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ABSTRACT 
 

 

KINEMATIC ANALYSIS OF A SLIDER CRANK MECHANISM VIA A PRE – 

CALIBRATED VISION SYSTEM DEVELOPED BY USING TWO COMMERCIAL 

CAMERAS 

 

 

 

Eralp, Mehmet Hilmi 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Reşit Soylu 

December 2014, 225 Pages 

 

 

There are two main objectives of this study. The first objective is to develop a vision 

system consisting of 2 inexpensive commercial cameras. In general, by self – 

calibration methods reconstruction of a scene by using uncalibrated images is 

performed up to a scale only. However, in this thesis reconstruction of a scene is to be 

performed such that one obtains the actual values of the distances in the scene. For this 

purpose, it is assumed that the extrinsic parameters of the cameras are known. 

Therefore, one needs to determine the intrinsic parameters of the cameras only. In 

order to calculate the intrinsic parameters, two methods, that take advantage of the 

simplified Kruppa equations and the equal eigenvalue theorem, are used. The results 

obtained via the two methods are compared with the results obtained by using a 

calibration pattern. A triangulation process is then performed to calculate several 

known distances in the scene by using the method that gives better results for the 

intrinsic parameters. The actual and estimated distances obtained via the vision system 

are then presented and compared.  
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The second objective of this study is to perform kinematic analysis of a slider crank 

mechanism by using the developed vision system. The position, velocity and 

acceleration analyses of the slider crank mechanism are realized by using several 

markers that are attached on the moving links of the mechanism. The positions of the 

markers are calculated by using the vision system. This data is then utilized to 

determine the joint variables, joint velocities and joint accelerations of the slider crank. 

The results thus obtained via an encoder attached to the input link of the mechanism 

are compared with the results obtained via the developed vision system. The effects of 

the locations of the markers and the effects of the number of markers used on the 

accuracy of the results are also investigated.   

 

 

Keywords: Camera Calibration, Camera Self – Calibration, Projective Geometry, 

Kruppa Equations, Equal Eigenvalue Theorem, Fundamental Matrix, Essential Matrix, 

Multi – Cameras Set Up, Triangulation, Reconstruction of 3D scene, Kinematic 

Analysis of Slider Crank Mechanism by a Vision System, Kinematic Analysis of A 

Mechanism by Using A Vision System, Position, Velocity and Acceleration Analysis 

by Vision System.  
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ÖZ 
 

 

BİR KRANK BİYEL MEKANİZMASININ ÖN KALİBRELİ, 2 TİCARİ 

KAMERA KULLANILARAK GELİŞTİRİLEN GÖRÜŞ SİSTEMİ VASITASIYLA 

KİNEMATİK ANALİZİ 

 

 

 

Eralp, Mehmet Hilmi 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Reşit Soylu 

Aralık 2014, 225 Sayfa 

 

 

Bu tez iki temel amaçtan oluşmaktadır. İlk amaç, 2 tane pahalı olamayan ticari 

kameralı bir görüş sisteminin geliştirilmesidir. Herhangi bir aparat kullanmadan 

yapılan kalibrasyonda sahne ancak belli bir skalar değere kadar oluşturulabilmektedir. 

Ancak, bu tezde bir sahnenin yeniden gerçek ölçüleri ile oluşturulması amaçlanmıştır. 

Bu yüzden, kameraların dış parametreleri yani birbirlerine göre pozisyonlarının 

bilindiği varsayılmıştır. İç parametreleri bulmak için ise iki yöntem kullanılmıştır. Bu 

yöntemler Basitleştrilmiş Kruppa Denklemleri ve Eşit Özdeğer yöntemidir. Bu iki 

yöntem kullanılarak elde edilen kamereların iç parametrelerinin sonuçları sunulmuş 

ve sonuçlar kalibrasyon aparatı kullanılarak elde edilen sonuçlar ile karşılaştırılmıştır. 

Daha sonra, bu iki yöntemden en iyi sonucu veren yöntemi kullanarak bir sahnedeki 

bilinen uzunlukları geliştirilen görüş sistemi ile tahmin edilmeye calışılmış ve tahmin 

edilen uzunluklar gerçek boyutlarıyla birlikte karşılaştırılmıştır.  
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Tezin ikinci aşamasında ise bir krank biyel mekanizmasının kinematik analizi 

geliştirilen görüş sistemi ile yapılmıştır. Yani sistemin pozisyon, hız ve ivme analizleri 

mekanizmanın hareketli uzuvları üzerine konulan işaretleyicilerin yardımı ile 

yapılmıştır. İşaretleyicilerin pozisyonları görüş sistemi kullanılarak bulunmuştur. Bu 

pozisyonlar kullanılarak krank biyel mekanizmasının bağlantı pozisyon, hız ve ivme 

parametleri hesaplanmıştır. Kodlayıcı kullanılarak elde edilen sonuçlar görüş sistemi 

kullanılarak elde edilen sonuçlar ile karşılaştırılmıştır. Ayrıca, kullanılan 

işaretleyicilerin yerlerinin ve sayılarının sonuçlar üzerindeki etkileri incelenmiştir. 

  

Anahtar Kelimeler: Kamera Kalibrasyonu, Kamera Öz Kalibrayonu, Yansıtmalı 

Geometri, Kruppa Denklemleri, Eşit Özdeğer Yöntemi, Temel Matriks, Gerekli 

Matriks, Çok Kameralı Sistem, Üçgenlere Bölünme, 3 boyutlu Sahneyi Yeniden 

Oluşturma, Slider Crank Mekanizmasının Kinematic Analizi, Görüş Sistemi ile Bir 

Mekanızmanın Kinematic Analiz, Görüş Sistemi Kullanılarak Pozisyon, Hız ve İvme 

Analizi.  
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CHAPTER 1 

INTRODUCTION 

1.1 Objective of the Thesis 
 

Three dimensional reconstruction of a scene from uncalibrated images is one of the 

most challenging problems in computer vision. In order to perform reconstruction of 

the scene, the internal parameters and the external parameters of the cameras, with 

respect to each other, should be estimated. In literature, reconstruction is performed up 

to a scale, i.e., the actual dimensions, or positions, cannot be known by self - 

calibration. However, in this thesis, it is aimed to obtain the reconstruction of the scene 

with actual dimensions without using any calibration object. Therefore, the external 

parameters, which are the relative position or relative motion of cameras, are assumed 

to be fixed and known. In the light of that, a vision system consisting of two cameras 

is developed in this thesis. Today, digital cameras are quite cheap. Hence, in this thesis, 

digital cameras are used for the vision system and a CCD camera model is assumed 

for camera calibration. In order words, there are five internal parameters to be 

estimated during self – calibration. After determining the internal and external 

parameters, the reconstruction can be performed and position of any point in the scene 

with respect to the camera reference frame can be calculated.  

After developing the vision system, kinematic analysis of a slider crank mechanism, 

which is readily available since it has been built for a TUBITAK project [50], is 

performed by using the vision system. Several markers are attached to the moving 

links of the mechanism. These markers are tracked by the developed vision system and 

by using the algorithm developed in this study, the joint variables of the mechanism 

are obtained as functions of time. The results obtained by the vision system are then 

compared with the results obtained by an encoder attached to the input link of the slider 

crank mechanism. Using the time history of the joint variables, velocity and the 

acceleration analysis of the mechanism are also performed.  
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1.2 Scope of the Thesis 
 

As stated before, self – calibration, i.e., estimating the internal parameters from 

uncalibrated images, is the first objective of this thesis. In order to perform self – 

calibration, we need to set up a pre – calibrated multi – camera vision system. The 

system is labelled to be pre – calibrated since the external parameters are assumed to 

be known.   

 

After the multi – camera vision system is set up, a scene is recorded with the cameras 

being in the video mode. These recorded movies have to be converted into individual 

image frames. In order to obtain these image frames, a developed MATLAB® code is 

used.  If one does not want to use MATLAB® to obtain the image frames, he/she can 

use another readily available software. 

 

In this thesis, self – calibration is performed off – line. In other words, calibration is 

performed after the recording rather than during the recording. After obtaining the 

images, these images can be processed by means of various ways. In summary, in order 

to calibrate the cameras, the following steps are applied. 

 

 Synchronization of images from the two cameras 

 Finding corresponding 2D corner points between the images 

 Determination of the algebraic relations between the images 

 Performing self – calibration and determining the internal parameters 

 

The external parameters, on the other hand, are estimated by using the Bouguet camera 

calibration toolbox with a calibration pattern [31]. As stated before, in this study it is 

assumed that the extrinsic parameter of the cameras with respect to each other are fixed 

and known.  
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Once the cameras are calibrated, the vision system can be used to perform kinematic 

analysis of any mechanism, or any machine. In this thesis, a slider crank mechanism 

is analyzed. It should be noted that in order to perform the kinematic analysis, the 

procedure applied to the slider crank mechanism may be applied to any other 

mechanism as well. The following steps are followed to perform the kinematic analysis 

of the slider crank mechanism: 

 

 Finding the positions of the markers in the camera reference frame for each 

frame 

 Curve fitting process to smooth the position data of the markers 

 Performing position analysis and obtaining the joint variables of the 

mechanism by utilizing the positions of the markers 

 Performing velocity and acceleration analysis by taking time derivatives of the 

joint variables. 

 

1.3 Literature Survey 
 

Camera calibration has been a very challenging area for the last 20 years. There are 

various methods to achieve camera calibration. Some of these methods include the use 

of a calibration object while some of them do not require a calibration object, which is 

self – calibration.  

 

Fusing the pictures, which are recorded by two eyes, and realizing the differences 

between them allow us to gain the sense of depth [2]. So, the authors state that in order 

to obtain the depth information at least two cameras which are recording the same 

scene are needed. This task is known as stereopsis. (Figure 1) 
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Calibration techniques are categorized as (i) calibration using 3D calibration object, 

(ii) calibration using 2D calibration object, (iii) calibration using 1D calibration object 

and (iv) self – calibration.  

 

A popular and traditional method for calibration using a 3D object is the Tsai approach 

[33]. A 3D calibration object is used for this technique. In Tsai’s experiments, the 

calibration object is created by impressing a template of instant lettering graphics sheet 

containing 16 squares whose dimensions are 2 in x 1.5 in x 0.5 in. These squares are 

on the top of a block steel. (Figure 2). Calibration is done by using the corners of these 

squares.  

 

 

 

 

Figure 1: Stereopsis [32] 
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For calibration using a 2D calibration object, Zhengyou Zhang suggests a technique in 

which the camera records a planar pattern at a number of (at least two) different 

orientations [3], [4]. Either the camera or the planar pattern can be moved to capture 

planar pattern at different orientations. In addition to the intrinsic and the extrinsic 

parameters, the radial lens distortion coefficients can be found. In the light of this 

technique, a MATLAB® toolbox has been released [31]. Recently, MATLAB® has 

developed its own module to calibrate a camera by using this technique. The planar 

patter used in this technique is shown in Figure 3. 

 

 

 

 

  

 

Figure 2: The Calibration Object used in the Tsai Approach [33] 
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In addition to calibration using a 2D calibration object, Zhengyou Zhang also discusses 

a calibration technique using 1D calibration object [34]. In this technique, points 

aligned on a line are used as seen in Figure 4. One of the points should be fixed. 

Otherwise, calibration is not possible.  

 

 

 

 

 

 

 

 

 

 

Self – calibration is introduced by S. Maybank, O.D. Faugeras and Q.T. Luong [29]. 

They have realized the calibration process by using a moving camera recording a static 

Figure 3: Calibration Pattern for Zhang Technique [3] 

Figure 4: 1D Calibration Object [34] 
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scene. It is shown that calibration can be performed by using point correspondences 

and fundamental matrices between the image sequences. Constant intrinsic parameter, 

epipolar constraint and the absolute conic concept are the main parts of this theory. 

The epipolar constraint and the absolute conic concept are illustrated in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] suggests a method to retrieve Euclidean calibration. Projective calibration, affine 

calibration and Euclidean calibration are performed step by step to reach the Euclidean 

calibration. Modulus constraint is the novel part of the method. Later, [17] improved 

the method to obtain metric calibration from only three images.  A. Zisserman et al. 

and R. Horaud et al. extended this method for a stereo rig [16]. P. Sturm examined the 

critical motion sequences from multiple image pairs [35].  

[9] suggests a global optimization technique to obtain Euclidean reconstruction from 

several views of same camera which is moving. Projection reconstruction, quasi-affine 

Figure 5: Epipolar Geometry and Absolute Conic [29] 
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reconstruction and Euclidean reconstruction is obtained, respectively. Afterwards, 

Hartley extended this method for a camera which is recording the scene at the same 

point but with different orientations [8]. Also, he introduced the concept of 

transformation matrix between image planes. Since the images are taken using the 

same location, point correspondence and finding the transformation matrix is easier. 

Clearly, the method is based upon pure rotation. An example of pure rotation is given 

in Figure 6.  

 

 

 

 

Qiang Ji and Songtao Dai improved the study of Hartley by stating that pure rotation 

assumption is unrealistic since the optical center of the camera is often unknown [10]. 

Hence, the rotation is performed about an unknown and fixed point, which is near the 

optical center. So, there should be a translational offset between the optical center and 

the point about which the rotation is performed about. In both Hartley’s case and Qiang 

Ji et al. ‘s case, the camera rotates with an unknown angle. However, in Qiang Ji et 

al.’s technique, the camera should rotate with same amount of angle.   

Figure 6: Pure Rotation Example [8] 
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David Nister et al. studied non-parametric self-calibration by observing motion in the 

distorted image [36]. They focused on the case of three infinitesimal rotations. In this 

method, reconstruction of points is possible up to projective ambiguity. [26] 

introduced a method which is self-calibration depth from refraction. In this method, a 

scene is recorded firstly by a fixed camera and then same scene is captured by placing 

a transparent medium between the scene and the camera. Correspondence points of 

images are used to find the orientation of the parallel planar faces of the medium and 

depths of scene points. The experimental setup can be seen in Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Triggs has suggested a new method for self-calibration in order to obtain Euclidean 

reconstruction of three or more views taken by a moving camera with fixed and 

unknown intrinsic parameters [37]. He uses the absolute quadric concept which is a 

degenerate quadric consisting of planes tangent to the absolute conic (Figure 8). This 

absolute quadric is obtained by using a constrained nonlinear minimization technique. 

Figure 7: Experimental Setup of Self - Calibration 
Depth from Refraction [26] 
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Anders Heyden and Kalle Astrom have shown that self-calibration is possible in the 

case of zooming cameras if skew is 0 and the aspect ratio is taken as 1 [38]. A zooming 

camera implies that the intrinsic parameters of the camera is changing continuously. 

At the end, they have obtained Euclidean reconstruction up to a similarity 

transformation. Thao Dang, Christian Hoffmann and Christoph Stiller have shown that 

continuous stereo self- calibration by camera parameter tracking, in case of varying 

intrinsic parameters, is possible [11]. It is assumed that initial guesses for the camera 

calibration parameters are readily available. They developed a setup consisting of three 

cameras which can be rotated about their vertical axes.  

 

M.J. Brooks et al. have studied metric reconstruction with a dynamic stereo head [27]. 

In this technique, the scene is viewed by a moving stereo head. This stereo head 

consists of two cameras and each camera can vary its angle of vergence. In their study, 

Figure 8: Absolute Quadric in Plane at Infinity and Its Image [37] 
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the cases such that knowing distance between the cameras of the stereo head or 

cameras of the stereo head have same intrinsic parameters have been examined.  

Like the stereo head, there are several vision systems consisting of stereo cameras. 

Kinect and Bumblebee2 are two examples of them.  Both of them can be used to obtain 

3D coordinates of a point in the scene. [43] presents the comparison of them for indoor 

environment. In [43], it is shown that Kinect is not suitable in case of bright daylight 

and Bumblebee2 has a high cost and the scene must be well illustrated. Also, it is 

shown that resolution of Kinetic is very low which can cause higher value of error.  

 

There are different kind of applications of the computer vision. For example, [44], [45] 

shows the application of the computer vision in determining strain and stress 

distribution. In these studies, an extensometer is used to examine deformation of the 

specimen. The calibration of extensometer is performed by using the calibration 

specimen. Another application is that analysis of the human walking (gait) by using 

the vision system shown in [46], [47]. In [48], a study of walking posture analysis 

based on vision system by extracting the body line, neck line, center of gravity and 

gait width is shown. However, the calibration of the vision system is not mentioned in 

these studies.  

  

1.4 Outline of the Thesis 
 

The scope and objective of the thesis, accompanied with a literature survey is given in 

Chapter 1.  

 

Chapter 2 gives brief information about vision systems and camera models which exist 

in literature. Also, the concept of lens distortion effect and camera calibration matrix 

are presented in this chapter. In Chapter 3, digital image is discussed. Image types and 

image processes are presented. Several methods are given in order to find the corner 

points. Also, the markers detection are explained step by step in this chapter. Chapter 
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4 discusses algebraic relations between images. The fundamental matrix and the 

essential matrix are defined in this chapter. Some methods, which are used to find these 

matrices, are also presented. Chapter 5 gives brief information about the Bouguet 

camera calibration toolbox. The functions of the toolbox and some important issues 

about the toolbox are presented. Self – calibration methods are presented in Chapter 6. 

Also, experimental results by self – calibration methods are presented. In chapter 7, 

triangulation is discussed. Furthermore, reconstruction is explained by using 

triangulation and some experimental result are presented. Chapter 8 includes the 

kinematic analysis of the slider crank mechanism. The results obtained by using vision 

system and comparison them with the results obtained by encoder are presented and 

there is also a discussion part about the results.  

 

Finally, Chapter 9 concludes the thesis with a brief summary and few suggestions for 

future work. 
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CHAPTER 2 

 THE VISION SYSTEM AND CAMERA MODEL [1], [2] 

In this chapter, vision systems and camera models are introduced. Also, similarities 

between human vision systems and computer vision systems, consisting of cameras to 

reconstruct the environment, are investigated.  

 

2.1 Human Vision and Computer Vision 
 

Descartes removed the eye of an ox and scraped its black part to make it transparent, 

and then observed the inverted image of a scene from a darkened room on the eyes. 

(Prienne, 1967). Similar experiments have been performed firstly by Scheiner. He 

performed experiments firstly with the eyes of sheep and oxen. After that, he 

performed the same experiment with a human eye in 1625. However, the first person 

who claimed formation of a converted retinal image is Kepler in 1604. (Polyak, 1957).  
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Figure 9 illustrates the sections of an eyeball. The iris and the pupil control the amount 

of light penetrating the eyeball. The cornea and the crystalline lens refract the light to 

create the retinal image. Retina is the section where the image is formed [2].  

 

In order to receive the depth information, there are some binocular cues (such as 

stereopsis, eye converge) and monocular cues (such as size and motion parallax). Here, 

the stereopsis is taken into account. Since the eyes are placed with a distance between 

them, the same scene view is obtained from slightly different positions and angles. So, 

the brain can produce a sensation of depth by using these two views (Poggio, 1984).  

 

In the light of human or animal vision systems, computer vision tries to perceive the 

world in an artificial way. Like humans having two eyes, computer vision systems 

should view the scene at least with two different angles at the same time. Therefore, 

Figure 9: Sketch of An Eyeball [2] 
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the measurement of depth can be possible and it allows to reconstruct of a 3D scene. 

In computer vision systems, 2D projections, images, of a real world scene are obtained 

by using cameras. These images capture two kinds of information, which are geometric 

and photometric. Geometric information consists of positions, points, lines, curves 

etc., while photometric information consists of intensity and color. Many tasks, such 

as recognition and modeling, can be accomplished by using that information.  

 

2.2 Pinhole Camera Model 
 

The simplest model of the camera is the pinhole camera model. In this model, the 

center of projection is the origin of a world coordinate frame. Also, the image plane is 

placed at a position of focal length. There are two images planes in a pinhole camera 

model. They are the actual image plane and the virtual image plane. Virtual image 

plane, which is in front of the pinhole, show us the inverted image. (Figure 10)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Pinhole Camera Model [2] 
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As seen in Figure 11, the principal axis is the line which is perpendicular to the image 

plane from the center of coordinate system. The principal point is the intersection of 

the principal axis and the image plane. A line joining a 3D point of a scene and the 

center of projection intersects the image plane and forms the image point on the 2D 

image plane. In Figure 11, the 3D point is designated by M and the image of it is 

designated by m. 

 

 

 

Figure 11: Pinhole Camera Geometry and Similar Triangles [2] 
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If M = [X, Y, Z] and m = [x, y], we can obtain the following relations by using similar 

triangles seen in Figure 11.  

 

௫௑ = ௙௓    

௬௒ =  ௙௓           (2.1) 

 

The coordinates of the image point can be obtained as 

ݔ  = ݂ ௑௓     

ݕ  = ݂ ௒௓         (2.2) 

 

So; 

 

m = [݂ ௑௓  , ݂ ௒௓]         (2.3) 

The relation between the world and the images points can be written by homogeneous 

vectors as 

 

቎݂݂ܻ݂ܺ቏ =  ൥݂ 0 0 00 ݂ 0 00 0 1 0൩ ൦ܼܻܺ
1൪       (2.4) 
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2.3 CCD Camera Model 
 

A charge-coupled device (CCD) converts light into electrical charge. A charge-

coupled device contains digital imaging elements which are pixels. We can assume 

that each pixel is a small part of the original image. In a CCD camera model, the 

coordinates of image points are represented by pixel numbers, while they are 

represented as coordinates with respect to a world coordinate system in a pinhole 

camera model. The pixel coordinate system is illustrated in Figure 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Pixel Coordinate System 
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The shape of a pixel can be square, rectangular, or even ellipse. The shape of pixel 

introduces a scale factor in x and y directions. The scale factor is 1 for square pixels. 

It is assumed that the cameras which are used in this thesis have square pixels. Hence, 

their scale factor will be taken to be 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 13 shows us a pixel shape and some related parameters. When the pixel is 

square, px and py are equal to each other. α is the skew angle, or the skew shortly. It is 

seen that the skew angle is zero when the pixel shape is square, or rectangular.  

 

Since the coordinates of the image points are represented by pixel dimensions, the 

focal length of the CCD cameras should also be represented in pixel dimensions. If αx 

and αy are the focal lengths in the x and y directions respectively, then: 

௫ߙ  = ௬ߙ ݀݊ܽ ௫݌݂ =  ௬       (2.5)݌݂

 

Figure 13: Pixel Shape 
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Also, let us designate the principal points, in the x and y directions, as x0 and y0, 

respectively. It is noted that the principal points do not have to be on the center point 

of the image plane.  

 

In the light of these parameters, we can define the camera calibration matrix as: 

 

K = ൥ߙ௫ ݏ ଴0ݔ α୷ ଴0ݕ 0 1 ൩        (2.6) 

 

Hence, the homogenous vectors of the normalized image coordinates and the measured 

image coordinates can be related as: 

 

ቈ1ݕݔ቉ =  ൥ߙ௫ ݏ ଴0ݔ α୷ ଴0ݕ 0 1 ൩ ቈݔ௡ݕ௡1 ቉       (2.7) 

 

where xn and yn are the normalized image coordinates in the x and y directions, 

respectively.  

 

2.4 Camera Lens and Distortion 
 

Lens is an important part of a camera. A lens basically blocks the most of the light and 

selects one ideal light ray coming from a point of the scene object. It is used for 

recreating the image more accurately on an imaging sensor. A lens can be fixed to the 

camera or it may be interchangeable depending on the purpose. Hence, lenses may 

have different focal lengths. Figure 14 shows a thin lens model.  
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The equation of a thin lens is: 

 

ଵௗబ +  ଵௗ೔ =  ଵ௙         (2.8) 

 

where do is the distance between the object and the center of the lens, di is the distance 

between the image and the center of the lens and f is the focal length of the lens.  

 

Lenses can cause aberrations and distortions because of manufacturing. Therefore, 

some corrections should be applied to the image coordinates. The most commonly 

Figure 14: Thin Lens Model [39] 
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used correction is for the radial lens distortion which causes the actual image point to 

be displaced radially in the image plane [6]. The radial distortion can be modelled by 

using the following equations: 

൤ݑߜ௜௥ݒߜ௜௥൨ =  ቈũ௜(݇ଵݎ௜ଶ + ݇ଶݎ௜ସ + ⋯ )ṽ௜(݇ଵݎ௜ଶ + ݇ଶݎ௜ସ + ⋯ )቉      (2.9) 

 

where,   ݑߜ௜௥,  ,௜௥: infinitesimal radial displacement of ith point in the x and y directionsݒߜ

respectively 

 k1, k2: the coefficients for radial distortion 

ri = ( ũ௜ଶ +  ṽ௜ଶ)1/2 

 

Tangential distortion is caused by imperfections in centering of the lenses and 

manufacturing deficiencies.  

The expression for tangential distortion is as following:  

 

ቈݑߜ௜௧ݒߜ௜௧቉ =  ቈ2݌ଵũ௜ṽ௜ + ௜ଶݎ)ଶ݌ + 2ũ௜ଶ)݌ଵ(ݎ௜ଶ + 2ṽ௜ଶ) +  ଶũ௜ṽ௜቉      (2.10)݌2

 

where, 

,௜௥ݑߜ   ,௜௥: infinitesimal tangential displacement of ith point in the x and y directionsݒߜ

respectively 

p1, p2: the coefficients for tangential distortion.  

 

There exists other distortion effects in the literature. For instance, there is a correction 

term for the cases on which the image axes are not orthogonal (Melen, 1994). The 
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other one is the thin prism distortion. The reason of thin prism distortion is the 

imperfect lens design and manufacturing in addition to assembly. However, this effect 

can be included in the radial and tangential distortions. In most cases, distortion effect 

is not significant [6]. Also, in the case of radial and tangential distortions, only two 

coefficients are enough to compensate.  

 

After mentioning distortion effects, a camera model which includes the pinhole 

projection and CCD camera model with distortion effect can be given by the equation: 

ቂݑ௜ݒ௜ቃ =  ቈܦ௨ݏ௨(ũ௜ + ௜௥ݑߜ  + ௩(ṽ௜ܦ(௜௧ݑߜ  + ௜௥ݒߜ  + (௜௧ݒߜ  ቉ + ቂݑ଴ݒ଴ቃ      (2.11) 

 

Here,  

(ui, vi ): the corrected coordinates of (ũi ,ṽi ) 

(Du, Dv): the coeeficient to convert metric to pixel 

su: the scale factor 

(δuir, δvir): the radial component of distortion 

(δuit, δvit): the tangential component of distirtion 

 

In this study, we will use a CCD camera model and the distortion effects are not taken 

into account.  

Properties of the cameras are used in this study are given below: 

• Model of the camera: Casio® Ex – Z750 

• Resolution at video mode: 640 x 480 pixels 

• Memory card type: Kinston 2GB. 

• Maximum duration of video recording: 1 hour for 2 GB card. 

• Frame rate: 30 fps 
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25 
 

CHAPTER 3 

 IMAGE PROCESSING AND MARKER DETECTION 

Basic information about images and image processing is given in Appendix A.  

 

3.1 MARKER DETECTION 
 

In order to perform kinematic analysis of a readily available slider crank mechanism 

[50], various markers are attached on the moving links of the mechanism. The markers 

that are used are circular shape, with a diameter of 13 mm and red in color. The reason 

for using red markers is that it is easier to detect the red, green and blue colors in full 

a color (RGB) image than the other colors.   

 

Since the markers are circular, centers of the circles are tracked. In order to detect the 

markers, some filtering operations are applied to the images.  

 

 

3.1.1 Detecting the Red Color 
 

Full color images are stored as an array of M x N x 3. For an RGB image, the red color 

is represented by array of M x N x 1. Hence, the elements of this array are used to 

detect the red color. Some colors, such as magenta, can have some red color value in 

the array of M x N x 1. It is necessary to eliminate these colors as much as possible. 

For this purpose, the grayscale values of the pixels are subtracted from the red color 

values of the pixels. At the end of this process, only red, or, reddish objects in the scene 

are detected. The red objects will be seen to be brighter than the other color objects. 
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3.1.2 Median Filtering 
 

Median filtering is a nonlinear process. In this thesis, 2D median filtering is performed. 

Median filtering is mostly used to reduce the salt and pepper noise. An example of the 

salt and pepper noise is presented in Figure 15.  

 

 

 

 

 

 

 

 

 

   

Figure 15: Salt and Pepper Noise 

 

Although there is very little salt and pepper noise in the frames of the slider crank 

mechanism, this filtering process is still performed in order to obtain better results.  

 

 

3.1.3 Filtering via Threshold 
 

After obtaining the red objects in the scene, the images should be converted into black 

and white images, which are binary images, in order to detect the markers. We need to 

specify a threshold while converting the images into binary ones. This threshold is in 
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the range of [0, 1]. The threshold can be chosen around the upper limit for the frames 

where there is no blur. However, in the case of blurred images (because the motion is 

too fast), if the threshold is chosen close to the upper limit, data loss can occur. So, for 

the blurred images, a lower threshold should be preferred. The regions below this 

threshold will be black and the regions above the threshold will be white. One should 

also note that the threshold value may be different within the image sequence because 

of the light conditions of the scene. After applying the threshold, regions other than 

the ones corresponding to the markers may also appear in the binary image. Therefore, 

additional filtering operations are necessary. 

 

3.1.4 Region Labelling 
 

Labelling helps us to distinguish the white regions from each other. In this filtering, 

black regions remain as 0, while white regions are labelled as 1, 2 and so on. This 

process is performed by means of either 4 – connectivity or 8 – connectivity object. 

The difference between the 4 and 8 – connectivity objects can be seen in Figure 16. 

 

 

Figure 16: 4 - connected and 8 - connected pixels 
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3.1.5 Filtering via Area 
 

This filtering process helps us to remove the regions which are out of the range where 

range is defined by the user. The area of markers (in terms of pixels) can be determined 

manually. Here, the user should define a range such that the area of the region is in the 

range [areamin, areamax]. At the end of the filtering, the white regions which are within 

the range will remain unchanged while other regions turn into black.  

 

3.1.6 Detection of Marker and Center of Marker 
 

The markers used are circular in shape. This feature helps us to find the markers and 

their centers. MATLAB® has a function which detects circular shapes. This function 

is “imfindcircles”. It requires a radius range in the form [radiimin, radiimax]. One should 

note that this function also gives the center points of the circular shapes. The circles 

which are out of this range are not detected. However, in the case of blurred images, it 

is very hard to detect circular shapes (corresponding to the markers). For this reason, 

instead of detecting the circular shapes, the centroid of the blurred area is determined 

to represent the center of the marker.  

After all these processes are performed, there may still be some regions which a 

resemble marker. Such regions should be eliminated manually. 

One can summarize the processes as follows. 

1) Detection of the red color objects  

2) 2D Median filtering (“medfilt2” function of MATLAB® can be used.) 

3) Threshold filtering to convert the image into a binary image. 

4) Labeling the regions of the image (“bwlabel” function of MATLAB® can be 

used.) 

5) Area filtering (“bwareaopen” function of MATLAB® can be used.) 

6) Detection of the circular regions and their centers, or the centroids of the 

blurred areas (“imfindcircles” function, or “regionprops” function of 

MATLAB® can be used.) 
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These operations for one image are illustrated in Figure 17.  

  

   Figure 17: Sample Stages of Marker Detection 
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CHAPTER 4 

FUNDAMENTAL MATRIX 

In this part, a brief information about the fundamental matrix is given. The 

fundamental matrix is based on the epipolar geometry concept. If the intrinsic 

parameters of a camera are not known, epipolar geometry is represented by the 

fundamental matrix. Otherwise, epipolar geometry is represented by the essential 

matrix.  

4.1 Epipolar Geometry 
 

The epipolar geometry between two views is essentially the geometry of the 

intersection of the image planes with the pencil of planes having the baseline as an 

axis [1]. Here, the baseline is a line joining the center of the cameras. (See Figure 18).  

 

 

 

 

 

 

 

 

 

  

 

 

Figure 18: Epipolar Planes 
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Suppose that a 3D point is projected on the two image planes. Assume that the image 

point of this point, which is shown as X, is x on the first image plane and x’ on the 

second image plane. In Figure 19, it is seen that the rays back-projected from x and x’ 

intersect at the point X. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

In Figure 19, C and C’ represent the camera centers, or the projection centers. Clearly, 

the rays back-projected from the image points x and x’ and the baseline form the 

epipolar plane, π.  

 

Suppose that only x is known. So, the epipolar plane π can be found by the ray back-

projected from x and the baseline. x’ lies in the plane π. Another feature that can help 

Figure 19: Projection of a 3D Point in Two Image Planes [1] 
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one to find x’ is the second image plane. As it can be seen in Figure 20, the epipolar 

plane π intersects with the second image plane on a line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 20, it is seen that the intersection of the epipolar plane π and the second 

image plane is the line l’. This line is called the epipolar line on the second image 

plane. Therefore, line l’ helps one in the search for the corresponding point. Instead of 

searching the entire image plane, one can search only on the line l’ (to find the 

corresponding point on the second image plane). So, the epipolar constraint can be 

described as follows: 

 

For an image point in the first image plane, the corresponding point x’ on the second 

image plane lies on the line I’ and similary for an image point x’ in the second image 

plane, the corresponding point x on the first image plane lies on the line l.  

Figure 20: Epipolar Line [1] 
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Considering Figure 20, point e represents the image point of the second camera center 

and point e’ represents the image point of the first camera center. These points are 

known as the epipolar points, or the epipoles. Epipoles are the intersection of all 

epipolar lines and there is only one epipole for each image. To sum it up, epipole is 

the point that shows image of other camera center and it is intersection point of baseline 

with image plane. Epipolar plane is a plane containing the baseline and the ray back-

projected from the image point. Epipolar line is the intersection of the epipolar plane 

with the image plane.  

 

4.2 Fundamental Matrix 
 

The fundamental matrix is the algebraic representation of the epipolar geometry. It 

defines a map from a point in one image plane to its corresponding line in the other 

image plane. The definition of the fundamental matrix F is given as: 

 ݈ᇱ = ݈             ݔܨ =  (4.1)         ′ݔ்ܨ

 

As it is known, the point x lies on the epipolar line l and the point x’ lies on the epipolar 

line l, leading to the relations: 

ᇱ்݈ᇱݔ  = ்݈ݔ            0 = 0         (4.2) 

 

Using the equations (4.1) and (4.2), one obtains: 

ݔܨᇱ்ݔ  = 0               
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ᇱݔܨ்ݔ = 0         (4.3) 

 

Consider, now, a plane π which is not passing through either of the two camera centers 

as shown in Figure 21. 

 

 

 

 

 

 

 

The ray back projected from x in the first image plane intersects the plane π at the point 

X. Then point X is projected onto the second image plane yielding point x’. This 

procedure is known as the point transfer via plane. Thus, there is a 2D homography, 

Hπ, mapping each x to x’. This relation may be represented via the equation: 

  

Figure 21: Point Transfer with Homography [1] 
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ᇱݔ =  (4.4)           ݔగܪ

 

In addition to that, since all epipolar lines pass through epipoles, one can write down 

the equations of the epipolar lines as follows:  

 ݈ᇱ = ݁ᇱݔݔᇱ = [݁ᇱ]௫(4.5)        ′ݔ 

 

where [e’]x is the skew symmetric matric of epipole. 

 

By using equations (4.4) and (4.5), one obtains: 

 ݈ᇱ = [݁ᇱ]௫ܪగ(4.6)         ݔ 

 

Now, combining equations (4.6) and (4.1),  

 ݈ᇱ = [݁ᇱ]௫ܪగݔ =  (4.7)        ݔܨ

 

Thus, the fundamental matrix can be obtain as: 

ܨ  = [݁ᇱ]௫ܪగ         (4.8)               

 

Since fundamental matrix represents a mapping from the 2 dimensional projective 

plane onto the 1 dimensional epipolar lines, the rank of it is 2.  
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Now, let the camera projection matrices of the two camera are P and P’. Therefore, 

one can write down the following relations: 

ݔ  = ᇱݔ           ܺܲ = ܲ′ܺ          (4.9) 

leading to ܺ = ܲାݔ = ܲᇱା(4.10)                                                  ′ݔ 

 

where P+ and P’+ designate the pseudo- inverse of P and P’ matrices 

 

The null vector of the camera projection matrix is the center of camera. Hence,  

= ܥܲ   0          (4.11) 

 

The image of the camera center of the first image plane in the second plane is given 

by  ݁’ =  (4.12)         ܥ’ܲ 

 

And by eliminating 3D point X in equation (4.10), one obtains 

= ’ݔ   ܲ’ܲା(4.13)         ݔ 

 

By combining equations (4.5), (4.12) and (4.13), one obtains: 



38 
 

 ݈’ = (ݔାܲ’ܲ) ݔ (ܥ’ܲ)   = (ݔାܲ’ܲ)ݔ[’݁]   =      ݔܨ 

 

Therefore, F is obtained to be 

= ܨ    ା                                                                    (4.14)ܲ’ܲݔ[’݁] 

 

The fundamental matrix F has seven degrees of freedom. It is a 3x3 matrix defined up 

to a scale. So, there are nine elements and the common scaling is insignificant which 

leads to eight independent ratios. In addition to that, det [F] = 0 which removes one 

more degree of freedom since the rank of it is 2 [1].  

 

4.3 Computation of the Fundamental Matrix 
 

In this thesis, 3 methods are given for the computation of the fundamental matrix. 

Referring to equation (4.3), the fundamental matrix is defined via the equation 

= ݔܨ்’ݔ   0  

 

This equation can be used to compute the fundamental matrix. Assume that x and x’ 

are two corresponding points in the two images and x = (x, y, 1)T and x’ = (x’, y’, 1)T 

are the homogeneous coordinates of the image points. Furthermore, let the 

fundamental matrix be represented as: 

 

F = ቎ ଵ݂ଵ ଵ݂ଶ ଵ݂ଷଶ݂ଵ ଶ݂ଶ ଶ݂ଷଷ݂ଵ ଷ݂ଶ ଷ݂ଷ቏            (4.15) 
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where fij is the jth element of the ith row of the fundamental matrix. 

Each given pair of matching points gives one linear equation in the unknown elements 

of F. One can obtain this linear equation as: 

ݔ’ݔ  ଵ݂ଵ  + ଵ݂ଶ ݕ’ݔ   + ଵ݂ଷ ’ݔ   + ଶ݂ଵ ݔ’ݕ   + ଶ݂ଶ ݕ’ݕ   + ଶ݂ଷ ’ݕ   + ଷ݂ଵ ݔ   + ଷ݂ଶ ݕ   + ଷ݂ଷ  =  0              (4.16) 

 

If one represents the elements of the F matrix as a row vector, in row- major order, 

he/she can rewrite equation (4.16) as: 

,ݔ’ݔ)  ,ݕ’ݔ ,’ݔ ,ݔ’ݕ ,ݕ’ݕ ,’ݕ ,ݔ ,ݕ 1)݂ =  0        (4.17) 

 

where f is the vector form of the fundamental matrix. 

 

For a given set of n matching points, equation (4.17) can be written in matrix form, 

yielding, 

 

൥ݔଵᇱ ଵݔ ଵᇱݔ ଵݕ ′ଵݔ ଵᇱݕ ଵݔ ଵᇱݕ ଵݕ ′ଵݕ ଵݔ ଵݕ 1: : : : : : : : ௡ᇱݔ: ௡ݔ ௡ᇱݔ ௡ݕ ′௡ݔ ௡ᇱݕ ௡ݔ ௡ᇱݕ ௡ݕ ′௡ݕ ௡ݔ ௡ݕ 1൩ ݂ = ݂ܣ = 0  (4.18) 

 

 

Clearly, the equation (4.18) represents a homogenous set of linear equations. Hence, 

vector f can be determined only up to a scale. In order to find a solution, the rank of 
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matrix A must be at most 8. In case the rank of A is exactly 8, the solution is unique 

up to a scale factor and can be found by using linear methods [1]. 

 

In practice, point coordinates involve noises and the rank of matrix A may be 9 since 

matrix A has 9 columns. In this case, the solution for the vector f can be found in the 

least-square sense. The singular value decomposition technique can be used to find 

least-square solution. The details of the singular value decomposition is given in 

Appendix B. The least square solution is the singular vector corresponding to the 

smallest singular value of A which is the last column of V where A = UDVT, where U 

and V are real, or complex unitary matrices and D is the rectangular diagonal matrix 

with non – negative real numbers. 

 

4.3.1 The Normalized 8 – Point Algorithm [1] 
 

The 8 – point algorithm is the simplest method of computing the fundamental matrix, 

involving no more than the construction and solution of a set of linear equations [1]. 

The 8 – point algorithm is introduced by Longuet Higgins, in 1981. Hartley improved 

this technique by using the normalization method [1]. 

 

Suppose that the pair of corresponding points x and x’ are in the form of (100, 100, 

1)T. It is seen that the x and y coordinates of point, which are 100, are much higher 

than 1. Therefore, the corresponding A matrix will be in the form of A = (104, 104, 102, 

104, 104, 102,102, 102, 1). Increasing the term 1 of matrix A by 100 means a huge 

change in image points whereas increasing the term 104 of matrix A by 100 means 

only a slight change. That is why all the entries of matrix A should have similar 

magnitudes [2].  

 

Briefly, normalization can be done by applying the following steps: 

1. The points are translated so that their centroid is at the origin. 
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2. The points are scaled so that RMS distance from the origin is equal to √2. 

3. This transformation process should be applied to the images independently. 

 

As can be anticipated from the name of algorithm, 8 pair of matching points are 

necessary in order to implement the normalized 8 – point algorithm. After normalizing 

the points, a linear solution can be found by using equation (4.18). After that, one needs 

to make sure that fundamental matrix satisfies the singularity constraint, because the 

rank of the fundamental matrix must be 2. This singularity constraint enforcement can 

be provided by using the singular value decomposition (SVD). Suppose that the linear 

solution for the fundamental matrix is F’.  

 

Let F’ = UDVT be SVD of F’. 

 

If noise is presented, D will be the diagonal matrix D = diag (r, s, t) where r ≥ s ≥ t. In 

order to satisfy the singularity constraint, the last diagonal element, t, must be 0. So, t 

is replaced by 0 in the diagonal matrix D and the new F’’ can be found via the equation 

F’’ = Udiag(r, s, 0)VT. After finding F’’, the correct fundamental matrix F can be found 

by applying denormalization. 

 

The steps of the normalized 8 – point algorithm are summarized below. 

1. Normalization: Transform the images coordinates to the normalized 

coordinates via the equation xn = Tx and xn’ = T’x’ where xn and xn’ are 

normalized image point coordinates.  

Centroid of points for n set of image points: 

mn = ଵ௡ ∑ ௜௡௜ୀଵݔ             mn’ = ଵ௡ ∑ ௜′௡௜ୀଵݔ                                 (4.19) 

Let mn = (m1, m2, 1)T  and mn’ = (m1’, m2’, 1)T 
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Define s = ቀ ଵଶ௡ ∑ ௜ݔ) − ݉ଵ)ଶ + ௜ݕ) − ݉ଶ)ଶ ௡௜ୀଵ ቁଵ/ଶ
   and  

                  s’ = ቀ ଵଶ௡ ∑ ′௜ݔ) − ݉ଵ′)ଶ + ′௜ݕ) − ݉ଶ′)ଶ ௡௜ୀଵ ቁଵ/ଶ
           (4.20) 

      for image points ݔ௜ = ,௜ݔ) ௜ᇱݔ ௜)் andݕ = ,௜ᇱݔ)  ௜ᇱ)் on the first and second imageݕ

planes 

        Therefore, T and T’ can be written as: 

        T = ൥ିݏଵ 0 ଵ݉ଵ0ିݏ− ଵିݏ ଵ݉ଶ0ିݏ− 0 1 ൩ 

        T’ = ቎ݏ′ିଵ 0 ᇱିଵ݉ଵ′0ݏ− ଵି′ݏ ᇱିଵ݉ଶ′0ݏ− 0 1 ቏       (4.21) 

2. Linear Solution: Find a linear solution for F’ by using equation (4.18) 

3. Singularity Constraint: Find F’’ to enforce det(F’) = 0 by using the SVD.  

4. Denormalization: Find the correct F by denormalizing F’’ such that F = 

T’TF’’T. 

4.3.2 The Algebraic Minimization Algorithm 
 

The advantage of the normalized 8 – point algorithm is that it is simple and rapid. 

However, this method is not optimal numerically, because all the entries of 

fundamental matrix have different importance. So, an alternative method can be used 

to find the singular matrix F’ which minimizes the ǁAf’ǁ subject to ǁf’ǁ = 1.  

 

The fundamental matrix may be written as F = M[e]x , [1]. Here, M is a non – singular 

3x3 matrix and [e]x is the skew – symmetric matrix of epipole in the first image. 

Suppose that epipole e is known and the fundamental matrix F is to be found. One can 

write the equation F = M[e]x in term of the vectors of f and m (which are the vector 

form of F and M in row major order) as f = Em. Here, E is a 9x9 matrix given by 
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E = ቎[݁]௫ 0 0 0 [݁]௫ 00 0 [݁]௫቏ 

 

Therefore, the minimization problem becomes: 

Minimize ǁAEmǁ subject to the condition ǁEmǁ = 1.  

 

This minimization problem can be solved by using the more constrained minimization 

algorithm [1]. The more constrained minimization algorithm is given in Appendix C. 

Epipole e will be varied to realize the minimization. The initial value of epipole e can 

be found as the null vector of the fundamental matrix which is found by using the 

normalized 8 – point algorithm. Hence, one obtains 

 

Fe = 0         (4.22) 

 

Also, the Levenberg – Marquardt algorithm can be used to vary the epipole e.  

 

The algebraic minimization algorithm is summarized below. 

 

1. Find an approximate fundamental matrix F0 by using the normalized 8 – point 

algorithm  

2. Find the epipole in the first image as the right null vector of F0. 

3. Staring with the initial value of epipole e and computing E, vary e by using the 

Levenberg – Marquardt algorithm and minimize the algebraic error ǁAfǁ with f 

which is calculated by the more constrained minimization algorithm.  

4. In minimization, converging f represent the fundamental matrix which is 

desired. 
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4.3.3 Geometric Distance Algorithm 
 

In this method, a minimization of a geometric image distance is implemented. Here, 

the gold standard method, which is suggested by Hartley [1], is given as the geometric 

distance algorithm. Geometric distance algorithms are important when there is noise 

during experiments. According to Hartley [1], other algorithms yield accurate results 

and are easier to implement, however, they are not optimal when the image error is 

Gaussian. In order to implement the geometric distance minimization algorithm, an 

initial value of parameters for non – linear minimization and a parameterization of cost 

function are necessary. The initial value for the non – linear minimization can be 

obtained by using one of the linear methods.  

 

4.3.3.1 The Gold Standard Method 
 

In this method, it is assumed that there is noise involved in the image point according 

to the Gaussian distribution. So, one tries to minimize the objective function g   

 ݃ = ∑ ,௜ݔ)݀ ẋ௜)ଶ + ,௜ᇱݔ)݀ ẋ௜′)ଶ௜       (4.23) 

 

Here, d( ) : the geometric distance between points 

Xi and xi’: the measured coordinates 

ẋi and ẋi’: the estimated true coordinates which satisfy ẋi’TFẋi = 0 where F is 

the estimated fundamental matrix 

 

While minimizing the error function, a pair of camera matrices can be defined such 

that P = [I|0] and P’ = [[e’]xF|e’] where I is the 3x3 identity matrix and 0 is 3x1 zero 

matrix. So, we can write  
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ẋ௜  =  ܲ ௜ܺ  ẋ௜’ =  ܲ’ ௜ܺ         (4.24) 

 

Therefore, one can vary P’ and Xi to minimize the equation (4.23) by using the 

Levenberg – Marquardt algorithm. Xi can be obtained by using triangulation method 

which will be explained later.  

In addition to that, Sampson distance minimization may be used. In Sampson distance, 

the cost function p can be written as: 

 

݌ =  ∑ ൫௫೔ᇲ೅ி௫೔൯మ(ி௫೔)భమା (ி௫೔)మమା (ி೅௫೔ᇱ)భమା(ி೅௫೔ᇱ)మమ௜      (4.25) 

 

Here, ( )i is the ith component of a 3 – vector.  

 

The gold standard algorithm is summarized below. 

1. Compute the initial fundamental matrix by using linear method.  

2. Assume the camera matrices to be P = [I|0] and P’ = [[e’]xF| e’] 

3. Estimate Xi by using the triangulation method such that ẋi = PXi and ẋi’ = P’Xi. 

4. Minimize the cost function given by equation (4.23) 

 

 

4.3.3.2 Parameterization of the Fundamental Matrix 
 

In order to implement the non – linear minimization method, the fundamental matrix 

must be parameterized. While parameterizing of the fundamental matrix, the following 

relations will be helpful: 
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Det (F) = 0  

rank (F) = 2         (4.26) 

Fe = 0     

FTe’ = 0         (4.27) 

 

Parameterization can be done by using only one epipole, or by using two epipoles. In 

the one epipole parameterization technique, one notes that f3 = af1 + bf2, where fi 

represents the ith column of the fundamental matrix and a, b are two multipliers. This 

expression can be written because rank of the fundamental matrix is 2. So, the 

fundamental matrix can be represented as: 

 

F = ቎ ଵ݂ଵ ଵ݂ଶ ܽ ଵ݂ଵ + ܾ ଵ݂ଶଶ݂ଵ ଶ݂ଶ ܽ ଶ݂ଵ + ܾ ଶ݂ଶଷ݂ଵ ଷ݂ଶ ܽ ଷ݂ଵ + ܾ ଷ݂ଶ቏       (4.28) 

 

Clearly, there are 8 parameters which are f11, f12, f21, f22, f31, f32, a, b. 

 

The main disadvantage of this parameterization method is that it cannot be used when 

the first two columns of the fundamental matrix are linearly dependent. In this case, 

the third column of the fundamental matrix cannot be written in terms of the first two 

columns. Therefore, other column (other than third one) can be written in terms of the 

remaining columns. For instance, the first column of the fundamental matrix can be 

expressed in terms of the second and the third columns. In addition to that, the first 

two columns of the fundamental matrix are linearly dependent when the epipole is at 

infinity such that e = (e1, e2, 0)T. One has to define the multipliers a and b as well. 

These multipliers can be defined such that e = (a,b,-1)T which is the right epipole of 

the fundamental matrix. For best results, the parameterization should be done such that 

the largest entry in absolute value is 1, [1]. 
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The second method uses two epipoles for the parameterization. Suppose that the two 

epipoles are given by (a, b, -1)T and (a’, b’, -1)T. So, the fundamental matrix can be 

expressed as: 

 

 

ܨ =  ቎ ଵ݂ଵ ଵ݂ଶ ܽ ଵ݂ଵ + ܾ ଵ݂ଶଶ݂ଵ ଶ݂ଶ ܽ ଶ݂ଵ + ܾ ଶ݂ଶܽᇱ ଵ݂ଵ + ܾᇱ ଶ݂ଵ ܽᇱ ଵ݂ଶ + ܾᇱ ଶ݂ଶ ܽᇱܽ ଵ݂ଵ + ܽᇱܾ ଵ݂ଶ + ܾᇱܽ ଶ݂ଵ + ܾᇱܾ ଶ݂ଶ቏ 

 

(4.29) 

 

 

In addition, one may arbitrarily set one of the independent parameters to 1 in order to 

achieve a minimum set of parameters for both the one epipole and two epipoles 

parameterizations.  

 

4.3.4 Computation of the Fundamental Matrix by the Using RANSAC 
Algorithm 
 

While computing the fundamental matrix, a set of matching points is used. However, 

there can be wrong matching points which are outliers. In order to obtain best results 

for the fundamental matrix, the outliers should be removed from the set. RANSAC 

algorithm is suitable for this task. RANSAC is an algorithm for robust model fitting 

by selecting a minimum sample set required for the model. So, the correct fundamental 

matrix can be found by using a subset which does not contain any outliers. In this 

thesis, Matlab® is used to find the fundamental matrix during this thesis since it has a 

function, “estimateFundamentalMatrix”, to calculate the fundamental matrix by using 

RANSAC.  
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4.4 Essential Matrix 
 

Essential matrix is a form of the fundamental matrix. The essential matrix is valid 

when the cameras are calibrated, i.e., when the intrinsic parameters of the cameras are 

known. Essential matrix was firstly introduced by Longuet and Higgins. The essential 

matrix is defined via the equation:  

௡ݔܧ௡ᇱ்ݔ  = 0         (4.30) 

 

where xn and xn’ are the normalized coordinates of the image points and E denotes the 

essential matrix. The normalized coordinates can be found by using the calibration 

matrices of the cameras and the following expressions. ݔ௡ = ௡ᇱݔ  ݔଵିܭ =  (4.31)         ′ݔᇱିଵܭ

 

By combining equations (4.3), (4.30) and (4.31), one can express the essential matrix 

in terms of the fundamental matrix and calibration matrices, yielding 

ܧ  =   (4.32)         ܭܨᇱି்ܭ

 

The essential matrix can also be expressed in terms of the rotation matrix R and the 

translation vector t, yielding 

ܧ  = ௫ܴ[ݐ] =  ௫       (4.33)[ݐ்ܴ]ܴ

 

where [ ]x represent the skew symmetric matrix. 
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Hence, the essential matrix has five degrees of freedom. There exists three degrees of 

freedom associated with the rotation and three degrees of freedom associated with the 

translation yielding six degrees of freedom all together. However, there is a scale 

ambiguity since the essential matrix is a homogeneous quantity. In addition to that, the 

essential matrix has two nonzero and equal eigenvalues, whereas the third eigenvalue 

is zero. 
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CHAPTER 5 

BOUGUET CAMERA CALIBRATION TOOLBOX [31] 

In this chapter, Bouguet camera calibration toolbox of MATLAB® is discussed. The 

positions of two cameras are assumed to be fixed with respect to each other. Therefore, 

the extrinsic parameters of the two cameras are taken from the results of the Bouguet 

camera calibration toolbox. The calibration is performed via the technique specified in 

[3], [4]. Hence, calibration is performed by using a planar calibration pattern. The 

calibration pattern should be viewed by each camera at various, different orientations 

(Figure 22).  

 

 

 

 

 

 

 

Figure 22: Calibration Pattern Viewed at Different Orientations 
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5.1 Functions of the Bouguet Camera Calibration Toolbox 
 

5.1.1 Reading Images 
 

After capturing the calibration pattern at different orientations, the first step is to store 

the selected images into the calibration toolbox. In this process, the type of the image 

(i.e., whether the image is full color, or binary, or grayscale) is not important. The 

toolbox will read the images and automatically convert them to grayscale images.  

 

5.1.2 Extract Grid Corners 
 

This function helps one to specify the corresponding points in different views. The 

corresponding points are chosen from the corner points of the calibration pattern. The 

Figure 23 shows an example of the calibration pattern that is used for the Bouguet 

camera calibration toolbox. 

 

 

 

 

 

 

 

 

 

 



53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only 4 points, corresponding to the corner points of the calibration pattern, are chosen.  

These 4 points should form a rectangular shape on the image. This rectangular shape 

is shown in Figure 24. The points which are shown by circles are the points chosen by 

the user. 

 

 

 

 

Figure 23: Calibration Pattern 
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After specifying the rectangular shape on each image, the toolbox finds the 

corresponding points in the different views automatically. These corresponding points 

are chosen such that they exist inside of the rectangular shape. One should specify that 

the first clicked point is chosen to be the origin. In Figure 24, the origin is specified 

with O. After finding the corresponding points, one must enter the length of an edge 

of the square on the calibration pattern. This length helps one to find a relation between 

the world points and the image points. The origin is taken as the point (0, 0) on the 

pattern and the coordinates of remaining points are found depending on the dimension 

of the square.  

 

Figure 24: Rectangular Shape on the Image 



55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 shows the last form of the image after extracting the corresponding points. 

At the end of the extracting corner point process, a set of detected 2D points and a set 

of detected 3D points are obtained. These two sets will be used later during the 

calibration procedure. 

 

 

 

 

Figure 25: Extracted Corner Points 
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5.1.3 Calibration 
 

In the calibration step, the intrinsic and the extrinsic parameters are obtained by using 

the sets of detected 2D and 3D points. Calibration is implemented in two steps. First 

one is the initialization. The initialization step gives a closed form solution for all 

parameters except for the lens distortion parameters. The projection equation for the 

Bouguet camera toolbox is given below. 

 

ݏ ቈݔଵݔଶ1 ቉ = ଵݎ]ܭ ଶݎ ଷݎ [ݐ ൦ܻܺ01൪ = ଵݎ]ܭ ଶݎ [ݐ ൥ܻܺ1൩ = ܪ ൥ܻܺ1൩  (5.1) 

 

Here,  s : the scalar parameter 

 x1 and x2 : the image coordinates in horizontal and vertical directions 

 K : the calibration matrix 

 r1, r2 and r3 : the columns of rotation matrix 

 t : the translation vector 

 X,Y : the coordinates of 3D point 

 H : the homography matrix between 2D points and 3D points 

 

Clearly, the coordinates of the 3D points in the Z direction are zero. Since the 3D 

coordinate frame is chosen such that each point on the calibration pattern has its z 

coordinate to be zero. 

 

Since r1 and r2 are orthogonal, one can write the following two constraints: 
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ℎଵ் ଵℎଶିܭ்ିܭ = 0  ℎଵ் ଵℎଵିܭ்ିܭ = ℎଶ்  ଵℎଶ      (5.2)ିܭ்ିܭ

 

As discussed before, ିܭ்ିܭଵ  describes the image of the absolute conic and it is a 

symmetric matrix. So, it can be represented by a 6 x 1 vector. Let us describe a matrix   ܣ = ܪ   ଵ  and  matrixିܭ்ିܭ =  [ℎଵ ℎଶ ℎଷ] where   ℎଵ =  (ℎଵଵ ℎଵଶ ℎଵଷ)்  vice 

versa. Therefore, the left hand side of equation (5.2) can be written as: 

 ℎଵ் ℎଶܣ = ଵଶ்ܽ  ℎଵ்ݒ ℎଵܣ − ℎଶ் ℎଶܣ = ଵଵݒ) −  ଶଶ)்ܽ      (5.3)ݒ

  

where a : the 6 x 1 vector consisting of the elements of matrix A. 

௜௝ݒ  = [ℎ௜ଵℎ௝ଵ ℎ௜ଵℎ௝ଶ + ℎ௜ଶℎ௝ଵ ℎ௜ଶℎ௝ଶ ℎ௜ଷℎ௝ଵ + ℎ௜ଵℎ௝ଷ ℎ௜ଷℎ௝ଶ + ℎ௜ଶℎ௝ଷ ℎ௜ଷℎ௝ଷ] 
   

Therefore, equation (5.3) can be expressed as: 

 

൤ ଵଵݒ)ଵଶ்ݒ − ଶଶ)்൨ݒ ܾ = ܸܾ = 0       (5.4) 

 

If we have N images, matrix V given in equation (5.4) is a 2N x 6 matrix. b is calculated 

by using the SVD of matrix V and calibration matrix K is found by using the symmetric 

matrix B as well as scalar value. In addition to that, the extrinsic parameters are found 

by using the camera calibration matrix and the columns of homography matrix H via 

the equations 
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ଵݎ = ଶݎ  ଵℎଵିܭݏ = ଷݎ  ଵℎଶିܭݏ = ଵݎ  × ݐ  ଶݎ =  ଵℎଷ         (5.5)ିܭݏ

 

After finding the estimated values of the intrinsic and the extrinsic parameters, the 

radial distortion coefficients are solved by using the linear least – square techniques. 

Determination of the distortion coefficients will not be discussed here. If anyone is 

interested in the distortion coefficients, he/she can refer to references [3], [4]. The 

values found for the parameters are used as initialization for second step which is 

nonlinear optimization. This optimization is performed via the maximum likelihood 

inference. Assume that the image points are corrupted by distributed noise and we are 

given N number of images with m number of points on the calibration pattern. So, the 

maximum likelihood estimate can be obtained by minimizing the following 

expression: 

 r =  min ∑ ∑ ฮݔ௜௝ −  ӿ ൫ܭ, ܴ௜, ,௜ݐ ௝ܺ൯ฮଶ௠௝ୀଵே௜ୀଵ     (5.6) 

 

Here,  xij : the image point of the3D point Xj in the image plane of the ith camera  

 ӿ : the projection point found by the parameters which are calculated before 

 

After optimization, the results are displayed as shown in Figure 26. 
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5.1.4 Show Extrinsic 
 

 

 

 

This function provides visualization of the estimated extrinsic parameters. So, it shows 

the position of the cameras and the calibration pattern at different orientations (with 

Figure 26: Example of Output for Bouguet Camera Calibration Toolbox 

Figure 27: Visualization of Estimated Extrinsic Parameters 
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respect to the fixed camera or the position of the camera with respect to the fixed 

calibration pattern). Figure 27 shows an example of such a visualization. 

 

 

5.1.5 Stereo Calibration 
 

Bouguet camera calibration toolbox has a part that calculates the position of a camera, 

with respect to the other, when two cameras are used. It should be noted that the 

cameras should be synchronized. That means the views of two cameras should be taken 

at the same time. In this thesis, the synchronization is done by using a flashlight. While 

the two cameras are in the video mode, the flashlight is turned on and off. The two 

frames on which the light is seen firstly are the corresponding frames of the two 

cameras. In the same way, the two frames on which the light is off firstly are 

corresponding frames of the two cameras. Then, the toolbox can calculate the position 

of the cameras with respect to each other. At the end, the solution is displayed as seen 

in Figure 28.  

 

 

Figure 28: Example of Stereo Calibration Results 
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In Figure 28, om and T vectors represent the rotation and translation vector of the right 

camera with respect to the left. Let the coordinates of a 3D point be XL in the left 

camera coordinate frame and XR in the right camera coordinate frame. Hence, one can 

write the following expression: 

 ܺோ = ܴ ∗ ܺ௅ + ܶ        (5.7) 

 

Here, R is the rotation matrix. This rotation matrix R can be obtained by using 

“Rodrigues” function which exists in the toolbox, so   ܴ =  The .(݉݋)ݏ݁ݑ݃݅ݎ݀݋ݎ

visualization of the estimated stereo extrinsic parameters can be seen in Figure 29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 29: Visualization of the Stereo Parameters 
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During stereo calibration, all intrinsic and extrinsic parameters are recomputed. One 

may observe that the uncertainties of the intrinsic parameters are smaller after stereo 

calibration. The reason is that stereo optimization is realized globally and it is 

implemented over a minimal set of unknown parameters. 

 

As stated before, the position vectors of the cameras, with respect to each other, are 

determined by using the Bouguet camera calibration toolbox. Recall that we assume 

cameras are fixed with respect to each other and their positions are known.  
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CHAPTER 6 

SELF – CALIBRATION 

6.1 Kruppa Equations 
 

The usage of the Kruppa equations in computer vision was firstly introduced by 

Faugeras, Luong and Maybank [29]. In order to implement the Kruppa equations, one 

needs to know the fundamental matrix and the two independent quadric equations of 

the dual image of absolute conic. Firstly, the absolute conic are discussed, followed by 

the Kruppa equations in this chapter. 

 

6.1.1 Absolute Conic 
 

One of the most important concepts for camera self – calibration is the absolute conic 

and image of the absolute conic. Basically, the absolute conic, Ω∞, is a point conic in 

the plane at infinity. In a metric frame, if a point X = [x1, x2, x3, x4]T , in homogeneous 

form, exists on the absolute conic, it must satisfy the following relation: 

ଵଶݔ  + ଶଶݔ + ଷଶݔ = ସݔ = 0       (6.1) 

 

Recall that if a point is at infinity, this point must satisfy ݔସ  =  0 in homogeneous 

form.  

 

The most important characteristic of the absolute conic is that the absolute conic is 

invariant under Euclidean transformations, i.e., its image is independent of camera 

pose. The moon can be given as an example for the absolute conic. When someone 

drives on a straight road, or walk on a straight road, he/she has an impression that 
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moon is following him. Absolute quadric is more general, in the sense that its image 

is invariant under translations and rotations. 

It has been stated that the image of the absolute conic is invariant under Euclidean 

transformations. On the other hand, it has been shown in the previous chapters that an 

image does not depend on the camera pose only but also on the internal parameters of 

the camera, such as the focal length, or principal point. Therefore, the image of the 

absolute conic does not depend on the camera pose, i.e., it depends on the intrinsic 

parameters of the camera. Hence, if the intrinsic parameters of a camera are constant, 

then the image of the absolute conic is constant, too.  

 

If a point X is on the absolute quadric, the equation of it can be written as: 

 

XT∙X = 0         (6.2) 

 

Assume that there is a camera whose camera matrix is P and whose internal matrix is 

K. Since the projection of the absolute conic does not depend on the camera pose, we 

can write the image of a point as: 

 

u = KX          (6.3) 

 

where u is the image point. Solving X from equation (6.3), one obtains 

 

 

X = K-1u         (6.4) 

 

By inserting equation (6.4) into equation (6.2), one obtains 
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uT K-TK-1u = 0 

 

Hence, the image of the absolute conic is obtained to be 

 

w = K-TK-1  

 

where, w represents the image of the absolute conic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Absolute Conic and Its Image 
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6.1.2 Absolute Dual Quadric 
 

The absolute dual quadric, Q*∞, is the dual of the absolute conic and it is a degenerate 

dual quadric in 3 – space. The absolute dual quadric is formed by planes which are 

tangent to the absolute conic. Therefore, the absolute conic can be called as the rim of 

the absolute dual quadric, or simply rim quadric. Algebraically, the absolute dual 

quadric is a symmetric 4 x 4 homogeneous matrix which has a rank of 3. It can be 

shown as: 

 

 Q*∞ = ቈ ܫ 00் 0቉        (6.5) 

Where, I is the 3 x 3 identity matrix and 0 is the 3 x 1 zero vector. 

 

Like the absolute conic, the absolute dual quadric is also invariant under Euclidean 

transformations. The reason for preferring the absolute dual quadric is that it is much 

simpler to project it into the image plane compared to the absolute conic.  

 

Assume that a plane is represented by π = (vT, k)T . If this plane is in the envelope of 

Q*∞ , it should satisfy that 

∗ஶܳ ்ߨ  = ߨ  0         (6.6)  

 

From equations (6.5) and (6.6) with π = (vT, k)T, one obtains 

= ݒ்ݒ   0         (6.7) 

where v is a 3 x 1 vector. 
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Hence, v represents the line which is the intersection of plane π and the plane at 

infinity. So, this line is tangent to the absolute conic if and only if equation (6.7) is 

satisfied. This implies that the absolute dual quadric is made up of the planes which 

are tangent to the absolute conic [1]. 

 

The image of the absolute dual conic is the inverse of the image of the absolute conic. 

Hence, one obtains 

 

w* = inverse(w) = KKT       (6.8) 

 

After finding the absolute dual quadric or absolute conic, the camera calibration 

matrix, K, can be found by using Choleski factorization.  

 

 

 

 

 

 

 

 

 

 

 

 

   
Figure 31: Absolute Conic and Absolute Dual Quadric 
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6.2 Self – Calibration with the Kruppa Equations 
 

6.2.1 Problem Statement 
 

Suppose that we have N numbers of cameras and each of these cameras has an 

associated camera projection matrix designated by Pi, where i = 1, ….., N. 

Furthermore, M number of 3D points with coordinates Xj, where j = 1, ….., M. Using 

the projection matrices, one may write down the equation 

௝௜ݔ   =  ௜ܲ ௝ܺ         (6.9) 

 

where, ݔ௝௜ is the image point of Xj in the ith image plane. 

 

The aim is to determine the metric reconstruction from the uncalibrated image points 

by determining the camera parameters and by using the triangulation method. Assume 

that the projective reconstruction is known. In order to upgrade the projective 

reconstruction to the metric reconstruction, a rectifying homography matrix H should 

be determined. After determining the H matrix, the projective reconstruction can be 

converted to the metric one via the equations: 

 

ெܲ௜  =  ௜ܲܪ   ܺெ௝  = ଵିܪ  ௝ܺ        (6.10) 

 

The subscript M indicates that the camera matrix P is in the form of metric 

reconstruction. In equation (6.10), the H matrix can be written as: 

 

H = ቂ ܣ ்ݒݐ ݇ቃ         (6.11) 
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where, A is the 3 x 3 matrix, t and v are the 3 x 1 vector and k is the scalar. 

 

It should be noted that the obtained metric reconstruction is a scaled version of the real 

scene. Assume that the world coordinate frame coincides with the first camera frame. 

So, the rotation matrix R1 for the first camera is a 3x3 identity matrix I and the 

translation vector t is a 3x1 zero vector. Therefore, the first camera matrix PM1 can be 

written as: 

 

PM1 = K1[I|0]         (6.12) 

 

Since the projective camera matrix P1 = [I|0] and PM1 = P1H, the equation (6.12) implies 

 

[K1|0] = [ܣ  (6.13)        [ݐ

 

leading to A = K1 and t = 0. Let, now,  k = 1 to fix the scale of reconstruction. The 

matrix H is obtained as: 

 

H = ൤ܭଵ ்ݒ0 1൨         (6.14) 

 

In metric reconstruction, the coordinates of the plane at infinity do not change and the 

elements K1 and v of matrix H represents the plane at infinity in projective 

reconstruction. Hence, one obtains 

 

ஶߨ = ்ିܪ ൦0001൪ =  ൤ܭଵି ் ଵିܭ− 0ݒ் 1 ൨ ൦0001൪ =  ൤−ܭଵି 1ݒ் ൨   (6.15) 
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If it is assumed that  ߨஶ = ,்݌) 1)் , one can show that ݌ = ଵିܭ−   .ݒ்

Finally, the matrix H can be expressed as: 

 

H = ൤ ଵܭ ଵܭ்݌−0 1൨        (6.16) 

 

If the calibration matrix of the first camera, K1, and the coordinates of the plane at 

infinity are known, one can upgrade the projective reconstruction to metric 

reconstruction by calculating the rectifying homography matrix H. Conversely, if H 

matrix is known, one can obtain the calibration matrix of the first camera and the 

coordinates of the plane at infinity. Note that, 8 parameters, which are 3 for p and 5 

for K1, are sufficient to describe the H matrix.  

 

Suppose that the projective camera matrices for the other views are given by Pi = [Ai | 

ai ]. So, one obtains by using equation (6.10): 

௜ܴ௜ܭ  = ௜ܣ)  − ܽ௜ܭ(்݌ଵ  for i = 2,…., N    (6.17) 

 

The rotation matrix can be obtained from equation (6.17) as: 

 ܴ௜ = ௜ିܭ  ଵ(ܣ௜ − ܽ௜ܭ(்݌ଵ       (6.18) 

 

Since rotation matrix R is orthogonal, one must have RRT = 1. By using this 

information, Ri can be eliminated from equation (6.18) as follows. 

௜்ܭ௜ܭ  = ௜ܣ)  − ܽ௜ܭ(்݌ଵܭଵ் ௜ܣ) − ܽ௜(6.19)     ்(்݌ 
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The following equation can be obtained by inserting equation (6.8) into equation 

(6.19): 

∗௜ݓ  = ௜ܣ)  − ܽ௜ݓ(்݌ଵ∗(ܣ௜ − ܽ௜(6.20)      ்(்݌ 

Or ݓ௜ = ௜ܣ)  − ܽ௜ݓ்ି(்݌ଵ (ܣ௜ − ܽ௜்݌)ିଵ     (6.21) 

 

Equations (6.20) and (6.21) are the basic equations for self – calibration. Equation 

(6.21) is simply the inverse of equation (6.20). The self – calibration methods are 

variations of solving the equations above two equations. Firstly, ݓ௜ or ݓ௜∗ are found 

by employing iterative methods. After that, ܭ௜ can be calculated by performing 

Cholesky factorization.  

 

Suppose that the views are taken by the same camera and the internal parameters are 

constant for multiple views, leading to ݓ௜ = ∗௜ݓ   ଵ  andݓ =  ଵ∗. Therefore, equationsݓ

(6.19), (6.20) and (6.21) can be written as follows: 

ଵ்ܭଵܭ  = ௜ܣ)  − ܽ௜ܭ(்݌ଵܭଵ் ௜ܣ) − ܽ௜ݓ    ்(்݌ଵ∗ = ௜ܣ)  − ܽ௜ݓ(்݌ଵ∗(ܣ௜ − ܽ௜ݓ     ்(்݌ଵ = ௜ܣ)  − ܽ௜ݓ்ି(்݌ଵ (ܣ௜ − ܽ௜்݌)ିଵ     (6.22) 

 

Since each side of the equations are 3 x 3 matrix, each view other than first one yields 

5 constraints. Also, it has been stated before that we have 8 parameters (5 for K matrix 

and 3 for p) to decide. Therefore, in order to obtain a solution, one must have 5(m - 1) 

≥ 8. Clearly, we can obtain a solution when m ≥ 3 where m is the number of the views. 
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6.3.2 The Kruppa Equations 
 

The Kruppa equations are based on the epipolar constraint and the absolute conic. The 

Kruppa equations are the algebraic representations of the correspondence of epipolar 

lines tangent to a conic [1]. (See Figure 32). 

 

 

 

 

In Figure 32, C and C’ designate the images of a conic CW in two different image 

planes. Suppose that C* and C*’ are the duals of C and C’. l1 and l2 are the epipolar 

tangent lines in the first image plane the epipole of which is e. l1’ and l2’ are the 

epipolar tangent lines in the second image plane the epipole of which is e’. These two 

epipolar tangent lines in the first image plane can be combined into a single degenerate 

point conic given by the equation: 

Figure 32: Epipolar Lines Tangent to Conic 
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Ct = [e]xC*[e]x         (6.23) 

 

where Ct represent the degenerate point conic and 3 x 3 matrix. 

 

Similary, the same equation can be written for the second image as: 

 

Ct’ = [e’]xC*’[e’]x        (6.24) 

 

The transformation equation relating the two point conics is given by 

 

Ct’ = H-TCtH-1         (6.25) 

 

where H is the transformation matrix between the two image planes. 

 

By combining equations (6.23), (6.24) and (6.25), one obtains 

 

[e’]xC*’[e’]x = H-T [e]xC*[e]x H-1      (6.26) 

 

It has already been shown that F = H-T [e]x in Chapter 4. Therefore, equation (6.26) 

can be written as: 

 

[e’]xC*’[e’]x = FC*FT        (6.27) 

 



74 
 

The images C and C’ are the images of the absolute conic and it can be shown that C* 

= w* and C*’ = w*’. Also, the transformation matrix H can be written as H = H∞. 

Therefore, equation (6.27) yields 

 

[e’]xw*’[e’]x = Fw*FT        (6.28) 

 

The Kruppa equations given by equation (6.28) are difficult to apply. Hartley 

developed a simplified version of the Kruppa Equations [1]. He used the SVD of the 

fundamental matrix to express the simplified Kruppa Equations. 

 

The fundamental matrix has a rank of 2, the SVD of the fundamental matrix F can be 

written as: 

 

F = UDVT = [ݑଵ ଶݑ [ଷݑ ቈݎ ݏ       0቉ ଵݒ] ଶݒ  ଷ]்   (6.29)ݒ

 

Here, ݑଷ and ݒଷ are the null vectors of F such that F୘ݑଷ = 0 and   Fݒଷ = 0,   (i.e., e = 

v3 and e’ = u3.) 

Therefore, equation (6.28) can be expressed as: 

௫[ଷݑ]ᇱ∗ݓ௫[ଷݑ]  =  (6.30)      ்ܷܦܸ∗ݓ்ܸܦܷ

 

By pre – multiplying the left hand side of equation (6.30) by UT and post – multiplying 

it by U, one obtains 
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௫௎[ଷݑ]ᇱ∗ݓ௫[ଷݑ]்ܷ = ଶݑ]  ଵݑ− ଶݑ]′∗ݓ ்[0 ଵݑ− 0] =
 ቎ ଶ்ݑ ଶݑᇱ∗ݓ ଶ்ݑ− ଵݑᇱ∗ݓ ଵ்ݑ−0 ଶݑᇱ∗ݓ ଵ்ݑ ଵݑᇱ∗ݓ 00 0 0቏        (6.31) 

 

Applying the same procedure to the right hand side of equation (6.30), one obtains 

 

ܦܸ∗ݓ்ܸܦ =  ቈݎ ݏ       0቉ ܸ∗ݓ்ܸ ቈݎ ݏ       0቉ =  ቎ݎଶݒଵ் ଵݒ∗ݓ ଵ்ݒݏݎ ଶݒ∗ݓ ଵ்ݒݏݎ0 ଶݒ∗ݓ ଶ்ݒଶݏ ଶݒ∗ݓ 00 0 0቏           

(6.32) 

 

Equation (6.32) is equivalent to the following expression: 

 

ቌ ଶ்ݑ ଵ்ݑ−ଶݑᇱ∗ݓ ଵ்ݑଶݑᇱ∗ݓ ଵݑᇱ∗ݓ ቍ ×  ቌݎଶݒଵ் ଵ்ݒݏݎଵݒ∗ݓ ଶ்ݒଶݏଶݒ∗ݓ ଶቍݒ∗ݓ = 0       (6.33) 

 

It is clear that equations (6.31) and (6.32) are equivalent to each other. Equation (6.33) 

implies that the two vectors on the left hand side of the equation must be parallel to 

each other. Hence, one obtains the following three equations. 

     

௨మ೅௪∗ᇲ௨మ௥మ௩భ೅௪∗௩భ =  − ௨భ೅௪∗ᇲ௨మ௥௦௩భ೅௪∗௩మ =  ௨భ೅௪∗ᇲ௨భ௦௩మ೅௪∗௩మ            (6.34) 

 

 

Note that only two of these three equations are linearly independent.  



76 
 

6.3.3 Solving the Simplified Kruppa Equations 
 

The simplified Kruppa equations can be utilized to solve self – calibration problems. 

Assume that the images are taken with the same camera, leading to  ݓ∗ =  For .′∗ݓ

only one camera, equation (6.34) yields: 

 

௨మ೅௪∗ ௨మ௥మ௩భ೅௪∗௩భ =  − ௨భ೅௪∗ ௨మ௥௦௩భ೅௪∗௩మ =  ௨భ೅௪∗ ௨భ௦௩మ೅௪∗௩మ      (6.35) 

 

where ݓ∗ =  ்ܭܭ

 

The simplified Kruppa equations can be utilized in two different ways. In the first 

method, the terms of the Kruppa equations can be subtracted from each other. 

Therefore, 3 linearly dependent equations can be shown as: 

 

௨మ೅௪∗ ௨మ௥మ௩భ೅௪∗௩భ =  − ௨భ೅௪∗ ௨మ௥௦௩భ೅௪∗௩మ =  ௨భ೅௪∗ ௨భ௦௩మ೅௪∗௩మ =  ఘభϐభ =  ఘమϐమ =  ఘయϐయ    

→  ఘభϐభ −  ఘమϐమ = 0  

 ఘమϐమ −  ఘయϐయ = 0  

ఘభϐభ − ఘయϐయ = 0         (6.36) 

 

where, ߩଵ, ,ଶߩ  ଷ : numerator terms of the Kruppa equationsߩ

 ϐଵ, ϐଶ, ϐଷ : denominator terms of the Kruppa equations 

 

The left hand side of the above 3 equations can be used to define the cost function 
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c = ∑ ଵݓ ቀఘభϐభ − ఘమϐమቁଶ + ଶݓ ቀ ఘమϐమ −  ఘయϐయቁଶ + ଷݓ ቀఘభϐభ − ఘయϐయቁଶ ே௜ୀଵ   (6.37) 

 

which is to be minimized, where N is the number of view other than the first view and 

w1, w2, w3 are weights  

 

The reason for using three Kruppa equations (although only two of them are linearly 

independent) is to improve the accuracy of the solution. It is assumed that the weights 

are uniform in order to decrease the difficulty of minimization process. 

 

The second method of using the simplified Kruppa equations for self – calibration is 

to obtain three equations from equation (6.35) by cross multiplication. These three 

equations are given below. 

ଵܮ  ≜ ଵϐଶߩ  − ଶܮ  ଶϐଵߩ  ≜ ଶϐଷߩ  − ଷܮ  ଷϐଶߩ  ≜ ଵϐଷߩ  −  ଷϐଵ        (6.38)ߩ 

 

Next, using ܮଵ,  ଷ, one can define the cost functionܮ ଶ andܮ

 c = ∑ ଵଶܮଵݓ + ଶଶܮଶݓ + ଷଶே௜ୀଵܮଷݓ       (6.39) 

 

which is to be minimized. 

 

Here, N represent the number of views other than the first one and w1, w2, w3 are the 

weighting coefficients which are assumed to be uniform. In this thesis, the second 
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method of utilizing the simplified Kruppa equations is employed. Using appropriate 

minimization techniques,  ݓ∗  is found. Then, the calibration matrix K can be obtained 

by Cholesky factorization. 

 

6.3 Self – Calibration with Equal Eigenvalues  
 

A second method utilized for self – calibration is to use the essential matrix. Note that 

the essential matrix is a calibrated version of the fundamental matrix. If the images are 

taken with the same camera whose calibration matrix is K, the following equation can 

be written. 

ܧ  =  (6.40)         ܭܨ்ܭ

 

where, F is the fundamental matrix.  

The essential matrix has two nonzero and equal eigenvalues. This feature can be used 

for calibration purposes. The purpose is to find a calibration matrix K that makes two 

eigenvalues of the essential matrix E equal (or, as close to equal as possible). Suppose 

that two eigenvalues of the essential matrix E are ℷଵ  and   ℷଶ . The define the function 

f via the equation 

 ݂ = 1 − ℷమℷభ         (6.41) 

 

Clearly, when the two eigenvalue are equal to each other, the function f will be zero. 

Hence,the goal is to minimize f . Therefore, the cost function c for multiple views is 

defined to be: 

 c = ∑ ௜(1ݓ − ℷమℷభ)ே௜ୀଵ         (6.42) 
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Here, N is the number of views other than the first one and wi is the weighting factor. 

Each weighting factor can be normalized to a range from zero to one. However, as 

stated before, the weighting factors are taken to be equal to each other for practical 

purposes. 

 

6.4 Experimental Results of Two Methods 
 

In this section, experimental results related to the simplified Kruppa equations and the 

eigenvalue technique are examined. The obtained results are then compared with the 

ones obtained by using Bouguet calibration toolbox. After obtaining the frames, we 

choose 24 of them in order to perform the calibration process. One should recall that 

these frames must be viewed at different positions. The eight selected frames are 

shown in Figure 33. 
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An important aspect common to both techniques is the initialization of minimization. 

By using 8 selected frames, one can show the effects of initialization. The only 

constraint imposed during minimization is that the focal lengths in horizontal and 

vertical directions are equal. Table 1 shows the results obtained by using different 

initial guesses in the equal eigenvalues technique.  

 

Figure 33: Selected Multiple Images 
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Table 1: Results Obtained by using Equal Eigenvalues Method with Different Initial 
Guesses 

 

Initial Values Results 

αx αy x0 y0 αx αy x0 y0 

700 700 320 240 859.1806 859.1806 260.7043 223.6296

800 800 320 240 859.1805 859.1805 260.7045 223.6296

500 500 320 240 859.2 859.2 260.7 223.6 

400 400 320 240 859.1806 859.1806 260.7044 223.6296

650 650 320 240 859.1806 859.1806 260.7043 223.6296

1000 1000 320 240 859.2 859.2 260.7 223.6 

 

 

As it can be seen easily from Table 1, the image centers are used as the initial guesses 

for principal points. If we apply the same procedure and initialization for the simplified 

kruppa equations, we obtain the results shown in Table 2. 

 

Table 2: Results Obtained by using the Simplified Kruppa Equations with Different 
Initial Guesses 

 

 

 

Initial Values Results 

αx αy x0 y0 αx αy x0 y0 

700 700 320 240 801.9544 801.9544 359.8218 141.9776

800 800 320 240 801.9555 801.9555 359.8213 141.9801

500 500 320 240 801.9569 801.9569 359.8201 141.9829

400 400 320 240 801.9556 801.9556 359.8211 141.9801

650 650 320 240 801.9575 801.9575 359.8200 141.9842

1000 1000 320 240 801.9561 801.9561 359.8208 141.9813
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From the tables, it can be easily seen that initialization does not change the results 

significantly unless they are too absurd.  

 

Now we will investigate the effect of image numbers and method on the results. To 

achieve this goal, we have applied the calibration procedure by using from 4 to 24 

views. The results obtained by using the simplified Kruppa equations and equal 

eigenvalues techniques are shown in Table 3 and Table 4.  Note that the following 

initial guesses were used for all cases: 

௫ߙ  = ௬ߙ  = ଴ݔ     700 = ଴ݕ ݀݊ܽ 320 = 240  
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Table 3: Results of the Simplified Kruppa Equations 

 

Result 

Number of Images αx and αy x0 y0 

4 1076.9 490 31.9 

5 395.2 188.5 246.1 

6 364.6 181.6 248.8 

7 541.7 231.2 224.4 

8 755 289.8 222.9 

9 780.5 327.7 168 

10 791.6 333.1 162.2 

11 736.2 387.6 46.4 

12 752.8 385.6 71.4 

13 765.4 380.9 86.2 

14 790.3 367.6 122.2 

15 797.6 362.8 134.6 

16 801.3 360.2 140.8 

17 801.3 360.2 140.8 

18 801.3 360.2 140.8 

19 801.3 360.2 140.8 

20 802 359.8 142 

21 660.1 40.5 612.2 

22 682.5 34.8 597.9 

23 682.6 34.8 597.8 

24 687.5 36.1 595.4 
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Table 4: Results of Equal Eigenvalue Theorem 

 

Result 

Number of Images αx and αy x0 y0 

4 682.6716 231.5415 290.6958 

5 710.3321 230.1543 250.1878 

6 533.6353 170.1036 261.2115 

7 625.4671 214.6122 267.7546 

8 693.3487 249.6778 284.3153 

9 694.8596 246.3057 277.3451 

10 814.9259 285.9470 241.4271 

11 885.6409 308.6337 211.6786 

12 856.4041 300.6389 227.0759 

13 844.0160 299.7114 230.5727 

14 848.3849 295.4251 228.0971 

15 854.8865 295.5138 225.9425 

16 859.2849 283.3793 223.0458 

17 864.8179 284.6376 215.5329 

18 869.0143 286.4103 214.7112 

19 872.1264 287.7295 214.0974 

20 854.5340 278.3906 221.4971 

21 855.0811 279.4402 217.8246 

22 856.7569 266.8290 218.4219 

23 851.4706 273.4265 222.5004 

24 859.1806 260.7043 223.6296 
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For the same records, the results obtained by using the Bouguet camera calibration 

toolbox are as follows: ߙ௫ = 749.9798, ௬ߙ = ଴ݔ   745.4922 = 284.4588, ଴ݕ    = 249.3364   

 

When the results are examined, one can say that equal eigenvalue theorem is more 

stable than the simplified Kruppa equations. Considering especially the principal 

points, there are some very “ill” results in the simplified Kruppa equations. Therefore, 

it can be concluded that the simplified Kruppa equations are more sensitive to noise.   

 

Now, assume that the results which are obtained by the Bouguet camera calibration 

toolbox are exactly correct. The percent errors associated with the focal lengths and 

the location of principal points can then be computed. The error plots associated with 

the simplified Kruppa equations and the method of equal eigenvalue theorem are given 

by Figures 34, 35, 36, 37, 38, 39, 40, 41. 

Figure 34: Error Graph of αx 
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Figure 35: Error Graph of αy 

Figure 36: Error Graph of x0 
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Figure 37: Error Graph of y0 

Figure 38: Error Graph of αx 
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Figure 39: Error Graph of αy 

Figure 40: Error Graph of x0 
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From the error graphs, it is observed that the simplified Kruppa equations gives better 

results for the focal lengths. However, the errors associated with the principal points 

are quite large even if the number of views increases. Although the equal eigenvalue 

theorem gives worse results for the focal lengths than the simplified Kruppa equations 

do, it absolutely gives better results for the principal points (than the simplified Kruppa 

equations). Therefore, the equal eigenvalue theorem is preferred to use in this thesis.  

 

 

 

 

 

 

 

Figure 41: Error Graph of y0 
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CHAPTER 7 

 STEREO TRIANGULATION 

7.1 Problem Statement 
 

Suppose that the calibration matrices of the cameras, which are ܭଵ and ܭଶ, are known. 

One should note that camera matrices actually are not known, but estimated. In 

addition to that, let the extrinsic parameters, which are the translation and rotation 

vectors, are known. Note that the extrinsic parameters are assumed to be known since 

the cameras are assumed to be fixed with respect to each other. Therefore, once the 

extrinsic parameters are estimated, they can be used for other experiments over and 

over, as long as the positions of the cameras, with respect to each other, remain the 

same. In this thesis, these extrinsic parameters are estimated by using the Bouguet 

camera calibration toolbox. The extrinsic parameters are estimated by using a 

calibration pattern since estimation via a calibration pattern removes the scale 

ambiguity. On the other hand, if we try to estimate them by using self – calibration 

methods and then try to estimate a structure, we can obtain only a scaled structure 

where the scale is not known. Other than knowing the intrinsic and extrinsic 

parameters, one also needs the image point coordinates of a 3D point in the two image 

planes so that we can obtain the 3D coordinates of a point which exists in the scene.  

 

Let the measured image points for a 3D point ܺ be ݔ  and   ݔ′. If there is no noise in 

the measured data, the rays back – projected from the image points will meet at a point 

which is   ܺ. However, in the case of noise, the rays back – projected from the image 

points are skew. In that case, the 3D point X is estimated to be the closest point to both 

rays back – projected from the image points.  Let the camera matrices including the 

intrinsic and extrinsic parameters be ܲ and   ܲ′. Then we can define a function ϝ to 

find 3D point X such that 
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ܺ =  ϝ(ݔ, ,ᇱݔ ܲ, ܲ′)         (7.1) 

 

7.2 Linear Triangulation  
 

Let the camera projection matrices P and P’ be given by P = K [I|0] and P’ = K’ [R|t]. 

It is assumed that the world coordinate frame is attached to the left camera coordinate 

frame. The relations between X, x and x’ are given by 

ݔ  = ᇱݔ     ܺܲ = ܲ′ܺ           (7.2) 

 

These relations can be combined into a single equation yielding  

ܺܣ  = 0         (7.3) 

 

where A is the matrix involving the elements of x, x’, P and P’. 

Equation (7.3) is linear in terms of X. On the other hand, in order to eliminate the scale 

factor equations (7.2) can be written in the form 

ݔ  × (ܲܺ) = 0  

ᇱݔ  × (ܲᇱܺ) = 0        (7.4) 

 

since x and PX are parallel, as well as x’ and P’X.  
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If we let ݔ = ,ଵݔ] ,ଶݔ 1]் and ݔᇱ = ଵᇱݔ] , ଶᇱݔ , 1]், from equation (7.4), one obtains 

ଷ்݌)ଵݔ  ܺ) − ଵ்݌) ܺ) = ଷ்݌)ଶݔ   0 ܺ) − ଶ்݌) ܺ) = ଵᇱݔ  0 ൫݌ᇱଶ்ܺ൯ − ଶᇱݔ ൫݌ᇱଵ் ܺ൯ = ଵᇱݔ  0 ൫݌ᇱଷ்ܺ൯ − ൫݌ᇱଵ் ܺ൯ = ଶᇱݔ   0 ൫݌ᇱଷ்ܺ൯ − ൫݌ᇱଶ்ܺ൯ = ଵᇱݔ  0 ൫݌ᇱଶ்ܺ൯ − ଶᇱݔ ൫݌ᇱଵ் ܺ൯ = 0       (7.5) 

 

Here, ܲ = ቎݌ଵ்݌ଶ்݌ଷ் ቏ 

 

Clearly, equations (7.5) are linear in terms of X and only two of them are linearly 

independent. Therefore, matrix A in equation (7.3) is obtained to be 

 

ܣ = ێێۏ 
ۍێ ଷ்݌ଵݔ − ଷ்݌ଶݔଵ்݌ − ଵᇱݔଶ்݌ ଷᇱ݌ ் − ଵᇱ݌ ଶᇱݔ் ଷᇱ݌ ் − ଶᇱ݌ ۑۑے்

 (7.6)        ېۑ

 

Here, matrix A includes two equations from the two images. Also, one should note 

that the solution X from equation (7.3) can be found only up to a scale and it is a 4 x 1 

vector.  

 



94 
 

7.3 Obtaining Extrinsic Parameters 
 

As stated before, in this study the extrinsic parameters of the cameras are obtained by 

using the Bouguet camera calibration toolbox. In order to do that, the stereo calibration 

function of the Bouguet camera calibration toolbox is used. The results of a typical 

experiment which is performed in this thesis are shown below. 

 

Extrinsic parameters (position of right camera with respect to left camera): 

Rotation vector:             om = [ 0.04423   0.14274  -0.01012 ] ± [ 0.02868   0.02372  

0.00344 ] 

Translation vector:           T = [ -262.09198   -7.84430  39.35428 ] ± [ 1.79250   1.85734  

10.86413] 

 

Here, one should note that the numerical errors are approximately three times the 

standard deviations. In addition to that, it is seen that the rotation matrix is given as a 

rotation vector which is 3 x 1 vector. The corresponding rotation matrix can be 

obtained by using the function called Rodrigues in the Bouguet camera calibration 

toolbox.  

 

After converting the rotation vector to a rotation matrix, the following rotation matrix 

is obtained. 

 

ܴ =  ൥ 0.9898 0.0132 0.1420−0.0069 0.9990 −0.0448−0.1424 0.0433 0.9889 ൩  

 

The next step is to find the 3D coordinates of a point, which is viewed by two cameras, 

by the triangulation method.  
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7.4 Performing Triangulation 
 

In this thesis, in order to find the 3D coordinates of a point, the MATLAB® function 

stereo triangulation which exists in the Bouguet camera calibration toolbox, has been 

used. This function requires the camera calibration parameters and the image points 

from the left and right views to be inputted. In other words, the focal lengths of the left 

and right cameras, the principal points, the translation and the rotation matrices must 

be entered as inputs. Furthermore, one can also enter the distortion coefficients in order 

to obtain better results.  

 

The function yields two sets of 3D coordinates, namely XR and XL which are related 

by the equation  

 ܺோ = ܴ ∗ ܺ௅ + ܶ       (7.7) 

 

where,  ܺ௅  and ܺோ  are the 3D coordinates of the point in left and right camera frames, 

and R and T is rotation matrix and translation vector as it is specified before. 

 

7.5 Case Studies 
 

In this section, case studies, where the 3D coordinates of a point is obtained via the 

developed programs, are given. In these case studies, errors, associated with the 

distance between two points, are also investigated. 
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Figure 42: Left View of a Scene with Detected Corner Points 

Figure 43: Right View of a Scene with Detected Points 
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Now, consider the six points on the pattern which exist on the wall in Figure 42 and 

Figure 43. Note that the edge of each square is 60 mm. The points which are selected 

on the pattern and their coordinates are shown in Figure 44 and Figure 45.  

 

 

 

 

 

Figure 44: Left View with Selected Few Corner Points 

Figure 45: Right View with Selected Few Corner Points 
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Firstly, recall that the camera calibration matrix K is defined via the equation.  

 

ܭ =  ൥ߙ௫ ݏ ଴0ݔ ௬ߙ ଴0ݕ 0 1 ൩    

   

 

The calibration matrix for the left camera has been obtained to be 

 

௟௘௙௧ܭ =  ൥859.2126 0 263.20930 859.2126 220.89870 0 1 ൩    

 

whereas, the calibration matrix for the right camera has been obtained to be 

 

௥௜௚௛௧ܭ =  ൥925.6289 0 294.96760 925.6289 249.64080 0 1 ൩  

 

The translation vector between the cameras 

 

 ܶ = ൥−262.092−7.84439.354 ൩ 

 

And the rotation matrix between the cameras is given by 
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 ܴ =  ൥ 0.9898 0.0132 0.1420−0.0069 0.9990 −0.0448−0.1424 0.0433 0.9889 ൩ 

 

The 3D coordinates of the six selected points that have been obtained are given in 

Table 5. 

 

Table 5: Image Coordinates and 3D Point Coordinates 

 

 

 

Suppose, now, that we have two different points ܯଵ = [ ଵܺ, ଵܻ, ܼଵ ]்  and   ܯଶ =[ܺଶ, ଶܻ, ܼଶ]. The distance between these two points, D12 is given by 

ଵଶܦ  =  ඥ( ଵܺ − ܺଶ)ଶ + ( ଵܻ − ଶܻ)ଶ + (ܼଵ − ܼଶ)ଶ    (7.8) 

 

Table 6 shows the calculated distances (calculated by using the equation (7.8)) 

between the six points whose coordinates are given in Table 5. 

No Left Image 

Coordinate 

Right 

Image 

Coordinate 

3D coordinate with 

respect to the left 

camera coordinate 

frame 

3D coordinate with 

respect to the right 

camera coordinate 

frame 

1 [335,45]T [369,80]T [296.4,-499.2,2975.8]T [185,-649.8,2957.4]T 

2 [354,46]T [387,80]T [357.2,-492.2,2949.2]T [241.6,-641.8,2922.8]T 

3 [336,64]T [370,98]T [300.2,-443.8,3014.6]T [195,-596,2997.6]T 

4 [355,63]T [387,96]T [359.4,-441.2,2970.2]T [247.4,-592,2945.4]T 

5 [336,81]T [371,116]T [301.8,-387.4,3032.6]T [200,-540.6,3017.8]T 

6 [355,81]T [388,114]T [362.2,-386.2,3005.6]T [255.8,-538.8,2828.4]T 
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Table 6: Estimated Distance between Points 

 

Points used Calculated distance 

(mm) 

1-2 66.7 

1-3 67.7 

3-4 74.1 

2-4 55.2 

3-5 59.2 

5-6 66.2 

4-6 65.5 

 

 

 

It is known that the dimension of an edge of square on the pattern is 60 mm. Therefore, 

we can find the errors associated with the estimated dimensions as shown in Table 7. 

 

Table 7: Error Percentage between Estimated Distance and Real Distance Values 

 

Points used Error in distance (%) 

1-2 11.2 

1-3 12.9 

3-4 24.1 

2-4 8 

3-5 1.3 

5-6 10.2 

4-6 9.1 
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Now, 10 more points are selected on the scene in Figure 46 and Figure 47 and show 

them in 3D graph leading to Figure 48. 

 

 

 

 

 

 

Figure 46: Left View with Selected Corner Points 

Figure 47: Right View with Selected Corner Points 
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Figure 48: Original View of 3D scene 

Figure 49: x- y View of 3D Scene 
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Figure 50: x- z View of 3D Scene 

Figure 51: y- z View of 3D Scene 
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If one compares the x-y view of the 3D scene with images, it can be seen that they are 

very similar, having almost the same structure. 
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CHAPTER 8 

 KINEMATIC ANALYSIS OF A SLIDER CRANK MECHANISM 

The kinematic analysis of a slider crank mechanism is presented in this chapter. As it 

is known, the degree of freedom of the mechanism is one. The mechanism which is 

analyzed is shown in Figure 52. This mechanism has been already built for the 

TUBITAK project 112M110 [50]. Hence, it was readily available to use in this study. 

The mechanism is actuated by a motor which is located at point, O1, at which the crank 

and the fixed link are connected. The slider moves in a track on the fixed link.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: The slider crank mechanism 

 

 

crank 

connecting 
rod slider 

fixed link 

O2 

O3 

O1 
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One should note that the points O1, O2 and O3 are the origins of the body fixed 

reference frames for the crank, the connecting rod and the slider, respectively. Note 

also that these points coincide with the centers of the 3 revolute joints in the 

mechanism.   

In Figure 52, one can observe that there are several red markers on the moving links. 

The locations of the markers have been selected somewhat arbitrarily. The vision 

system is used to obtain the positions of the markers for each frame. As has been stated 

before, the cameras used in this thesis are 30 fps cameras, i.e., there is a (1/30) second 

time difference between two consecutive frames.    

 

8.1 Positions of the Markers 
 

 

In order to obtain the marker positions, a calibrated vision system, which has been 

developed before, will be used. As stated before, the extrinsic parameters of the 

cameras, with respect to each other, are fixed and known during the recording of the 

mechanism. The intrinsic parameters, on the other hand, are obtained by using the self 

– calibration method. Since it is shown that the equal eigenvalue theorem gives better 

results, this method is used to find the intrinsic parameters. Unlike the previous case 

where the two methods are compared, here, 48 frames are used to perform self – 

calibration in order to obtain more accurate results. The results of the self – calibration 

process have been presented below for the two cameras. 

The calibration matrix for the left camera is given by 

 

௟௘௙௧ܭ =  ൥710.4835 0 305.33160 710.4835 240.08070 0 1 ൩  
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whereas, the calibration matrix for the right camera is 

 

௥௜௚௛௧ܭ =  ൥726.1441 0 321.14620 726.1441 236.05460 0 1 ൩   

 

When the intrinsic and extrinsic parameters are known, the triangulation method can 

be used to determine the coordinates of a point in the scene. Hence, using the 

triangulation method, the center points of the markers are obtained in the left and right 

camera reference frame. One should recall that the lens distortion effects are neglected 

in this thesis.  

 

As can be seen in Figure 52, there are 4 markers on each of the 3 moving links. Hence, 

totally, there are 12 markers on the mechanism.  

 

Consider, now, the following notation. 

 

l   Number of links in the mechanism. 

j  Number of joints in the mechanism. 

iNM    Number of markers on link i of the mechanism. 

NM   Total number of markers on the mechanism, i.e., 

  NM  = 1NM  + 2NM  +  ….  + lNM     (8.1) 

 

Note that there are no markers on link 1 (which is the fixed link), i.e., 1NM  = 0 
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Each link in the mechanism is expressed such that fixed link is link 1, crank is link 2, 

connecting rod is link 3 and the slider is link 4. 

Hence, for the mechanism we have ܰܯ


= 0 + 4 +  4 + 4 = 12  

A marker is labelled as ܯ௜,௝ where i represents the link number on which the marker 

exists and j is the number of the marker. In the light of this notation, the Figure 53 

shows the marker labels for each of the markers. 

   

Figure 53: Markers on the mechanism 

 

 

In this thesis, the number of frames, NF, used for the kinematic analysis of the slider 

crank mechanism is 188 which corresponds to 6 periods of the motion of the 

mechanism. Therefore, one obtains 188 position data for each marker. After obtaining 
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the position data, a curve fitting process is performed after excluding the outliers, if 

there are any.  

8.1.1 Curve Fitting Process for the Position Data 
 

Curve fitting is a process that yields the parameters of a curve which fits a set of points 

in the best possible manner. In this thesis, the MATLAB® curve fitting toolbox is used 

for this purpose. In this study, independent variable is the frame number or time (time 

is used in this thesis) and the dependent variable is the position data. In order to obtain 

the curve which fits a given set of points, a least squares method is used, i.e., the sum 

of the squares of the errors are minimized. Hence, the function to be minimized is 

given by: 

 

ܧܵܵ =  ∑ ቀ(ݐ)݌ − ቁଶ௧ୀ௧ౣ౗౮(ݐ)௙݌  ௧ୀ௧బ       (8.2) 

 

where, (ݐ)݌ is the original data, position of marker, to be fitted, ݐ is the independent 

variable, time; and ݌௙(ݐ) is the curve fitting the data. One should also note that (ݐ)݌  represents the residual, which is the difference between the actual value and the (ݐ)௙݌−

estimated value. The values of the residual and the SSE that are obtained are very 

useful to determine the best fit. In order to determine the best fit, one should examine 

the obtained fit visually and check numerical fit results. Firstly, the curve should 

represent the general trend of the data. The residual graph also gives an idea about the 

curve. Hence, after examining the curve visually, one should also examine the 

numerical results. SSE and the adjusted R-square are two good indicators of the curve 

fitted; and MATLAB® is able to provide these indicators as a result of the curve fitting 

operation. As stated before, SSE is the sum of the squares of the error. Hence, a value 

closer to zero indicates a better curve. The adjusted R-square is another indicator which 

can be used when the number of coefficients for the fit is increased. An adjusted R-

square value closer to one means a better curve, too. In this study, the smoothing spline 

method of curve fitting is used for markers’ position data. Figure 54 and Figure 55 
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show two examples of the curve fitting process for the x, y and z coordinates of the 

markers M2,3 and M3,1 in the left camera reference frame.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54: Curve Fit for position of marker M2,3 
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Figure 55: Curve Fit for position of marker M3,1 
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8.2 Distances between the Markers 
 

After finding the positions of the markers, one can obtain the distances between the 

markers. The distance between the markers Mj,i and Mk,l is given by 

 

D = ( ) ( ) ( )2
,,

2
,,

2
,, lkijlkijlkij zzyyxx −+−+−   (8.3) 

 

The following table shows the measured distances between different markers and the 
corresponding distances obtained by the vision system. One should note that the 
distances between the markers are measured by using a Vernier.  

 

 

Table 8: Distances between Different Markers 

 

Markers 

Measured 
Distance, D 
(mm) 

D by Vision 
(mm) Percent Error (%) 

M2,1-M2,2 37 38,68 4,55 
M2,1-M2,3 67,1 72,06 7,39 
M2,2-M2,3 58 62,58 7,89 
M2,3-M2,4 142,5 149,69 5,05 
M3,1-M3,3 67,6 71,94 6,42 
M3,2-M3,3 47 52,17 11,00 
M3,3-M3,4 70,5 73,93 4,87 
M3,2-M3,4 107,4 116,47 8,44 
M3,1-M3,4 138,35 145,63 5,26 
M4,1-M4,2 17,6 18,68 6,15 
M4,1-M4,3 91,3 93,99 2,94 
M4,2-M4,4 90,5 93,42 3,22 
M4,3-M4,4 19,2 20,02 4,27 

 

 

 

 



113 
 

8.3 Slider Crank Mechanism  
 

In Figure 56, a slider crank mechanism is illustrated.  

 

 

 

Figure 56: Illustration of Slider Crank Mechanism 

 ܱ௠ܺ௠ ௠ܻܼ௠  : fixed coordinate system, or the mechanism coordinate system, with 

origin at Om. ܤܣ = ܽଶ  ܥܤ = ܽଷ  

The vertical distance between horizontal lines passing through A and C = ܽଵ 

Note that ܽଵ, ܽଶ, ܽଷ are the dimensions of the slider crank mechanism.  ߠଶ, ,ଷߠ  ௜,௝ : jth marker on link i where j = 1, 2, ...  and i = 2, 3, 4ܯ ସ : joint variables of the slider crank mechanismݏ

X

γ2,
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, ௜,௝ܮ)  ௜,௝ with respect to a body fixed frameܯ ௜,௝)  : polar coordinates of markerߛ

attached to link i. ( ௜ܺ,௝, ௜ܻ,௝) : x,y coordinates of marker ܯ௜,௝  with respect to the ܱܺ௠ ௠ܻܼ௠ coordinate 

system 

 

The loop closure equation (LCE) of the slider crank mechanism is given by 

 ܽଶ݁௜ఏమ + ܽଷ݁௜ఏయ = ସݏ  + ܽଵ݅       (8.4) 

 

which yields the following two scalar equations, obtained from the real and imaginary 

parts of equation (8.4): 

ସݏ  − ܽଷ cos(ߠଷ) − ܽଶ cos(ߠଶ) = 0      (8.5) ܽଵ − ܽଷ sin(ߠଷ) − ܽଶ sin(ߠଶ) = 0      (8.6) 

 

The kinematic dimensions of the slider crank mechanism used are given by  

a1 = 160 mm 

a2 = 102 mm 

a3 = 350 mm 

The polar coordinates of the markers are used, on the other hand, are presented in Table 

9. Hence, for a given value of the input ߠଶ, one can solve ߠଷ from equation (8.6) and 

insert values of ߠଶ and ߠଷ into equation (8.5) to obtain a corresponding value of ݏସ. 

One should note that there are at most 2 different solutions for the unknowns ߠଷ and ݏସ for a given ߠଶ. Therefore, one should select the correct closure among these 2 

possible solutions. 
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Table 9: Polar Coordinates of the Markers 

 

Marker Polar Coordinates (Li,j [mm],γi,j [°]) 
M2,1 84.7 mm, -14.6° 
M2,2 84.0mm,10.6° 
M2,3 64.5mm,12.7° 
M2,4 95.1mm,1.8°,-62.2mm(z-direction) 
M3,1 78.9mm,0° 
M3,2 116.9mm,10.2°,-26.1mm(z-direction) 
M3,3 146.2mm,-0.1° 
M3,4 216.7mm,-0.3° 
M4,1 50.6mm,18.3° 
M4,2 60.9mm,30.9° 
M4,3 140.4mm,4.5° 
M4,4 145,1mm,11.9° 

 

 

Note that, the positions of the markers are obtained in the camera reference frames. 

Hence, one should find the rotation matrix that relates the mechanism and camera 

reference frames. 

 

8.4 Rotation Matrix Relating the Camera and Mechanism Reference Frames   
 

 

௖ܱܺ௖ ௖ܻܼ௖  Camera reference frame fixed the ground (the position and  

orientation unknown) 

 ܱ௠ܺ௠ ௠ܻܼ௠     Mechanism reference frame fixed to a suitable point on the 

ground, i.e , link 1 of the mechanism . Preferably, the origin 

should be at a revolute joint associated with link 1. Furthermore, 

Xm, Ym axes lie on the plane of motion of the mechanism such 

that Zm is perpendicular to the plane of motion. Note that Xm, 

Ym axes will correspond to the real and imaginary axes while 
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writing the LCE. Hence, the θ angles will be measured relative 

to the Xm axis.   

 

[ ]c
mR                    Rotation matrix which relates the coordinates of a vector 

expressed in the camera and mechanism frames via the equation 

 

௠ܸሬሬሬሬԦ =  [ ܴ ௠ ௖] ௖ܸሬሬሬԦ        (8.7) 

  

where , 

௠ܸሬሬሬሬԦ , ௖ܸሬሬሬԦ         Coordinates of a vector ሬܸԦ expressed in the mechanism and 

camera frames, respectively. 

 

Since the cameras are stationary, we can use the motion of the slider in order to find 

Xm axis of the mechanism reference frame. For this purpose, while the mechanism 

moves five frames are taken into consideration and the coordinates of the two markers, 

namely, M4,1 and M4,2, are determined in each of the five frames. The unit vector in Xm 

direction is calculated via the following equation. 

(݊) ଵሬሬሬሬԦᇱݑ  =  ௥Ԧ(௡)ି௥Ԧ(௡ାଵ)|௥Ԧ(௡)ି௥Ԧ(௡ାଵ)|       (8.8) 

         

where,  ݎԦ: position vector of the markers in camera reference frame 

n: frame number, n= 1,2,3,4 . 
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In order to find the Zm  axis, the markers M2,1, M2,2 and M2,3  on the crank (link 2) are 

used together with the following notation. ݎଵଶሬሬሬሬሬԦ : vector from marker M2,1 to marker M2,2 ݎଵଷሬሬሬሬሬԦ : vector from marker M2,1 to marker M2,3 

The unit vector which is perpendicular to the crank can be found by the following 

formula:  ݑଷሬሬሬሬԦ′(݊) =  ௥భమሬሬሬሬሬሬԦ(௡)×௥భయሬሬሬሬሬሬԦ(௡)|௥భమሬሬሬሬሬሬԦ(௡)×௥భయሬሬሬሬሬሬԦ(௡)|       (8.9) 

         

The mean value for ݑଵሬሬሬሬԦ ᇱ 
  and ݑଷሬሬሬሬԦ ᇱ can be calculated as 

ଵ′തതതതݑ = ∑ ௨భᇱ(௡)೙ಿసభ  ே =  ଵሬሬሬሬԦ        (8.10)ݑ

ଷ′തതതതݑ = ∑ ௨యᇱ(௡)೙ಿసభ  ே =  ଷሬሬሬሬԦ       (8.11)ݑ

where, N is the total number of unit vectors.   

Finally, ݑଶሬሬሬሬԦ can be found as follows: ݑଶሬሬሬሬԦ =  ௨యሬሬሬሬሬԦ×௨భሬሬሬሬሬԦ|௨యሬሬሬሬሬԦ×௨భሬሬሬሬሬԦ|         (8.12) 

  

Therefore, the rotation matrix, [ ]c
mR , is found to be 

[ ]c
mR  = ଵሬሬሬሬԦݑ] ଶሬሬሬሬԦݑ  ଷሬሬሬሬԦ]       (8.13)ݑ

  

 

8.5 Position Vectors of the Markers 
 

 

Consider, now, the following notation. 
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௖ܱܯప,ఫሬሬሬሬሬሬሬሬሬሬሬሬԦ(ݐ)              Vector ௖ܱܯప,ఫሬሬሬሬሬሬሬሬሬሬሬሬԦ , i.e,  vector from the origin Oc to marker ܯ௜,௝, at 
time (or,  

frame) t. 

 

௖ܱܱ௠ሬሬሬሬሬሬሬሬሬሬԦ            Vector from Oc to Om (constant) 

 ܱ௠ పܱሬሬሬሬሬሬሬሬሬሬሬԦ                   Vector from Om to ௜ܱ,origin of the body fixed frame of link i,at  

time(or, frame) t 

 

 

 

 

 

One may write the following equation at time t, for the marker ܯଶ,௝, which is the jth 

marker located on link 2 : 

 

௖ܱܯଶ,ఫሬሬሬሬሬሬሬሬሬሬሬሬሬԦ(ݐ) =  ௖ܱܱ௠ሬሬሬሬሬሬሬሬሬሬԦ +  ܱ௠ܱଶሬሬሬሬሬሬሬሬሬሬሬԦ(ݐ) + ଶ,௝ܮ] cos൫ߠଶ + ଶ,௝൯ߛ ଓ௠ሬሬሬሬԦ + ଶߠ) ଶ,௝sinܮ  +          [ଶ,௝)ଔ௠ሬሬሬሬԦߛ
(8.14) 

 

In equation (8.14), all of the vectors must be expressed in the ݔ௠ݕ௠ݖ௠ frame since the 

last two vectors of the equation are expressed in the ݔ௠ݕ௠ݖ௠ frame. Therefore, one 

can rewrite the equation (8.14) as follows: 

 

    [ ܴ௖ ௠ ] ( ௖ܱܯଶ,ఫ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖(ݐ) =  [ ܴ௖ ௠ ]( ௖ܱܱ௠)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖ + (ܱ௠ܱଶ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௠(ݐ) + ଶ,௝ܮ] cos൫ߠଶ + ଶ,௝൯ߛ ଓ௠ሬሬሬሬԦ 
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ଶߠ) ଶ,௝sinܮ +                                       +                 [ଶ,௝)ଔ௠ሬሬሬሬԦߛ

(8.15) 

 

 

where, ( ௖ܱܯଶ,ఫ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖(ݐ)        ௖ܱܯଶ,ఫሬሬሬሬሬሬሬሬሬሬሬሬሬԦ(ݐ) vector expressed in the ݔ௖ݕ௖ݖ௖ reference frame (as  

obtained from the vision system) ( ௖ܱܱ௠)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖      ௖ܱܱ௠ሬሬሬሬሬሬሬሬሬሬԦ  vector expressed in ݔ௖ݕ௖ݖ௖ reference frame (as obtained  

from the vision system) (ܱ௠ܱଶ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௠(ݐ)    ܱ௠ܱଶሬሬሬሬሬሬሬሬሬሬሬԦ(ݐ)  vector expressed in the ݔ௠ݕ௠ݖ௠ reference system 

 

One should note that ܱ௠ܱଶሬሬሬሬሬሬሬሬሬሬሬԦ(ݐ) is 0ሬԦ since the origin of the body fixed reference frame 

of link 2 and the origin of the mechanism reference frame are coincident. 

 

A similar equation can be written for the marker ܯଷ,௝  on link 3, yielding 

 [ ܴ௖ ௠ ] ( ௖ܱܯଷ,ఫ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖(ݐ) =  [ ܴ௖ ௠ ]( ௖ܱܱ௠)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖ + (ܱ௠ܱଷ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௠(ݐ) + ଷ,௝ܮ] cos൫ߠଷ + ଷ,௝൯ߛ ଓ௠ሬሬሬሬԦ  

ଷߠ) ଷ,௝sinܮ +                                      +                 [ଷ,௝)ଔ௠ሬሬሬሬԦߛ

(8.16) 

 

 

A similar equation can also be written for the maker ܯସ,௝  on link 4, with a few 

changes, leading to the equation 
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[ ܴ௖ ௠ ] ( ௖ܱܯସ,ఫ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖(ݐ) =  [ ܴ௖ ௠ ]( ௖ܱܱ௠)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௖ + (ܱ௠ ସܱ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௠(ݐ) + ସ,௝ܮ] cos൫ߛସ,௝൯ ଓ௠ሬሬሬሬԦ  

                          [ଔ௠ሬሬሬሬԦ(ସ,௝ߛ) ସ,௝sinܮ +                                     

(8.17) 

 

where, 

(ܱ௠ ସܱ)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ௠(ݐ) =  ቈݏସܽଵ0 ቉      

 

By using equations (8.15), (8.16) and (8.17) together with the LCE, one can find a 

set of joint variables, (ߠଶ , , ଷߠ   .ସ), by using any marker on any linkݏ

 

 

8.5.1 Curve Fitting Process to Joint Variables 
 

After finding a set of joint variables, (ߠଶ , , ଷߠ  ସ), one should make sure that the jointݏ

variables calculated  by the vision system and the joint variables calculated by using 

the encoder have the same period at steady state. For this purpose, a Fourier series, 

with a pre-determined period, is fitted to the set of variables. The Fourier series 

function that is fitted to a joint variable is described by the function 

 ݃௙௜௧ (ݐ) = ܽ଴ +  ∑ ܽ௡ cos(݊ݐݓ) + ܾ௡sin (݊ݐݓ)ே௡ୀଵ     (8.18) 

where,  

w: frequency, 

N: number of harmonics ܽ଴, ܽ௡ ܽ݊݀ ܾ௡: undetermined coefficients. 
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Here, one should note that N is a design parameter which is selected according to the 

number of extremes of the data which is going to be fitted. An explanation of reasoning 

used in order to select N is given in Appendix D. According to this reasoning, the 

minimum of N should be equal to the number of extremes [49]. 

 

While selecting the period to be used in the fits, both the vision data and the encoder 

data should be examined. When the vision data is examined, it is observed that a period 

is completed in 32 frames after the mechanism reaches steady state, i.e., the period is  

32/30 = 1.066 seconds. When the encoder data is examined, on the other hand, it is 

observed that a period is completed in 1.065 seconds after the mechanism reaches 

steady state. (Figure 57).  Since the encoder gives more frequent data, a period is taken 

to be 1.065 seconds for the Fourier series fit for both the encoder and vision data.  

 

 
Figure 57: Encoder Data for a specific time interval 
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The curve fitted to the joint variable θ3, with a period of 1.065 seconds is given in 

Figure 58. 

 

 

Figure 58: Fourier series curve fit in θ3 

 

Since θ3 has 4 extremes, N should be taken to be at least 2. In Figure 58, the graphs on 

the left correspond to N = 2 while the graphs on the right correspond to N = 3. It can 

be observed from Figure 58 that the two fits, for N = 2 and N = 3, are quite close to 

each other, implying that the results are dependable. One can apply the same process 

for s14. θ2, however, is different from θ3 and s14 since it does not have any extremes as 

seen in Figure 59. Hence, one should determine time derivate of θ2 to find the velocity 

data and apply the curve fitting process to the velocity data. Then, the integral of the 

curve fitted should yield θ2 and time derivate of it will yield the acceleration data.  In 

addition, the goodness of the curve fitted is evaluated according to the rules presented 

for the curve fitting process in the previous sections. 
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8.6 Case Studies 
 

In this section, kinematic analysis of the slider crank mechanism shown in Figure 52 

is performed by using the equations, presented in the previous sections, and the results 

are presented. Figure 60 shows the definitions of the joint variables of the slider crank 

mechanism which is analyzed.  

 

 

 

 

 

Figure 59: θ2 vs time as an example 
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Figure 60: Joint variables of the slider crank mechanism 

 

The set of joint variables (ߠଶ , , ଷߠ  ଵସ) is calculated by using different number ofݏ

markers. After finding the joint variables, (ߠଶ , , ଷߠ  :ଶ is calculated via the equationߠ ଵସ), the error in the joint variableݏ

 

Percent error in 2θ  = 
2θe (t) = 

( ) ( )
( )encoder

encodervision

2

22

θ
θθ −

 ×  100              (8.19) 

 

 

where (ߠଶ)௩௜௦௜௢௡and (ߠଶ)௘௡௖௢ௗ௘௥ denote the ߠଶ values obtained via the vision system 

data and via the encoder data, respectively. Here, it is assumed that encoder data yields 

actual value of  ߠଶ. 

(3) 

(4) 

(2) 

(1) 

Θ3

s14 

Θ2 
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Equation (8.19) defines the error in ߠଶ. One can easily write down similar equations 

to define the errors in ߠଷ and ݏଵସ as well.  

 

In the fore coming sections, the graphs of the joint variables (ߠଶ , , ଷߠ  ଵସ) obtainedݏ

by the vision system; obtained by the vision system and the encoder; the graphs of the 

errors in the joint variables (ߠଶ , , ଷߠ  ଵସ); and the graphs of the velocity andݏ

acceleration variables, i.e., first and second time derivation of the joint variables, are 

presented for different number of markers. The aforementioned results have been 

obtained by using different sets of markers. 

 

8.6.1 Case 1 
 

In this case, the kinematic analysis of the slider crank is performed by using only one 

marker. One should note that the Cartesian coordinates of the markers with respect to 

the body fixed reference frames and the dimensions of the slider crank mechanism are 

assumed to be known. Also, the coordinates of the origins of the body fixed reference 

frames are obtained by using the vision system. The results for marker M2,1 are 

presented in Figures 61 and 62. The results for the remaining markers are given in 

Appendix E. 
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M2,1 

Figure 61: Results of the kinematic analysis by using marker M2,1 
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Figure 62: Results of the kinematic analysis by using marker M2,1 [continued] 
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8.6.2 Case 2 
 

In this case, the kinematic analysis of the slider crank is performed by using two 

markers which are selected randomly. One should note that, similar to case 1, the 

Cartesian coordinates of the markers with respect to the body fixed reference frames 

and the dimensions of the slider crank mechanism are assumed to be. A single value 

for the joint variable vector (ߠଶ , , ଷߠ  ,ଵସ )  is calculated for each marker. Thenݏ

average values of the joint variables are calculated via the equations 

  

ଶߠ =  ∑ ఏమ೔ಿಾ೔సభேெ           (8.20) 

ଷߠ =  ∑ ఏయ೔ಿಾ೔సభேெ          (8.21) 

ସݏ =  ∑ ௦ర೔ಿಾ೔సభேெ          (8.22) 

 

 

where ߠଶ௜ , ଷ௜ߠ  and ݏସ௜   denote the ith value of ߠଶ,  ସ, respectively; and NM is theݏ ଷandߠ

number of markers. Note that for case 2, NM = 2. 

 

Clearly, the average values obtained via (8.20) – (8.22) will not satisfy the LCE. 

Therefore, in order to find the values of the joint variables which do satisfy the LCE, 

a minimization problem which minimizes the objective function 

 

ଵݓ        ൬ఏమି ఏమఏమ ൰ଶ + ଶݓ  ൬ఏయି ఏయఏయ ൰ଶ + ଷݓ  ቀ௦రି ௦ర௦ర ቁଶ
    (8.23) 

   

 

subject to the constraints 
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ସݏ + ܽଷ cos(ߠଷ) − ܽଶ cos(ߠଶ) = 0    ܽଵ + ܽଷ sin(ߠଷ) − ܽଶ sin(ߠଶ) = 0   

 

is solved. Here, ݓଵ,  ଷ  are weighting coefficients, which are assumed asݓ ݀݊ܽ ଶݓ

unity.  

 

The obtained (ߠଶ , , ଷߠ  ଵସ )  values which minimizes the objective function areݏ

presented in Figure 63 and 64. The results for the remaining marker pairs are given in 

Appendix F. 
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M2,1 and M2,2 

Figure 63: Results of the kinematic analysis by using markers M2,1 and M2,2 
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Figure 64: Results of the kinematic analysis by using markers M2,1 and M2,2 
[continued] 
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8.6.3 Case 3 
 

Case 3 is very similar to case 2, the only difference is that the number of markers used 

for the kinematic analysis is three, leading to NM = 3. The procedure that is followed 

is the same as case 2. The results for the marker triple M2,3, M3,4 and M4,1 are presented 

in Figures 65 and 66. The results for the remaining marker triples are given Appendix 

G.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 
 

M2,3, M3,4 and M4,1 

Figure 65: Results of the kinematic analysis by using the marker triple M2,3, M3,4 and 
M4,1 
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Figure 66: Results of the kinematic analysis by using the marker triple M2,3, M3,4 and 
M4,1 [continued] 
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8.6.4 Case 4 
 

In this case, the number of markers used for the kinematic analysis is 4. The procedure 

that is followed is the same as in case 2 and case 3. The results are presented in Figures 

67 and 68. 
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M2,2,  M2,3, M3,4 and M4,1  

Figure 67: Results of the kinematic analysis by using markers M2,2, M2,3, M3,4 and 
M4,1 
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Figure 68: Results of the kinematic analysis by using markers M2,2, M2,3, M3,4 and 
M4,1 [continued] 
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8.7 Comparison of Results and Discussion 
 

 

Let’s define the average percent error and percent rms errors associated with θ2(t) via 
the following two equations. 

 

 

Average percent error in 2θ  = 
2θe  = 

[ ]
initialfinal

t

t

tt

dtte
final

linitia

−

 )(
2θ

                     (8.24) 

 

 

Rms value of error
2θe (t)  =  ( )

rms
e

2θ  = 
[ ]

initialfinal

t

t

tt

dtte
final

linitia

−


2)(

2θ

           (8.25) 

  

 

The average and rms errors associated with θ3 and s14 are defined in a similar 
manner. Table 10 and Table 11, average and rms errors thus obtained are shown. 
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Table 10: Average Errors of Joint Variables 

 

Number 
of 
Markers Markers 

Average 
Percent Error 
of θ2 (%) 

Average 
Percent Error 
of θ3 (%) 

Average 
Percent Error 
of s14 (%) 

1 M2,1 5,3 0,4 3,2 
1 M2,2 5,3 0,3 2,5 
1 M2,3 6,7 0,7 4,4 
1 M2,4 17,9 1,5 12,0 
1 M3,1 12,1 0,7 7,3 
1 M3,2 13,0 0,8 8,3 
1 M3,3 15,1 1,2 8,3 
1 M3,4 11,6 0,6 5,6 
1 M4,1 14,2 1,7 13,5 
1 M4,2 13,3 1,1 9,1 
1 M4,3 12,3 1,0 10,0 
1 M4,4 13,5 1,0 10,2 
2 M2,1-M2,2 1,3 0,2 1,3 
2 M2,1-M2,3 7,8 0,4 3,8 
2 M2,3-M2,4 11,1 0,7 6,2 
2 M3,2-M3,3 6,1 0,5 4,2 
2 M3,3-M3,4 8,2 0,7 6,6 
2 M4,1-M4,2 12,0 1,3 11,4 
2 M2,3-M3,4 7,1 0,6 3,9 
2 M2,2-M4,1 9,9 0,6 4,6 
2 M3,4-M4,1 4,5 0,8 6,0 
3 M2,3-M3,4-M4,1 5,9 0,4 4,2 
3 M2,2-M2,3-M3,4 5,0 0,4 2,7 
4 M2,2-M2,3-M3,4-M4,1 4,6 0,3 1,3 
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Table 11: RMS Values of Error in Joint Variables 

 

Number 
of 
Markers 

 
 
Markers 

Rms Values of 
Error 
Percentage in 
θ2 

Rms Values of 
Error 
Percentage in 
θ3 

Rms Values of 
Error 
Percentage in 
s14 

1 M2,1 7,0 0,5 4,1
1 M2,2 9,5 0,4 3,1
1 M2,3 9,1 0,9 5,9
1 M2,4 20,8 1,9 13,5
1 M3,1 18,6 0,9 9,5
1 M3,2 15,9 1,0 9,8
1 M3,3 18,2 1,5 10,3
1 M3,4 19,1 0,8 6,7
1 M4,1 16,1 2,4 17,2
1 M4,2 16,4 1,2 10,6
1 M4,3 15,4 1,1 11,6
1 M4,4 17,5 1,1 12,1
2 M2,1-M2,2 1,8 0,3 1,9
2 M2,1-M2,3 10,6 0,4 4,5
2 M2,3-M2,4 15,1 0,9 8,3
2 M3,2-M3,3 13,2 0,7 5,6
2 M3,3-M3,4 9,4 0,9 8,0
2 M4,1-M4,2 16,4 1,5 13,2
2 M2,3-M3,4 8,5 0,7 4,9
2 M2,2-M4,1 12,6 0,7 5,1
2 M3,4-M4,1 5,9 1,0 8,0
3 M2,3-M3,4-M4,1 8,6 0,5 5,2
3 M2,2-M2,3-M3,4 6,1 0,5 3,3
4 M2,2-M2,3-M3,4-M4,1 5,5 0,4 1,7

 

 

 

 

 

 



142 
 

When the results obtained by using only one marker are compared, it is observed that 

the errors associated with markers M2,4 is a bit higher than the others. There are two 

reasons for that. First of all, marker M2,4 is in a different plane than the other markers. 

Hence, there is a depth difference, and it is farther, with respect to the camera, than the 

remaining markers on link 2. It is clear that there are measures errors associated with 

the vision system. Furthermore, when a marker is farther from the camera, the error 

increases. Another reason for the error is that marker M2,4 cannot always be viewed by 

the right camera. This marker can only be viewed by the right camera during half of 

the period. Therefore, the errors associated with marker M2,4 are large. Same comments 

are valid for markers M3,1, M3,2 and M3,3. These markers cannot be viewed by cameras 

at all times because generally link 2 and link 1, which is the fixed link, obscure these 

markers. This leads to position data for the markers M3,1, M3,2 and M3,3.  

 

The next thing that is observed is that the markers on the slider lead to high error 

values, too. The first reason is that, the slider doesn’t move on a line since there is a 

very small clearance between slider and the track. In other words, the slider can move 

in the track in an upward direction, slightly, because of the forces applied by link 3. 

Furthermore, while using the flashback to synchronize the encoder with the camera, 

the flashback has obstructed the markers on the slider in some of the frames. This is 

another source of error.  

 

Another source of error associated with all of the markers is that there is extensive blur 

in some of the frames. In fact, sometimes some of the markers cannot be detected as 

circles because of the high blur. In this case, the centroid of the blurred area is taken 

to be the center of the marker. 

 

Another point is that the encoder yields the relative position (with respect to the first 

position of the mechanism). So, it is assumed that the first calculated data set for θ2 by 

using the vision system at time t = 0 sec is correct. The encoder values at t ≠ 0 is 

determined relative to the first value at the time t = 0 sec. Hence, if there is an error in 
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the θ2 value at t = 0, this error will affect the results. In addition to that, obviously, the 

encoder does not give precise results. For instance, it is observed that according to the 

encoder the period of the mechanism is not constant. However, according to the vision 

system data, the period of the mechanism is constant after two period. There is also 

some error involved in the rotation matrix (between the camera reference frame and 

the mechanism reference frame).  

 

When the results obtained by using two markers are considered, one can state that, 

generally, the average error values are less than the errors obtained by using only one 

marker. However, it is observed that sometimes the average error value obtained by 

using two markers is between the average error values obtained by using these markers 

one by one.   Also, one can observe that the errors are quite small when markers M2,1 

and M2,2 are used. 

 

When the results obtained by using three markers are considered, one can notice that 

the average error is lower than the ones obtained by using one or two markers except 

for the case where markers M2,1 and M2,2 are used.  

 

The last case corresponds to the usage of 4 markers. As expected, it is seen that the 

average error values in all joint variables are lower than the ones where three markers 

are used. Therefore, one can conclude that when the number of markers used is 

increased, the average error values decrease.   

 

If the average error values of the joint variables are compared with each other, one 

observes that the error associated with θ2 is higher, while the error associated with θ3 

are lower. This is an expected result since angular speed of link 2 is higher than the 

angular speed of link 3. The maximum speed of θ2 is about 9 rad/s, while the maximum 

speed of θ3 is about 3.5 rad/s (See Figure 69). Recall that the cameras used in this thesis 
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are 30 fps cameras. Hence, using higher speed and higher resolution cameras will 

definitely reduce the errors.    

 

The velocities ߠଶሶ , ଷሶߠ , ଵସሶݏ  and the accelerations ߠଶሷ , ଷሷߠ , ଵସሷݏ  obtained by using the 

encoder data and by using the vision system data for one marker only are presented in 

Figure 69. The results obtained by using the encoder and vision system are quite 

consistent for ݏଵସሶ  and ݏଵସሷ ; less consistent for ߠଷሶ  and ߠଷሷ  and least consistent for ߠଶሶ  and ߠଶሷ . 
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Figure 69: Velocities and Accelerations obtained via the vision system and 
via the encoder 
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CHAPTER 9 

CONCLUSION 

This thesis consists of two main parts. In the first part, a vision system consisting of 2 

inexpensive, commercial cameras has been developed. In this first part, the aim is to 

calibrate the cameras without using any calibration patterns. Here, it is assumed that 

the extrinsic parameters of the cameras (with respect to each other) are fixed and 

known during the recording. One needs to determine the intrinsic parameters of the 

cameras as well. In this thesis, self – calibration methods are used to calculate the 

intrinsic parameters. Two methods, which are the simplified Kruppa equations method 

and the equal eigenvalue method, are compared. It is shown that the equal eigenvalue 

method is more convenient to use if there exists noise. Hence, in this thesis the equal 

eigenvalue method is used to calculate the intrinsic parameters. Since only the intrinsic 

parameters are calculated and the extrinsic parameters are known, the vision system 

developed in this thesis is a pre – calibrated one. In order to realize the self – calibration 

methods, the cameras are turned around a fixed point independently in order to obtain 

the views of the scene at different orientations. The positions of the cameras are then 

fixed and the scene is recorded. Once the intrinsic and the extrinsic parameters are 

obtained, the coordinates of any 3D point in the scene can be calculated in any camera 

reference frame by using triangulation method. 

In the second part of the thesis, kinematic analysis of a slider crank mechanism is 

realized by using the vision system that has been developed. Markers are attached on 

different links of the mechanism. By tacking the markers, position, velocity and 

acceleration analysis are performed. The results are compared with the results that are 

obtained by using an encoder which is attached to the input link of the mechanism. It 

is demonstrated that when the number of markers used is increased, better results can 

be obtained.  

The result obtained in this study may be improved extensively by using cameras with 

better specifications. As it is known, the slider crank is a planar mechanism. The 

methods developed in this thesis may be easily extended to the kinematic analysis of 
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a spatial mechanism. In addition to that, gait analysis of human or animals can be 

realized by using the developed vision system without using a calibration pattern. And 

finally, the scene may be reconstructed by using only uncalibrated images. In other 

words, the intrinsic and extrinsic parameters may be obtained by using self – 

calibration methods only. 
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APPENDIX A 
IMAGE AND IMAGE PROCESSING 

A.1 Digital Image 

 

A digital image is an electronic snapshot of a physical scene. It can be sampled as a 

grid of dots or imaging elements (pixel). Each pixel represent the color at a single 

point. So, each pixel has particular location and value. Basically, a digital image is a 

numeric representation which consists of spatial coordinates and a range of colors.  

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

Figure 70: An Example of Digital Image 
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A digital image can be represented as an M x N matrix. M and N can be any positive 

integers and they indicate the numbers of pixels in each direction. For example, in a 

640x480 digital image, 640 is the number of pixels in the horizontal direction and 480 

is the number of pixels in the vertical direction. However, (x, y) represents the xth pixel 

Figure 71: Matrix Representation of Digital Image [40] 
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on the vertical axis and the yth pixel on the horizontal axis. The color of a pixel is 

represented by f(x, y). Therefore, a digital image may be represented by the matrix as: 

 

Fp = ൦ ଵ݂ଵ ଵ݂ଶ . . . . ଵ݂ேଶ݂ଵ ଶ݂ଶ : : ଶ݂ே: : : : :ெ݂ଵ ெ݂ଶ . . . . ெ݂ே൪      (A.1) 

 

where, fij is the color value, or intensity value, of  pixel (i, j) 

Images can be achieved, examined, altered, displayed, transmitted or printed by 

digitizing them.  

 

A.2 Image Types 

 

There are basically there types of images depending on its color, or intensity level, of 

its pixels. These images are, namely, binary image, grayscale image and full color 

image.  

 

A.2.1 Binary Image 

 

Binary images can be called black and white images. Binary images are made up of 

pixels each of which holds two discrete numbers, 0 or 1. Pixels with 0 value are 

displayed as black while pixels with 1 value are displayed as white. (See Figure 72). 
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Binary images are used in many applications because they are the simplest form of 

image to process. Binary images are especially useful for finding the silhouette of 

objects in the scene. Other useful applications of binary image are:  

 

1. Identifying objects 

2. Identifying orientation of objects 

3. Interpreting text. 

 

A.2.2 Grayscale Image 

 

In this type of image, image is composed of shades of gray. Black is the weakest 

intensity, while white is the strongest one. Like binary images, black pixels are 

represented by the integer value of 0 and white pixels are represented by the integer 

value of 1. Gray pixels can be represented by any number between 0 and 1. However, 

the gray level is generally indicated as a power of 2, i.e.,   

L = 2ķ          (A.2) 

Figure 72: Binary Image 
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Here,  

L: the number representing the gray level 

ķ: the number of bits to store one pixel 

 

Most image file formats support a minimum of 8 – bit grayscale which provides 28 = 

256 levels of gray per pixel. Some image formats support 16 – bit grayscale which 

provides 216 = 65536 levels of gray.  

 

 

 

 

 

     

 

 

 

 

 

 

 

 

Grayscale images have similar application areas with binary images. 

 

 

Figure 73: Representation of Grayscale Image
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A.2.3 Full Color Image 

 

The colors are identified by the response of a visual system to the presence of light at 

various wavelengths. For full color image, the image is stored as an array of M x N x 

3. There are various reasons for specifying the colors numerically. First of all, 

identifying a color numerically makes accurate color reproduction easier. Digital 

imaging causes some color reproduction problems. One can ensure that everyone 

observes the same color with the help of numerically defined colors. Another reason 

is that few color names are widely recognized by English speakers. Hence, sometimes 

it is not possible to agree on appropriate color names. Therefore, some color models 

are standardized. In Figure 74, an example for a full color image is given. 

 

 

 

Figure 74: Full Color Image 
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A.2.3.1 RGB Color Space 

 

In this model, three primary colors are used to define color. These primary colors are 

red, green and blue which have single wavelengths. Magenta, cyan and yellow are 

called secondary colors of the RGB color space. You can see these colors in Figure 

75. 

 

    

 

 

Here, magenta is the combination of red and blue. Cyan is the combination of green 

and blue. Finally, yellow is the combination of red and green. The RGB model is based 

on the 3D Cartesian coordinate system, where the color of subspace of interest is the 

color tube shown in Figure 76. 

 

 

Figure 75: Primary and Secondary Colors of the RGB Model 
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As seen in Figure 76, the center of the cube, which is the point (0, 0, 0), represents the 

black color, while the point (1, 1, 1) represents the white color. In addition to that, 

some colors can only be obtained by subtractive color matching in the RGB color 

model.  

 

A.2.3.2 CMY Color Space 

 

CMY color model designates the cyan, magenta and yellow color model.  The CMY 

color space uses these colors as the primary colors to define other colors. CMY color 

model is suitable for some printers and devices.  

 

Figure 76: RGB Color Cube [40] 
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The conversion from RGB to CYM can be performed as follows: 

൥ ൩ܯܻܥ =  ൥111൩ −  ൥ܴܤܩ൩               (A.3) 

Here, 1 represents the white color.  

 

 

 

 

Figure 77: CMY Color Model 
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A.2.3.3 HSV Color Space 

 

The HSV color model uses hue, saturation and value which are three important 

indicators in describing color for this model. So, HSV color model basically describes 

colors (i.e., hues) in terms of their shade, (i.e., saturation), and their brightness, (i.e., 

value). These three concepts are explained below. 

1. Hue represents the purity of the color. It is expressed as a number from 0 to 

360 degrees. Hue represents red, yellow, green, cyan, blue, magenta colors. 

Each color fills a part which is 60 degrees.  

2. Saturation represents the measure of the degree to which a pure color is diluted 

by white light. It can be called the density of color. It ranges from 0 % to 100 

%.  

3. Value describes the brightness of the color from 0 % to 100 %. 

 

These concepts can be seen in the following two figures. 

  

 

 

 

 

  

 

 

 

    

 Figure 78: HSV Color Circle [40] 
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A.3 Conversion between Image Types 

 

Conversion between image types is an important function for image processing. 

MATLAB® has various functions for conversion between image types with the help 

of the Image Processing Toolbox. In this thesis, full color images are converted to 

grayscale images or binary images. Therefore, only conversion to grayscale and 

conversion to binary image (from full color image) are discussed in the following parts. 

 

 

 

 

 

Figure 79: HSV Color Cone 
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A.3.1 Conversion from Full Color Image to Grayscale Image 

 

Images are expressed as a matrix of size M x N x 3 if they are in the full color image 

form. So, in order to convert a full color image to a grayscale one, the image should 

be expressed as an M x N matrix. If the image is given in the RGB color model, the 

conversion can be performed by using the following formula: 

 

Gray = 0.2989 R + 0.5870 G + 0.1140 B     (A.4) 

 

Here; R, G, B are the primary colors of RGB color model. 

 

If the image is given in the HSV color model, the grayscale image of it can be obtained 

by eliminating hue and saturation values.  

 

In this thesis, the conversion from full color image to grayscale image is performed by 

using MATLAB® which has various functions for this purpose. Among these 

functions, the “rgb2gray” function is chosen to perform the conversion.  

 

A.3.2 Conversion from Grayscale Image to Binary Image 

 

As explained earlier, a binary image can be expressed as a matrix of the size M x N, 

which contains only 1’s and 0’s. Therefore, a threshold function is needed to perform 

the conversion from grayscale to binary image. This threshold function may be 

described as follows: 

 

B(x, y) = ൜1 ݂݅ ݔ) ܫ, (ݕ > ,ݔ) ܫ ݂݅ 0ܶ (ݕ < ܶ       (A.5) 
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Here, 

B: the value for binary image for the pixel (x,y) 

T: the level of threshold 

I: grayscale value of pixel (x,y) 

 

 

A.3.3 Conversion from Full Color Image to Binary Image 

 

In order to convert a full color image to a binary image, firstly a conversion from full 

color image to a grayscale one should be performed. After obtaining the grayscale 

image, the conversion from grayscale image to binary image part, which is explained 

before, should be applied.  

 

A.4 Feature Points Detection 

 

After performing conversion, it may be necessary to determine various features in the 

image. Surfaces, edges or corner points can be helpful for any purpose in computer 

vision. In this thesis, corner points are obtained from images. Therefore, in the 

following part, only corner points are discussed. 

 

 

A.4.1 Corner Points 

 

Corners are the intersection points of two edges which have different orientations. 

Corners and edges are useful in order to define shapes in image planes. Corner points 

ease the matching process between images, pattern recognition and measurement since 

they are stable when viewpoint of the camera changes. In order to detect corner points, 
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there are different kinds of detectors such as the Harris corner detector or the Susan 

corner detector. Generally, the corners are located in the regions with large intensity 

changes in every direction. So, the corners can be identified by observing intensity 

values within a small window. If the window is on a corner point, shifting the window 

in any direction will result in large change in appearance or intensity.  

 

 

A.4.1.1 Harris Corner Detector [42] 

 

The Harris corner detector uses square or rectangular windows to search for the corner 

points. (See Figure 80). 

 

 

 

 

If the function  

m (∆x, ∆y) = ∑ ,ݔ)ݓ (௫,௬)(ݕ ൫ݔ)ܫ, (ݕ − ݔ)ܫ + ,ݔ∆ ݕ +  ൯ଶ  (A.6)(ݕ∆ 

Figure 80: Harris Corner Detector 
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assumes high values for any direction at some point, the point can be considered as a 

distinct point. 

 

Here, (∆x, ∆y): shifting direction 

 w(x, y): the window function 

 I: the intensity values at a point 

 

For constant patches, this function’s value should be near 0. However, for distinctive 

patches, the function should have large values. Therefore, there will be no change in 

all directions for flat regions, there will be no change in edge direction if the detector 

is on the edge and there will be a significant change in all directions if the detector is 

on a corner point. 

 

Now, let us define the C matrix as follows. 

C = ቈ ௫ଶܫ∑ ௬ܫ௫ܫ∑௬ܫ௫ܫ∑ ௬ଶܫ∑ ቉        (A.7) 

 

Here, Ix and Iy are image gradients in the horizontal and vertical directions 

 

As it is seen, C is a symmetric matrix. Also, it has two nonnegative significant 

eigenvalues. A corner is detected if the minimum of these two eigenvalues is larger 

than a threshold value. Instead of calculating the eigenvalues, the product of 

eigenvalues can be compared via following expression: 

 

Det(C) – k ∙ trace(C2) = λ1 ∙ λ2 – k(λ1 + λ2)2     (A.8) 
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where, k: a small number  

λ1 , λ2 : the eigenvalues of matrix C 

If this expression is maximized, the detector is on the corner point. 

 

 

A.4.1.2 Susan Corner Detector 

 

Unlike the Harris corner detector, the Susan corner detector uses a circle as a search 

window.  

 

 

 

Near a corner point, univalue segment assimilating nucleus (USAN) significantly 

decreases and attains a local minimum at the corner point. For Susan corner detector, 

brightness difference threshold can be utilized for deciding if a pixel is in the circular 

Figure 81: Susan Corner Detector [41] 
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mask belongs to USAN and geometrical threshold can be used to decide if a local 

minimum is a corner point. 

 

In this thesis, Harris corner detector is used during this thesis. MATLAB® has various 

functions to find corner points. “Detectcornerpoints” or “Corner” functions of 

MATLAB® can be used to detect the corner points in the images. 
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APPENDIX B 
SINGULAR VALUE DECOMPOSITION (SVD) [30] 

The Singular Value Decomposition of an M x N matrix A with M ≥ N can be written 

as the product of an M x N orthogonal matrix U, an N x N diagonal matrix D with, non 

– negative diagonal elements, and the transpose of an N x N orthogonal matrix V such 

that 

ܣ   = ்ܸܦܷ =  ∑ ݀௜ ௜ܷ ௜்ܸே௜ୀଵ        (B.1) 

 

Here, di is D(i, i) and  Ui,Vi are the ith columns of matrices U and V. 

 

Here, one is interested in computing   డ௎డ௔೔ೕ , డ௏డ௔೔ೕ and డ஽డ௔೔ೕ for every element aij of the 

matrix A. If we take derivative of equation (B.1), with respect to aij, the following 

equation is obtained.  

 

డ஺డ௔೔ೕ =  డ௎డ௔೔ೕ ்ܸܦ + ܷ డ஽డ௔೔ೕ ்ܸ + ܦܷ డ௏೅డ௔೔ೕ     (B.2) 

 

One can show that డ௔ೖ೗డ௔೔ೕ = 0 while డ௔೔ೕడ௔೔ೕ = 1 for ∀(݇, ݈) ≠ (݅, ݆) 

Since U is an orthogonal matrix, one can write the following equation: 

 

்ܷܷ = → ܫ  డ௎೅డ௔೔ೕ ܷ + ்ܷ డ௎డ௔೔ೕ =  Ω௎௜௝் + Ω௎௜௝ = 0    (B.3) 

where ΩUij is given by  
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 Ω௨௜௝ = ்ܷ డ௎డ௔೔ೕ         (B.4) 

 

It is clearly seen that ΩUij is an anti – symmetric matrix. Similarly, an anti – symmetric 

matrix, ΩVij, for V can be written as  

 

Ω௏௜௝ = డ௏೅డ௔೔ೕ ܸ         (B.5) 

 

By multiplying equation (B.2) by UT and V from the left and right sides, respectively 

and combining it with equations (B.4) and (B.5), the following equation is obtained. 

 ்ܷ డ஺డ௔೔ೕ ܸ =  Ω௎௜௝ܦ + డ஽డ௔೔ೕ +  Ω௏௜௝      (B.6)ܦ

 

Since ΩUij and ΩVij are anti – symmetric matrices, all diagonal elements of them must 

be equal to zero. Also, the diagonal elements of ΩUijD and D ΩVij are equal to zero 

because D is a diagonal matrix. Therefore, equation (B.6) yields the derivative of 

singular values as: 

 

డௗೖడ௔೔ೕ =  ௝௞         (B.7)ݒ௜௞ݑ

 

where uik and vjk designate elements of matrices U and V.  
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The elements of matrices ΩUij and ΩVij can be computed by solving a set of 2 x 2 linear 

system, which are derived from the off – diagonal elements of the matrices in equation 

(B.6) as follows: 

 ݀௟Ω௎௜௝௞௟ + ݀௞Ω௏௜௝௞௟ =   ௝௟ݒ௜௞ݑ

݀௞Ω௎௜௝௞௟ + ݀௟Ω௏௜௝௞௟ =  ௝௞       (B.8)ݒ௜௟ݑ−

 

Here, index ranges are k = 1…….N and l = i+1…….N. Thus, the  ே(ேିଵ)ଶ   parameters, 

defining the non – zero elements of ΩUij and Ωvij, can be calculated by solved ே(ேିଵ)ଶ    

corresponding 2 x 2 linear system. 

 

After computing ΩUij and ΩVij, డ௎డ௔೔ೕ , డ௏డ௔೔ೕ   are computed as follows: 

 

డ௎డ௔೔ೕ = ܷΩ௎௜௝         

డ௏డ௔೔ೕ = −ܸΩ௏௜௝         (B.9) 
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APPENDIX C 

MORE CONSTRAINED MINIMIZATION ALGORITHM [1] 

The statement is: 

Minimization ǁ Ax ǁ subject to ǁ x ǁ = 1 and x = Gŵ for a given matrix G and some 

unknown vector ŵ. 

 

The condition that x = Gŵ for some ŵ means nothing more than that x lies in the 

span of the columns of G. If G = UDVT where D has r non – zero entries, then let U’ 

be the matrix consisting of the first r columns of U. By the way, one should specify 

that G has rank r. Then, G and U’ have the same column space. The solution can be 

found by setting x’ to be unit vector that minimizes ǁAU’x’ǁ, then setting x = U’x’.  

 

If ŵ is required, it can be solved by Gŵ = x = U’x’. The solution can be obtained as: 

 ŵ = ݔାܩ =  (C.1)        ′ݔ′ାܷܩ

where, ܩା is the pseudo – inverse of G.  

 

Summarization of complete algorithm: 

 

1) Compute the SVD of G as G = UDVT, where non – zero values of D appear 

first down the diagonal. 

2) Take U’ as the matrix which is formed by first r column of U.  

3) Find the unit vector x’ that minimizes ǁ AU’x’ ǁ as: 

x’ is the last column of V, where AU’ = UDVT is the SVD of AU’. 
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4) Find required solution as x = U’x’. 

5) If ŵ is demanded, it can be computed as ŵ = V’D’-1x’, where V’ is formed by 

first r columns of V and D’ is the upper r x r block of D. 
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APPENDIX D 

PROOF FOR ORDER OF FOURIER FITS 

 

Fourier series equation is given by  

  

 ݃௙௜௧ (ݐ) = ܽ଴ +  ∑ ܽ௡ cos(݊ݐݓ) + ܾ௡sin (݊ݐݓ)ே௡ୀଵ     (D.1) 

 

When the variables t is changed as ߠ =  the equation (D.1) becomes , ݐݓ

 ݃௙௜௧ (ߠ) = ܽ଴ + ∑ ܽ௡ cos(݊ߠ) + ܾ௡sin (݊ߠ)ே௡ୀଵ     (D.2) 

 

The critical points of ݃௙௜௧(ݐ) = 0 are obtained by solving the equation ௗ௚೑೔೟(௧)ௗ௧ = 0 

 

In case where the variable is ߠ, one should solve the following equation to find critical 

points.  

 

ቂௗ௚೑೔೟(ఏ)ௗఏ ቃ [ௗఏௗ௧] = 0         (D.3)  

 

 

If the derivative of equation (D.2) is taken and substituted into (D.3), one can obtain 
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[∑ −݊ܽ௡sin(݊ߠ)ே௡ୀଵ + ∑ ܾ݊௡cos(݊ߠ)ே௡ୀଵ ] [w] = 0   (D.4) 

 

 

Also, one can write the multiple angle formula as follows: 

 sin(݊ߠ) =  ∑ ൫௡௞൯௡௞ୀ଴ cos௞(ߠ) sin௡ି௞(ߠ)sin [(݊ − (ߠ݊)cos (D.5)   [(2/ߨ)(݇ =  ∑ ൫௡௞൯௡௞ୀ଴ cos௞(ߠ) sin௡ି௞(ߠ)cos [(݊ −  (D.6)   [(2/ߨ)(݇

 

 

And one can write the tangent half angle formula as follows: 

 sin(ߠ) = (2 ∗ 1)/(ݐ +  ଶ)       (D.7)ݐ

 cos(ߠ) = (1 − ଶ)/(1ݐ +  ଶ)       (D.8)ݐ

 

Substituting the equations (D.5), (D.6), (D.7) and (D.8) into (D.4), a polynomial 

equation of degree 2N in t is obtained. Therefore, it is proven that the number of critical 

points of ݃௙௜௧(ݐ) = 0 is 2N at most.  
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APPENDIX E 

RESULTS OBTAINED BY USING ONLY ONE MARKER 

Results obtained by using one marker only are presented starting from the next page 

in this section.  
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M2,2 

Figure 82: Results of the kinematic analysis by using marker M2,2 
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Figure 83 : Results of the kinematic analysis by using marker M2,2 [continued] 
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M2,3 

Figure 84: Results of the kinematic analysis by using marker M2,3 
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Figure 85: Results of the kinematic analysis by using marker M2,3 [continued] 
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M2,4 

Figure 86: Results of the kinematic analysis by using marker M2,4 
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Figure 87: Results of the kinematic analysis by using marker M2,4 [continued] 
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M3,1 

Figure 88: Results of the kinematic analysis by using marker M3,1 
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Figure 89: Results of the kinematic analysis by using marker M3,1 [continued] 
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M3,2 

Figure 90: Results of the kinematic analysis by using marker M3,2 
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Figure 91: Results of the kinematic analysis by using marker M3,2 [continued] 
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M3,3 

Figure 92: Results of the kinematic analysis by using marker M3,3 
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Figure 93: Results of the kinematic analysis by using marker M3,3 [continued] 
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M3,4 

Figure 94: Results of the kinematic analysis by using marker M3,4 
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Figure 95: Results of the kinematic analysis by using marker M3,4 [continued] 
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M4,1 

Figure 96: Results of the kinematic analysis by using marker M4,1 
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Figure 97: Results of the kinematic analysis by using marker M4,1 [continued] 
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M4,2 

Figure 98: Results of the kinematic analysis by using marker M4,2 
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Figure 99: Results of the kinematic analysis by using marker M4,2 [continued] 
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M4,3 

Figure 100: Results of the kinematic analysis by using marker M4,3 
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Figure 101: Results of the kinematic analysis by using marker M4,3 [continued] 
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M4,4 

Figure 102: Results of the kinematic analysis by using marker M4,4 
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Figure 103: Results of the kinematic analysis by using marker M4,4 [continued] 
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APPENDIX F 

RESULTS OBTAINED BY USING TWO MARKERS 

Results obtained by using two markers are presented starting from the next page in this 

section.  
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M2,1 and M2,3 

Figure 104: Results of the kinematic analysis by using markers M2,1 and M2,3 
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Figure 105: Results of the kinematic analysis by using markers M2,1 and M2,3 
[continued] 
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M2,3 and M2,4 

Figure 106: Results of the kinematic analysis by using markers M2,3 and M2,4 



209 
 

 

Figure 107: Results of the kinematic analysis by using markers M2,3 and M2,4 
[continued] 
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M3,2 and M3,3 

Figure 108: Results of the kinematic analysis by using markers M3,2 and M3,3 
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Figure 109: Results of the kinematic analysis by using markers M3,2 and M3,3 
[continued] 



212 
 

M3,3 and M3,4 

Figure 110: Results of the kinematic analysis by using markers M3,3 and M3,4 
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Figure 111: Results of the kinematic analysis by using markers M3,3 and M3,4 
[continued] 
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M4,1 and M4,2 

Figure 112: Results of the kinematic analysis by using markers M4,1 and M4,2 
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Figure 113: Results of the kinematic analysis by using markers M4,1 and M4,2 
[continued] 
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M2,3 and M3,4 

Figure 114: Results of the kinematic analysis by using markers M2,3 and M3,4 
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Figure 115: Results of the kinematic analysis by using markers M2,3 and M3,4 
[continued] 
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M2,2 and M4,1 

Figure 116: Results of the kinematic analysis by using markers M2,2 and M4,1 
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Figure 117: Results of the kinematic analysis by using markers M2,2 and M4,1 
[continued] 
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M3,4 and M4,1 

Figure 118: Results of the kinematic analysis by using markers M3,4 and M4,1 
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Figure 119: Results of the kinematic analysis by using markers M3,4 and M4,1 
[continued] 
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APPENDIX G 

RESULTS OBTAINED BY USING THREE MARKERS 

Results obtained by using three markers are presented starting from the next page in 

this section.  
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M2,2, M2,3 and M3,4 

Figure 120: Results of the kinematic analysis by using the marker triple M2,2, M2,3 
and M3,4 
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Figure 121: Results of the kinematic analysis by using the marker triple M2,2, M2,3 
and M3,4 [continued] 


