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TWO DIMENSIONAL MODELING OF ELECTROMAGNETIC 

RADIATION AND SCATTERING BY SPECTRAL ELEMENT METHOD 

 

 

MAHARIQ, Ibrahim 

PhD, Department of Engineering Sciences 

Supervisor: Prof. Dr. Hakan I. TARMAN 

Co-Supervisor: Prof. Dr. Mustafa KUZUOĞLU 

 

 

2014, 121 pages 

 

 

In this thesis, the spectral element method is utilized in numerical modeling of two-

dimensional, frequency-domain electromagnetic scattering and radiation problems. 

We perform domain truncation by the well-known perfectly matched layer (PML) 

and provide the corresponding formulation. The attenuation factor associated with 

the PML formulation is optimized so that the best accuracy is achieved for a wide 

range of Gauss- Legendre -Lobatto grids per wavelength. The optimality of the 

provided attenuation factor is verified by several numerical demonstrations and by 

comparing the numerical solutions with those obtained under the absence of PML in 

problems whose analytical solutions are available. Further, these values of 

attenuation are applied to solve electromagnetic scattering by dielectric micro 

cylinders (photonic nanojets). Some interesting cases that contribute to whispering 

gallery modes are reported where finite-difference time-domain method is found to 

fail in numerical modeling of such cases. In addition, the resulting linear system of 

equations is also approached iteratively and a comparison among successive over 

relaxation, Jacobi and incomplete LU preconditioners is presented. 

 

Keywords: electromagnetic, scattering, radiation, spectral element method, perfectly 

matched layer, photonic nanojets.  
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ÖZ 

 

 

SPEKTRAL ELEMENT METHODUYLA İKİ BOYUTLU ELEKTROMANYETİK 

RADYASYON VE SAÇILMA MODELLENMESİ 

 

 

MAHARIQ, Ibrahim 

PhD, Mühendislik Bilimleri Bölümü 

Danışman: Prof. Dr. Hakan I. TARMAN 

Yardımcı Danışman: Prof. Dr. Mustafa KUZUOĞLU 

 

 

2014, 121 sayfa  

 

 

Bu tezde, spektral elemanlar metodu iki boyutlu frekans bölgesi elektromanyetik 

yayılımı ve radyasyon problemlerinin modellenmesinde kullanılmıştır. Bölge kesme 

işlemini çok bilinen mükemmel uyumlu tabaka (PML) yöntemi ile yaparak ilgili 

formülasyon elde edilmiştir. PML formülasyonu ile ilintili azalma faktörü optimize 

edilmiş ve her bir dalgaboyu için geniş aralıklı Gauss-Legendre –Lobatto ağı için çok 

yüksek doğruluk elde edilmiştir. Sağlanan azalma faktörünün eniyilemesi, sayısal 

deneylerle ve analitik çözümü olmayan PML yöntemi uygulanmayan problemlerin 

sayısal çözümleriyle karşılaştırılarak kanıtlanmıştır. Bunun yanında, bu azalma 

faktörleri, dielektrik mikro silindirler (fotonik nanojetler) ile oluşmuş 

elektromanyetik dağılımın çözümünde kullanılmıştır. Bu çalışmada, sonlu-farklar 

zaman-alan metodu ile elde edilemeyen akustik galeri yöntemlerine katkıda bulunan 

bazı farklı durumlar da rapor edilmiştir.Ayrıca, elde edilen doğrusal denklem 

sistemleri; ardışık aşırı rahatlama, Jacobi ve eksik LU önşartlandırıcı iteratif 

yöntemlerle çözülmüş ve karşılaştırılmıştır. 

 

Anahtar Kalimeler: elektromanyetik, saçılma, radyasyon, spektral element metodu, 

mükemmel uyumlu tabaka, fotonik nanojetler. 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

1.1 Electromagnetic Modeling 
 

Electromagnetic phenomena are governed by the following fundamental laws in 

physics:  

 Gauss’s law for electricity, 

 Gauss’s law for magnetism, 

 Faradays’s law of induction, and  

 Ampere’s circuital law. 

Human beings should acknowledge and not forget the Scottish physicist and 

mathematician James Clerk Maxwell (1831-1879), who combined these laws into a 

set of partial differential equations, known as Maxwell’s equations. Maxwell didn’t 

only simplify and reformulate these laws, but also he added another term to the 

differential equation corresponding to Ampere’s circuital law. This addition was the 

historical step that brought humanity to the technology that we enjoy nowadays. It 

was the prediction of existence of electromagnetic waves. 

 

Engineers and scientists use several approaches in analyzing electromagnetic 

phenomena that are governed by Maxwell’s equations. These approaches can be 

mainly classified as experimental, analytical, or numerical. Being hazardous 

sometimes, expensive or time consuming, experimental techniques are not 

preferable. The latter two approaches, on the other hand, are convenient to use in 

electromagnetic modeling. 

 

Analytical methods are mainly separation of variables, series expansion, conformal 

mapping, integral solutions (as Laplace and Fourier transforms), and perturbation 

http://en.wikipedia.org/wiki/James_Clerk_Maxwell
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methods. The connection between analytical methods and numerical methods is very 

strong from the sense that numerical methods involve analytic simplification to the 

point where it is easy to apply a specific numerical method. However, in general, 

obtaining the analytical solution is very difficult. This difficulty in analytical 

methods leaves the numerical methods as the only convenient methods for engineers.  

 

Numerical methods are inter-related to each other and they give an approximate 

solution with a sufficient accuracy for engineering purposes. The most common 

numerical methods in electromagnetic modeling are [1]: 

a. Finite difference method 

b. Method of weighted residuals 

c. Method of moments 

d. Finite element method 

e. Transmission-line modeling 

f. Monte Carlo method 

g. Method of lines 

 

The necessity for the application of numerical methods is best expressed by Paris and 

Hurd: “Most problems that can be solved formally (analytically) have been solved” 

[2]. In fact, until 1940s, most of electromagnetic problems that involve simplicity 

were solved by analytical methods, mainly by separation of variables and integral 

equation methods. In addition, a lot of effort was given to extend the application of 

these methods to a narrow range of practical problems. However, complexity in 

geometries associated with the most realistic problems was the main reason behind 

developing numerical methods that can be easily performed by computing machines. 

 

In parallel to the development of high-speed digital computers during 1960s, 

numerical solutions of electromagnetic problems attracted the attention of electrical 

engineers [1]. This is due to the fact that the computers can numerically solve very 

complex and realistic problems, whose analytical solutions are impossible to find. 
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Moreover, the numerical approach allows the actual work to be performed without 

requiring the operator to be of high level in mathematics or physics.  

 

Another classification of electromagnetic problems is based on the domain in which 

the solution is sought; that is, frequency domain and time domain. For each domain, 

modeling differential equations or integral equations can be utilized. Throughout this 

thesis, differential equations in frequency domain are used. 

 

Spectral element method (SEM) has been recently applied to electromagnetic 

problems [7]-[12] and attracted the attention of computational electromagnetic 

community. The attraction of this method is mainly due to the accuracy achieved for 

much less degrees of freedom. In the next section, we explore the literature review 

regarding the application of SEM and PML in modeling the electromagnetic 

problems. 

 

 

1.2 Literature Review 
 

Generally speaking, computational methods in the numerical modeling of 

electromagnetic scattering and radiation problems are either based on the direct 

discretization of the governing partial differential equations, or on the discretization 

of the integral equations which reformulate the associated boundary value problems 

[3]. However, most of the electromagnetic problems occur in unbounded spatial 

domain. Hence, in order to truncate the computational domain, Absorbing Boundary 

Conditions (ABCs) had been extensively used in the past (before mid-1990s). 

Berenger [4] provided a new approach for domain truncation and called it Perfectly 

Matched Layer (PML). 

 

Mustafa and Mittra [3] studied this new approach extensively. They provided a 

derivation for the PML, that leads to three different perfectly matched layer 

realizations; namely, the split-field formulation which is the original work introduced 

by Berenger [4], the anisotropic PML [5], and the bianisotropic PML [6]. The 
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derivation introduced by Mustafa and Mittra is utilized in this work with a slight 

change associated with the attenuation of the field in two-dimensional, frequency-

domain electromagnetic scattering problems. 

 

Several numerical methods have been extensively utilized in modeling the 

electromagnetic scattering and/or radiation phenomena. However, SEM was not used 

extensively as its counter parts such as finite element method or finite difference 

method. Several years ago, the computational electromagnetic community turned 

their attention to this method. Moreover, there was not many studies using SEM 

together with PML concept. 

 

In 1983, Charles W. Steele [7] tried to apply spectral methods for field computation. 

In that work, a method for computing magnetic and electric fields is presented by 

expressing the field as a linear combination of orthogonal basis functions. He 

showed that this method is superior to the traditional finite element method in terms 

of the computational cost for certain configurations. However, in practice, electrical 

machines have complex geometries and this complexity makes it impossible to apply 

spectral methods that is suitable for basic geometries shapes such as rectangular and 

circular.  

 

One of the first attempts in numerical modeling of two-dimensional electromagnetic 

problems by spectral element method was carried out by Mehdizadeh and 

Parashivoiu [8], in 2003. They proposed a spectral element formulation for solving 

the two-dimensional Helmholtz’s equation, which is the equation governing time-

harmonic acoustic waves. The motivation of their work was to reduce the pollution 

effect that increases the computational cost of Galerkin finite element method as the 

wave number increases. They also demonstrated a comparison between spectral 

element method and second-order finite element method and showed that spectral 

element method leads to fewer grid points per wavelength and less computational 

cost for the same accuracy. For unbounded problems, they utilized the symmetric 

perfectly matched layer as an approach for domain truncation. 
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In 2006, Lee et al. [9] proposed a three-dimensional spectral element method based 

on Legendre polynomials as the basis functions to solve vector electromagnetic-wave 

equations. The proposed method led to reducing the computer memory requirement 

and CPU time in comparison with the conventional high-order finite element 

method. However, they presented their work in the absence of the perfectly matched 

layer. 

 

There is also a high potential behind using spectral element method as a better 

alternative method than the most commonly used methods for solving 

electromagnetic problems in time domain. For instance, Lee and Liu [10], proposed a 

spectral element time-domain method to solve three-dimensional transient 

electromagnetic problems. They showed that the proposed method requires only a 

trivial sparse matrix-vector product at each time step; hence, reducing CPU time and 

memory requirement significantly. The perfectly matched layer is used in their work 

to truncate unbounded domains. In addition, they demonstrated the efficiency and the 

spectral accuracy by numerical examples. Chen et al. [12] presented a high-precision 

time integration method for spectral elements to solve time-dependent Maxwell’s 

equations. They demonstrated using some numerical examples on the accuracy and 

efficiency of the proposed method where the spatial discretization by spectral 

element method leads to block diagonal mass matrices. Again, they employed the 

perfectly matched layer for open-region problems in time domain. In 2009, a 

discontinuous spectral element time-domain method was proposed by Lee et al. [11] 

to solve transient electromagnetic fields in three-dimensional structures. They 

employed Riemann solvers in the boundary integral terms in order to guarantee 

continuity between the boundary fields. They also employed the perfectly matched 

layer to truncate the computational domain. 

 

The investigations on the performance of iterative methods when spectral element 

method is used in numerical modeling of electromagnetic problems in frequency 

domain are not extensive. Botros and Volakis [13] reported an enhanced 
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convergence speed achieved by using an approximate preconditioner. However, an 

additional optimization problem is required to be solved, that can be time-

consuming. Mehdizadeh and Parashivoiu [8] investigated the performance of spectral 

element method when used in electromagnetic modeling; however, although they 

pointed to the importance of investigating the performance of iterative solvers when 

using SEM, no investigation was carried out in their work. 

 

In a recent study (2012), Shin et al. [14] showed the performance of solvers utilized 

to solve frequency-domain Maxwell’s equations is greatly affected by the type of the 

perfectly matched layer used. In particular, they used stretched-coordinate perfectly 

matched layer. By the aid of numerical examples, they showed that this PML 

formulation results in fast convergence together with a particular diagonal 

preconditioner that holds for finite-element method discretization.  

 

It is more an art experience than a science to know how to optimally place and size 

the mesh in the finite element method (FEM). In fact, experience taught us to have 

more elements in the physical domain where functions change rapidly and less 

elements where low gradients are expected. Mesh generation may take several trials 

before achieving a good mesh distribution [30]. On the other hand, the complexity in 

the physical domain itself may add additional limitations on mesh generation. 

 

In FEM, ranges of the elemental aspect ratio of generated mesh have been 

investigated extensively and for wide variety of problems. As an example, but not 

restricted to, M. Picasso [31] proposed an adaptive algorithm for solving the Strokes 

problem with finite elements and meshes with high aspect ratios. In that paper, the 

effect of the aspect ratio on the results is discussed in details and some examples are 

presented for a non-acceptable mesh that can deteriorate the accuracy. V. 

Prachittham et al. [32] presented a two-dimensional adaptive method with large 

aspect ratio finite elements for the numerical simulation of mixed electroosmotic 

microflows. In their work, the refinement/ coarsening criterion is based on a 

posteriori error estimates. On the other hand, spectral element method (SEM) has the 

flexibility of using larger elemental aspect ratio without significant deterioration in 
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accuracy. S. Dong et al. [33] proposed a parallel SEM for dynamic three-dimensional 

nonlinear elasticity problems that provides a tolerant large elemental aspect ratio 

employing Jacobi polynomial-based shape functions, as an alternative to the typical 

Legendre polynomial-based shape functions in solid mechanics. D. Rh. Gwynllyw et 

al. [34] proposed an iterative method for moving SEM applied to the journal bearing 

problem where they investigated the results of extremely large physical aspect ratio. 

 

However, the effect of elemental aspect ratio on accuracy has not been investigated 

in numerical modeling of electromagnetic radiation and/or scattering problems when 

SEM is utilized. Thus, the goal in this section is to investigate how much 

deterioration in the solution accuracy is obtained at different values of elemental 

aspect ratio in two-dimensional electromagnetic scattering problems. This 

investigation may shed some light on how to accurately mesh the physical domain 

using SEM. In contrast to FEM, elements in SEM are discretized by Gauss-

Legendre-Lobatto grid; i.e., once the computational domain is discretized into 

elements by SEM, the nodal distribution within those elements can’t be changed. 

 

Finally, a phenomenon of electromagnetic scattering by a dielectric object known as 

photonic nanojets is heavily investigated by finite-difference time-domain method 

(FDTD). For instance, [15] and [16] provided a complete analysis for photonic 

nanojets using FDTD. They discussed light focusing and back scattered light by 

dielectric microspheres and micro-cylinders. Scattering by a dielectric object of 

cylindrical shape involves an infinite domain, hence; it is worthy to solve such a 

problem that is truncated by the perfectly matched layer with the optimized 

associated parameters provided in this work. In another word, this phenomenon is a 

typical example of an electromagnetic scattering problem where the region of 

interest composed of not only the free space but also a material whose relative 

permittivity is different from one. 
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1.3 Contributions of this Thesis  
 

In this thesis we apply spectral element method for two-dimensional frequency-

domain electromagnetic scattering and radiation problems. The main contributions of 

this work can be summarized in the following points: 

1. The formulation of spectral element method for electromagnetic problems 

involving truncation by perfectly matched layers and dielectric scatterers is 

provided. 

2. The accuracy of spectral element method is demonstrated and compared with 

finite element and finite difference methods in one and two dimensions. In 

addition, the elemental deformation and its effect on the accuracy are 

investigated. 

3. Within the formulation of the perfectly matched layer provided in this work, 

the corresponding optimum values of the attenuating factors per wavelength 

are provided in the context of spectral element method. 

4. Scattering by dielectric micro cylinders (that produces photonic nano jets) is 

investigated and compared with other work in literature. 

5. Capturing whispering gallery modes in scattering dielectric cylinders at 

specific dimensions and material types is demonstrated in this work. This 

kind of resonance has not been reported in the literature by other numerical 

methods to the best of knowledge. 

6. An investigation and comparison of the well-known iterative methods and 

preconditioners are also included in this work. 

7. A comparison among the linear systems of equations obtained by using finite 

element, finite difference and spectral element methods is carried out and 

reported in this work using the optimum parameters associated with the 

perfectly matched layer.  

 

Most of the work provided in this thesis is based on the following: 

 I. Mahariq, H. I. Tarman, and M. Kuzuoğlu, "On the Accuracy of Spectral 

Element Method in Electromagnetic Scattering Problems," International 
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Journal of Computer Theory and Engineering vol. 6, no. 6, pp. 495-499, 

2014. 

 I. Mahariq, M. Kuzuoğlu, and H. I. Tarman, “On the Attenuation of Perfectly 

Matched Layer in Electromagnetic Scattering Problems with Spectral 

Element Method”, Applied Computational Electromagnetic Society Journal, 

under review. 

 I. Mahariq, H. Kurt, H. I. Tarman, and M. Kuzuoğlu, “Photonic Nanojet 

Analysis by Spectral Element Method”, IEEE Photonics Journal, reviewed, 

and waiting for decision. 

 

 

1.4 Arrangement of this Thesis 
 

The flow of the thesis content is arranged as follows: 

 Chapter 2 provides the formulation of the perfectly matched layer and 

discusses the choice of the corresponding parameters. It also presents the 

partial differential equations that govern free space, electromagnetic radiation 

and dielectric objects. 

 Chapter 3 provides the formulation of spectral element method in 2D 

frequency-domain electromagnetic problems involving dielectric scatterers, 

free space, and perfectly matched layers. In addition, the effect of elemental 

deformation on the accuracy of spectral element method is illustrated. 

 Chapter 4 investigates iterative solvers: conjugate gradient method, 

biconjugate gradient method, generalized minimum residual method and 

symmetric successive over relaxation, with several preconditioners: Jacobi 

preconditioner, successive over relaxation preconditioner, and incomplete LU 

factorization preconditioner.  

 Chapter 5 presents and discusses the choice the parameters defining the 

perfectly matched layer and demonstrates the accuracy of spectral element 

method based on these choices. In addition, scattering by perfectly 

conducting circular cylinders and perfectly conducting square cylinders is 

illustrated. Also, the accuracy of spectral element method when applied in 
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scattering by electrically large objects whose permittivity and/or permeability 

are different from that of free space is estimated in this chapter. 

 Chapter 6 applies the spectral element method in scattering by dielectric 

micro cylinders. Results of photonic nanojets are illustrated and discussed. 

Moreover, this chapter discusses some special cases that are different from 

the expected photonic nanojets. 

 Chapter 7 draws conclusions and future work.  
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CHAPTER 2 

 

 

ELECTROMAGNETIC SCATTERING/RADIATION AND 

DOMAIN TRUNCATION 

 

 

 

In this chapter, an overview to electromagnetic scattering and radiation is presented 

in two dimensions. Subsequently, domain truncation by perfectly matched layer is 

discussed and the corresponding partial differential equations are derived. At the end 

of this chapter, perfectly matched layer in electromagnetic modeling is optimized in 

the context of spectral element method. The optimality is demonstrated by physical 

reasoning and further discussed numerically in chapter 5. 

 

 

2.1 Electromagnetic Scattering Problems 
 

In cases when an electromagnetic wave encounters a target which is a metallic 

object, this wave causes current excitation on the target. The excited currents are 

oscillatory in nature and that oscillation in turn causes radiation. That is; the process 

in which radiation from an object takes place due to an incident electromagnetic 

wave is called electromagnetic scattering. Radar applications and multi-path analysis 

for radio-wave propagation are typical examples of this process.  

 

Because of linearity in the Maxwell equations, the fields can be decomposed into an 

incident field 
incE and a scattered field

sE . The total field
totE , is then expressed as 

[17]: 

tot inc sE E E      (2.1) 

By other words, the total field is simply defined as the sum of the incident wave in 

the absence of the scatterer, and the scattered field caused by the scatterer in the 
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absence of any incident fields. This decomposition is mathematically very useful 

when studying scattering by objects. In this thesis, we considered the objects to be 

infinitely long cylinders as explained in the following subsection.  

 

In the two-dimensional scattering problems, transverse magnetic mode (TMz) is 

considered. In TMz mode, the following field components exist: ( )zE x, y , 

( )xH x, y  and ( )yH x, y , where E  and H  represent the electric field and magnetic 

field, respectively. Based on this mode, we considered two cases; the first case is 

scattering by an infinitely-long perfect electric conducting cylinder, and the second is 

scattering by a transparent dielectric cylinder.  

 

In the following two subsections, the partial differential equations governing the field 

in the space surrounding the cylinder and in the dielectric cylinder itself are 

formulated. In addition, the derivation of the analytical solution of the field scattered 

by perfect electric conducting cylinders is provided. 

 

It should be noted that throughout our work, we assume an incident plane wave with 

suppressed time dependence exp(j t), in which   stands for the angular frequency. 

 

 

2.1.1 Perfect Electric Conducting Cylinders 
 

Here is considered a specific case where the cylinder has the following properties: 

 It is infinitely long in z-axis, and along this axis, its geometry and boundary 

conditions don’t vary. 

 It is perfect electric conducting cylinder (PEC), meaning that it has infinitely 

large conductivity.  

 It has constant radius. 

 

Either in transverse magnetic (TMz) or in transverse electric (TEz) mode the field 

can be decomposed into scattered field and incident field. For the case where the 
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scatterer is subjected to a TMz plane wave, the source-free Maxwell’s equations 

must be satisfied: 

0 rE j H         (2.2) 

0 rH j E        (2.3) 

in which j  is the imaginary unit,   is the angular frequency,   represents curl 

operator, 0  and 0  are the permeability and permittivity of free-space, respectively, 

and, r  and r  are the relative permeability and permittivity of the scatterer, 

respectively. The scalar Helmholtz equation for TMz mode in two-dimensional free-

space region can be obtained by combining the above two equations and eliminating 

the magnetic field (and setting r = r =1): 

2 0s 2 s

z zE k E         (2.4) 

where 
2  stands for Laplacian operator, and 0 0k    is the wave number. 

 

The derivation of the analytical solution of the scattered field is straight forward. If a 

plane wave of the form: 

0= einc -jkx

zE E       (2.5) 

is incident on an infinitely-long conducting cylinder of radius R and centered in the 

origin of xy-coordinates as shown in figure 2.1, then for sake of convenience, we 

need to express the plane wave as: 

cos

0 0 0e e ( )e-jkx -jk jn

n n

n

E E E b J k  




       (2.6) 

where nb are coefficients of the expansion, nJ are Bessel functions of the first kind 

of order n ,  is the radial distance from the z-axis to a point, P , and   is the angle 

between x-axis and the line from the origin to P . 

 

The orthogonality property of the functions e jn
 when 0 2   , is utilized by 

multiplying equation (2.6) by e jm
. Integration over 0 2   gives (drop the 

constant k ) [1]: 
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2

cos

0

e e 2 ( )-j jm

m md b J


           (2.7) 

 

 

 Figure 2. 1 Scattering by a perfectly conducting cylinder 

 

 

By taking the 
thm derivative of both sides of equation (2.7) with respect to   and 

evaluating at 0  , one can then obtain: 

1
2 2

2 2

m
m

m mm m

j
b b j 


       (2.8) 

By substituting this into equation (2.6), the incident wave can then be expressed as: 

cos

0 0 0e e ( ) ( )e-jkx -jk n jn

n

n

E E E j J k  




      (2.9) 

But the scattered field
s

zE , must vanish at infinity. This means that the outgoing 

waves must have: 

(2)( ) ( ) ( )n n nJ k jY k H k        (2.10) 

where 
(2)

nH are Hankel functions of the second kind of the nth order and nY  is the 

Bessel function of the second kind. Thus, the scattered field is expressed as: 

(2) ( )es jn

z n n

n

E B H k 




       (2.11) 
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The total field in FS is expressed as in equation (2.1). While in C , the field is 

simply zero since the cylinder is a perfect conductor. At the boundary, i.e., at R  , 

the tangential components of both fields must be equal. In another word, the total 

field at R  is equal to zero, i.e., 

( ) ( ) 0.inc s

z zE R E R          (2.12) 

 

If we substitute equations (2.9) and (2.11) into equation (2.12), we obtain: 

 (2)

0( ) ( ) ( ) e 0n jn

n n n

n

B H kR E j J kR 




      (2.13) 

From this, the expansion coefficients nB , are found to be: 

0

(2)

( ) ( )

( )

n

n
n

n

j E J kR
B

H kR


       (2.14) 

Substituting this into equation (2.11), the scattered field is finally obtained: 

(2)

0 (2)

( ) ( )
( )e

( )

n
s jnn
z n

n n

j J kR
E E H k

H kR







       (2.15) 

 

It is important to mention that this solution is expressed in infinite summation of 

Hankel and Bessel functions. However, truncation of this summation at 

120 120n     is tested and guarantees convergence. It is taken as 

180 180n     in this thesis in order to avoid any error that may affect the results 

when comparing the numerical solutions with the analytical solutions.  

 

 

2.1.2 Dielectric cylinders 
 

In the previous subsection, the perfectly conducting cylinder is discussed. There, the 

induced currents in the scatterer (cylinder) exist only on the surface enclosing it, i.e., 

in C only. However, in dielectric scatterers, the situation is different. The currents 

are induced everywhere inside the scatterer and their values depends on the spatial 

position and the characteristics of the incident plane wave (polarization, propagation 

direction, magnitudes, etc.). 
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Replacing the PEC cylinder, discussed earlier, by a dielectric cylinder, one can 

derive the Helmholtz equation for the scattered field in C  as [50]: 

 21
. 1 .s 2 s inc

z r z r z

r

E k E k E 


 
     
 

   (2.16) 

 

In fact, the right-hand side of this equation represents induced currents due to the 

incident wave. r in transparent dielectric material is equal to square root of the 

refractive index of that material. The Helmholtz equation governing free space 

region FS , is obtained from equation (2.16) since 1r  in FS . Scattering by a 

dielectric microspheres or micro cylinders has been recently utilized in several 

applications. More detailed discussion on this topic is presented in chapter 6. 

 

 

2.2 Electromagnetic radiation 
 

In this work, the problem of radiation from a point source is considered because its 

analytical solution exists. Here, the source is represented as a point in the xy-plane 

extending along z-axis. Physically, this is a single-line source inside an infinitely-

long cylindrical region of arbitrary shape. As pointed in the previous section, the 

analysis is based on TMz mode. Figure 2.2 shows a line source placed in the region

D , in the xy-plane, and embedded in the free space region FS which is physically 

unbounded. The line-source is assumed to be placed in an arbitrary position 0r , inside 

D . The electric current density of the line-source is given by: 

0( )zJ I r r      (2.17) 

with I  being a constant (Amp/m). 
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Figure 2. 2 General schematic of the radiation problem. 

 

 

Maxwell’s equations are written as: 

0

rad radE j H        (2.18) 

0

rad radH j E J       (2.19) 

Then the two-dimensional scalar Helmholtz equation governing the radiated electric 

field can be written as: 

2

0 0( )rad 2 rad

z zE k E j I r r        (2.20) 

with k  being the free-space wave number (of the incident plane wave). 

 

Due to the presence of Dirac delta function, we truncate the free space region around 

the line-source and simply impose Dirichlet boundary condition on the boundary 

FS . That is, the problem is redefined as follows: 

2 0,rad 2 rad

z zE k E   in FS ,     (2.21a) 

with 
rad analytical

z zE E on  .D    (2.21b) 

 

The analytical solution
analytical

zE , which is the solution of equation (2.20), is given by 

[18]: 

(2)

0 0( ) ( )
4

analytical

z

k
E r IH k r r


      (2.22) 

where, 
(2)

0H denotes the Hankel function of the second kind of zeroth order, and   is 

the intrinsic impedance of the medium.  
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This radiating source is very important in the analysis of electromagnetic problems. 

That is, when an object is placed in the free space where an incident plane wave 

exists, the currents are excited everywhere in the object. The object in turn will cause 

electromagnetic scattering. Numerically speaking, each node in the body of the 

object acts like a point source radiating the field in the surrounding media. For this 

reason, the problem defined in equation (2.21) is important. For example, in this 

thesis, finding the optimum parameters that define a successful domain truncation is 

based on the radiating point source. In addition, we rely on the same problem to 

estimate the accuracy achieved by spectral element method when very large objects 

are encountered. 

 

So far, we have introduced some electromagnetic problems having infinite physical 

domain. But this situation can’t be directly handled by numerical methods. The next 

section discusses how the physical domain should be modified or truncated so that 

numerical methods such as finite difference method, finite element method, or 

spectral element method can be applied. 

 

 

2.3 Domain truncation 
 

There are quite many problems defined on infinite domains. For instance, 

electromagnetic radiation and electromagnetic scattering problems most of the time 

involve infinite domains over which the corresponding set of partial differential 

equations (PDEs) needs to be solved. In a typical wave-equation problem (See figure 

2.3), although the region of interest is finite and the interest is to investigate sources, 

homogenous and/or inhomogeneous media, nonlinearities, etc, the physical domain 

is infinite. For this reason, when computation is involved, one needs to truncate the 

domain so that the problem can be handled without affecting the solution in the 

region of interest. The important question here is how to perform domain truncation 

with negligible effect on the region of interest. 
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Figure 2. 3 Schematic of a typical wave-equation problem. 

 

 

The well-known technique by which truncation can be successfully applied is the so 

called artificial boundary conditions (ABCs) [19]. In this technique the 

computational domain is effectively coupled to the free space by constructing a 

boundary operator such that the outgoing waves from the region of interest are 

absorbed. ABCs are essentially based on a differential operator (boundary operator) 

such as Trefethen-Halpern General ABC and Higdon Boundary Operator [20]. It was 

claimed that these two operators perform better than other differential operators.  

 

There are also many other boundary operators, each having some advantages and 

disadvantages. In general, boundary operators can be classified into two types. The 

first type has non-local character meaning that the function value at each point on the 

boundary is related to values at all other points on the boundary. While the second 

type is local meaning that it is a partial differential operator [3]. Whatever it is, the 

artificial boundary must be designed in such a way that Sommerfeld radiation 

condition is satisfied. In two-dimensional scattering problems governed by 

Helmholtz equation, Sommerfeld radiation condition is defined as:  

lim ( ) 0,z
z z

r

E
E jkE

r


 


  (2.23) 

where r is the radiation direction, and zE stands for either radiated field or scattered 

field.  
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Another approach for domain truncation was first introduced by Bettess [21]. In this 

approach, the finite elements are combined with element of infinite extent. Although, 

infinite element concept was introduced for problems governed by Laplace’s 

equation in exterior domains, it has also been utilized in electromagnetic scattering 

problems [22]. However, there are some difficulties arise in the implementation of 

numerical integration performed over the infinite element when used in wave 

propagation problems [23].  

 

However, in 1994, Berenger changed the way of thinking: instead of creating an 

absorbing boundary condition, he introduced an absorbing boundary layer in his 

well-known paper [4]. In an electromagnetic problem, in which there is a finite 

region of interest where sources, inhomogeneous media and nonlinearities exist, the 

domain is truncated by an absorbing boundary layer, as depicted in figure 2.4. That 

is, the problem is redefined as the original problem bounded by an artificial 

absorbing boundary layer which is a perfect absorber to all outgoing waves and 

doesn’t reflect them back to the computational region. This absorber is completely 

independent of the boundary conditions. When a wave enters into this absorber, it is 

attenuated and decays exponentially; and even if reflections take place within the 

absorbing layer, the returning waves again are attenuated until they vanish if the 

absorbing layer is thick enough and the attenuating factor is relatively large. 

 

Berenger showed that a special absorbing medium could be designed so that 

reflections don’t occur at the interface between free-space region and the absorbing 

layer. This absorber is called; a perfectly matched layer, or PML. PML is a very 

successful approach in which an infinite physical domain is truncated by a perfect 

absorber that absorbs all waves regardless of their frequency or angle of incidence.  
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Figure 2. 4 Schematic of a typical wave-equation problem surrounded by PML. 

 

 

The original formulation of Berenger is called the split-field PML, because the 

magnetic and electric fields are split into the sum of two new artificial field 

components. There are two more equivalent PML formulations: anisotropic 

formulation [5], and bianisotropic formulation [6].  In the next section, derivation of 

the equations governing the PML in the static case is presented. M. Kuzuoglu and R. 

Mittra [3] showed that from this derivation it is possible to obtain the three 

realizations of PML; the split-field PML, anisotropic formulation, and bianisotropic 

formulation. 

 

 

2.4 Derivation of the Equations Governing the PML 
 

In the following, y axis (i.e. x = 0) is taken as the interface between Ω and ΩPML, 

which stands for free space and PML regions, respectively, as depicted in figure 2.5. 

Ω = {(x,y) |x<0}, ΩPML = {(x,y) |x>0}. A plane wave (with suppressed time 

dependence exp(jwt)) incident to the interface can be expressed as: 

jk(cos x sin y)u(x, y) ,e        (2.24) 

in which u(x, y)  denotes the scalar field at point (x,y), θ is the incident angle (angle 

between the direction of propagation of the plane wave and x axis), and k is the wave 
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number defined by: 

2
k ,




            (2.25) 

with   being the wavelength. In the following, u(x, y)  will be used to denote the z-

component of the field instead of (x, y)rad

zE or (x, y)s

zE to avoid confusion. As 

pointed out in [3], in order to provide the attenuation required, one needs to multiply 

the wave in the PML region by a function f(x) satisfying two properties:  

 f(0) = 1, so that the field at the interface is not affected, and 

 f(x) decreases monotonically for x > 0. 

 

For instance, f(x) can be chosen as: 

cos xf(x) .e                   (2.26) 

 

 

 

Figure 2. 5 The interface between Ω and ΩPML. 

 

 

 

The scalar field in ΩPML then takes the form: 

jk(acos x sin y)u(x, y) e        (2.27) 

where;  

a 1 ,
jk


        (2.28) 

and   is a positive real constant (called attenuation factor). By direct differentiation, 
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we obtain the following partial differential equation satisfied by the field (2.27): 

2 2
2

2 2 2

1 u u
k u 0.

a x y

 
  

 
         (2.29) 

 

It is obvious from the derivation above that continuity condition at the interface 

holds: 

0 0
u u .

x x   
      (2.30) 

One more condition is required. At the interface: 

0 0

u 1 u
.

ax xx x   

 


 
      (2.31) 

It can be shown by integration by parts that the second condition is automatically 

satisfied if Helmholtz equation in the PML region is rewritten as: 

2 2
2

2 2

1 u u
a a k u 0.

a x y

 
  

 
    (2.32) 

 

It can further be shown that for a horizontal interface (i.e., at y = 0) the following 

equation is obtained (while keeping PML thickness the same so that the same 

attenuation factor is applied): 

2 2
2

2 2 2

u 1 u
k u 0.

ax y

 
  

 
    (2.33) 

 

And finally for a corner region, which is the intersection of vertical and horizontal 

PML regions as shown in figure 2.6, the attenuation is applied in both directions [3], 

and the following partial differential equation is obtained: 

2 2
2

2 2 2 2

1 u 1 u
k u 0,

a ax y

 
  

 
   (2.34) 

or: 

2 2
2 2

2 2

u u
a k u 0.

x y

 
  

 
    (2.35) 
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Figure 2. 6 The corner interface between Ω and ΩPML. 

 

 

Based on this PML formulation, the set of partial differential equations as well as the 

interface conditions are derived. However, it is not clear how much one should 

choose the attenuation factor  , and the thickness of the perfectly matched layer. In 

the next section, choices for the PML parameters are discussed based on the 

formulation of the PML. 

 

 

2.5 Choices for the PML parameters 
 

From the physical view of the perfectly matched layer, it can be observed that the 

only parameter defining the PML is the attenuation factor ( ). That is; ideally, the 

attenuation factor must be chosen infinitely large to make sure that the field 

magnitude is immediately forced to zero in the PML region. However in numerical 

applications, the PML must be terminated by an outer boundary and thus arises a 

second parameter which the thickness of the PML.  

 

From the numerical viewpoint, the thickness should be chosen in such a way that the 

field is gradually forced to zero, however this requires low attenuation in the PML. 

Another approach is to choose larger attenuation factor with lower PML thickness, 

which requires more nodal points (finer mesh/grid) in the PML in order to resolve 

the fast decay. There are two approaches to overcome this problem. The first one is 

to design a perfectly matched absorber with different adjacent absorbing layers with 
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each having different attenuation. For instance, Figure 2.7 shows the magnitude of 

the field (u) while it is forced to decay in x-direction through multiple absorbing 

layers until it reaches almost zero. By this way, instead of having sharp decay in the 

case of single layer, the decay is performed step by step as the wave propagates 

through PML layers. The second approach is to design the PML with an attenuation 

factor in such a way that it is a function of position in the longitudinal direction of 

propagation. 

 

 

 

Figure 2. 7 Decaying the field in x-direction using multiple PML layers. 

 

 

To summarize, one must search for the optimum PML thickness and discretization 

(i.e. mesh/grid density especially in the longitudinal direction) in the case of single 

PML layer, in order to represent the field decay as smoothly as possible without 

causing “numerical” reflections. In other words, there is a trade-off in the choice of 

the attenuation factor for satisfying the homogenous Dirichlet boundary condition on 

the outer PML boundary and providing the adequate rate of attenuation within the 

PML for a specific mesh/grid. 

 

In finite element method, for example, the attenuation of the field in the longitudinal 

direction in a single-layer PML is about 4 to 6 if the PML thickness is chosen as one 

wavelength. This choice of attenuation in the literature is gained by experience 

without being deterministic choice.  
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It is important to note that in the previous section, the amount of attenuation in the 

PML is applied equally in both horizontal and vertical layers. This application of 

attenuation is supported by the following key points: 

1. The thickness of the PML in x-decay is chosen the same as that in y-decay. In 

fact, the thickness is normally chosen to be as much as one wavelength or 

twice depending on the numerical method used in the computation.  

2. The interface between the PML and the free space is placed at a distance far 

enough from the scatterer so that large fields are avoided to hit the interface. 

This is based on the fact that either scattered fields or radiated fields decay in 

general as they propagate out from the region of interest.  

3. Since in many problems there is no expectation of magnitudes of the field 

hitting horizontal interface be different from those hitting the vertical 

interface, there is no physical reason to choose different attenuations for the 

same PML thicknesses. Even if there exists such a case (i.e., fields hitting 

vertical interface are much different in magnitudes from those hitting the 

horizontal interface), the suitable placement of the interface will overcome 

this problem as discussed in the second point. 

 

If the thickness of PML is chosen to be one wavelength (i.e., thickness is normalized 

by the wavelength), then the choice of attenuation will be grid dependent. In another 

word, the attenuation should guarantee forcing the wave to be negligible at the outer 

boundary of the PML so that numerical reflections are avoided, and at the same time, 

there should be enough nodes in the longitudinal direction capable of resolving the 

attenuated field.  

 

Intuitively, this trade-off implies that at specific number of nodes in the grid, there is 

a corresponding optimum attenuation factor that gives the best accuracy for that grid. 

The interest for such an analysis arises from two facts; first, as it will be presented 

later, the distribution of grid points in Spectral Element Method (SEM) is of Gauss-

Legendre-Lobatto type, while in FEM or FDM is not. The regularity in the elements 
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corresponding to PML region is another important point. That is, the PML can be 

subdivided into square or rectangular elements when SEM is used. 

 

In this thesis, the PML region is constructed as a single layer of SEM elements with 

dimensions equal to a wavelength. Under this restriction, the optimal choice of the 

attenuation factor is carried out via numerical experiments. This is one of the main 

contributions in this thesis and is discussed further in chapter 5. In addition, as it will 

be observed from the analysis carried in chapters 5 and 6, single-layer PML is 

optimal.  

 

The two-dimensional formulation of Helmholtz equation in the context of SEM is 

presented in the next chapter. This formulation takes into account all the partial 

differential equations governing the PML region, free space, and magnetic and/or 

dielectric materials. 
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CHAPTER 3 

 

 

SPECTRAL ELEMENT FORMULATION OF 

ELECTROMAGNETIC SCATTERING/RADIATION 

PROBLEMS 

 

 

 

In this chapter, an introduction to spectral element method is presented which leads 

to the discrete formulation of electromagnetic scattering and radiation problems. 

Subsequently, the effect of element shape on the numerical solution obtained by 

spectral element method is investigated using the point source problem. 

 

 

3.1 Introduction  
 

Spectral element method was first introduced by Patera [24] in 1984 for 

computational fluid dynamics. Patera proposed a spectral element method that 

combines the flexibility of the finite element method with the accuracy of spectral 

methods (the case where p-type method is applied for a single-element domain). In 

the spectral element method, he utilized high-order Lagrangian polynomial 

interpolant over Chebyshev collocation points in order to represent the velocity in 

each element in the computational domain.  

 

Generally speaking, spectral element methods are considered as a family of 

approximation schemes based on the Galerkin method. They share common 

characteristics with finite-element discretizations, and this provides the reason why 

they can be viewed as h- or p-versions of finite element method. That is, when 

viewed as h-version, a Lagrangian interpolation formula on the parent element exists 

in both, as well as the basis functions have local support. On the other hand, spectral 

element methods use high-degree polynomials on a fixed geometric mesh for sake of 
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enhanced accuracy, and this is the fact characterizing the p-version of finite element 

methods [25]. 

 

Orthogonality of basis functions either in the h- or p-versions of the finite element is 

due to non-overlapping local functions. However, in spectral element methods 

orthogonality is related to both analytical nature and topological nature (local 

extension) of the basis functions. This fact tells us why spectral element method is 

different from finite element method of h-version or p-version [26]. 

 

There are mainly two implementations that have been proposed, one based on 

Chebyshev polynomials [24], and the other based on Legendre polynomials. In both 

cases, Gauss-Lobatto quadrature grid is utilized to perform Lagrangian interpolation. 

This implementation ensures the continuity of the solution and benefit from the 

associated numerical quadrature schemes. Patera [24] chose Chebyshev polynomials 

basically because of the possibility of using fast transform techniques. On the other 

side, the stiffness and mass matrices were evaluated by the quadratures that were 

performed analytically without utilizing the weighting factor associated with 

Chebyshev polynomials [25], (the weighting factor is
2 1( 1 )x  , by which 

Chebyshev polynomials are orthogonal in contrast to Legendre polynomials whose 

orthogonality comes with unity weighting factor). 

 

Before we proceed with spectral element formulation, it is important to summarize 

the set of partial differential equations (PDEs) that governs an electromagnetic 

scattering or radiation problem. These PDEs are already presented and derived in 

chapter 2, however, combining them in one equation is important for sake of 

generality. 

 

 

3.2 The governing PDEs 
 

In the previous chapter, the derivation of the partial differential equations governing 

the perfectly matched layer (PML) was presented. However, in a typical 
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electromagnetic scattering and/or radiation problem, there are a set of partial 

differential equations to be solved together with the equations governing the PML 

region. These equations are also derived and presented in chapter 2. Here, we 

summarize all of these equations in order to provide a complete set to be formulated 

by spectral element method. 

 

The computational domain is composed of several subdomains that are associated 

with the following set of partial differential equations: 

2 2
2

2 2

u u
k u 0,

x y

 
  

 
      (3.1) 

is satisfied over the free-space region, 

2 2
2

2 2

1 u u
a a k u 0,

a x y

 
  

 
     (3.2) 

governs the field attenuated in x-direction in PML region, 

2 2
2

2 2

u 1 u
a a k u 0,

ax y

 
  

 
     (3.3) 

governs the field attenuated in y-direction in PML region, 

2 2
2

2 2

1 u 1 u
a k u 0,

a ax y

 
  

 
     (3.4) 

governs the field attenuated in both x- and y- directions in PML region, and 

 21
. u u 1 ,2 inc

r r z

r

k k E 


 
     
 

   (3.5) 

is satisfied wherever there is a dielectric object, where; k 2 /  is the wave 

number, with   being the wavelength, a 1 / jk  ,   is the attenuation factor, r  

is the relative permittivity of the scatterer, and r  is the relative permeability of the 

scatterer. 

 

Here, we have changed the notation slightly for convenience. That is; in this set of 

equations, u  denotes the z-component of the field in the corresponding subdomain: it 

is the scattered field 
s

zE (x, y) , or radiated field 
rad

zE (x, y) , if it corresponds to a free-
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space subdomain, and it is the absorbed field if it corresponds to the perfectly 

matched layer.  

 

Figure 3.1 shows a typical electromagnetic scattering domain which is composed of 

a dielectric scatterer ( SC ) of an arbitrary shape. The scatterer is embedded in a free-

space region represented by FS , and the domain truncation is performed by the 

perfectly matched layer PML . At this point, a tensor  is introduced so that all of the 

previous equations can be represented in one equation. The tensor is defined as:  

11

22

0
,

0
 

 
 

 
     (3.6) 

where; 

  11 22

1
a

a

 
    

 
  

for x-decay in the PML region, 

  11 22

1
a

a

 
    

 
  

for y-decay in the PML region, 

  11 22

1 1

a a

 
    

 
  

for a corner (xy-decay) in the PML region with a 1  in FS , and r being greater 

than 1 in SC only, and 1 elsewhere. 

 

Thus, the set of all partial differential equations governing an electromagnetic 

scattering problem can be written as follows: 

 

 2 2
. u+ a u 1 inc

r r zk k E       (3.7) 

  

It is worth to mention that for transparent dielectric material and for free-space is

1r  . In addition, 1r  in the dielectric material only, and 1r   elsewhere. In 
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fact, when 1r  , the right-hand side of equation (3.7) vanishes to zero. In the next 

section, we provide the spectral element formulation for the Helmholtz equation as 

expressed in equation (3.7) which must be satisfied in a typical electromagnetic 

scattering and/or radiation problem.  

 

 

 

Figure 3. 1 A typical electromagnetic scattering problem composed of a dielectric 

scatterer ( SC ) embedded in a free-space FS  , and domain truncation is performed 

by the perfectly matched layer PML  . 

 

 

 

3.3 SEM formulation 
 

As discussed in the previous section, a typical electromagnetic scattering and/or 

radiation problem in the frequency-domain can be defined as: 

 2 2
. u+ a u 1 inc

r r zk k E       (3.8a) 

 

for 
2(x, y) x  subject to the boundary conditions: 

 
D N

n
u f , u g,

 
                                     (3.8b) 

on the boundary D N    .  
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SEM formulation involves two function spaces, namely, test and trial spaces. An 

approximate solution to equation (3.8) is sought in the trial space  

 
D N

n
U u H | u f , u g .

 
        (3.9) 

The residual resulting from the substitution of the approximate solution from the trial 

space into equation (3.8) vanishes in the process of projection onto the test space 

V {v H v 0}.
D

             (3.10) 

The projection is performed by using the weighted inner product operation: 

      v,u v u d





  x              (3.11)                                 

in the Hilbert space H where overbar denotes complex conjugation. The projection 

procedure  

 2 2
a(v, . u u 1 ) 0inc

r r zk k E          (3.12) 

leads to the variational (weak) form  

 2 2( v) u dx a v u dx v gdx 1 v dx

N

inc

r zk k E    
   

          (3.13) 

after integration by parts that introduces the boundary integrals. The trial function is 

then decomposed as follows  

h bu u u  , where 
D

hu 0


 and 
D

bu f ,


   (3.14) 

resulting in 

h h b( v) u d a v u dx ( ) u dx2k v  
  

        x   

 2

ba v u dx v dx 1 v dx

N

2 inc

r zk g k E   
  

        (3.15) 

after substitution into equation (3.13). The boundary conditions are now in place in 

the variational form with the introduction of the particular solution bu  satisfying the 

nonhomogeneous Dirichlet boundary condition.  

 

Adapting the formulation to an arbitrary domain geometry is achieved in two steps. 

The first step involves partitioning of the domain into mutually disjoint elements: 
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M
1 e M e

e=1

... ... .              (3.16) 

A typical integral in the variational form then becomes 

 
e

M

h h

e 1

v u d v u d , 
 

 x x              (3.17) 

due to the linearity of integration operation. The second step is the introduction of 

the standard square element 

 st 2( , ) | 1 1, 1 1              (3.18) 

that will standardize and facilitate the integral operations over a general quadrilateral 

element e  with curved sides through mapping: 

 
e e

1 2x ( , ), y ( , ).                  (3.19) 

 

In another word, in order to perform the operations of integration and differentiation 

in an element e  that may have an arbitrary shape and orientation as shown in figure 

3.2, the introduction of the one-to-one elemental mapping defined in equation (3.19) 

is necessary. In fact, this mapping is also onto, which in turn becomes isomorphic 

transformation. The isomorphism here tells us that inverse transformation exists. 

 

 

 

Figure 3. 2 Mapping an element e   to the standard element st . 

 

 

The differential operations can then be converted using the rules: 

e e
1 1

e e
2 2

dx d

dy d

 

 

 

 





 

 

 

 

    
    
     

J

,     

e e
2 1

e e
2 1

x 1

y

-
,

-

 

  

 


 

  
  

  
 

 

    
      
      

J
        (3.20) 
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where J  is the determinant of the Jacobian J .   

 

Numerical implementation of the procedure requires introduction of a spatial 

discretization that will facilitate the numerical evaluation of the derivatives and the 

integrals. This is equivalent to taking the trial and test spaces as finite dimensional 

spaces for which space of polynomials is the convenient choice. Jacobi polynomials 

as eigenfunctions of singular Sturm-Liouville differential operator provide a good 

basis for this space [27]. Numerically stable interpolation and highly accurate 

quadrature integration approximation techniques are provided by nodes and weights 

associated with Jacobi polynomials. In particular, Legendre polynomials are the 

convenient choice in that they are orthogonal under the weighted inner product with 

unity weight 1  . The associated roots m  as nodes provide the stable form of 

interpolation 

 
N

m m

m 0

u( ) u( )L ( )  


               (3.21)  

where L denotes respective Lagrange interpolants with the typical form 

 
k

N
( )

k ( )

0
k

L ( )
 

 









                        (3.22)  

satisfying the cardinality property k kL ( )  . This in turn provides the means for 

evaluating the derivatives, say, 

k

km

N N

d
m m k m m kd

m 0 m 0
D

u( ) u( )L ( ) u( )L ( )
 

    
 

                          (3.23)  

where kmD  is referred to as the differentiation matrix. It also provides Gauss-

Legendre-Lobatto (GLL) quadrature  

1 N

k k

k 01

u( )d u( )   


                   (3.24)  

which is exact for the integrand of a polynomial of degree 2N 1  . These can easily 

be extended to two dimensions over the tensor grid k( , )   with the mapping 

functions i ( , )    constructed using the linear blending function approach [28], [29]. 



 
 37  
 

 

As mentioned above, the nodal basis for the reference element is usually built by 

Lagrangian basis polynomials associated with a tensor product grid of GLL nodes. 

Figure 3.3 shows such a grid for a ninth-order polynomial space. In one direction, the 

GLL grid nodes [ 1,1],   0 N  are the roots of the polynomial: 

2 Nd ( )
(1- )

d

P x
x

x
     (3.25) 

where NP (x)  is the Legendre polynomial of degree N  in [ 1,1] : 

0

1

n 1 n n 1

( ) 1,

( ) ,

2n 1 n
( ) ( ) ( ), n 1.

n 1 n 1

P x

P x x

P x xP x P x 






  

 

    (3.26) 

 

The first six Legendre polynomials are plotted in figure 3.4. 

 

 

 

Figure 3. 3 GLL grid nodes on the reference element for a ninth-order polynomial 

space (nodes are represented by the intersections of horizontal and vertical lines). 
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Figure 3. 4 Plot of first six Legendre polynomials. 

 

 

It is important here to demonstrate the accuracy of the spectral element in one 

element of square shape and deformed shape. In the following section, the effect of 

element deformation on the accuracy of spectral element method is investigated.  

 

 

3.4 SEM accuracy in a single-element domain 

 

3.4.1 Elemental Deformation 
 

Most of practical engineering problems encounter complex geometries, hence; the 

computational domain requires to be discretized into irregular elements. Meshing a 

problem in the case of finite element method has been intensively investigated in the 

literature. For instance, if triangular elements are used to mesh a problem, it is 

recommended that the smallest angle in the element should not be lower than 15 

degrees in order to not deteriorate the accuracy. Similarly, it is important to study the 

effect of elemental deformation on the accuracy in the case of SEM. In this section, 

we demonstrate the accuracy of spectral element method for a single-element domain 

of various quadrilateral deformed elements.  
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3.4.2 Results 

 

Our investigation is restricted to quadrilateral elements with straight or curved sides. 

Some examples of these quadrilateral elements are shown in figure 3.5. This 

flexibility in the shapes of SEM elements can be utilized in meshing complex 

geometries where different scattering objects of arbitrary shapes are involved. 

 

In this work, the following definition for the elemental aspect ratio ( AR ) is 

considered: 

max( )

min( )

i

i

d
AR

d
     (3.27) 

where (1 4)id i   stands for side length of a quadrilateral element. To make use of 

this definition, one needs to study the accuracy of SEM for a single-element domain 

having a reference area with equal dimensions. We call such an element as a 

reference element. Then, by changing the dimensions and the shape of the element 

while having the same area as that of the reference element, a comparison can be 

performed. With this approach, the effect of AR on the accuracy can be investigated. 

It is also worth to note that all sides of the elements are assumed to have equal nodes.  

 

 

 

 

Figure 3. 5 Various quadrilateral elements. 
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We consider the two-dimensional point source problem that has Helmholtz equation 

as the governing partial differential equation: 

2 2 ( ).u k u r            (3.28) 

 

To avoid the singularity at the origin, the homogenous Helmholtz equation is solved 

inside a square element (Ω) as shown in figure 3.6 with dimensions  , with 1  ; 

hence the element has a unit area. This square element will be referred as the 

reference element. On the boundary ∂Ω, the exact solution to equation 3.28 in terms 

of Hankel function of the second kind (zero order), (
(2)

0( ) ( / 4) ( | r |)u r j H k , is 

applied as boundary conditions, where | r |  is the Euclidean distance from the origin 

to a point r  on the boundary ∂Ω.  

 

 

Figure 3. 6 The reference square element with unit area. 

 

 

The real part of the solution is shown in figure 3.7 for N=18 points per wavelength

 . Throughout this work, the maximum relative error is defined as: 

 

, ,

,

max
i

i exact i SEM

i exact

u u
Err

u


         (3.29) 

 

where ,i exactu  and ,i SEMu  are the exact solution and the SEM solution, respectively, at 

the ith node corresponding to the free space region, Ω. The error is presented in 
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Table 3.1 as N increases for the reference square element and for a rectangular 

element of unit area for aspect ratios: 1.33, 1.88, and 2.87. The effect of the aspect 

ratio on the accuracy can be clearly observed. 

 

 

Figure 3. 7 Real part of the solution in the reference element at N=18. 

 

 

Table 3. 1 Relative errors vs N for the reference element and the rectangular element. 

 

 

N  

Square 

Element 

Rectangular Element 

AR =1.33 AR =1.88 AR =2.87 

Err Err Err Err 

7 0.00091 0.0026 0.0903 0.2572 

8 1.30E-04 3.4737e-04 0.0163 0.1202 

9 1.25E-05 6.4093e-05 0.0027 0.0583 

10 1.14E-06 1.0906e-05 5.9235e-04 0.0231 

11 1.13E-07 1.7698e-06 1.1915e-04 0.0090 

12 1.26E-08 2.9412e-07 2.5201e-05 0.0031 

13 1.51E-09 4.4364e-08 5.0504e-06 0.0010 

14 2.23E-10 5.9119e-09 9.9654e-07 3.1313e-04 

15 2.57E-11 8.9382e-10 1.7686e-07 8.9887e-05 

16 3.23E-12 9.1668e-11 3.0693e-08 2.4335e-05 

17 2.86E-13 1.2123e-11 4.8938e-09 6.1549e-06 
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Next, we consider a quadrilateral element with straight sides and having a unit area 

as shown in figure 3.8. The error is presented in Table 3.2 for the aspect ratios of 

AR  =1.33, 1.88 and 2.87 (while the elemental area is kept the same). It is clearly 

observed that as the aspect ratio ( AR ) increases, the accuracy is deteriorated. Figure 

3.9, 3.10 and 3.11 show the real part of the numerical solutions at AR =1.33, 1.88 

and 2.87, respectively.  

 

 

 

Figure 3. 8 Quadrilateral element with straight sides and unit area. 

 

 

 

 

Figure 3. 9 SEM solution for the straight-sided quadrilateral element at AR =1.33. 
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Figure 3. 10 SEM solution for the straight-sided quadrilateral element at AR  =1.88. 

 

 

 

 

Figure 3. 11 SEM solution for the straight-sided quadrilateral element at AR =2.87. 
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Table 3. 2 Errors for Quadrilateral element with straight sides and unit area. 

N 

 

  

Err 

( AR = 

1.33) 

Err 

( AR = 

1.88) 

Err 

( AR = 

2.87) 

7 0.001 0.003 0.062 

8 1.5e-04 6.0e-04 0.012 

9 1.5e-05 1.2e-04 0.004 

10 1.6e-06 2.4e-05 0.001 

11 1.7e-07 4.6e-06 2.6e-04 

12 1.8e-08 8.2e-07 6.3e-05 

13 2.0e-09 1.4e-07 1.5e-05 

14 2.6e-10 2.3e-08 3.4e-06 

15 3.1e-11 3.6e-09 7.3e-07 

16 3.8e-12 5.5e-10 1.5e-07 

17 4.3e-13 8.0e-11 2.9e-08 

 

 

 

Next, a quadrilateral element having one curved side and a unit area is investigated 

(See figure 3.12). This kind of elements is encountered in meshing of many 

computational electromagnetic problems. The solution of the point source problem is 

applied on the boundary of the element where the homogeneous Helmholtz equation 

is satisfied. The maximum relative errors are presented in Table 3.3 for different 

values of aspect ratio while keeping the elemental area unchanged.   

 

 

 

Figure 3. 12 Quadrilateral element having one curved side and a unit area. 
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Table 3. 3 Errors for Quadrilateral element with curved side and unit area. 

N  Err 

(AR= 

1.39) 

Err 

(AR= 

1.91) 

Err 

(AR= 

2.39) 

7 0.0014 0.0016 0.0189 

8 0.0005 0.0008 0.0029 

9 1.8e-05 3.3e-05 2.7e-04 

10 2.1e-05 2.8e-05 3.8e-05 

11 2.7e-07 6.5e-07 5.3e-06 

12 1.0e-07 1.7e-07 7.2e-07 

13 4.4e-08 4.7e-08 9.2e-08 

14 5.0e-09 1.3e-08 3.1e-08 

15 5.3e-10 1.5e-09 3.2e-09 

16 5.3e-11 2.5e-10 8.8e-10 

17 5.2e-12 1.6e-10 9.1e-10 

 

 

 

Again, we show the real part of the numerical solution for this type of elements in 

figure 3.13 and 3.14 at AR =1.39 and AR =2.39, respectively. For convenience, 

color mapping is utilized so that the dimensions are shown on the corresponding 

figures. 
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Figure 3. 13 SEM solution for the curved-sided quadrilateral element at AR  =1.39. 

 

 

 

Figure 3. 14 SEM solution for the curved-sided quadrilateral element at AR =2.39. 

 

 

 

3.5 Conclusion 
 

In this chapter, the formulation of electromagnetic scattering and radiation problems 

based on the spectral element method is provided. This formulation considers also 

domain truncation by the perfectly matched layer. For this purpose, all the partial 
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differential equations that govern over the perfectly matched layer, free-space 

regions, magnetic and/or dielectric objects, are put in a single representative form 

that defines a typical electromagnetic scattering in frequency domain. Numerical 

implementation by spectral element method is then applied.  

 

Next, the effect of element deformation on the accuracy of spectral element method 

is investigated. As observed from the results, in quadrilateral elements having 

straight or curved sides the error was less than that of rectangular elements. Thus, in 

general, the accuracy can deteriorate if the aspect ratio of some elements is chosen to 

be large. One can notice from the presented errors that there is no safe range of the 

aspect ratio in which high accuracy is guaranteed. In conclusion, the discretization of 

the physical domain should be performed so that the aspect ratio of each element is 

close to unity as much as possible.   
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CHAPTER 4 
 

 

INVESTIGATION OF ITERATIVE METHODS 
 

 

 

In this chapter, we investigate some of the well-known iterative methods in solving 

the resulting system of equations from the perspective of spectral element method. 

This chapter is arranged in the following manner: we first outline the resulting 

system of equations to be solved. Then, an introduction to iterative methods is 

presented. After introducing each iterative method, we present the required number 

of iterations for the corresponding method to converge. At the end of the chapter, a 

comparison is made among the investigated iterative methods.    

 

 

4.1 Resulting Matrix 
 

Based on the formulation presented in chapter 3, the resulting system after 

discretized by spectral element method in an electromagnetic problem is complex 

valued. In other words, both the real part and the imaginary part of the unknowns 

must be solved. The discretization performed by spectral element method results in a 

system of linear algebraic equations of the form: 

,Hx b       (4.1) 

in which H  stands for the Helmholtz operator (square matrix) as derived by SEM, 

x is a vector representing the scattered electric (or magnetic field) to be solved, and 

b denotes a vector containing the information about the boundary conditions and the 

right-hand side of the Helmholtz equation. 

 

To apply iterative techniques, one needs to decompose H , x , and b as follows: 

( j ) ( j ) ( j ),R I R I R IH H x x b b         (4.2) 
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where R  and I  denote the real component and the imaginary component, 

respectively. Therefore, the system given in equation (4.2) can expressed as a block 

system of equations: 

,

,

R R I I R

I R R I I

H x H x b

H x H x b

 

 
      (4.3) 

which can be rewritten as a symmetric system of equations [8]: 

R I R R

I R I I

H H x b

H H x b

     
     

      
     (4.4) 

or equivalently: 

.Ay f       (4.5) 

 

This system is linear, sparse, symmetric, indefinite and relatively ill-conditioned. 

Hence, solving this system requires an iterative method, and to efficiently solve it, a 

suitable preconditioner must be applied. Before we proceed, we will present an 

overview of the storage scheme in order to utilize the sparsity in the system.  

 

 

4.2 Storage Schemes 
 

The resulting system matrix formed by spectral element method is sparse. Therefore, 

in order to utilize this property for purpose of storage savings, special storing 

schemes are required to be used. The aim of these schemes is to store only the 

nonzero elements of the system matrix, and at the same time, to be able to perform 

matrix operations required by the iterative method. 

 

Before we proceed, it is worthy to pay attention to two points. First, although it is 

apparent that the final system presented in equation (4.5) has twice the dimensions of 

the original system defined by equation (4.1) because the original system is 

decomposed into real and imaginary parts, this increase in the dimensions doesn’t 

cost extra storage requirement. In another word, the original system is already in 

complex form which requires the memory to allocate the same number of bytes for 

real numbers and for imaginary numbers. In addition, from the view of CPU, the 
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time required to solve the system in (4.1) is the same as that required to solve the 

decomposed system since the same number of algebraic operations (addition and 

multiplication operations) will be carried in both systems. 

 

The second point is that, based on the formulation of electromagnetic scattering 

problems by spectral element method, it is important to illustrate an example which 

gives an outlook to the percentage of the nonzero elements in the system matrix. For 

this purpose, a problem with ten elements is chosen, and in each element has 11 11

GLL nodes. The resulting total number of the unknowns in equation (4.1) is 959. 

Among 919681 elements, there are 804162 zero elements. From this example, we 

can see that only a percentage of 12.56%  from all matrix entries needs to be stored. 

 

When storing such sparse matrices, the simplest scheme is the coordinate format. In 

this scheme, the data structure consists of three arrays: 

 An array containing all the nonzero elements of the system matrix in any 

order, 

 An integer array containing the row indices of the nonzero elements, and 

 An integer array containing the column indices of the nonzero elements. 

 

 

4.3 An overview of Iterative Methods 
 

Iterative methods are mainly classified as stationary and nonstationary. Stationary 

methods are older and easier to implement, however, they are not that much 

effective. Stationary methods include [35]: 

a. Jacobi method: In this method, the solution is performed locally for each 

variable in terms of other variables. Although it is easy to implement, Jacobi 

has slow convergence.  

b. Gauss-Seidel method: It is similar to Jacobi method except that it updates 

values immediately after they are available. Compared with Jacobi method, 

Gauss-Seidel method has faster convergence but still relatively slow. 
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c. Successive Over Relaxation (SOR): This method is an extension of Gauss-

Seidel method after introducing an extrapolation parameter . If   is chosen 

optimally, SOR can converge faster than Gauss-Seidel. 

d. Symmetric SOR (SSOR) is useful if considered as a preconditioner. 

 

Stationary methods can be expressed as in the following form: 

( ) ( 1) ,k kx Ax c       (4.6) 

and they are called stationary iterative methods since none of A  or c  are dependent 

upon the iteration counter, k . 

 

Nonstationary methods, on the other hand, can be highly effective. They mainly 

include: 

1. Conjugate Gradient (CG). 

2. Minimum Residual (MINRES). 

3. Conjugate Gradient on the Normal Equations (CGNE). 

4. Generalized Minimal Residual (GMRES). 

5. BiConjugate Gradient (BiCG). 

6. Quasi-Minimal Residual (QMR). 

7. Conjugate Gradient Squared (CGS). 

8. BiConjugate Gradient Stabilized. 

9. Chebyshev Iteration. 

 

 

4.4 Conjugate Gradient Method 
 

The conjugate gradient method is one of the oldest among nonstationary methods. It 

is known of its efficiency for symmetric positive definite systems [35], [36]. It 

proceeds by generating successive approximations to the solution, residuals 

corresponds to the iteration, and search directions which is used in updating the 

residuals and iterates. In each iteration, in order to compute update the scalars so that 

certain orthogonality conditions are satisfied, two inner products must be performed. 
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If the system is symmetric positive definite, the orthogonality conditions ensure that 

the distance to the correct solution is minimized [35].  

 

However, since the resulting system in our work is not positive definite, equation 

(4.5) must be modified by multiplying it with the transpose of the matrix A , i.e.,  

T TA Ay A f       (4.7) 

or,  

By g       (4.8) 

 

It is important to pay attention to the conditional number of the new system. This 

operation of multiplication results in having higher conditional number (in fact, it is 

square of the conditional number of A ). However, this point is not much important 

as long as preconditioners will take care of this increase in ill-conditioning. 

 

The algorithm of the conjugate gradient method is given below: 

(0) (0) (0)

( 1) ( 1)

( 1) ( 1) ( 1)

(1) (0)

( 1) ( 1) ( 2)

( ) ( 1) ( 1) ( 1)

( ) ( 1)

( ) ( 1) ( ) ( )

(

Compute , where is the initial guess

1,2,...

1

/

,

/ p

T

T

k - k -

k - k - k -

k - k - k -

k k - k - k -

k k -

k k - k k

r g By y

for k

solve Mz r

r z

if k

p z

else

p z p end if

q Bp

q

y



  



 

 













 





) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

check convergence, if no, iterate

,

k k - k k

k k - k k

y p

r r q

end





 

 

 

where ( )kr is the residual, ( )kp is the search direction corresponding the thk iteration, 

and M is the identity matrix for the unpreconditioned conjugate gradient, and it is the 
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preconditioner for the preconditioned conjugate gradient method. The choice 

( 1) ( 1) ( 2)/k - k - k -    is made to ensure that ( )kp and ( )kr are orthogonal to all 

previous ( )kBp  and ( )kr , respectively. As can be observed from the algorithm, the 

conjugate gradient method involves three vector updates, only one matrix vector 

multiplication, and two inner products in each iteration. 

 

Next, we will solve the resulting linear system of equations by conjugate gradient 

method without any preconditioner. Here, it is worth to point that although the 

method may converge for indefinite systems, convergence is not guaranteed all the 

time.  

 

We considered a matrix size of 32743274, i.e., the number of unknowns is 3274. 

Conjugate gradient method is used to solve such a linear system of equations. The 

relation between the residual and the number of iterations required for the algorithm 

to converge is shown in figure 4.1.  

 

 

 

Figure 4. 1 Conjugate Gradient method: Residual versus number of iterations. 
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4.5 Biconjugate Gradient Method 
 

The Biconjugate Gradient method was first proposed in 1952 by Lanczos [37]. After 

that, in 1974 Fletcher [38] provided a different version of it known as Conjugate 

Gradient-like version. The algorithm of the Biconjugate Gradient method is given as 

follows: 

(0) (0) (0)* (0)* (0)

(0) (0) (0)* (0)*

( ) ( ) ( )* ( ) ( )*

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1)* ( )* ( ) ( )*

( ) ( 1)

Compute , choose such that . 0

,

0,1,2,...

( , ) / ( , )

( ,

k j j j j

j j j j

j j j j

j j j T j

k j

r g By r r r

Set p r p r

for j

r r Bp p

y y p

r r Bp

r r B p

r r



















  

 





 

 

 

 ( 1)* ( ) ( )*

( 1) ( 1) ( ) ( )

( 1)* ( 1)* ( ) ( )*

) / ( , )

if satisfied

j j j

j j j j

j j j j

r r

p r p

p r p

end







 

 

 

 

 

 

The Biconjugate Gradient is implemented for the same system mentioned previously. 

Jacobi preconditioner which will be introduced later in this chapter is applied. The 

relation between the residual and the number of iterations required for the algorithm 

to converge is shown in figure 4.2. 
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Figure 4. 2 Biconjugate Gradient method: Residual versus number of iterations. 

 

 

 

 

4.6 Preconditioned Conjugate Gradient Method 
 

The rate of convergence of an iterative method mainly depends on the properties of 

the coefficient matrix. Since the resulting system to be solved in this work is 

relatively ill-conditioned, one wonders whether it is possible to transform the system 

into another system which is equivalent in the sense that the same solution can be 

obtained, and this new system has more favorable properties. Fortunately this is 

possible by introducing a matrix that performs such a transformation. This matrix is 

called a preconditioner and it is denoted by M  in this thesis. 

 

The preconditoner M , should approximate the original matrix B , and results into an 

easier system to solve. Or equivalently, preconditioning means finding M that 

approximates inverse of B  while only multiplication by M is required, i.e. it 

provides some numerical savings. In another word, the preconditioned system has 

the form: 

1 1M By M g       (4.9) 
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Apparently, there is a trade-off between the operational cost involving the 

preconditioner and the gain obtained from increasing the speed of convergence. 

There are some preconditioners, such as SSOR preconditioner, that requires very 

little construction phase; on the other hand, incomplete factorizations, for instance, 

demands substantial work. In general, most of preconditioners require work that is 

proportional to the number of unknowns [35].  

 

Since the conjugate gradient method is a very powerful iterative method, in this 

work, we use this method wherever a preconditioner is discussed. Some of the well-

known preconditioners are discussed and implemented in the following subsections. 

 

 

4.6.1 Jacobi Preconditioning 
 

Jacobi preconditioner is the simplest one and its elements are defined by: 

,
,

0,

ij

ij

b if i j
m

otherwise


 


     (4.10) 

where ijb  are the elements of the matrix B  defined in equation (4.8). In other words, 

Jacobi preconditioner contains just the diagonal elements of B . The numerical 

benefits utilized by implementing Jacobi preconditioner are the storage savings (i.e., 

no need to store the elements of Jacobi since its elements are the diagonal of B ), and 

the ease in inverting it. However, since division operations are costly, storing Jacobi 

preconditioner is carried by storing the reciprocals of the matrix diagonal. 

 

The Conjugate Gradient is utilized with Jacobi preconditioning for the same system 

defined previously. The relation between the residual and the number of iterations 

required for the algorithm to converge is shown in figure 4.3. 
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Figure 4. 3 Preconditioned Conjugate Gradient method: Residual versus number of 

iterations. 

 

 

 

4.6.2 SSOR Preconditioning 
 

Jacobi and symmetric successive over relaxation (SSOR) preconditioners are easy to 

derive from the system matrix B . SSOR derivation proceeds by decomposing B  as 

follows: 

TB D L L       (4.11) 

where D  is the diagonal of B , and L , TL are the lower and upper triangular 

matrices. Here it is worth to point that since B is symmetric, the upper triangular 

matrix is simply the transpose of the lower triangular matrix. With the aid of this 

decomposition, the SSOR preconditioning matrix is defined as: 

1( ) ( )TM D L D D L        (4.12) 

which can be parameterized by factor  as: 

11 1 1 1
( )( ) ( ) .

2

TM D L D D L
   

  


    (4.13) 

A theorem presented by Kahan [39], shows that SOR fails to converge as an iterative 

method if   lies outside the open interval (0,2) . And if 1  , SOR reduces to 
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Gauss-Seidel method. When SSOR preconditioning is utilized, there will be an 

optimum value for   at which the convergence rate is increased. Although the 

convergence is not guaranteed when   is outside the mentioned interval, we have 

searched for the optimal value inside and outside the interval (0,2) .  

 

We applied the SSOR preconditioner to solve our system. The relation between the 

residual and the number of iterations required for the algorithm to converge is shown 

in figure 4.4 for 1, 7 and 10.      In fact, different values were also 

investigated, however, the minimum number of iterations that can be achieved 

occurs between 7 and 10.    

 

 

 

Figure 4. 4 SSOR preconditioner: Residual versus number of iterations. 
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4.6.3 ILU Factorization Preconditioners 
 

Incomplete LU (ILU) factorization of the system matrix B  computes a sparse upper 

triangular matrix U and a sparse lower triangular matrix L so that the multiplication 

of L  and U  approximates B , or equivalently the residual matrix R LU B 

satisfies some constraints such as having zero elements in some locations. In this 

work we use the Zero Fill-in factorization (ILU(0)). 

 

When ILU factorization technique is used with no fill-in, it has the same zero pattern 

as that of the system matrix B . That is, ILU(0) is to find any pair of matrices L  

and U  such that the elements of R LU B  are zero in locations of ( )NZ B , where 

( )NZ B is the set of pairs ( ),1 ( )i, j i, j n   such that 0ijb  , and n  is the number of 

unknowns. However, these constraints don’t define ILU(0) uniquely as infinitely 

many pairs of L  and U  can satisfy the above requirements [36]. So, the standard 

ILU(0) can be built as shown in the following algorithm: 

Algorithm of ILU(0) :

for i 2,..., n

for 1,..., 1and for

compute /

for 1,..., and for

compute

end

end

end

ik ik kk

ij ij ik kj

k i (i,k) NZ(B)

b b b

j k n (i, j) NZ(B)

b b b b



  



  

 

 

 

The zero fill-in ILU preconditioning matrix can then be written as: 

1( ) ( )M D E D D F        (4.14) 

where E and F are the strict lower triangular and strict upper triangular matrices 

of B , respectively, and D  is a certain diagonal matrix which is different from the 

diagonal of B . If the preconditioning in equation (4.14) is considered, then the 

elements of the matrix D  are determined by a recursive formula.  
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It is obvious that an extra storage is required for the diagonal without large storage 

costs. This kind of preconditioning is very similar to SSOR case when 1  , 

however, they are different in the way in which the diagonal matrices are 

constructed. That is, in SSOR, the diagonal matrix is the diagonal of the system 

matrix B , however, in ILU(0), the diagonal is determined in such a way that the 

diagonal of the preconditioner M equals to the diagonal of B . It is important to note 

that the number of nonzero elements in both L  and U  is identical to the number of 

nonzero elements in the system matrix B . 

 

The relation between the residual and the number of iterations required for the 

algorithm to converge is shown in figure 4.5. The linearity in the figure (although 

they are shown in logarithmic scales, but when compared with other preconditioners) 

can be observed clearly, which means that ILU(0) has less convergence rate. 

 

 

 

Figure 4. 5 ILU(0) preconditioner: Residual versus number of iterations. 
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4.7 Generalized Minimum Residual Method 
 

The Generalized Minimum Residual method (GMRES) is an extension of the 

MINRES. It can be utilized for linear symmetric or unsymmetric systems, and 

proposed by Saad and Schultz [40]. It is an iterative method proposed for solving 

linear systems and minimizes the norm of the residual vector over a Krylov subspace 

in every step, i.e., without the iteration having been formed. Therefore, the iteration 

is postponed until the residual norm becomes small enough [35]. One of its most 

popular forms utilizes Gram-Schmidt procedure and uses restarts to control storage 

requirements. That is why it is sometimes called Restarted GMRES. 

 

One of drawbacks of GMRES is that storage requirement increases as the iteration 

counts increase. Fortunately, the solution to this problem is achieved by restarting the 

iteration. That is, the accumulated data are cleared from the memory after a chosen 

number of iterations ( m ) and the obtained results are immediately utilized to 

initialize the next number of iterations. The procedure is repeated until convergence 

is achieved. 

 

When GMRES is used to solve our system, the relation between the residual and the 

number of iterations required for the algorithm to converge is shown in figure 4.6 for 

two different Restarts: 10 and 30.  
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Figure 4. 6 GMRES: Residual versus number of iterations. 

 

 

 

 

4.7.1 Preconditioned Generalized Minimum Residual Method 
 

When used as a preconditioned iterative method, Restarted GMRES accepts the 

application of preconditioning operation as in the case of conjugate gradient method. 

However, there is a fundamental difference in the case of the right preconditioning 

which gives a rise to what is called the flexible variant (the variant in which the 

preconditioner may change in each step). In this work, we considered left 

preconditioners. Mainly, we apply Jacobi preconditioner in order to perform a 

comparison between the Restarted GMRES method and the Conjugate Gradient 

method. The relation between the residual and the number of iterations required for 

the algorithm to converge is shown in figure 4.7 when the Restart is 10.  

 

The algorithm that performs the left preconditioned GMRES is presented below for 

Jacobi preconditioner M : 
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Figure 4. 7 Preconditioned GMRES: Residual versus number of iterations. 
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4.8 Conclusion  
 

When comparing the number of iterations for both conjugate gradient method and 

GMRES method with a restart of 30 without any preconditioning, one can see that 

the GMRES has less number of iterations at a specific tolerance. Such a comparison 

is shown on figure 4.8. However, in terms of time spent the computer, the conjugate 

gradient method was much faster. 

 

Figure 4.9 compares the conjugate gradient with and without Jacobi preconditioning 

and the preconditioned Biconjugate gradient method. First of all, it is clear that when 

preconditioning is utilized in iterative methods, the number of iteration is much 

reduced. However, the cost is paid in terms of number of operations. It can also be 

observed that the preconditioned Biconjugate gradient requires the least number of 

iterations but the solution time is much higher. For this reason, we used the conjugate 

gradient method to carry a comparison among the preconditioners presented. 

 

 

 

Figure 4. 8 GMRES method and the Conjugate Gradient method. 
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Figure 4. 9 Preconditioned Conjugate Gradient and Biconjugate Gradient methods. 

 

 

In figure 4.10, we show a comparison between the conjugate gradient method 

preconditioned with: Jacobi, incomplete LU decomposition, and the SSOR 

preconditioners and the GMRES method with Jacobi preconditioner. Obviously, 

SSOR with 7   requires the minimum number of iterations amongst other 

preconditioners, the cost is paid in terms of solution time. 

 

 

 

Figure 4. 10 Preconditioned Conjugate Gradient and GMRES methods. 
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It can be clearly seen from the previous results that the preconditioned Biconjugate 

Gradient method converges at less number of iterations than the preconditioned 

Conjugate Gradient method; however, the time spent by the computing machine was 

less in the case of preconditioned Conjugate gradient than that of preconditioned 

Biconjugate Gradient. In fact, Conjugate gradient with Jacobi preconditioner took the 

minimum time among all other preconditioners. In addition, without any 

preconditioner, the Conjugate Gradient method was the fastest iterative method in 

terms of time. However, the number of iterations required by an iterative method is 

also important. The GRMES, on the other hand, depends on its restart. For instance, 

results with a restart of 30 were better than that of 10, at the same time, when the 

restart increases, additional memory is required. The SSOR preconditioning is also 

utilized in our work. It can be observed that when relaxation factor is in between 7 

and 10, better results can be achieved.  

 

Several iterative methods are utilized in this thesis with different preconditioners. In 

summary, there is a trade-off between the operational cost for the preconditioner, in 

terms of storage requirement, and the gain obtained from increasing the speed of 

convergence. 

 

However, we should note that the problems discussed in this work are solved by 

direct methods; namely by the backslash operator (mldivide) in MATLAB. When 

iterative solvers are considered, most of them are saturated at a relatively small 

stopping criterion (tolerance) in terms of the accuracy obtained by spectral element 

method. For instance, we checked the maximum relative error between the 

iteratively-solved solution and the analytical solution for the same linear system of 

equations discussed in this chapter by using conjugate gradient method with Jacobi 

preconditioner. The expected maximum relative error between SEM solution when 

direct solvers are utilized and the analytical solution is 1e-09. As observed from 

Table 4.1, when iterative solvers are used, we need at least a tolerance of 1e-09 in 

order to get the same SEM accuracy. In fact such a tolerance is relatively small for 
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iterative methods. However, this means that when we seek an accuracy of 1e-012, for 

example, the corresponding tolerance in this case will be extremely small. 

 

The need for iterative solvers arises in the cases where very large problems with 

complex geometries are involved. This is because of the fact that as the system of 

equations gets larger and larger with being sparse, the condition number will get 

large as well. This ill-conditioning is investigated for spectral element method, finite 

difference method and finite element method in the next chapter. 

 

 

Table 4. 1 Errors obtained by Jacobi preconditioner. 

Tolerance Err 

1e-02 1.01 

1e-05 0.0029 

1e-07 8.3617e-06 

1e-08 6.5719e-08 

1e-09 4.0115e-09, 

time=59.4sec 
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CHAPTER 5 

 

 

APPLICATION OF SPECTRAL ELEMENT METHOD IN 

ELECTROMAGNETIC RADITION PROBLEMS 

 

 

 

5.1 Introduction 
 

In the second chapter of this thesis, the formulation of the perfectly matched layer 

(PML) is presented. The corresponding set of partial differential equations of the 

PML (as an approach for domain truncation) and the regions where the 

electromagnetic field is to be solved by spectral element method are defined. 

However, important questions arise here; for instance, how the electromagnetic field 

should be attenuated within the PML region so that domain truncation is successfully 

performed without affecting the solution of interest. By other words; what is the 

attenuating factor ( ) that well defines the PML in order to make it perfect 

absorbing layer when spectral element method is utilized as a numerical method in 

electromagnetic scattering and/or radiation problems?  

 

Another important issue here is that, how the factor   should be chosen for different 

girds associated with the elements representing the PML region. And one wonders 

whether there is an optimum value for this factor at a specific grid and specific PML 

thickness or not. In addition, what is the burden caused by the PML thickness if it is 

chosen much larger than a wavelength? 

 

In this chapter, we optimize the value of the attenuating factor in the PML region 

based on an electromagnetic radiation problem. Justification of these choices is 

discussed. Then we check the optimized values by inspecting the solutions of 



 
 70  
 

scattered fields from perfectly conducting cylinders of both circular type and square 

type. The estimation of relative errors of electrically large objects is then provided. 

 

However, to get an insight about the accuracy gained from spectral element method, 

when compared to other numerical methods, demonstrations are performed using 

numerical examples. For this purpose, we first start by comparing the accuracy of 

finite element method and finite difference method with that of spectral element 

method in the following section. 

 

 

5.2 Accuracy of SEM, FDM, and FEM 
 

A comparison is first carried out between spectral element method (SEM) and finite 

difference method (FDM). We considered the following one-dimensional boundary-

value problem: 

2
2

2

1.1

0, in the interval [0,1.1]

with (0) 1, (1.1) e jk

d u
k u

dx

u u 

 

 

  (5.1) 

where 2k  . We define an error measure as follows: 

, ,

,

max
i

i exact i numerical

i exact

u u
Err

u


         (5.2) 

where; ,i exactu  is the exact solution e jkx , and ,i numericalu  is the numerical solution 

obtained by the specified numerical method at the ith  node in the computational 

domain. This definition is used throughout this thesis. 

 

In Table-5.1, the relative errors for both FDM and SEM are shown as the number of 

nodes increases in both methods. Obviously, it can be observed that the errors of 

FDM are slowly decaying although the number of nodes is chosen in the order of 10. 

On the other hand, SEM shows high accuracy with much fewer number of nodes. 

That is, the accuracy obtained by FDM at 100 nodes can be achieved by 8 nodes with 

SEM. 
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Table 5. 1 Relative errors of SEM and FDM for the problem defined in (5.1). 

FDM SEM 

Nodes Err  Nodes Err  
10 0.1840 7 0.0103 

20 0.0524 8 0.0012 

30 0.0238 9 1.4550e-04 

40 0.0135 10 1.6087e-05 

50 0.0087 11 2.0749e-06 

60 0.0060 12 2.3081e-07 

70 0.0044 13 2.5700e-08 

80 0.0034 14 2.6247e-09 

90 0.0027 15 2.6137e-10 

100 0.0022 16 2.4206e-11 

110 0.0020 17 2.3182e-12 

 

 

To compare SEM with the first-order FEM, we consider the following 1D problem: 

2 2
2

2 2
0, in [ 1,0], 4 0, in [0,1]

with ( 1) sin( 1), ( 1) sin(4).

d u d u
u u

dx dx

u u

    

    

  (5.3) 

 

In fact the solution of (5.3) is ( ) sin(c ), with c 1in [ 1,0], and c 4in [0,1]u x x    . 

However, for error calculations, to avoid division by zero, we compute the error 

(only for this problem) as the maximum difference between the exact solution and 

the numerical solution. The comparison is shown in Table 5.2 in which nodes 

represent the number nodes in each sub-domain. Again, it can be seen that SEM 

accuracy is much higher than that of FEM. Figure 5.1 shows the plot of the solution 

obtained by SEM for 15 nodes in each subdomain.  
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Table 5. 2 Errors of SEM and FEM for the problem defined in (5.3). 

FEM SEM 

Nodes Err  Nodes Err  
10 0.0546 7 7.0333e-05 

20 0.0252 8 3.3405e-06 

30 0.0164 9 4.6975e-07 

40 0.0121 10 1.8764e-08 

50 0.0096 11 2.5935e-09 

60 0.0080 12 9.0923e-11 

70 0.0068 13 1.1323e-11 

80 0.0059 14 3.4817e-13 

90 0.0053 15 3.9413e-14 

100 0.0047 16 1.5876e-14 

 

 

 

 

Figure 5. 1 Exact and SEM solutions of the problem (5.3). 

 

 

It is worth also to compare FEM and SEM in a two dimensional boundary value 

problem. The point source problem (2D Green’s function) is considered for this 

purpose. Right-triangle elements are utilized in meshing the problem over a domain 

of dimensions   and 1  . Figure 5.2 shows the solution obtained by FEM at a 
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grid of 20 20 . As observed from Table 5.3, the error profile in 2D doesn’t differ 

from that of 1D case.  

 

Next, we apply spectral element method in electromagnetic scattering problems. 

Although the problem defined in (5.3) and whose solution is plotted in figure 5.1 is 

in one dimension, it resembles domain truncation by PML from the sense that there 

are two differential equations governing the problem. However, the major difference 

in the case of problems involving PML and problem (5.3) is that there is an extra 

parameter that forces the field to decay inside the PML, and that parameter has to be 

determined as explained in the next section. 

 

 

Table 5. 3 Errors of FEM for of the 2D point source problem. 

FEM SEM 

Nodes Err  Nodes Err  
10 0.5554 7 0.00091 

15 0.3229 8 1.30E-04 

20 0.2018 9 1.25E-05 

25 0.1356 10 1.14E-06 

30 0.0967 11 1.13E-07 

35 0.0724 12 1.26E-08 

40 0.0562 13 1.51E-09 

45 0.0447 14 2.23E-10 

50 0.0364 15 2.57E-11 

55 0.0302 16 3.23E-12 

60 0.0255 17 2.86E-13 

80 0.0145   

100 0.0103   
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Figure 5. 2 FEM solution of the 2D point source problem (Grid: 20 20 ). 

 

 

5.3 Determination of the Attenuation Factor 
 

Ideally, the attenuation factor ( ) must be infinitely large to make sure that the field 

magnitude is immediately forced to zero in the PML region. However in the 

numerical application, the PML must be terminated by an outer boundary and one 

must search for the optimum PML thickness, discretization (i.e. mesh/grid density 

especially in the longitudinal direction), and  , in order to represent the field decay 

as smoothly as possible without causing “numerical” reflections. In other words, 

there is a tradeoff in the choice of the attenuation factor in having almost zero 

Dirichlet boundary condition on the outer PML boundary and providing the adequate 

rate of attenuation within the PML for a specific mesh/grid. 

 

The attenuation factor and the thickness of the perfectly matched layer are strongly 

connected to each other. If very small values of attenuation are chosen, then to have 

a successful domain truncation, one must consider a very thick perfectly matched 

layer. That is, the thickness and the attenuation factor are inversely proportional to 

each other. From theoretical viewpoint, this is correct, however, the computational 

aspect must be considered as well. For instance, one can choose the PML to be thick 
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as much as three or four times the wavelength. But to be able to resolve three 

wavelengths inside the perfectly matched layer, one must assign three or four times 

the nodes required to resolve one wavelength. This turns to cause a huge 

computational cost as the perfectly match layer surrounds the region of interest 

where the solution is to be found. In another word, the size of the perfectly matched 

layer is directly proportional to the size of the region of interest. 

 

In conclusion, from computational viewpoint, there are three parameters determining 

the characteristics of the perfectly matched layer in order to successfully truncate 

unbounded domains without numerical reflections. These parameters are: 

 Attenuation factor, 

 PML thickness, and 

 Number of nodes in the longitudinal direction. 

 

Choosing the thickness of the PML region as much as one wavelength is very 

reasonable from viewpoint of the computational cost. And then, one should search 

for the best attenuating rate within the PML. Here, it is worth to point that one can 

choose the thickness even much less than one wavelength, however, since the field is 

decaying exponentially inside the PML, more nodes are required to resolve this 

decay. In addition, numerical reflection will significantly contribute to deterioration 

of solution corresponding to the region of interest. 

 

For the numerical experiments, it is assumed that u is known (analytical expression is 

available). In figure 5.3, on 1  and 2 , u is specified as a Dirichlet boundary 

condition. Throughout this work, this is referred to as “case-a”. In , u satisfies the 

homogenous Helmholtz equation. The numerical solution is then obtained by SEM. 

The computational domain  which is shown in figure 5.4, is composed of the free-

space region truncated by the perfectly matched layer (i.e., FS PML  ), where 

u is imposed on 1  only, and on 2  zero Dirichlet boundary condition is simply 

imposed. This case is referred as “case-b” in which both the homogenous Helmholtz 
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equation (governing the free space region, FS ), and the PML partial differential 

equations (governing the PML region, 
PML ) are satisfied. In this way, the SEM 

error without PML (case-a) and the SEM error with the utilization of PML can be 

compared. 

 

 

 

Figure 5. 3 The computational domain definition without PML. 

 

 

 

Figure 5. 4 The computational domain definition with PML. 

 

 

For the sake of determining the optimum value of the attenuation factor ( ) in SEM 

at fixed number of points per wavelength in the PML region, several problems have 
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been carefully studied. First, we considered the two-dimensional Green’s function 

that has Helmholtz equation as the governing PDE: 

2 2
+ ku u (r)       (5.4) 

where the solution is given in terms of Hankel function of the second kind of order 

zero as 
(2)

0u(r) (j/ 4)H (k r ) . To avoid singularity arising from the radiating point 

source being at the origin, we truncate the domain around the origin, and impose the 

Dirichlet boundary condition in terms of the field u(r)  over the boundary 1  as 

shown in figure 5.5(a). Then, to have a bounded domain, truncation by PML is 

applied. By utilizing symmetry, only one-fourth of the computational domain is 

studied. Zero Dirichlet boundary is imposed on the outer boundary of the PML 

region (i.e., 2 ) and zero Neumann symmetry condition is imposed on the 

boundary N .  

 

The computational domain is subdivided into eight square elements as shown in 

figure 5.5(b), with dimensions of    and a resolution of NN for each element. It 

is worth to point that the maximum incident angle (the angle between the ray and the 

normal to the free space-PML interface) in this problem is 45o  in terms of a ray 

approximation.  

 

 

 

Figure 5. 5 The problem of the 2D Green’s function: (a) the problem definition, (b) 

elements in SEM. 
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Table 5.4 shows the value of the attenuation factor  , and the corresponding 

maximum relative error for each resolution (N). The values of   were calibrated for 

each number of points per wavelength N, such that the minimum possible error is 

obtained in each case. For instance, at N=11, the variation of error vs   is 

demonstrated in figure 5.6. 

 

 

Table 5. 4 Maximum relative errors as obtained by SEM for the problem in Fig. 5.5. 

N    Err  

7 4.40 4.5e-3 

8 5.25 4.1746e-4 

9 6.40 4.6100e-5 

10 7.18 4.6486e-06 

11 8.41 5.8466e-07 

12 9.10 8.0365e-08 

13 10.40 7.9952e-09 

14 11.16 1.4402e-09 

15 12.33 1.3769e-10 

16 13.18 2.6012e-11 

17 14.22 3.2078e-12 

18 15.20 4.4765e-13 

 

 

 

It is important to check the accuracy of SEM when it is used to solve the 2D Green’s 

function problem again, but this time, on a different computational domain in which 

the inner boundary is defined to be circular. Because of symmetry (i.e., when the 

point source is placed at the origin), only two adjacent quadrants are studied as 

shown in figure 5.7(a). Here, the field u(r)  is imposed over the inner boundary 1 , 

zero Dirichlet boundary condition and Neumann boundary condition are imposed on 

2 and N , respectively. The elements chosen in SEM to discretize the 
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computational domain are shown in figure 5.7 (b) for convenience. The solutions 

obtained by this definition are referred as “case-b” as previously defined. 

 

Figure 5. 6 Variation of SEM error vs α at N=11. 

 

 

In “case-a”, simply the domain corresponding to the PML region is considered as 

free space satisfying the homogenous Helmholtz equation, and the field u(r)  is 

imposed over both the inner boundary 1 , and the outer boundary 2 . The errors 

are calculated for the following dimensions:   = 1, R = b = 0.5, d = c = 1, and 

presented in Table 5.5 for both case-a and case-b. It is worth to point that the errors 

are larger than the ones presented in Table 5.4, this is due to the fact that we have 

deformed elements in this problem as discussed in chapter 3. The real part of the 

numerical solution is plotted in figure 5.8 both in the PML region and in the free-

space region. 
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Figure 5. 7 The problem of the 2D Green’s function having a circular inner 

boundary: (a) the problem definition, (b) elements in SEM. 

 

 

Table 5. 5 Maximum relative errors obtained by SEM for the 2D Green’s function 

problem with circular inner boundary. 

N    Err   

(case-a) 

Err  

(case-b) 

7 4.40 0.003559 0.001994 

8 5.25 0.000382 0.000342 

9 6.40 5.24E-05 6.03E-05 

10 7.18 6.92E-06 7.77E-06 

11 8.41 8.50E-07 9.72E-07 

12 9.10 1.06E-07 1.30E-07 

13 10.40 1.29E-08 1.50E-08 

14 11.16 1.32E-09 1.60E-09 

15 12.33 2.44E-10 7.89E-10 

16 13.18 6.37E-11 4.65E-10 

17 14.22 1.71E-11 3.63E-10 

18 15.20 4.62E-12 2.75E-10 
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Figure 5. 8 The real part of SEM solution of the problem defined in figure 5.7. 

 

 

 

5.4 Scattering Cylinders 
 

Next, we have studied scattering by a circular cylinder and considered the following 

incident plane wave of the form 
i - jkx

0u = u e on an infinitely long, circular conducting 

cylinder of radius cr . Because of symmetry in z-direction, the problem is a two-

dimensional one, and because of symmetry along x-axis, only one half of the plane is 

considered. The scattered field is given analytically in terms of Bessel and Hankel 

functions as: 

(2) jn
s n c n

0 (2)

n c

J (kr )H (k )e
u = -u ( j)

H (kr )

n

n





       (5.5) 

 

This problem is solved as shown in figure 5.7 for the same dimensions mentioned 

previously. Here, for case-a, the scattered field given in (5.5) is imposed on 1  and 

2 . For case-b, the scattered field given in (5.5) is imposed on 1  only, and zero 

Dirichlet boundary condition is imposed on 2 .  Error results are presented in 

Table 5.6. As seen from the table, although we have deformed elements, the values 

of   still give the best accuracy when compared with the accuracy obtained in case-

a. The magnitude of the solution is shown in figure 5.9 at NN = 1616 in each 
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element. The real part of the total electric field (scattered field and incident field) is 

shown in figure 5.10 at 
cr 0.8 using color mapping. 

 

 

Table 5. 6 SEM errors for the scattering circular cylinder. 

N    Err  

(case-a) 

Err  

(case-b) 

7 4.40 0.010563 0.00305 

8 5.25 0.000817 0.00044 

9 6.40 7.74E-05 8.02E-05 

10 7.18 1.48E-05 1.63E-05 

11 8.41 4.46E-06 4.51E-06 

12 9.10 1.18E-06 1.18E-06 

13 10.40 3.74E-07 3.80E-07 

14 11.16 1.24E-07 1.27E-07 

15 12.33 3.92E-08 4.78E-08 

16 13.18 1.22E-08 3.22E-08 

17 14.22 3.78E-09 2.64E-08 

18 15.20 1.17E-09 2.21E-08 

 

 

 

 

Figure 5. 9 Magnitude of the scattered field by the cylinder (i.e., |u|). 
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Figure 5. 10 Real part of the total electric field near the cylinder at cr 0.8  . 

 

 

The high accuracy of spectral element method can be observed very clearly from the 

previous results. Although the problem discussed here is completely different from 

the point-source radiation problem, the optimized values of the attenuation factor still 

give the minimum errors in the case of scattering from a perfectly conducting 

cylinder. We investigated this problem in detail and tried to check whether there is a 

different set of values that minimizes the errors, and found no other values of 

attenuation that give better solutions. This is also clear from the comparison made 

between ‘case-a’ and ‘case-b’ presented earlier. 

 

In practice, perfectly-conducting square cylinders are involved in many applications. 

For this reason, we also solve the scattered field by a perfectly-conducting cylinder 

(infinitely long in z-direction) of square shape although the analytical solution of 

such a problem is not available. Figure 5.11 shows a plane wave incident to a square 

cylinder of radius R , and the corresponding elemental discretization in SEM is 

shown in figure 5.12.  
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Figure 5. 11 A plane wave incident to a square cylinder of radius R . 

 

 

 

Figure 5. 12 Elemental discretization in SEM for the square cylinder problem. 

 

 

In figure 5.13, the real part of the total incident-scattered field is shown in the free 

space region that surrounds a square cylinder of radius 0.5R  . It can be observed 

that the magnitude exceeds 1.5 although the incident plane wave has a magnitude of 

1. Besides, the scattered field pattern can be better observed when a larger cylinder is 

of interest, for instance, the real part of the total incident-scattered field is shown in 

figure 5.14 at 1.5R  . 

 

Next, we consider an incident plane wave propagating in xy-direction, i.e., of the 

form (x y)inc jkE e   . Again, the total incident-scattered field is plotted in figure 5.15 
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and figure 5.16 for 0.5R   and 1.5R  , respectively. It can be observed that the 

scattered field strongly depends on the plane wave propagation direction.  

 

 

 

Figure 5. 13 The total field at 0.5R   due to x-propagating plane wave. 

 

 

 

Figure 5. 14 The total field at 1.5R   due to x-propagating plane wave. 
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Figure 5. 15 The total field at 0.5R   due to xy-propagating plane wave. 

 

 

 

Figure 5. 16 he total field at 1.5R   due to xy-propagating plane wave. 
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5.5 Scattering by Large Objects 
 

To investigate SEM accuracy using the optimal values of   when scattering by 

large objects is encountered, we considered a square region with dimension 6 6   

(standing for the object dimensions) whose boundary is 1  (where the field u(r)  is 

imposed) as shown in the left side of figure 5.10. Each of the free-space region FS , 

and the PML region PML , has a width of . The computational domain is subdivided 

into 64 elements so that each element is of    ( 1  ) and has a resolution of N

N. The point source is chosen to be placed in 21 positions as seen from the right side 

of figure 5.17.  

 

Here, we note that because of symmetry, the average relative error of these selected 

positions is the same as if 121 positions were chosen and distributed uniformly over 

the object. In each position, the problem is solved and the SEM relative error is 

calculated (case-b). The magnitude of the field when the point source is at position-

16 is shown in figure 5.18 at NN=1111 in each element. 

 

 

 

Figure 5. 17 Scattering by large objects: (on the left) the computational domain, 

selected positions for the point source (on the right). 
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From the viewpoint of ray approximation, it should be noted the maximum incident 

angle ranges from 45o  (for position-1) to 77o  (for position-16). As the incident 

angle gets larger, the error increases as well. The maximum relative errors for 

positions: 1, 11, 15, 16, are presented in Table 5.7. It can be observed from the table 

that the SEM accuracy is similar to the accuracy obtained in a typical boundary value 

problem where the PML is not utilized. 

 

 

Figure 5. 18 Plot of |u| for position-16 at NN=1111. 

 

 

Although the solutions are obtained by changing the position of the radiating point 

source whose field is governed by equation (5.4), taking the average of the maximum 

relative errors of all positions will give an estimate of the accuracy when a dielectric 

object is involved. This is due to the fact that the error in our work is normalized 

with the field, and the solution when a dielectric object exists can be expressed as a 

linear combination of Hankel functions of the second kind of order zero. In Table 

5.8, the average of the errors obtained for the 21 positions are presented. 
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Table 5. 7 Maximum relative errors at four positions. 

Max inc. 

angle 

45o  63.4o  71.6o  77o  

N    Err
Posit.1 

(case-a) 

Err
Posit.1 

(case-b) 

Err
Posit.15 

(case-b) 

Err
Posit.11 

(case-b) 

Err
Posit.16 

(case-b) 

7 4.40 0.07012 0.005803 0.006064 0.008012 0.01413 

8 5.25 0.00476 0.000463 0.000565 0.00264 0.00565 

9 6.40 0.00018 5.58E-05 9.75E-05 0.000662 0.00180 

10 7.18 9.41E-06 8.49E-06 2.95E-05 0.000254 0.00080 

11 8.41 6.44E-07 1.00E-06 4.67E-06 5.43E-05 0.00022 

12 9.10 6.64E-08 2.98E-07 1.63E-06 2.23E-05 0.00010 

13 10.40 6.48E-09 2.95E-08 2.17E-07 3.92E-06 2.23E-05 

14 11.16 6.04E-10 7.51E-09 6.55E-08 1.37E-06 8.90E-06 

15 12.33 5.42E-11 8.86E-10 9.96E-09 2.54E-07 2.02E-06 

 

 

 

Table 5. 8 The average of relative errors of the 21 positions. 

N    Average 

Err  

7 4.40 0.006971 

8 5.25 0.001451 

9 6.40 3.44E-04 

10 7.18 1.32E-04 

11 8.41 2.91E-05 

12 9.10 1.23E-05 

13 10.40 2.36E-06 

14 11.16 8.71E-07 

15 12.33 1.78E-07 

16 13.18 7.91E-08 

17 14.22 2.68E-08 
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5.6 One-dimensional problem 
 

Finally, we considered the Helmholtz equation in one dimension over 

x [ 1 ,1 ]     , where   is a real number chosen as 0.001 to avoid singularity (i.e., 

to have the solution:  u = exp( jkx) ). The domain is divided into two elements each 

has N points and a length of 1  . In the first element (i.e., x [ 1 ,0]   ), the 

homogeneous Helmholtz equation is satisfied and in the second element (PML 

subdomain), the nonhomogeneous Helmholtz equation is satisfied:  

 
2

2

2 2

1 u
k u 0,for x [0,1 ]

a x



   


        (5.6) 

with the boundary conditions u( 1 ) = exp( jk( 1 ))       and u(1 ) = 0 .  

 

To solve this problem, we applied the same attenuation factor in order to check the 

accuracy. The maximum relative errors corresponding to the first element are 

presented in Table 5.9 for unity wavelength. The real parts and imaginary parts of the 

exact and SEM solutions are shown in figure 5.19 and figure 5.20, respectively, at N 

=18 in each subdomain. It be seen from the table that SEM accuracy is high and 

similar to the expected accuracy in the case where the PML is not applied. 

 

 

Table 5. 9 The maximum relative error of the one-dimensional problem. 

N    Err  

7 4.40 0.0065 

8 5.25 5.1111e-04 

9 6.40 6.0577e-05 

10 7.18 6.0067e-06 

11 8.41 7.4124e-07 

12 9.10 7.1254e-08 

13 10.40 8.7009e-09 

14 11.16 6.5970e-10 

15 12.33 1.0664e-10 

16 13.18 8.8274e-12 

17 14.22 1.6588e-12 

18 15.20 2.3845e-13 
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Figure 5. 19 Real part of the exact and SEM solution at N=18. 

 

 

 
Figure 5. 20 Imaginary part of the exact and SEM solution at N=18. 

 

 

 

5.7 Conditioning of the System Matrix 
 

In chapter 3, we have investigated the performance of iterative methods and some of 

the well-known preconditioners. However, the condition number of the resulting 

linear system of equations was not investigated. It is important to check the condition 

number of the system matrix formed by spectral element method with and without 

the introduction of the perfectly matched layer. In addition, it is worth to carry out a 
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comparison between finite element method (FEM), finite difference method (FDM) 

and spectral element method. 

 

We start by comparing the condition number of FEM and SEM matrices for the two-

dimensional point source problem which was solved earlier in this chapter and whose 

solution is presented in figure 5.2 (without PML). The comparison is presented in 

Table 5.10 against the number of nodes considered in each method. It can been seen 

from this table that in the case of FEM, the conditional number increases as the 

number of nodes increases. However in the case of SEM, the conditional number is 

less than that of FEM, and the rate of increase is less as well. This is the case where 

the perfectly matched layer is absent. 

 

 

Table 5. 10 Condition number of 2D FEM and SEM matrices. 

FEM SEM 

Nodes Cond(A) Nodes Cond(A) 

10 235.1 7 196.0 

15 622.4 8 285.8 

20 1.2e+03 9 390.1 

25 1.9e+03 10 513.8 

30 2.8e+03 11 661.9 

35 4.0e+03 12 840.1 

40 5.1e+03 13 1.1e+03 

45 6.5e+03 14 1.3e+03 

50 8.1e+03 15 1.6e+03 

55 9.8e+03 16 1.9e+03 

60 1.7e+04 17 2.3e+03 

80 2.1e+04   

100 3.3e+04   

 

 

Second, we check the condition number of the matrix formed by SEM under the 

application of PML. For this purpose, the point source problem for which the 

attenuation factor was optimized, is considered. And to check the effect of the PML 

(case-b), we compare the condition numbers with that of case-a where the PML is 

absent. This comparison is shown in Table 5.11.  As seen from this table, the 
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condition number of the matrix when the PML is utilized is much less than that of 

the case where the PML is absent. This advantage of the PML is also available in the 

1D problem defined in equation (5.6) as can be observed from Table 5.12. 

 

 

Table 5. 11 Condition number of SEM with and without PML in 2D 

N 

(points) 

  Cond(A) 

 (No PML) 

Cond(A) 

 (PML) 

7 4.40 7.22e+04  142.21 

8 5.25 2.74e+04 220.81 

9 6.40 3.54e+04 351.85 

10 7.18 4.47e+04 515.15 

11 8.41 5.66e+04 767.36 

12 9.10 7.12e+04 1.05e+03 

13 10.40 8.87e+04 1.48e+03 

14 11.16 1.09e+05 1.95e+03 

15 12.33 1.33e+05 2.61e+03 

16 13.18 1.60e+05 3.34e+03 

17 14.22 1.91e+05 4.28e+03 

18 15.20 2.26e+05 5.37e+03 

 

 

 

Table 5. 12 Condition number of SEM with and without PML in 1D. 

N 

(points) 

  Cond(A) 

 (No PML) 

Cond(A) 

 (PML) 

7 4.40 4.34e+03 600.19 

8 5.25 4.73e+03 578.58 

9 6.40 7.12e+03  555.83 

10 7.18 9.99e+03 543.74 

11 8.41 1.35e+04 528.85 

12 9.10 1.78e+04 522.23 

13 10.40 2.26e+04 512.23 

14 11.16 2.88e+04 507.55 

15 12.33 3.57e+04 501.58 

16 13.18 4.30e+04 497.98 

17 14.22 5.27e+04 494.22 

18 15.20 6.29e+04 491.22 
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Next, we investigated the condition number of the matrix formed by FDM in the 1D 

problem defined in equation (5.6) where the perfectly matched layer is utilized. The 

imaginary and the real parts of the FDM solution are shown in figure 5.21 and figure 

5.22, respectively, at N=100 in each subdomain for  =6 (where the minimum error 

is obtained). This investigation is shown in Table 5.13. The advantage of the 

perfectly matched layer also appears in FDM. However, when we compare the 

results with that presented in the fourth column of Table 5.12 (the SEM case), we 

clearly see that not only the introduction of the PML is computationally 

advantageous, but also the application of SEM as well. 

 

Table 5. 13 Condition number of FDM with and without PML in 1D. 

N 

(points) 

Cond(A) 

 (No PML) 

Cond(A) 

 (PML) 

20 1.31e+03 206.09 

30 3.869e+03 589.73 

40 8.58e+03 1.28e+03 

50 1.59e+04 2.38e+03 

60 2.62e+04 3.97e+03 

70 3.97e+04 6.16e+03 

80 5.63e+04 9.03e+03 

90 7.60e+04 1.26e+04 

100 9.89e+04 1.71e+04 

110 1.24e+05 2.26e+04 

120 1.53e+05 2.91e+04 

130 1.85e+05 3.67e+04 
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Figure 5. 21 Imaginary part of FDM solution at N=100 in each subdomain. 

 

 

 

Figure 5. 22 Imaginary part of FDM solution at N=100 in each subdomain. 
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5.8 Conclusion 
 

In this chapter, we carried out a comparison among spectral element method, finite 

difference method and finite element method in both one and two dimensional 

problems. As observed from the presented numerical results, the accuracy of SEM is 

high and can never be achieved by other low-order numerical methods.  

 

Based on the numerical results discussed in this thesis for different geometries, it is 

obvious that only one PML layer is required to truncate the computational domain 

when spectral element method is used. Here, it is important to note that in the case of 

finite difference or finite element methods, more than one PML layer is usually 

introduced in order to reduce the numerical reflections. This in turn causes a huge 

burden in terms of the computational cost.  

 

In addition, we have provided the attenuation factor versus number of nodes per one 

wavelength so that the best accuracy is achieved. Then, the accuracy is verified by 

comparing the relative errors with that calculated in the absence of the perfectly 

matched layer for various problems. It is also observed that the provided attenuation 

factor has almost a linear relationship with the number of points per wavelength 

(slope 0.95 ). Then, the accuracy of scattering by large objects is studied.   

 

Finally, the condition number of the matrices formed by FDM, FEM, and SEM is 

investigated with and without the introduction of the perfectly matched layer. It is 

clearly observed that SEM is superior to its counterparts from computational 

viewpoint. In conclusion, the applicability of PML in electromagnetic scattering 

problems by using SEM is very successful in terms of the attenuation factors 

provided in this work. 
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CHAPTER 6 

 

 

PHOTONIC NANOJET ANALYSIS 
 

 

 

In this chapter, we numerically investigate scattering of light by a dielectric, non-

magnetic cylinder by SEM. By the aid of spectral element method and the perfectly 

matched layer formulations presented in this work, we accurately solve scattering by 

dielectric microcylinders. Interesting cases, which finite difference time-domain 

method couldn’t capture, are presented and discussed in this thesis. This chapter is 

arranged as follows: first an introduction to photonic nanojets (light focusing due to 

dielectric cylinders) is presented, we then discuss the application of spectral element 

method and the corresponding results of photonic nanojets. Verification of the 

obtained results is then presented using the analytical solution of Mie theory. 

 

 

6.1 What is a Photonic Nanojet? 
 

When an electromagnetic plane wave is perpendicularly incident to a dielectric 

cylinder or to a dielectric sphere, instead of having a shadow region behind the 

dielectric material, a photonic nanojet is obtained at some specific choices of 

material dimensions and a corresponding refractive index. Photonic nanojets can be 

defined as a narrow electromagnetic beam having high intensity. This beam 

propagates into the background medium, in which the dielectric material is 

embedded [41]. In order to obtain a photonic nanojet, the dielectric microspheres or 

micro cylinders must be lossless dielectric materials and of diameters greater than the 

illuminating wavelength. Due to the unique nature of the light distribution at the 

focal area, the phenomenon is named as photonic nanojet [41]-[45]. 

 

The key properties defining the photonic nanojet are [41]: 
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1. It is non-evanescent beam that propagate while maintaining a subwavelength 

full-width at half-maximum (FWHM) transverse beamwidth along a specific 

path that can extend more than twice of the wavelength behind the dielectric 

micro cylinder or microsphere. 

2. Its minimum FWHM beamwidth can be as small as around one-third of the 

wavelength for microspheres, in another word; FWHM can be smaller than 

the classical diffraction limit. 

3. It is a phenomenon that has a nanoresonant property. That is, it can appear for 

a wide range of the diameter of the microsphere or micro cylinder extending 

from 2 to 40 times the wavelength for a very applicable, relative refractive 

index (i.e., less than 2). 

4. Photonic nanojets have a very high intensity which exceeds the intensity of 

the illuminating wave. 

 

Photonic nanojets have several applications. They are mainly utilized in the 

following applications [41], [46], [47]: 

 Nanospectroscopy (detection and manipulation of nanoscale objects), 

 Subdiffraction resolution, 

 Enhanced Raman scattering, 

 Waveguiding, and,  

 High intensity optical storage. 

Low-loss optical wave guiding, high density data storage, lithography, high 

resolution microscopy, and nonlinear optical effects are the other applications of 

photonic nanojets [15], [48], [49]. 

 

 

6.2 Numerical Analysis of Photonic Nanojets 
 

Light as an electromagnetic field interacts with different metallic or dielectric objects 

of any size and shape and provides novel features via scattering, reflection, 

refraction, and diffraction mechanisms [41], [42]. To be more specific about light 

interaction with an object we can assume lossless (absorption free) dielectric micro-
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cylinders and excitation with a normally incident plane wave. The result of the 

interaction produces scattered light and strongly focused beam intensity at the back 

side of the medium (shadow side).  

 

Optical engineering of micron sized dielectric cylinders and spheres produce nano-

scale light manipulation. Divergence behavior of the beam whether low or high, 

location of the focus (inside, at the boundary or outside of the cylinder), field 

enhancement, and transverse dimension of the spot size compared to the illuminating 

wavelength (how small with respect to the wavelength) are important parameters for 

the photonic jet. A substantial literature has been devoted to the verification of light 

focusing of photonic jet into sub-diffraction-limited sizes. Squeezing light at the 

shadow side as well as altering the location of focal point by means of different 

material and structural parameters (refractive index, radius, deformation, wavelength 

etc.) are unique properties to create interaction between enhanced intensity and 

matter interaction.  

 

Experimental observation of photonic nanojets generated by latex microspheres of 

varying diameters was reported in Ref. 46 (See figure 6.1). Low loss optical guiding 

of light can be accomplished by touching microspheres [49]. Propagation losses as 

low as 0.08 dB per microsphere was measured in the same study. 

 

Photonic nanojets have been mainly explored by numerical methods based on FDTD 

analysis [15], [16]. For instance, figure 6.2 shows a visualization of a photonic 

nanojet as obtained by FDTD for a plane-wave-illuminated circular dielectric 

cylinder of 5 m diameter at a wavelength of5 mn . The cylinder is embedded in 

vacuum and has a refractive index of 1.7. Very fine meshes are required in order to 

get accurate and reliable results with FDTD method. Besides, the excitation 

mechanism such as plane wave in free space may restrict the observation of special 

resonance modes. Later, analytical and semi-analytical attempts were introduced in 

the literature [42]. The majority of analytical studies are based on Mie theory. 

Rigorous Mie theory was used to analyze the fundamental properties of the photonic 
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nanojet in [42]. Recasting eigenfunction solution of the Helmholtz equation into a 

Debye series. [16] provided detailed optics of photonic nanojets on dielectric 

cylinders.  

 

 

 

Figure 6. 1 Experimental observation of a photonic nanojet viewed along the optical 

axis of a 5 m  -diameter dielectric sphere made of glass, [46]. 

 

 

 

Figure 6. 2 Visualization of a photonic nanojet of a plane-wave-illuminated circular 

dielectric cylinder of 5 m  diameter and has a refractive index of 1.7. [15]. 

 

 

As mentioned previously to have accurate results with FDTD method it is necessary 

to use finely discretized mesh which is a huge burden on the computational 
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resources. Therefore, it is important to check/verify results with an alternative 

numerical method. In the present work, we implement the spectral element method to 

solve for the scattered electric field inside and outside the dielectric cylinder. 

 

 

6.3 Nanojet Analysis by Spectral Element Method 
 

In the case of photonic nanojet where the scatterer is assumed to be an infinitely-long 

dielectric cylinder, the problem can be considered as a two-dimensional one when an 

incident plane wave propagating in a direction perpendicular to the cylinder axis is 

assumed. We consider an incident plane wave propagating in x-direction and the 

electric field is polarized in z-direction (i.e., in a transverse magnetic mode (TMz)): 

 exp( )inc

z zE a jkx       (6.1) 

 

To solve the problem numerically, we should truncate the unbounded domain. Again, 

the formulation of the perfectly matched layer presented in chapter 2 is utilized for 

the domain truncation. Figure 6.3 shows, in the xy-plane, a dielectric cylinder 

represented by C , free space region represented by FS , and the PML region 

denoted by PML , which represents the region surrounding FS . On the outer 

boundary of PML , zero-dirichlet boundary condition is simply imposed. In FS , the 

homogenous Helmholtz equation is satisfied: 

 
2 2 0,s s

z zE k E        (6.2) 

in which 
s

zE  stands for the scattered electric field and polarized in the z-direction 

(TMz polarization is considered), and k  is the wave number. While in C , the 

following Helmholtz equation can be derived: 

  2 2 1 ,s 2 s inc

z r z r zE k E k E        (6.3) 

where; r  is the relative permittivity, and 
inc

zE  represents the incident plane wave. 

Throughout this work, we assume that the medium in non-magnetic ( 1r  ). In 

PML , the set of partial differential equations derived in chapter 2 must be satisfied. 
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Under these assumptions, the refractive index is related to the relative permittivity as 

follows: 

.rn       (6.4) 

 

 

 

Figure 6. 3 Definition of the computational domain composed of a dielectric cylinder 

( C ) embedded in the free space ( FS ) and truncated by PML. 

 

 

Before we proceed further, it is worth to mention that the scattering dielectric 

cylinder is embedded in the free space that has a unity refractive index. From 

practical viewpoint, the cylinder can be embedded in another dielectric material that 

has a refractive index different than one, but it should be less than that of the 

scattering cylinder in order to obtain a photonic nanojet. What is important here is 

that the effective refractive index ( effn ) which is expressed by: 

 ,C
eff

m

n
n

n
      (6.5) 

where; Cn  and  mn  are the refractive indices of the cylinder and the surrounding 

material, respectively. In this work, we assume that the surrounding material is free 

space and we denote the effective index by n  which, in turn, is the refractive index 
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of the scattering cylinder. The radius of the cylinder, denoted by R , is normalized 

with the wavelength . 

 

A possible discretization of the computational domain by spectral element method 

when the dielectric cylinder radius is 3.5R  , is shown in figure 6.4. In this figure, 

the GLL nodes are chosen as NN=99 in each element for demonstration purpose. 

However in this work, finer resolutions are considered depending on R , for instance, 

when 3.5R  , the grid size of 3030 in each element is considered when the domain 

elements are chosen as shown in figure 6.4 in order to achieve approximately 14 

points per wavelength). It is important to mention that the number of elements should 

be increased as the radius of the cylinder increases due to the grid distribution of 

GLL nodes and since the radius is normalized with the wavelength. 

 

 

 

Figure 6. 4 A possible discretization of the computational domain at 1.5R  , and N

N=99 for each element (here, only elements corresponding to FS  and  C  are 

shown). 
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Typical field solutions of photonic nanojets obtained by spectral element method are 

shown in figure 6.5 for the cylinder radius 3.5R  , and for a refractive index 1.6n 

. The plots in this chapter are illustrated using color map. In figure 6.6, the photonic 

nanojet in figure 6.5 is shown 3D. Figures 6.7 and 6.8 illustrate different photonic 

nanojets at ( 5R  , 1.6n  ) and at ( 6.5R  , 1.4n  ), respectively.  

 

It is worth to mention that, after obtaining the solution by spectral element method, 

which represents the scattered field, the incident plane wave is added to the scattered 

field in the subdomains C  and FS  only. One can produce the same spatial light 

distribution for the case where FDTD method is used. We have performed FDTD 

study and verified the exact photonic nanojet creations. With the application of SEM 

in frequency domain, it is easy to decompose the total field into incident and 

scattered field components.  

 

 

 

Figure 6. 5 Visualization of photonic nanojet at 3.5R   and 1.6n  . 
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Figure 6. 6 3D visualization of photonic nanojet at 3.5R   and 1.6n  . 

 

 

 

 

Figure 6. 7 Visualization of photonic nanojet at 5R  and 1.6n  . 
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Figure 6. 8 Visualization of photonic nanojet at 6.5R   and 1.4n  . 

 

 

The results presented in the previous figures demonstrate the capability of spectral 

element in the analysis of photonic nanojet generation. The input source interacts 

with the cylindrical object and gets focused at different locations as we change the 

radius and refractive index of the dielectric material. The focal point appears close to 

the surface in figure 6.5 and it moves away from the back side along the optical axis 

(y=0 line) in figures 6.7 and 6.8.  

 

Plane wave illumination of dielectric micro cylinders with FDTD method always 

produces an expected lensing/focusing effect so that the planar wave front of light 

gets tilted and focused at the optical axis. In the next example, we try to emphasize 

the advantage of SEM analysis over FDTD method. For example, when we change 

the refractive index of the cylinder and keeping the radius constant at 3.50 a 

resonance mode appears.  

 

Figure 6.9 shows one of the captured resonance mode supported by a dielectric micro 

cylinder with 3.50R  and 1.7n  . The light focusing action with weak amplitude 

can be seen at the interior part of the cylinder. On the other hand, strong field 
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localization at around the small cylinder appears with a highly symmetric light 

distribution in the form of two rings. Light is trapped by total internal reflection. 

Similarly, when we change the radius of the cylinder to 4.50R  , the resonance 

mode again occurs if the refractive index value becomes 2.0. The result is presented 

in figure 6.10. Light distribution with five rings is highly symmetric and strong field 

localization takes place at the exterior part of the micro cylinder. The evanescent 

field that leaks out of the dielectric cylinder radially is apparent in the plot. 

 

 

 

Figure 6. 9 Visualization of the evolution of a photonic nanojet for 3.50R    and

1.7n  . WGM representation gives m=28 and 2I  . 
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Figure 6. 10 Visualization of the evolution of a photonic nanojet for 4.50R   and 

2n  . WGM parameters are m=34 and 4I  . 

 

 

Special cases corresponding to specific radius and refractive index values in the 

figures 6.9 and 6.10 can be attributed to whispering gallery mode (WGM). In the 

representation of WGM, m  indicates the azimuthal mode number I  and radial mode 

number. The resonance mode with different mode number is confined to the 

circumference of the cylinder by means of the total internal reflection mechanism. 

Using that notation we can express figures 6.9 and 6.10 in terms of WGM 

resonances. By means of spectral element method we captured resonance modes as 

well as photonic nano jets cases. Commonly used FDTD method requires a different 

excitation scheme in order to gather the resonance modes of the micro-cylinder apart 

from the plane wave illumination.  

 

We should point out that FDTD method gives us regular light focusing behavior but 

it does not indicate the creation of resonance mode. For instance, we have solved the 

problem at 3.50R  and 1.7n  by FDTD method using MEEP (a FDTD-based 

software developed by Massachusetts Institute of Technology-MIT). The 

corresponding real part of solution is shown on figure 6.11. The plot is obtained by 

meshing the domain uniformly such that 40 nodes are used per one wavelength.   

http://web.mit.edu/
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Figure 6. 11 FDTD visualization of the evolution of a photonic nanojet for 

3.50R    and 1.7n  . 

 

 

Phase matching condition has to be satisfied for FDTD method in order to excite the 

resonance mode. That condition requires special coupling techniques such as 

waveguide coupling or tapered optical fiber to excite the mode. The downside of the 

coupling approach is that the micro-resonator gets disturbed and the true resonance 

mode is modified due to the presence of the external waveguides. 

 

 

6.4 Verification of Whispering Gallery Modes 
 

Photonic nanojet analysis can be performed analytically. Mie theory was intensively 

utilized in electromagnetic scattering problems. However, when the characteristic 

dimensions of the scattering object becomes much larger than the wavelength, 

improper algorithms may lead to considerable numerical errors [16]. In the examples 

presented in the previous section, where resonance takes places, the diameter of the 

micro-cylinder is larger than the wavelength but not too much. It is very important to 



 
 110  
 

check whether the analysis that Mie theory provides produces such resonance cases 

or not.  

 

Itagi and Challener [16] provided the solution of the scattered light by a dielectric 

cylinder using Mie theory. Although their derivation is based on transverse magnetic 

mode (TE), we will use this analytical solution to verify our results. By Mie theory, 

the total-incident scattered magnetic field inside the cylinder can be expressed as: 

0

( , ) cos( ) ( )m m

m

h a m J nk   




     (6.6) 

where;   is the Euclidean distance from the z-axis to a point lying inside the 

cylinder,   is the azimuth angle, mJ  denote Bessel function of the first kind of mth 

order, and k is the wavenumber. The coefficients ma  are defined as: 

(1) ' (1) '

(1) ' (1) '

( ) ( ) ( ) ( )
,

( ) (n ) ( ) (n )

m m m m
m m

m m m m

H kR J kR H kR J kR
a c n

nH kR J kR H kR J kR

 
  

 

  (6.7) 

in which R denotes the radius of the cylinder, 
(1)

mH is Hankel function of the first 

kind of mth order, '  denotes the derivative with respect to the argument of the 

function, and the coefficients  mc  are given as: 

1, 0

2 , 0 .
m m

m
c

j m


 


     (6.8) 

 

This analytical solution is derived under the assumption that the cylinder is centered 

at the origin of the xy-plane. With the aid of this analytical solution, the magnitude 

of the magnetic scattered-incident field inside the cylinder is plotted for 4R   and 

1.4n   in figure 6.12. Here, we note that the truncation of the series at 150m  has 

negligible effect on the solution. 
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Figure 6. 12 Magnitude of magnetic scattered-incident field inside the cylinder for

4R    and 1.4n  .as obtained by Mie theory. 

 

 

Considering that the accuracy of spectral element method is very high, and one of the 

resonance cases is captured at a refractive index of 1.7n  , we have solved the 

problem at the neighborhood of 1.7n  , for instance at 1.701n   and at 1.699n  , 

and the expected photonic nanojets were captured. So the index 1.7n   is very 

critical. It should be noted that since the cylinder radius is larger than the 

wavelength, Mie theory provides an approximate solution instead of the exact 

solution.  

 

In other words, the solution obtained by Mie theory shows that there is no resonance 

at 1.7. We have performed a search loop in the neighborhood of 1.7 and captured the 

same resonance cases obtained by spectral element method. Figures 6.13 and 6.14 

show the magnitude of the total magnetic field inside the cylinder at ( 3.5R  and

1.6905n  ), and at ( 4.5R  and 1.8911n  ), respectively. 
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Figure 6. 13 The magnitude of the total magnetic field inside the cylinder at 3.5R   

and 1.6905n  . 

 

 

 

Figure 6. 14 The magnitude of the total magnetic field inside the cylinder at 4.5R   

and 1.8911n  . 
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6.5 Conclusions 
 

The formulation of perfectly matched layer is also utilized together with SEM 

formulation. In addition, accuracy of SEM is demonstrated by solving for the 

scattered field from perfectly conducting cylinders. With the use of SEM, we could 

accurately perform field analysis of photonic nanojets in dielectric lossless micro 

cylinders. Strong light focusing at the shadow side of the micro-cylinder is reported. 

Advantageous features of SEM allow the observation of commonly reported nanojet 

scenarios as well as the least pointed out transition region where resonance mode 

appears under certain conditions. The creation of whispering gallery mode types is 

plainly observed. One may be unaware of these special modes under the case of 

plane wave illumination with FDTD method that needs a coupling technique to 

excite the resonance the mode.   

 

Previously reported results are exactly reproduced in the current study that validates 

the accuracy of the formulation and implementation of the numerical analysis based 

on SEM. The most important is the observation of the unique light distribution 

property that is associated with a resonance mode behavior. Depending on the 

parameters of the micro-cylinder, radius (R) and refractive index (n) strong field 

enhancement occurs and different number of rings appears within the cylinder. These 

features can be attributed to whispering gallery modes supported in micro-discs. The 

captured whispering gallery modes by spectral element method have also been 

verified using solution by Mie theory. 
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CHAPTER 7 

 

 

CONCLUSIONS 
 

 

 

We have solved in this work the partial differential equations that govern the free 

space region when interaction between electromagnetic fields exits, and the 

equations that govern electromagnetic radiation and scattering by using SEM. In 

addition, domain truncation based on the PML is employed in the process. The 

numerical simulation is carried out in frequency domain. 

 

In most of practical engineering problems, the geometry of the region of interest is 

irregular. This means that discretization of the problem into elements of regular 

shapes is impossible. Spectral element method gives the capability of using deformed 

elements; and hence, a freedom in modeling irregular problems. For this reason, we 

illustrated the accuracy of this numerical method for single-deformed element case in 

order to emphasize the effect of elemental deformation and aspect ratio. This last 

point is important, since while discretizing a problem into elements having various 

aspect ratios, the element with the largest aspect ratio is going to effect the overall 

accuracy of spectral element method. Based on this illustration, we conclude that 

elements forming an electromagnetic problem should be chosen such that their 

aspect ratios are close to unity as much as possible in order to preserve the high 

accuracy offered by spectral element method. 

 

To realize and appreciate the accuracy of spectral element method, we carried out a 

comparison between this method and its well-known counter parts such as finite 

difference and finite element methods. The comparison included two major targets; 

the first is the accuracy. For this purpose, we applied these numerical methods to 

solve specific problems and the corresponding error calculations are subjected to a 
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specific error measure. From the illustrated examples, it is clear that the accuracy of 

spectral element method is much higher than that of its counter parts. 

 

The second is to assess the condition number of the matrices formed by these three 

numerical methods. It was clear that conditioning of the system matrices formed by 

spectral element method is less than that of the other methods with or without the 

application of the perfectly matched layer due to the smaller size of the system 

matrices for the same accuracy. In addition, the condition number in the case of 

spectral element method when the perfectly matched layer is applied was less than 

that of the case without PML is introduced.  

 

In the context of the perfectly matched layer formulation presented in this work, the 

optimum values of the attenuation factor are provided. This optimality is obtained 

under the assumption that the PML thickness is of one wavelength of the incident 

plane wave. As discussed in this thesis, the trade-off between having a fast field 

decay (so that the field vanishes at the outer boundary of the PML) and being able to 

resolve this decay from the computational viewpoint is the key behind the idea of 

optimizing the values of the attenuation factor. The second supporting point is that 

since the elemental discretization of the PML region is of regular shapes and the 

grids are of Gauss-Legendre-Lobatto (GLL) type, the attenuating factor depends on 

the number of GLL points in the longitudinal direction of propagation. Here, it is 

worth to note that there is a particular optimum value of the attenuation factor at 

which the error is minimized.  

 

Based on these optimized values of the attenuation factor, we have presented the 

corresponding maximum relative difference between the analytical solution of the 

point source problem and the solution obtained by the spectral element method. The 

numerical solution is obtained by directly imposing the analytical solution on the 

exterior boundary of the computational domain without introducing the perfectly 

matched layer. Several numerical experiments are performed such as the radiation 

problem on curved-side boundaries and scattering by an infinitely-long perfect 
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conducting cylinders of both circular and square shapes in order to test the optimality 

of the proposed attenuation factors. This comparison shows that the proposed 

attenuation factors for several numbers of points per wavelength are in fact optimum. 

 

Providing the optimal attenuation factors is one of the main results in this work. 

However, these values are specific to the case where the spectral element method is 

used. Due to different character of finite difference method or finite element method 

these optimal values generally will not be applicable with those methods. The 

optimum values of the attenuation factor are then utilized to numerically solve the 

scattered field by a dielectric micro cylinder. The resulting solution at specific 

choices of cylinder diameter and the refractive index of the cylinder gives the so-

called photonic nanojet. Several demonstrations of photonic nanojets are presented 

and discussed for different diameters and refractive indices.  

 

The accuracy of the spectral element method is very high as it can be observed from 

the presented numerical demonstrations when compared with its counter parts such 

as finite element or finite difference methods. Here, it is important to ask the 

following question which is very interesting for an engineer: Does an engineer need 

to solve the problem with a relative error of 1010 or even 510 ? In fact, many text 

books answer this question by “No”. In some sense, this answer seems to be logical 

since an electrical engineer, for instance, seeks an accuracy of 310  while designing 

an electrical motor or generator for example. Hence, low-order finite element method 

or finite difference method are very suitable and do meet engineering purposes. 

However, based on Chapter 6, the answer to the above question is “Yes”, we do 

indeed need high accuracy in some cases. That is, when low-order numerical 

methods are used to study electromagnetic scattering by dielectric microspheres or 

micro cylinders, whispering gallery mode will be missed. So, if the engineer design 

the material based on the numerical solution from a low-order method, and if 

whispering gallery mode takes place in the final implementation, the whole design 

will be in jeopardy. 
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Further, the resulting linear, symmetric system of equations formed by spectral 

element method is also solved iteratively. The conjugate gradient method, 

biconjugate gradient, and the generalized minimum residuals are implemented to 

solve the resulting system. In addition, several preconditioners such as Jacobi, 

incomplete LU factorization, and symmetric successive over relaxation are utilized, 

investigated and compared in this thesis. It is observed that for large problems, the 

preconditioned iterative methods for solving the resulting system of equations are 

more desirable when compared with direct methods. As a future work, devising a 

specific preconditioner from the context of the given PML formulation will be 

valuable when large problems with complex geometries are encountered.  
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