐)         

𝑒3 = (1, 𝑢 − 𝑐, 𝑣)

                         𝐵 {

𝑓1 = (1, 𝑢, 𝑣 + 𝑐)

𝑓2 = (0,−𝑐, 0 )    

𝑓3 = (1, 𝑢, 𝑣 − 𝑐)

                   (3.10) 
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This form of the equations is particularly useful in upwind schemes since Jacobian 

matrices and corresponding eigenvalues and eigenvectors are linked to the physics of 

problem by containing any wave propagation information.  

 

3.2. 2D Computational Domain and Numerical Scheme 

In the present work, a higher-order Godunov type upwind method based on MUSCL 

variable extrapolation is used to solve two dimensional depth-averaged flow equations. 

A numerical model has been developed to describe the free surface flow around a 

square block fixed on the bed in a rectangular channel. It is also aimed to model the 

fluid flow around periodically spaced square blocks. Considering the symmetry and 

the periodicity, the computational domain has been chosen as shown in the Figure 3.1. 

 
Figure 3.1. Computational domain for the flow past horizontally aligned and 

evenly spaced square blocks 

where BW is the block width also equals to the block length, CW is the channel width, 

CL is the length of the channel within the computational domain. For both BW and 

CW, half of their lengths is considered within the computational domain. 

Computational domain has a rectangular geometry which has been divided into 

uniform rectangular grids. Collocated grid configuration shown in the Figure 3.2 is 
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bw in
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proposed to deal with this regular geometry. All variables are located at the center of 

the computational cells and the conservation laws are applied to the same control 

volume. 

 

 

Figure 3.2. Collocated grid arrangement of the velocity components and the 

water depth 

 

In general, the two dimensional finite volume formulation with a source term is given 

by the equation 

𝑈𝑖,𝑗
𝑛+1 = 𝑈𝑖,𝑗

𝑛 −
Δ𝑡

Δ𝑥
(𝐸𝑖+1/2,𝑗 − 𝐸𝑖−1/2,𝑗) −

Δ𝑡

Δ𝑦
(𝐺𝑖,𝑗+1/2 − 𝐺𝑖,𝑗−1/2) + Δ𝑡 𝑆𝑖,𝑗

𝑛       (3.11) 

where 𝐸𝑖+1/2,𝑗 is the intercell flux between cells (i,j) and (i+1,j) and 𝐺𝑖,𝑗+1/2 is the 

intercell flux between cells (i,j) and (i,j+1). 
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In this work, solution at (n+1)th time level for the computational point (i,j), 𝑈𝑖,𝑗𝑛+1 is 

reached by using a conservative predictor-corrector algorithm as suggested by Alcrudo 

& Garcia-Navarro (1993). Predictor step calculations are performed at the half-time 

step for each cell. In the first half time step, intermediate values of variables, 𝑈𝑖,𝑗𝑃  are 

obtained and the numerical fluxes are calculated for each cell.  

Approximate solution to the conserved variables in the predictor step are obtained with 

the equation 

𝑈𝑖,𝑗
𝑃 = 𝑈𝑖,𝑗

𝑛 −
Δ𝑡

2Δ𝑥
(𝐸𝑖+1/2,𝑗

∗ − 𝐸𝑖−1/2,𝑗
∗ ) −

Δ𝑡

2Δ𝑦
(𝐺𝑖,𝑗+1/2

∗ − 𝐺𝑖,𝑗−1/2
∗ ) +

Δt

2
 𝑆𝑖,𝑗

𝑛     (3.12) 

where 𝐸𝑖+1/2,𝑗∗  and 𝐺𝑖,𝑗+1/2∗   are the numerical fluxes evaluated at the half-time step. 

In corrector step, next time step variables, 𝑈𝑖,𝑗𝑛+1 are calculated using predictor values 

of numerical fluxes. It should be noted that the time step size is one full time step in 

the corrector step. Solution to the conserved variables at (n+1)th time level  for the 

computational cell (i,j) is 

𝑈𝑖,𝑗
𝑛+1 = 𝑈𝑖,𝑗

𝑛 −
Δ𝑡

Δ𝑥
(𝐸𝑖+1/2,𝑗

∗𝑃 − 𝐸𝑖−1/2,𝑗
∗𝑃 ) −

Δ𝑡

Δ𝑦
(𝐺𝑖,𝑗+1/2

∗𝑃 − 𝐺𝑖,𝑗−1/2
∗𝑃 ) + Δ𝑡 𝑆𝑖,𝑗

𝑃       (3.13) 

where 𝐸𝑖+1/2,𝑗∗𝑃  and 𝐺𝑖,𝑗+1/2∗𝑃  are the predicted numerical fluxes in x and y directions, 

respectively. 

As stated previously in Chapter 2, approximation to the numerical fluxes plays a vital 

role in application of a finite volume method. In this study, discretization of the 

numerical fluxes is performed based on Roe’s approximate Riemann solver with 

Monotonic Upstream Schemes for Conservation Laws (MUSCL) (Van Leer, 1979) 

extrapolation. Roe’s scheme is first order accurate in space; however, it is extended to 

second order spatial accuracy through MUSCL scheme. In order to maintain stability 

and to ensure monotonicity of this high-order scheme, slope limiter technique is 

applied which is discussed later. In order to define Roe numerical flux function through 

cell interface, interface values of conserved variables must be defined.  
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Intermediate values are obtained by a combination of backward and forward 

extrapolations at the left and the right of the cell interface. The reconstruction can be 

formulated as (Hirsch, 1990): 

𝑈𝑖+1/2,𝑗
𝐿 = 𝑈𝑖,𝑗 +

𝜀

4
[(1 − 𝑘)(𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗) + (1 + 𝑘)(𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗)]                 (3.14) 

𝑈𝑖+1/2,𝑗
𝑅 = 𝑈𝑖+1,𝑗 −

𝜀

4
[(1 − 𝑘)(𝑈𝑖+2,𝑗 − 𝑈𝑖+1,𝑗) + (1 + 𝑘)(𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗)]        (3.15) 

where 𝑈𝑖+1/2𝑅  is the extrapolated value of the conserved variable at the right of (i+1/2) 

within cell (i+1) and 𝑈𝑖+1/2𝐿  is the extrapolated value of the conserved variable at the 

left of (i+1/2) within cell (i). In Equations (3.14) and (3.15), the parameter ε defines 

the order of the scheme and the parameter k considers the combination of backward 

and forward extrapolations and it can take values between -1 and 1. 

 

 

Figure 3.3. Linear one-sided extrapolation of interface values for k= -1 (Hirsch, 

1990) 
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In Equations (3.14) and (3.15), ε=0 corresponds to a first-order scheme while ε=1 leads 

to a higher-order scheme. Moreover, when k=1 the interface values are the arithmetic 

mean of the adjacent cell values and the upwind character is totally lost. With k=0 a 

linear interpolation between one upstream and one downstream cell is obtained. In this 

study, k is set to -1 which corresponds to a second order accurate, linear one-side 

extrapolation at the interface between the averaged values at the two upstream cells (i) 

and (i-1) such that, 

𝑈𝑖+1/2,𝑗
𝐿 = 𝑈𝑖,𝑗 +

1

2
(𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗)                                            (3.16) 

𝑈𝑖+1/2,𝑗
𝑅 = 𝑈𝑖+1,𝑗 −

1

2
(𝑈𝑖+2,𝑗 − 𝑈𝑖+1,𝑗)                                    (3.17) 

While modelling hyperbolic conservation laws by using high-order finite volume 

methods, incorporating a slope-limiter method is very essential to deal with stability. 

Limiters are defined with a parameter, r which is the ratio of upwind difference to local 

difference, 

𝑟𝑖+1/2 =
∆𝑈𝑢𝑝𝑤𝑖𝑛𝑑

∆𝑈𝑙𝑜𝑐𝑎𝑙
                                                                       (3.18) 

and the limiting function is represented by 𝜑(𝑟). Upwind direction is determined based 

on the characteristic wave speed (u-c) at the relevant cell interface (Toro, 2000). 

Intermediate boundary extrapolated values are written such that, 

𝑈𝑖+1/2,𝑗
𝐿 = 𝑈𝑖,𝑗 +

1

2
𝜑(𝑟𝑖+1/2,𝑗)(𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗)                                            (3.19) 

𝑈𝑖+1/2,𝑗
𝑅 = 𝑈𝑖+1,𝑗 −

1

2
𝜑(𝑟𝑖+1/2,𝑗)(𝑈𝑖+2,𝑗 − 𝑈𝑖+1,𝑗)                                    (3.20) 

and similarly for the cell face in y-direction 

𝑈𝑖,𝑗+1/2
𝐿 = 𝑈𝑖,𝑗 +

1

2
𝜑(𝑟𝑖,𝑗+1/2)(𝑈𝑖,𝑗 − 𝑈𝑖,𝑗−1)                                            (3.21) 

𝑈𝑖,𝑗+1/2
𝑅 = 𝑈𝑖,𝑗+1 −

1

2
𝜑(𝑟𝑖,𝑗+1/2)(𝑈𝑖,𝑗+2 − 𝑈𝑖,𝑗+1)                                    (3.22) 
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There are many common limiting functions in literature. Their function within the 

scheme is to limit forward and backward gradients by adding some dissipation, and 

consequently preserve stability and monotonicity (Alcrudo & Garcia-Navarro, 1993). 

Superbee (Roe, 1986), van Leer (van Leer, 1974), van Albada (van Albada, 1982) and 

Minmod (Roe, 1986) limiters have been tried in this study. 

After the MUSCL extrapolation with limiting functions is applied, and the 

intermediate values UR and UL are expressed, the numerical fluxes can be obtained 

from 

𝐸𝑖+1/2,𝑗
∗ = 𝐸∗(𝑈𝑖+1/2,𝑗

𝐿 , 𝑈𝑖+1/2,𝑗
𝑅 )                                                                (3.23) 

𝐺𝑖,𝑗+1/2
∗ = 𝐺∗(𝑈𝑖,𝑗+1/2

𝐿 , 𝑈𝑖,𝑗+1/2
𝑅 )                                                                (3.24) 

where the numerical fluxes 𝐸𝑖+1/2,𝑗∗  and 𝐺𝑖,𝑗+1/2∗  have second-order spacial accuracy. 

 

Roe scheme numerical fluxes in x- and y-directions are approximated by the equations 

 

𝐸𝑖+1/2,𝑗
∗ =

1

2
[𝐸∗(𝑈𝑖+1/2,𝑗

𝐿 ) + 𝐸∗(𝑈𝑖+1/2,𝑗
𝑅 ) − |𝐴|𝑖+1/2,𝑗(𝑈𝑖+1/2,𝑗

𝑅 − 𝑈𝑖+1/2,𝑗
𝐿 )]     (3.25) 

or 

𝐸𝑖+1/2,𝑗
∗ =

1

2
[𝐸𝑅 + 𝐸𝐿 − ∆𝐸∗]                                            (3.26) 

and  

𝐺𝑖,𝑗+1/2
∗ =

1

2
[𝐺∗(𝑈𝑖,𝑗+1/2

𝐿 ) + 𝐺∗(𝑈𝑖,𝑗+1/2
𝑅 ) − |𝐵|𝑖,𝑗+1/2(𝑈𝑖,𝑗+1/2

𝑅 − 𝑈𝑖,𝑗+1/2
𝐿 )]    (3.27) 

or 

𝐺𝑖,𝑗+1/2
∗ =

1

2
[𝐺𝑅 + 𝐺𝐿 − ∆𝐺∗]                                            (3.28) 
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𝐸∗(𝑈𝑖+1/2,𝑗
𝑅 ) and 𝐸∗(𝑈𝑖+1/2,𝑗

𝐿 ) are the interface values of fluxes calculated in terms of 

interface values of variables in x-direction, i.e., 

 

𝑈𝑅 = [

ℎ𝑅
(ℎ𝑢)𝑅
(ℎ𝑣)𝑅

] → 𝐸∗(𝑈𝑅) = 𝐸𝑅 = [

ℎ𝑅𝑢𝑅
(ℎ𝑢)𝑅𝑢𝑅 + 𝑔ℎ𝑅

2 2⁄

(ℎ𝑣)𝑅𝑢𝑅

]                                        (3.29)         

𝑈𝐿 = [

ℎ𝐿
(ℎ𝑢)𝐿
(ℎ𝑣)𝐿

] → 𝐸∗(𝑈𝐿) = 𝐸𝐿 = [

ℎ𝐿𝑢𝐿
(ℎ𝑢)𝐿𝑢𝐿 + 𝑔ℎ𝐿

2 2⁄

(ℎ𝑣)𝐿𝑢𝐿

]                                           (3.30)      

and the interface values of y-direction fluxes are 

𝑈𝑅 = [

ℎ𝑅
(ℎ𝑢)𝑅
(ℎ𝑣)𝑅

] → 𝐺∗(𝑈𝑅) = 𝐺𝑅 = [

ℎ𝑅𝑣𝑅
(ℎ𝑢)𝑅𝑣𝑅

(ℎ𝑣)𝑅𝑣𝑅 + 𝑔ℎ𝑅
2 2⁄

]                                        (3.31)         

𝑈𝐿 = [

ℎ𝐿
(ℎ𝑢)𝐿
(ℎ𝑣)𝐿

] → 𝐺∗(𝑈𝐿) = 𝐺𝐿 = [

ℎ𝐿𝑣𝐿
(ℎ𝑢)𝐿𝑣𝐿

(ℎ𝑣)𝐿𝑣𝐿 + 𝑔ℎ𝐿
2 2⁄

]                                          (3.32)         

 

∆𝑬∗ and ∆𝑮∗ are called as the flux variations or may be considered as artificial 

diffusive fluxes. These variations are expressed with a summation of simple wave 

contributions. 

∆𝐸∗ = ∑�̃�𝑘|�̃�𝑘|�̃�𝑘
3

𝑘=1

                                                (3.33) 

∆𝐺∗ = ∑�̃�𝑘|�̃�𝑘|𝑓𝑘
3

𝑘=1

                                                (3.34) 

where �̃�1, �̃�2, �̃�3 are the eigenvectors of the matrix 𝐴 with the eigenvalues  �̃�1, �̃�2, �̃�3, 

and �̃�1, �̃�2, �̃�3 are the wave strengths (variations in x-direction), and 𝑓1, 𝑓2, 𝑓3 are the 

eigenvectors of the matrix 𝐵 with the eigenvalues  �̃�1, �̃�2, �̃�3, and �̃�1, �̃�2, �̃�3 are the 

wave strengths (variations in y-direction).  
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They are all written in terms of so-called Roe averages (Roe, 1981). 

�̃� =
𝑢𝑅√ℎ𝑅 + 𝑢𝐿√ℎ𝐿

√ℎ𝑅 +√ℎ𝐿
         �̃� =

𝑣𝑅√ℎ𝑅 + 𝑣𝐿√ℎ𝐿

√ℎ𝑅 +√ℎ𝐿
         �̃� = √

𝑔(ℎ𝑅 + ℎ𝐿)

2
          (3.35) 

where intermediate states of velocities are calculated as follows, 

𝑢𝑅 = (ℎ𝑢)𝑅 ℎ𝑅⁄

𝑢𝐿 = (ℎ𝑢)𝐿 ℎ𝐿⁄

𝑣𝑅 = (ℎ𝑣)𝑅 ℎ𝑅⁄

𝑣𝑅 = (ℎ𝑣)𝐿 ℎ𝐿⁄

                                                       (3.36) 

So, the average eigenvalues are 

          
�̃�1 = �̃� + �̃�
�̃�2 = �̃�        
�̃�3 = �̃� − �̃�

            
�̃�1 = �̃� + �̃�
�̃�2 = �̃�        
�̃�3 = �̃� − �̃�

                                         (3.37) 

and the corresponding eigenvectors are 

�̃�1 = (
1

�̃� + �̃�
�̃�

)                  �̃�2 = (
0
0
�̃�
)                   �̃�3 = (

1
�̃� − �̃�
�̃�

)                                 (3.38) 

𝑓1 = (
1
�̃�

�̃� + �̃�
)                 𝑓2 = (

0
−�̃�
0
)                𝑓3 = (

1
�̃�

�̃� − �̃�
)                                (3.39) 

 

The wave strengths are given as, 

�̃�1 =
∆ℎ

2
+

1

2�̃�
[∆(ℎ𝑢) − �̃�∆ℎ]

�̃�2 =
1

�̃�
[∆(ℎ𝑣) − �̃�∆ℎ]              

�̃�3 =
∆ℎ

2
−

1

2�̃�
[∆(ℎ𝑢) − �̃�∆ℎ]

                    

�̃�1 =
∆ℎ

2
+

1

2�̃�
[∆(ℎ𝑣) − �̃�∆ℎ]

�̃�2 =
1

�̃�
[−∆(ℎ𝑢) + �̃�∆ℎ]          

�̃�3 =
∆ℎ

2
−

1

2�̃�
[∆(ℎ𝑣) − �̃�∆ℎ]

            (3.40) 

where  ∆( ) = ( )𝑅 − ( )𝐿  are the jumps in conserved quantity 

∆ℎ = ℎ𝑅 − ℎ𝐿       

∆(ℎ𝑢) = (ℎ𝑢)𝑅 − (ℎ𝑢)𝐿
∆(ℎ𝑣) = (ℎ𝑣)𝑅 − (ℎ𝑣)𝐿

                                                           (3.41) 
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And finally the flux variations are 

 

∆𝐸∗ = [
∆𝐸1
∆𝐸2
∆𝐸3

] = [

�̃�1|�̃�1|�̃�1(1) + �̃�2|�̃�2|�̃�2(1) + �̃�3|�̃�3|�̃�3(1)

�̃�1|�̃�1|�̃�1(2) + �̃�2|�̃�2|�̃�2(2) + �̃�3|�̃�3|�̃�3(2)

�̃�1|�̃�1|�̃�1(3) + �̃�2|�̃�2|�̃�2(3) + �̃�3|�̃�3|�̃�3(3)

]                            (3.42) 

∆𝐺∗ = [

∆𝐺1
∆𝐺2
∆𝐺3

] = [

�̃�1|�̃�1|𝑓1(1) + �̃�2|�̃�2|𝑓2(1) + �̃�3|�̃�3|𝑓3(1)

�̃�1|�̃�1|𝑓1(2) + �̃�2|�̃�2|𝑓2(2) + �̃�3|�̃�3|𝑓3(2)

�̃�1|�̃�1|𝑓1(3) + �̃�2|�̃�2|𝑓2(3) + �̃�3|�̃�3|𝑓3(3)

]                            (3.43) 

 

The numerical fluxes are evaluated as (Toro, 2009) 

𝐸𝑖+1/2,𝑗
∗ =

1

2
[𝐸𝑅 + 𝐸𝐿 −∑�̃�𝑘|�̃�𝑘|�̃�𝑘

3

𝑘=1

]                                   (3.44) 

𝐺𝑖,𝑗+1/2
∗ =

1

2
[𝐺𝑅 + 𝐺𝐿 −∑�̃�𝑘|�̃�𝑘|𝑓𝑘

3

𝑘=1

]                                   (3.45) 

 

 

Then, the discretized form of the governing equations are written as a two-step 

predictor-corrector procedure. 

 

For conservation of mass, 

ℎ𝑖,𝑗
𝑃 = ℎ𝑖,𝑗

𝑛 −
Δ𝑡

2Δ𝑥
(𝐸𝑖+1/2,𝑗

∗ − 𝐸𝑖−1/2,𝑗
∗ ) −

Δ𝑡

2Δ𝑦
(𝐺𝑖,𝑗+1/2

∗ − 𝐺𝑖,𝑗−1/2
∗ )                     (3.46) 

ℎ𝑖,𝑗
𝑛+1 = ℎ𝑖,𝑗

𝑛 −
Δ𝑡

Δ𝑥
(𝐸𝑖+1/2,𝑗

∗𝑃 − 𝐸𝑖−1/2,𝑗
∗𝑃 ) −

Δ𝑡

Δ𝑦
(𝐺𝑖,𝑗+1/2

∗𝑃 − 𝐺𝑖,𝑗−1/2
∗𝑃 )                        (3.47) 
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For conservation of x-momentum, 

(ℎ𝑢)𝑖,𝑗
𝑃 = (ℎ𝑢)𝑖,𝑗

𝑛 −
Δ𝑡

2Δ𝑥
(𝐸𝑖+1/2,𝑗

∗ − 𝐸𝑖−1/2,𝑗
∗ ) −

Δ𝑡

2Δ𝑦
(𝐺𝑖,𝑗+1/2

∗ − 𝐺𝑖,𝑗−1/2
∗ )

+
Δ𝑡

2
𝑆𝑖,𝑗
𝑛                                                                                                     (3.48) 

(ℎ𝑢)𝑖,𝑗
𝑛+1 = (ℎ𝑢)𝑖,𝑗

𝑛 −
Δ𝑡

Δ𝑥
(𝐸𝑖+1/2,𝑗

∗𝑃 − 𝐸𝑖−1/2,𝑗
∗𝑃 ) −

Δ𝑡

Δ𝑦
(𝐺𝑖,𝑗+1/2

∗𝑃 − 𝐺𝑖,𝑗−1/2
∗𝑃 )

+ Δ𝑡𝑆𝑖,𝑗
𝑃                                                                                                      (3.49) 

and for conservation of y-momentum, 

(ℎ𝑣)𝑖,𝑗
𝑃 = (ℎ𝑣)𝑖,𝑗

𝑛 −
Δ𝑡

2Δ𝑥
(𝐸𝑖+1/2,𝑗

∗ − 𝐸𝑖−1/2,𝑗
∗ ) −

Δ𝑡

2Δ𝑦
(𝐺𝑖,𝑗+1/2

∗ − 𝐺𝑖,𝑗−1/2
∗ )

+
Δ𝑡

2
𝑆𝑖,𝑗
𝑛                                                                                                     (3.50) 

(ℎ𝑣)𝑖,𝑗
𝑛+1 = (ℎ𝑣)𝑖,𝑗

𝑛 −
Δ𝑡

Δ𝑥
(𝐸𝑖+1/2,𝑗

∗𝑃 − 𝐸𝑖−1/2,𝑗
∗𝑃 ) −

Δ𝑡

Δ𝑦
(𝐺𝑖,𝑗+1/2

∗𝑃 − 𝐺𝑖,𝑗−1/2
∗𝑃 )

+ Δ𝑡𝑆𝑖,𝑗
𝑃                                                                                                      (3.51) 

 

3.3. Stability Criteria and Boundary Conditions 

A limitation is introduced on the computational time step to maintain stability of 

numerical solution. In order to damp out artificial oscillations while applying a high-

resolution scheme, the CFL number should be kept less than 0.75 (Mohammadian et 

al, 2005). In two dimensional space, the stability condition is defined as 

∆𝑡𝑖,𝑗 =
𝐶𝐹𝐿 min (∆𝑥, ∆𝑦)

(𝑐 + √𝑢2 + 𝑣2)
𝑖,𝑗

                                                 (3.52) 

where CFL value is fixed to control the time step size. In the present computations 

time step is a function of local velocity since a constant mesh size in space is used, and 

it is selected to satisfy the CFL criterion and ensure stability. 
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In order to start the time evolution of computation on the two dimensional domain, 

initially uniform flow conditions has been provided by specifying the values of three 

dependent variables h = H0, u = U0, v = 0 at every grid point i, j for the time t=0. 

The numerical treatment of the boundary conditions was explained in the topic of 

Boundary Conditions in Chapter 2. (In addition, it should be commented that even 

though the numerical scheme is second order accurate, boundary cells have first-order 

accuracy). 

Around wall boundaries, ghost cell values are assigned by setting normal velocity on 

the wall surface to zero. With this treatment, convective fluxes normal to the wall 

boundaries are forced to be zero. In addition, characteristic boundary conditions from 

Roe’s method is applied to the left and right states (Dadone and Grossman, 1994). 

Periodic boundary condition is well imposed by copying inflow boundary interior 

computational cells to the outflow boundary ghost cells and by copying outflow 

boundary interior computational cells to the inflow boundary ghost cells. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

4.1. 1D Test cases 

In order to test the shock capturing ability of the numerical solution method, one-

dimensional test cases with known analytical solutions (Stoker, 1957; Wu et al., 1999; 

Zoppou & Roberts, 2003) are considered. The most commonly used, 1D dam-break 

problem is selected and the code is run for sub and supercritical states of flow. In this 

test case, total length of the horizontal wide channel is 2000 m. Initially water levels 

on the left (x<1000 m) and on the right (x>1000 m) are constants, velocity is zero 

everywhere and an imaginary wall is fixed at x = 1000 m. At t=0 the imaginary wall 

is removed and propagation of the water surface discontinuity in upstream (x<1000) 

and downstream (x>1000) directions is computed. Comparisons of numerical 

solutions at t=50 s with corresponding analytical solutions are shown in Figure 4.1 and 

Figure 4.2. It is observed that the code can successfully reproduce the rarefaction and 

shock wave propagations in the computational domain. 
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Figure 4.1. 1D test case for the analytical and numerical solutions of dam-break 

problem for subcritical state where HL=10 m and HR=5 m obtained at t=50sec 

using Roe scheme 
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Figure 4.2. 1D test case for the analytical and numerical solutions of dam-break 

problem for supercritical state where HL=10 m and HR=0.1 m obtained at 

t=50sec using Roe scheme 
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4.2. 2D Solutions 

Performance of the two dimensional depth-averaged numerical model is verified by 

defining several test cases for the generic flow domain (Figure. 4.3) considered in this 

study. Subcritical and supercritical flow states are tested with special attention paid on 

chocking phenomenon. The effects of different mesh sizes, number of iterations, 

different types of limiters on numerical accuracy are observed. Results are given with 

a mesh size of 0.02 m since the model having mesh sizes of 0.04, 0.01 and 0.05 m 

produces no significant difference in results. 

Numerical stability of computations is maintained by using appropriate time steps in 

the iterative computations. The practical tool for determination of the time step is the 

CFL number that should theoretically be less than 1 to avoid any disturbance signal 

moving more than one mesh size in one time step. However, in practice the limiting 

value may be smaller than the theoretical value depending on complexity of the flow 

type and nonlinearity of the governing equations. In the literature (Mohammadian et 

al., 2005) the range of recommended values is 0.7~0.9. For the present study the CFL 

value has been fixed as 0.5, after some preliminary tests to avoid any numerical 

oscillations or error accumulation due to large time step. In this study, average runtime 

of the program is measured as 15 minutes. The test channel dimensions, are shown in 

the Figure 4.3, where the channel length, CL = 6.2 m, obstruction block width and 

length, BW = 0.2 m, section (1) channel width, CW = 1.2 m, at section (2) the reduced 

channel width is 1 m, and Manning roughness, n = 0.01 for all cases. 

 

Figure 4.3. Channel dimensions for all test cases 

Section(1) Section(2) 

CW BW 

CL 
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4.1.1. Supercritical Flow Test Case 

In open channel flows behavior of water surface in sub and supercritical flows is quite 

different. As a first test case, two dimensional flow around a square block located at 

the middle of the rectangular prismatic channel is considered.  The channel bed slope 

and the water depth and average velocity for uniform flow conditions (without the 

block) are determined and applied as initial data all over the flow domain. The data set 

chosen for the supercritical flow test case is given in Table 4.1. As it can be seen from 

the computed specific energies, normally, there shouldn’t be any choking, flow can 

continue in supercritical state through the contracted section around the block.   

 

Table 4.1. Supercritical flow data 

Discharge, Q 15 m3/s 

Initial data: uniform flow depth, H0 1.6 m 

Initial data: uniform flow velocity, U0 7.813 m/s 

Initial data: y-direction velocity, V 0 m/s 

Channel slope, S0 0.0221 

Froude Number 1.972 

State of the flow Supercritical 

 

 

 

 

 

An important issue in numerical solution to hyperbolic problems is the number and 

type of boundary conditions to be applied at the inflow and outflow sections. Different 

applications of boundary conditions will be required for sub and supercritical flows 

(Brufau et al. 2002). For supercritical flows, all of the dependent variables should be 

specified at the inflow section. In the present study, the water depth, h, and the unit 

SECTION (1) flow data SECTION (2) flow data 

b1 1.2 m b2 1 m 

q1 12.5 m3/s/m q2 15 m3/s/m 

E1 4.711 m E2=E1 4.711 m 

Ec1 3.774 m Ec2 4.262 m  < E2 
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discharges, qx=hu, and qy=hv are fixed at the inflow boundary (Section-1). At the 

outflow, there is no requirement as a boundary condition for supercritical case, 

therefore, all variables are left free. This type of free boundary application, practically 

results in constant slope for all variables at the outflow section.  

The free surface profile for supercritical test case obtained from numerical solution at 

the end of 8000 iterations is shown in Figure 4.4. Very sharp edged cross waves at the 

downstream of the block are observed. Flow depth where the cross waves are formed 

varies between 1.53 m and 1.74 m. It is observed that the average flow depth is very 

close to the uniform flow depth given as initial condition.  
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However, it is not possible to observe whether the cross waves persist for long 

distances or disappear since the location of the outflow boundary is very close to the 

obstruction block. 

On the upstream side there is a hydraulic jump occurred in front of the block and 

therefore, the flow is subcritical between the jump and the block. From the calculated 

water depths on the sequent depth side, it is understood that, there is a temporary 

choking and water depth in front of the block is greater than the sequent depth of the 

hydraulic jump. The streamline patterns around the block and the velocity vector field 

are shown in Figures 4.5 and 4.6, respectively. The separation vortex behind the block 

and the crest lines of the cross waves are clearly observed. 

Although the residual errors are small and therefore convergence is achieved, iterations 

are continued and another printout after 12000 iterations is obtained and the 

corresponding water surface profile is shown in Figure 4.7. An obvious difference is 

the position of the hydraulic jump which moves in upstream direction. At the same 

time, the water depth between the jump and the block is decreased by 2 cm. There is 

no difference between Figure 4.4 and 4.7 at the downstream of the block. There is 

another printout obtained after 20000 iterations shown in Figure 4.8. The jump starts 

exactly at the location of the inflow boundary and water depth in front of block 

decreased further another 2 cm. To continue the iterations to find the equilibrium 

position of the jump, it is necessary to move the location of the inflow boundary farther 

upstream. If such a test can be done it will be possible to see that the theoretical value 

of the sequent depth will be reached between the jump and the block. 

Tests done for the supercritical flow show that the numerical solution procedure and 

the computer code developed are successful in computing discontinuities due to 

hydraulic jump and the cross waves produced by an obstruction in the flow field. 

Furthermore, the moving discontinuity due to hydraulic jump with changing location 

is also reproduced without any oscillations in the flow variables. 
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In an iterative numerical solution, it is important to see that the changes in dependent 

variables vanish and no change in further iterations is observed. To observe this 

feature, the numerical error normalized by uniform flow depth is defined as  

𝐸𝑟𝑟𝑜𝑟 =
√∑(ℎ𝐼,𝐽

𝑛 − ℎ𝐼,𝐽
𝑛+1)

2

𝑁𝐶 ∗ 𝐻0
                                               (4.1) 

 

where NC is the number of computational cells in the domain. 

The changes in numerical error with the number of iterations is shown in Figure 4.9. 

At first, there is a rapid decrease in error upto 2000 iterations. Then, the error starts to 

oscillate around 0.001 upto approximately 14000 iterations. From beginning to 14000 

iterations the jump formed in the flow field continuously moves upwards and this 

moving discontinuity causes the oscillations in error without any permenant decrease. 

When the jump reaches to inflow boundary, its location is fixed by the inflow boundary 

condition an the numerical error decreases rapidly to 10-6.  
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Figure 4.10. The change in discharge with the # of iterations (supercritical flow 

case & mesh size=0.02m) 

 

 

Another important feature of a numerical flow computation is the conservativeness of 

the solution algorithm. In a typical incompressible flow field, the volume flowrates at 

the inflow and outflow sections should be equal when there are no side in or outflows.  

The percent difference of discharge at the inflow and outflow boundaries is computed 

after each iteration step and plotted in Figure 4.10. At early stages of computation the 

relative error in discharge goes upto 16 %, then decreases rapidly by improved 

convergence and the final value is about 5 % after 20000  iterations and thenafter 

remain constant. This rate of error (5 %) in volume flowrate is not negligible and 
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should be resolved. It was not possible wihin the time available for this study to find 

the source of this error. It is anticipated that the error may be due to incomplete 

boundary condition applications around the block, especially at the computational cells 

around the corners of the block. 

 

4.1.2. Subcritical Flow Test Case 

To have a subcritical flow, channel bottom slope is decreased and a mild slope is 

chosen.  As in the supercritical flow case, water depth and velocity component in x-

direction are initialized to uniform flow conditions. For the subcritical flow test, 

chosen data is given in Table 4.2. 

 

Table 4.2. Subcritical flow data 

Discharge, Q 15 m3/s 

Initial data: uniform flow depth, H0 3.884 m 

Initial data: uniform flow velocity, U0 3.218 m/s 

Initial data: y-direction velocity, V 0 m/s 

Channel slope, S0 0.0030 

Froude Number 0.521 

State of the flow Subcritical 

 

 

 

 

 

For the subcritical flows any two of the variables must be specified at the inflow 

boundary and one variable must be specified at the outflow boundary. In the present 

study, the unit discharges are fixed at the inflow and water depth, h, is fixed at the 

SECTION (1) flow data SECTION (2) flow data 

b1 1.2 m b2 1 m 

q1 12.5 m3/s/m q2 15 m3/s/m 

E1 4.412 m E2=E1 4.412 m 

Ec1 3.774 m Ec2 4.262 m  < E2 
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outflow. The free surface profile at the end of 20000 iterations is shown in Figure 4.11. 

There are no discontinuities for this case. Water depth upstream of the block has been 

increased to nearly 4.5 m from the initial value of 3.88 m. The history of numerical 

error is shown in Figure 4.12 in which there are no severe oscillations as was the case 

in supercritical flow with moving hydraulic jump.  
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Figure 4.13. The change in discharge with the # of iterations (subcritical flow 

case & mesh size=0.02m) 

 

The difference of inflow and outflow discharges is shown in percentage of the inflow 

discharge in Figure 4.13. The final error percentage oscillates between 0 and 4 for 

subcritical case which was 5 in the supercritical case.  
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Another case considered is subcritical flow with chocking. As can be seen from the 

data given in Table 4.3, approaching subcritical flow energy is not adequate to pass 

the contracted section. Therefore, for the same discharge, an increase in water depth 

in the upstream is expected to pass the given discharge around the block where critical 

flow will occur. Boundary conditions at the inflow and outflow are the same as the 

previous subcritical case. Free surface profile after 20000 iterations is shown in Figure 

4.14. The upstream water depth is increased to 4.08 m from the initial uniform flow 

value of 3.4 m   

 

Table 4.3. Subcritical choked flow data 

Discharge, Q 15 m3/s 

Initial data: uniform flow depth, H0 3.405 m 

Initial data: uniform flow velocity, U0 3.671 m/s 

Initial data: y-direction velocity, V 0 m/s 

Channel slope, S0 0.0040 

Froude Number 0.635 

State of the flow Subcritical 

 

 

 

 

 

 

 

 

 

 

SECTION (1) flow data SECTION (2) flow data 

b1 1.2 m b2 1 m 

q1 12.5 m3/s/m q2 15 m3/s/m 

E1 4.092m E2=E1 4.092 m 

Ec1 3.774 m Ec2 4.262 m  > E2 
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The numerical error plot of this test case is given in Figure 4.15. Very similar to 

supercritical case with moving hydraulic jump, there are oscillations in error until the 

choking process is completed at about 7700 iterations. After completion of choking, 

high frequency oscillation in error disappeared. 

 

4.1.3. 2D Problem with Periodic Boundary Conditions  

Periodic boundary conditions are valid when big number of identical blocks are placed 

at the same configuration with a constant spacing in the flow direction as shown in 

Figure 4.16. The periodic boundary condition can be applied on any two sections at a 

distance equal to spacing between the blocks (CL).  

The values of the conserved variables at the first interior row of computational cells of 

the inflow boundary are copied to ghost cells at the first outside row of the 

computational cells of outflow boundary. Similarly, the last row of interior cells of 

outflow boundary are copied to the first row of ghost cells on the upstream side of the 

inflow boundary. It is also known that fluxes at the periodic boundaries are identical 

since the inflow into a periodic domain equals the outflow of the previous periodic 

domain. This equality is also implemented in the solution as part of the periodic the 

boundary condition. 

 

 
Figure 4.16. Channel with periodic arrangement of the blocks 

 

Although periodic boundary conditions has been applied with many variations in its 

implication, it was not possible to reach to a steady-state solution. There are no clear 
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descriptions for application of such periodic boundary condition. Lucas (2012) states 

that the order of the scheme has an effect on how boundary conditions are implemented 

for periodic domains. First order solutions can be accomplished with periodic 

boundary conditions but, for the second or higher order solutions further investigations 

may be necessary to describe a convergent scheme with periodic boundary conditions. 

Because of time limitations of this study, the research on the implementation of 

periodic boundary conditions is not completed yet.  
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS  

 

 

 

Depth-averaged equations for two dimensional shallow flow are derived from the 

Reynolds Averaged Navier-Stokes Equations. A numerical solution model for the two 

dimensional depth-averaged equations is developed using the Godunov’s method to 

study free surface flows. The approximate Riemann solver of Roe is adopted to 

evaluate the intercell fluxes so that the shock capturing property is preserved in the 

numerical scheme. Finite volume method is used in discretization of the governing 

equations. MUSCL scheme is employed for interpolation of flux terms to achieve 

second order accuracy. In the estimation of interface fluxes, slope limiters are applied 

to gradients of dependent variables to damp out unphysical oscillations in the 

numerical solution due to second order accuracy.  

Flow around a square block fixed in a rectangular prismatic channel is considered to 

test the solution algorithm and the computer code developed. Several boundary 

conditions and their implication procedures are reviewed and tested for sub and 

supercritical flows. Important findings of this study are summarized below. 

1) The numerical solution method adopted to solve the depth integrated equations 

of free surface flow is able to calculate discontinuities in flow variables in 1D 

and 2D, sub and supercritical flows. 

2) In supercritical state, the hydraulic jump in front of the block is successfully 

computed and its displacement in upstream directions was also simulated. 
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3) The cross waves involving sharp variations in water depth in the downstream 

of the block are reproduced successfully without any numerical oscillations.  

4) The numerical model can successfully reproduce choking phenomena when 

appropriate boundary conditions are selected. 

5) There is a non-negligible difference in between the inflow and outflow 

discharges that can be due to inaccuracies introduced in implication of the wall 

boundary conditions around the block. This problem requires further 

investigations and improvements in treatment of the wall boundary conditions. 

6) It was one of the primary aims of this study to solve the flow around periodic 

block arrangements. All possible boundary condition treatments applied for 

this case failed to give a converged solution resulting in continuous change of 

water depth in the domain. Although it was recommended that the first order 

methods can handle such domains, no numerical cure for such a false variation 

was reported in the literature for second order solution algorithms. This is 

another topic to be investigated further. 

7) Several slope limiters available in the literature are implemented in the present 

code and tested. No significant difference in the results were observed. 

8) There are no viscous terms included in the present solution. Only the bottom 

friction is modeled appropriately using Manning’s formula for uniform flow. 

Viscous terms and turbulent stresses may be included in a future study to better 

simulate the energy losses and thus satisfy the energy conservation.   
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