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ABSTRACT 

 

 

VALIDATION OF DEPTH-AVERAGED MIXING LENGTH TURBULENCE 

MODEL FOR UNIFORM CHANNEL FLOWS 

 

 

 

Karaman, Çağrı Hasan 

M.S., Department of Civil Engineering  

 Supervisor: Prof. Dr. İsmail Aydın  

 

August 2014, 97 pages 

 

A one-dimensional depth averaged turbulence model based on volumetric mixing 

length definition is developed for shallow flows. Numerical solution of the model is 

done using finite volume method for steady, uniform closed duct flows to observe 

lateral momentum exchange over depth discontinuities. The model is verified by 

comparison to two-dimensional numerical solutions and to the experimental data 

available in the literature.  

The model is then applied to uniform free surface flows in rectangular and compound 

channels. Comparisons with two-dimensional numerical solutions as well as 

experimental data taken from the literature indicated that depth integrated velocity 

and bed shear stresses are successfully predicted by the model with good accuracy.  

 

Keywords: Mixing length, computational fluid dynamics, channel flow, turbulence 

model 
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ÖZ 

 

 

DERİNLİK ENTEGRALLİ TÜRBÜLANS KARIŞIM UZUNLUĞU 

MODELİNİN ÜNİORM KANAL AKIMINDA DOĞRULANMASI 

 

 

 

Karaman, Çağrı Hasan 

Yüksek Lisans., İnşaat Mühendisliği Bölümü 

 Tez Yöneticisi: Prof. Dr. İsmail Aydın  

 

Ağustos 2014, 97 sayfa 

 

Sığ akımlar için hacimsel karışım uzunluğu tanımına dayalı 1-boyutlu derinlik 

entegralli türbülans modeli geliştirilmiştir. Yanal momentum değişimini 

gözlemlemek için kararlı, uniform kapalı kanal akımlarında modelin sayısal çözüm 

yapılarak 2-boyulu sayısal çözüm ve literatürde bulunan deney verileri ile model 

doğrulanmıştır. 

Ardından, model dikdörtgen ve bileşik kesitli kanallarda serbest yüzeyli kanal 

akımlarına uygulanmıştır. İki boyutlu sayısal çözüm ve literatürden alınan deney 

verileriyle karşılaştırılarak derinlik entegralli hız ve cidar kayma gerilmesinin model 

tarafından başarıyla bulunduğu tespit edilmiştir. 

 

Anahtar Kelimeler: Karışım uzunluğu, hesaplamalı akışkanlar mekaniği, kanal 

akımı, türbülans modeli  

 



vii 

 

 

 

 

 

 

 

 

 

 

For my family 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

ACKNOWLEDGMENTS 

 

 

 

First and foremost, I express my most humble and sincere appreciation to my 

supervisor Prof. Dr. İsmail Aydin for his guidance, advice, understanding and 

inspiration throughout the research. 

 

I dedicate this research to my beloved family for their endless love, trust, 

understanding and support. 

 

I would also like to thank my manager Serdar Sürer in DHI Turkey for his support 

and understanding during my work in company. I wish to thank my friend Engin Koç 

for helping me in this research. 

 

 

 

 

 

 

 

 

 

 



ix 

 

TABLE OF CONTENTS 

 

 

 

ABSTRACT ................................................................................................................. v 

ÖZ ............................................................................................................................... vi 

ACKNOWLEDGMENTS ........................................................................................ viii 

TABLE OF CONTENTS ............................................................................................ ix 

LIST OF FIGURES ................................................................................................... xii 

LIST OF SYMBOLS ............................................................................................... xvii 

CHAPTERS  

1. INTRODUCTION.................................................................................................... 1 

1.1 General Description ......................................................................................... 1 

1.2 Background ...................................................................................................... 3 

1.2.1 Non-Linear Mixing Length Model (NMLM) .......................................... 3 

1.2.2 Solution on Different Geometries ............................................................ 6 

1.3 Scope of the Work .......................................................................................... 10 

2. 1D MODEL DEVELOPMENT ............................................................................. 11 

2.1 Derivation of Depth Averaged Equations for Rectangular Duct Flow .......... 12 

2.2 Determination of bottom shear stress ............................................................. 14 

2.3 Modelling of Turbulence................................................................................ 18 

3. DEPTH AVERAGED MODEL FOR UNIFORM DUCT FLOWS ...................... 21 

3.1 Numerical solution ......................................................................................... 22 



x 

 

3.2 Uniform duct flow .......................................................................................... 24 

3.2.1 Turbulence Model .................................................................................. 24 

3.2.2 Wall Shear Stresses ................................................................................ 25 

3.2.3 Comparison with 2 Dimensional Solution ............................................. 26 

3.3 Uniform Flow in Compound Duct ................................................................. 31 

3.3.1 Turbulence Model .................................................................................. 31 

3.3.2 Wall shear stress ..................................................................................... 32 

3.3.3 Comparison with 2 Dimensional Solution ............................................. 37 

3.4 Uniform flow in a periodic compound duct ................................................... 46 

3.4.1 Turbulence Model .................................................................................. 47 

3.4.2 Wall shear stress ..................................................................................... 48 

3.4.3 Comparison with 2 Dimensional Solution ............................................. 48 

4. COMPARISON OF 1D MODEL WITH MEASURED DATA ............................ 53 

4.1 Rectangular Duct Flow Comparison .............................................................. 53 

4.2 Open Channel Comparison ............................................................................ 55 

4.2.1 FCF Experiment 1 .................................................................................. 56 

4.2.2 FCF Experiment 2 .................................................................................. 59 

4.2.3 FCF Experiment 3 .................................................................................. 63 

4.2.4 FCF Experiment 6 .................................................................................. 65 

4.2.5 FCF Experiment 8 .................................................................................. 68 

4.3 Discharge Comparison ................................................................................... 72 

4.4 Effect of bed slope ......................................................................................... 76 

5. CONCLUSIONS .................................................................................................... 81 

6. REFERENCES ....................................................................................................... 83 

APPENDICES ........................................................................................................... 85 

A.INTEGRATION OF VOLUMETRIC LENGTH SCALE ..................................... 85 

B.NUMERICAL SOLUTIONS ................................................................................. 87 



xi 

 

B.1 Numerical Solution of eq.(2-10) in Uniform Duct Flow ........................... 87 

B.2 Numerical Solution of Eq.(2-10) in compound duct flow ......................... 89 

B.3 Numerical Solution of Eq.(2-10) in periodic compound duct flow ........... 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

LIST OF FIGURES 

 

 

 

FIGURES 

Figure 1-1 Mixing length distribution in rectangular duct for B/H=1, 2D NMLM 

solution ......................................................................................................................... 6 

Figure 1-2 Secondary flows for B/H=1(NMLM solution in rectangular duct) .......... 7 

Figure 1-3 Velocity contours for B/H=1(NMLM solution in rectangular duct) ......... 8 

Figure 1-4 Mixing Length Distribution for B/H=5 in a compound open channel ...... 8 

Figure 1-5 Secondary flow streamlines describing vortices in open channel for 

B/H=5 ........................................................................................................................... 9 

Figure 1-6  Axial velocity contours for B/H=5 ........................................................... 9 

Figure 2-1 Coordinate axes and geometry of rectangular duct ................................. 12 

Figure 2-2 Cross Section of duct Flow ..................................................................... 13 

Figure 2-3 Infinitely long parallel plates ................................................................... 15 

Figure 2-4 Variation of bottom friction coefficient with Reynolds Number ............ 17 

Figure 2-5 two-dimensional grid, B/H=3 .................................................................. 18 

Figure 2-6 Two-dimensional mixing length distribution, B/H=3 ............................. 18 

Figure 2-7 Depth averaged mixing length distribution, B/H=3 ................................ 19 

Figure 3-1 Computational domain ............................................................................ 22 

Figure 3-2 Forces on a single cell ............................................................................. 23 

Figure 3-3 Depth averaged mixing length calculation in uniform duct flow ............ 25 

Figure 3-4 Velocity and shear stress comparison in rectangular duct, B/H=1 ......... 26 

Figure 3-5 Velocity and shear stress comparison in rectangular duct, B/H=2 ......... 26 

Figure 3-6 Velocity and shear stress comparison in rectangular duct, B/H=3 ......... 27 

Figure 3-7 Velocity and shear stress comparison in rectangular duct, B/H=4 ......... 27 

Figure 3-8 Velocity and shear stress comparison in rectangular duct, B/H=5 ......... 27 

Figure 3-9 Velocity and shear stress comparison in rectangular duct, B/H=6 ......... 28 

Figure 3-10 Velocity and shear stress comparison in rectangular duct, B/H=8 ....... 28 

Figure 3-11 Velocity and shear stress comparison in rectangular duct, B/H=10 ..... 28 

Figure 3-12 Velocity and shear stress comparison for different pressure gradients for 

B/H=3 ......................................................................................................................... 30 

Figure 3-13 Compound duct geometry ..................................................................... 31 

Figure 3-14 Mixing length calculation in uniform compound channel .................... 32 

Figure 3-15 Discretization over the step ................................................................... 33 

Figure 3-16 Velocity distribution in the step ............................................................ 34 

Figure 3-17 Wall shear stress data fit ........................................................................ 36 

Figure 3-18 Velocity and shear stress comparison for B/H=1, b=0.5B, h=0.5H ..... 37 

file:///C:/Users/cak/Desktop/TEZ/All_working1.docx%23_Toc398410588
file:///C:/Users/cak/Desktop/TEZ/All_working1.docx%23_Toc398410589
file:///C:/Users/cak/Desktop/TEZ/All_working1.docx%23_Toc398410589
file:///C:/Users/cak/Desktop/TEZ/All_working1.docx%23_Toc398410590
file:///C:/Users/cak/Desktop/TEZ/All_working1.docx%23_Toc398410592


xiii 

 

Figure 3-19 Velocity and shear stress comparison for B/H=2, b=0.5B, h=0.5H ..... 37 

Figure 3-20 Velocity and shear stress comparison for B/H=3, b=0.5B, h=0.5H ..... 38 

Figure 3-21 Velocity and shear stress comparison for B/H=4, b=0.5B, h=0.5H ..... 38 

Figure 3-22 Velocity and shear stress comparison for B/H=5, b=0.5B, h=0.5H ..... 38 

Figure 3-23 Velocity and shear stress comparison for B/H=6, b=0.5B, h=0.5H ..... 39 

Figure 3-24 Velocity and shear stress comparison for B/H=8, b=0.5B, h=0.5H ..... 39 

Figure 3-25 Velocity and shear stress comparison for B/H=10, b=0.5B, h=0.5H ... 39 

Figure 3-26 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.1H .......... 40 

Figure 3-27 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.2H .......... 40 

Figure 3-28 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.4H .......... 41 

Figure 3-29 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.6H .......... 41 

Figure 3-30 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.8H .......... 41 

Figure 3-31 Velocity and shear stress comparison, B/H=4, b=0.1B, h=0.5H .......... 42 

Figure 3-32 Velocity and shear stress comparison, B/H=4, b=0.2B, h=0.5H .......... 42 

Figure 3-33 Velocity and shear stress comparison, B/H=4, b=0.4B, h=0.5H .......... 42 

Figure 3-34 Velocity and shear stress comparison, B/H=4, b=0.6B, h=0.5H .......... 43 

Figure 3-35 Velocity and shear stress comparison, B/H=4, b=0.8B, h=0.5H .......... 43 

Figure 3-36 Velocity, shear stress comparison for different pressure gradients, 

B/H=4, b=0.5B, h=0.5H ............................................................................................ 45 

Figure 3-37 Periodic compound duct geometry ........................................................ 46 

Figure 3-38 Infinitely long duct flow in lateral direction.......................................... 46 

Figure 3-39 Effect of vertical wall boundaries in calculation of mixing length in 

periodic compound duct ............................................................................................. 47 

Figure 3-40 Velocity and shear stress comparison for B/H=1, b=0.5B, h=0.5H ..... 48 

Figure 3-41 Velocity and shear stress comparison for B/H=2, b=0.5B, h=0.5H ..... 49 

Figure 3-42 Velocity and shear stress comparison for B/H=3, b=0.5B, h=0.5H ..... 49 

Figure 3-43 Velocity and shear stress comparison for B/H=4, b=0.5B, h=0.5H ..... 49 

Figure 3-44 Velocity and shear stress comparison for B/H=5, b=0.5B, h=0.5H ..... 50 

Figure 3-45 Velocity and shear stress comparison for B/H=6, b=0.5B, h=0.5H ..... 50 

Figure 3-46 Velocity and shear stress comparison for B/H=8, b=0.5B, h=0.5H ..... 50 

Figure 3-47 Velocity and shear stress comparison for B/H=10, b=0.5B, h=0.5H ... 51 

Figure 4-1 Comparison of computed and measured wall shear stresses (Patel & 

Knight, 1985) ............................................................................................................. 54 

Figure 4-2 Treatment of sections with varying flow depths ..................................... 56 

Figure 4-3 Cross section for FCF Series 01 .............................................................. 56 

Figure 4-4 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H=166 mm in the rectangular compound channel (FCF Series 

01). ............................................................................................................................. 57 

Figure 4-5 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H=176 mm in the rectangular compound channel (FCF Series 

01). ............................................................................................................................. 57 



xiv 

 

Figure 4-6 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H=186 mm in the rectangular compound channel (FCF Series 

01). ............................................................................................................................. 58 

Figure 4-7 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H=200 mm in the rectangular compound channel (FCF Series 

01). ............................................................................................................................. 58 

Figure 4-8 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

01). ............................................................................................................................. 59 

Figure 4-9 Cross section for FCF Series 02 .............................................................. 59 

Figure 4-10 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H=170 mm in the rectangular compound channel (FCF Series 

02). ............................................................................................................................. 60 

Figure 4-11 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 178 mm in the rectangular compound channel (FCF Series 

02). ............................................................................................................................. 60 

Figure 4-12 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 198 mm in the rectangular compound channel (FCF Series 

02). ............................................................................................................................. 61 

Figure 4-13 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 210 mm in the rectangular compound channel (FCF Series 

02). ............................................................................................................................. 61 

Figure 4-14 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

02). ............................................................................................................................. 62 

Figure 4-15 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 290 mm in the rectangular compound channel (FCF Series 

01). ............................................................................................................................. 62 

Figure 4-16 Cross section for FCF Series 03 ............................................................ 63 

Figure 4-17 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 170 mm in the rectangular compound channel (FCF Series 

03). ............................................................................................................................. 63 

Figure 4-18 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 200 mm in the rectangular compound channel (FCF Series 

03). ............................................................................................................................. 64 

Figure 4-19 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

03). ............................................................................................................................. 64 

Figure 4-20 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 300 mm in the rectangular compound channel (FCF Series 

03). ............................................................................................................................. 65 

 



xv 

 

Figure 4-21 Cross section for FCF Series 06 ............................................................ 65 

Figure 4-22 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 165 mm in the rectangular compound channel (FCF Series 

06). ............................................................................................................................. 66 

Figure 4-23 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 175 mm in the rectangular compound channel (FCF Series 

06). ............................................................................................................................. 66 

Figure 4-24 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 190 mm in the rectangular compound channel (FCF Series 

06).  ............................................................................................................................ 67 

Figure 4-25 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

06). ............................................................................................................................. 67 

Figure 4-26 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 300 mm in the rectangular compound channel (FCF Series 

06). ............................................................................................................................. 68 

Figure 4-27 Cross section for FCF Series 08 ............................................................ 68 

Figure 4-28 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 167 mm in the rectangular compound channel (FCF Series 

08). ............................................................................................................................. 69 

Figure 4-29 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of 175 mm in the rectangular compound channel (FCF Series 08).

 .................................................................................................................................... 69 

Figure 4-30 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 188 mm in the rectangular compound channel (FCF Series 

08). ............................................................................................................................. 70 

Figure 4-31 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 200 mm in the rectangular compound channel (FCF Series 

08). ............................................................................................................................. 70 

Figure 4-32 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 215 mm in the rectangular compound channel (FCF Series 

08). ............................................................................................................................. 71 

Figure 4-33 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

08). ............................................................................................................................. 71 

Figure 4-34 Comparison between 1D and experimental lateral distributions of 𝑢̅  and 

τw for flow depth of H= 300 mm in the rectangular compound channel (FCF Series 

08). ............................................................................................................................. 72 

Figure 4-35  Percentage of total flow in main channel and flood plains,( 𝐵/𝐻 =  2)

 .................................................................................................................................... 73 

Figure 4-36 Percentage of total flow in main channel and flood plains, (𝐵/𝐻 =  3)

 .................................................................................................................................... 74 



xvi 

 

Figure 4-37 Percentage of total flow in main channel and flood plains, (𝐵/𝐻 =  4)

 .................................................................................................................................... 75 

Figure 4-38 Three compound channel geometries used in comparison (Lambert & 

Myers, 1998) .............................................................................................................. 76 

Figure 4-39 Comparison of measured discharges, geometry 1 ................................. 77 

Figure 4-40 Comparison of observed discharges, geometry 2 .................................. 78 

Figure 4-41 Comparison of observed discharges, geometry 3 .................................. 79 

Figure A-1 Description of parameters of mixing length: (a) Definition of mixing 

length; (b) integration on y-z plane; and (c) integration on x-z plane ....................... 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 

 

LIST OF SYMBOLS 

 

 

 

𝐴   : Area 

𝑏   : Width of side channel 

𝐵   : Channel width 

𝐶𝑓  : Bed friction parameter 

𝐶1, 𝐶2, 𝐶3  : Turbulence model constants 

𝐶+   : Constant 

𝐶𝑝  : Constant defining pressure gradient 

𝐸   : Empirical constant relating to the bottom roughness 

𝑓𝜇       : Van Driest viscous damping function 

𝑔   : Gravitational acceleration 

ℎ   : Depth of side channel 

𝐻   : Channel height 

𝑘  : Turbulent kinetic energy 

𝑙𝑚       : Mixing Length 

𝑙𝑚̅   : Depth averaged mixing length 

𝑙𝑣   : Volumetric length scale 

𝑛   : Darcy friction factor 

𝑃   : Pressure 

𝑝   : Pressure per unit mass 

𝑟   : Distance from computational point to a point on the boundary 

𝑅𝑒   : Reynolds number 

http://en.wikipedia.org/wiki/Darcy_friction_factor


xviii 

 

𝑆   : Rates of strain 

𝑡        : Time 

𝑢   : Velocity component in 𝑥 – direction 

𝑢̅   : Depth averaged velocity in 𝑥 – direction 

𝑢𝑚𝑎𝑥   : Maximum velocity in a computational cell 

𝑈𝑚𝑎𝑥  : Maximum velocity in channel 

𝑈𝑚𝑒𝑎𝑛  : Mean velocity in channel 

𝑢̅𝑠   : Depth averaged velocity in computational cells closest to vertical 

walls  

𝑢̅∗   : Depth averaged shear velocity 

𝑣   : Velocity component in 𝑦 - direction 

𝑣̅   : Depth averaged velocity in 𝑦 - direction 

𝑤   : Velocity component in 𝑧 - direction 

𝑥   : Streamwise direction parallel to channel bed 

𝑦   : Lateral direction 

𝑧  : Vertical direction normal to channel bed 

𝑧𝑏  : Bottom of the channel 

𝑧𝑠  : Upper symmetry boundary in channel 

𝜃  : Channel bed angle 

𝜅       : Von Karman constant 

   : Free surface damping parameter 

𝜇𝑒   : Dynamic effective viscosity of water 

𝜇𝑡   : Dynamic turbulent viscosity of water 

𝜇   : Dynamic viscosity of water 

ν  : Kinematic viscosity of water 

ν𝑡   : Kinematic turbulent viscosity of water 



xix 

 

ν𝑡   : Kinematic effective viscosity of water 

ν𝑒̅   : Depth integrated kinematic effective viscosity 

𝜉   : Vorticity component in the cross-stream plane 

𝜌   : Density of fluid 

𝜏   : Shear stress divided by density 

𝜏𝑤  : Wall shear stress 

𝜏𝑤,𝑚𝑒𝑎𝑛 : Mean wall shear stress in channel 

𝜏𝑤𝑎𝑙𝑙   : Wall shear stress in parallel plate 

𝜏𝑣,𝑤   : Vertical wall shear stress taken from 2D solution 

𝜏̅   : Depth integrated shear stress 

𝜓  : Stream function 

Ω  : Vorticity vector 

𝛿   : Kronecker delta 

 

Superscripts 

+  : Dimensionless quantity 

Suberscripts 

𝑖   : Directional index 

𝑗   : Directional index 

𝑟   : Normal to 𝑟 direction 

 

 

 

 



xx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 General Description 

Fluid mechanics has transformed into another area when Osborne Reynolds 

published his work of derivation of Reynolds Averaged Navier-Stokes (RANS) 

equations in 1894. Ludwig Prandtl of Gottingen, Germany published a paper in 1904 

that flow over solid boundary can be considered in two parts. A region of fluid very 

close to the boundary where velocity is significantly influenced by viscosity which is 

boundary layer and rest of the flow which can be considered as inviscid (Monty, 

2005). After these publications, advancements in fluid mechanics has gained greater 

pace. In the course of developments, turbulence has always been an unknown 

phenomenon. Although there are several advancements in modelling of the 

turbulence, scientists are unable to fully describe the complicated turbulent behavior 

of the fluid. For that reason, accurate representation of turbulent flow mechanisms in 

any flow section is of primary importance in turbulence modelling.  

Rivers have always attracted human interest since it contributes civilization to grow 

from the aspect of irrigation, industry, household, wildlife habitat and fertility. 

However, a devastating effect of rivers which is flood always exists. Flood occurs in 

rivers when flow rate exceed carrying capacity of a river bed. Flood often damages 

homes, businesses and agriculture areas. People have been searching for ways to 

shun the devastating effects of floods by flow controlling and forecasting. Defenses 

such as levees, bunds, reservoirs and weirs are used to prevent rivers from bursting 

their banks. (Wright, 2000).  
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In the last century, with the rapid increase in urbanization, flood is a risk for people 

more than ever. At the same time advancements in fluid mechanics and computer 

science, provided improved forecasting tools for flood events giving time to prepare 

or evacuate before the flood comes. Once the flood is predicted, possible inundation 

areas should be known. This is done by numerically solving the Saint-Venant 

equations or depth integrated shallow flow equations in two-dimensions. 

A flow can be characterized as shallow flow if the vertical dimension is much 

smaller than any typical horizontal scale. Shallow-water flows are nearly horizontal 

and simplification in mathematical formulation and numerical solution is done by 

assuming pressure distribution as hydrostatic. The flow is still three dimensional due 

to bottom friction however 3D effects are not essential since horizontal extent of the 

flow is much greater then vertical extent. Depth averaged form is sufficient to 

describe the flow which is two dimensional in horizontal plane (Vreugdenhil C. B., 

1994). Sallow water model is being used in atmospheric flows, tidal flows, tidal 

mixing, residual currents, dam-break waves, coastal flows, tsunamis, lake flows and 

internal flows. Although shallow water model brings advantages, one of the 

drawbacks is its insensitivity to secondary flows in the channel.  

Shallow flow equations are simplified type of Navier-Stokes equations derived by 

depth integrating. In a channel, width to depth ratio of 5 and more can be considered 

as shallow flow and equations are valid because secondary current effect vanishes. 
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1.2 Background 

Most rivers constitute two parts due to its nature, main channel and flood plain. 

Prediction of flood in channels is difficult due to two stage domain. There are 

discontinuities resulting from hydraulic radius in main channel and flood plains. 

River engineers have analyzed flow in compound channels using subdivision 

techniques. This method is efficient overcoming the discontinuities in the domain but 

does not account turbulent interactions due to 3D nature of the flow (Sellin, Ervine, 

& Willetts, 1993). In order to solve shallow flow equations on any domain with a 

satisfactory representation of turbulence phenomena   the Non-Linear Mixing Length 

Model (NMLM) (Aydin, 2009) will be considered. 

 

1.2.1 Non-Linear Mixing Length Model (NMLM)   

Advances in turbulence modelling provide different level of closures for turbulent 

stresses. Complex turbulent flows can be computed in detail by employing 

turbulence models involving solution of additional transport equations for turbulent 

quantities. However, these additional transport equations bring increased number of 

parameters, functions and constants to the model that increases computational effort 

and cost. Prandtl’s mixing length theory is the simplest model to compute turbulent 

stresses (Aydın, 2004). 

𝑙𝑚 = 𝜅𝑦𝑓𝜇 (1-1) 

where 𝜅 is the von Karman constant, 𝑦 is the distance from the solid boundary and 𝑓𝜇 

is van Driest viscous damping function. This mixing length definition performs well 

in boundary layer and has been used in many engineering applications. However, a 

drawback of the above definition of mixing length is that it is only appropriate for 

flat surfaces. Moreover, eddy mixing length is influenced by all boundary surfaces 

which can be seen from a point in the flow domain and not only from the closest 

boundary. For that reason, NMLM was introduced by (Aydin, 2009) to consider all 

solid boundaries on determination of the size of the mixing length at an internal point 

in the flow domain. 
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The NMLM is a nonlinear turbulence model for two dimensional uniform channel 

flow based on a three dimensional integral measure of boundary proximity. The 

model eliminates the need for solution of additional transport equations for the 

turbulence quantities for uniform channel flows.  

Reynolds averaged momentum equation for steady, turbulent, fully developed 

uniform flow in x direction is written. 

𝜕𝑢

𝜕𝑡
+

𝜕(𝑢𝑣)

𝜕𝑦
+

𝜕(𝑢𝑤)

𝜕𝑧
= 𝑔𝑠𝑖𝑛𝜃 + ν (

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) +

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
  (1-2) 

Here, 𝑢, 𝑣, 𝑤 are the time mean velocities in x, y, z directions respectively, t is time, 

g is gravitational acceleration, 𝜈 is kinematic viscosity, 𝜏 is kinematic turbulent stress 

and 𝜃 is the angle between channel axis and horizontal plane. 

Writing the stream wise vorticity transport equation and Poison equation for stream 

function in the cross plane: 

𝜕𝜉

𝜕𝑡
+

𝜕(𝑣𝜉)

𝜕𝑦
+

𝜕(𝑤𝜉)

𝜕𝑧

= 𝑣 (
𝜕2𝜉

𝜕𝑦2
+

𝜕2𝜉

𝜕𝑧2
) +

𝜕2(𝜏𝑧𝑧 − 𝜏𝑦𝑦)

𝜕𝑦𝜕𝑧
+

𝜕2𝜏𝑦𝑧

𝜕𝑦2
−

𝜕2𝜏𝑦𝑧

𝜕𝑧2
 

 (1-3) 

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
= −𝜉   (1-4) 

Vorticity and velocity components are defined by 

𝜉 =
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
       𝑣 =

𝜕𝜓

𝜕𝑧
         𝑤 = −

𝜕𝜓

𝜕𝑦
           (1-5) 

When expressing turbulent stresses, quadratic products of the mean rate of strain 𝑆𝑖𝑗 

and mean vorticity Ωij are retained that satisfy the required symmetry and contraction 

properties. Constitutive equations are expressed in terms of a mixing length resulting 

in elimination of turbulent turbulence viscosity.  
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𝜏𝑖𝑗 = −𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝑙𝑚
2 {|Ω|𝑆𝑖𝑗 − 𝐶1 (𝑆𝑖𝑘𝑆𝑗𝑘 −

1

3
𝑆𝑘𝑙𝑆𝑘𝑙𝛿𝑖𝑗)

− 𝐶2(𝑆𝑖𝑘Ω𝑗𝑘 + 𝑆𝑗𝑘Ω𝑖𝑘) − 𝐶3 (Ω𝑖𝑘Ω𝑗𝑘 −
1

3
Ω𝑘𝑙Ω𝑘𝑙𝛿𝑖𝑗)}

−
2

3
𝑘𝛿𝑖𝑗 

 (1-6) 

𝑆𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
  (1-7) 

Ω𝑖𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
 (1-8) 

|Ω| = √Ω12
2 + Ω13

2 + Ω23
2  (1-9) 

Here 𝑙𝑚 = mixing length,  𝐶1, 𝐶2, 𝐶3= constants −0.42, 0.21, 0.42 respectively  , 𝑘 = 

turbulent kinetic energy, 𝛿𝑖𝑗 is Kronecker delta. Model presented above can be 

applied to any flow geometry if mixing length is defined appropriately.  

In a uniform channel with no variations in flow direction, time history of turbulence 

developments in the flow directions can be neglected. In this case, turbulence 

structure can be defined by local parameters such as geometry of cross section and 

local deformation kinetics. For this purpose, ‘Volumetric Mixing Length’ is 

introduced. 

𝑙𝑣 = 𝜋

∫ 𝜆
𝑑𝐴𝑟

𝑟3
⁄

 
(1-10) 

𝑙𝑚 = 𝜅𝑙𝑣 (1-11) 

where r is the distance from an internal computational point to a solid boundary area 

element dA, dAr is the projection of dA normal to r, and  is a weighting parameter 

for boundary type and equals to 1 for solid boundaries. When Eq. (1-10) is integrated 

over solid boundaries, it gives an area weighted distance from the internal 

computational point to the solid boundary which is then taken as the eddy mixing 

length when multiplied by the von Karman constant. Thorough description of 
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volumetric mixing length and evaluation of Eq. (1-10) over solid boundaries are 

given in the appendix 1. 

1.2.2 Solution on Different Geometries 

1.2.2.1 Closed Duct Flows 

Duct flow solution can be obtained by replacing gravity term in Eq.(1-2) with axial 

pressure gradient divided by density. Quarter of the domain is computed by defining 

symmetry boundary conditions at the interfaces. Mixing length distribution in a 

rectangular duct is given in Fig. (1-1) for width of the channel (𝐵) to depth of the 

channel (𝐻) ratio of 1 (B/H=1). 

 

Figure 1-1 Mixing length distribution in rectangular duct for B/H=1, 2D NMLM 

solution 

Ludwig Prandtl classified secondary flows into two categories. The secondary flow 

of Prandtl’s first kind is defined as that induced by skewing of the mean flow in 

curved channels or meandering rivers. Such secondary flows exist either in the 

laminar or turbulent conditions. Prandtl’s second kind of secondary flows, also  

called shear or turbulence-driven secondary flows, are those caused by the cross-

sectional non-homogeneity of turbulence (Wang & Cheng, 2005).  
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In straight rectangular duct, secondary flow of second type occurs due to the 

presence of wall boundaries that causes turbulence anisotropy. The study of 

secondary flows in duct starts with (Launder & Ying, 1972) and was improved with 

the use of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). 

Secondary flow velocity can be up to 2-3 % of mean flow. However, in the regions 

closer to wall boundaries, secondary flow effects become dominant. Corner vortices 

formed by secondary flows obtained from NMLM solution are shown in Fig.(1-2) for 

width to depth ratio of 1 (B/H = 1) in a straight duct. 

 

Figure 1-2 Secondary flows for B/H=1(NMLM solution in rectangular duct) 

Contour lines of the computed velocity distribution in 2D space for a rectangular 

duct are given in Fig. (1-3) for width to depth ratio of 1. Bulking of axial velocity 

contour lines towards the corners is the result of secondary flows.  
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Figure 1-4 Mixing Length Distribution for B/H=5 in a compound open channel 

 

Figure 1-3 Velocity contours for B/H=1(NMLM solution in rectangular duct) 

 

1.2.2.2 Open Channel Flows 

Volumetric mixing length model can be used in any type of cross section and in open 

channel flow which means that free surface exists. Free surface can be treated by 

using 𝜆 parameter introduced in Eq.(1-10). Theoretically NMLM model treats free 

surface as a wall boundary, but 𝜆 parameter damps the effect of this wall boundary 

and make it behave as free surface which means that reduced turbulent stresses near 

the surface. Mixing length distribution in an open channel with width to depth ratio 

of 5 (B/H=5) is given in Fig.(1-4). 

𝒖 𝑼𝒎𝒂𝒙⁄  
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Figure 1-5 Secondary flow streamlines describing vortices in open channel for B/H=5 

Figure 1-6  Axial velocity contours for B/H=5 

After solving the flow in open compound channel, secondary flows and velocity 

contours are given in Fig.(1-5) and Fig.(1-6) for the width to depth ratio of 5. 

(B/H=5) 

 

 

Accurate mixing length distribution can easily be computed in any domain. The 

turbulence model is simple and no transport equations are needed to be solved. 

Model is successful in producing secondary flows in uniform channel flow. It can be 

applied to closed-channel flows and open channel flows, however, contribution of 

free surface in calculation of mixing length should be put on more physical bases.  
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1.3 Scope of the Work 

 

Considering practical situations such as natural cross sections with irregular shape, 

river with flood plains, a canal with side berms, the primary flow is affected by 

lateral and vertical momentum transfer between regions of different depth (Knight & 

Demetriou, 1983). Two and three dimensional solutions are both difficult and 

expensive to investigate this momentum exchange and one dimensional solutions are 

needed for quick predictions of depth averaged velocity and wall shear stresses. In 

one dimensional (depth averaged) computation of river flow, understanding and 

modelling of turbulence mechanism is the critical step when lateral momentum 

exchange is significant. Due to the complicated 3D turbulent flow structures such as 

secondary currents originating from turbulence un-isotropy, interaction between 

main channel and flood plain is difficult to explain. There are different types of 

turbulence models introduced in the literature to model the flow such as k-  and k- 

and variations of these. In k- or k- models, additional two transport equations are 

introduced to the model to be solved and this brings more numerical complexity. 

Only, turbulence models with nonlinear constitutive relations between the stresses 

and rates of strain are able to produce secondary currents.  However, in one 

dimensional shallow water models, simplest formulations for turbulence should be 

preferred since the governing equations are simplified by integration in the vertical 

direction which automatically eliminates the possibility of modelling secondary flow 

structures. 

The scope of present study is to investigate the horizontal transfer of linear 

momentum over lateral discontinuities in steady, uniform channel flow by using 

swallow flow equations. Nonlinear Mixing Length Model (NMLM) proposed by 

(Aydin, 2004 & 2009) is used to formulate the turbulent stresses. However, this 

model using a ‘volumetric mixing length’ definition was originally proposed for 2D 

uniform flows. In the present study, the volumetric mixing length (VML) is modified 

by depth integration to be used in one-dimensional shallow flow computation.  
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CHAPTER 2 

 

 

1D MODEL DEVELOPMENT 

 

 

 

Navier-Stokes equations are the system of non-linear partial differential equations 

that describe conservation of mass and momentum. In shallow flows, the wave 

lengths in horizontal plane are large compared to the water-depth. This ensures that 

the flow everywhere can be regarded as having a direction parallel to the bottom, i.e. 

vertical acceleration can be neglected and a hydrostatic pressure variation along the 

vertical can be assumed (Environment, 2010). 

In open channel flow, presence of free surface introduces difficulties in mathematical 

model because there is no fixed boundary. One way to overcome this problem for the 

time averaged velocities is to take the free surface boundary as a symmetry axis and 

treat it accordingly. However, such a simple treatment is not acceptable for turbulent 

fluctuations. The interaction with air can be non-negligible when surface velocity is 

above a limit value. Modelling of free surface effects in turbulence models is a 

challenging task requiring detailed experimental verification (Yue, Lin, & Patel, 

2003) . 

Main aim of this study is to develop an accurate formulation for turbulent shear 

stresses on vertical planes along the flow direction in computing depth averaged 

velocity field. At the beginning, the 2D NMLM (Aydin, 2009) will be used to obtain 

reference numerical solutions for the development and calibration of the turbulence 

formulation in depth averaged flow solution. In this development stage, closed 

conduit flows in rectangular ducts will be considered to avoid free surface effects.  
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Next, the depth averaged model will be tested in free surface flows with varying 

width to depth ratios of the channel. 

 

2.1       Derivation of Depth Averaged Equations for Rectangular Duct Flow 

To develop and test the depth integrated model, closed conduit flow in rectangular 

ducts will be studied first since the NMLM model can perform better in the absence 

of free surfaces. Uniform flow in x-direction in a long prismatic rectangular duct 

(Fig. 2-1) will be considered.  

 

Figure 2-1 Coordinate axes and geometry of rectangular duct 

Since the flow is uniform, flow variables other than pressure are independent of x. 

Flow in a section of the duct (Fig.2-2) is symmetrical about y and z-axes, thus 

velocity profiles in the four quadrants of the cross-section are identical. The two-

dimensional flow then can be computed only in one quadrant with symmetry 

boundary conditions on the common boundaries. Depth averaged momentum 

equation can be obtained from the Reynolds averaged Navier Stokes equation in x 

direction; 
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Since the flow is uniform v and w velocity components are zero. For steady, uniform 

flow the above equation becomes; 

 0 = −
1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
 (2-2) 

Integrating this equation in z-direction between bottom of the channel and upper 

symmetry boundary gives; 

 0 = ∫ −
1

𝜌

𝜕𝑝

𝜕𝑥
𝑑𝑧

𝑧𝑠

𝑧𝑏

+ ∫
𝜕𝜏𝑥𝑦

𝜕𝑦
𝑑𝑧 + ∫

𝜕𝜏𝑥𝑧

𝜕𝑧
𝑑𝑧

𝑧𝑠

𝑧𝑏

𝑧𝑠

𝑧𝑏

 (2-3) 

   

For uniform flows pressure gradient is a constant. Therefore, 

 −
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝐶𝑝 (2-4) 

 0 = 𝐶𝑝𝐻 + ∫
𝜕𝜏𝑥𝑦

𝜕𝑦
𝑑𝑧 + ∫

𝜕𝜏𝑥𝑧

𝜕𝑧
𝑑𝑧

𝑧𝑠

𝑧𝑏

𝑧𝑠

𝑧𝑏

 
                 

(2-5) 

 
𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕𝑢𝑣

𝜕𝑦
+

𝜕𝑢𝑤

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
 (2-1) 

B 

H  

y 

z 

x 

Figure 2-2 Cross Section of duct Flow 
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Expanding terms in the above equation with Leibniz’s rule; 

 ∫
𝜕𝜏𝑥𝑦

𝜕𝑦
𝑑𝑧 =

𝜕

𝜕𝑦
∫ 𝜏𝑥𝑦

𝑧𝑠

𝑧𝑏

𝑑𝑧 − 𝜏𝑥𝑦,𝑠

𝜕𝑧𝑠

𝜕𝑦
+ 𝜏𝑥𝑦,𝑏

𝜕𝑧𝑏

𝜕𝑦

𝑧𝑠

𝑧𝑏

 (2-6) 

 ∫
𝜕𝜏𝑥𝑧

𝜕𝑧
𝑑𝑧

𝑧𝑠

𝑧𝑏

= 𝜏𝑥𝑧,𝑠 − 𝜏𝑥𝑧,𝑏 (2-7) 

Rearranging; 

 0 = 𝐶𝑝𝐻 +
𝜕

𝜕𝑦
∫ 𝜏𝑥𝑦

𝑧𝑠

𝑧𝑏

𝑑𝑧 − 𝜏𝑥𝑦,𝑠

𝜕𝑧𝑠

𝜕𝑦
+ 𝜏𝑥𝑦,𝑏

𝜕𝑧𝑏

𝜕𝑦
+ 𝜏𝑥𝑧,𝑠 − 𝜏𝑥𝑧,𝑏 

                 

(2-8) 

 

Taking into account that there is no variations in bed elevation, flow depth and 𝜏𝑥𝑦 is 

considered constant throughout the depth; 

 0 = 𝐶𝑝𝐻 +
𝜕

𝜕𝑦
(𝜏̅𝑥𝑦𝐻) − 𝜏𝑥𝑧,𝑏   (2-9) 

where 𝜏𝑥𝑧,𝑏 is bottom shear stress. Rearranging equation (2-9) the differential 

equation to be solved numerically is obtained; 

 

 
𝜕

𝜕𝑦
(𝜏̅𝑥𝑦) −

𝜏𝑥𝑧,𝑏

𝐻
= −𝐶𝑝 (2-10) 

 

2.2 Determination of bottom shear stress 

Determination of bottom shear stress will be an important issue in depth integrated 

computation since only depth integrated velocity will be available. Bottom shear 

stress is evaluated by using (Vreugdenhil C. B., 1994); 

 𝜏𝑥𝑧,𝑏 = 𝐶𝑓𝑢̅√𝑢̅2 + 𝑣̅2 (2-11) 

where 𝑣̅ component of velocity is taken as zero for uniform flows and Eq.(2-11) 

becomes; 
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 𝜏𝑥𝑧,𝑏 = 𝐶𝑓𝑢̅2 (2-12) 

A search has been conducted in the literature and an empirical formula for bottom 

shear stress is obtained from (Pierce & Zimmerman, 1973) 

 𝐶𝑓 = 𝜅2(ln 𝐸𝑅𝑒𝐶𝑓
0.5 − 1)

−2
 (2-13) 

where 𝜅 is von Karman constant equals to 0.4, 𝐸 is an empirical constant relating to 

the bottom roughness and equals to 9 for smooth bottoms, 𝑅𝑒 is Reynolds number 

defined as  𝐻𝑢̅/ν ,  𝐻 is flow depth ,  ν is kinematic viscosity and 𝑢̅ is depth 

averaged velocity. 

Before using this empirical formula it tested in simple case of flow between parallel 

plates. The numerical solution procedure for the flow between two wide parallel 

plates is described as follows.  

x

z

H

 

Figure 2-3 Infinitely long parallel plates 

 

Writing Reynolds Averaged Navier-Stokes (RANS) equations in x-direction yields 

(Fig.2-3); 

 
𝑑

𝑑𝑧
(𝜇𝑒

𝑑𝑢

𝑑𝑧
) =

𝑑𝑃

𝑑𝑥
 

             

(2-14) 

Discretization of this equation is performed by using finite difference method.  
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Grid clustering is done and smaller mesh size is used where nodes closer to the 

bottom boundary. Effective viscosity is calculated using mixing length theory which 

is; 

 𝜇𝑒 = 𝜇𝑡 + 𝜇 (2-15) 

 𝜇𝑡 = 𝜌𝑣𝑡    (2-16) 

 ν𝑡 = 𝑙𝑚
2

𝑑𝑢

𝑑𝑧
 (2-17) 

Mixing length 𝑙𝑚 is calculated by using volumetric mixing length formulation given 

by Eqs (1-10) and (1-11). 

Bottom shear stress is obtained from pressure gradient 

 𝜏𝑤𝑎𝑙𝑙 = −
𝑑𝑃

𝑑𝑥
𝐻 (2-18) 

Average velocity is calculated after obtaining velocity distribution and 𝐶𝑓 value is 

calculated from; 

 𝐶𝑓 =
𝜏𝑤𝑎𝑙𝑙

𝜌𝑢̅2
 (2-19) 

A comparison of 𝐶𝑓  values from Eq. (2-13) and numerical solution is performed and 

seen that Eq. (2-13) underestimates 𝐶𝑓 value at low Reynolds numbers. By trial and 

error, changing the superscript in Eq. (2-13), one can improve the expression. 

Original value of 0.5 is changed to 0.52 to fit Eq. (2-13) to the numerical solution. 
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Figure 2-4 Variation of bottom friction coefficient with Reynolds Number 

 

Fig. (2-4) shows that modified equation of 𝐶𝑓 overlaps with the numerical solution. 

Hence, Eq.(2-13) is modified as 

 𝐶𝑓 = 𝜅2(ln 𝐸𝑅𝑒𝐶𝑓
0.52 − 1)

−2
 (2-20) 

 

 

 

 

 

 

 

𝑹𝒆 
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2.3 Modelling of Turbulence 

NMLM turbulence model is going to be applied to 1D model. However, originally 

the model was proposed for 2D flow domains. To be able to use the volumetric 

mixing length model in 1D flows, mixing length distribution in 2D domain should be 

integrated in the vertical direction. The two-dimensional solution uses a rectangular 

structured grid system with clustering near boundaries. A typical example is shown 

in Fig. (2-5). The computed mixing length contour lines for the same domain are 

shown in Fig. (2-6). The numbers on the contour lines indicate the mixing length in 

meters.  

 

Figure 2-5 two-dimensional grid, B/H=3 

 

 

Figure 2-6 Two-dimensional mixing length distribution, B/H=3 
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In order to use volumetric mixing length in 1D model, depth averaging is performed 

by using the 2D mixing length distribution.  

 𝑙𝑚̅̅̅ =
1

𝐻
∫ 𝑙𝑚

𝐻

0

𝑑𝑧 (2-21) 

Depth averaged mixing length distribution over the channel width is given for width 

to depth ratio of 3 in Fig. (2-7). This calculated mixing length can be used in 1D 

model to solve turbulent stresses. 

 

Figure 2-7 Depth averaged mixing length distribution, B/H=3 

 

 

 

 

 

 

 



20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

CHAPTER 3 

 

 

DEPTH AVERAGED MODEL FOR UNIFORM DUCT FLOWS 

            

 

 

Depth averaged 1D model developed in Chapter 2 will be applied to different closed 

duct flows. As mentioned before, closed duct flow is considered to test the 

turbulence model without the free surface effects. Test cases that will be considered 

are: 

 Uniform flow in rectangular duct 

 Uniform flow in compound duct 

 Uniform flow in periodic compound  duct 

In each case, 1D model will be applied to the specific geometry by modifying shear 

stress and turbulence treatment. Numerical solutions will be done for 1D depth 

integrated model and compared to 2D solutions from the aspect of integrated velocity 

and wall shear stress distributions for different width to depth ratios. 
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3.1       Numerical solution 

The governing equation Eq.(2-10) for the 1D case is discretized. The computational 

domain is divided into N number of vertical slices Fig. (3-1) and the dependent 

variable u is defined at the centroid of each element.  

 

 

Figure 3-1 Computational domain 

Eq. (2-10) is discretized with uniform cell spacing. Kinematic shear stresses are 

expressed in terms of kinematic effective viscosity and velocity gradient in y-

direction.  

 𝜏̅𝑥𝑦 = ν𝑒̅

𝑑𝑢̅

𝑑𝑦
 (3-1) 

Using Eq. (2-12) and Eq. (3-1) in Eq. (2-10), the governing equation is written as; 

 𝜕

𝜕𝑦
(ν𝑒̅

𝑑𝑢̅

𝑑𝑦
) −

𝐶𝑓𝑢̅2

𝐻
= −𝐶𝑝 

 

(3-2) 

Eq. (3-2) is discretized by second order central differences. 

 

𝑢̅1 𝑢̅𝑖  𝑢̅𝑁  
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𝜏̅𝑖+1 − 𝜏̅𝑖

∆𝑦
= −𝐶𝑝 +

𝐶𝑓𝑖
𝑢̅𝑖𝑢̅𝑖

𝐻
 (3-3) 

 ν𝑒̅𝑖+1

𝑢̅𝑖+1 − 𝑢̅𝑖

∆𝑦
− ν𝑒̅𝑖

𝑢̅𝑖 − 𝑢̅𝑖−1

∆𝑦
= [𝐶𝑝 +

𝐶𝑓𝑖
𝑢̅𝑖𝑢̅𝑖

𝐻
] ∆𝑦 (3-4) 

 

wall

Symmetry Line

 

Figure 3-2 Forces on a single cell 

Collecting similar terms yields; 

 (
ν̅𝑒𝑖+1

∆𝑦
) 𝑢̅𝑖+1 + (−

ν𝑒̅𝑖+1

∆𝑦
−

ν𝑒̅𝑖

∆𝑦
−

𝐶𝑓𝑖
𝑢̅𝑖

𝐻
∆𝑦) 𝑢̅𝑖 + (

ν𝑒̅𝑖

∆𝑦
) 𝑢̅𝑖−1 = 𝐶𝑝∆𝑦 (3-5) 

 

The above equation results in N number of linear equations when written for each 

internal computational cell. The set of linear equations can be written in the form of a 

tri-diagonal matrix for an implicit solution. Numerical solution is done by using 

𝜏𝑤𝑖  
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Thomas algorithm (Appendix B). Wall (no-slip) boundary condition on the left and 

symmetry boundary condition on the right ends are applied.  

3.2 Uniform duct flow 

The channel geometry and solution domain are shown in Figs. (2-1) and (2.2). 

Numerical solution is obtained for uniform duct flow by solving Eq. (3-5). 

Turbulence parameters and wall shear stress calculations are defined in the following 

sections. 

 

3.2.1 Turbulence Model 

Volumetric mixing length is used to represent turbulent stresses. Computational grid 

over 2D space in the cross-section is formed and volumetric mixing length is 

calculated at all grid points. Point values of the computed mixing length are averaged 

over the vertical in each computational cell to find the depth averaged values to be 

used in the 1D solution.  

Firstly, wall shear stresses are taken from 2D solution since it is the reference 

solution and 1D model is enforced to predict these values.  By doing this, an 

unknown in Eq. (2-10) is excluded and only the turbulence stresses are remained to 

be solved. This gives the flexibility to investigate the appropriate mixing length 

values for the correct wall shear stresses over the bottom boundary.  

After trial and error applications using different boundary considerations in mixing 

length computation and comparing velocity and shear stress distributions with 2D 

solution, it is found that in calculation of volumetric mixing length over 2D space, 

the horizontal solid boundaries should be excluded and vertical solid boundaries 

should be stretched to infinity. By doing this, the rectangular duct geometry is simply 

treated as if the flow takes place in between two parallel plates in the vertical for the 

depth integrated solutions.  
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Figure 3-3 Depth averaged mixing length calculation in uniform duct flow 

 

3.2.2 Wall Shear Stresses 

Shear stresses on the bottom wall boundary are defined by using Eq. (2-20) in 

Section 2.3. The method simply calculates bottom wall shear stress by using average 

velocity and flow depth. 

Shear stress on vertical side wall boundary is treated by the law of wall approach. 

Velocity at the centroid of the first computational element and it’s distance to the 

side boundary are the two data to be used in the wall function to determine the wall 

shear velocity. Law of the wall is written as 

 𝑢+ =
1

𝜅
𝑙𝑛𝑦+ + 𝐶+ (3-6) 

where 𝐶+ is constant equals to 5 , and the dimensionless parameters are defined as 

 𝑢+ = 𝑢̅
𝑢̅∗

⁄            𝑦+ =  
𝑢̅∗𝑦

ν
 (3-7) 

𝑢̅∗ is the shear velocity, ν is kinematic viscosity, 𝑦 is normal distance to the 

boundary. In order to have accurate solutions using the law of wall, the first 

Physical  

Vertical Walls 

Excluded 
Horizontal Walls 

Imaginary 

Walls 

Symmetry

Lines 
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computational point should be in the overlap region. By changing the distance of the 

first computational element to wall boundary, 𝑦+ is controlled to be greater than 30. 

3.2.3 Comparison with 2 Dimensional Solution 

After completing the mixing length model, comparison with 2 dimensional solution 

is performed. Velocities, shear stress distributions in lateral direction and discharges 

are compared. Depth averaged volumetric mixing length evaluated by excluding the  

horizontal walls is used in the turbulence model and modified shear stress 

formulation (Eq. 2-20) is used to calculate shear stresses on the bed. Comparisons of 

different width to depth ratios for a pressure gradient of 10 N/m2 are shown in Figs. 

(3-4 ~ 3-11). 

 

Figure 3-4 Velocity and shear stress comparison in rectangular duct, B/H=1

 

Figure 3-5 Velocity and shear stress comparison in rectangular duct, B/H=2 
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Figure 3-6 Velocity and shear stress comparison in rectangular duct, B/H=3 

 

Figure 3-7 Velocity and shear stress comparison in rectangular duct, B/H=4

 

Figure 3-8 Velocity and shear stress comparison in rectangular duct, B/H=5 

 

𝒖
𝑼

𝒎
𝒆

𝒂
𝒏

⁄
 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 

𝒖
𝑼

𝒎
𝒆

𝒂
𝒏

⁄
 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 

𝒖
𝑼

𝒎
𝒆

𝒂
𝒏

⁄
 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 

𝒖
𝑼

𝒎
𝒆

𝒂
𝒏

⁄
 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 



28 

 

 

Figure 3-9 Velocity and shear stress comparison in rectangular duct, B/H=6 

 

Figure 3-10 Velocity and shear stress comparison in rectangular duct, B/H=8

 

Figure 3-11 Velocity and shear stress comparison in rectangular duct, B/H=10 
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Comparisons show that model is successful in predicting the depth averaged velocity 

and bed shear stresses. In lower width to depth ratios, due to the secondary current 

effects, there are minor differences between the 1-D and 2-D solutions. However, as 

width to depth ratio increases, which means secondary current effect vanishes; 1-D 

model reproduces 2-dimensional solution almost identically.  

To validate the model further, it is demonstrated that the solution is independent 

from the pressure gradient and the flow rate. To illustrate this, a variety of pressure 

gradients are used and compared with 2-dimensional solution for width to depth ratio 

of 3. 
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Figure 3-12 Velocity and shear stress comparison for different pressure gradients for 

B/H=3 
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Results indicated that, solution is independent of pressure gradient and gives 

successful results for variable pressure gradient and discharges.   

 

3.3 Uniform Flow in Compound Duct 

In the previous section it has been found that when calculating the mixing length, 

horizontal walls should be excluded. However, geometry in this case is different 

including discontinuities. Parallel plate approach has been proved to be working in 

rectangular duct. Adopting this approach to duct with level discontinuity is 

investigated. The generic cross-section geometry is given below as in Fig. (3-13). 

 

Figure 3-13 Compound duct geometry 

 

3.3.1 Turbulence Model 

Same approach in uniform duct flow as described in Section 3.2 is applied. 

Computational grid over 2D domain is formed and mixing length distribution is 

calculated. In the development stage shear stresses again are taken from the 2D 

reference solution to leave mixing length as the only unknown parameter. It is known 

that from the previous section, when calculating mixing length, horizontal walls 

should not be included. After trial and error applications,  different boundary 

considerations in mixing length computation  and comparing velocity, shear stress 

distributions with 2D solution, it is found that in calculation of volumetric mixing 

length over 2D space, all vertical walls should be accounted for including the 

imaginary extensions to  infinity. 
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Excluded 
horizontal walls

Physical vertical 
valls

Imaginery vertical 
walls

Symmetry lines

Figure 3-14 Mixing length calculation in uniform compound channel 

As seen in the figure, outer vertical walls are stretched to infinity and horizontal 

walls are excluded. Channel is simply treated as composed of two parallel plates. 

Due to presence of the vertical walls over discontinuity, mixing length values around 

those points are additionally damped. 

3.3.2 Wall shear stress 

Wall shear stresses in horizontal extent are treated by using modified empirical 

function in Eq. (2-20) and vertical shear stresses are treated by using law of wall 

function controlling first computational node inside the overlap region. However, 

after trial and error application with 2D reference solution, it is seen that law of wall 

approach to estimate shear stresses on the vertical walls is not working properly as in 

the rectangular duct channel. Due to the turbulent interactions and secondary flows 

over the discontinuity, treatment of vertical wall boundary should be modified. For 



33 

 

this reason, an approach has been developed to model shear stresses on vertical wall 

boundaries. On the discontinuity (the step), vertical wall shear stress is calculated by 

using depth averaged velocity. Fig. (3-15) shows the discretization over the 

discontinuity.  

Wall

Mesh 
Boundaries

Symmetry 
Line

H

h

z

τi+1

τw,i

τw,i

τi

 

Figure 3-15 Discretization over the step 

In this case, evaluating vertical wall shear stress using depth averaged velocity might 

introduce some errors because velocity is averaged for whole cell height from bottom 

to symmetry line which is H. However, to estimate wall shear stress on the vertical 

wall over the discontinuity, averaged velocity on the wall surface from bottom to 

height of vertical wall (h) should be considered. For this purpose, power law is used 

to estimate velocity distribution over the discontinuity (Kudela, 2012). 

 
𝑢

𝑢𝑚𝑎𝑥
= (

𝑧

𝐻
)

1/𝑛

 (3-8) 

The purpose is to find velocity distribution in the cell over the depth. The only 

known value is averaged velocity and dividing average velocity by integral of (
𝑧

𝐻
)

1/𝑛
 

from bottom to H gives maximum velocity in the cell. 
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 𝑢𝑚𝑎𝑥 =
∫ 𝑢𝑑𝑧

𝐻

0

∫ (
𝑧
𝐻

)
1/𝑛

𝑑𝑧
𝐻

0

⁄  (3-9) 

 

And terms in Eq. (3-9) can be evaluated as; 

∫ 𝑢𝑑𝑧
𝐻

0

= 𝐻𝑢̅                        𝑛 = −2𝐿𝑜𝑔(
2.51𝑛

𝑅𝑒
) 

(3-10) 

𝑅𝑒 is local Reynolds Number in the cell which is 𝐻𝑢̅/𝑣. 

umax

∆Y

h
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Figure 3-16 Velocity distribution in the step 

Using the power law again in Eq.(3-8), velocity distribution in the step is found and 

depth averaging is performed from the  bottom to height of step wall (h) to find the 

averaged velocity 𝑢𝑠 in the step zone.  

After determining averaged velocity over the step, different sets of 2D solutions are 

performed for varying width (B) , depth (H), step width (b), step height (h) and 

pressure gradient (𝐶𝑝). Shear stresses in the vertical walls are found and averaged in  
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the direction of depth for each case. These exact values of vertical and horizontal 

shear stresses are used in 1D solutions to determine the friction relations. 

In each 1D solution using 2D shear stresses, solution is performed and velocity 

distribution is found. Reynolds Number is calculated in computational cells closest to 

vertical walls. A dimensionless friction parameter is defined and determined in each 

1D solution which is; 

 
𝜏𝑣,𝑤

𝑢̅𝑠
2 (3-11) 

𝜏𝑣,𝑤 : Vertical wall shear stress taken from 2D solution 

𝑢̅𝑠: Calculated depth averaged velocity in computational cells closest to vertical 

walls in 1D model using shear stresses from 2D solution  

 : Density of the fluid 

The dimensionless parameter introduced in Eq.(3-11) and Reynolds number in 

computational cells closest to vertical walls are noted in each case. Logarithm of 

Reynolds number 𝑙𝑜𝑔(𝑅𝑒) versus 𝜏𝑣,𝑤/𝑢̅𝑠
2 is plotted in Fig.(3-17) and a relation 

between the two parameters is obtained by using linear regression. 
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Figure 3-17 Wall shear stress data fit 

 

The function of the linear fit is found as; 

𝜏𝑣,𝑤 = 𝑢𝑠
2[1.83 + 5.595log (𝑅𝑒)] (3-12) 

The basic idea is to calculate shear stress value on vertical walls by using velocity 

closest to wall boundary. This method eliminates the need of using wall function to 

estimate shear stresses on vertical walls and can be applicable to any cross section. 
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3.3.3 Comparison with 2 Dimensional Solution 

After defining turbulence and shear stress treatment, comparison of velocity and 

shear stresses with 2D solution are performed. Several cases are investigated with 

varying width to depth ratios (B/H), step height (h), step width (b) and pressure 

gradient. Extreme cases are also investigated to observe the behavior of 1D model by 

changing step width and step height up to % 80 of total width and height.  

Firstly, step width and height are remained constant for all cases. For each cross 

section which has varying width to depth ratio, half of the total width and height of 

the channel is defined as step geometry in the channel and comparisons are 

performed accordingly. Results are shown in Figs. (3-18 ~ 3-25). 

 

Figure 3-18 Velocity and shear stress comparison for B/H=1, b=0.5B, h=0.5H 

 

Figure 3-19 Velocity and shear stress comparison for B/H=2, b=0.5B, h=0.5H 
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Figure 3-20 Velocity and shear stress comparison for B/H=3, b=0.5B, h=0.5H 

 

Figure 3-21 Velocity and shear stress comparison for B/H=4, b=0.5B, h=0.5H 

 

Figure 3-22 Velocity and shear stress comparison for B/H=5, b=0.5B, h=0.5H 
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Figure 3-23 Velocity and shear stress comparison for B/H=6, b=0.5B, h=0.5H 

 

Figure 3-24 Velocity and shear stress comparison for B/H=8, b=0.5B, h=0.5H 

 

Figure 3-25 Velocity and shear stress comparison for B/H=10, b=0.5B, h=0.5H 
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Velocity and shear stress comparison with 2D solution in extreme conditions are 

performed. Width to depth ratio is remained constant and step height and step width 

changed. The results are presented for width to depth ratio of 4 and two sets of 

solutions are presented. Step width is remained constant which is half of total width 

and step height is changed to % 10,20,40,60 and 80 to total height. Visa versa case is 

also investigated as step height is remained constant and step width is changed. 

Comparisons of 1D and 2D solutions are given in Figs. (3-26 ~ 3.35) 

 

Figure 3-26 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.1H 

 

Figure 3-27 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.2H 
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Figure 3-28 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.4H 

 

Figure 3-29 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.6H 

 

Figure 3-30 Velocity and shear stress comparison, B/H=4, b=0.5B, h=0.8H 
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Figure 3-31 Velocity and shear stress comparison, B/H=4, b=0.1B, h=0.5H 

 

Figure 3-32 Velocity and shear stress comparison, B/H=4, b=0.2B, h=0.5H 

 

Figure 3-33 Velocity and shear stress comparison, B/H=4, b=0.4B, h=0.5H 
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Figure 3-34 Velocity and shear stress comparison, B/H=4, b=0.6B, h=0.5H 

 

Figure 3-35 Velocity and shear stress comparison, B/H=4, b=0.8B, h=0.5H 

 

Comparisons for both cases show that 1D model solutions reasonably agree with 2D 

numerical solutions. Sharp decreases over discontinuity are the result of the depth 

averaging. Presence of discontinuity creates more turbulence anisotropy and in result 

this brings more and powerful secondary flows.  

One drawback of depth averaged shallow flow model as mentioned before is that the 

secondary flow effects are not directly represented. In other similar studies  (Finnie, 

Donnell, Letter, & Bernard, 1999) and (Knight, Donald W; Omran, Mazen; Tang, 

Xiaonan, 2006) modifications are introduced to shallow water model such as 

corrections by a secondary flow parameter, to correct for  the effect of secondary 

flows in the velocity and boundary shear distributions. In the present study, such 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 

𝒖
𝑼

𝒎
𝒆

𝒂
𝒏

⁄
 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 

𝒖
𝑼

𝒎
𝒆

𝒂
𝒏

⁄
 



44 

 

modifications are not required since the mixing length for turbulence modelling is 

obtained from 2D distribution by depth integration. 

In narrower domains where width to depth ratios is less than 5, shallow water 

assumption is not completely satisfied and 1D depth averaged model gives only a 

good approximation. When shallow water assumption is valid, model is very robust 

to predict the lateral velocity distribution and wall shear stresses. 

In order to validate the model further, comparisons for different pressure gradients 

are performed. Width to depth ratio of 4 is selected and step width and height is 

defined as half of the total width and depth. Results are given in Fig. (3-36) 
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Figure 3-36 Velocity, shear stress comparison for different pressure gradients, B/H=4, 

b=0.5B, h=0.5H 
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Comparisons indicate that 1D depth averaged model gives same result in each 

pressure gradient and discharge value. 

 

3.4 Uniform flow in a periodic compound duct 

In both rectangular and compound duct flow, turbulence and bed shear stress models 

are developed and seen to be working when comparing with 2D solutions. To 

validate the 1D model further, another geometry with periodic compound duct is 

considered (Fig. 3-37). 
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Figure 3-37: Periodic compound duct geometry 

Vertical wall boundaries are replaced with periodic boundaries which mean that 

infinite number of identical channels are placed next to both side of the channel 

continuously.  

 

Figure 3-38 Infinitely long duct flow in lateral direction 

The objective of choosing this geometry is to simulate the bed roughness introduced 

with changing step height. As channel height (𝐻) increases, effect of bed level 

discontinuity vanishes. By increasing step height enough, gear type shape can be 
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made similar to the roughness in the bed of the channel. Varying step height (ℎ), step 

width (𝑏) are used to observe the behavior of the solution. 

3.4.1 Turbulence Model 

Same approach in uniform compound duct flow as described in section 3.3 is 

applied. Computational grid over 2D domain is formed and mixing length 

distribution is calculated. When calculating mixing length, horizontal walls are 

excluded and only vertical walls are taken into account. However, due to the 

presence of periodic boundaries, there are infinitely many vertical walls as in Fig. (3-

38). It is known that, as the point in the domain gets away from the wall boundary, 

effect of that wall boundary in mixing length calculation vanishes. Making use of 

this fact, only sufficient number of vertical walls should be taken into account to 

represent infinitely long channel. Different number of wall boundaries in both side of 

the channel is considered with 𝑏 = 𝐻, 𝐵 = 2𝐻, ℎ = 𝐻/2 and depth averaged mixing 

length calculated for each case to see the behavior of distribution. 

 

Figure 3-39 Effect of vertical wall boundaries in calculation of mixing length in 

periodic compound duct 
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Fig. (3-39) states that, 100 channels in both right and left hand side of the channel in 

calculation of mixing length is sufficient to represent infinitely long duct in lateral 

direction. 

3.4.2 Wall shear stress 

Wall shear stresses in horizontal extent are treated by using modified empirical 

function in Eq. (2-20) and vertical shear stress over step is treated by using Eq. (3-

13) which was previously defined. 

3.4.3 Comparison with 2 Dimensional Solution 

After defining turbulence and shear stress treatment, comparison of velocity and 

shear stresses with 2D solution are performed.  Several cases are investigated with 

varying width to depth ratios (𝐵/𝐻). For each cross section which has varying width 

to depth ratio, half of the total width and height of the channel is defined as step 

geometry and comparisons are performed. Results are shown in Figs. (3-40 ~ 3-47). 

 

Figure 3-40 Velocity and shear stress comparison for B/H=1, b=0.5B, h=0.5H 
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Figure 3-41 Velocity and shear stress comparison for B/H=2, b=0.5B, h=0.5H 

 

Figure 3-42 Velocity and shear stress comparison for B/H=3, b=0.5B, h=0.5H 

 

Figure 3-43 Velocity and shear stress comparison for B/H=4, b=0.5B, h=0.5H 
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Figure 3-44 Velocity and shear stress comparison for B/H=5, b=0.5B, h=0.5H 

 

Figure 3-45 Velocity and shear stress comparison for B/H=6, b=0.5B, h=0.5H 

 

Figure 3-46 Velocity and shear stress comparison for B/H=8, b=0.5B, h=0.5H 
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Figure 3-47 Velocity and shear stress comparison for B/H=10, b=0.5B, h=0.5H 

 

Comparisons clearly states that 1D solution well agree with the 2D solution for large 

aspect ratios of the cross-section as expected. In narrower regions, where width to 

depth ratio is less than 5, shallow flow assumption is not fully satisfied, however, 1D 

model results in approximate prediction of 2D solution. 

 

 

 

 

 

 

 

 

 

 

 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 

𝒖
𝑼

𝒎
𝒆

𝒂
𝒏

⁄
 



52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

CHAPTER 4 

 

 

COMPARISON OF 1D MODEL WITH MEASURED DATA 

 

 

 

1D model developed in section 3 is applied to several test cases for which measured 

data is available in the literature. Velocity, shear stress distribution and discharge in 

numerous channel geometries are compared with 1D model solutions. Firstly, shear 

stress data in uniform closed duct measured by Patel & Knight (1985) is compared 

with 1D model. Then, velocity and shear stress distribution data in several symmetric 

and asymmetric rectangular open channels available in Flood Chanel Facility (FCF), 

Wallingford, UK are compared with 1D model results.  Discharge comparisons are 

performed with data measured by Knight and Demetriou (1993) in symmetric 

rectangular channel with varying width to depth ratios. Effect of channel bed slope in 

symmetric rectangular compound channel is also investigated by comparing 1D 

model with data available in Lambert & Myers (1998).  

 

4.1 Rectangular Duct Flow Comparison 

After completing development of the 1D depth averaged model, it is compared to 

available experimental data in the literature. For turbulent flow in rectangular closed 

duct Patel & Knight (1985) have measured shear stress distributions for variable 

width to depth ratios. Comparison of computed values of shear stress by 1D depth 

averaged model to the experimental data is shown in Fig.4-1.  
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Figure 4-1 Comparison of computed and measured wall shear stresses (Patel & 

Knight, 1985) 

y/B 

𝝉
𝒘

𝝉
𝒘

,𝒎
𝒆

𝒂
𝒏

⁄
 



55 

 

 

Graphs show that 1D depth averaged model agree well with the experimental data, 

with increasing accuracy at higher aspect ratios.  

It can be seen that constructed 1D model works well when compared to 2D solutions. 

Comparison with 2D solution and experimental data have been conducted and 

observed that the model is consistent as well as robust for predicting depth averaged 

velocity, shear stress and discharge in any width to depth ratio. The model will next 

be applied to uniform flow in open channel. 

 

4.2 Open Channel Comparison 

 

1D Model is applied to symmetric and non-symmetric smooth rectangular compound 

channels at Flood Channel Facility (FCF), Wallingford, UK. Flood Channel facility 

is a laboratory in Wallingford that founded by SERC. Using results of experiments 

undertaken by Knight (1970-85), as well as the 74 experiments (1987-89) from the 

Flood Channel Facility (FCF), documented in 15 volumes (Phase A). There are thus 

approximately 600 experimental data sets of velocity and bottom shear stress for 

straight prismatic open channels or ducts with various cross sections and roughness 

distributions, as well as many data from elsewhere (Flood Channel Facility, 2013). 

Several cross sections with varying width to depth ratios are investigated. Five sets 

of experimental data from FCF are used for comparison. Four of the experiments are 

symmetric with varying width to depth ratio and one of the experiments has non-

symmetric cross section. Depth averaged velocity and shear stress distributions are 

compared for each case.  
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Wall boundary with varying flow depth is represented by discretizing it to make 

similar to step shape. Continuous steps are considered and 1D model developed in 

section 3 is applied to each step by assuming steps representing wall boundary Fig(4-

2). As Δy and Δz gets smaller, representation of wall boundary becomes more 

precise. By using this approach, any type of cross section including natural channels 

can be represented. 

 

Figure 4-2 Treatment of sections with varying flow depths 

Channel is considered symmetric around the free surface and symmetry boundary 

condition is described accordingly. Depth averaged 1D model will be tested with 

experimental data from the literature. 

 

4.2.1 FCF Experiment 1 

FCF experiment series 01 is a symmetric rectangular cross section with bed slope of  

0.001027. Cross section is given below. 

1:1

5 m

H

0.75 m

0.15 m

 

Figure 4-3 Cross section for FCF Series 01 

Different water depths are used to compare depth averaged velocity and shear stress 

distribution and results given in Figs. (4-4 ~ 4-8). 
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Figure 4-4 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H=166 mm in the rectangular compound channel (FCF Series 

01). 

 

Figure 4-5 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H=176 mm in the rectangular compound channel (FCF Series 

01). 
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Figure 4-6 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H=186 mm in the rectangular compound channel (FCF Series 

01). 

 

 

Figure 4-7 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H=200 mm in the rectangular compound channel (FCF Series 

01). 
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Figure 4-8 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

01). 

 

4.2.2 FCF Experiment 2 

FCF experiment series 02 is a symmetric rectangular cross section with bed slope of  

0.001027. Cross section is given below. 

1:1
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0.75 m

0.15 m

1:1

Figure 4-9 Cross section for FCF Series 02 

Solutions for different water depths are used to compare the depth averaged velocity 

and shear stress distributions and results given in Figs. (4-10 ~ 4-15). 
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Figure 4-10 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H=170 mm in the rectangular compound channel (FCF Series 

02). 

 

 

Figure 4-11 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 178 mm in the rectangular compound channel (FCF Series 

02). 

 

𝝉
𝒘

(𝑵
𝒎

𝟐
)

⁄
 

𝒖
 (

𝒎
𝒔

⁄
) 

𝝉
𝒘

(𝑵
𝒎

𝟐
)

⁄
 

𝒖
 (

𝒎
𝒔

⁄
) 



61 

 

 

Figure 4-12 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 198 mm in the rectangular compound channel (FCF Series 

02). 

 

Figure 4-13 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 210 mm in the rectangular compound channel (FCF Series 

02). 
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Figure 4-14 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

02). 

 

Figure 4-15 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 290 mm in the rectangular compound channel (FCF Series 

02). 
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4.2.3 FCF Experiment 3 

FCF experiment series 03 is a symmetric rectangular cross section with bed slope of  

0.001027. Cross section is given below. 

1.65 m

H

0.75 m

0.15 m

 

Figure 4-16 Cross section for FCF Series 03 

Solutions for different water depth are used to compare the depth averaged velocity 

and shear stress distributions and results given in Figs. (4-17 ~ 4-20). 

 

Figure 4-17 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 170 mm in the rectangular compound channel (FCF Series 

03). 
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Figure 4-18 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 200 mm in the rectangular compound channel (FCF Series 

03). 

 

 

Figure 4-19 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

03). 
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Figure 4-20 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 300 mm in the rectangular compound channel (FCF Series 

03). 

 

 

 

4.2.4 FCF Experiment 6 

FCF experiment series 06 is a non-symmetric rectangular cross section with bed 

slope of 0.001027. Cross section is given below. 

1.5 m
3.9 m

H

0.15 m

Figure 4-21 Cross section for FCF Series 06 

Solutions for different water depths are used to compare the depth averaged velocity 

and shear stress distributions and results given in Figs. (4-22 ~ 4-26). 
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Figure 4-22 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 165 mm in the rectangular compound channel (FCF Series 

06). 

 

 

Figure 4-23 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 175 mm in the rectangular compound channel (FCF Series 

06). 
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Figure 4-24 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 190 mm in the rectangular compound channel (FCF Series 

06). 

 

Figure 4-25 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

06). 
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Figure 4-26 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 300 mm in the rectangular compound channel (FCF Series 

06). 

 

4.2.5 FCF Experiment 8 

FCF experiment series 08 is a symmetric rectangular cross section with bed slope of 

0.001027. Cross section is given below. 

0.75 m
3 m

H

0.15 m

Figure 4-27 Cross section for FCF Series 08 

Solutions for different water depths are used to compare the depth averaged velocity 

and shear stress distributions and results given in Figs. (4-28 ~ 4-34). 
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Figure 4-28 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 167 mm in the rectangular compound channel (FCF Series 

08). 

 

 

Figure 4-29 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of 175 mm in the rectangular compound channel (FCF Series 08). 
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Figure 4-30 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 188 mm in the rectangular compound channel (FCF Series 

08). 

 

 

 

Figure 4-31 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 200 mm in the rectangular compound channel (FCF Series 

08). 
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Figure 4-32 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 215 mm in the rectangular compound channel (FCF Series 

08). 

 

 

 

Figure 4-33 Comparison between 1D and experimental lateral distributions of 𝒖̅ and 

τw for flow depth of H= 250 mm in the rectangular compound channel (FCF Series 

08). 
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Figure 4-34 Comparison between 1D and experimental lateral distributions of 𝒖̅  and 

τw for flow depth of H= 300 mm in the rectangular compound channel (FCF Series 

08). 

 

Comparisons of velocity and shear stresses of 1D model with experimental data 

taken from FCF series in several geometries show that 1D model works well in most 

cases. Differences may be due to inaccuracies in measurement or effect of secondary 

flows around corners. 

 

4.3 Discharge Comparison 

Discharge comparison is performed in the main channel and flood plain separately in 

order to observe 1D model behavior to predict the discharge in the channel. 

Experimental smooth channel with symmetrical rectangular flood plain (Fig.3-14) 

data taken from (Knight & Demetriou, 1983) are compared with 1D model. The 

section mean velocities are used to calculate the discharges in each subarea and were 

divided by total discharge through the entire cross section. A relative height is 

defined to observe the relation between the step and the discharge; 

  Relative Height =  (H-h)/h (4-1) 

Discharge in the channel geometry is divided into two such as main channel and 

flood plain and comparisons are done according to parameters listed below. 
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 𝑄𝑚𝑐,𝑒: Measured discharge in main channel 

 𝑄𝑚𝑐  :  Calculated discharge in main channel with 2 dimensional model 

 𝑄𝑓,𝑒  :  Measured discharge in side channel 

 𝑄𝑓  :  Calculated discharge in side channel with 2 dimensional model 

Relative depth (H-h)/H vs. % of total flow is plotted for 𝐵/𝑏 values of 2, 3, 4 and 

results are given below for flood plain and main channel. 

 

Figure 4-35  Percentage of total flow in main channel and flood plains, 𝐵/𝐻 =  2 
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Figure 4-36 Percentage of total flow in main channel and flood plains, 𝐵/𝐻 =  3 
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Figure 4-37 Percentage of total flow in main channel and flood plains, 𝐵/𝐻 =  4 

In all cases, calculated error when comparing measured data with 1D model is not 

more than 5 percent. This states that 1D model is robust for predicting discharge in 

flood plain and main channel separately. However, differences in computed and 

measured values might be inaccuracies in experimental setup, measurement error as 

well as error in numerical computation of 1D model.  
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4.4 Effect of bed slope 

It has been shown using experimental data that 1D model can be applied to straight 

compound channels. There is also a need to validate the model for different channel 

bed slopes. For this, model is compared with experimental data taken from Lambert 

& Myers (1998). There are three different channel geometries given in Fig.(4-38). 

 

Figure 4-38 Three compound channel geometries used in comparison (Lambert & 

Myers, 1998) 

Lambert & Myers (1998) investigated discharge in three compound channel cross-

sections, each consisting of a deep main channel section and two adjacent flood-

plains with bed slopes ranged from 0.00037 to 0.0019. Same geometries and bed 

slopes are defined to the 1D model and results are compared with experimental data. 
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Figure 4-39 Comparison of measured discharges, geometry 1 
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Figure 4-40 Comparison of observed discharges, geometry 2 
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Figure 4-41 Comparison of observed discharges, geometry 3 

 

The three figures show that 1D depth averaged model (shown by solid lines) is 

capable of closely predicting the measured data over all bed slopes examined and for 

the three different channel geometries. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

1D depth averaged shallow water model is developed for steady, uniform channel 

flow.  Turbulence model is formed by volumetric mixing length model using depth 

averaging over 2-dimensional flow domain. Vertical boundaries were extended to 

infinity as in the case of parallel plates and horizontal boundaries were discarded in 

mixing length computations. An empirical formula was developed for the shear 

stress on the vertical wall boundaries. Wall shear stresses on horizontal boundaries 

are modelled by using a modified wall function.  

Velocity, bottom shear stress and discharge comparisons are performed with 2D 

solutions and measured data available in the literature. It has been shown that 1D 

depth averaged model is capable of successfully representing the mean velocity and 

bed shear stress distributions regardless of the type of the geometry. It has also 

shown that the 1D model works well at different scales, pressure gradients and 

different channel bed slopes. However, in narrower domains where width to depth 

ratio is less than 5, shallow water assumption is not fully satisfied and 1D depth 

averaged model gives only approximate predictions. When shallow water assumption 

is valid, model is very robust for predicting lateral velocity distribution, wall shear 

stress and discharge in any cross section geometry. 

Present study introduces a 1D model with mixing length turbulence model for 

uniform flow in channels of any cross section.  The  robustness  of  present model  is 

that it  is  applicable  to  any  kind  of  geometry  including  natural  channels. The 

depth averaged volumetric mixing length is able to introduce some 3D effects into 
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1D solution and thus provides more accurate prediction over bed level 

discontinuities. 
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APPENDICES 

 

 

A. INTEGRATION OF VOLUMETRIC LENGTH SCALE 

 

 

 

Volumetric length scale is calculated by using Eq.(1-10). Surface integral in the 

denominator must be evaluated over a discretized boundary (Aydin, 2009) 

 

 

∫
𝑑𝐴𝑟

𝑟3
= 𝐼 = ∫

𝑑𝑠 𝑐𝑜𝑠 𝛾𝑑𝑥𝑐𝑜𝑠𝛽

𝑟3
= ∫

𝑟0

𝑟𝑥

𝑟𝑥

𝑟
𝑑𝑥𝑑𝑠

𝑟3

= 𝑟0 ∫ (∫
𝑑𝑥

𝑟4

∞

−∞

)
𝑠𝑐

𝑠𝑎

𝑑𝑠 

(A-1) 

 

 𝐼 = 𝑟0 ∫ (∫
𝑑𝑥

(𝑥2 + 𝑟𝑥
2)2

∞

−∞

)
𝑠𝑐

𝑠𝑎

𝑑𝑠 = 𝑟0 ∫
𝜋

2𝑟𝑥
3

𝑠𝑐

𝑠𝑎

𝑑𝑠 (A-2) 

 

 𝐼 =
𝜋𝑟0

2
∫

𝑑𝑠

(𝑠2 + 𝑟0
2)3/2

𝑠𝑐

𝑠𝑎

=  
𝜋𝑟0

2𝑟0
[

𝑠𝑐

√𝑠𝑐
2 + 𝑟0

2
−

𝑠𝑎

√𝑠𝑎
2 + 𝑟0

2
] (A-3) 

 

 𝑠𝑎 = (𝑎2 − 𝑐2 − 𝑒2)/2𝑐    𝑠𝑐 =  𝑠𝑎 + 𝑒    𝑟0 = √𝑎2 − 𝑠𝑎
2 (A-4) 
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Figure A-1 Description of parameters of mixing length: (a) Definition of mixing 

length; (b) integration on y-z plane; and (c) integration on x-z plane 
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B. NUMERICAL SOLUTIONS  

 

 

B.1  Numerical Solution of eq.(2-10) in Uniform Duct Flow 

Eq.(3-5) forms a tridiagonal matrix and can be solved by using Thomas Algorithm 

given as; 

 −𝐴𝑖𝑢𝑖+1 + 𝐵𝑖𝑢𝑖−𝐶𝑖𝑢𝑖−1 = 𝐷𝑖  (B-1) 

  

Writing terms in Eq.(3-5) according to Eq.(4.1); 

 𝐴𝑖 =
𝑣̅𝑒𝑖+1

∆𝑦
 (B-2) 

  𝐶𝑖 =
𝑣̅𝑒𝑖

∆𝑦
  (B-3) 

  𝐵𝑖 =
𝑣̅𝑒𝑖+1

∆𝑦
+

𝑣̅𝑒𝑖

∆𝑦
+

𝐶𝑓𝑖
𝑢̅𝑖

𝐻
∆𝑦 (B-4) 

           𝐷𝑖 = −𝐶𝑝∆𝑦  (B-5) 

 

Boundary Conditions: 

 

 At i = 1 

 
𝑣̅𝑒2

∆𝑦
(𝑢̅2 − 𝑢̅1) − 𝑣̅𝑒1

𝑑𝑢̅

𝑑𝑦
= [𝐶𝑝 +

𝐶𝑓1
𝑢̅1𝑢̅1

𝐻
] ∆𝑦 (B-6) 

 

Writing  
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 𝑣̅𝑒1

𝑑𝑢̅

𝑑𝑦
= 𝜏̅𝑤   (B-7) 

And   rearranging; 

 𝑣̅𝑒2
(𝑢̅2 − 𝑢̅1) − 𝜏̅𝑤 = [𝐶𝑝 +

𝐶𝑓1
𝑢̅1𝑢̅1

𝐻
] ∆𝑦 (B-8) 

 

Collecting similar terms yields; 

 𝐴1 =
𝑣̅𝑒2

∆𝑦
 (B-9) 

  𝐶1 = 0 (B-10) 

  𝐵1 =
𝑣̅𝑒2

∆𝑦
+

𝜏̅𝑤
𝑢̅1

+
𝐶𝑓1

𝑢̅1

𝐻
∆𝑦 (B-11) 

 𝐷1 = −𝐶𝑝∆𝑦 (B-12) 

 

 At i = N 

 𝑢̅𝑁 = 𝑢̅𝑁+1 (B-13) 

 𝑣̅𝑒𝑁+1
(𝑢̅𝑁+1 − 𝑢̅𝑁) − 𝑣̅𝑒𝑁

(𝑢̅𝑁 − 𝑢̅𝑁−1) = [𝐶𝑝 +
𝐶𝑓𝑁

𝑢̅𝑁𝑢̅𝑁

𝐻
] ∆𝑦 (B-14) 

 −𝑣̅𝑒𝑁
(𝑢̅𝑁 − 𝑢̅𝑁−1) = [𝐶𝑝 +

𝐶𝑓𝑁
𝑢̅𝑁𝑢̅𝑁

𝐻
] ∆𝑦 (B-15) 

 

 

Collecting similar terms; 

     𝐴𝑁 = 0          (B-16) 
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  𝐶𝑁 =
𝑣̅𝑒𝑁

∆𝑦
  (B-17) 

  𝐵𝑁 =
𝑣̅𝑒𝑁

∆𝑦
+

𝐶𝑓𝑁
𝑢̅𝑁

𝐻
∆𝑦 (B-18) 

 𝐷𝑁 = −𝐶𝑝∆𝑦 (B-19) 

 

 

  

B.2 Numerical Solution of Eq.(2-10) in compound duct flow 

 

 Side Channel 

 

 0 = 𝐶𝑝(𝐻 − ℎ) +
𝜕𝜏̅𝑥𝑦

𝜕𝑦
− 𝜏𝑥𝑧,𝑏 (B-20) 

  
𝜕

𝜕𝑦
(𝜐̅𝑒

𝜕𝑢̅

𝜕𝑦
) = −𝐶𝑝(𝐻 − ℎ) + 𝜏𝑥𝑧,𝑏 (B-21) 

  
𝜕

𝜕𝑦
(𝜐̅𝑒

𝜕𝑢̅

𝜕𝑦
) = −𝐶𝑝(𝐻 − ℎ) + 𝐶𝑓𝑢̅2 (B-22) 

  
𝜕𝜏̅

𝜕𝑦
= 𝐶𝑓𝑢̅2 − 𝐶𝑝(𝐻 − ℎ) (B-23) 

  
𝜏̅𝑖+1 − 𝜏̅𝑖

∆𝑦
= 𝐶𝑓𝑖

𝑢̅𝑖𝑢̅𝑖 − 𝐶𝑝(𝐻 − ℎ) (B-24) 

  𝜏̅𝑖+1 = 𝑣̅𝑒𝑖+1

𝑢̅𝑖+1 − 𝑢̅𝑖

∆𝑦
(𝐻 − ℎ) (B-25) 

  𝜏̅𝑖 = 𝑣̅𝑒𝑖

𝑢̅𝑖 − 𝑢̅𝑖−1

∆𝑦
(𝐻 − ℎ) (B-26) 
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𝑣̅𝑒𝑖+1

𝑢̅𝑖+1 − 𝑢̅𝑖

∆𝑦
(𝐻 − ℎ) − 𝑣̅𝑒𝑖

𝑢̅𝑖 − 𝑢̅𝑖−1

∆𝑦
(𝐻 − ℎ)

= [𝐶𝑓𝑖
𝑢̅𝑖𝑢̅𝑖 − 𝐶𝑝(𝐻 − ℎ)] ∆𝑦 

 

 

(B-27) 

Arranging eq (B.27) 

 𝑣̅𝑒𝑖+1

𝑢̅𝑖+1 − 𝑢̅𝑖

∆𝑦
− 𝑣̅𝑒𝑖

𝑢̅𝑖 − 𝑢̅𝑖−1

∆𝑦
= [

𝐶𝑓𝑖
𝑢̅𝑖𝑢̅𝑖

(𝐻 − ℎ)
− 𝐶𝑝] ∆𝑦 (B-28) 

 

Rearranging; 

(
𝑣̅𝑒𝑖+1

∆𝑦
) 𝑢̅𝑖+1 + (−

𝑣̅𝑒𝑖+1

∆𝑦
−

𝑣̅𝑒𝑖

∆𝑦
−

𝐶𝑓𝑖
𝑢̅𝑖

(𝐻 − ℎ)
∆𝑦) 𝑢̅𝑖 + (

𝑣̅𝑒𝑖

∆𝑦
) 𝑢̅𝑖−1 = −𝐶𝑝∆𝑦 (B-29) 

 

 Main Channel 

 0 = 𝐶𝑝𝐻 + 𝐻
𝜕𝜏̅𝑥𝑦

𝜕𝑦
− 𝜏𝑥𝑧,𝑏 (B-30) 

  𝐻
𝜕

𝜕𝑦
(𝜐̅𝑒

𝜕𝑢

𝜕𝑦
) = −𝐶𝑝𝐻 + 𝜏𝑥𝑧,𝑏 (B-31) 

  
𝜕

𝜕𝑦
(𝜐̅𝑒

𝜕𝑢̅

𝜕𝑦
) = −𝐶𝑝 +

𝐶𝑓𝑢̅2

𝐻
 (B-32) 

  
𝜕𝜏̅

𝜕𝑦
−

𝐶𝑓𝑢̅2

𝐻
= −𝐶𝑝 (B-33) 

  
𝜏̅𝑖+1 − 𝜏̅𝑖

∆𝑦
= −𝐶𝑝 +

𝐶𝑓𝑖
𝑢̅𝑖𝑢̅𝑖

𝐻
 (B-34) 
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  𝑣̅𝑒𝑖+1

𝑢̅𝑖+1 − 𝑢̅𝑖

∆𝑦
− 𝑣̅𝑒𝑖

𝑢̅𝑖 − 𝑢̅𝑖−1

∆𝑦
= [−𝐶𝑝 +

𝐶𝑓𝑖
𝑢̅𝑖𝑢̅𝑖

𝐻
] ∆𝑦 (B-35) 

  𝐴𝑖 =
𝑣̅𝑒𝑖+1

∆𝑦
 (B-36) 

  𝐶𝑖 =
𝑣̅𝑒𝑖

∆𝑦
 (B-37) 

  𝐵𝑖 =
𝑣̅𝑒𝑖+1

∆𝑦
+

𝑣̅𝑒𝑖

∆𝑦
+

𝐶𝑓𝑖
𝑢̅𝑖

𝐻
∆𝑦       (B-38) 

 𝐷𝑖 = 𝐶𝑝∆𝑦 (B-39) 

 Step 

Around step, computational domain is given blow. 

 

Figure B-1 Computational domain on step 

 

𝜏̅𝑀𝑆 
 

𝜏̅𝑀𝑆+1 
 

𝜏𝑤,𝑀𝑆 
 

𝑢̅𝑀𝑆 
 

𝑢̅𝑀𝑆+1 
 

𝑢̅𝑀𝑆−1 
 

𝑣̅𝑒,𝑀𝑆+1 𝑣̅𝑒,𝑀𝑆 𝑢̅𝑀𝑆−2 
 

𝜏̅𝑤,𝑀𝑆 
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Computational cell over step’s number is named as ms. There are two wall shear 

stress acting on the cell which are horizontal and vertical as shown in figure. These 

stresses are included in calculations. Equation 2-15 is written form step node. 

 

 𝐶𝑝(𝐻) +
𝜏̅𝑥𝑦

𝜕𝑦
− 𝜏𝑥𝑧,𝑏 = 0 (B-40) 

  
𝜕

𝜕𝑦
(𝜐̅𝑒

𝜕𝑢̅

𝜕𝑦
) = −𝐶𝑝(𝐻) + 𝜏𝑥𝑧,𝑏 (B-41) 

  
𝜕𝜏̅

𝜕𝑦
− 𝐶𝑓𝑢̅2 = −𝐶𝑝(𝐻) (B-42) 

  
𝜏̅𝑀𝑆+1 − 𝜏̅𝑀𝑆

∆𝑦
= −𝐶𝑝(𝐻) + 𝐶𝑓,𝑀𝑆𝑢̅𝑀𝑆𝑢̅𝑀𝑆 (B-43) 

  𝜏̅𝑀𝑆 = (𝐻 − ℎ)𝑣̅𝑒𝑀𝑆

𝑢̅𝑀𝑆 − 𝑢̅𝑀𝑆−1

∆𝑦
+ (ℎ)𝜏̅𝑤,𝑣 (B-44) 

  𝜏̅𝑀𝑆+1 = (𝐻)𝑣̅𝑒𝑀𝑆+1

𝑢̅𝑀𝑆+1 − 𝑢̅𝑀𝑆

∆𝑦
 (B-45) 

  
(𝐻)𝑣̅𝑒𝑀𝑆+1

𝑢̅𝑀𝑆+1 − 𝑢̅𝑀𝑆

∆𝑦
− [(𝐻 − ℎ)𝑣̅𝑒𝑀𝑆

𝑢̅𝑀𝑆 − 𝑢̅𝑀𝑆−1

∆𝑦
+ (ℎ)𝜏̅𝑤,𝑣]

= ∆𝑦[−𝐶𝑝(𝐻) + 𝐶𝑓,𝑀𝑆𝑢̅𝑀𝑆𝑢̅𝑀𝑆] 

(B-46) 

  

(𝐻
𝑣̅𝑒𝑀𝑆+1

∆𝑦
) 𝑢̅𝑀𝑆+1

+ (−𝐻
𝑣̅𝑒𝑀𝑆+1

∆𝑦
− (𝐻 − ℎ)

𝑣̅𝑒𝑀𝑆

∆𝑦
− 𝐶𝑓𝑀𝑆

𝑢̅𝑀𝑆∆𝑦

−
(ℎ)𝜏̅𝑤,𝑣

𝑢𝑀𝑆
) 𝑢̅𝑀𝑆 + (𝐻 − ℎ) (

𝑣̅𝑒𝑀𝑆

∆𝑦
) 𝑢̅𝑀𝑆−1 = −(𝐻)𝐶𝑝∆𝑦 

(B-47) 

  𝐴𝑀𝑆 = 𝐻 (
𝑣̅𝑒𝑀𝑆+1

∆𝑦
)   (B-48) 



93 

 

        𝐶𝑀𝑆 = (𝐻 − ℎ) (
𝑣̅𝑒𝑀𝑆

∆𝑦
)  (B-49) 

  𝐵𝑀𝑆 = 𝐻 (
𝑣̅𝑒𝑀𝑆+1

∆𝑦
) + (𝐻 − ℎ) (

𝑣̅𝑒𝑀𝑆

∆𝑦
) + (ℎ)

𝜏̅𝑤,𝑣

𝑢𝑀𝑆
+𝐶𝑓𝑀𝑆

𝑢̅𝑀𝑆∆𝑦      (B-50) 

   𝐷𝑀𝑆 = (𝐻)𝐶𝑝∆𝑦 (B-51) 

 

 

Boundary Conditions 

 

 At i = 1 

 
𝑣̅𝑒2

∆𝑦
(𝑢̅2 − 𝑢̅1) − 𝑣̅𝑒1

𝑑𝑢̅

𝑑𝑦
= [−𝐶𝑝 +

𝐶𝑓1
𝑢̅1𝑢̅1

(𝐻 − ℎ)
] (B-52) 

 𝑣̅𝑒1

𝑑𝑢̅

𝑑𝑦
= 𝜏̅𝑤 (B-53) 

 𝑣̅𝑒2
(𝑢̅2 − 𝑢̅1) − 𝜏̅𝑤 = [−𝐶𝑝 +

𝐶𝑓1
𝑢̅1𝑢̅1

(𝐻 − ℎ)
] ∆𝑦 (B-54) 

Collecting similar terms yields; 

 𝐴1 =
𝑣̅𝑒2

∆𝑦
 (B-55) 

  𝐶1 = 0  (B-56) 

  𝐵1 =
𝑣̅𝑒2

∆𝑦
+

𝜏̅𝑤
𝑢1

+
𝐶𝑓1

𝑢̅1

(𝐻 − ℎ)
∆𝑦 (B-57) 

  𝐷1 = 𝐶𝑝∆𝑦 (B-58) 
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 At i = N 

 𝑢̅𝑁 = 𝑢̅𝑁+1 (B-59) 

 𝑣̅𝑒𝑁+1
(𝑢̅𝑁+1 − 𝑢̅𝑁) − 𝑣̅𝑒𝑁

(𝑢̅𝑁 − 𝑢̅𝑁−1) = [−𝐶𝑝 +
𝐶𝑓𝑁

𝑢̅𝑁𝑢̅𝑁

(𝐻 − ℎ)
] ∆𝑦 (B-60) 

 −𝑣̅𝑒𝑁
(𝑢̅𝑁 − 𝑢̅𝑁−1) = [−𝐶𝑝 +

𝐶𝑓𝑁
𝑢̅𝑁𝑢̅𝑁

(𝐻 − ℎ)
] ∆𝑦 (B-61) 

Collecting similar terms; 

 𝐴𝑁 = 0 (B-62) 

  𝐶𝑁 =
𝑣̅𝑒𝑁

∆𝑦
 (B-63) 

  𝐵𝑁 =
𝑣̅𝑒𝑁

∆𝑦
+

𝐶𝑓𝑁
𝑢̅𝑁

(𝐻)
∆𝑦  (B-64) 

       𝐷𝑁 = 𝐶𝑝∆𝑦 (B-65) 
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B.3 Numerical Solution of Eq.(2-10) in periodic compound duct flow 

 

Discretization of Eq.(2-10) for side channel, main channel and discontinuity (step) 

will be same as in appendix (1-3). However, periodic boundaries need special 

treatment. 

In two periodic boundaries, conditions must be exactly the same. 

 

Figure B-2 Computational domain in the periodic boundary 

 At i = 1 

 

 0 = 𝐶𝑝(𝐻 − ℎ) +
𝜕𝜏𝑥𝑦̅̅ ̅̅

𝜕𝑦
− 𝜏𝑥𝑧,𝑏 (B-66) 

 
𝜕

𝜕𝑦
(𝜐̅𝑒

𝜕𝑢̅

𝜕𝑦
) = −𝐶𝑝(𝐻 − ℎ) + 𝜏𝑥𝑧,𝑏 (B-67) 

 
𝜕𝜏̅

𝜕𝑦
= −𝐶𝑝(𝐻 − ℎ) + 𝜏𝑥𝑧,𝑏 (B-68) 

 
𝜏̅2 − 𝜏1̅

∆𝑦
= −𝐶𝑝(𝐻 − ℎ) + 𝜏𝑥𝑧,𝑏 (B-69) 

 𝜏̅2 = 𝑣̅𝑒2

𝑢̅2 − 𝑢̅1

∆𝑦
(𝐻 − ℎ) (B-70) 

𝜏̅𝑉,𝑁 
 

𝜏̅𝑁 
 

𝜏̅𝑁+1 
 

𝜏𝑤,𝑁 
 

𝑢̅1 
 

𝑢̅2 
 

𝑢̅𝑁 
 

 

𝑣̅𝑒,𝑁+1 

𝑢̅𝑁−1 
 

ℎ 

𝐻 
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𝜏1̅ = 𝑣̅𝑒1

𝑢̅1 − 𝑢̅0

∆𝑦
(𝐻 − ℎ) + 𝜏̅𝑉,𝑁(ℎ) 

(B-71) 

 
𝑣̅𝑒2

𝑢̅2 − 𝑢̅1

∆𝑦
(𝐻 − ℎ) − 𝑣̅𝑒1

𝑢̅1 − 𝑢̅0

∆𝑦
(𝐻 − ℎ) − 𝜏̅𝑉,𝑁(ℎ)

= [−𝐶𝑝(𝐻 − ℎ) + 𝐶𝑓1
𝑢̅1𝑢̅1] ∆𝑦 

(B-72) 

 

((𝐻 − ℎ)
𝑣̅𝑒2

∆𝑦
) 𝑢̅2

+ (−
𝑣̅𝑒2

∆𝑦
(𝐻 − ℎ) −

𝑣̅𝑒1

∆𝑦
(𝐻 − ℎ) − 𝐶𝑓1

𝑢̅1∆𝑦

−
𝜏̅𝑉,𝑁(ℎ)

𝑢1
) 𝑢̅1 + ((𝐻 − ℎ)

𝑣̅𝑒1

∆𝑦
) 𝑢̅0 = −𝐶𝑝(𝐻 − ℎ)∆𝑦 

(B-73) 

 

Since . 

𝑢̅0 = 𝑢̅𝑁 

 𝐴1 = ((𝐻 − ℎ)
𝑣̅𝑒2

∆𝑦
)   (B-74) 

        𝐶1 = (𝐻 − ℎ)
𝑣̅𝑒1

∆𝑦
  (B-75) 

 

 𝐵1 =
𝑣̅𝑒2

∆𝑦
(𝐻 − ℎ) +

𝑣̅𝑒1

∆𝑦
(𝐻 − ℎ) + 𝐶𝑓1

𝑢̅1∆𝑦 +
𝜏̅𝑉,𝑁(ℎ)

𝑢1
      (B-76) 

 𝐷1 = 𝐶𝑝∆𝑦(𝐻 − ℎ) (B-77) 

 

 

At i = N 

 𝐶𝑝(𝐻) +
𝜕𝜏𝑥𝑦̅̅ ̅̅

𝜕𝑦
− 𝜏𝑥𝑧,𝑏 (B-78) 

 
𝜕

𝜕𝑦
(𝜐̅𝑒

𝜕𝑢̅

𝜕𝑦
) = −𝐶𝑝(𝐻) + 𝜏𝑥𝑧,𝑏 (B-79) 
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𝜕𝜏̅

𝜕𝑦
− 𝐶𝑓𝑢̅2 = −𝐶𝑝(𝐻) (B-80) 

 
𝜏̅𝑁+1 − 𝜏̅𝑁

∆𝑦
= −𝐶𝑝(𝐻) + 𝐶𝑓,𝑁𝑢̅𝑁𝑢̅𝑁 (B-81) 

 𝜏̅𝑁+1 = (𝐻 − ℎ)𝑣̅𝑒𝑁+1

𝑢̅𝑁+1 − 𝑢̅𝑁

∆𝑦
+ (ℎ)𝜏̅𝑉,𝑁 (B-82) 

 𝜏̅𝑁 = (ℎ)𝑣̅𝑒𝑁

𝑢̅𝑁 − 𝑢̅𝑁−1

∆𝑦
 (B-83) 

 
(𝐻 − ℎ)𝑣̅𝑒𝑁+1

𝑢̅𝑁+1 − 𝑢̅𝑁

∆𝑦
+ (ℎ)𝜏̅𝑉,𝑁 − [(𝐻)𝑣̅𝑒𝑁

𝑢̅𝑁 − 𝑢̅𝑁−1

∆𝑦
]

= ∆𝑦[−𝐶𝑝(𝐻) + 𝐶𝑓,𝑁𝑢̅𝑁𝑢̅𝑁] 

(B-84) 

 

((𝐻 − ℎ)
𝑣̅𝑒𝑁+1

∆𝑦
) 𝑢̅𝑁+1

+ (−𝐻
𝑣̅𝑒𝑁

∆𝑦
− (𝐻 − ℎ)

𝑣̅𝑒𝑁+1

∆𝑦
− 𝐶𝑓𝑁

𝑢̅𝑁∆𝑦 +
(ℎ)𝜏̅𝑉,𝑁

𝑢𝑁
) 𝑢̅𝑁

+ (𝐻) (
𝑣̅𝑒𝑁

∆𝑦
) 𝑢̅𝑁−1 = −(𝐻)𝐶𝑝∆𝑦 

(B-85) 

 

Since 𝑢̅𝑁+1 = 𝑢̅1 and 𝑣̅𝑒𝑁+1
= 𝑣̅𝑒1

 

Collecting similar terms; 

 

 𝐴𝑁 = (𝐻 − ℎ) (
𝑣̅𝑒1

∆𝑦
)   (B-86) 

        𝐶𝑁 = (𝐻) (
𝑣̅𝑒𝑁

∆𝑦
)  (B-87) 

 𝐵𝑁 = (𝐻
𝑣̅𝑒𝑁

∆𝑦
+ (𝐻 − ℎ)

𝑣̅𝑒1

∆𝑦
+ 𝐶𝑓𝑁

𝑢̅𝑁∆𝑦 −
(ℎ)𝜏̅𝑉,𝑁

𝑢𝑁
)     (B-88) 

 𝐷𝑁 = (𝐻)𝐶𝑝∆𝑦 (B-89) 

 


