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ABSTRACT

VISUAL CONCEPT DETECTION BY STACKED GENERALIZATION

Tekin, Mashar

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş Tünay Yarman Vural

July 2014, 60 pages

In this thesis, we propose a new Stacked Generalization method, called Fuzzy

Stacked Generalized Ranking Optimizer, to optimize the ranking performances

of visual concept detection systems. In the proposed method, fuzzy k-NN clas-

sifiers are employed in the base-layer. Then, a classifier selection algorithm is

employed to select the classifiers which will be combined in meta-layer. Finally,

the results of the selected classifiers are combined and classified by a fuzzy k-NN

meta classifier. In the experiments, the proposed method performs better than

the state of the art ensemble learning methods.

Keywords: Visual Concept Detection, Stack Generalization, Classifier Selection,

fuzzy k-NN
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ÖZ

YIĞIN GENELLEME İLE GÖRSEL KAVRAM TANIMA

Tekin, Mashar

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş Tünay Yarman Vural

Temmuz 2014 , 60 sayfa

Bu tezde, görsel kavram tanıma sistemlerinin sıralama performanslarını iyileş-

tirmek için Bulanık Yığın Genelleme ile Sıralama İyileştirici isimli yeni bir Yığın

Genelleme metodu önerilmektedir. Önerilen metotda, temel seviyede bulanık

k-NN sınıflandırıcıları kullanılmıştır. Daha sonra, bir sınıflandırıcı seçme algo-

ritması kullanılarak meta seviyede birleştirilecek olan sınıflandırıcılar seçilmiştir.

Son olarak, seçilen sınıflandırıcılara ait sonuçlar birleştirilmiş ve bulanık k-NN

meta sınıflandırıcısı tarafından sınıflandırılmıştır. Yapılan deneylerde önerilen

yöntemin en güncel bütünleşik öğrenim metotlarından daha iyi çalıştığı gözlem-

lenmiştir.

Anahtar Kelimeler: Görsel Kavram Tanıma, Yığın Genelleme, Sınıflandırıcı Se-

çimi, fuzzy k-NN
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CHAPTER 1

INTRODUCTION

Concept detection is the problem of detecting predefined concepts in a multi-

media document database such as image, audio or video. The explosive and

rapid growth in the amount of multimedia content on the television and In-

ternet services like YouTube and Facebook brings a demand for techniques to

easily search, filter and organize the huge amount of data. Managing broadcast

archieve of a broadcasting agency or retrieving videos related with a concept

from digital libraries in an effective way, are some of the problems waiting to

be solved in this area. Since it is not feasible to manually annotate all videos,

visual concept detection on videos becomes a significant research topic in the

computer vision community.

The major problem of visual concept detection is the semantic gap which is de-

fined by Snoek et al. [53] as: “The lack of correspondence between the low-level

features that machines extract from video and the high-level conceptual inter-

pretations a human gives to the data in a given situation.” Generally speaking,

concept detection systems aim at bridging the semantic gap between the low

level features and high level semantic concepts. This is a very difficult task in a

concept detection system, basically because of the fact that a semantic concept

may have diverse representation in terms of low level color, texture and shape

features.

In order to bridge the semantic gap, most of the concept detection systems ex-

tract visual and/or audio features from video and classify these features into

predefined concepts by using machine learning techniques. In these systems,
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various feature types and classifiers are successfully employed to utilize different

aspects of concepts for classification. Most of these systems fuse classifiers using

a Stack Generalization (SG) architecture which is an an ensemble learning tech-

nique and aims at optimizing the system performance by combining multiple

classifiers under a hierarchical structure. Generally speaking, small number of

base-layer classifiers are employed in SG architectures. As a result, faster train-

ing time and better generalisation performance are achieved than using large

number of classifiers. These systems are successful for the detection of small

number of concepts. However, the performances of these systems decrease when

the number of detected concepts is increased. This is basically because of the

fact that the variety of features related to individual classifiers is not enough to

effectively represent the large number of concepts. For this purpose, methods

which employ a large number of features and classifiers are proposed. The ad-

vantage of these systems is that they employ one or more classifiers to effectively

detect most of the concepts. However, for the detection of each concept either

all classifiers or a subset of classifiers are selected and combined by the users.

This approach may degrade the performance of the systems, named as black art

problem, since the independency and representation power of features related to

classifiers are not considered while determining the classifiers to combine. The

relationship among the classifiers which effects the performance is called the

black art problem.

In this thesis, we propose a new SG architecture, named as Fuzzy Stacked Gener-

alized Ranking Optimizer (FSG-RO), which employs a classifier selection method

in order to resolve the black art problem and optimize the performance of con-

cept detection systems. In FSG-RO, a subset of classifiers related to features are

selected from the classifiers employed in the system by using a classifier selection

method and selected classifiers are employed for the detection of a concept. The

advantage of FSG-RO is that, mostly, it discovers the subset of classifiers which

optimize the performance of the system when compared to the individual clas-

sifiers performances and the performance of the system that uses all classifiers.

On the other hand, for the cases that individual classifier performances are poor

FSG-RO can not optimize the system performance.
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The proposed FSG-RO architecture is used in a visual concept detection system

on broadcast media. The system is designed as a ranking-based application

where the results of the detection process of a concept is a ranking list of samples

according to their membership values for the given concept. Various local, global

and key-point based features, such as color and texture features are employed

in the system. FSG-RO architecture, which uses fuzzy k-NN classifiers in its

hierarchical levels (base-layer and meta-layer), is used to combine the classifiers

and optimize the ranking results of the system.

Unlike the common case for visual concept detection systems, using a classifier

selection method to optimize the ranking results is the key contribution of our

study. We implement a classifier selection method to find the set of classifier

which will boost the performance of the system.

This thesis is organized in six chapters. In Chapter 2, the overview of the concept

detection systems for the image, audio and video domains is given and the tech-

niques used in the concept detection systems are briefly explained. In Chapter

3, the stacked generalization methods in the literature are reviewed since these

methods are commonly used in concept detection systems. In Chapter 4, the

details of the proposed FSG-RO architecture and FSG architecture are given.

In Chapter 5, the experimental results and comments about these results are

presented. Finally in Chapter 6, the summary of our study and some remarks

for future works are given.
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CHAPTER 2

AN OVERVIEW OF CONCEPT DETECTION

SYSTEMS

Semantic concept is defined by Snoek et al. [53] as: “An objective linguistic

description of an observable entity.” Based on this definition, the difference of

the concepts from object categories is that the events, like meeting or fire are

also defined as concept. In recent years, in order to effectively search and index

multimedia documents concept detection systems are studied.

In this chapter, an overview of the studies related to concept detection is pre-

sented. Since concept detection is a popular area for researchers, studies are

available on different domains, such as image, audio and video. In order to

present the available systems in a comprehensive way, we present our overview

in two sections. In the first section, concept detection systems on image, audio

and video domains are demonstrated. In the second section, a review of the

strategies used for concept detection systems is provided.

2.1 Concept Detection Systems

Image, audio and video are the main domains that concept detection systems

are used. For each of these domains, an overview of the available systems are

given in the following sections.
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2.1.1 Image Concept Detection Systems

In image domain, many expert systems for different concepts are studied. A

popular example is proposed by Viola and Jones [69], where a face detection

method with different profile views is developed. Also, Dalal and Trigs [16] pro-

pose a successful method for human detection in images. In other studies, plant

identification, medical image retrieval and robot vision tasks are accomplished

for ImageCLEF, which is an evaluation benchmark [10]. Szummer and Picard

[60] focus on the classification of Indoor/Outdoor images. Since, the method-

ologies and features used in the expert systems are specifically designed for a

concept, these systems are successfully used in their own application domains,

but can not be used for any other concept detection systems.

Due to the time and computational complexity, it is not feasible to design an

expert system for each concept. As a result, large scale concept detection systems

that detect large number of concepts in a generic framework are studied. In

ImageCLEF [32], successful solutions for large scale visual concept detection

are presented. Tahir et al. [61] and Sande et al. [67] propose frameworks for

detection of 53 concepts, such as, animals, vehicles, and plants, on consumer

photos using only low level visual features. In the study of Huiskes et al. [24]

a framework using social data such as Flickr tags together with low level visual

features is proposed to achieve significant enhancements on the performance of

image retrieval. Since, same framework and features are used for the detection

of each concept, the performance of large scale concept detection systems are

worse than the performance of expert systems. These systems should be studied

in more detail in order to common usage in real life applications like image based

search engines.

2.1.2 Audio Concept Detection Systems

Audio based semantic classification systems are developed on isolated data,

which contains only pre-determined sounds, such as sound effects in audio databases

[29, 38], broadcast data that contains mixed audio of various sounds like in tele-
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vision broadcast [34, 37, 39] or surveillance data that are the sounds obtained

from surveillance cameras [5, 14].

The framework demonstrated in the study of Pfeiffer et al. [38] is one of the

first work for audio content analysis. This study is about music indexing and

violence detection in sound tracks from isolated dataset. Violence detection is

labeled as gunshots, cry and explosion sounds. In the study of Mesaros et al.

[29], there are 61 audio classes for classification, where isolated sound effects

of real life audio are used. In the study of Portelo et al. [39] detection of 15

different non-speech events, such as, jet sounds, vehicle sounds, water sounds

on movies are detected. A system proposed by Petridis et al. [37] detects the

speech and 5 non-speech audio events, namely music, sound of water, sound of

air, engine sounds and applause, on News Broadcasts. Ozan et al. [34] classify

17 different audio event on TV broadcast. Clavel et al.[14] propose a surveillance

event detection system which detects the abnormal audio events especially for

the shot detection in noisy environments like public places. Another surveillance

event detection system proposed by Atrey et al. [5] classifies events like, footstep,

door knock, talk and shout.

In audio domain, systems used to classify isolated data achieves high perfor-

mance and can be used for audio databases. Additionally, the classification of

speech and music is also achieved successfully. However, in order to effectively

use audio retrieval systems in real life applications, the performances of the sys-

tems that classify audio events in broadcast data need to more optimized. Also,

the number of the events should be increased.

2.1.3 Video Concept Detection Systems

In the video domain, a rapid increase has been observed in researches in recent

years. Using audio and/or visual clues variety of systems were proposed by

Smeaton et al. [47] and Wang et al.[72]. Systems for the semantic classification

of small number of concepts up to hundreds of concepts were demonstrated [20,

23, 49, 50]. The advancements in semantic analysis of videos can be observed in

TRECVID, an annual evaluation benchmark for research groups. In TRECVID

7



2006 [33], 20 concepts has been selected for semantic analysis, while in 2010 and

in 2011 this number is increased up to 130 and 346, respectively.

The study of MediaMill group [49, 50] is one of the most prominent studies

in the literature. In [49] they classified a lexicon which contains 32 specific

and general concepts in one system architecture on broadcast news data. In

[50] they extended their framework to classify 130 concepts, such as, classroom,

door, cityscape and singing etc. Although, the system of MediaMill achieved one

of the best performances on the average in TRECVID 2010, for many concepts

the performance of the system is far from being useful. The variety and number

of features employed in their system is not enough to achieve good performances

for all concepts.

For consumer videos, Chang et al. [20] propose a large scale concept detection

system a pioneer work classifies 25 different concepts which were determined

for the needs of consumers. Some of the concepts classified are graduation,

park, baby and cheering. In their study, visual features and audio features are

extracted from video and Support Vector Machine (SVM) [8] is used for classifi-

cation of each feature. Then, the independent classification scores are combined

by using various weighted sum strategies. The system achieves prominent per-

formances for some of the concepts, however there are significant number of

concepts such as picnic, animal and baby that can not be successfully detected

by the system. The weaknesses of this study is that the visual and audio fea-

tures are not enough to effectively describe each concept and the combination

methods are simple.

In the study of Soysal et al. [56], KavTan multi-modal concept detection system

is proposed for the detection of 28 different concepts on broadcast media. In the

study, in order to increase the performance of the system specialized methods

are employed for the detection of concepts such as Nudity, Blood and Human

Presence. On the other hand, most of the visual concepts are detected by a gen-

eralized visual concept detection module which employs an ensemble learning

architecture Stacked Generalization(SG) [74]. In the module, large number of vi-

sual features consists of color, texture and keypoint based features are extracted

8



and SVM classifiers are used for the classification of features. Then, the predic-

tions of the classifiers are concatenated and classified by another SVM to get final

prediction. Employing large variety of features and using SG architecture are

the superiorities of the KavTan system when compared to the previous studies.

However, the weakness of this system is that for the detection of each concept

either all features or the features selected by users are employed together. This

may decrease the performance of the system, named as black art problem [74]

in the literature. In order to solve this problem, some feature/classifier selection

methods can be used.

In order to design a concept based video retrieval system, which achieves perfor-

mances comparable to text retrieval systems on the web, available video concept

detection systems need further improvements. Hauptmann et al. [23] state that

the number of concepts detected by these systems should be increased up to 5000.

Also, the performances of these systems should be optimized by increasing the

variety of features employed in the systems, using feature selection methods and

more sophisticated ensemble learning techniques.

2.2 Concept Detection Methodologies

As mentioned in the previous section, in order to achieve the semantic analy-

sis problem of multimedia data, various systems are proposed [53]. Since the

problem has different aspects and sub-tasks such as feature extraction and clas-

sification, many algorithms and state-of-the-art methodologies are used in these

system to achieve better performances. A review of methodologies for different

domains are provided in [53, 57, 72]. In this section, we will review the method-

ologies used in video domain since the scope of our thesis is visual concept

detection on video.

In recent years, generic systems which employ a single framework to detect large

number of concepts are proposed for video concept detection. The basic frame-

work of these systems contains three basic steps, namely, video segmentation,

feature extraction and machine learning. In the video segmentation step, video

9



Figure 2.1: Basic framework for a generic concept detection system.

is partitioned into segments. Then, in the feature extraction step low level fea-

tures are extracted from these segments. Finally, machine learning techniques

are employed to classify these features. In order to employ machine learning

techniques, training and testing stages are executed in basic framework. In Fig-

ure 2.1 steps of the basic framework are shown for training and testing stages.

In order to improve the performance of generic systems, researchers extend their

frameworks using supplementary steps, namely, feature fusion, classifier fusion

and modelling relations. One or more of these steps may be employed by frame-

works. Feature fusion step is used to combine the various features extracted

from video segments in order to obtain a single feature vector for classification.

On the other hand, classifier fusion is used to combine the results of various

classifiers to obtain a single result. Finally, modelling relations are used to opti-

mize the detection results by using the relations between concepts. The general

framework using supplementary steps is shown in Figure 2.2 for testing stage.

In order to achieve each of the basic and supplementary steps, many techniques

are used by available systems [53], such as, feature/classifier fusion and mod-

elling relations. A tree of the techniques used for each step is shown in Fig-

ure 2.3. In following sections, the explanation of these techniques are given

for the steps Video Segmentation, Feature Extraction, Feature Fusion, Machine

Learning, Classifier Fusion and Modelling Relations.

10



Figure 2.2: General framework for a generic concept detection system.

2.2.1 Video Segmentation

In order to design a video concept retrieval system at a fine granularity, videos are

partitioned into workable segments. The most convenient segments for concept

detection are video shots, which are the sequences of the frames of a continuous

camera action with respect to space and time [78]. Video Shot Detection, which

is defined as automatically detecting the shot boundaries, achieved by measuring

the amount of the change between successive frames of a video. If the amount

of change exceeds a threshold, then a shot boundary is detected between these

frames [79].

In order to analyse the video shots and decrease the computational complexity, a

video shot is generally represented by one or more frames, named as keyframes.

Keyframe Extraction is often achieved by taking the central frame of a video

shot as keyframe. In the study of Soysal et al. [56], keyframes are obtained by

uniformly sampling the frames throughout the shot duration.

Video shot detection and keyframe extraction processes are successfully achieved

by concept detection systems in the literature [56, 79]. In feature extraction step,

low level features are extracted from the shots and keyframes obtained in this

step.

11



Figure 2.3: A hierarchical scheme, representing the methodologies used by con-
cept detection systems.
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2.2.2 Feature Extraction

In feature extraction step, the popular Global [59], Regional [30], Keypoint-

based [68] and Temporal [12, 68] feature extraction methods used. In the Global

method, features are extracted from the entire keyframe in order to obtain in-

formation about the whole [59]. When the global features are insufficient for

the analysis of a keyframe, Regional feature extraction methods are used. In

this method, generally, keyframe is partitioned into regions with fixed set of

rectangles rely on different locations of image [30] and features are extracted

from these predefined rectangles. In Keypoint scale, features are extracted from

the points sampled from a keyframe [68]. Keypoint based features come into

prominence in many concept detection systems [16, 33] with the proposition

of Scale-Invariant Feature Transform (SIFT) by Lowe [27]. Temporal features

are only extracted from videos using temporally ordered images belong to video

shots and used to describe motion and activities in a video shot. Motion Activity

Descriptor, Camera Motion Descriptor are temporal features commonly used in

the literature [12, 68].

By using one or more of the presented feature extraction methods various feature

types, namely, color, texture and shape features are extracted from keyframes

in available concept detection systems. Color features are mostly extracted

from different color spaces such as RGB, HSV space or the invariant sets of

color spaces [12, 21] in order to describe the color characteristics of a keyframes.

Texture features are used to classify various patterns such as pattern of grass,

pattern of sand by capturing the similarity in local patterns [12, 44] and shape

features are extracted from the regions that image is segmented into. Region

Shape and Contour Shape are some of the commonly used descriptors defined

by the MPEG-7 standard [12].

In our study, we use several color and texture features which are summarized as

follows

• Color Layout [43]: Describes the spatial distribution of colors by using

Discrete Cosine Transform.
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• Color Moments [58]: First three moments of colors on 5x5 grid are

computed.

• Color Structure [43]: Represents the spatial structure of the colors and

their frequencies.

• Co-occurrence Texture [22]: Describes the entropy, energy and homo-

geneity of texture.

• Dominant Color [43]: Respresents the dominant colors and their statis-

tics such as variance.

• Edge Histogram [43]: Describes the spatial distribution of edges for 16

image sub-regions.

• Homogeneous Texture [43]: Represents the texture of regions by us-

ing energy deviation and mean energy from a set of frequency channels

modelled by Gabor functions.

• Scalable Color [43]: Color histogram which is calculated for HSV color

space. Haar transform is used for encoding.

• SIFT [27]: Describe local image patches by using location, scale and

rotation invariant feature vectors.

• Wavelet Texture [75]: By using a 3x3 grid, haar distributions among

12 sub-bands are obtained.

2.2.3 Feature Fusion

In most cases, a single feature is not enough for systems which aim at detecting

many concepts since there may be more than one concept having the same

characteristics for a single feature. For example, color characteristic of sun and

fire may be same. As a result, large number of features from various feature

types, such as, color, texture and shape, are used in concept detection systems.

In order to obtain a single feature descriptor, these features are combined by

using fusion techniques.
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A key question in feature fusion is that which features are to be selected for

fusion. In order to effectively use feature fusion, there should be some form of

independence among the features [53]. There are two approach used to provide

independency between features. One approach is using features from different

modalities [73] and other approach is using different feature types extracted from

same modality in such a way that features complete the defficiency of each other.

In the study of Tseng et al. [65], various features from the same modality are

fused by using the concatenation operation. Amir et al. [3] fused global and

regional features.

Since the features extracted from different modalities, may have different units

like frame or video shot, a Synchronization is needed. In the study of Snoek et al.

[52] this problem is solved by selecting the common unit for features. Another

problem is that, different feature types may have different dynamical ranges.

This problem is solved by Normalization techniques in the literature, like in the

study of Wilkins et al. [73]. The last and the most important problem for feature

fusion is the curse of dimensionality problem of the machine learning techniques.

In order to solve this problem, various feature transformation methods are used

in the literature. Chen and Hauptmann [77] reduce the dimensionality of used

features using Fisher’s linear discriminant, and then concatenate the projected

features. Soysal et al. [56] use Bag of Visual Words (BoVW) [76] approach to

reduce the dimensionality. The set of feature descriptors extracted for a video

shot, is projected to visual codeword histogram by using the visual codebooks

obtained in the training phase using k-means clustering method.

2.2.4 Machine Learning

Since detecting a concept requires too many decision rules, machine learning

techniques are used to learn the concepts. Simply, the aim of machine learning

is to obtain a model, which achieves optimal generalization performance, by

using a limited amount of training samples in order to optimize the classification

performance of a concept.

In video concept detection systems, machine learning step is generally achieved
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by using a supervised learning method where the classifier is trained by exam-

ples which are labelled previously. Training and testing stages employed using

machine learning are shown in Figure 2.1. In training stage, the best possible

configuration of features is learned using the training samples by classifiers. In

testing stage, a classifier is used to make a decision for each feature vector for

every concept.

The curse of dimensionality problem and optimizing the parameters of a clas-

sifier too intensively for the training samples are some of the reasons which

decrease the performance of a classifier [53]. As a result, determining the num-

ber of features to employ and optimizing the classifier parameters should be

carefully achieved by supervised learning methods. Moreover, learning from

a limited number of training samples, handling data imbalance problem for

training samples are other tasks that should be handled by classifiers. In

order to achieve these tasks, Support Vector Machine (SVM) [8] is success-

fully used become a default choice for most of the concept detection systems

[4, 6, 9, 20, 31, 42, 46, 49, 50, 56, 71].

In literature, the practical and fast k-NN method is employed in several concept

detection systems [6, 42]. Although, it generally achieves a lower classification

rates than SVM, this method is faster for training. Additionally, for the cases

where large number of training samples are available, it may outperform the

other classification methods, such as SVM and Neural Networks.

2.2.5 Classifier Fusion

Fusion of classification results is another approach used to optimize the perfor-

mance of video concept detection systems. In the study of Snoek et al. [55]

classifier fusion approach is experimentally compared to the feature fusion ap-

proach and it is shown that classifier fusion gives slightly better performance

than feature fusion for most of the concepts. As a result, classifier fusion is

preferred by many systems [4, 6, 9, 20, 31, 42, 46, 56].

In order to obtain a better performances than the performances of a single
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classifier, there should be some independency among the fused classifiers. There

are three methods in the literature in order to achieve independency between

classifiers. The first and most used method is that separate features such as

color, texture and motion features are used to train each classifier [4, 9, 20,

31, 46, 56]. In the second method, separate classifiers are trained for a feature

type. Independency of classifiers can be achieved by using different machine

learning techniques which may cover varying regions in feature space. In the

studies of Ballas et al. [6] and Safadi et al. [42], k-NN and SVM classifiers

are fused to optimize classification performance. Additionally, we can use same

classification algorithm but vary the parameters of classifiers to obtain separate

classifiers [70, 20]. In the study of Chang et al. [20] for each feature 25 SVM

classifiers trained by using different parameters are fused. Wang et al. [70]

fused the classification results of SVM classifiers with different kernel types. In

the third and final method, classifiers are trained by using separate training

data. In the study of Snoek et al. [54], new train datasets are obtained by

re-sampling the original train data and for each train dataset a SVM is trained.

Totally, 200 classifier is trained and combined to optimize the performance of

the proposed system. All explained methods are successfully used to optimize

the performance of concept detection systems, however, using various classifiers

for a feature as in the second and third methods, increase the computational

complexity of systems and rarely used in literature. On the other hand, using

separate features is the common choice for concept detection systems.

Once the classifiers are obtained, the next step is to combine them. Among

many methodologies, the popular methods for this task is combining classifier

rankings, binary classification results or probabilistic decisions. Between these

choices, almost all concept detection systems prefer to combine the probabilistic

decisions of classifiers [4, 6, 9, 20, 31, 42, 46, 56]. In most cases, it gives better

performances.

In order to combine the classification results supervised and unsupervised com-

bination methods are used in the literature. In supervised methods, concept

probabilities are concatenated using vector concatenation and classified by a

classifier which is generally SVM [55, 77, 56]. In unsupervised methods, simple
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functions are used to combine classifier results. Taking the average, minimum,

maximum or geometric mean of the probabilities are some of these functions

[26, 54, 51]. Because of the simplicity, unsupervised methods are commonly

used by concept detection systems [4, 6, 20, 31, 46].

2.2.6 Modelling Relations

For a system which detects more than one concept simultaneously, the semantic

relationship between concepts can be used to improve the results. For exam-

ple, the presence of a boat together with water might increase the possibility of

presence of these two concepts while decreasing the probability desert. In order

to increase performance by using semantic relationships, the co-occurrence re-

lations of the concepts should be exploited. For this purpose, two models are

defined in the literature which are Spatial and Temporal models.

In Spatial models, concepts that are simultaneously available in the same frame

are used to optimize detection results. For example, the presence of sand and

water in a single frame, increases the probability of beach. This model is used

in [25, 40].

In Temporal models, occurrences of the concepts in consecutive video frames or

video shots are used. For example, the detection of the concept Air-plane take-

off, can be achieved by the detection of Air-plane and Sky in successive video

frames or video shots [18, 40]. In order to model dynamic concepts, ontologies

are proposed for specific domains like soccer and medical [7, 19]. Both of the

Spatial and Temporal models are successfully used for the detection of various

concepts in the literature. Temporal models are used for dynamic concepts and

Spatial models for others.

18



CHAPTER 3

AN OVERVIEW OF THE STACKED

GENERALIZATION METHODS

Stacked Generalization (SG), introduced by Wolpert [74], is one of the general

methods used in the literature for ensemble learning [13, 15, 17, 28, 62, 64, 66].

It is based on combining the predictions of several classifiers, as base-layer clas-

sifiers, in various ways in order to achieve better performance than the best

individual base-layer classifiers. In the following section, firstly the SG architec-

ture will be explained and then in subsequent section the SG architectures and

various properties of this method will be discussed.

3.1 The Stacked Generalization Method

Stacked Generalization (SG) is a general method of using a high-level model

to combine lower-level models to improve the overall predictive accuracy. The

general structure of SG method is shown in Figure 3.1. High level model, called

meta layer classifier, used to learn from the output of lower-level models, called

base-layer classifiers.

Different type of base-layer classifiers may be used in SG methods. If the type of

all base-layer classifiers are the same, such as all classifiers are SVM, it is named

as homogeneous base-layer classifiers. On the other hand, if different type of

classifiers are employed together in base-layers, such as, fuzzy k-NN and SVM,

it is named as heterogeneous base-layer classifiers.
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Figure 3.1: General structure of Stacked Generalization

3.2 Stacked Generalization Methods

Among a wide variety of SG methods in the literature, we review the meth-

ods similar to the proposed FSG-RO architecture where the decisions of the

base-layer classifiers are fused by the linear combination or vector concatenation

operation.

In the study of Sen and Erdogan [15] 13 different types of base level classifier

such as k-NN, SVM with different kernel types, and binary decision tree etc. are

employed. The combination of the classifiers is achieved by using a group sparse

regularization method, a linear combination algorithm at the meta-layer. In our

visual concept detection system we will employ homogeneous SG framework,

because of the fact that using various type of classifiers in base-layer increase

the computational complexity of a system. Therefor, in the rest of this section,

homegeneous SG algorithms are reviewed.

In the study of Ueda [66], a prominent SG framework employing homegenous
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base-layer classifiers is proposed. In the proposed framework, Neural Network

classifiers are employed as the base-layer classifiers. In meta layer, each of the

base-layer classifiers which achieves best classification performance for each class

are selected to combine. This method aims at exploiting the strenghts of the

base-layer classifiers. The selected classifiers are combined by using a linear

combination method. Similarly, in the SG method of Ahmad and Zhang [1],

Neural Networks are used in both layers and the classifiers to combine in meta-

layer are selected using backward elimination and forward selection algorithms.

Their system is tested on the database of diabetes. Using homogeneous base-

layer classifiers and effective classifier selection methods are the superiorities of

these methods. On the other hand, as mentioned in section 2.2.4 SVM and k-

NN classifiers are more suitable for video concept detection systems and Neural

Networks are not employed in recent video concept detection systems.

In the literature, prominent SG algorithms which employ fuzzy k-NN and SVM

classifiers are also proposed. Shiraishi et al. [45] propose a multi-class classifica-

tion system using SG architecture with SVM binary classifiers in base layer. In

the study of Soysal et al. [56] SG framework is used in the visual concept detec-

tion module of a multi modal concept detection system (KavTan) for broadcast

media. They use SVM classifiers for each type of visual feature, extracted from

the video in base-layer and combine the probabilistic decisions of classifiers us-

ing vector concatenation operation. At meta-layer combined values are classified

by another SVM producing probabilistic decisions. Employing large number of

feature and using SVM classifiers are the superiorities of the KavTan system.

On the other hand, the performance of KavTan system can be further improved

by employing feature and/or classifier selection algorithms.

In the image annotation system of Akbas and Yarman Vural [2] fuzzy k-NN

classifiers are employed in the layers and vector concatenation is used as the

combining method. Similarly, Ozay and Yarman Vural [35] use SG architecture

with fuzzy k-NN base-layer classifiers for their multi-class image classification

system. At the base-layer, fuzzy k-NN classifiers are used to classify a set of fea-

ture vectors extracted from an image and each classifier outputs a membership

value vector. In meta layer, these outputs are concatenated to build a linear
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regression equation. In a recent study of Ozay and Yarman Vural [36], fuzzy k-

NN classifiers are employed in the layers of the SG architecture which is named

as Fuzzy Stacked Generalization (FSG). By using fuzzy k-NN classifiers, promi-

nent performances are achieved by these systems. However, these architectures

employ small number of features in the base layer and features are determined

by the users. The performance of these architectures can be further improved

by emloying a feature selection algorithm to determine the features used in the

base-layer.

In the literatur, SG methods are successfully used to boost the performances of

individual base layer classifiers. However, there are situations that the perfor-

mance of the system decreases at the meta-layer. Employing classifiers which do

not provide complementary information for the generalization accuracy is one

of the reasons of this performance decrease. For SG method, identifying the

correlation between performance of the system and different parameters of the

methods is defined as “black art” problem in the studies of Wolpert, Ting and

Witten [63, 74]. In order to solve this problem, a feature selection method can

be employed to select the features whose combination improves the performance.

In this thesis, we propose a new SG framework which employs a feature selection

method and uses fuzzy k-NN classifiers in layers.
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CHAPTER 4

FUZYY STACKED GENERALIZED RANKING

OPTIMIZER (FSG-RO)

The major problem of visual concept detection is the semantic gap which is de-

fined by Snoek et al. [53] as: “The lack of correspondence between the low-level

features that machines extract from video and the high-level conceptual inter-

pretations a human gives to the data in a given situation.” Generally speaking,

concept detection systems aim at bridging the semantic gap by extracting low

level features from video frames or shots and classifying these features into pre-

defined concepts by using machine learning techniques.

Bridging the semantic gap is a difficult task since a semantic concept may be

appear with various shapes, colors and textures in a video. In order to detect

a concept various features which describe different characteristics of a video

are employed in concept detection systems. Most of these systems, use classifier

fusion techniques (explained in section 2.2.5) to combine the classification results

of various features.

In the concept detection systems, Stack Generalization (SG) is one of the meth-

ods used to employ various features and classifiers together for the detection of

large number of concepts. However, most of these systems can not effectively

use the different aspects of the concepts, since small number of pre-determined

features are employed to classify composite concepts, such as fire and violence.

On the other hand, the systems employing large number of features, generally,

do not utilize a classifier selection method and utilize all base layer classifiers to

detect all concepts. As a result, performance improvements that can be obtained
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by using various classifier combinations for each concept, can not be explored.

In this thesis, we propose a concept detection system which employs a new SG

architecture called Fuzyy Stacked Generalized Ranking Optimizer (FSG-RO). In

the FSG-RO architecture, at the base layer fuzzy k-NN classifiers which make

fuzzy decisions are employed. At the meta layer, features are selected according

to their ranking performances and the classification results of selected ones are

combined using vector concatenation. Then, the generated vector is classified

by a meta classifier, which is also a fuzzy k-NN classifier. The final output is

also a fuzzy decision (membership value) which shows the probability of the

presence of a concept. FSG-RO architecture produces a rank list and designed

to optimize ranking performance of the system.

FSG-RO is based on the Fuzzy Stacked Generalization (FSG) architecture of

Ozay and Yarman Vural [36]. Similar to FSG, FSG-RO employs fuzzy k-NN

classifiers in layers. The major difference of FSG-RO is that a feature selection

is included in the architecture. A brief explanation of FSG is given in following

section and in subsequent section FSG-RO architecture is explained in detail.

4.1 FSG System Overview

Fuzzy Stacked Generalization (FSG) architecture, suggested by Ozay and Yarman

Vural [36], is a two layered SG method which employs fuzzy k-NN classifiers in its

layers. At the base-layer of FSG, fuzzy k-NN classifiers are employed to classify

features extracted from samples. For a given sample, each individual classifier

produces a class membership value vector and in data fusion stage these vectors

are combined by using vector concatenation. Finally, at the meta-layer, the out-

put of data fusion stage is classified using another fuzzy k-NN classifier and the

class with the highest membership value is predicted as the class label of test

sample. The general scheme of FSG architecture is shown in Figure 4.1.

In the study of Ozay and Yarman Vural, FSG is employed in order to optimize

the accuracy of various multi-class classification systems that classify 10, 15

and 20 classes on image domain. In the experiments of FSG, it is shown that
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Figure 4.1: General scheme of FSG Architecture.

FSG boost the performance of individual base layer classifiers. Also, it achieves

better performances than the state-of-the-art ensemble learning techniques such

as Adaboost and Rotation Forest.

4.2 FSG-RO System Overview

FSG-RO architecture is designed to optimize the ranking performance of a

generic video concept detection system which is implemented as a binary clas-

sification system. As a result, for each concept a separate FSG-RO system is

trained as a dichotomizer and for a set of input samples, FSG-RO produces a

rank list which contains the membership value of each sample for the concept.

The general structure of FSG-RO architecture is shown in Figure 4.2. Basically,

FGS-RO consists of 5 modules, namely Feature Extraction, Base Layer Classi-
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Figure 4.2: General structure of FSG-RO architecture.

fication, Feature Selection, Decision Fusion and Meta Layer Classification. In

Feature Extraction module, features are extracted from video shots. In Base

Layer Classification module the features are classified using fuzzy k-NN clas-

sifiers and membership values are produced for each video shot. In Feature

Selection module, the classification results of the selected features are filtered

and in Decision Fusion module membership values are combined using vector

concatenation. Finally, in Meta Layer Classification module the fused member-

ship values is classified using fuzzy k-NN classifier. The details of each module

is explained in the following sections.

4.2.1 Feature Extraction

In this stage of the concept detection on a video shot sample vsi, we first obtain

a set of keyframes from vsi. We employ a simple method that the frames of vsi
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Figure 4.3: Feature Extraction process flowchart.

are uniformly sampled by using the equation:

ηi =
Ti
δs
− 1, (4.1)

where ηi is the number of frames obtained from vsi, Ti is the duration of shot

and δs is the time interval between two frames. Keyframes are taken at time

instants tk = i.δs for k = 1, 2, . . . , Ni.

The set of keyframes obtained from vsi are used as input for feature extraction

process and the output is the set of histograms referred as features. The steps

of this stage, namely Spatial Sampling, Visual Feature Extraction and Visual

Codewords Histogram Generation, are shown in Figure 4.3 and explained in the

following sections.

27



4.2.1.1 Spatial Sampling

In this step, different spatial sampling methods, namely, Global , Grid2 × 2,

Grid3 × 3 and Sparse, are used in order to extract sub-frames and key points

from each keyframe Fj ∈ KFi, where KFi = {Fj}ηj=1 is the set of η keyframes

extracted from a sample vsi.

In the Global method, the whole frame is used and the output for vsi is the set of

frames S1
i = {f 1

j }
η
j=1 where f 1

j = Fj is the single sub-frame of Fj,∀j = 1, 2, . . . , η.

In the Grid2× 2 method, each keyframe Fj is segmented into 4 segments, each

segment is a sub-frame, by using 2 × 2 cell. The output for vsi is the set of

sub-frames S2
i = {f 2

k}
4η
k=1 where S2

i contains 4 sub-frames for each keyframe Fj,

∀j = 1, 2, . . . , η.

In the Grid3× 3 method, each keyframe Fj is segmented into 9 segments, each

segment is a sub-frame, by using 3 × 3 cell. The output for vsi is the set of

sub-frames S3
i = {f 3

k}
9η
k=1 where S3

i contains 9 sub-frames for each keyframe Fj,

∀j = 1, 2, . . . , η.

Finally, in the Sparse method, for video vsi the set of interest points SPi =

{pk}Mk=1 where SPi contains all the interest points extracted from each keyframe

Fj, M = M1 + . . . +Mj + . . . +Mη and Mj is the number of interest points

extracted from Fj. The number of interest point Mj is a frame-dependent pa-

rameter and may range from several hundreds to several thousands.

4.2.1.2 Visual Feature Extraction

Visual feature extraction process is achieved for vsi by using the sub-frame sets,

which are S1
i , S2

i , S3
i , and the set of interest points which is SPi . The visual

features FeaturesG = {Color Layout, Color Moments, Color Structure, Co-

occurrence Texture, Dominant Color, Edge Histogram, Homogeneous Texture,

Scalable Color, Wavelet Texture} are extracted for each of the sub-frame sets

and SIFT feature is extracted from the set of interest points.
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For the sub-frame set S1
i , for each visual feature vfj ∈ FeaturesG, a set of

descriptor vectors D1
i,j = {dj(fk)}

|S1
i |

k=1 , where dj(fk) is the descriptor vector ex-

tracted from the subframe fk ∈ S1
i for vfj, is constructed.

For the sub-frame set S2
i , for each visual feature vfj ∈ FeaturesG, a set of

descriptor vectors D2
i,j = {dj(fk)}

|S2
i |

k=1 , where dj(fk) is the descriptor vector ex-

tracted from the subframe fk ∈ S2
i for vfj, is constructed.

For the sub-frame set S3
i , for each visual feature vfj ∈ FeaturesG, a set of

descriptor vectors D3
i,j = {dj(fk)}

|S3
i |

k=1 , where dj(fk) is the descriptor vector ex-

tracted from the subframe fk ∈ S3
i for vfj, is constructed.

Similarly, for the visual feature SIFT, the descriptor set DP
i,s = {ds(pk)}

|SP
i |

k=1 ,

where ds(pk) is the SIFT descriptor extracted from the interest point pk ∈ SPi ,
is constructed.

As a result of this step, for a video shot vsi we obtain 28 descriptor sets.

4.2.1.3 Histogram of Visual Codewords Generation

In this step, the visual feature descriptors are projected into another feature

space, which is more robust and efficient for testing and training purposes, by uti-

lizing the well-known Bag-of-Visual-Words (BoVW) [76] method, as explained

below.

The visual descriptor set DR
i,j, which contains the descriptor vectors of visual fea-

ture vfj extracted from the sub-frame set SRi ∈ {S1
i , S

2
i , S

3
i } of vsi, is projected

to visual codeword histogram hRi,j(c) for the values of c ∈ CG = {128, 256, 512}
which is the codebook size of the visual codebooks obtained in training phase us-

ing k-means clustering method. As a result, 3 different histograms are generated

for a descriptor set.

Similarly, the keypoint descriptor set DP
i,s of vsi is projected to visual code-

word histogram hPi,s(c) for the values of c ∈ CS = {1024, 2048, 4096}. For the

descriptor set of SIFT feature, 3 different histograms are generated.
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As a result of Feature Extraction process total of 84 different histograms are

constructed for a single video shot vsi.

In the rest of the thesis, these 84 histogram types will be referred as feature

types. A feature type FEj will be shown with 3-tuple list (vf,R, c) where

vf ∈ FeaturesG∪{SIFT} is the visual feature, c ∈ CG∪CS is the codebook size

and R ∈ {Global, Grid2× 2, Grid3× 3, Sparse} is the spatial sampling method.

The set of 84 feature types will be shown using FE = {FEj}84j=1. For exam-

ple, the feature FE1 = (ColorLayout,Global, 128) refers to the type of visual

codeword histogram with codebook size 128, projected from the descriptors of

visual feature Color Layout that are extracted from the sub-frames extracted

using Global spatial sampling method. Also, the histogram generated for video

shot vsi by using feature type FEj will be referred as hi,j.

4.2.2 Base Layer Classification

For each feature type FEj ∈ FE a fuzzy k-NN classifier Cj is employed as base

layer classifier in FSG-RO. Each classifier Cj receives a set of visual codeword

histograms of video shots {hi,j}Ni=1, where hi,j is extracted from a video shot vsi
obtained from a training set V S = {(vsi, yi)}Ni=1 for each feature type FEj ∈ FE.

The output of a fuzzy k-NN classifier is a membership value 0 ≤ µ(hi,j) ≤ 1

measuring the degree of the membership that the searched concept is available

in video shot vsi. The membership value is computed by;

µ(hi,j) =

∑k
n=1 yl(n)(

∥∥hi,j − hl(n),j∥∥)− 2
ϕ−1∑k

n=1(
∥∥hi,j − hl(n),j∥∥)− 2

ϕ−1

(4.2)

where l(n) is the index of nth nearest neighbour hl(n),j of hi,j and yl(n) ∈ {0, 1}
is the label of vsl(n). The label yl(n) is 1 for the histograms of positively labelled

video shots and 0 for others. The value ϕ is the fuzzification parameter, ∀i =
1, 2, . . . , N, ∀j = 1, 2, . . . , J (in our system J = 84).

In the training phase of the proposed FSG-RO method, the membership value

µ(hi,j) of each shot vsi is computed by using leave-one-out cross validation tech-
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nique for each (hi,j, yi) in the validation set V Scvj = V Sj − (hi,j, yi), where

V Sj = {(hi,j, yi)Ni=1}.

In the test phase, the membership value µ(h′i,j) of each test shot vs′i obtained

from the test set V S ′ = {vs′i}N
′

i=1 is computed by using the equation (4.2) with

a set of test codeword histograms V S ′j = {h′i,j}N
′

i=1 and train histograms V Sj in

each classifiers Cj,∀j = 1, 2, . . . , J.

4.2.3 Classifier Selection

In this stage, classifiers to use in meta layer classification are filtered. The details

of the selection of classifiers will be explained in section 4.3. In this part, the

classifier selection process in training and test phases will be briefly explained.

A set of fuzzy k-NN classifiers Cs = {Cf(d)}Dd=1, where D is the number of

selected classifiers, f(d) ∈ {1, 2, . . . , J} is the id of dth selected classifier Cf(d)
and Cs ⊆ {Cj}Jj=1, is determined by the feature selection methods using a set

of validation shots(see section 4.3).

In training phase, the membership values µ(hi,j) computed by classifier Cj for

each train shot vsi obtained from V S = {vsi}Ni=1 and is passed to the Decision

Fusion stage if and only if the feature type Cj ∈ Cs,∀j = 1, 2, . . . , J.

In testing phase, the membership value µ(h′i,j) computed by classifier Cj for

each test shot vs′i from V S ′ = {vs′i}N
′

i=1 is passed to Decision Fusion stage if and

only if the classifier Cj ∈ Cs,∀j = 1, 2, . . . , J.

4.2.4 Decision Fusion

In decision fusion stage, selected classifiers are fused by using vector concatena-

tion operation. The training and test phases are explained below:

In the training phase, for each shot vsi a single vector µ(vsi) = [µ(hi,f(d))]
D
d=1 is

constructed, where D is the number of classifiers selected in Classifier Selection

stage, f(d) ∈ {1, 2, . . . , J} is the id of dth selected classifier Cf(d) ∈ Cs, µ(hi,f(d))
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is the membership value for histogram hi,f(d) of vsi. µ(V S) = {µ(vsi)}Ni=1 is

passed to meta classification layer as training data.

In testing phase, similar to training phase, for each shot vs′i ∈ V S ′ a membership

vector µ(vs′i) = [µ(hi,f(d))]
D
d=1 is generated and µ(V S ′) = {µ(vs′i)}N

′
i=1 is passed

to meta classification layer as testing data.

4.2.5 Meta Layer Classification

Fuzzy k-NN classifier Cmeta is employed as a meta layer classifier for fusion of

the decisions of base layer classifiers. The set of membership vectors µ(V S)

obtained in decision fusion stage for training shots is utilized as training data

in Cmeta. The set of membership vectors µ(V S ′) generated for test shots is

classified by Cmeta using the equation 4.2. For each test shot vs′i obtained from

V S ′ = {(vs′i, yi)}N
′

i=1 a final membership value µf (vs′i), measures the probability

that video shot vs′i contains the concept, is computed.

4.3 Classifier Selection

In order to determine the feature types to be used in meta layer classification,

a new set of video shots V S = {(vsi, yi)}Ni=1, named as validation set, is used.

For each vsi obtained from V S a membership value µ(hi,j) is computed by using

(4.2) with V Sj = {hi,j}Ni=1 as test data and V Sj as training data in each classifier

Cj.

For each classifier Cj, we produce a rank list:

Rankj := [(vsl(1), yl(1)), . . . , (vsl(i), yl(i)), . . . , (vsl(N), yl(N))] (4.3)

where l(i) is the index of the shot vsl(i) with ith highest membership value in

µj = {µ(hi,j)}Ni=1 which is the membership values produced by Cj for each shot

of V S, is generated by using validation shots, ∀i = 1, 2, . . . , N , ∀j = 1, 2, . . . , J .

The rank list Rankj of each base layer classifier Cj are given as input to the
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classifier selection method explained in following section to determine a set of

classifiers Cs = {Cf(d)}Dd=1, where D is the number of selected classifiers, f(d) ∈
{1, 2, . . . , J} is the id of dth selected classifier Cf(d) and Cs ⊆ {Cj}Jj=1,

In the following sections, firstly the motivation of selecting the features will be

explained. Later the details of the feature selection method will be explained.

4.3.1 Motivation: Why to Select Classifiers?

Fusing all the outputs of base-layer classifiers is not a feasible approach for many

reasons. First of all, some features and the classifiers related with these features

may be statistically dependent and redundant, causing unnecessary computa-

tional cost. Secondly, feature types may have variety of different representation

power for each class. In other words some features may be very effective to

represent some specific classes, while may fall short to represent some other

classes. For example, some color features have a strong power to represent Air

classes. However, these features are not suitable to represent Crowds. Therefore,

one needs to select the features which complement each other such that they

represent all the classes collectively.

In order to boost the performance of a concept detection system, classifiers

related with the subset of complementary features are to be selected. Combining

large number of classifiers from various domains in the FSG may be resulted with

performance loss. For these cases, using the classifiers of complementary features

rather than all classifiers is required to boost the performance of the base-layer

classifiers. This is the reason why we utilize classifier selection method, rather

than combining all classifiers in our FSG-RO system. Additionally, selection of

classifiers reduce the time and space complexity of training and testing phases

of a system.

4.3.2 Classifier Selection Algorithm

The set of rank lists Rank = {Rankj}Jj=1, where Rankj is the rank list generated

by using classifier Cj on validation data V S, is taken as input. The Mean

33



Average Precision (mAP) [48] performance of each classifier Cj is calculated by

using Rankj:

mAPj = (
1

Np

)

Np∑
i=1

i

oi,j
(4.4)

where Np is the number of shots labelled as positive (yi = 1) in Rankj and oi,j
is the order of the ith positively labelled sample in the Rankj.

Algorithm 1: Classifier selection algorithm of FSG-RO.
input : N the number of classifiers to select and rank list Rankj of

classifier Cj, ∀j = 1, 2, . . . , J

output: Set of selected classifiers Cs

1 foreach j = 1, 2, . . . , J do

2 Calculate mAPj;

3 end

4 Cs = {Cm(i)}Ni=1, the classifier Cm(i) has the ith highest mAP ;

The classifier selection algorithm of FSG-RO is given in 4. Simply, our algorithm

computes the mAP performance of each individual base layer classifier and

selects the first N classifiers with the highest mAP performance.

As mentioned in Classifier Fusion section, there should be also an independency

between classifiers and using the best classifiers may not be enough to boost the

performance of individual classifiers. In FSG-RO, individual base layer classifiers

have some form of independency, since they trained for a wide variety of features

which represent different characteristics of samples such as color and texture.

Additionally, these features are extracted using different codebook sizes and

spatial sampling methods that brings independency to classifiers. As a result,

independency of combined classifiers is also achieved in FSG-RO and combining

best classifiers can be used to boost the performance of individual classifiers.
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CHAPTER 5

EXPERIMENTAL RESULTS

The performance of the FSG-RO architecture is tested with experiments that

are carried out on broadcast media domain. The visual concepts Air, Artificial

Edge, Crowd, Fire, Grass, Soil, Water Image are classified using FSG-RO archi-

tecture and the ranking performances of the FSG-RO for the given concepts are

presented comparatively with the performances of individual base layer classi-

fiers and state-of-art ensemble learning techniques.

In the following sections, firstly, the information about the datasets used for

training, validation and testing purposes will be explained. Then, the tests

for the training step together with the experiments performed on the classifier

selection process will be analysed. Finally, results of the tests will be discussed.

5.1 Description of the Dataset

The datasets used in the experiments contain video shot samples that are mostly

recorded from the broadcasts of the Turkish national television (TV) network.

Each video shot in these datasets is labelled by human operators according to

normative semantic definitions. For each concept, the number of positively and

negatively labelled video shots in the train, validation and test datasets are

shown in Table 5.1.

The training sets, employed by the FSG-RO are the subsets of the training sets

employed by the KavTan system [56] while test and validation sets of FSG-RO

are the subsets of the test sets employed by the KavTan system. Note that
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Table 5.1: Number of positive and negative video shots in datasets

Train Set Validation Set Test Set

Concept Positive Negative Positive Negative Positive Negative

Air 589 1776 353 2022 354 2023
Artificial Edge 243 729 868 2351 869 2351
Crowd 2433 7299 170 1836 171 1836
Fire 999 2997 206 1493 207 1493
Grass 332 996 279 2131 279 2131
Soil 274 820 191 1525 191 1525
Water Image 616 1848 163 1762 164 1763

the number of samples for each class in the train, test and validation datasets

varies in a wide range. This is basically because of the fact that the training sets

are extracted in KavTan project had imbalanced distribution of the concepts.

However, the tests sets are formed for this study is rather balanced. Since our

aim in this study is to boost the performance of the base layer classifiers, we do

not pay attention to the imbalance train set problem. In our experiments, for

the training sets the ratio # of positive shots
# of negative shots

is taken as 1
3
for the effectiveness of

fuzzy k-NN classifiers. Additionally, we divide the test sets of the KavTan into

two sets, namely validation and test sets. Validation set is used to estimate the

k-parameter of the k-NN algorithm. We, also select features using the validation

set.

5.2 Training of the Proposed FSG-RO

Since FSG-RO is designed as a binary classification system, for each concept,

a separate FSG-RO system is trained as a dichotomizer. In the training of

base layer classifiers of a FSG-RO, the only the parameter k for fuzzy k-NN

classifiers is defined. In order to pay more attention to the classifier selection

method and meta layer classifier, we select the k = 5 for all base-layer classifiers.

For meta layer classifier, additional to the k parameter, we also select a best set

of classifiers. Brief explanation of classifier selection and estimation of k for

meta layer classifier is explained in following section.
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5.2.1 Classifier Selection and Estimation of k for Meta-Layer Classi-

fier

For each concept Co ∈ Concepts, where Concepts = {Air, Artificial Edge,

Crowd, Fire, Grass, Soil, Water Image}, a seperate FSG-RO system is trained.

For each system, the parameter pair (n, k) where n is the number of classifiers to

be selected by classifier selection method and k is the count of nearest neighbours

utilized by the meta fuzzy k-NN classifier, is determined experimentally. For

each FSG-RO system trained for a concept Co ∈ Concepts, we tested each

parameter pair (n, k) ∈ ParametersCo;

ParametersCo = N ×KCo, (5.1)

where N = {2, 3, . . . , J
2
}, J is the number classifiers in base layer and KCo =

{kCoi }50i=1 is the set of k values that kCoi = i
100
× |StrCo| and |StrCo| is the number of

train samples of concept Co.

Briefly, in experiments, at most half of the classifiers are selected as the input to

the meta layer classifier. For the parameter k, since the number of train samples

of each concept differs, we selected the values by considering the train set sizes

of concepts. The set KCo contains the k values from 1% to 50% of train set size

of the concept Co. After the experiments, the pair (n, k) that gives the best

performance is selected to train FSG-RO for the testing stage.

In the experiments, the performance of the system trained with parameter pair

(n, k) is computed using the the mean average precision (mAP) 4.4 metric and

shown with mAP (n, k). The effects of parameters n and k on the performance

are analysed separately.

In Figure 5.1, the performance of the system is shown for different classifier

counts n. The performance of the system for classifier count n ∈ {2, 3, . . . , 42}
is computed using

mAP n =

∑50
j=1mAP (n, kj)

50
, (5.2)

that is the average performance of the systems trained by selecting n features.
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Figure 5.1: Average performance of FSG-RO systems which fuse n classifiers.

For most of the concepts best performances are obtained for the small values

of n which are between [10, 15]. Since the dimensions used for the experiments

are relatively small, and the concept Crowd has good performance for greater

values of n, we think that there is no curse of dimensionality problem. The

reason of performance decrease for the n > 10 is that the classifiers which have

high performances are firstly selected by classifier selection and the performance

increases up to a point. Then, as n increases our method selects the classifiers

that have poor performance when compared to selected ones. This fact results

in a decrease. Therefore, combining the classifiers with high performance also

increases the performance of the system.

In Figure 5.2, the performance of the system is shown for different values of k

of fuzzy k-NN method. The performance of the system for the value k = ki is

calculated using mAP ki =
∑J/2

n=2mAP (n,ki)

J/2−1 that is the average performance of the

systems trained using parameters (n, k) where k = ki and n = 2, 3, . . . , fracJ2.

Although, the best performances, generally, obtained for the values of k between

5% and 15% of the train set size, the performance changes are very little for

greater values of k. This is the expected situation for fuzzy k-NN algorithm,
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Figure 5.2: Average performance of FSG-RO systems which trained using k = ki.

since the nearest samples have more weight for determining the probabilistic

decision score and the ones far away have less weights. On the other hand, we

observe a slight increase in the performances of the concepts Crowd and Fire.

The common point of these concepts is that their train set sizes are greater than

the other train sets. It is observed that the classes with high number of samples

used in fuzzy k-NN, results in slight changes on the decision of nearest samples.

5.3 Experiments

In experiments, for each concept the performances of base layer classifiers and the

overall FSG-RO system are computed. Additionally, in order to better analyse

the results of FSG-RO system, we define a new method, called CombineALL, and

compute its performance for each concept. In the CombineALL method, simply

we cancel the classifier selection stage of FSG-RO and utilize the classifier results

in meta layer for the detection.

Moreover, FSG-RO system performance is compared with SVM which classifies

the aggregated feature space FE = FE1 × FE2 × . . . FEj . . . FEJ . For each
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concept, we implement SVM with the RBF kernel by using LIBSVM [11]. For

learning each SVM classifier, we determine γ parameter for RBF kernel and C

parameter for SVMmodel [11] by testing parameters, which are used in the study

of Chang et al. [20], C = {20, 22, 24, 26, 28} and γ = {2−4g, 2−2g, g, 22g, 24g}
where g = 1

Df
and Df is the dimensionality of the aggregated feature space.

The SVM model which gives the best mAP performance on validation set is

selected for testing purposes.

Finally, we compare FSG-RO with RReliefF [41] feature selection method. By

using RReliefF, the most important L attributes of the aggregated feature space

are selected and a SVM with RBF kernel is trained for new feature space. The

parameters L = {25, 26, 27, 28, 29, 210, 211, 212}, C = {20, 22, 24, 26, 28} and γ =

1
Df

are tested for training RReliefF system. Best parameters which give the best

mAP performance on validation set is selected for testing purposes.

The performance for each concept are analysed in subsequent sections and in

following items some notes about the results are given.

• For each concept, the mAP of individual classifiers, CombineALL, FSG-

RO, RReliefF and SVM methods are shown in Figures 5.3 - 5.9.

• We compute the ratio of positive samples in the test set of each concept,

Base = # of positive test samples
# of test samples

and it is shown in Figures 5.3 - 5.9. We

use the value of Base to see the success of classifiers. This line can be

taken as the performance of random ranking.

• In Figures 5.3 - 5.9, each base layer classifier Cj trained for feature

FEj = (vf,R, k) where vf is the visual feature, R is the spatial sam-

pling method and k is the codebook size used for histogram generation is

shown by using the abbreviations of its visual feature and spatial sampling

method. The abbreviatons for visual features are CL (Color Layout), CM

(Color Moments), CS (Color Structure), CoT (Cooccurence Texture),DC

(Dominant Color), EH (Edge Histogram), HT (Homogeneous Texture), SC

(Scalable Color), WT (Wavelet Texture) and for spatial sampling methods

are 1× 1 (Global), 2× 2 (Grid2× 2) and 3× 3 (Grid3× 3).
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Figure 5.3: Air concept detection performances.

5.3.1 Air

The performances of base layer classifiers for Air concept are generally greater

than the Base performance. However, there are no prominent performances

between them. The color and edge characteristics are discriminative features

for Air. Additionally, Air concept is mostly located in the upper regions of the

samples. As a result, using regional features also increases the performance of the

system. As it can be seen in Figure 5.3, generally best individual performances

are obtained for color features extracted by using Grid2 × 2 and Grid3 × 3

sampling methods. Also, EdgeHistogram for Grid3× 3 sampling method gives

better performances than other classifiers.

As shown in Figure 5.3, FSG-RO system improves the best individual classifier

performance and outperforms the CombineALL method. This shows that FSG-

RO architecture successfully achieves the classifier selection and fusion for Air

concept. Since there are various type of base layer classifiers which achieve

better performances that Base performance, FSG-RO can be able to improve

the performance by combining best classifiers. Moreover, FSG-RO outperforms

both RReliefF and SVM methods which also gives better performances than

individual classifiers.
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Figure 5.4: Artificial Edge concept detection performances.

5.3.2 Artificial Edge

The performances for Artificial Edge are shown in Figure 5.4. The base layer

classifier performances are generally slightly different than Base performance.

Artificial Edge concept may have wide variety of colors and texture characteris-

tics in video shots, as a result, the classifiers for color and texture features can

not achieve significant performances. Only the EdgeHistogram feature achieves

considerably better performance than Base performance. This is an expected

situation since the edge distribution of nature are mostly different than man-

made items which has smooth artificial edges.

As shown in Figure 5.4, FSG-RO system slightly boost the performances of

best individual classifier CombineALL method. Since, most of the individual

classifiers are weak and can not significantly boost the random performance,

FSG-RO can not improve the performance as for the Air concept. FSG-RO, also

boost the RReliefF method while SVM method achieves the best performance.

On the other hand, the performance of SVM is also slightly better than FSG-RO

and than that of the best individual classifier.
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Figure 5.5: Crowd concept detection performances.

5.3.3 Crowd

The performances for Crowd are shown in Figure 5.5. All of the base layer

classifiers achieve better performances than Base performance. However no

prominent performances are achieved by individual classifiers. The view varia-

tions, such as, variation in clothes of people and varying density of people make

a challenging task to detect crowd. Generally, texture and SIFT features achieve

better performances than others. Because of the nature of crowd, it produce high

number of interest points and its texture is different from nature and artificial

textures.

For Crowd concept, prominent results are obtained by combination methods.

The least improvement achieved by RReliefF is 13% while FSG-RO achieves

20% improvement on the performance. Between combination methods, FSG-

RO achieved the best performance. It slightly boost the CombineALL and SVM

methods which achieve nearly same performance. This shows the effectiveness

of classifier selection for Crowd concept.
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Figure 5.6: Fire concept detection performances.

5.3.4 Fire

The performances of base layer classifiers for Fire concept are shown in Figure

5.6. Since, the red and yellow are main colors of fire, individual classifiers of

color features achieve prominent results. Also, texture of fire is another source

to discriminate fire from other concepts and classifiers of textures feature obtain

performances than Base performance. Generally, Fire concept prensent locally

in video frames that only a part of a frame contains it. As a result, employing

local features by using spatial sampling methods improves the performance of the

classifiers. As it can be seen in figure, the classifiers of a visual feature trained

for Grid2 × 2 and/or Grid3 × 3 sampling methods have better performances

than the classifiers of same visual feature which are trained for Global (1 × 1)

sampling method.

For Fire concept FSG-RO system outperforms the performances of the best

individual classifier, CombineALL, RReliefF and SVM methods.
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Figure 5.7: Grass concept detection performances.

5.3.5 Grass

The green color of the Grass concept is the main characteristic that discriminate

Grass from other concepts. Additionally, grass is mostly located in the lower

regions of the samples. As a result, the individual base layer classifiers of local

color features achieve better performances than other classifiers as shown in

figure 5.7.

For Grass concept, FSG-RO is the only method that boost the performance

of the best individual base layer classifier. CombineALL, RReliefF and SVM

methods can not improve the system performance, rather, they decrease the

performance. In CombineALL method, combining all classifiers decrease the

system performance. This shows the importance of classifier selection stage of

FSG-RO which select the best classifiers to optimize system performance.

5.3.6 Soil

The performances for Soil are shown in Figure 5.8. Generally, soil located in

the lower regions of video frames. As a result, best performances are achieved

by local feature classifiers and key point based classifiers. On the other hand,
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Figure 5.8: Soil concept detection performances.

Soil concept mostly present together with the items like grass, tree and water in

videos. In such an enviroment, soil seems as a small part of a frame and can not

be effectively determined. Because of these reasons, other than the classifiers

trained forGrid3×3 sampling and SIFT feature, most of the individual classifier

performances can not boost the Base performance as shown in Figure 5.8.

Despite of the poor performances of the base layer classifiers, FSG-RO signif-

icantly improves the performance of the system by combining best classifiers.

Also, FSG-RO boost the CombineALL, RReliefF and SVM methods.

5.3.7 Water Image

The performances forWater Image are shown in Figure 5.9. Most of the individ-

ual classifiers have lower performances than Base performance. The appearance

of water depends to its enviroment. In a nature scene trees and mountains will

be appear on water, on the other hand, in a city scene buildings will be appear.

As a result, color and texture features are insufficent to detect water images.

Since, the base-layer classifier performances are lower than Base performance,

FSG-RO system can not outperforms the best individual classifier. On the

other hand, FSG-RO achieves better performance than CombineALL method.
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Figure 5.9: Water Image concept detection performances.

This shows the effectiveness of classifier selection. SVM and RReliefF methods

slightly boost the system performance. Similar to Artificial Edge concept, when

the base layer classifier performances are poor, feature fusion approach of SVM

and RRelieF methods generally achieves better performances.

5.3.8 Chapter Summary

For each concept, the performances of best individual classifier, CombineALL,

FSG-RO, RReliefF and SVM method are shown in Table 5.2. For all concept,

FSG-RO systems successfully boost the performance of CombineALL method.

Especially, for the concepts Fire, Grass, Soil, Water Image, employing classifier

selection method gives much more successful results than combining all clas-

sifiers. This shows that classifier selection stage of FSG-RO has a significant

contribution to solve the black art problem.

For the concepts Air, Crowd, Fire, Grass and Soil, FSG-RO system significantly

boost the performance of the best individual classifiers. The common property of

these concepts is that, there are several classifiers that shows higher performance

than Base performance and these are from various spatial categories and various

feature types.
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Table 5.2: Performances of the best base layer classifier Cbest, CombineALL,
FSG−RO, RReliefF and SVM methods.

Concept Cbest CombineALL FSG-RO RReliefF SVM

Air 0.243 0.323 0.366 0.295 0.340
Artificial Edge 0.358 0.345 0.377 0.356 0.399
Crowd 0.301 0.484 0.502 0.431 0.482
Fire 0.381 0.296 0.447 0.386 0.402
Grass 0.553 0.326 0.603 0.429 0.381
Soil 0.28 0.243 0.394 0.283 0.375
Water Image 0.153 0.105 0.152 0.158 0.171

Water Image is the only concept that FSG-RO can not boost the base layer

classifier performances. As shown in Figure 5.9, similar to Artificial Edge con-

cept, most of the base layer classifiers have very poor performances. As a result,

boosting the best individual classifier by combining classifiers can’t be achieved

by FSG-RO. On the other hand, FSG-RO approximately shows the same per-

formance with the best base layer classifiers.

Moreover, for the concepts Air, Crowd, Fire, Grass and Soil, FSG-RO out-

performs the RReliefF and SVM methods. Especially, for the Grass concept,

FSG-RO gives prominent results and when compared to RReliefF and SVM

methods, respectively, it achieves 17% and 22% better performances. On the

other hand, for the Artificial Edge and Water Image concepts SVM method

slightly boost the FSG-RO method. It is obsaerved that, when the base layer

classifier performances are poor, SVM method achieves a better performance.
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CHAPTER 6

CONLUSION

In this thesis, a Stacked Generalization (SG) architecture is proposed for visual

concept detection.

In the proposed architecture, called as Fuzzy Stacked Generalization Ranking

Optimizer (FSG-RO), fuzzy k-NN classifiers are employed in base-layer. Then,

a feature selection algorithm is used for selecting the feature types to combine in

meta layer. For this purpose, the ranking performances of individual base-layer

classifiers are computed on a validation data by using mean average precision

(mAP) metric and feature types are selected according to their classification

performances. Finally, the decisions for the selected feature types are fused by

vector concatenation and the fused vector is classified by a fuzzy k-NN meta

classifier.

FSG-RO architecture is tested on broadcast media data for the detection of

visual concepts Air, Artifical Edge, Crowd, Fire, Grass, Soil and Water Image.

The results are compared with the state of the art techniques which are SVM

and RReliefF. Additionally, the performance of FSG-RO is compared with the

performances of best individual base-layer classifier and CombineALL method

which is the case that FSG-RO is used without classifier selection stage and all

decisions are combined in meta-layer.

In the experiments, for the concepts Air, Artificial Edge, Crowd, Fire, Grass and

Soil FSG-RO boosts the performances of best individual base-layer classifiers

and outperforms the CombineALL method. Only, for the concept Water Image
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FSG-RO outperforms CombineALL method but achieves approximately same

performance with the best individual base-layer classifier.

It is observed that when the individual base-layer classifiers are strong, FSG-RO

achieves improvements on the performance of base layer classifiers. Especially,

for the concepts Air, Crowd and Soil, respectively, 12%, 22% and 12% per-

formance improvements are achieved with respect to best individual classifier

performances.

Moreover, outperforming CombineALL method for all concepts shows the effec-

tiveness of the classifier selection method of FSG-RO. Especially, when compared

to the CombineALL method, FSG-RO achieves 28%, 15% and 16% performance

optimization for the concepts Grass, Fire and Soil, respectively.

When compared to the state of the art techniques, FSG-RO also achieves compa-

rable performances. For the concepts Air, Crowd, Fire, Grass and Soil FSG-RO

outperforms the SVM and RReliefF methods. For the concept Grass, respec-

tively, 22% and 17% better performances are obtained when compared to SVM

and RReliefF methods. Also, for Soil concept FSG-RO achieves 11% better

performance than RReliefF. On the other hand, for the concepts Artificial Edge

and Water Image SVM achieves slightly better performances and for Water Im-

age RReliefF slightly outperforms FSG-RO. The results show that FSG-RO is

comparable with state of the art techniques.

The advantage of FSG-RO over the other methods is that for each concept FSG-

RO selects classifiers to optimize the ranking performance. Also, each base layer

classifier can be trained on different feature space. Therefore, different infor-

mation obtained from different features and modalities can be used efficiently

in FSG-RO. However, there is a challenge of FSG-RO that when the base layer

classifiers have poor performances, other state of the art methods achieve best

performances and FSG-RO can not boost the performance of best individual

base layer classifier.

As future work, the classifier selection method of FSG-RO can be improved to

achieve better performances for the cases that the base layer classifiers have
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poor performances. Another future work is that, FSG-RO can be implemented

as a multi-class classification system so that only one train step will be enough

for the whole system and modelling relations between concepts can be used to

improve the performance of the system. As a final future work, we can test

FSG-RO on various datasets in the literature.
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